xref: /qemu/hw/ppc/spapr_hcall.c (revision 0b0b831016ae93bc14698a5d7202eb77feafea75)
1 #include "qemu/osdep.h"
2 #include "qapi/error.h"
3 #include "sysemu/hw_accel.h"
4 #include "sysemu/sysemu.h"
5 #include "qemu/log.h"
6 #include "qemu/error-report.h"
7 #include "cpu.h"
8 #include "exec/exec-all.h"
9 #include "helper_regs.h"
10 #include "hw/ppc/spapr.h"
11 #include "mmu-hash64.h"
12 #include "cpu-models.h"
13 #include "trace.h"
14 #include "kvm_ppc.h"
15 #include "hw/ppc/spapr_ovec.h"
16 #include "qemu/error-report.h"
17 #include "mmu-book3s-v3.h"
18 
19 struct SPRSyncState {
20     int spr;
21     target_ulong value;
22     target_ulong mask;
23 };
24 
25 static void do_spr_sync(CPUState *cs, run_on_cpu_data arg)
26 {
27     struct SPRSyncState *s = arg.host_ptr;
28     PowerPCCPU *cpu = POWERPC_CPU(cs);
29     CPUPPCState *env = &cpu->env;
30 
31     cpu_synchronize_state(cs);
32     env->spr[s->spr] &= ~s->mask;
33     env->spr[s->spr] |= s->value;
34 }
35 
36 static void set_spr(CPUState *cs, int spr, target_ulong value,
37                     target_ulong mask)
38 {
39     struct SPRSyncState s = {
40         .spr = spr,
41         .value = value,
42         .mask = mask
43     };
44     run_on_cpu(cs, do_spr_sync, RUN_ON_CPU_HOST_PTR(&s));
45 }
46 
47 static bool has_spr(PowerPCCPU *cpu, int spr)
48 {
49     /* We can test whether the SPR is defined by checking for a valid name */
50     return cpu->env.spr_cb[spr].name != NULL;
51 }
52 
53 static inline bool valid_ptex(PowerPCCPU *cpu, target_ulong ptex)
54 {
55     /*
56      * hash value/pteg group index is normalized by HPT mask
57      */
58     if (((ptex & ~7ULL) / HPTES_PER_GROUP) & ~ppc_hash64_hpt_mask(cpu)) {
59         return false;
60     }
61     return true;
62 }
63 
64 static bool is_ram_address(sPAPRMachineState *spapr, hwaddr addr)
65 {
66     MachineState *machine = MACHINE(spapr);
67     MemoryHotplugState *hpms = &spapr->hotplug_memory;
68 
69     if (addr < machine->ram_size) {
70         return true;
71     }
72     if ((addr >= hpms->base)
73         && ((addr - hpms->base) < memory_region_size(&hpms->mr))) {
74         return true;
75     }
76 
77     return false;
78 }
79 
80 static target_ulong h_enter(PowerPCCPU *cpu, sPAPRMachineState *spapr,
81                             target_ulong opcode, target_ulong *args)
82 {
83     target_ulong flags = args[0];
84     target_ulong ptex = args[1];
85     target_ulong pteh = args[2];
86     target_ulong ptel = args[3];
87     unsigned apshift;
88     target_ulong raddr;
89     target_ulong slot;
90     const ppc_hash_pte64_t *hptes;
91 
92     apshift = ppc_hash64_hpte_page_shift_noslb(cpu, pteh, ptel);
93     if (!apshift) {
94         /* Bad page size encoding */
95         return H_PARAMETER;
96     }
97 
98     raddr = (ptel & HPTE64_R_RPN) & ~((1ULL << apshift) - 1);
99 
100     if (is_ram_address(spapr, raddr)) {
101         /* Regular RAM - should have WIMG=0010 */
102         if ((ptel & HPTE64_R_WIMG) != HPTE64_R_M) {
103             return H_PARAMETER;
104         }
105     } else {
106         target_ulong wimg_flags;
107         /* Looks like an IO address */
108         /* FIXME: What WIMG combinations could be sensible for IO?
109          * For now we allow WIMG=010x, but are there others? */
110         /* FIXME: Should we check against registered IO addresses? */
111         wimg_flags = (ptel & (HPTE64_R_W | HPTE64_R_I | HPTE64_R_M));
112 
113         if (wimg_flags != HPTE64_R_I &&
114             wimg_flags != (HPTE64_R_I | HPTE64_R_M)) {
115             return H_PARAMETER;
116         }
117     }
118 
119     pteh &= ~0x60ULL;
120 
121     if (!valid_ptex(cpu, ptex)) {
122         return H_PARAMETER;
123     }
124 
125     slot = ptex & 7ULL;
126     ptex = ptex & ~7ULL;
127 
128     if (likely((flags & H_EXACT) == 0)) {
129         hptes = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
130         for (slot = 0; slot < 8; slot++) {
131             if (!(ppc_hash64_hpte0(cpu, hptes, slot) & HPTE64_V_VALID)) {
132                 break;
133             }
134         }
135         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
136         if (slot == 8) {
137             return H_PTEG_FULL;
138         }
139     } else {
140         hptes = ppc_hash64_map_hptes(cpu, ptex + slot, 1);
141         if (ppc_hash64_hpte0(cpu, hptes, 0) & HPTE64_V_VALID) {
142             ppc_hash64_unmap_hptes(cpu, hptes, ptex + slot, 1);
143             return H_PTEG_FULL;
144         }
145         ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
146     }
147 
148     ppc_hash64_store_hpte(cpu, ptex + slot, pteh | HPTE64_V_HPTE_DIRTY, ptel);
149 
150     args[0] = ptex + slot;
151     return H_SUCCESS;
152 }
153 
154 typedef enum {
155     REMOVE_SUCCESS = 0,
156     REMOVE_NOT_FOUND = 1,
157     REMOVE_PARM = 2,
158     REMOVE_HW = 3,
159 } RemoveResult;
160 
161 static RemoveResult remove_hpte(PowerPCCPU *cpu, target_ulong ptex,
162                                 target_ulong avpn,
163                                 target_ulong flags,
164                                 target_ulong *vp, target_ulong *rp)
165 {
166     const ppc_hash_pte64_t *hptes;
167     target_ulong v, r;
168 
169     if (!valid_ptex(cpu, ptex)) {
170         return REMOVE_PARM;
171     }
172 
173     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
174     v = ppc_hash64_hpte0(cpu, hptes, 0);
175     r = ppc_hash64_hpte1(cpu, hptes, 0);
176     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
177 
178     if ((v & HPTE64_V_VALID) == 0 ||
179         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn) ||
180         ((flags & H_ANDCOND) && (v & avpn) != 0)) {
181         return REMOVE_NOT_FOUND;
182     }
183     *vp = v;
184     *rp = r;
185     ppc_hash64_store_hpte(cpu, ptex, HPTE64_V_HPTE_DIRTY, 0);
186     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
187     return REMOVE_SUCCESS;
188 }
189 
190 static target_ulong h_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
191                              target_ulong opcode, target_ulong *args)
192 {
193     CPUPPCState *env = &cpu->env;
194     target_ulong flags = args[0];
195     target_ulong ptex = args[1];
196     target_ulong avpn = args[2];
197     RemoveResult ret;
198 
199     ret = remove_hpte(cpu, ptex, avpn, flags,
200                       &args[0], &args[1]);
201 
202     switch (ret) {
203     case REMOVE_SUCCESS:
204         check_tlb_flush(env, true);
205         return H_SUCCESS;
206 
207     case REMOVE_NOT_FOUND:
208         return H_NOT_FOUND;
209 
210     case REMOVE_PARM:
211         return H_PARAMETER;
212 
213     case REMOVE_HW:
214         return H_HARDWARE;
215     }
216 
217     g_assert_not_reached();
218 }
219 
220 #define H_BULK_REMOVE_TYPE             0xc000000000000000ULL
221 #define   H_BULK_REMOVE_REQUEST        0x4000000000000000ULL
222 #define   H_BULK_REMOVE_RESPONSE       0x8000000000000000ULL
223 #define   H_BULK_REMOVE_END            0xc000000000000000ULL
224 #define H_BULK_REMOVE_CODE             0x3000000000000000ULL
225 #define   H_BULK_REMOVE_SUCCESS        0x0000000000000000ULL
226 #define   H_BULK_REMOVE_NOT_FOUND      0x1000000000000000ULL
227 #define   H_BULK_REMOVE_PARM           0x2000000000000000ULL
228 #define   H_BULK_REMOVE_HW             0x3000000000000000ULL
229 #define H_BULK_REMOVE_RC               0x0c00000000000000ULL
230 #define H_BULK_REMOVE_FLAGS            0x0300000000000000ULL
231 #define   H_BULK_REMOVE_ABSOLUTE       0x0000000000000000ULL
232 #define   H_BULK_REMOVE_ANDCOND        0x0100000000000000ULL
233 #define   H_BULK_REMOVE_AVPN           0x0200000000000000ULL
234 #define H_BULK_REMOVE_PTEX             0x00ffffffffffffffULL
235 
236 #define H_BULK_REMOVE_MAX_BATCH        4
237 
238 static target_ulong h_bulk_remove(PowerPCCPU *cpu, sPAPRMachineState *spapr,
239                                   target_ulong opcode, target_ulong *args)
240 {
241     CPUPPCState *env = &cpu->env;
242     int i;
243     target_ulong rc = H_SUCCESS;
244 
245     for (i = 0; i < H_BULK_REMOVE_MAX_BATCH; i++) {
246         target_ulong *tsh = &args[i*2];
247         target_ulong tsl = args[i*2 + 1];
248         target_ulong v, r, ret;
249 
250         if ((*tsh & H_BULK_REMOVE_TYPE) == H_BULK_REMOVE_END) {
251             break;
252         } else if ((*tsh & H_BULK_REMOVE_TYPE) != H_BULK_REMOVE_REQUEST) {
253             return H_PARAMETER;
254         }
255 
256         *tsh &= H_BULK_REMOVE_PTEX | H_BULK_REMOVE_FLAGS;
257         *tsh |= H_BULK_REMOVE_RESPONSE;
258 
259         if ((*tsh & H_BULK_REMOVE_ANDCOND) && (*tsh & H_BULK_REMOVE_AVPN)) {
260             *tsh |= H_BULK_REMOVE_PARM;
261             return H_PARAMETER;
262         }
263 
264         ret = remove_hpte(cpu, *tsh & H_BULK_REMOVE_PTEX, tsl,
265                           (*tsh & H_BULK_REMOVE_FLAGS) >> 26,
266                           &v, &r);
267 
268         *tsh |= ret << 60;
269 
270         switch (ret) {
271         case REMOVE_SUCCESS:
272             *tsh |= (r & (HPTE64_R_C | HPTE64_R_R)) << 43;
273             break;
274 
275         case REMOVE_PARM:
276             rc = H_PARAMETER;
277             goto exit;
278 
279         case REMOVE_HW:
280             rc = H_HARDWARE;
281             goto exit;
282         }
283     }
284  exit:
285     check_tlb_flush(env, true);
286 
287     return rc;
288 }
289 
290 static target_ulong h_protect(PowerPCCPU *cpu, sPAPRMachineState *spapr,
291                               target_ulong opcode, target_ulong *args)
292 {
293     CPUPPCState *env = &cpu->env;
294     target_ulong flags = args[0];
295     target_ulong ptex = args[1];
296     target_ulong avpn = args[2];
297     const ppc_hash_pte64_t *hptes;
298     target_ulong v, r;
299 
300     if (!valid_ptex(cpu, ptex)) {
301         return H_PARAMETER;
302     }
303 
304     hptes = ppc_hash64_map_hptes(cpu, ptex, 1);
305     v = ppc_hash64_hpte0(cpu, hptes, 0);
306     r = ppc_hash64_hpte1(cpu, hptes, 0);
307     ppc_hash64_unmap_hptes(cpu, hptes, ptex, 1);
308 
309     if ((v & HPTE64_V_VALID) == 0 ||
310         ((flags & H_AVPN) && (v & ~0x7fULL) != avpn)) {
311         return H_NOT_FOUND;
312     }
313 
314     r &= ~(HPTE64_R_PP0 | HPTE64_R_PP | HPTE64_R_N |
315            HPTE64_R_KEY_HI | HPTE64_R_KEY_LO);
316     r |= (flags << 55) & HPTE64_R_PP0;
317     r |= (flags << 48) & HPTE64_R_KEY_HI;
318     r |= flags & (HPTE64_R_PP | HPTE64_R_N | HPTE64_R_KEY_LO);
319     ppc_hash64_store_hpte(cpu, ptex,
320                           (v & ~HPTE64_V_VALID) | HPTE64_V_HPTE_DIRTY, 0);
321     ppc_hash64_tlb_flush_hpte(cpu, ptex, v, r);
322     /* Flush the tlb */
323     check_tlb_flush(env, true);
324     /* Don't need a memory barrier, due to qemu's global lock */
325     ppc_hash64_store_hpte(cpu, ptex, v | HPTE64_V_HPTE_DIRTY, r);
326     return H_SUCCESS;
327 }
328 
329 static target_ulong h_read(PowerPCCPU *cpu, sPAPRMachineState *spapr,
330                            target_ulong opcode, target_ulong *args)
331 {
332     target_ulong flags = args[0];
333     target_ulong ptex = args[1];
334     uint8_t *hpte;
335     int i, ridx, n_entries = 1;
336 
337     if (!valid_ptex(cpu, ptex)) {
338         return H_PARAMETER;
339     }
340 
341     if (flags & H_READ_4) {
342         /* Clear the two low order bits */
343         ptex &= ~(3ULL);
344         n_entries = 4;
345     }
346 
347     hpte = spapr->htab + (ptex * HASH_PTE_SIZE_64);
348 
349     for (i = 0, ridx = 0; i < n_entries; i++) {
350         args[ridx++] = ldq_p(hpte);
351         args[ridx++] = ldq_p(hpte + (HASH_PTE_SIZE_64/2));
352         hpte += HASH_PTE_SIZE_64;
353     }
354 
355     return H_SUCCESS;
356 }
357 
358 struct sPAPRPendingHPT {
359     /* These fields are read-only after initialization */
360     int shift;
361     QemuThread thread;
362 
363     /* These fields are protected by the BQL */
364     bool complete;
365 
366     /* These fields are private to the preparation thread if
367      * !complete, otherwise protected by the BQL */
368     int ret;
369     void *hpt;
370 };
371 
372 static void free_pending_hpt(sPAPRPendingHPT *pending)
373 {
374     if (pending->hpt) {
375         qemu_vfree(pending->hpt);
376     }
377 
378     g_free(pending);
379 }
380 
381 static void *hpt_prepare_thread(void *opaque)
382 {
383     sPAPRPendingHPT *pending = opaque;
384     size_t size = 1ULL << pending->shift;
385 
386     pending->hpt = qemu_memalign(size, size);
387     if (pending->hpt) {
388         memset(pending->hpt, 0, size);
389         pending->ret = H_SUCCESS;
390     } else {
391         pending->ret = H_NO_MEM;
392     }
393 
394     qemu_mutex_lock_iothread();
395 
396     if (SPAPR_MACHINE(qdev_get_machine())->pending_hpt == pending) {
397         /* Ready to go */
398         pending->complete = true;
399     } else {
400         /* We've been cancelled, clean ourselves up */
401         free_pending_hpt(pending);
402     }
403 
404     qemu_mutex_unlock_iothread();
405     return NULL;
406 }
407 
408 /* Must be called with BQL held */
409 static void cancel_hpt_prepare(sPAPRMachineState *spapr)
410 {
411     sPAPRPendingHPT *pending = spapr->pending_hpt;
412 
413     /* Let the thread know it's cancelled */
414     spapr->pending_hpt = NULL;
415 
416     if (!pending) {
417         /* Nothing to do */
418         return;
419     }
420 
421     if (!pending->complete) {
422         /* thread will clean itself up */
423         return;
424     }
425 
426     free_pending_hpt(pending);
427 }
428 
429 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
430                                          sPAPRMachineState *spapr,
431                                          target_ulong opcode,
432                                          target_ulong *args)
433 {
434     target_ulong flags = args[0];
435     int shift = args[1];
436     sPAPRPendingHPT *pending = spapr->pending_hpt;
437     uint64_t current_ram_size = MACHINE(spapr)->ram_size;
438 
439     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
440         return H_AUTHORITY;
441     }
442 
443     if (!spapr->htab_shift) {
444         /* Radix guest, no HPT */
445         return H_NOT_AVAILABLE;
446     }
447 
448     trace_spapr_h_resize_hpt_prepare(flags, shift);
449 
450     if (flags != 0) {
451         return H_PARAMETER;
452     }
453 
454     if (shift && ((shift < 18) || (shift > 46))) {
455         return H_PARAMETER;
456     }
457 
458     current_ram_size = pc_existing_dimms_capacity(&error_fatal);
459 
460     /* We only allow the guest to allocate an HPT one order above what
461      * we'd normally give them (to stop a small guest claiming a huge
462      * chunk of resources in the HPT */
463     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
464         return H_RESOURCE;
465     }
466 
467     if (pending) {
468         /* something already in progress */
469         if (pending->shift == shift) {
470             /* and it's suitable */
471             if (pending->complete) {
472                 return pending->ret;
473             } else {
474                 return H_LONG_BUSY_ORDER_100_MSEC;
475             }
476         }
477 
478         /* not suitable, cancel and replace */
479         cancel_hpt_prepare(spapr);
480     }
481 
482     if (!shift) {
483         /* nothing to do */
484         return H_SUCCESS;
485     }
486 
487     /* start new prepare */
488 
489     pending = g_new0(sPAPRPendingHPT, 1);
490     pending->shift = shift;
491     pending->ret = H_HARDWARE;
492 
493     qemu_thread_create(&pending->thread, "sPAPR HPT prepare",
494                        hpt_prepare_thread, pending, QEMU_THREAD_DETACHED);
495 
496     spapr->pending_hpt = pending;
497 
498     /* In theory we could estimate the time more accurately based on
499      * the new size, but there's not much point */
500     return H_LONG_BUSY_ORDER_100_MSEC;
501 }
502 
503 static uint64_t new_hpte_load0(void *htab, uint64_t pteg, int slot)
504 {
505     uint8_t *addr = htab;
506 
507     addr += pteg * HASH_PTEG_SIZE_64;
508     addr += slot * HASH_PTE_SIZE_64;
509     return  ldq_p(addr);
510 }
511 
512 static void new_hpte_store(void *htab, uint64_t pteg, int slot,
513                            uint64_t pte0, uint64_t pte1)
514 {
515     uint8_t *addr = htab;
516 
517     addr += pteg * HASH_PTEG_SIZE_64;
518     addr += slot * HASH_PTE_SIZE_64;
519 
520     stq_p(addr, pte0);
521     stq_p(addr + HASH_PTE_SIZE_64 / 2, pte1);
522 }
523 
524 static int rehash_hpte(PowerPCCPU *cpu,
525                        const ppc_hash_pte64_t *hptes,
526                        void *old_hpt, uint64_t oldsize,
527                        void *new_hpt, uint64_t newsize,
528                        uint64_t pteg, int slot)
529 {
530     uint64_t old_hash_mask = (oldsize >> 7) - 1;
531     uint64_t new_hash_mask = (newsize >> 7) - 1;
532     target_ulong pte0 = ppc_hash64_hpte0(cpu, hptes, slot);
533     target_ulong pte1;
534     uint64_t avpn;
535     unsigned base_pg_shift;
536     uint64_t hash, new_pteg, replace_pte0;
537 
538     if (!(pte0 & HPTE64_V_VALID) || !(pte0 & HPTE64_V_BOLTED)) {
539         return H_SUCCESS;
540     }
541 
542     pte1 = ppc_hash64_hpte1(cpu, hptes, slot);
543 
544     base_pg_shift = ppc_hash64_hpte_page_shift_noslb(cpu, pte0, pte1);
545     assert(base_pg_shift); /* H_ENTER shouldn't allow a bad encoding */
546     avpn = HPTE64_V_AVPN_VAL(pte0) & ~(((1ULL << base_pg_shift) - 1) >> 23);
547 
548     if (pte0 & HPTE64_V_SECONDARY) {
549         pteg = ~pteg;
550     }
551 
552     if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_256M) {
553         uint64_t offset, vsid;
554 
555         /* We only have 28 - 23 bits of offset in avpn */
556         offset = (avpn & 0x1f) << 23;
557         vsid = avpn >> 5;
558         /* We can find more bits from the pteg value */
559         if (base_pg_shift < 23) {
560             offset |= ((vsid ^ pteg) & old_hash_mask) << base_pg_shift;
561         }
562 
563         hash = vsid ^ (offset >> base_pg_shift);
564     } else if ((pte0 & HPTE64_V_SSIZE) == HPTE64_V_SSIZE_1T) {
565         uint64_t offset, vsid;
566 
567         /* We only have 40 - 23 bits of seg_off in avpn */
568         offset = (avpn & 0x1ffff) << 23;
569         vsid = avpn >> 17;
570         if (base_pg_shift < 23) {
571             offset |= ((vsid ^ (vsid << 25) ^ pteg) & old_hash_mask)
572                 << base_pg_shift;
573         }
574 
575         hash = vsid ^ (vsid << 25) ^ (offset >> base_pg_shift);
576     } else {
577         error_report("rehash_pte: Bad segment size in HPTE");
578         return H_HARDWARE;
579     }
580 
581     new_pteg = hash & new_hash_mask;
582     if (pte0 & HPTE64_V_SECONDARY) {
583         assert(~pteg == (hash & old_hash_mask));
584         new_pteg = ~new_pteg;
585     } else {
586         assert(pteg == (hash & old_hash_mask));
587     }
588     assert((oldsize != newsize) || (pteg == new_pteg));
589     replace_pte0 = new_hpte_load0(new_hpt, new_pteg, slot);
590     /*
591      * Strictly speaking, we don't need all these tests, since we only
592      * ever rehash bolted HPTEs.  We might in future handle non-bolted
593      * HPTEs, though so make the logic correct for those cases as
594      * well.
595      */
596     if (replace_pte0 & HPTE64_V_VALID) {
597         assert(newsize < oldsize);
598         if (replace_pte0 & HPTE64_V_BOLTED) {
599             if (pte0 & HPTE64_V_BOLTED) {
600                 /* Bolted collision, nothing we can do */
601                 return H_PTEG_FULL;
602             } else {
603                 /* Discard this hpte */
604                 return H_SUCCESS;
605             }
606         }
607     }
608 
609     new_hpte_store(new_hpt, new_pteg, slot, pte0, pte1);
610     return H_SUCCESS;
611 }
612 
613 static int rehash_hpt(PowerPCCPU *cpu,
614                       void *old_hpt, uint64_t oldsize,
615                       void *new_hpt, uint64_t newsize)
616 {
617     uint64_t n_ptegs = oldsize >> 7;
618     uint64_t pteg;
619     int slot;
620     int rc;
621 
622     for (pteg = 0; pteg < n_ptegs; pteg++) {
623         hwaddr ptex = pteg * HPTES_PER_GROUP;
624         const ppc_hash_pte64_t *hptes
625             = ppc_hash64_map_hptes(cpu, ptex, HPTES_PER_GROUP);
626 
627         if (!hptes) {
628             return H_HARDWARE;
629         }
630 
631         for (slot = 0; slot < HPTES_PER_GROUP; slot++) {
632             rc = rehash_hpte(cpu, hptes, old_hpt, oldsize, new_hpt, newsize,
633                              pteg, slot);
634             if (rc != H_SUCCESS) {
635                 ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
636                 return rc;
637             }
638         }
639         ppc_hash64_unmap_hptes(cpu, hptes, ptex, HPTES_PER_GROUP);
640     }
641 
642     return H_SUCCESS;
643 }
644 
645 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
646                                         sPAPRMachineState *spapr,
647                                         target_ulong opcode,
648                                         target_ulong *args)
649 {
650     target_ulong flags = args[0];
651     target_ulong shift = args[1];
652     sPAPRPendingHPT *pending = spapr->pending_hpt;
653     int rc;
654     size_t newsize;
655 
656     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
657         return H_AUTHORITY;
658     }
659 
660     trace_spapr_h_resize_hpt_commit(flags, shift);
661 
662     if (flags != 0) {
663         return H_PARAMETER;
664     }
665 
666     if (!pending || (pending->shift != shift)) {
667         /* no matching prepare */
668         return H_CLOSED;
669     }
670 
671     if (!pending->complete) {
672         /* prepare has not completed */
673         return H_BUSY;
674     }
675 
676     /* Shouldn't have got past PREPARE without an HPT */
677     g_assert(spapr->htab_shift);
678 
679     newsize = 1ULL << pending->shift;
680     rc = rehash_hpt(cpu, spapr->htab, HTAB_SIZE(spapr),
681                     pending->hpt, newsize);
682     if (rc == H_SUCCESS) {
683         qemu_vfree(spapr->htab);
684         spapr->htab = pending->hpt;
685         spapr->htab_shift = pending->shift;
686 
687         pending->hpt = NULL; /* so it's not free()d */
688     }
689 
690     /* Clean up */
691     spapr->pending_hpt = NULL;
692     free_pending_hpt(pending);
693 
694     return rc;
695 }
696 
697 static target_ulong h_set_sprg0(PowerPCCPU *cpu, sPAPRMachineState *spapr,
698                                 target_ulong opcode, target_ulong *args)
699 {
700     cpu_synchronize_state(CPU(cpu));
701     cpu->env.spr[SPR_SPRG0] = args[0];
702 
703     return H_SUCCESS;
704 }
705 
706 static target_ulong h_set_dabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
707                                target_ulong opcode, target_ulong *args)
708 {
709     if (!has_spr(cpu, SPR_DABR)) {
710         return H_HARDWARE;              /* DABR register not available */
711     }
712     cpu_synchronize_state(CPU(cpu));
713 
714     if (has_spr(cpu, SPR_DABRX)) {
715         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
716     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
717         return H_RESERVED_DABR;
718     }
719 
720     cpu->env.spr[SPR_DABR] = args[0];
721     return H_SUCCESS;
722 }
723 
724 static target_ulong h_set_xdabr(PowerPCCPU *cpu, sPAPRMachineState *spapr,
725                                 target_ulong opcode, target_ulong *args)
726 {
727     target_ulong dabrx = args[1];
728 
729     if (!has_spr(cpu, SPR_DABR) || !has_spr(cpu, SPR_DABRX)) {
730         return H_HARDWARE;
731     }
732 
733     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
734         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
735         return H_PARAMETER;
736     }
737 
738     cpu_synchronize_state(CPU(cpu));
739     cpu->env.spr[SPR_DABRX] = dabrx;
740     cpu->env.spr[SPR_DABR] = args[0];
741 
742     return H_SUCCESS;
743 }
744 
745 static target_ulong h_page_init(PowerPCCPU *cpu, sPAPRMachineState *spapr,
746                                 target_ulong opcode, target_ulong *args)
747 {
748     target_ulong flags = args[0];
749     hwaddr dst = args[1];
750     hwaddr src = args[2];
751     hwaddr len = TARGET_PAGE_SIZE;
752     uint8_t *pdst, *psrc;
753     target_long ret = H_SUCCESS;
754 
755     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
756                   | H_COPY_PAGE | H_ZERO_PAGE)) {
757         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
758                       flags);
759         return H_PARAMETER;
760     }
761 
762     /* Map-in destination */
763     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
764         return H_PARAMETER;
765     }
766     pdst = cpu_physical_memory_map(dst, &len, 1);
767     if (!pdst || len != TARGET_PAGE_SIZE) {
768         return H_PARAMETER;
769     }
770 
771     if (flags & H_COPY_PAGE) {
772         /* Map-in source, copy to destination, and unmap source again */
773         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
774             ret = H_PARAMETER;
775             goto unmap_out;
776         }
777         psrc = cpu_physical_memory_map(src, &len, 0);
778         if (!psrc || len != TARGET_PAGE_SIZE) {
779             ret = H_PARAMETER;
780             goto unmap_out;
781         }
782         memcpy(pdst, psrc, len);
783         cpu_physical_memory_unmap(psrc, len, 0, len);
784     } else if (flags & H_ZERO_PAGE) {
785         memset(pdst, 0, len);          /* Just clear the destination page */
786     }
787 
788     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
789         kvmppc_dcbst_range(cpu, pdst, len);
790     }
791     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
792         if (kvm_enabled()) {
793             kvmppc_icbi_range(cpu, pdst, len);
794         } else {
795             tb_flush(CPU(cpu));
796         }
797     }
798 
799 unmap_out:
800     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
801     return ret;
802 }
803 
804 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
805 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
806 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
807 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
808 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
809 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
810 
811 #define VPA_MIN_SIZE           640
812 #define VPA_SIZE_OFFSET        0x4
813 #define VPA_SHARED_PROC_OFFSET 0x9
814 #define VPA_SHARED_PROC_VAL    0x2
815 
816 static target_ulong register_vpa(CPUPPCState *env, target_ulong vpa)
817 {
818     CPUState *cs = CPU(ppc_env_get_cpu(env));
819     uint16_t size;
820     uint8_t tmp;
821 
822     if (vpa == 0) {
823         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
824         return H_HARDWARE;
825     }
826 
827     if (vpa % env->dcache_line_size) {
828         return H_PARAMETER;
829     }
830     /* FIXME: bounds check the address */
831 
832     size = lduw_be_phys(cs->as, vpa + 0x4);
833 
834     if (size < VPA_MIN_SIZE) {
835         return H_PARAMETER;
836     }
837 
838     /* VPA is not allowed to cross a page boundary */
839     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
840         return H_PARAMETER;
841     }
842 
843     env->vpa_addr = vpa;
844 
845     tmp = ldub_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET);
846     tmp |= VPA_SHARED_PROC_VAL;
847     stb_phys(cs->as, env->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
848 
849     return H_SUCCESS;
850 }
851 
852 static target_ulong deregister_vpa(CPUPPCState *env, target_ulong vpa)
853 {
854     if (env->slb_shadow_addr) {
855         return H_RESOURCE;
856     }
857 
858     if (env->dtl_addr) {
859         return H_RESOURCE;
860     }
861 
862     env->vpa_addr = 0;
863     return H_SUCCESS;
864 }
865 
866 static target_ulong register_slb_shadow(CPUPPCState *env, target_ulong addr)
867 {
868     CPUState *cs = CPU(ppc_env_get_cpu(env));
869     uint32_t size;
870 
871     if (addr == 0) {
872         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
873         return H_HARDWARE;
874     }
875 
876     size = ldl_be_phys(cs->as, addr + 0x4);
877     if (size < 0x8) {
878         return H_PARAMETER;
879     }
880 
881     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
882         return H_PARAMETER;
883     }
884 
885     if (!env->vpa_addr) {
886         return H_RESOURCE;
887     }
888 
889     env->slb_shadow_addr = addr;
890     env->slb_shadow_size = size;
891 
892     return H_SUCCESS;
893 }
894 
895 static target_ulong deregister_slb_shadow(CPUPPCState *env, target_ulong addr)
896 {
897     env->slb_shadow_addr = 0;
898     env->slb_shadow_size = 0;
899     return H_SUCCESS;
900 }
901 
902 static target_ulong register_dtl(CPUPPCState *env, target_ulong addr)
903 {
904     CPUState *cs = CPU(ppc_env_get_cpu(env));
905     uint32_t size;
906 
907     if (addr == 0) {
908         hcall_dprintf("Can't cope with DTL at logical 0\n");
909         return H_HARDWARE;
910     }
911 
912     size = ldl_be_phys(cs->as, addr + 0x4);
913 
914     if (size < 48) {
915         return H_PARAMETER;
916     }
917 
918     if (!env->vpa_addr) {
919         return H_RESOURCE;
920     }
921 
922     env->dtl_addr = addr;
923     env->dtl_size = size;
924 
925     return H_SUCCESS;
926 }
927 
928 static target_ulong deregister_dtl(CPUPPCState *env, target_ulong addr)
929 {
930     env->dtl_addr = 0;
931     env->dtl_size = 0;
932 
933     return H_SUCCESS;
934 }
935 
936 static target_ulong h_register_vpa(PowerPCCPU *cpu, sPAPRMachineState *spapr,
937                                    target_ulong opcode, target_ulong *args)
938 {
939     target_ulong flags = args[0];
940     target_ulong procno = args[1];
941     target_ulong vpa = args[2];
942     target_ulong ret = H_PARAMETER;
943     CPUPPCState *tenv;
944     PowerPCCPU *tcpu;
945 
946     tcpu = ppc_get_vcpu_by_dt_id(procno);
947     if (!tcpu) {
948         return H_PARAMETER;
949     }
950     tenv = &tcpu->env;
951 
952     switch (flags) {
953     case FLAGS_REGISTER_VPA:
954         ret = register_vpa(tenv, vpa);
955         break;
956 
957     case FLAGS_DEREGISTER_VPA:
958         ret = deregister_vpa(tenv, vpa);
959         break;
960 
961     case FLAGS_REGISTER_SLBSHADOW:
962         ret = register_slb_shadow(tenv, vpa);
963         break;
964 
965     case FLAGS_DEREGISTER_SLBSHADOW:
966         ret = deregister_slb_shadow(tenv, vpa);
967         break;
968 
969     case FLAGS_REGISTER_DTL:
970         ret = register_dtl(tenv, vpa);
971         break;
972 
973     case FLAGS_DEREGISTER_DTL:
974         ret = deregister_dtl(tenv, vpa);
975         break;
976     }
977 
978     return ret;
979 }
980 
981 static target_ulong h_cede(PowerPCCPU *cpu, sPAPRMachineState *spapr,
982                            target_ulong opcode, target_ulong *args)
983 {
984     CPUPPCState *env = &cpu->env;
985     CPUState *cs = CPU(cpu);
986 
987     env->msr |= (1ULL << MSR_EE);
988     hreg_compute_hflags(env);
989     if (!cpu_has_work(cs)) {
990         cs->halted = 1;
991         cs->exception_index = EXCP_HLT;
992         cs->exit_request = 1;
993     }
994     return H_SUCCESS;
995 }
996 
997 static target_ulong h_rtas(PowerPCCPU *cpu, sPAPRMachineState *spapr,
998                            target_ulong opcode, target_ulong *args)
999 {
1000     target_ulong rtas_r3 = args[0];
1001     uint32_t token = rtas_ld(rtas_r3, 0);
1002     uint32_t nargs = rtas_ld(rtas_r3, 1);
1003     uint32_t nret = rtas_ld(rtas_r3, 2);
1004 
1005     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
1006                            nret, rtas_r3 + 12 + 4*nargs);
1007 }
1008 
1009 static target_ulong h_logical_load(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1010                                    target_ulong opcode, target_ulong *args)
1011 {
1012     CPUState *cs = CPU(cpu);
1013     target_ulong size = args[0];
1014     target_ulong addr = args[1];
1015 
1016     switch (size) {
1017     case 1:
1018         args[0] = ldub_phys(cs->as, addr);
1019         return H_SUCCESS;
1020     case 2:
1021         args[0] = lduw_phys(cs->as, addr);
1022         return H_SUCCESS;
1023     case 4:
1024         args[0] = ldl_phys(cs->as, addr);
1025         return H_SUCCESS;
1026     case 8:
1027         args[0] = ldq_phys(cs->as, addr);
1028         return H_SUCCESS;
1029     }
1030     return H_PARAMETER;
1031 }
1032 
1033 static target_ulong h_logical_store(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1034                                     target_ulong opcode, target_ulong *args)
1035 {
1036     CPUState *cs = CPU(cpu);
1037 
1038     target_ulong size = args[0];
1039     target_ulong addr = args[1];
1040     target_ulong val  = args[2];
1041 
1042     switch (size) {
1043     case 1:
1044         stb_phys(cs->as, addr, val);
1045         return H_SUCCESS;
1046     case 2:
1047         stw_phys(cs->as, addr, val);
1048         return H_SUCCESS;
1049     case 4:
1050         stl_phys(cs->as, addr, val);
1051         return H_SUCCESS;
1052     case 8:
1053         stq_phys(cs->as, addr, val);
1054         return H_SUCCESS;
1055     }
1056     return H_PARAMETER;
1057 }
1058 
1059 static target_ulong h_logical_memop(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1060                                     target_ulong opcode, target_ulong *args)
1061 {
1062     CPUState *cs = CPU(cpu);
1063 
1064     target_ulong dst   = args[0]; /* Destination address */
1065     target_ulong src   = args[1]; /* Source address */
1066     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
1067     target_ulong count = args[3]; /* Element count */
1068     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
1069     uint64_t tmp;
1070     unsigned int mask = (1 << esize) - 1;
1071     int step = 1 << esize;
1072 
1073     if (count > 0x80000000) {
1074         return H_PARAMETER;
1075     }
1076 
1077     if ((dst & mask) || (src & mask) || (op > 1)) {
1078         return H_PARAMETER;
1079     }
1080 
1081     if (dst >= src && dst < (src + (count << esize))) {
1082             dst = dst + ((count - 1) << esize);
1083             src = src + ((count - 1) << esize);
1084             step = -step;
1085     }
1086 
1087     while (count--) {
1088         switch (esize) {
1089         case 0:
1090             tmp = ldub_phys(cs->as, src);
1091             break;
1092         case 1:
1093             tmp = lduw_phys(cs->as, src);
1094             break;
1095         case 2:
1096             tmp = ldl_phys(cs->as, src);
1097             break;
1098         case 3:
1099             tmp = ldq_phys(cs->as, src);
1100             break;
1101         default:
1102             return H_PARAMETER;
1103         }
1104         if (op == 1) {
1105             tmp = ~tmp;
1106         }
1107         switch (esize) {
1108         case 0:
1109             stb_phys(cs->as, dst, tmp);
1110             break;
1111         case 1:
1112             stw_phys(cs->as, dst, tmp);
1113             break;
1114         case 2:
1115             stl_phys(cs->as, dst, tmp);
1116             break;
1117         case 3:
1118             stq_phys(cs->as, dst, tmp);
1119             break;
1120         }
1121         dst = dst + step;
1122         src = src + step;
1123     }
1124 
1125     return H_SUCCESS;
1126 }
1127 
1128 static target_ulong h_logical_icbi(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1129                                    target_ulong opcode, target_ulong *args)
1130 {
1131     /* Nothing to do on emulation, KVM will trap this in the kernel */
1132     return H_SUCCESS;
1133 }
1134 
1135 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1136                                    target_ulong opcode, target_ulong *args)
1137 {
1138     /* Nothing to do on emulation, KVM will trap this in the kernel */
1139     return H_SUCCESS;
1140 }
1141 
1142 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
1143                                            target_ulong mflags,
1144                                            target_ulong value1,
1145                                            target_ulong value2)
1146 {
1147     CPUState *cs;
1148 
1149     if (value1) {
1150         return H_P3;
1151     }
1152     if (value2) {
1153         return H_P4;
1154     }
1155 
1156     switch (mflags) {
1157     case H_SET_MODE_ENDIAN_BIG:
1158         CPU_FOREACH(cs) {
1159             set_spr(cs, SPR_LPCR, 0, LPCR_ILE);
1160         }
1161         spapr_pci_switch_vga(true);
1162         return H_SUCCESS;
1163 
1164     case H_SET_MODE_ENDIAN_LITTLE:
1165         CPU_FOREACH(cs) {
1166             set_spr(cs, SPR_LPCR, LPCR_ILE, LPCR_ILE);
1167         }
1168         spapr_pci_switch_vga(false);
1169         return H_SUCCESS;
1170     }
1171 
1172     return H_UNSUPPORTED_FLAG;
1173 }
1174 
1175 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
1176                                                         target_ulong mflags,
1177                                                         target_ulong value1,
1178                                                         target_ulong value2)
1179 {
1180     CPUState *cs;
1181     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
1182 
1183     if (!(pcc->insns_flags2 & PPC2_ISA207S)) {
1184         return H_P2;
1185     }
1186     if (value1) {
1187         return H_P3;
1188     }
1189     if (value2) {
1190         return H_P4;
1191     }
1192 
1193     if (mflags == AIL_RESERVED) {
1194         return H_UNSUPPORTED_FLAG;
1195     }
1196 
1197     CPU_FOREACH(cs) {
1198         set_spr(cs, SPR_LPCR, mflags << LPCR_AIL_SHIFT, LPCR_AIL);
1199     }
1200 
1201     return H_SUCCESS;
1202 }
1203 
1204 static target_ulong h_set_mode(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1205                                target_ulong opcode, target_ulong *args)
1206 {
1207     target_ulong resource = args[1];
1208     target_ulong ret = H_P2;
1209 
1210     switch (resource) {
1211     case H_SET_MODE_RESOURCE_LE:
1212         ret = h_set_mode_resource_le(cpu, args[0], args[2], args[3]);
1213         break;
1214     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
1215         ret = h_set_mode_resource_addr_trans_mode(cpu, args[0],
1216                                                   args[2], args[3]);
1217         break;
1218     }
1219 
1220     return ret;
1221 }
1222 
1223 static target_ulong h_clean_slb(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1224                                 target_ulong opcode, target_ulong *args)
1225 {
1226     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1227                   opcode, " (H_CLEAN_SLB)");
1228     return H_FUNCTION;
1229 }
1230 
1231 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, sPAPRMachineState *spapr,
1232                                      target_ulong opcode, target_ulong *args)
1233 {
1234     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
1235                   opcode, " (H_INVALIDATE_PID)");
1236     return H_FUNCTION;
1237 }
1238 
1239 static void spapr_check_setup_free_hpt(sPAPRMachineState *spapr,
1240                                        uint64_t patbe_old, uint64_t patbe_new)
1241 {
1242     /*
1243      * We have 4 Options:
1244      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
1245      * HASH->RADIX                                  : Free HPT
1246      * RADIX->HASH                                  : Allocate HPT
1247      * NOTHING->HASH                                : Allocate HPT
1248      * Note: NOTHING implies the case where we said the guest could choose
1249      *       later and so assumed radix and now it's called H_REG_PROC_TBL
1250      */
1251 
1252     if ((patbe_old & PATBE1_GR) == (patbe_new & PATBE1_GR)) {
1253         /* We assume RADIX, so this catches all the "Do Nothing" cases */
1254     } else if (!(patbe_old & PATBE1_GR)) {
1255         /* HASH->RADIX : Free HPT */
1256         spapr_free_hpt(spapr);
1257     } else if (!(patbe_new & PATBE1_GR)) {
1258         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
1259         spapr_setup_hpt_and_vrma(spapr);
1260     }
1261     return;
1262 }
1263 
1264 #define FLAGS_MASK              0x01FULL
1265 #define FLAG_MODIFY             0x10
1266 #define FLAG_REGISTER           0x08
1267 #define FLAG_RADIX              0x04
1268 #define FLAG_HASH_PROC_TBL      0x02
1269 #define FLAG_GTSE               0x01
1270 
1271 static target_ulong h_register_process_table(PowerPCCPU *cpu,
1272                                              sPAPRMachineState *spapr,
1273                                              target_ulong opcode,
1274                                              target_ulong *args)
1275 {
1276     CPUState *cs;
1277     target_ulong flags = args[0];
1278     target_ulong proc_tbl = args[1];
1279     target_ulong page_size = args[2];
1280     target_ulong table_size = args[3];
1281     uint64_t cproc;
1282 
1283     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
1284         return H_PARAMETER;
1285     }
1286     if (flags & FLAG_MODIFY) {
1287         if (flags & FLAG_REGISTER) {
1288             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1289                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1290                     return H_P2;
1291                 } else if (page_size) {
1292                     return H_P3;
1293                 } else if (table_size > 24) {
1294                     return H_P4;
1295                 }
1296                 cproc = PATBE1_GR | proc_tbl | table_size;
1297             } else { /* Register new HPT process table */
1298                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1299                     /* TODO - Not Supported */
1300                     /* Technically caused by flag bits => H_PARAMETER */
1301                     return H_PARAMETER;
1302                 } else { /* Hash with SLB */
1303                     if (proc_tbl >> 38) {
1304                         return H_P2;
1305                     } else if (page_size & ~0x7) {
1306                         return H_P3;
1307                     } else if (table_size > 24) {
1308                         return H_P4;
1309                     }
1310                 }
1311                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1312             }
1313 
1314         } else { /* Deregister current process table */
1315             /* Set to benign value: (current GR) | 0. This allows
1316              * deregistration in KVM to succeed even if the radix bit in flags
1317              * doesn't match the radix bit in the old PATB. */
1318             cproc = spapr->patb_entry & PATBE1_GR;
1319         }
1320     } else { /* Maintain current registration */
1321         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATBE1_GR)) {
1322             /* Technically caused by flag bits => H_PARAMETER */
1323             return H_PARAMETER; /* Existing Process Table Mismatch */
1324         }
1325         cproc = spapr->patb_entry;
1326     }
1327 
1328     /* Check if we need to setup OR free the hpt */
1329     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1330 
1331     spapr->patb_entry = cproc; /* Save new process table */
1332 
1333     /* Update the UPRT and GTSE bits in the LPCR for all cpus */
1334     CPU_FOREACH(cs) {
1335         set_spr(cs, SPR_LPCR,
1336                 ((flags & (FLAG_RADIX | FLAG_HASH_PROC_TBL)) ? LPCR_UPRT : 0) |
1337                 ((flags & FLAG_GTSE) ? LPCR_GTSE : 0),
1338                 LPCR_UPRT | LPCR_GTSE);
1339     }
1340 
1341     if (kvm_enabled()) {
1342         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1343                                        flags & FLAG_GTSE, cproc);
1344     }
1345     return H_SUCCESS;
1346 }
1347 
1348 #define H_SIGNAL_SYS_RESET_ALL         -1
1349 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1350 
1351 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1352                                        sPAPRMachineState *spapr,
1353                                        target_ulong opcode, target_ulong *args)
1354 {
1355     target_long target = args[0];
1356     CPUState *cs;
1357 
1358     if (target < 0) {
1359         /* Broadcast */
1360         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1361             return H_PARAMETER;
1362         }
1363 
1364         CPU_FOREACH(cs) {
1365             PowerPCCPU *c = POWERPC_CPU(cs);
1366 
1367             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1368                 if (c == cpu) {
1369                     continue;
1370                 }
1371             }
1372             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1373         }
1374         return H_SUCCESS;
1375 
1376     } else {
1377         /* Unicast */
1378         CPU_FOREACH(cs) {
1379             if (cpu->cpu_dt_id == target) {
1380                 run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1381                 return H_SUCCESS;
1382             }
1383         }
1384         return H_PARAMETER;
1385     }
1386 }
1387 
1388 static uint32_t cas_check_pvr(sPAPRMachineState *spapr, PowerPCCPU *cpu,
1389                               target_ulong *addr, Error **errp)
1390 {
1391     bool explicit_match = false; /* Matched the CPU's real PVR */
1392     uint32_t max_compat = spapr->max_compat_pvr;
1393     uint32_t best_compat = 0;
1394     int i;
1395 
1396     /*
1397      * We scan the supplied table of PVRs looking for two things
1398      *   1. Is our real CPU PVR in the list?
1399      *   2. What's the "best" listed logical PVR
1400      */
1401     for (i = 0; i < 512; ++i) {
1402         uint32_t pvr, pvr_mask;
1403 
1404         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1405         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1406         *addr += 8;
1407 
1408         if (~pvr_mask & pvr) {
1409             break; /* Terminator record */
1410         }
1411 
1412         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1413             explicit_match = true;
1414         } else {
1415             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1416                 best_compat = pvr;
1417             }
1418         }
1419     }
1420 
1421     if ((best_compat == 0) && (!explicit_match || max_compat)) {
1422         /* We couldn't find a suitable compatibility mode, and either
1423          * the guest doesn't support "raw" mode for this CPU, or raw
1424          * mode is disabled because a maximum compat mode is set */
1425         error_setg(errp, "Couldn't negotiate a suitable PVR during CAS");
1426         return 0;
1427     }
1428 
1429     /* Parsing finished */
1430     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1431 
1432     return best_compat;
1433 }
1434 
1435 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1436                                                   sPAPRMachineState *spapr,
1437                                                   target_ulong opcode,
1438                                                   target_ulong *args)
1439 {
1440     /* Working address in data buffer */
1441     target_ulong addr = ppc64_phys_to_real(args[0]);
1442     target_ulong ov_table;
1443     uint32_t cas_pvr;
1444     sPAPROptionVector *ov1_guest, *ov5_guest, *ov5_cas_old, *ov5_updates;
1445     bool guest_radix;
1446     Error *local_err = NULL;
1447 
1448     cas_pvr = cas_check_pvr(spapr, cpu, &addr, &local_err);
1449     if (local_err) {
1450         error_report_err(local_err);
1451         return H_HARDWARE;
1452     }
1453 
1454     /* Update CPUs */
1455     if (cpu->compat_pvr != cas_pvr) {
1456         ppc_set_compat_all(cas_pvr, &local_err);
1457         if (local_err) {
1458             error_report_err(local_err);
1459             return H_HARDWARE;
1460         }
1461     }
1462 
1463     /* For the future use: here @ov_table points to the first option vector */
1464     ov_table = addr;
1465 
1466     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1467     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1468     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1469         error_report("guest requested hash and radix MMU, which is invalid.");
1470         exit(EXIT_FAILURE);
1471     }
1472     /* The radix/hash bit in byte 24 requires special handling: */
1473     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1474     spapr_ovec_clear(ov5_guest, OV5_MMU_RADIX_300);
1475 
1476     /* NOTE: there are actually a number of ov5 bits where input from the
1477      * guest is always zero, and the platform/QEMU enables them independently
1478      * of guest input. To model these properly we'd want some sort of mask,
1479      * but since they only currently apply to memory migration as defined
1480      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1481      * to worry about this for now.
1482      */
1483     ov5_cas_old = spapr_ovec_clone(spapr->ov5_cas);
1484     /* full range of negotiated ov5 capabilities */
1485     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1486     spapr_ovec_cleanup(ov5_guest);
1487     /* capabilities that have been added since CAS-generated guest reset.
1488      * if capabilities have since been removed, generate another reset
1489      */
1490     ov5_updates = spapr_ovec_new();
1491     spapr->cas_reboot = spapr_ovec_diff(ov5_updates,
1492                                         ov5_cas_old, spapr->ov5_cas);
1493     /* Now that processing is finished, set the radix/hash bit for the
1494      * guest if it requested a valid mode; otherwise terminate the boot. */
1495     if (guest_radix) {
1496         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1497             error_report("Guest requested unavailable MMU mode (radix).");
1498             exit(EXIT_FAILURE);
1499         }
1500         spapr_ovec_set(spapr->ov5_cas, OV5_MMU_RADIX_300);
1501     } else {
1502         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1503             && !kvmppc_has_cap_mmu_hash_v3()) {
1504             error_report("Guest requested unavailable MMU mode (hash).");
1505             exit(EXIT_FAILURE);
1506         }
1507     }
1508     spapr->cas_legacy_guest_workaround = !spapr_ovec_test(ov1_guest,
1509                                                           OV1_PPC_3_00);
1510     if (!spapr->cas_reboot) {
1511         spapr->cas_reboot =
1512             (spapr_h_cas_compose_response(spapr, args[1], args[2],
1513                                           ov5_updates) != 0);
1514     }
1515     spapr_ovec_cleanup(ov5_updates);
1516 
1517     if (spapr->cas_reboot) {
1518         qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
1519     } else {
1520         /* If ppc_spapr_reset() did not set up a HPT but one is necessary
1521          * (because the guest isn't going to use radix) then set it up here. */
1522         if ((spapr->patb_entry & PATBE1_GR) && !guest_radix) {
1523             /* legacy hash or new hash: */
1524             spapr_setup_hpt_and_vrma(spapr);
1525         }
1526     }
1527 
1528     return H_SUCCESS;
1529 }
1530 
1531 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1532 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1533 
1534 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1535 {
1536     spapr_hcall_fn *slot;
1537 
1538     if (opcode <= MAX_HCALL_OPCODE) {
1539         assert((opcode & 0x3) == 0);
1540 
1541         slot = &papr_hypercall_table[opcode / 4];
1542     } else {
1543         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1544 
1545         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1546     }
1547 
1548     assert(!(*slot));
1549     *slot = fn;
1550 }
1551 
1552 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1553                              target_ulong *args)
1554 {
1555     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1556 
1557     if ((opcode <= MAX_HCALL_OPCODE)
1558         && ((opcode & 0x3) == 0)) {
1559         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1560 
1561         if (fn) {
1562             return fn(cpu, spapr, opcode, args);
1563         }
1564     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1565                (opcode <= KVMPPC_HCALL_MAX)) {
1566         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1567 
1568         if (fn) {
1569             return fn(cpu, spapr, opcode, args);
1570         }
1571     }
1572 
1573     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1574                   opcode);
1575     return H_FUNCTION;
1576 }
1577 
1578 static void hypercall_register_types(void)
1579 {
1580     /* hcall-pft */
1581     spapr_register_hypercall(H_ENTER, h_enter);
1582     spapr_register_hypercall(H_REMOVE, h_remove);
1583     spapr_register_hypercall(H_PROTECT, h_protect);
1584     spapr_register_hypercall(H_READ, h_read);
1585 
1586     /* hcall-bulk */
1587     spapr_register_hypercall(H_BULK_REMOVE, h_bulk_remove);
1588 
1589     /* hcall-hpt-resize */
1590     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1591     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1592 
1593     /* hcall-splpar */
1594     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1595     spapr_register_hypercall(H_CEDE, h_cede);
1596     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1597 
1598     /* processor register resource access h-calls */
1599     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1600     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1601     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1602     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1603     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1604 
1605     /* In Memory Table MMU h-calls */
1606     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1607     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1608     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1609 
1610     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differenciate
1611      * here between the "CI" and the "CACHE" variants, they will use whatever
1612      * mapping attributes qemu is using. When using KVM, the kernel will
1613      * enforce the attributes more strongly
1614      */
1615     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1616     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1617     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1618     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1619     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1620     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1621     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1622 
1623     /* qemu/KVM-PPC specific hcalls */
1624     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1625 
1626     /* ibm,client-architecture-support support */
1627     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1628 }
1629 
1630 type_init(hypercall_register_types)
1631