xref: /qemu/hw/ppc/spapr_hcall.c (revision 003d35ad6c612d13ebf0a78f828b0c3ee4f44e3d)
1 #include "qemu/osdep.h"
2 #include "qemu/cutils.h"
3 #include "qapi/error.h"
4 #include "system/hw_accel.h"
5 #include "system/runstate.h"
6 #include "system/tcg.h"
7 #include "qemu/log.h"
8 #include "qemu/main-loop.h"
9 #include "qemu/module.h"
10 #include "qemu/error-report.h"
11 #include "exec/tb-flush.h"
12 #include "helper_regs.h"
13 #include "hw/ppc/ppc.h"
14 #include "hw/ppc/spapr.h"
15 #include "hw/ppc/spapr_cpu_core.h"
16 #include "hw/ppc/spapr_nested.h"
17 #include "mmu-hash64.h"
18 #include "cpu-models.h"
19 #include "trace.h"
20 #include "kvm_ppc.h"
21 #include "hw/ppc/fdt.h"
22 #include "hw/ppc/spapr_ovec.h"
23 #include "hw/ppc/spapr_numa.h"
24 #include "mmu-book3s-v3.h"
25 #include "hw/mem/memory-device.h"
26 
27 bool is_ram_address(SpaprMachineState *spapr, hwaddr addr)
28 {
29     MachineState *machine = MACHINE(spapr);
30     DeviceMemoryState *dms = machine->device_memory;
31 
32     if (addr < machine->ram_size) {
33         return true;
34     }
35     if (dms && (addr >= dms->base)
36         && ((addr - dms->base) < memory_region_size(&dms->mr))) {
37         return true;
38     }
39 
40     return false;
41 }
42 
43 /* Convert a return code from the KVM ioctl()s implementing resize HPT
44  * into a PAPR hypercall return code */
45 static target_ulong resize_hpt_convert_rc(int ret)
46 {
47     if (ret >= 100000) {
48         return H_LONG_BUSY_ORDER_100_SEC;
49     } else if (ret >= 10000) {
50         return H_LONG_BUSY_ORDER_10_SEC;
51     } else if (ret >= 1000) {
52         return H_LONG_BUSY_ORDER_1_SEC;
53     } else if (ret >= 100) {
54         return H_LONG_BUSY_ORDER_100_MSEC;
55     } else if (ret >= 10) {
56         return H_LONG_BUSY_ORDER_10_MSEC;
57     } else if (ret > 0) {
58         return H_LONG_BUSY_ORDER_1_MSEC;
59     }
60 
61     switch (ret) {
62     case 0:
63         return H_SUCCESS;
64     case -EPERM:
65         return H_AUTHORITY;
66     case -EINVAL:
67         return H_PARAMETER;
68     case -ENXIO:
69         return H_CLOSED;
70     case -ENOSPC:
71         return H_PTEG_FULL;
72     case -EBUSY:
73         return H_BUSY;
74     case -ENOMEM:
75         return H_NO_MEM;
76     default:
77         return H_HARDWARE;
78     }
79 }
80 
81 static target_ulong h_resize_hpt_prepare(PowerPCCPU *cpu,
82                                          SpaprMachineState *spapr,
83                                          target_ulong opcode,
84                                          target_ulong *args)
85 {
86     target_ulong flags = args[0];
87     int shift = args[1];
88     uint64_t current_ram_size;
89     int rc;
90 
91     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
92         return H_AUTHORITY;
93     }
94 
95     if (!spapr->htab_shift) {
96         /* Radix guest, no HPT */
97         return H_NOT_AVAILABLE;
98     }
99 
100     trace_spapr_h_resize_hpt_prepare(flags, shift);
101 
102     if (flags != 0) {
103         return H_PARAMETER;
104     }
105 
106     if (shift && ((shift < 18) || (shift > 46))) {
107         return H_PARAMETER;
108     }
109 
110     current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
111 
112     /* We only allow the guest to allocate an HPT one order above what
113      * we'd normally give them (to stop a small guest claiming a huge
114      * chunk of resources in the HPT */
115     if (shift > (spapr_hpt_shift_for_ramsize(current_ram_size) + 1)) {
116         return H_RESOURCE;
117     }
118 
119     rc = kvmppc_resize_hpt_prepare(cpu, flags, shift);
120     if (rc != -ENOSYS) {
121         return resize_hpt_convert_rc(rc);
122     }
123 
124     if (kvm_enabled()) {
125         return H_HARDWARE;
126     } else if (tcg_enabled()) {
127         return vhyp_mmu_resize_hpt_prepare(cpu, spapr, shift);
128     } else {
129         g_assert_not_reached();
130     }
131 }
132 
133 static void do_push_sregs_to_kvm_pr(CPUState *cs, run_on_cpu_data data)
134 {
135     int ret;
136 
137     cpu_synchronize_state(cs);
138 
139     ret = kvmppc_put_books_sregs(POWERPC_CPU(cs));
140     if (ret < 0) {
141         error_report("failed to push sregs to KVM: %s", strerror(-ret));
142         exit(1);
143     }
144 }
145 
146 void push_sregs_to_kvm_pr(SpaprMachineState *spapr)
147 {
148     CPUState *cs;
149 
150     /*
151      * This is a hack for the benefit of KVM PR - it abuses the SDR1
152      * slot in kvm_sregs to communicate the userspace address of the
153      * HPT
154      */
155     if (!kvm_enabled() || !spapr->htab) {
156         return;
157     }
158 
159     CPU_FOREACH(cs) {
160         run_on_cpu(cs, do_push_sregs_to_kvm_pr, RUN_ON_CPU_NULL);
161     }
162 }
163 
164 static target_ulong h_resize_hpt_commit(PowerPCCPU *cpu,
165                                         SpaprMachineState *spapr,
166                                         target_ulong opcode,
167                                         target_ulong *args)
168 {
169     target_ulong flags = args[0];
170     target_ulong shift = args[1];
171     int rc;
172 
173     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
174         return H_AUTHORITY;
175     }
176 
177     if (!spapr->htab_shift) {
178         /* Radix guest, no HPT */
179         return H_NOT_AVAILABLE;
180     }
181 
182     trace_spapr_h_resize_hpt_commit(flags, shift);
183 
184     rc = kvmppc_resize_hpt_commit(cpu, flags, shift);
185     if (rc != -ENOSYS) {
186         rc = resize_hpt_convert_rc(rc);
187         if (rc == H_SUCCESS) {
188             /* Need to set the new htab_shift in the machine state */
189             spapr->htab_shift = shift;
190         }
191         return rc;
192     }
193 
194     if (kvm_enabled()) {
195         return H_HARDWARE;
196     } else if (tcg_enabled()) {
197         return vhyp_mmu_resize_hpt_commit(cpu, spapr, flags, shift);
198     } else {
199         g_assert_not_reached();
200     }
201 }
202 
203 
204 
205 static target_ulong h_set_sprg0(PowerPCCPU *cpu, SpaprMachineState *spapr,
206                                 target_ulong opcode, target_ulong *args)
207 {
208     cpu_synchronize_state(CPU(cpu));
209     cpu->env.spr[SPR_SPRG0] = args[0];
210 
211     return H_SUCCESS;
212 }
213 
214 static target_ulong h_set_dabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
215                                target_ulong opcode, target_ulong *args)
216 {
217     if (!ppc_has_spr(cpu, SPR_DABR)) {
218         return H_HARDWARE;              /* DABR register not available */
219     }
220     cpu_synchronize_state(CPU(cpu));
221 
222     if (ppc_has_spr(cpu, SPR_DABRX)) {
223         cpu->env.spr[SPR_DABRX] = 0x3;  /* Use Problem and Privileged state */
224     } else if (!(args[0] & 0x4)) {      /* Breakpoint Translation set? */
225         return H_RESERVED_DABR;
226     }
227 
228     cpu->env.spr[SPR_DABR] = args[0];
229     return H_SUCCESS;
230 }
231 
232 static target_ulong h_set_xdabr(PowerPCCPU *cpu, SpaprMachineState *spapr,
233                                 target_ulong opcode, target_ulong *args)
234 {
235     target_ulong dabrx = args[1];
236 
237     if (!ppc_has_spr(cpu, SPR_DABR) || !ppc_has_spr(cpu, SPR_DABRX)) {
238         return H_HARDWARE;
239     }
240 
241     if ((dabrx & ~0xfULL) != 0 || (dabrx & H_DABRX_HYPERVISOR) != 0
242         || (dabrx & (H_DABRX_KERNEL | H_DABRX_USER)) == 0) {
243         return H_PARAMETER;
244     }
245 
246     cpu_synchronize_state(CPU(cpu));
247     cpu->env.spr[SPR_DABRX] = dabrx;
248     cpu->env.spr[SPR_DABR] = args[0];
249 
250     return H_SUCCESS;
251 }
252 
253 static target_ulong h_page_init(PowerPCCPU *cpu, SpaprMachineState *spapr,
254                                 target_ulong opcode, target_ulong *args)
255 {
256     target_ulong flags = args[0];
257     hwaddr dst = args[1];
258     hwaddr src = args[2];
259     hwaddr len = TARGET_PAGE_SIZE;
260     uint8_t *pdst, *psrc;
261     target_long ret = H_SUCCESS;
262 
263     if (flags & ~(H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE
264                   | H_COPY_PAGE | H_ZERO_PAGE)) {
265         qemu_log_mask(LOG_UNIMP, "h_page_init: Bad flags (" TARGET_FMT_lx "\n",
266                       flags);
267         return H_PARAMETER;
268     }
269 
270     /* Map-in destination */
271     if (!is_ram_address(spapr, dst) || (dst & ~TARGET_PAGE_MASK) != 0) {
272         return H_PARAMETER;
273     }
274     pdst = cpu_physical_memory_map(dst, &len, true);
275     if (!pdst || len != TARGET_PAGE_SIZE) {
276         return H_PARAMETER;
277     }
278 
279     if (flags & H_COPY_PAGE) {
280         /* Map-in source, copy to destination, and unmap source again */
281         if (!is_ram_address(spapr, src) || (src & ~TARGET_PAGE_MASK) != 0) {
282             ret = H_PARAMETER;
283             goto unmap_out;
284         }
285         psrc = cpu_physical_memory_map(src, &len, false);
286         if (!psrc || len != TARGET_PAGE_SIZE) {
287             ret = H_PARAMETER;
288             goto unmap_out;
289         }
290         memcpy(pdst, psrc, len);
291         cpu_physical_memory_unmap(psrc, len, 0, len);
292     } else if (flags & H_ZERO_PAGE) {
293         memset(pdst, 0, len);          /* Just clear the destination page */
294     }
295 
296     if (kvm_enabled() && (flags & H_ICACHE_SYNCHRONIZE) != 0) {
297         kvmppc_dcbst_range(cpu, pdst, len);
298     }
299     if (flags & (H_ICACHE_SYNCHRONIZE | H_ICACHE_INVALIDATE)) {
300         if (kvm_enabled()) {
301             kvmppc_icbi_range(cpu, pdst, len);
302         } else if (tcg_enabled()) {
303             tb_flush(CPU(cpu));
304         } else {
305             g_assert_not_reached();
306         }
307     }
308 
309 unmap_out:
310     cpu_physical_memory_unmap(pdst, TARGET_PAGE_SIZE, 1, len);
311     return ret;
312 }
313 
314 #define FLAGS_REGISTER_VPA         0x0000200000000000ULL
315 #define FLAGS_REGISTER_DTL         0x0000400000000000ULL
316 #define FLAGS_REGISTER_SLBSHADOW   0x0000600000000000ULL
317 #define FLAGS_DEREGISTER_VPA       0x0000a00000000000ULL
318 #define FLAGS_DEREGISTER_DTL       0x0000c00000000000ULL
319 #define FLAGS_DEREGISTER_SLBSHADOW 0x0000e00000000000ULL
320 
321 static target_ulong register_vpa(PowerPCCPU *cpu, target_ulong vpa)
322 {
323     CPUState *cs = CPU(cpu);
324     CPUPPCState *env = &cpu->env;
325     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
326     uint16_t size;
327     uint8_t tmp;
328 
329     if (vpa == 0) {
330         hcall_dprintf("Can't cope with registering a VPA at logical 0\n");
331         return H_HARDWARE;
332     }
333 
334     if (vpa % env->dcache_line_size) {
335         return H_PARAMETER;
336     }
337     /* FIXME: bounds check the address */
338 
339     size = lduw_be_phys(cs->as, vpa + 0x4);
340 
341     if (size < VPA_MIN_SIZE) {
342         return H_PARAMETER;
343     }
344 
345     /* VPA is not allowed to cross a page boundary */
346     if ((vpa / 4096) != ((vpa + size - 1) / 4096)) {
347         return H_PARAMETER;
348     }
349 
350     spapr_cpu->vpa_addr = vpa;
351 
352     tmp = ldub_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET);
353     tmp |= VPA_SHARED_PROC_VAL;
354     stb_phys(cs->as, spapr_cpu->vpa_addr + VPA_SHARED_PROC_OFFSET, tmp);
355 
356     return H_SUCCESS;
357 }
358 
359 static target_ulong deregister_vpa(PowerPCCPU *cpu, target_ulong vpa)
360 {
361     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
362 
363     if (spapr_cpu->slb_shadow_addr) {
364         return H_RESOURCE;
365     }
366 
367     if (spapr_cpu->dtl_addr) {
368         return H_RESOURCE;
369     }
370 
371     spapr_cpu->vpa_addr = 0;
372     return H_SUCCESS;
373 }
374 
375 static target_ulong register_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
376 {
377     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
378     uint32_t size;
379 
380     if (addr == 0) {
381         hcall_dprintf("Can't cope with SLB shadow at logical 0\n");
382         return H_HARDWARE;
383     }
384 
385     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
386     if (size < 0x8) {
387         return H_PARAMETER;
388     }
389 
390     if ((addr / 4096) != ((addr + size - 1) / 4096)) {
391         return H_PARAMETER;
392     }
393 
394     if (!spapr_cpu->vpa_addr) {
395         return H_RESOURCE;
396     }
397 
398     spapr_cpu->slb_shadow_addr = addr;
399     spapr_cpu->slb_shadow_size = size;
400 
401     return H_SUCCESS;
402 }
403 
404 static target_ulong deregister_slb_shadow(PowerPCCPU *cpu, target_ulong addr)
405 {
406     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
407 
408     spapr_cpu->slb_shadow_addr = 0;
409     spapr_cpu->slb_shadow_size = 0;
410     return H_SUCCESS;
411 }
412 
413 static target_ulong register_dtl(PowerPCCPU *cpu, target_ulong addr)
414 {
415     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
416     uint32_t size;
417 
418     if (addr == 0) {
419         hcall_dprintf("Can't cope with DTL at logical 0\n");
420         return H_HARDWARE;
421     }
422 
423     size = ldl_be_phys(CPU(cpu)->as, addr + 0x4);
424 
425     if (size < 48) {
426         return H_PARAMETER;
427     }
428 
429     if (!spapr_cpu->vpa_addr) {
430         return H_RESOURCE;
431     }
432 
433     spapr_cpu->dtl_addr = addr;
434     spapr_cpu->dtl_size = size;
435 
436     return H_SUCCESS;
437 }
438 
439 static target_ulong deregister_dtl(PowerPCCPU *cpu, target_ulong addr)
440 {
441     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
442 
443     spapr_cpu->dtl_addr = 0;
444     spapr_cpu->dtl_size = 0;
445 
446     return H_SUCCESS;
447 }
448 
449 static target_ulong h_register_vpa(PowerPCCPU *cpu, SpaprMachineState *spapr,
450                                    target_ulong opcode, target_ulong *args)
451 {
452     target_ulong flags = args[0];
453     target_ulong procno = args[1];
454     target_ulong vpa = args[2];
455     target_ulong ret = H_PARAMETER;
456     PowerPCCPU *tcpu;
457 
458     tcpu = spapr_find_cpu(procno);
459     if (!tcpu) {
460         return H_PARAMETER;
461     }
462 
463     switch (flags) {
464     case FLAGS_REGISTER_VPA:
465         ret = register_vpa(tcpu, vpa);
466         break;
467 
468     case FLAGS_DEREGISTER_VPA:
469         ret = deregister_vpa(tcpu, vpa);
470         break;
471 
472     case FLAGS_REGISTER_SLBSHADOW:
473         ret = register_slb_shadow(tcpu, vpa);
474         break;
475 
476     case FLAGS_DEREGISTER_SLBSHADOW:
477         ret = deregister_slb_shadow(tcpu, vpa);
478         break;
479 
480     case FLAGS_REGISTER_DTL:
481         ret = register_dtl(tcpu, vpa);
482         break;
483 
484     case FLAGS_DEREGISTER_DTL:
485         ret = deregister_dtl(tcpu, vpa);
486         break;
487     }
488 
489     return ret;
490 }
491 
492 static target_ulong h_cede(PowerPCCPU *cpu, SpaprMachineState *spapr,
493                            target_ulong opcode, target_ulong *args)
494 {
495     CPUPPCState *env = &cpu->env;
496     CPUState *cs = CPU(cpu);
497     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
498 
499     env->msr |= (1ULL << MSR_EE);
500     hreg_compute_hflags(env);
501     ppc_maybe_interrupt(env);
502 
503     if (spapr_cpu->prod) {
504         spapr_cpu->prod = false;
505         return H_SUCCESS;
506     }
507 
508     if (!cpu_has_work(cs)) {
509         cs->halted = 1;
510         cs->exception_index = EXCP_HLT;
511         cs->exit_request = 1;
512         ppc_maybe_interrupt(env);
513     }
514 
515     return H_SUCCESS;
516 }
517 
518 /*
519  * Confer to self, aka join. Cede could use the same pattern as well, if
520  * EXCP_HLT can be changed to ECXP_HALTED.
521  */
522 static target_ulong h_confer_self(PowerPCCPU *cpu)
523 {
524     CPUState *cs = CPU(cpu);
525     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
526 
527     if (spapr_cpu->prod) {
528         spapr_cpu->prod = false;
529         return H_SUCCESS;
530     }
531     cs->halted = 1;
532     cs->exception_index = EXCP_HALTED;
533     cs->exit_request = 1;
534     ppc_maybe_interrupt(&cpu->env);
535 
536     return H_SUCCESS;
537 }
538 
539 static target_ulong h_join(PowerPCCPU *cpu, SpaprMachineState *spapr,
540                            target_ulong opcode, target_ulong *args)
541 {
542     CPUPPCState *env = &cpu->env;
543     CPUState *cs;
544     bool last_unjoined = true;
545 
546     if (env->msr & (1ULL << MSR_EE)) {
547         return H_BAD_MODE;
548     }
549 
550     /*
551      * Must not join the last CPU running. Interestingly, no such restriction
552      * for H_CONFER-to-self, but that is probably not intended to be used
553      * when H_JOIN is available.
554      */
555     CPU_FOREACH(cs) {
556         PowerPCCPU *c = POWERPC_CPU(cs);
557         CPUPPCState *e = &c->env;
558         if (c == cpu) {
559             continue;
560         }
561 
562         /* Don't have a way to indicate joined, so use halted && MSR[EE]=0 */
563         if (!cs->halted || (e->msr & (1ULL << MSR_EE))) {
564             last_unjoined = false;
565             break;
566         }
567     }
568     if (last_unjoined) {
569         return H_CONTINUE;
570     }
571 
572     return h_confer_self(cpu);
573 }
574 
575 static target_ulong h_confer(PowerPCCPU *cpu, SpaprMachineState *spapr,
576                            target_ulong opcode, target_ulong *args)
577 {
578     target_long target = args[0];
579     uint32_t dispatch = args[1];
580     CPUState *cs = CPU(cpu);
581     SpaprCpuState *spapr_cpu;
582 
583     /*
584      * -1 means confer to all other CPUs without dispatch counter check,
585      *  otherwise it's a targeted confer.
586      */
587     if (target != -1) {
588         PowerPCCPU *target_cpu = spapr_find_cpu(target);
589         uint32_t target_dispatch;
590 
591         if (!target_cpu) {
592             return H_PARAMETER;
593         }
594 
595         /*
596          * target == self is a special case, we wait until prodded, without
597          * dispatch counter check.
598          */
599         if (cpu == target_cpu) {
600             return h_confer_self(cpu);
601         }
602 
603         spapr_cpu = spapr_cpu_state(target_cpu);
604         if (!spapr_cpu->vpa_addr || ((dispatch & 1) == 0)) {
605             return H_SUCCESS;
606         }
607 
608         target_dispatch = ldl_be_phys(cs->as,
609                                   spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
610         if (target_dispatch != dispatch) {
611             return H_SUCCESS;
612         }
613 
614         /*
615          * The targeted confer does not do anything special beyond yielding
616          * the current vCPU, but even this should be better than nothing.
617          * At least for single-threaded tcg, it gives the target a chance to
618          * run before we run again. Multi-threaded tcg does not really do
619          * anything with EXCP_YIELD yet.
620          */
621     }
622 
623     cs->exception_index = EXCP_YIELD;
624     cs->exit_request = 1;
625     cpu_loop_exit(cs);
626 
627     return H_SUCCESS;
628 }
629 
630 static target_ulong h_prod(PowerPCCPU *cpu, SpaprMachineState *spapr,
631                            target_ulong opcode, target_ulong *args)
632 {
633     target_long target = args[0];
634     PowerPCCPU *tcpu;
635     CPUState *cs;
636     SpaprCpuState *spapr_cpu;
637 
638     tcpu = spapr_find_cpu(target);
639     cs = CPU(tcpu);
640     if (!cs) {
641         return H_PARAMETER;
642     }
643 
644     spapr_cpu = spapr_cpu_state(tcpu);
645     spapr_cpu->prod = true;
646     cs->halted = 0;
647     ppc_maybe_interrupt(&cpu->env);
648     qemu_cpu_kick(cs);
649 
650     return H_SUCCESS;
651 }
652 
653 static target_ulong h_rtas(PowerPCCPU *cpu, SpaprMachineState *spapr,
654                            target_ulong opcode, target_ulong *args)
655 {
656     target_ulong rtas_r3 = args[0];
657     uint32_t token = rtas_ld(rtas_r3, 0);
658     uint32_t nargs = rtas_ld(rtas_r3, 1);
659     uint32_t nret = rtas_ld(rtas_r3, 2);
660 
661     return spapr_rtas_call(cpu, spapr, token, nargs, rtas_r3 + 12,
662                            nret, rtas_r3 + 12 + 4*nargs);
663 }
664 
665 static target_ulong h_logical_load(PowerPCCPU *cpu, SpaprMachineState *spapr,
666                                    target_ulong opcode, target_ulong *args)
667 {
668     CPUState *cs = CPU(cpu);
669     target_ulong size = args[0];
670     target_ulong addr = args[1];
671 
672     switch (size) {
673     case 1:
674         args[0] = ldub_phys(cs->as, addr);
675         return H_SUCCESS;
676     case 2:
677         args[0] = lduw_phys(cs->as, addr);
678         return H_SUCCESS;
679     case 4:
680         args[0] = ldl_phys(cs->as, addr);
681         return H_SUCCESS;
682     case 8:
683         args[0] = ldq_phys(cs->as, addr);
684         return H_SUCCESS;
685     }
686     return H_PARAMETER;
687 }
688 
689 static target_ulong h_logical_store(PowerPCCPU *cpu, SpaprMachineState *spapr,
690                                     target_ulong opcode, target_ulong *args)
691 {
692     CPUState *cs = CPU(cpu);
693 
694     target_ulong size = args[0];
695     target_ulong addr = args[1];
696     target_ulong val  = args[2];
697 
698     switch (size) {
699     case 1:
700         stb_phys(cs->as, addr, val);
701         return H_SUCCESS;
702     case 2:
703         stw_phys(cs->as, addr, val);
704         return H_SUCCESS;
705     case 4:
706         stl_phys(cs->as, addr, val);
707         return H_SUCCESS;
708     case 8:
709         stq_phys(cs->as, addr, val);
710         return H_SUCCESS;
711     }
712     return H_PARAMETER;
713 }
714 
715 static target_ulong h_logical_memop(PowerPCCPU *cpu, SpaprMachineState *spapr,
716                                     target_ulong opcode, target_ulong *args)
717 {
718     CPUState *cs = CPU(cpu);
719 
720     target_ulong dst   = args[0]; /* Destination address */
721     target_ulong src   = args[1]; /* Source address */
722     target_ulong esize = args[2]; /* Element size (0=1,1=2,2=4,3=8) */
723     target_ulong count = args[3]; /* Element count */
724     target_ulong op    = args[4]; /* 0 = copy, 1 = invert */
725     uint64_t tmp;
726     unsigned int mask = (1 << esize) - 1;
727     int step = 1 << esize;
728 
729     if (count > 0x80000000) {
730         return H_PARAMETER;
731     }
732 
733     if ((dst & mask) || (src & mask) || (op > 1)) {
734         return H_PARAMETER;
735     }
736 
737     if (dst >= src && dst < (src + (count << esize))) {
738             dst = dst + ((count - 1) << esize);
739             src = src + ((count - 1) << esize);
740             step = -step;
741     }
742 
743     while (count--) {
744         switch (esize) {
745         case 0:
746             tmp = ldub_phys(cs->as, src);
747             break;
748         case 1:
749             tmp = lduw_phys(cs->as, src);
750             break;
751         case 2:
752             tmp = ldl_phys(cs->as, src);
753             break;
754         case 3:
755             tmp = ldq_phys(cs->as, src);
756             break;
757         default:
758             return H_PARAMETER;
759         }
760         if (op == 1) {
761             tmp = ~tmp;
762         }
763         switch (esize) {
764         case 0:
765             stb_phys(cs->as, dst, tmp);
766             break;
767         case 1:
768             stw_phys(cs->as, dst, tmp);
769             break;
770         case 2:
771             stl_phys(cs->as, dst, tmp);
772             break;
773         case 3:
774             stq_phys(cs->as, dst, tmp);
775             break;
776         }
777         dst = dst + step;
778         src = src + step;
779     }
780 
781     return H_SUCCESS;
782 }
783 
784 static target_ulong h_logical_icbi(PowerPCCPU *cpu, SpaprMachineState *spapr,
785                                    target_ulong opcode, target_ulong *args)
786 {
787     /* Nothing to do on emulation, KVM will trap this in the kernel */
788     return H_SUCCESS;
789 }
790 
791 static target_ulong h_logical_dcbf(PowerPCCPU *cpu, SpaprMachineState *spapr,
792                                    target_ulong opcode, target_ulong *args)
793 {
794     /* Nothing to do on emulation, KVM will trap this in the kernel */
795     return H_SUCCESS;
796 }
797 
798 static target_ulong h_set_mode_resource_set_ciabr(PowerPCCPU *cpu,
799                                                   SpaprMachineState *spapr,
800                                                   target_ulong mflags,
801                                                   target_ulong value1,
802                                                   target_ulong value2)
803 {
804     CPUPPCState *env = &cpu->env;
805 
806     assert(tcg_enabled()); /* KVM will have handled this */
807 
808     if (mflags) {
809         return H_UNSUPPORTED_FLAG;
810     }
811     if (value2) {
812         return H_P4;
813     }
814     if ((value1 & PPC_BITMASK(62, 63)) == 0x3) {
815         return H_P3;
816     }
817 
818     ppc_store_ciabr(env, value1);
819 
820     return H_SUCCESS;
821 }
822 
823 static target_ulong h_set_mode_resource_set_dawr0(PowerPCCPU *cpu,
824                                                   SpaprMachineState *spapr,
825                                                   target_ulong mflags,
826                                                   target_ulong value1,
827                                                   target_ulong value2)
828 {
829     CPUPPCState *env = &cpu->env;
830 
831     assert(tcg_enabled()); /* KVM will have handled this */
832 
833     if (mflags) {
834         return H_UNSUPPORTED_FLAG;
835     }
836     if (value2 & PPC_BIT(61)) {
837         return H_P4;
838     }
839 
840     ppc_store_dawr0(env, value1);
841     ppc_store_dawrx0(env, value2);
842 
843     return H_SUCCESS;
844 }
845 
846 static target_ulong h_set_mode_resource_le(PowerPCCPU *cpu,
847                                            SpaprMachineState *spapr,
848                                            target_ulong mflags,
849                                            target_ulong value1,
850                                            target_ulong value2)
851 {
852     if (value1) {
853         return H_P3;
854     }
855     if (value2) {
856         return H_P4;
857     }
858 
859     switch (mflags) {
860     case H_SET_MODE_ENDIAN_BIG:
861         spapr_set_all_lpcrs(0, LPCR_ILE);
862         spapr_pci_switch_vga(spapr, true);
863         return H_SUCCESS;
864 
865     case H_SET_MODE_ENDIAN_LITTLE:
866         spapr_set_all_lpcrs(LPCR_ILE, LPCR_ILE);
867         spapr_pci_switch_vga(spapr, false);
868         return H_SUCCESS;
869     }
870 
871     return H_UNSUPPORTED_FLAG;
872 }
873 
874 static target_ulong h_set_mode_resource_addr_trans_mode(PowerPCCPU *cpu,
875                                                         SpaprMachineState *spapr,
876                                                         target_ulong mflags,
877                                                         target_ulong value1,
878                                                         target_ulong value2)
879 {
880     if (value1) {
881         return H_P3;
882     }
883 
884     if (value2) {
885         return H_P4;
886     }
887 
888     /*
889      * AIL-1 is not architected, and AIL-2 is not supported by QEMU spapr.
890      * It is supported for faithful emulation of bare metal systems, but for
891      * compatibility concerns we leave it out of the pseries machine.
892      */
893     if (mflags != 0 && mflags != 3) {
894         return H_UNSUPPORTED_FLAG;
895     }
896 
897     if (mflags == 3) {
898         if (!spapr_get_cap(spapr, SPAPR_CAP_AIL_MODE_3)) {
899             return H_UNSUPPORTED_FLAG;
900         }
901     }
902 
903     spapr_set_all_lpcrs(mflags << LPCR_AIL_SHIFT, LPCR_AIL);
904 
905     return H_SUCCESS;
906 }
907 
908 static target_ulong h_set_mode(PowerPCCPU *cpu, SpaprMachineState *spapr,
909                                target_ulong opcode, target_ulong *args)
910 {
911     target_ulong resource = args[1];
912     target_ulong ret = H_P2;
913 
914     switch (resource) {
915     case H_SET_MODE_RESOURCE_SET_CIABR:
916         ret = h_set_mode_resource_set_ciabr(cpu, spapr, args[0], args[2],
917                                             args[3]);
918         break;
919     case H_SET_MODE_RESOURCE_SET_DAWR0:
920         ret = h_set_mode_resource_set_dawr0(cpu, spapr, args[0], args[2],
921                                             args[3]);
922         break;
923     case H_SET_MODE_RESOURCE_LE:
924         ret = h_set_mode_resource_le(cpu, spapr, args[0], args[2], args[3]);
925         break;
926     case H_SET_MODE_RESOURCE_ADDR_TRANS_MODE:
927         ret = h_set_mode_resource_addr_trans_mode(cpu, spapr, args[0],
928                                                   args[2], args[3]);
929         break;
930     }
931 
932     return ret;
933 }
934 
935 static target_ulong h_clean_slb(PowerPCCPU *cpu, SpaprMachineState *spapr,
936                                 target_ulong opcode, target_ulong *args)
937 {
938     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
939                   opcode, " (H_CLEAN_SLB)");
940     return H_FUNCTION;
941 }
942 
943 static target_ulong h_invalidate_pid(PowerPCCPU *cpu, SpaprMachineState *spapr,
944                                      target_ulong opcode, target_ulong *args)
945 {
946     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x"TARGET_FMT_lx"%s\n",
947                   opcode, " (H_INVALIDATE_PID)");
948     return H_FUNCTION;
949 }
950 
951 static void spapr_check_setup_free_hpt(SpaprMachineState *spapr,
952                                        uint64_t patbe_old, uint64_t patbe_new)
953 {
954     /*
955      * We have 4 Options:
956      * HASH->HASH || RADIX->RADIX || NOTHING->RADIX : Do Nothing
957      * HASH->RADIX                                  : Free HPT
958      * RADIX->HASH                                  : Allocate HPT
959      * NOTHING->HASH                                : Allocate HPT
960      * Note: NOTHING implies the case where we said the guest could choose
961      *       later and so assumed radix and now it's called H_REG_PROC_TBL
962      */
963 
964     if ((patbe_old & PATE1_GR) == (patbe_new & PATE1_GR)) {
965         /* We assume RADIX, so this catches all the "Do Nothing" cases */
966     } else if (!(patbe_old & PATE1_GR)) {
967         /* HASH->RADIX : Free HPT */
968         spapr_free_hpt(spapr);
969     } else if (!(patbe_new & PATE1_GR)) {
970         /* RADIX->HASH || NOTHING->HASH : Allocate HPT */
971         spapr_setup_hpt(spapr);
972     }
973     return;
974 }
975 
976 #define FLAGS_MASK              0x01FULL
977 #define FLAG_MODIFY             0x10
978 #define FLAG_REGISTER           0x08
979 #define FLAG_RADIX              0x04
980 #define FLAG_HASH_PROC_TBL      0x02
981 #define FLAG_GTSE               0x01
982 
983 static target_ulong h_register_process_table(PowerPCCPU *cpu,
984                                              SpaprMachineState *spapr,
985                                              target_ulong opcode,
986                                              target_ulong *args)
987 {
988     target_ulong flags = args[0];
989     target_ulong proc_tbl = args[1];
990     target_ulong page_size = args[2];
991     target_ulong table_size = args[3];
992     target_ulong update_lpcr = 0;
993     target_ulong table_byte_size;
994     uint64_t cproc;
995 
996     if (flags & ~FLAGS_MASK) { /* Check no reserved bits are set */
997         return H_PARAMETER;
998     }
999     if (flags & FLAG_MODIFY) {
1000         if (flags & FLAG_REGISTER) {
1001             /* Check process table alignment */
1002             table_byte_size = 1ULL << (table_size + 12);
1003             if (proc_tbl & (table_byte_size - 1)) {
1004                 qemu_log_mask(LOG_GUEST_ERROR,
1005                     "%s: process table not properly aligned: proc_tbl 0x"
1006                     TARGET_FMT_lx" proc_tbl_size 0x"TARGET_FMT_lx"\n",
1007                     __func__, proc_tbl, table_byte_size);
1008             }
1009             if (flags & FLAG_RADIX) { /* Register new RADIX process table */
1010                 if (proc_tbl & 0xfff || proc_tbl >> 60) {
1011                     return H_P2;
1012                 } else if (page_size) {
1013                     return H_P3;
1014                 } else if (table_size > 24) {
1015                     return H_P4;
1016                 }
1017                 cproc = PATE1_GR | proc_tbl | table_size;
1018             } else { /* Register new HPT process table */
1019                 if (flags & FLAG_HASH_PROC_TBL) { /* Hash with Segment Tables */
1020                     /* TODO - Not Supported */
1021                     /* Technically caused by flag bits => H_PARAMETER */
1022                     return H_PARAMETER;
1023                 } else { /* Hash with SLB */
1024                     if (proc_tbl >> 38) {
1025                         return H_P2;
1026                     } else if (page_size & ~0x7) {
1027                         return H_P3;
1028                     } else if (table_size > 24) {
1029                         return H_P4;
1030                     }
1031                 }
1032                 cproc = (proc_tbl << 25) | page_size << 5 | table_size;
1033             }
1034 
1035         } else { /* Deregister current process table */
1036             /*
1037              * Set to benign value: (current GR) | 0. This allows
1038              * deregistration in KVM to succeed even if the radix bit
1039              * in flags doesn't match the radix bit in the old PATE.
1040              */
1041             cproc = spapr->patb_entry & PATE1_GR;
1042         }
1043     } else { /* Maintain current registration */
1044         if (!(flags & FLAG_RADIX) != !(spapr->patb_entry & PATE1_GR)) {
1045             /* Technically caused by flag bits => H_PARAMETER */
1046             return H_PARAMETER; /* Existing Process Table Mismatch */
1047         }
1048         cproc = spapr->patb_entry;
1049     }
1050 
1051     /* Check if we need to setup OR free the hpt */
1052     spapr_check_setup_free_hpt(spapr, spapr->patb_entry, cproc);
1053 
1054     spapr->patb_entry = cproc; /* Save new process table */
1055 
1056     /* Update the UPRT, HR and GTSE bits in the LPCR for all cpus */
1057     if (flags & FLAG_RADIX)     /* Radix must use process tables, also set HR */
1058         update_lpcr |= (LPCR_UPRT | LPCR_HR);
1059     else if (flags & FLAG_HASH_PROC_TBL) /* Hash with process tables */
1060         update_lpcr |= LPCR_UPRT;
1061     if (flags & FLAG_GTSE)      /* Guest translation shootdown enable */
1062         update_lpcr |= LPCR_GTSE;
1063 
1064     spapr_set_all_lpcrs(update_lpcr, LPCR_UPRT | LPCR_HR | LPCR_GTSE);
1065 
1066     if (kvm_enabled()) {
1067         return kvmppc_configure_v3_mmu(cpu, flags & FLAG_RADIX,
1068                                        flags & FLAG_GTSE, cproc);
1069     }
1070     return H_SUCCESS;
1071 }
1072 
1073 #define H_SIGNAL_SYS_RESET_ALL         -1
1074 #define H_SIGNAL_SYS_RESET_ALLBUTSELF  -2
1075 
1076 static target_ulong h_signal_sys_reset(PowerPCCPU *cpu,
1077                                        SpaprMachineState *spapr,
1078                                        target_ulong opcode, target_ulong *args)
1079 {
1080     target_long target = args[0];
1081     CPUState *cs;
1082 
1083     if (target < 0) {
1084         /* Broadcast */
1085         if (target < H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1086             return H_PARAMETER;
1087         }
1088 
1089         CPU_FOREACH(cs) {
1090             PowerPCCPU *c = POWERPC_CPU(cs);
1091 
1092             if (target == H_SIGNAL_SYS_RESET_ALLBUTSELF) {
1093                 if (c == cpu) {
1094                     continue;
1095                 }
1096             }
1097             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1098         }
1099         return H_SUCCESS;
1100 
1101     } else {
1102         /* Unicast */
1103         cs = CPU(spapr_find_cpu(target));
1104         if (cs) {
1105             run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
1106             return H_SUCCESS;
1107         }
1108         return H_PARAMETER;
1109     }
1110 }
1111 
1112 /* Returns either a logical PVR or zero if none was found */
1113 static uint32_t cas_check_pvr(PowerPCCPU *cpu, uint32_t max_compat,
1114                               target_ulong *addr, bool *raw_mode_supported)
1115 {
1116     bool explicit_match = false; /* Matched the CPU's real PVR */
1117     uint32_t best_compat = 0;
1118     int i;
1119 
1120     /*
1121      * We scan the supplied table of PVRs looking for two things
1122      *   1. Is our real CPU PVR in the list?
1123      *   2. What's the "best" listed logical PVR
1124      */
1125     for (i = 0; i < 512; ++i) {
1126         uint32_t pvr, pvr_mask;
1127 
1128         pvr_mask = ldl_be_phys(&address_space_memory, *addr);
1129         pvr = ldl_be_phys(&address_space_memory, *addr + 4);
1130         *addr += 8;
1131 
1132         if (~pvr_mask & pvr) {
1133             break; /* Terminator record */
1134         }
1135 
1136         if ((cpu->env.spr[SPR_PVR] & pvr_mask) == (pvr & pvr_mask)) {
1137             explicit_match = true;
1138         } else {
1139             if (ppc_check_compat(cpu, pvr, best_compat, max_compat)) {
1140                 best_compat = pvr;
1141             }
1142         }
1143     }
1144 
1145     *raw_mode_supported = explicit_match;
1146 
1147     /* Parsing finished */
1148     trace_spapr_cas_pvr(cpu->compat_pvr, explicit_match, best_compat);
1149 
1150     return best_compat;
1151 }
1152 
1153 static
1154 target_ulong do_client_architecture_support(PowerPCCPU *cpu,
1155                                             SpaprMachineState *spapr,
1156                                             target_ulong vec,
1157                                             target_ulong fdt_bufsize)
1158 {
1159     target_ulong ov_table; /* Working address in data buffer */
1160     uint32_t cas_pvr;
1161     SpaprOptionVector *ov1_guest, *ov5_guest;
1162     bool guest_radix;
1163     bool raw_mode_supported = false;
1164     bool guest_xive;
1165     CPUState *cs;
1166     void *fdt;
1167     uint32_t max_compat = spapr->max_compat_pvr;
1168 
1169     /* CAS is supposed to be called early when only the boot vCPU is active. */
1170     CPU_FOREACH(cs) {
1171         if (cs == CPU(cpu)) {
1172             continue;
1173         }
1174         if (!cs->halted) {
1175             warn_report("guest has multiple active vCPUs at CAS, which is not allowed");
1176             return H_MULTI_THREADS_ACTIVE;
1177         }
1178     }
1179 
1180     cas_pvr = cas_check_pvr(cpu, max_compat, &vec, &raw_mode_supported);
1181     if (!cas_pvr && (!raw_mode_supported || max_compat)) {
1182         /*
1183          * We couldn't find a suitable compatibility mode, and either
1184          * the guest doesn't support "raw" mode for this CPU, or "raw"
1185          * mode is disabled because a maximum compat mode is set.
1186          */
1187         error_report("Couldn't negotiate a suitable PVR during CAS");
1188         return H_HARDWARE;
1189     }
1190 
1191     /* Update CPUs */
1192     if (cpu->compat_pvr != cas_pvr) {
1193         Error *local_err = NULL;
1194 
1195         if (ppc_set_compat_all(cas_pvr, &local_err) < 0) {
1196             /* We fail to set compat mode (likely because running with KVM PR),
1197              * but maybe we can fallback to raw mode if the guest supports it.
1198              */
1199             if (!raw_mode_supported) {
1200                 error_report_err(local_err);
1201                 return H_HARDWARE;
1202             }
1203             error_free(local_err);
1204         }
1205     }
1206 
1207     /* For the future use: here @ov_table points to the first option vector */
1208     ov_table = vec;
1209 
1210     ov1_guest = spapr_ovec_parse_vector(ov_table, 1);
1211     if (!ov1_guest) {
1212         warn_report("guest didn't provide option vector 1");
1213         return H_PARAMETER;
1214     }
1215     ov5_guest = spapr_ovec_parse_vector(ov_table, 5);
1216     if (!ov5_guest) {
1217         spapr_ovec_cleanup(ov1_guest);
1218         warn_report("guest didn't provide option vector 5");
1219         return H_PARAMETER;
1220     }
1221     if (spapr_ovec_test(ov5_guest, OV5_MMU_BOTH)) {
1222         error_report("guest requested hash and radix MMU, which is invalid.");
1223         exit(EXIT_FAILURE);
1224     }
1225     if (spapr_ovec_test(ov5_guest, OV5_XIVE_BOTH)) {
1226         error_report("guest requested an invalid interrupt mode");
1227         exit(EXIT_FAILURE);
1228     }
1229 
1230     guest_radix = spapr_ovec_test(ov5_guest, OV5_MMU_RADIX_300);
1231 
1232     guest_xive = spapr_ovec_test(ov5_guest, OV5_XIVE_EXPLOIT);
1233 
1234     /*
1235      * HPT resizing is a bit of a special case, because when enabled
1236      * we assume an HPT guest will support it until it says it
1237      * doesn't, instead of assuming it won't support it until it says
1238      * it does.  Strictly speaking that approach could break for
1239      * guests which don't make a CAS call, but those are so old we
1240      * don't care about them.  Without that assumption we'd have to
1241      * make at least a temporary allocation of an HPT sized for max
1242      * memory, which could be impossibly difficult under KVM HV if
1243      * maxram is large.
1244      */
1245     if (!guest_radix && !spapr_ovec_test(ov5_guest, OV5_HPT_RESIZE)) {
1246         int maxshift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1247 
1248         if (spapr->resize_hpt == SPAPR_RESIZE_HPT_REQUIRED) {
1249             error_report(
1250                 "h_client_architecture_support: Guest doesn't support HPT resizing, but resize-hpt=required");
1251             exit(1);
1252         }
1253 
1254         if (spapr->htab_shift < maxshift) {
1255             /* Guest doesn't know about HPT resizing, so we
1256              * pre-emptively resize for the maximum permitted RAM.  At
1257              * the point this is called, nothing should have been
1258              * entered into the existing HPT */
1259             spapr_reallocate_hpt(spapr, maxshift, &error_fatal);
1260             push_sregs_to_kvm_pr(spapr);
1261         }
1262     }
1263 
1264     /* NOTE: there are actually a number of ov5 bits where input from the
1265      * guest is always zero, and the platform/QEMU enables them independently
1266      * of guest input. To model these properly we'd want some sort of mask,
1267      * but since they only currently apply to memory migration as defined
1268      * by LoPAPR 1.1, 14.5.4.8, which QEMU doesn't implement, we don't need
1269      * to worry about this for now.
1270      */
1271 
1272     /* full range of negotiated ov5 capabilities */
1273     spapr_ovec_intersect(spapr->ov5_cas, spapr->ov5, ov5_guest);
1274     spapr_ovec_cleanup(ov5_guest);
1275 
1276     spapr_check_mmu_mode(guest_radix);
1277 
1278     spapr->cas_pre_isa3_guest = !spapr_ovec_test(ov1_guest, OV1_PPC_3_00);
1279     spapr_ovec_cleanup(ov1_guest);
1280 
1281     /*
1282      * Check for NUMA affinity conditions now that we know which NUMA
1283      * affinity the guest will use.
1284      */
1285     spapr_numa_associativity_check(spapr);
1286 
1287     /*
1288      * Ensure the guest asks for an interrupt mode we support;
1289      * otherwise terminate the boot.
1290      */
1291     if (guest_xive) {
1292         if (!spapr->irq->xive) {
1293             error_report(
1294 "Guest requested unavailable interrupt mode (XIVE), try the ic-mode=xive or ic-mode=dual machine property");
1295             exit(EXIT_FAILURE);
1296         }
1297     } else {
1298         if (!spapr->irq->xics) {
1299             error_report(
1300 "Guest requested unavailable interrupt mode (XICS), either don't set the ic-mode machine property or try ic-mode=xics or ic-mode=dual");
1301             exit(EXIT_FAILURE);
1302         }
1303     }
1304 
1305     spapr_irq_update_active_intc(spapr);
1306 
1307     /*
1308      * Process all pending hot-plug/unplug requests now. An updated full
1309      * rendered FDT will be returned to the guest.
1310      */
1311     spapr_drc_reset_all(spapr);
1312     spapr_clear_pending_hotplug_events(spapr);
1313 
1314     /*
1315      * If spapr_machine_reset() did not set up a HPT but one is necessary
1316      * (because the guest isn't going to use radix) then set it up here.
1317      */
1318     if ((spapr->patb_entry & PATE1_GR) && !guest_radix) {
1319         /* legacy hash or new hash: */
1320         spapr_setup_hpt(spapr);
1321     }
1322 
1323     fdt = spapr_build_fdt(spapr, spapr->vof != NULL, fdt_bufsize);
1324     g_free(spapr->fdt_blob);
1325     spapr->fdt_size = fdt_totalsize(fdt);
1326     spapr->fdt_initial_size = spapr->fdt_size;
1327     spapr->fdt_blob = fdt;
1328 
1329     /*
1330      * Set the machine->fdt pointer again since we just freed
1331      * it above (by freeing spapr->fdt_blob). We set this
1332      * pointer to enable support for the 'dumpdtb' QMP/HMP
1333      * command.
1334      */
1335     MACHINE(spapr)->fdt = fdt;
1336 
1337     return H_SUCCESS;
1338 }
1339 
1340 static target_ulong h_client_architecture_support(PowerPCCPU *cpu,
1341                                                   SpaprMachineState *spapr,
1342                                                   target_ulong opcode,
1343                                                   target_ulong *args)
1344 {
1345     target_ulong vec = ppc64_phys_to_real(args[0]);
1346     target_ulong fdt_buf = args[1];
1347     target_ulong fdt_bufsize = args[2];
1348     target_ulong ret;
1349     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
1350 
1351     if (fdt_bufsize < sizeof(hdr)) {
1352         error_report("SLOF provided insufficient CAS buffer "
1353                      TARGET_FMT_lu " (min: %zu)", fdt_bufsize, sizeof(hdr));
1354         exit(EXIT_FAILURE);
1355     }
1356 
1357     fdt_bufsize -= sizeof(hdr);
1358 
1359     ret = do_client_architecture_support(cpu, spapr, vec, fdt_bufsize);
1360     if (ret == H_SUCCESS) {
1361         _FDT((fdt_pack(spapr->fdt_blob)));
1362         spapr->fdt_size = fdt_totalsize(spapr->fdt_blob);
1363         spapr->fdt_initial_size = spapr->fdt_size;
1364 
1365         cpu_physical_memory_write(fdt_buf, &hdr, sizeof(hdr));
1366         cpu_physical_memory_write(fdt_buf + sizeof(hdr), spapr->fdt_blob,
1367                                   spapr->fdt_size);
1368         trace_spapr_cas_continue(spapr->fdt_size + sizeof(hdr));
1369     }
1370 
1371     return ret;
1372 }
1373 
1374 target_ulong spapr_vof_client_architecture_support(MachineState *ms,
1375                                                    CPUState *cs,
1376                                                    target_ulong ovec_addr)
1377 {
1378     SpaprMachineState *spapr = SPAPR_MACHINE(ms);
1379 
1380     target_ulong ret = do_client_architecture_support(POWERPC_CPU(cs), spapr,
1381                                                       ovec_addr, FDT_MAX_SIZE);
1382 
1383     /*
1384      * This adds stdout and generates phandles for boottime and CAS FDTs.
1385      * It is alright to update the FDT here as do_client_architecture_support()
1386      * does not pack it.
1387      */
1388     spapr_vof_client_dt_finalize(spapr, spapr->fdt_blob);
1389 
1390     return ret;
1391 }
1392 
1393 static target_ulong h_get_cpu_characteristics(PowerPCCPU *cpu,
1394                                               SpaprMachineState *spapr,
1395                                               target_ulong opcode,
1396                                               target_ulong *args)
1397 {
1398     uint64_t characteristics = H_CPU_CHAR_HON_BRANCH_HINTS &
1399                                ~H_CPU_CHAR_THR_RECONF_TRIG;
1400     uint64_t behaviour = H_CPU_BEHAV_FAVOUR_SECURITY;
1401     uint8_t safe_cache = spapr_get_cap(spapr, SPAPR_CAP_CFPC);
1402     uint8_t safe_bounds_check = spapr_get_cap(spapr, SPAPR_CAP_SBBC);
1403     uint8_t safe_indirect_branch = spapr_get_cap(spapr, SPAPR_CAP_IBS);
1404     uint8_t count_cache_flush_assist = spapr_get_cap(spapr,
1405                                                      SPAPR_CAP_CCF_ASSIST);
1406 
1407     switch (safe_cache) {
1408     case SPAPR_CAP_WORKAROUND:
1409         characteristics |= H_CPU_CHAR_L1D_FLUSH_ORI30;
1410         characteristics |= H_CPU_CHAR_L1D_FLUSH_TRIG2;
1411         characteristics |= H_CPU_CHAR_L1D_THREAD_PRIV;
1412         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1413         break;
1414     case SPAPR_CAP_FIXED:
1415         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_ENTRY;
1416         behaviour |= H_CPU_BEHAV_NO_L1D_FLUSH_UACCESS;
1417         break;
1418     default: /* broken */
1419         assert(safe_cache == SPAPR_CAP_BROKEN);
1420         behaviour |= H_CPU_BEHAV_L1D_FLUSH_PR;
1421         break;
1422     }
1423 
1424     switch (safe_bounds_check) {
1425     case SPAPR_CAP_WORKAROUND:
1426         characteristics |= H_CPU_CHAR_SPEC_BAR_ORI31;
1427         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1428         break;
1429     case SPAPR_CAP_FIXED:
1430         break;
1431     default: /* broken */
1432         assert(safe_bounds_check == SPAPR_CAP_BROKEN);
1433         behaviour |= H_CPU_BEHAV_BNDS_CHK_SPEC_BAR;
1434         break;
1435     }
1436 
1437     switch (safe_indirect_branch) {
1438     case SPAPR_CAP_FIXED_NA:
1439         break;
1440     case SPAPR_CAP_FIXED_CCD:
1441         characteristics |= H_CPU_CHAR_CACHE_COUNT_DIS;
1442         break;
1443     case SPAPR_CAP_FIXED_IBS:
1444         characteristics |= H_CPU_CHAR_BCCTRL_SERIALISED;
1445         break;
1446     case SPAPR_CAP_WORKAROUND:
1447         behaviour |= H_CPU_BEHAV_FLUSH_COUNT_CACHE;
1448         if (count_cache_flush_assist) {
1449             characteristics |= H_CPU_CHAR_BCCTR_FLUSH_ASSIST;
1450         }
1451         break;
1452     default: /* broken */
1453         assert(safe_indirect_branch == SPAPR_CAP_BROKEN);
1454         break;
1455     }
1456 
1457     args[0] = characteristics;
1458     args[1] = behaviour;
1459     return H_SUCCESS;
1460 }
1461 
1462 static target_ulong h_update_dt(PowerPCCPU *cpu, SpaprMachineState *spapr,
1463                                 target_ulong opcode, target_ulong *args)
1464 {
1465     target_ulong dt = ppc64_phys_to_real(args[0]);
1466     struct fdt_header hdr = { 0 };
1467     unsigned cb;
1468     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
1469     void *fdt;
1470 
1471     cpu_physical_memory_read(dt, &hdr, sizeof(hdr));
1472     cb = fdt32_to_cpu(hdr.totalsize);
1473 
1474     if (!smc->update_dt_enabled) {
1475         return H_SUCCESS;
1476     }
1477 
1478     /* Check that the fdt did not grow out of proportion */
1479     if (cb > spapr->fdt_initial_size * 2) {
1480         trace_spapr_update_dt_failed_size(spapr->fdt_initial_size, cb,
1481                                           fdt32_to_cpu(hdr.magic));
1482         return H_PARAMETER;
1483     }
1484 
1485     fdt = g_malloc0(cb);
1486     cpu_physical_memory_read(dt, fdt, cb);
1487 
1488     /* Check the fdt consistency */
1489     if (fdt_check_full(fdt, cb)) {
1490         trace_spapr_update_dt_failed_check(spapr->fdt_initial_size, cb,
1491                                            fdt32_to_cpu(hdr.magic));
1492         return H_PARAMETER;
1493     }
1494 
1495     g_free(spapr->fdt_blob);
1496     spapr->fdt_size = cb;
1497     spapr->fdt_blob = fdt;
1498     trace_spapr_update_dt(cb);
1499 
1500     return H_SUCCESS;
1501 }
1502 
1503 static spapr_hcall_fn papr_hypercall_table[(MAX_HCALL_OPCODE / 4) + 1];
1504 static spapr_hcall_fn kvmppc_hypercall_table[KVMPPC_HCALL_MAX - KVMPPC_HCALL_BASE + 1];
1505 static spapr_hcall_fn svm_hypercall_table[(SVM_HCALL_MAX - SVM_HCALL_BASE) / 4 + 1];
1506 
1507 void spapr_register_hypercall(target_ulong opcode, spapr_hcall_fn fn)
1508 {
1509     spapr_hcall_fn *slot;
1510 
1511     if (opcode <= MAX_HCALL_OPCODE) {
1512         assert((opcode & 0x3) == 0);
1513 
1514         slot = &papr_hypercall_table[opcode / 4];
1515     } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1516         /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1517         assert((opcode & 0x3) == 0);
1518 
1519         slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1520     } else {
1521         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1522 
1523         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1524     }
1525 
1526     assert(!(*slot));
1527     *slot = fn;
1528 }
1529 
1530 void spapr_unregister_hypercall(target_ulong opcode)
1531 {
1532     spapr_hcall_fn *slot;
1533 
1534     if (opcode <= MAX_HCALL_OPCODE) {
1535         assert((opcode & 0x3) == 0);
1536 
1537         slot = &papr_hypercall_table[opcode / 4];
1538     } else if (opcode >= SVM_HCALL_BASE && opcode <= SVM_HCALL_MAX) {
1539         /* we only have SVM-related hcall numbers assigned in multiples of 4 */
1540         assert((opcode & 0x3) == 0);
1541 
1542         slot = &svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1543     } else {
1544         assert((opcode >= KVMPPC_HCALL_BASE) && (opcode <= KVMPPC_HCALL_MAX));
1545 
1546         slot = &kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1547     }
1548 
1549     *slot = NULL;
1550 }
1551 
1552 target_ulong spapr_hypercall(PowerPCCPU *cpu, target_ulong opcode,
1553                              target_ulong *args)
1554 {
1555     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
1556 
1557     if ((opcode <= MAX_HCALL_OPCODE)
1558         && ((opcode & 0x3) == 0)) {
1559         spapr_hcall_fn fn = papr_hypercall_table[opcode / 4];
1560 
1561         if (fn) {
1562             return fn(cpu, spapr, opcode, args);
1563         }
1564     } else if ((opcode >= SVM_HCALL_BASE) &&
1565                (opcode <= SVM_HCALL_MAX)) {
1566         spapr_hcall_fn fn = svm_hypercall_table[(opcode - SVM_HCALL_BASE) / 4];
1567 
1568         if (fn) {
1569             return fn(cpu, spapr, opcode, args);
1570         }
1571     } else if ((opcode >= KVMPPC_HCALL_BASE) &&
1572                (opcode <= KVMPPC_HCALL_MAX)) {
1573         spapr_hcall_fn fn = kvmppc_hypercall_table[opcode - KVMPPC_HCALL_BASE];
1574 
1575         if (fn) {
1576             return fn(cpu, spapr, opcode, args);
1577         }
1578     }
1579 
1580     qemu_log_mask(LOG_UNIMP, "Unimplemented SPAPR hcall 0x" TARGET_FMT_lx "\n",
1581                   opcode);
1582     return H_FUNCTION;
1583 }
1584 
1585 #ifdef CONFIG_TCG
1586 static void hypercall_register_softmmu(void)
1587 {
1588     /* DO NOTHING */
1589 }
1590 #else
1591 static target_ulong h_softmmu(PowerPCCPU *cpu, SpaprMachineState *spapr,
1592                             target_ulong opcode, target_ulong *args)
1593 {
1594     g_assert_not_reached();
1595 }
1596 
1597 static void hypercall_register_softmmu(void)
1598 {
1599     /* hcall-pft */
1600     spapr_register_hypercall(H_ENTER, h_softmmu);
1601     spapr_register_hypercall(H_REMOVE, h_softmmu);
1602     spapr_register_hypercall(H_PROTECT, h_softmmu);
1603     spapr_register_hypercall(H_READ, h_softmmu);
1604 
1605     /* hcall-bulk */
1606     spapr_register_hypercall(H_BULK_REMOVE, h_softmmu);
1607 }
1608 #endif
1609 
1610 static void hypercall_register_types(void)
1611 {
1612     hypercall_register_softmmu();
1613 
1614     /* hcall-hpt-resize */
1615     spapr_register_hypercall(H_RESIZE_HPT_PREPARE, h_resize_hpt_prepare);
1616     spapr_register_hypercall(H_RESIZE_HPT_COMMIT, h_resize_hpt_commit);
1617 
1618     /* hcall-splpar */
1619     spapr_register_hypercall(H_REGISTER_VPA, h_register_vpa);
1620     spapr_register_hypercall(H_CEDE, h_cede);
1621     spapr_register_hypercall(H_CONFER, h_confer);
1622     spapr_register_hypercall(H_PROD, h_prod);
1623 
1624     /* hcall-join */
1625     spapr_register_hypercall(H_JOIN, h_join);
1626 
1627     spapr_register_hypercall(H_SIGNAL_SYS_RESET, h_signal_sys_reset);
1628 
1629     /* processor register resource access h-calls */
1630     spapr_register_hypercall(H_SET_SPRG0, h_set_sprg0);
1631     spapr_register_hypercall(H_SET_DABR, h_set_dabr);
1632     spapr_register_hypercall(H_SET_XDABR, h_set_xdabr);
1633     spapr_register_hypercall(H_PAGE_INIT, h_page_init);
1634     spapr_register_hypercall(H_SET_MODE, h_set_mode);
1635 
1636     /* In Memory Table MMU h-calls */
1637     spapr_register_hypercall(H_CLEAN_SLB, h_clean_slb);
1638     spapr_register_hypercall(H_INVALIDATE_PID, h_invalidate_pid);
1639     spapr_register_hypercall(H_REGISTER_PROC_TBL, h_register_process_table);
1640 
1641     /* hcall-get-cpu-characteristics */
1642     spapr_register_hypercall(H_GET_CPU_CHARACTERISTICS,
1643                              h_get_cpu_characteristics);
1644 
1645     /* "debugger" hcalls (also used by SLOF). Note: We do -not- differentiate
1646      * here between the "CI" and the "CACHE" variants, they will use whatever
1647      * mapping attributes qemu is using. When using KVM, the kernel will
1648      * enforce the attributes more strongly
1649      */
1650     spapr_register_hypercall(H_LOGICAL_CI_LOAD, h_logical_load);
1651     spapr_register_hypercall(H_LOGICAL_CI_STORE, h_logical_store);
1652     spapr_register_hypercall(H_LOGICAL_CACHE_LOAD, h_logical_load);
1653     spapr_register_hypercall(H_LOGICAL_CACHE_STORE, h_logical_store);
1654     spapr_register_hypercall(H_LOGICAL_ICBI, h_logical_icbi);
1655     spapr_register_hypercall(H_LOGICAL_DCBF, h_logical_dcbf);
1656     spapr_register_hypercall(KVMPPC_H_LOGICAL_MEMOP, h_logical_memop);
1657 
1658     /* qemu/KVM-PPC specific hcalls */
1659     spapr_register_hypercall(KVMPPC_H_RTAS, h_rtas);
1660 
1661     /* ibm,client-architecture-support support */
1662     spapr_register_hypercall(KVMPPC_H_CAS, h_client_architecture_support);
1663 
1664     spapr_register_hypercall(KVMPPC_H_UPDATE_DT, h_update_dt);
1665 }
1666 
1667 type_init(hypercall_register_types)
1668