1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "qemu/cutils.h" 17 #include "hw/ppc/spapr_drc.h" 18 #include "qom/object.h" 19 #include "migration/vmstate.h" 20 #include "qapi/error.h" 21 #include "qapi/qapi-events-qdev.h" 22 #include "qapi/visitor.h" 23 #include "qemu/error-report.h" 24 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 25 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 26 #include "hw/ppc/spapr_nvdimm.h" 27 #include "sysemu/device_tree.h" 28 #include "sysemu/reset.h" 29 #include "trace.h" 30 31 #define DRC_CONTAINER_PATH "/dr-connector" 32 #define DRC_INDEX_TYPE_SHIFT 28 33 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 34 35 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 36 { 37 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 38 39 return 1 << drck->typeshift; 40 } 41 42 uint32_t spapr_drc_index(SpaprDrc *drc) 43 { 44 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 45 46 /* no set format for a drc index: it only needs to be globally 47 * unique. this is how we encode the DRC type on bare-metal 48 * however, so might as well do that here 49 */ 50 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 51 | (drc->id & DRC_INDEX_ID_MASK); 52 } 53 54 static void spapr_drc_release(SpaprDrc *drc) 55 { 56 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 57 58 drck->release(drc->dev); 59 60 drc->unplug_requested = false; 61 g_free(drc->fdt); 62 drc->fdt = NULL; 63 drc->fdt_start_offset = 0; 64 object_property_del(OBJECT(drc), "device"); 65 drc->dev = NULL; 66 } 67 68 static uint32_t drc_isolate_physical(SpaprDrc *drc) 69 { 70 switch (drc->state) { 71 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 72 return RTAS_OUT_SUCCESS; /* Nothing to do */ 73 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 74 break; /* see below */ 75 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 76 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 77 default: 78 g_assert_not_reached(); 79 } 80 81 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 82 83 if (drc->unplug_requested) { 84 uint32_t drc_index = spapr_drc_index(drc); 85 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 86 spapr_drc_release(drc); 87 } 88 89 return RTAS_OUT_SUCCESS; 90 } 91 92 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 93 { 94 switch (drc->state) { 95 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 96 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 97 return RTAS_OUT_SUCCESS; /* Nothing to do */ 98 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 99 break; /* see below */ 100 default: 101 g_assert_not_reached(); 102 } 103 104 /* cannot unisolate a non-existent resource, and, or resources 105 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 106 * 13.5.3.5) 107 */ 108 if (!drc->dev) { 109 return RTAS_OUT_NO_SUCH_INDICATOR; 110 } 111 112 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 113 drc->ccs_offset = drc->fdt_start_offset; 114 drc->ccs_depth = 0; 115 116 return RTAS_OUT_SUCCESS; 117 } 118 119 static uint32_t drc_isolate_logical(SpaprDrc *drc) 120 { 121 switch (drc->state) { 122 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 123 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 124 return RTAS_OUT_SUCCESS; /* Nothing to do */ 125 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 126 break; /* see below */ 127 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 128 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 129 default: 130 g_assert_not_reached(); 131 } 132 133 /* 134 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 135 * belong to a DIMM device that is marked for removal. 136 * 137 * Currently the guest userspace tool drmgr that drives the memory 138 * hotplug/unplug will just try to remove a set of 'removable' LMBs 139 * in response to a hot unplug request that is based on drc-count. 140 * If the LMB being removed doesn't belong to a DIMM device that is 141 * actually being unplugged, fail the isolation request here. 142 */ 143 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 144 && !drc->unplug_requested) { 145 return RTAS_OUT_HW_ERROR; 146 } 147 148 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 149 150 return RTAS_OUT_SUCCESS; 151 } 152 153 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 154 { 155 SpaprMachineState *spapr = NULL; 156 157 switch (drc->state) { 158 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 159 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 160 /* 161 * Unisolating a logical DRC that was marked for unplug 162 * means that the kernel is refusing the removal. 163 */ 164 if (drc->unplug_requested && drc->dev) { 165 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) { 166 spapr = SPAPR_MACHINE(qdev_get_machine()); 167 168 spapr_memory_unplug_rollback(spapr, drc->dev); 169 } 170 171 drc->unplug_requested = false; 172 173 if (drc->dev->id) { 174 error_report("Device hotunplug rejected by the guest " 175 "for device %s", drc->dev->id); 176 } 177 178 qapi_event_send_device_unplug_guest_error(!!drc->dev->id, 179 drc->dev->id, 180 drc->dev->canonical_path); 181 } 182 183 return RTAS_OUT_SUCCESS; /* Nothing to do */ 184 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 185 break; /* see below */ 186 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 187 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 188 default: 189 g_assert_not_reached(); 190 } 191 192 /* Move to AVAILABLE state should have ensured device was present */ 193 g_assert(drc->dev); 194 195 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 196 drc->ccs_offset = drc->fdt_start_offset; 197 drc->ccs_depth = 0; 198 199 return RTAS_OUT_SUCCESS; 200 } 201 202 static uint32_t drc_set_usable(SpaprDrc *drc) 203 { 204 switch (drc->state) { 205 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 206 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 207 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 208 return RTAS_OUT_SUCCESS; /* Nothing to do */ 209 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 210 break; /* see below */ 211 default: 212 g_assert_not_reached(); 213 } 214 215 /* if there's no resource/device associated with the DRC, there's 216 * no way for us to put it in an allocation state consistent with 217 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 218 * result in an RTAS return code of -3 / "no such indicator" 219 */ 220 if (!drc->dev) { 221 return RTAS_OUT_NO_SUCH_INDICATOR; 222 } 223 if (drc->unplug_requested) { 224 /* Don't allow the guest to move a device away from UNUSABLE 225 * state when we want to unplug it */ 226 return RTAS_OUT_NO_SUCH_INDICATOR; 227 } 228 229 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 230 231 return RTAS_OUT_SUCCESS; 232 } 233 234 static uint32_t drc_set_unusable(SpaprDrc *drc) 235 { 236 switch (drc->state) { 237 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 238 return RTAS_OUT_SUCCESS; /* Nothing to do */ 239 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 240 break; /* see below */ 241 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 242 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 243 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 244 default: 245 g_assert_not_reached(); 246 } 247 248 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 249 if (drc->unplug_requested) { 250 uint32_t drc_index = spapr_drc_index(drc); 251 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 252 spapr_drc_release(drc); 253 } 254 255 return RTAS_OUT_SUCCESS; 256 } 257 258 static char *spapr_drc_name(SpaprDrc *drc) 259 { 260 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 261 262 /* human-readable name for a DRC to encode into the DT 263 * description. this is mainly only used within a guest in place 264 * of the unique DRC index. 265 * 266 * in the case of VIO/PCI devices, it corresponds to a "location 267 * code" that maps a logical device/function (DRC index) to a 268 * physical (or virtual in the case of VIO) location in the system 269 * by chaining together the "location label" for each 270 * encapsulating component. 271 * 272 * since this is more to do with diagnosing physical hardware 273 * issues than guest compatibility, we choose location codes/DRC 274 * names that adhere to the documented format, but avoid encoding 275 * the entire topology information into the label/code, instead 276 * just using the location codes based on the labels for the 277 * endpoints (VIO/PCI adaptor connectors), which is basically just 278 * "C" followed by an integer ID. 279 * 280 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 281 * location codes as documented by PAPR+ v2.7, 12.3.1.5 282 */ 283 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 284 } 285 286 /* 287 * dr-entity-sense sensor value 288 * returned via get-sensor-state RTAS calls 289 * as expected by state diagram in PAPR+ 2.7, 13.4 290 * based on the current allocation/indicator/power states 291 * for the DR connector. 292 */ 293 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 294 { 295 /* this assumes all PCI devices are assigned to a 'live insertion' 296 * power domain, where QEMU manages power state automatically as 297 * opposed to the guest. present, non-PCI resources are unaffected 298 * by power state. 299 */ 300 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 301 : SPAPR_DR_ENTITY_SENSE_EMPTY; 302 } 303 304 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 305 { 306 switch (drc->state) { 307 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 308 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 309 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 310 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 311 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 312 g_assert(drc->dev); 313 return SPAPR_DR_ENTITY_SENSE_PRESENT; 314 default: 315 g_assert_not_reached(); 316 } 317 } 318 319 static void prop_get_index(Object *obj, Visitor *v, const char *name, 320 void *opaque, Error **errp) 321 { 322 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 323 uint32_t value = spapr_drc_index(drc); 324 visit_type_uint32(v, name, &value, errp); 325 } 326 327 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 328 void *opaque, Error **errp) 329 { 330 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 331 QNull *null = NULL; 332 int fdt_offset_next, fdt_offset, fdt_depth; 333 void *fdt; 334 335 if (!drc->fdt) { 336 visit_type_null(v, NULL, &null, errp); 337 qobject_unref(null); 338 return; 339 } 340 341 fdt = drc->fdt; 342 fdt_offset = drc->fdt_start_offset; 343 fdt_depth = 0; 344 345 do { 346 const char *name = NULL; 347 const struct fdt_property *prop = NULL; 348 int prop_len = 0, name_len = 0; 349 uint32_t tag; 350 bool ok; 351 352 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 353 switch (tag) { 354 case FDT_BEGIN_NODE: 355 fdt_depth++; 356 name = fdt_get_name(fdt, fdt_offset, &name_len); 357 if (!visit_start_struct(v, name, NULL, 0, errp)) { 358 return; 359 } 360 break; 361 case FDT_END_NODE: 362 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 363 g_assert(fdt_depth > 0); 364 ok = visit_check_struct(v, errp); 365 visit_end_struct(v, NULL); 366 if (!ok) { 367 return; 368 } 369 fdt_depth--; 370 break; 371 case FDT_PROP: { 372 int i; 373 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 374 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 375 if (!visit_start_list(v, name, NULL, 0, errp)) { 376 return; 377 } 378 for (i = 0; i < prop_len; i++) { 379 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 380 errp)) { 381 return; 382 } 383 } 384 ok = visit_check_list(v, errp); 385 visit_end_list(v, NULL); 386 if (!ok) { 387 return; 388 } 389 break; 390 } 391 default: 392 error_report("device FDT in unexpected state: %d", tag); 393 abort(); 394 } 395 fdt_offset = fdt_offset_next; 396 } while (fdt_depth != 0); 397 } 398 399 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d) 400 { 401 trace_spapr_drc_attach(spapr_drc_index(drc)); 402 403 g_assert(!drc->dev); 404 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 405 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 406 407 drc->dev = d; 408 409 object_property_add_link(OBJECT(drc), "device", 410 object_get_typename(OBJECT(drc->dev)), 411 (Object **)(&drc->dev), 412 NULL, 0); 413 } 414 415 void spapr_drc_unplug_request(SpaprDrc *drc) 416 { 417 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 418 419 trace_spapr_drc_unplug_request(spapr_drc_index(drc)); 420 421 g_assert(drc->dev); 422 423 drc->unplug_requested = true; 424 425 if (drc->state != drck->empty_state) { 426 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 427 return; 428 } 429 430 spapr_drc_release(drc); 431 } 432 433 bool spapr_drc_reset(SpaprDrc *drc) 434 { 435 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 436 bool unplug_completed = false; 437 438 trace_spapr_drc_reset(spapr_drc_index(drc)); 439 440 /* immediately upon reset we can safely assume DRCs whose devices 441 * are pending removal can be safely removed. 442 */ 443 if (drc->unplug_requested) { 444 spapr_drc_release(drc); 445 unplug_completed = true; 446 } 447 448 if (drc->dev) { 449 /* A device present at reset is ready to go, same as coldplugged */ 450 drc->state = drck->ready_state; 451 /* 452 * Ensure that we are able to send the FDT fragment again 453 * via configure-connector call if the guest requests. 454 */ 455 drc->ccs_offset = drc->fdt_start_offset; 456 drc->ccs_depth = 0; 457 } else { 458 drc->state = drck->empty_state; 459 drc->ccs_offset = -1; 460 drc->ccs_depth = -1; 461 } 462 463 return unplug_completed; 464 } 465 466 static bool spapr_drc_unplug_requested_needed(void *opaque) 467 { 468 return spapr_drc_unplug_requested(opaque); 469 } 470 471 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 472 .name = "spapr_drc/unplug_requested", 473 .version_id = 1, 474 .minimum_version_id = 1, 475 .needed = spapr_drc_unplug_requested_needed, 476 .fields = (VMStateField []) { 477 VMSTATE_BOOL(unplug_requested, SpaprDrc), 478 VMSTATE_END_OF_LIST() 479 } 480 }; 481 482 static bool spapr_drc_needed(void *opaque) 483 { 484 SpaprDrc *drc = opaque; 485 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 486 487 /* 488 * If no dev is plugged in there is no need to migrate the DRC state 489 * nor to reset the DRC at CAS. 490 */ 491 if (!drc->dev) { 492 return false; 493 } 494 495 /* 496 * We need to reset the DRC at CAS or to migrate the DRC state if it's 497 * not equal to the expected long-term state, which is the same as the 498 * coldplugged initial state, or if an unplug request is pending. 499 */ 500 return drc->state != drck->ready_state || 501 spapr_drc_unplug_requested(drc); 502 } 503 504 static const VMStateDescription vmstate_spapr_drc = { 505 .name = "spapr_drc", 506 .version_id = 1, 507 .minimum_version_id = 1, 508 .needed = spapr_drc_needed, 509 .fields = (VMStateField []) { 510 VMSTATE_UINT32(state, SpaprDrc), 511 VMSTATE_END_OF_LIST() 512 }, 513 .subsections = (const VMStateDescription * []) { 514 &vmstate_spapr_drc_unplug_requested, 515 NULL 516 } 517 }; 518 519 static void drc_realize(DeviceState *d, Error **errp) 520 { 521 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 522 g_autofree gchar *link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 523 Object *root_container; 524 const char *child_name; 525 526 trace_spapr_drc_realize(spapr_drc_index(drc)); 527 /* NOTE: we do this as part of realize/unrealize due to the fact 528 * that the guest will communicate with the DRC via RTAS calls 529 * referencing the global DRC index. By unlinking the DRC 530 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 531 * inaccessible by the guest, since lookups rely on this path 532 * existing in the composition tree 533 */ 534 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 535 child_name = object_get_canonical_path_component(OBJECT(drc)); 536 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 537 object_property_add_alias(root_container, link_name, 538 drc->owner, child_name); 539 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 540 drc); 541 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 542 } 543 544 static void drc_unrealize(DeviceState *d) 545 { 546 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 547 g_autofree gchar *name = g_strdup_printf("%x", spapr_drc_index(drc)); 548 Object *root_container; 549 550 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 551 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 552 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 553 object_property_del(root_container, name); 554 } 555 556 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 557 uint32_t id) 558 { 559 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 560 char *prop_name; 561 562 drc->id = id; 563 drc->owner = owner; 564 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 565 spapr_drc_index(drc)); 566 object_property_add_child(owner, prop_name, OBJECT(drc)); 567 object_unref(OBJECT(drc)); 568 qdev_realize(DEVICE(drc), NULL, NULL); 569 g_free(prop_name); 570 571 return drc; 572 } 573 574 static void spapr_dr_connector_instance_init(Object *obj) 575 { 576 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 577 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 578 579 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 580 object_property_add(obj, "index", "uint32", prop_get_index, 581 NULL, NULL, NULL); 582 object_property_add(obj, "fdt", "struct", prop_get_fdt, 583 NULL, NULL, NULL); 584 drc->state = drck->empty_state; 585 } 586 587 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 588 { 589 DeviceClass *dk = DEVICE_CLASS(k); 590 591 dk->realize = drc_realize; 592 dk->unrealize = drc_unrealize; 593 /* 594 * Reason: DR connector needs to be wired to either the machine or to a 595 * PHB in spapr_dr_connector_new(). 596 */ 597 dk->user_creatable = false; 598 } 599 600 static bool drc_physical_needed(void *opaque) 601 { 602 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 603 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 604 605 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 606 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 607 return false; 608 } 609 return true; 610 } 611 612 static const VMStateDescription vmstate_spapr_drc_physical = { 613 .name = "spapr_drc/physical", 614 .version_id = 1, 615 .minimum_version_id = 1, 616 .needed = drc_physical_needed, 617 .fields = (VMStateField []) { 618 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 619 VMSTATE_END_OF_LIST() 620 } 621 }; 622 623 static void drc_physical_reset(void *opaque) 624 { 625 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 626 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 627 628 if (drc->dev) { 629 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 630 } else { 631 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 632 } 633 } 634 635 static void realize_physical(DeviceState *d, Error **errp) 636 { 637 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 638 Error *local_err = NULL; 639 640 drc_realize(d, &local_err); 641 if (local_err) { 642 error_propagate(errp, local_err); 643 return; 644 } 645 646 vmstate_register(VMSTATE_IF(drcp), 647 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 648 &vmstate_spapr_drc_physical, drcp); 649 qemu_register_reset(drc_physical_reset, drcp); 650 } 651 652 static void unrealize_physical(DeviceState *d) 653 { 654 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 655 656 drc_unrealize(d); 657 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 658 qemu_unregister_reset(drc_physical_reset, drcp); 659 } 660 661 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 662 { 663 DeviceClass *dk = DEVICE_CLASS(k); 664 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 665 666 dk->realize = realize_physical; 667 dk->unrealize = unrealize_physical; 668 drck->dr_entity_sense = physical_entity_sense; 669 drck->isolate = drc_isolate_physical; 670 drck->unisolate = drc_unisolate_physical; 671 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 672 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 673 } 674 675 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 676 { 677 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 678 679 drck->dr_entity_sense = logical_entity_sense; 680 drck->isolate = drc_isolate_logical; 681 drck->unisolate = drc_unisolate_logical; 682 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 683 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 684 } 685 686 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 687 { 688 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 689 690 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 691 drck->typename = "CPU"; 692 drck->drc_name_prefix = "CPU "; 693 drck->release = spapr_core_release; 694 drck->dt_populate = spapr_core_dt_populate; 695 } 696 697 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 698 { 699 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 700 701 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 702 drck->typename = "28"; 703 drck->drc_name_prefix = "C"; 704 drck->release = spapr_phb_remove_pci_device_cb; 705 drck->dt_populate = spapr_pci_dt_populate; 706 } 707 708 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 709 { 710 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 711 712 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 713 drck->typename = "MEM"; 714 drck->drc_name_prefix = "LMB "; 715 drck->release = spapr_lmb_release; 716 drck->dt_populate = spapr_lmb_dt_populate; 717 } 718 719 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 720 { 721 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 722 723 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 724 drck->typename = "PHB"; 725 drck->drc_name_prefix = "PHB "; 726 drck->release = spapr_phb_release; 727 drck->dt_populate = spapr_phb_dt_populate; 728 } 729 730 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 731 { 732 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 733 734 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 735 drck->typename = "PMEM"; 736 drck->drc_name_prefix = "PMEM "; 737 drck->release = NULL; 738 drck->dt_populate = spapr_pmem_dt_populate; 739 } 740 741 static const TypeInfo spapr_dr_connector_info = { 742 .name = TYPE_SPAPR_DR_CONNECTOR, 743 .parent = TYPE_DEVICE, 744 .instance_size = sizeof(SpaprDrc), 745 .instance_init = spapr_dr_connector_instance_init, 746 .class_size = sizeof(SpaprDrcClass), 747 .class_init = spapr_dr_connector_class_init, 748 .abstract = true, 749 }; 750 751 static const TypeInfo spapr_drc_physical_info = { 752 .name = TYPE_SPAPR_DRC_PHYSICAL, 753 .parent = TYPE_SPAPR_DR_CONNECTOR, 754 .instance_size = sizeof(SpaprDrcPhysical), 755 .class_init = spapr_drc_physical_class_init, 756 .abstract = true, 757 }; 758 759 static const TypeInfo spapr_drc_logical_info = { 760 .name = TYPE_SPAPR_DRC_LOGICAL, 761 .parent = TYPE_SPAPR_DR_CONNECTOR, 762 .class_init = spapr_drc_logical_class_init, 763 .abstract = true, 764 }; 765 766 static const TypeInfo spapr_drc_cpu_info = { 767 .name = TYPE_SPAPR_DRC_CPU, 768 .parent = TYPE_SPAPR_DRC_LOGICAL, 769 .class_init = spapr_drc_cpu_class_init, 770 }; 771 772 static const TypeInfo spapr_drc_pci_info = { 773 .name = TYPE_SPAPR_DRC_PCI, 774 .parent = TYPE_SPAPR_DRC_PHYSICAL, 775 .class_init = spapr_drc_pci_class_init, 776 }; 777 778 static const TypeInfo spapr_drc_lmb_info = { 779 .name = TYPE_SPAPR_DRC_LMB, 780 .parent = TYPE_SPAPR_DRC_LOGICAL, 781 .class_init = spapr_drc_lmb_class_init, 782 }; 783 784 static const TypeInfo spapr_drc_phb_info = { 785 .name = TYPE_SPAPR_DRC_PHB, 786 .parent = TYPE_SPAPR_DRC_LOGICAL, 787 .instance_size = sizeof(SpaprDrc), 788 .class_init = spapr_drc_phb_class_init, 789 }; 790 791 static const TypeInfo spapr_drc_pmem_info = { 792 .name = TYPE_SPAPR_DRC_PMEM, 793 .parent = TYPE_SPAPR_DRC_LOGICAL, 794 .class_init = spapr_drc_pmem_class_init, 795 }; 796 797 /* helper functions for external users */ 798 799 SpaprDrc *spapr_drc_by_index(uint32_t index) 800 { 801 Object *obj; 802 gchar *name; 803 804 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 805 obj = object_resolve_path(name, NULL); 806 g_free(name); 807 808 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 809 } 810 811 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 812 { 813 SpaprDrcClass *drck 814 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 815 816 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 817 | (id & DRC_INDEX_ID_MASK)); 818 } 819 820 /** 821 * spapr_dt_drc 822 * 823 * @fdt: libfdt device tree 824 * @path: path in the DT to generate properties 825 * @owner: parent Object/DeviceState for which to generate DRC 826 * descriptions for 827 * @drc_type_mask: mask of SpaprDrcType values corresponding 828 * to the types of DRCs to generate entries for 829 * 830 * generate OF properties to describe DRC topology/indices to guests 831 * 832 * as documented in PAPR+ v2.1, 13.5.2 833 */ 834 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 835 { 836 Object *root_container; 837 ObjectProperty *prop; 838 ObjectPropertyIterator iter; 839 uint32_t drc_count = 0; 840 g_autoptr(GArray) drc_indexes = g_array_new(false, true, 841 sizeof(uint32_t)); 842 g_autoptr(GArray) drc_power_domains = g_array_new(false, true, 843 sizeof(uint32_t)); 844 g_autoptr(GString) drc_names = g_string_set_size(g_string_new(NULL), 845 sizeof(uint32_t)); 846 g_autoptr(GString) drc_types = g_string_set_size(g_string_new(NULL), 847 sizeof(uint32_t)); 848 int ret; 849 850 /* 851 * This should really be only called once per node since it overwrites 852 * the OF properties if they already exist. 853 */ 854 g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL)); 855 856 /* the first entry of each properties is a 32-bit integer encoding 857 * the number of elements in the array. we won't know this until 858 * we complete the iteration through all the matching DRCs, but 859 * reserve the space now and set the offsets accordingly so we 860 * can fill them in later. 861 */ 862 drc_indexes = g_array_set_size(drc_indexes, 1); 863 drc_power_domains = g_array_set_size(drc_power_domains, 1); 864 865 /* aliases for all DRConnector objects will be rooted in QOM 866 * composition tree at DRC_CONTAINER_PATH 867 */ 868 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 869 870 object_property_iter_init(&iter, root_container); 871 while ((prop = object_property_iter_next(&iter))) { 872 Object *obj; 873 SpaprDrc *drc; 874 SpaprDrcClass *drck; 875 g_autofree char *drc_name = NULL; 876 uint32_t drc_index, drc_power_domain; 877 878 if (!strstart(prop->type, "link<", NULL)) { 879 continue; 880 } 881 882 obj = object_property_get_link(root_container, prop->name, 883 &error_abort); 884 drc = SPAPR_DR_CONNECTOR(obj); 885 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 886 887 if (owner && (drc->owner != owner)) { 888 continue; 889 } 890 891 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 892 continue; 893 } 894 895 drc_count++; 896 897 /* ibm,drc-indexes */ 898 drc_index = cpu_to_be32(spapr_drc_index(drc)); 899 g_array_append_val(drc_indexes, drc_index); 900 901 /* ibm,drc-power-domains */ 902 drc_power_domain = cpu_to_be32(-1); 903 g_array_append_val(drc_power_domains, drc_power_domain); 904 905 /* ibm,drc-names */ 906 drc_name = spapr_drc_name(drc); 907 drc_names = g_string_append(drc_names, drc_name); 908 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 909 910 /* ibm,drc-types */ 911 drc_types = g_string_append(drc_types, drck->typename); 912 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 913 } 914 915 /* now write the drc count into the space we reserved at the 916 * beginning of the arrays previously 917 */ 918 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 919 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 920 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 921 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 922 923 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 924 drc_indexes->data, 925 drc_indexes->len * sizeof(uint32_t)); 926 if (ret) { 927 error_report("Couldn't create ibm,drc-indexes property"); 928 return ret; 929 } 930 931 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 932 drc_power_domains->data, 933 drc_power_domains->len * sizeof(uint32_t)); 934 if (ret) { 935 error_report("Couldn't finalize ibm,drc-power-domains property"); 936 return ret; 937 } 938 939 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 940 drc_names->str, drc_names->len); 941 if (ret) { 942 error_report("Couldn't finalize ibm,drc-names property"); 943 return ret; 944 } 945 946 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 947 drc_types->str, drc_types->len); 948 if (ret) { 949 error_report("Couldn't finalize ibm,drc-types property"); 950 } 951 952 return ret; 953 } 954 955 void spapr_drc_reset_all(SpaprMachineState *spapr) 956 { 957 Object *drc_container; 958 ObjectProperty *prop; 959 ObjectPropertyIterator iter; 960 961 drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 962 restart: 963 object_property_iter_init(&iter, drc_container); 964 while ((prop = object_property_iter_next(&iter))) { 965 SpaprDrc *drc; 966 967 if (!strstart(prop->type, "link<", NULL)) { 968 continue; 969 } 970 drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container, 971 prop->name, 972 &error_abort)); 973 974 /* 975 * This will complete any pending plug/unplug requests. 976 * In case of a unplugged PHB or PCI bridge, this will 977 * cause some DRCs to be destroyed and thus potentially 978 * invalidate the iterator. 979 */ 980 if (spapr_drc_reset(drc)) { 981 goto restart; 982 } 983 } 984 } 985 986 /* 987 * RTAS calls 988 */ 989 990 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 991 { 992 SpaprDrc *drc = spapr_drc_by_index(idx); 993 SpaprDrcClass *drck; 994 995 if (!drc) { 996 return RTAS_OUT_NO_SUCH_INDICATOR; 997 } 998 999 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 1000 1001 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1002 1003 switch (state) { 1004 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 1005 return drck->isolate(drc); 1006 1007 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 1008 return drck->unisolate(drc); 1009 1010 default: 1011 return RTAS_OUT_PARAM_ERROR; 1012 } 1013 } 1014 1015 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 1016 { 1017 SpaprDrc *drc = spapr_drc_by_index(idx); 1018 1019 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 1020 return RTAS_OUT_NO_SUCH_INDICATOR; 1021 } 1022 1023 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 1024 1025 switch (state) { 1026 case SPAPR_DR_ALLOCATION_STATE_USABLE: 1027 return drc_set_usable(drc); 1028 1029 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 1030 return drc_set_unusable(drc); 1031 1032 default: 1033 return RTAS_OUT_PARAM_ERROR; 1034 } 1035 } 1036 1037 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1038 { 1039 SpaprDrc *drc = spapr_drc_by_index(idx); 1040 1041 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1042 return RTAS_OUT_NO_SUCH_INDICATOR; 1043 } 1044 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1045 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1046 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1047 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1048 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1049 } 1050 1051 trace_spapr_drc_set_dr_indicator(idx, state); 1052 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1053 return RTAS_OUT_SUCCESS; 1054 } 1055 1056 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1057 uint32_t token, 1058 uint32_t nargs, target_ulong args, 1059 uint32_t nret, target_ulong rets) 1060 { 1061 uint32_t type, idx, state; 1062 uint32_t ret = RTAS_OUT_SUCCESS; 1063 1064 if (nargs != 3 || nret != 1) { 1065 ret = RTAS_OUT_PARAM_ERROR; 1066 goto out; 1067 } 1068 1069 type = rtas_ld(args, 0); 1070 idx = rtas_ld(args, 1); 1071 state = rtas_ld(args, 2); 1072 1073 switch (type) { 1074 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1075 ret = rtas_set_isolation_state(idx, state); 1076 break; 1077 case RTAS_SENSOR_TYPE_DR: 1078 ret = rtas_set_dr_indicator(idx, state); 1079 break; 1080 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1081 ret = rtas_set_allocation_state(idx, state); 1082 break; 1083 default: 1084 ret = RTAS_OUT_NOT_SUPPORTED; 1085 } 1086 1087 out: 1088 rtas_st(rets, 0, ret); 1089 } 1090 1091 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1092 uint32_t token, uint32_t nargs, 1093 target_ulong args, uint32_t nret, 1094 target_ulong rets) 1095 { 1096 uint32_t sensor_type; 1097 uint32_t sensor_index; 1098 uint32_t sensor_state = 0; 1099 SpaprDrc *drc; 1100 SpaprDrcClass *drck; 1101 uint32_t ret = RTAS_OUT_SUCCESS; 1102 1103 if (nargs != 2 || nret != 2) { 1104 ret = RTAS_OUT_PARAM_ERROR; 1105 goto out; 1106 } 1107 1108 sensor_type = rtas_ld(args, 0); 1109 sensor_index = rtas_ld(args, 1); 1110 1111 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1112 /* currently only DR-related sensors are implemented */ 1113 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1114 sensor_type); 1115 ret = RTAS_OUT_NOT_SUPPORTED; 1116 goto out; 1117 } 1118 1119 drc = spapr_drc_by_index(sensor_index); 1120 if (!drc) { 1121 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1122 ret = RTAS_OUT_PARAM_ERROR; 1123 goto out; 1124 } 1125 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1126 sensor_state = drck->dr_entity_sense(drc); 1127 1128 out: 1129 rtas_st(rets, 0, ret); 1130 rtas_st(rets, 1, sensor_state); 1131 } 1132 1133 /* configure-connector work area offsets, int32_t units for field 1134 * indexes, bytes for field offset/len values. 1135 * 1136 * as documented by PAPR+ v2.7, 13.5.3.5 1137 */ 1138 #define CC_IDX_NODE_NAME_OFFSET 2 1139 #define CC_IDX_PROP_NAME_OFFSET 2 1140 #define CC_IDX_PROP_LEN 3 1141 #define CC_IDX_PROP_DATA_OFFSET 4 1142 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1143 #define CC_WA_LEN 4096 1144 1145 static void configure_connector_st(target_ulong addr, target_ulong offset, 1146 const void *buf, size_t len) 1147 { 1148 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1149 buf, MIN(len, CC_WA_LEN - offset)); 1150 } 1151 1152 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1153 SpaprMachineState *spapr, 1154 uint32_t token, uint32_t nargs, 1155 target_ulong args, uint32_t nret, 1156 target_ulong rets) 1157 { 1158 uint64_t wa_addr; 1159 uint64_t wa_offset; 1160 uint32_t drc_index; 1161 SpaprDrc *drc; 1162 SpaprDrcClass *drck; 1163 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1164 int rc; 1165 1166 if (nargs != 2 || nret != 1) { 1167 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1168 return; 1169 } 1170 1171 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1172 1173 drc_index = rtas_ld(wa_addr, 0); 1174 drc = spapr_drc_by_index(drc_index); 1175 if (!drc) { 1176 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1177 rc = RTAS_OUT_PARAM_ERROR; 1178 goto out; 1179 } 1180 1181 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1182 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1183 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1184 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1185 /* 1186 * Need to unisolate the device before configuring 1187 * or it should already be in configured state to 1188 * allow configure-connector be called repeatedly. 1189 */ 1190 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1191 goto out; 1192 } 1193 1194 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1195 1196 /* 1197 * This indicates that the kernel is reconfiguring a LMB due to 1198 * a failed hotunplug. Rollback the DIMM unplug process. 1199 */ 1200 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB && 1201 drc->unplug_requested) { 1202 spapr_memory_unplug_rollback(spapr, drc->dev); 1203 } 1204 1205 if (!drc->fdt) { 1206 void *fdt; 1207 int fdt_size; 1208 1209 fdt = create_device_tree(&fdt_size); 1210 1211 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1212 NULL)) { 1213 g_free(fdt); 1214 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1215 goto out; 1216 } 1217 1218 drc->fdt = fdt; 1219 drc->ccs_offset = drc->fdt_start_offset; 1220 drc->ccs_depth = 0; 1221 } 1222 1223 do { 1224 uint32_t tag; 1225 const char *name; 1226 const struct fdt_property *prop; 1227 int fdt_offset_next, prop_len; 1228 1229 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1230 1231 switch (tag) { 1232 case FDT_BEGIN_NODE: 1233 drc->ccs_depth++; 1234 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1235 1236 /* provide the name of the next OF node */ 1237 wa_offset = CC_VAL_DATA_OFFSET; 1238 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1239 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1240 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1241 break; 1242 case FDT_END_NODE: 1243 drc->ccs_depth--; 1244 if (drc->ccs_depth == 0) { 1245 uint32_t drc_index = spapr_drc_index(drc); 1246 1247 /* done sending the device tree, move to configured state */ 1248 trace_spapr_drc_set_configured(drc_index); 1249 drc->state = drck->ready_state; 1250 /* 1251 * Ensure that we are able to send the FDT fragment 1252 * again via configure-connector call if the guest requests. 1253 */ 1254 drc->ccs_offset = drc->fdt_start_offset; 1255 drc->ccs_depth = 0; 1256 fdt_offset_next = drc->fdt_start_offset; 1257 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1258 } else { 1259 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1260 } 1261 break; 1262 case FDT_PROP: 1263 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1264 &prop_len); 1265 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1266 1267 /* provide the name of the next OF property */ 1268 wa_offset = CC_VAL_DATA_OFFSET; 1269 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1270 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1271 1272 /* provide the length and value of the OF property. data gets 1273 * placed immediately after NULL terminator of the OF property's 1274 * name string 1275 */ 1276 wa_offset += strlen(name) + 1, 1277 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1278 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1279 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1280 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1281 break; 1282 case FDT_END: 1283 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1284 default: 1285 /* keep seeking for an actionable tag */ 1286 break; 1287 } 1288 if (drc->ccs_offset >= 0) { 1289 drc->ccs_offset = fdt_offset_next; 1290 } 1291 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1292 1293 rc = resp; 1294 out: 1295 rtas_st(rets, 0, rc); 1296 } 1297 1298 static void spapr_drc_register_types(void) 1299 { 1300 type_register_static(&spapr_dr_connector_info); 1301 type_register_static(&spapr_drc_physical_info); 1302 type_register_static(&spapr_drc_logical_info); 1303 type_register_static(&spapr_drc_cpu_info); 1304 type_register_static(&spapr_drc_pci_info); 1305 type_register_static(&spapr_drc_lmb_info); 1306 type_register_static(&spapr_drc_phb_info); 1307 type_register_static(&spapr_drc_pmem_info); 1308 1309 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1310 rtas_set_indicator); 1311 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1312 rtas_get_sensor_state); 1313 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1314 rtas_ibm_configure_connector); 1315 } 1316 type_init(spapr_drc_register_types) 1317