1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "qemu/cutils.h" 17 #include "hw/ppc/spapr_drc.h" 18 #include "qom/object.h" 19 #include "migration/vmstate.h" 20 #include "qapi/qapi-events-qdev.h" 21 #include "qapi/visitor.h" 22 #include "qemu/error-report.h" 23 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 24 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 25 #include "hw/ppc/spapr_nvdimm.h" 26 #include "sysemu/device_tree.h" 27 #include "sysemu/reset.h" 28 #include "trace.h" 29 30 #define DRC_CONTAINER_PATH "dr-connector" 31 #define DRC_INDEX_TYPE_SHIFT 28 32 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 33 34 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 35 { 36 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 37 38 return 1 << drck->typeshift; 39 } 40 41 uint32_t spapr_drc_index(SpaprDrc *drc) 42 { 43 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 44 45 /* no set format for a drc index: it only needs to be globally 46 * unique. this is how we encode the DRC type on bare-metal 47 * however, so might as well do that here 48 */ 49 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 50 | (drc->id & DRC_INDEX_ID_MASK); 51 } 52 53 static void spapr_drc_release(SpaprDrc *drc) 54 { 55 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 56 57 drck->release(drc->dev); 58 59 drc->unplug_requested = false; 60 g_free(drc->fdt); 61 drc->fdt = NULL; 62 drc->fdt_start_offset = 0; 63 object_property_del(OBJECT(drc), "device"); 64 drc->dev = NULL; 65 } 66 67 static uint32_t drc_isolate_physical(SpaprDrc *drc) 68 { 69 switch (drc->state) { 70 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 71 return RTAS_OUT_SUCCESS; /* Nothing to do */ 72 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 73 break; /* see below */ 74 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 75 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 76 default: 77 g_assert_not_reached(); 78 } 79 80 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 81 82 if (drc->unplug_requested) { 83 uint32_t drc_index = spapr_drc_index(drc); 84 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 85 spapr_drc_release(drc); 86 } 87 88 return RTAS_OUT_SUCCESS; 89 } 90 91 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 92 { 93 switch (drc->state) { 94 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 95 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 96 return RTAS_OUT_SUCCESS; /* Nothing to do */ 97 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 98 break; /* see below */ 99 default: 100 g_assert_not_reached(); 101 } 102 103 /* cannot unisolate a non-existent resource, and, or resources 104 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 105 * 13.5.3.5) 106 */ 107 if (!drc->dev) { 108 return RTAS_OUT_NO_SUCH_INDICATOR; 109 } 110 111 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 112 drc->ccs_offset = drc->fdt_start_offset; 113 drc->ccs_depth = 0; 114 115 return RTAS_OUT_SUCCESS; 116 } 117 118 static uint32_t drc_isolate_logical(SpaprDrc *drc) 119 { 120 switch (drc->state) { 121 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 122 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 123 return RTAS_OUT_SUCCESS; /* Nothing to do */ 124 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 125 break; /* see below */ 126 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 127 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 128 default: 129 g_assert_not_reached(); 130 } 131 132 /* 133 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 134 * belong to a DIMM device that is marked for removal. 135 * 136 * Currently the guest userspace tool drmgr that drives the memory 137 * hotplug/unplug will just try to remove a set of 'removable' LMBs 138 * in response to a hot unplug request that is based on drc-count. 139 * If the LMB being removed doesn't belong to a DIMM device that is 140 * actually being unplugged, fail the isolation request here. 141 */ 142 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 143 && !drc->unplug_requested) { 144 return RTAS_OUT_HW_ERROR; 145 } 146 147 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 148 149 return RTAS_OUT_SUCCESS; 150 } 151 152 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 153 { 154 SpaprMachineState *spapr = NULL; 155 156 switch (drc->state) { 157 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 158 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 159 /* 160 * Unisolating a logical DRC that was marked for unplug 161 * means that the kernel is refusing the removal. 162 */ 163 if (drc->unplug_requested && drc->dev) { 164 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) { 165 spapr = SPAPR_MACHINE(qdev_get_machine()); 166 167 spapr_memory_unplug_rollback(spapr, drc->dev); 168 } 169 170 drc->unplug_requested = false; 171 172 if (drc->dev->id) { 173 error_report("Device hotunplug rejected by the guest " 174 "for device %s", drc->dev->id); 175 } 176 177 qapi_event_send_device_unplug_guest_error(drc->dev->id, 178 drc->dev->canonical_path); 179 } 180 181 return RTAS_OUT_SUCCESS; /* Nothing to do */ 182 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 183 break; /* see below */ 184 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 185 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 186 default: 187 g_assert_not_reached(); 188 } 189 190 /* Move to AVAILABLE state should have ensured device was present */ 191 g_assert(drc->dev); 192 193 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 194 drc->ccs_offset = drc->fdt_start_offset; 195 drc->ccs_depth = 0; 196 197 return RTAS_OUT_SUCCESS; 198 } 199 200 static uint32_t drc_set_usable(SpaprDrc *drc) 201 { 202 switch (drc->state) { 203 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 204 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 205 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 206 return RTAS_OUT_SUCCESS; /* Nothing to do */ 207 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 208 break; /* see below */ 209 default: 210 g_assert_not_reached(); 211 } 212 213 /* if there's no resource/device associated with the DRC, there's 214 * no way for us to put it in an allocation state consistent with 215 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 216 * result in an RTAS return code of -3 / "no such indicator" 217 */ 218 if (!drc->dev) { 219 return RTAS_OUT_NO_SUCH_INDICATOR; 220 } 221 if (drc->unplug_requested) { 222 /* Don't allow the guest to move a device away from UNUSABLE 223 * state when we want to unplug it */ 224 return RTAS_OUT_NO_SUCH_INDICATOR; 225 } 226 227 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 228 229 return RTAS_OUT_SUCCESS; 230 } 231 232 static uint32_t drc_set_unusable(SpaprDrc *drc) 233 { 234 switch (drc->state) { 235 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 236 return RTAS_OUT_SUCCESS; /* Nothing to do */ 237 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 238 break; /* see below */ 239 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 240 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 241 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 242 default: 243 g_assert_not_reached(); 244 } 245 246 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 247 if (drc->unplug_requested) { 248 uint32_t drc_index = spapr_drc_index(drc); 249 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 250 spapr_drc_release(drc); 251 } 252 253 return RTAS_OUT_SUCCESS; 254 } 255 256 static char *spapr_drc_name(SpaprDrc *drc) 257 { 258 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 259 260 /* human-readable name for a DRC to encode into the DT 261 * description. this is mainly only used within a guest in place 262 * of the unique DRC index. 263 * 264 * in the case of VIO/PCI devices, it corresponds to a "location 265 * code" that maps a logical device/function (DRC index) to a 266 * physical (or virtual in the case of VIO) location in the system 267 * by chaining together the "location label" for each 268 * encapsulating component. 269 * 270 * since this is more to do with diagnosing physical hardware 271 * issues than guest compatibility, we choose location codes/DRC 272 * names that adhere to the documented format, but avoid encoding 273 * the entire topology information into the label/code, instead 274 * just using the location codes based on the labels for the 275 * endpoints (VIO/PCI adaptor connectors), which is basically just 276 * "C" followed by an integer ID. 277 * 278 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 279 * location codes as documented by PAPR+ v2.7, 12.3.1.5 280 */ 281 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 282 } 283 284 /* 285 * dr-entity-sense sensor value 286 * returned via get-sensor-state RTAS calls 287 * as expected by state diagram in PAPR+ 2.7, 13.4 288 * based on the current allocation/indicator/power states 289 * for the DR connector. 290 */ 291 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 292 { 293 /* this assumes all PCI devices are assigned to a 'live insertion' 294 * power domain, where QEMU manages power state automatically as 295 * opposed to the guest. present, non-PCI resources are unaffected 296 * by power state. 297 */ 298 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 299 : SPAPR_DR_ENTITY_SENSE_EMPTY; 300 } 301 302 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 303 { 304 switch (drc->state) { 305 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 306 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 307 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 308 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 309 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 310 g_assert(drc->dev); 311 return SPAPR_DR_ENTITY_SENSE_PRESENT; 312 default: 313 g_assert_not_reached(); 314 } 315 } 316 317 static void prop_get_index(Object *obj, Visitor *v, const char *name, 318 void *opaque, Error **errp) 319 { 320 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 321 uint32_t value = spapr_drc_index(drc); 322 visit_type_uint32(v, name, &value, errp); 323 } 324 325 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 326 void *opaque, Error **errp) 327 { 328 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 329 QNull *null = NULL; 330 int fdt_offset_next, fdt_offset, fdt_depth; 331 void *fdt; 332 333 if (!drc->fdt) { 334 visit_type_null(v, NULL, &null, errp); 335 qobject_unref(null); 336 return; 337 } 338 339 fdt = drc->fdt; 340 fdt_offset = drc->fdt_start_offset; 341 fdt_depth = 0; 342 343 do { 344 const char *dt_name = NULL; 345 const struct fdt_property *prop = NULL; 346 int prop_len = 0, name_len = 0; 347 uint32_t tag; 348 bool ok; 349 350 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 351 switch (tag) { 352 case FDT_BEGIN_NODE: 353 fdt_depth++; 354 dt_name = fdt_get_name(fdt, fdt_offset, &name_len); 355 if (!visit_start_struct(v, dt_name, NULL, 0, errp)) { 356 return; 357 } 358 break; 359 case FDT_END_NODE: 360 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 361 g_assert(fdt_depth > 0); 362 ok = visit_check_struct(v, errp); 363 visit_end_struct(v, NULL); 364 if (!ok) { 365 return; 366 } 367 fdt_depth--; 368 break; 369 case FDT_PROP: { 370 int i; 371 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 372 dt_name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 373 if (!visit_start_list(v, dt_name, NULL, 0, errp)) { 374 return; 375 } 376 for (i = 0; i < prop_len; i++) { 377 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 378 errp)) { 379 return; 380 } 381 } 382 ok = visit_check_list(v, errp); 383 visit_end_list(v, NULL); 384 if (!ok) { 385 return; 386 } 387 break; 388 } 389 default: 390 error_report("device FDT in unexpected state: %d", tag); 391 abort(); 392 } 393 fdt_offset = fdt_offset_next; 394 } while (fdt_depth != 0); 395 } 396 397 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d) 398 { 399 trace_spapr_drc_attach(spapr_drc_index(drc)); 400 401 g_assert(!drc->dev); 402 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 403 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 404 405 drc->dev = d; 406 407 object_property_add_link(OBJECT(drc), "device", 408 object_get_typename(OBJECT(drc->dev)), 409 (Object **)(&drc->dev), 410 NULL, 0); 411 } 412 413 void spapr_drc_unplug_request(SpaprDrc *drc) 414 { 415 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 416 417 trace_spapr_drc_unplug_request(spapr_drc_index(drc)); 418 419 g_assert(drc->dev); 420 421 drc->unplug_requested = true; 422 423 if (drc->state != drck->empty_state) { 424 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 425 return; 426 } 427 428 spapr_drc_release(drc); 429 } 430 431 bool spapr_drc_reset(SpaprDrc *drc) 432 { 433 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 434 bool unplug_completed = false; 435 436 trace_spapr_drc_reset(spapr_drc_index(drc)); 437 438 /* immediately upon reset we can safely assume DRCs whose devices 439 * are pending removal can be safely removed. 440 */ 441 if (drc->unplug_requested) { 442 spapr_drc_release(drc); 443 unplug_completed = true; 444 } 445 446 if (drc->dev) { 447 /* A device present at reset is ready to go, same as coldplugged */ 448 drc->state = drck->ready_state; 449 /* 450 * Ensure that we are able to send the FDT fragment again 451 * via configure-connector call if the guest requests. 452 */ 453 drc->ccs_offset = drc->fdt_start_offset; 454 drc->ccs_depth = 0; 455 } else { 456 drc->state = drck->empty_state; 457 drc->ccs_offset = -1; 458 drc->ccs_depth = -1; 459 } 460 461 return unplug_completed; 462 } 463 464 static bool spapr_drc_unplug_requested_needed(void *opaque) 465 { 466 return spapr_drc_unplug_requested(opaque); 467 } 468 469 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 470 .name = "spapr_drc/unplug_requested", 471 .version_id = 1, 472 .minimum_version_id = 1, 473 .needed = spapr_drc_unplug_requested_needed, 474 .fields = (const VMStateField []) { 475 VMSTATE_BOOL(unplug_requested, SpaprDrc), 476 VMSTATE_END_OF_LIST() 477 } 478 }; 479 480 static bool spapr_drc_needed(void *opaque) 481 { 482 SpaprDrc *drc = opaque; 483 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 484 485 /* 486 * If no dev is plugged in there is no need to migrate the DRC state 487 * nor to reset the DRC at CAS. 488 */ 489 if (!drc->dev) { 490 return false; 491 } 492 493 /* 494 * We need to reset the DRC at CAS or to migrate the DRC state if it's 495 * not equal to the expected long-term state, which is the same as the 496 * coldplugged initial state, or if an unplug request is pending. 497 */ 498 return drc->state != drck->ready_state || 499 spapr_drc_unplug_requested(drc); 500 } 501 502 static const VMStateDescription vmstate_spapr_drc = { 503 .name = "spapr_drc", 504 .version_id = 1, 505 .minimum_version_id = 1, 506 .needed = spapr_drc_needed, 507 .fields = (const VMStateField []) { 508 VMSTATE_UINT32(state, SpaprDrc), 509 VMSTATE_END_OF_LIST() 510 }, 511 .subsections = (const VMStateDescription * const []) { 512 &vmstate_spapr_drc_unplug_requested, 513 NULL 514 } 515 }; 516 517 static void drc_container_create(void) 518 { 519 object_property_add_new_container(object_get_root(), DRC_CONTAINER_PATH); 520 } 521 522 static Object *drc_container_get(void) 523 { 524 return object_resolve_path_component(object_get_root(), DRC_CONTAINER_PATH); 525 } 526 527 static void drc_realize(DeviceState *d, Error **errp) 528 { 529 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 530 g_autofree gchar *link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 531 Object *root_container; 532 const char *child_name; 533 534 trace_spapr_drc_realize(spapr_drc_index(drc)); 535 /* NOTE: we do this as part of realize/unrealize due to the fact 536 * that the guest will communicate with the DRC via RTAS calls 537 * referencing the global DRC index. By unlinking the DRC 538 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 539 * inaccessible by the guest, since lookups rely on this path 540 * existing in the composition tree 541 */ 542 root_container = drc_container_get(); 543 child_name = object_get_canonical_path_component(OBJECT(drc)); 544 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 545 object_property_add_alias(root_container, link_name, 546 drc->owner, child_name); 547 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 548 drc); 549 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 550 } 551 552 static void drc_unrealize(DeviceState *d) 553 { 554 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 555 g_autofree gchar *name = g_strdup_printf("%x", spapr_drc_index(drc)); 556 557 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 558 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 559 object_property_del(drc_container_get(), name); 560 } 561 562 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 563 uint32_t id) 564 { 565 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 566 g_autofree char *prop_name = NULL; 567 568 drc->id = id; 569 drc->owner = owner; 570 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 571 spapr_drc_index(drc)); 572 object_property_add_child(owner, prop_name, OBJECT(drc)); 573 object_unref(OBJECT(drc)); 574 qdev_realize(DEVICE(drc), NULL, NULL); 575 576 return drc; 577 } 578 579 static void spapr_dr_connector_instance_init(Object *obj) 580 { 581 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 582 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 583 584 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 585 object_property_add(obj, "index", "uint32", prop_get_index, 586 NULL, NULL, NULL); 587 object_property_add(obj, "fdt", "struct", prop_get_fdt, 588 NULL, NULL, NULL); 589 drc->state = drck->empty_state; 590 } 591 592 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 593 { 594 DeviceClass *dk = DEVICE_CLASS(k); 595 596 drc_container_create(); 597 598 dk->realize = drc_realize; 599 dk->unrealize = drc_unrealize; 600 /* 601 * Reason: DR connector needs to be wired to either the machine or to a 602 * PHB in spapr_dr_connector_new(). 603 */ 604 dk->user_creatable = false; 605 } 606 607 static bool drc_physical_needed(void *opaque) 608 { 609 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 610 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 611 612 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 613 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 614 return false; 615 } 616 return true; 617 } 618 619 static const VMStateDescription vmstate_spapr_drc_physical = { 620 .name = "spapr_drc/physical", 621 .version_id = 1, 622 .minimum_version_id = 1, 623 .needed = drc_physical_needed, 624 .fields = (const VMStateField []) { 625 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 626 VMSTATE_END_OF_LIST() 627 } 628 }; 629 630 static void drc_physical_reset(void *opaque) 631 { 632 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 633 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 634 635 if (drc->dev) { 636 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 637 } else { 638 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 639 } 640 } 641 642 static void realize_physical(DeviceState *d, Error **errp) 643 { 644 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 645 Error *local_err = NULL; 646 647 drc_realize(d, &local_err); 648 if (local_err) { 649 error_propagate(errp, local_err); 650 return; 651 } 652 653 vmstate_register(VMSTATE_IF(drcp), 654 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 655 &vmstate_spapr_drc_physical, drcp); 656 qemu_register_reset(drc_physical_reset, drcp); 657 } 658 659 static void unrealize_physical(DeviceState *d) 660 { 661 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 662 663 drc_unrealize(d); 664 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 665 qemu_unregister_reset(drc_physical_reset, drcp); 666 } 667 668 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 669 { 670 DeviceClass *dk = DEVICE_CLASS(k); 671 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 672 673 dk->realize = realize_physical; 674 dk->unrealize = unrealize_physical; 675 drck->dr_entity_sense = physical_entity_sense; 676 drck->isolate = drc_isolate_physical; 677 drck->unisolate = drc_unisolate_physical; 678 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 679 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 680 } 681 682 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 683 { 684 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 685 686 drck->dr_entity_sense = logical_entity_sense; 687 drck->isolate = drc_isolate_logical; 688 drck->unisolate = drc_unisolate_logical; 689 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 690 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 691 } 692 693 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 694 { 695 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 696 697 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 698 drck->typename = "CPU"; 699 drck->drc_name_prefix = "CPU "; 700 drck->release = spapr_core_release; 701 drck->dt_populate = spapr_core_dt_populate; 702 } 703 704 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 705 { 706 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 707 708 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 709 drck->typename = "28"; 710 drck->drc_name_prefix = "C"; 711 drck->release = spapr_phb_remove_pci_device_cb; 712 drck->dt_populate = spapr_pci_dt_populate; 713 } 714 715 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 716 { 717 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 718 719 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 720 drck->typename = "MEM"; 721 drck->drc_name_prefix = "LMB "; 722 drck->release = spapr_lmb_release; 723 drck->dt_populate = spapr_lmb_dt_populate; 724 } 725 726 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 727 { 728 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 729 730 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 731 drck->typename = "PHB"; 732 drck->drc_name_prefix = "PHB "; 733 drck->release = spapr_phb_release; 734 drck->dt_populate = spapr_phb_dt_populate; 735 } 736 737 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 738 { 739 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 740 741 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 742 drck->typename = "PMEM"; 743 drck->drc_name_prefix = "PMEM "; 744 drck->release = NULL; 745 drck->dt_populate = spapr_pmem_dt_populate; 746 } 747 748 static const TypeInfo spapr_dr_connector_info = { 749 .name = TYPE_SPAPR_DR_CONNECTOR, 750 .parent = TYPE_DEVICE, 751 .instance_size = sizeof(SpaprDrc), 752 .instance_init = spapr_dr_connector_instance_init, 753 .class_size = sizeof(SpaprDrcClass), 754 .class_init = spapr_dr_connector_class_init, 755 .abstract = true, 756 }; 757 758 static const TypeInfo spapr_drc_physical_info = { 759 .name = TYPE_SPAPR_DRC_PHYSICAL, 760 .parent = TYPE_SPAPR_DR_CONNECTOR, 761 .instance_size = sizeof(SpaprDrcPhysical), 762 .class_init = spapr_drc_physical_class_init, 763 .abstract = true, 764 }; 765 766 static const TypeInfo spapr_drc_logical_info = { 767 .name = TYPE_SPAPR_DRC_LOGICAL, 768 .parent = TYPE_SPAPR_DR_CONNECTOR, 769 .class_init = spapr_drc_logical_class_init, 770 .abstract = true, 771 }; 772 773 static const TypeInfo spapr_drc_cpu_info = { 774 .name = TYPE_SPAPR_DRC_CPU, 775 .parent = TYPE_SPAPR_DRC_LOGICAL, 776 .class_init = spapr_drc_cpu_class_init, 777 }; 778 779 static const TypeInfo spapr_drc_pci_info = { 780 .name = TYPE_SPAPR_DRC_PCI, 781 .parent = TYPE_SPAPR_DRC_PHYSICAL, 782 .class_init = spapr_drc_pci_class_init, 783 }; 784 785 static const TypeInfo spapr_drc_lmb_info = { 786 .name = TYPE_SPAPR_DRC_LMB, 787 .parent = TYPE_SPAPR_DRC_LOGICAL, 788 .class_init = spapr_drc_lmb_class_init, 789 }; 790 791 static const TypeInfo spapr_drc_phb_info = { 792 .name = TYPE_SPAPR_DRC_PHB, 793 .parent = TYPE_SPAPR_DRC_LOGICAL, 794 .instance_size = sizeof(SpaprDrc), 795 .class_init = spapr_drc_phb_class_init, 796 }; 797 798 static const TypeInfo spapr_drc_pmem_info = { 799 .name = TYPE_SPAPR_DRC_PMEM, 800 .parent = TYPE_SPAPR_DRC_LOGICAL, 801 .class_init = spapr_drc_pmem_class_init, 802 }; 803 804 /* helper functions for external users */ 805 806 SpaprDrc *spapr_drc_by_index(uint32_t index) 807 { 808 Object *obj; 809 g_autofree gchar *name = g_strdup_printf("%x", index); 810 obj = object_resolve_path_component(drc_container_get(), name); 811 812 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 813 } 814 815 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 816 { 817 SpaprDrcClass *drck 818 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 819 820 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 821 | (id & DRC_INDEX_ID_MASK)); 822 } 823 824 /** 825 * spapr_dt_drc 826 * 827 * @fdt: libfdt device tree 828 * @path: path in the DT to generate properties 829 * @owner: parent Object/DeviceState for which to generate DRC 830 * descriptions for 831 * @drc_type_mask: mask of SpaprDrcType values corresponding 832 * to the types of DRCs to generate entries for 833 * 834 * generate OF properties to describe DRC topology/indices to guests 835 * 836 * as documented in PAPR+ v2.1, 13.5.2 837 */ 838 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 839 { 840 Object *root_container; 841 ObjectProperty *prop; 842 ObjectPropertyIterator iter; 843 uint32_t drc_count = 0; 844 g_autoptr(GArray) drc_indexes = g_array_new(false, true, 845 sizeof(uint32_t)); 846 g_autoptr(GArray) drc_power_domains = g_array_new(false, true, 847 sizeof(uint32_t)); 848 g_autoptr(GString) drc_names = g_string_set_size(g_string_new(NULL), 849 sizeof(uint32_t)); 850 g_autoptr(GString) drc_types = g_string_set_size(g_string_new(NULL), 851 sizeof(uint32_t)); 852 int ret; 853 854 /* 855 * This should really be only called once per node since it overwrites 856 * the OF properties if they already exist. 857 */ 858 g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL)); 859 860 /* the first entry of each properties is a 32-bit integer encoding 861 * the number of elements in the array. we won't know this until 862 * we complete the iteration through all the matching DRCs, but 863 * reserve the space now and set the offsets accordingly so we 864 * can fill them in later. 865 */ 866 drc_indexes = g_array_set_size(drc_indexes, 1); 867 drc_power_domains = g_array_set_size(drc_power_domains, 1); 868 869 /* aliases for all DRConnector objects will be rooted in QOM 870 * composition tree at DRC_CONTAINER_PATH 871 */ 872 root_container = drc_container_get(); 873 874 object_property_iter_init(&iter, root_container); 875 while ((prop = object_property_iter_next(&iter))) { 876 Object *obj; 877 SpaprDrc *drc; 878 SpaprDrcClass *drck; 879 g_autofree char *drc_name = NULL; 880 uint32_t drc_index, drc_power_domain; 881 882 if (!strstart(prop->type, "link<", NULL)) { 883 continue; 884 } 885 886 obj = object_property_get_link(root_container, prop->name, 887 &error_abort); 888 drc = SPAPR_DR_CONNECTOR(obj); 889 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 890 891 if (owner && (drc->owner != owner)) { 892 continue; 893 } 894 895 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 896 continue; 897 } 898 899 drc_count++; 900 901 /* ibm,drc-indexes */ 902 drc_index = cpu_to_be32(spapr_drc_index(drc)); 903 g_array_append_val(drc_indexes, drc_index); 904 905 /* ibm,drc-power-domains */ 906 drc_power_domain = cpu_to_be32(-1); 907 g_array_append_val(drc_power_domains, drc_power_domain); 908 909 /* ibm,drc-names */ 910 drc_name = spapr_drc_name(drc); 911 drc_names = g_string_append(drc_names, drc_name); 912 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 913 914 /* ibm,drc-types */ 915 drc_types = g_string_append(drc_types, drck->typename); 916 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 917 } 918 919 /* now write the drc count into the space we reserved at the 920 * beginning of the arrays previously 921 */ 922 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 923 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 924 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 925 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 926 927 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 928 drc_indexes->data, 929 drc_indexes->len * sizeof(uint32_t)); 930 if (ret) { 931 error_report("Couldn't create ibm,drc-indexes property"); 932 return ret; 933 } 934 935 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 936 drc_power_domains->data, 937 drc_power_domains->len * sizeof(uint32_t)); 938 if (ret) { 939 error_report("Couldn't finalize ibm,drc-power-domains property"); 940 return ret; 941 } 942 943 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 944 drc_names->str, drc_names->len); 945 if (ret) { 946 error_report("Couldn't finalize ibm,drc-names property"); 947 return ret; 948 } 949 950 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 951 drc_types->str, drc_types->len); 952 if (ret) { 953 error_report("Couldn't finalize ibm,drc-types property"); 954 } 955 956 return ret; 957 } 958 959 void spapr_drc_reset_all(SpaprMachineState *spapr) 960 { 961 Object *drc_container; 962 ObjectProperty *prop; 963 ObjectPropertyIterator iter; 964 965 drc_container = drc_container_get(); 966 restart: 967 object_property_iter_init(&iter, drc_container); 968 while ((prop = object_property_iter_next(&iter))) { 969 SpaprDrc *drc; 970 971 if (!strstart(prop->type, "link<", NULL)) { 972 continue; 973 } 974 drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container, 975 prop->name, 976 &error_abort)); 977 978 /* 979 * This will complete any pending plug/unplug requests. 980 * In case of a unplugged PHB or PCI bridge, this will 981 * cause some DRCs to be destroyed and thus potentially 982 * invalidate the iterator. 983 */ 984 if (spapr_drc_reset(drc)) { 985 goto restart; 986 } 987 } 988 } 989 990 /* 991 * RTAS calls 992 */ 993 994 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 995 { 996 SpaprDrc *drc = spapr_drc_by_index(idx); 997 SpaprDrcClass *drck; 998 999 if (!drc) { 1000 return RTAS_OUT_NO_SUCH_INDICATOR; 1001 } 1002 1003 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 1004 1005 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1006 1007 switch (state) { 1008 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 1009 return drck->isolate(drc); 1010 1011 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 1012 return drck->unisolate(drc); 1013 1014 default: 1015 return RTAS_OUT_PARAM_ERROR; 1016 } 1017 } 1018 1019 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 1020 { 1021 SpaprDrc *drc = spapr_drc_by_index(idx); 1022 1023 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 1024 return RTAS_OUT_NO_SUCH_INDICATOR; 1025 } 1026 1027 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 1028 1029 switch (state) { 1030 case SPAPR_DR_ALLOCATION_STATE_USABLE: 1031 return drc_set_usable(drc); 1032 1033 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 1034 return drc_set_unusable(drc); 1035 1036 default: 1037 return RTAS_OUT_PARAM_ERROR; 1038 } 1039 } 1040 1041 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1042 { 1043 SpaprDrc *drc = spapr_drc_by_index(idx); 1044 1045 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1046 return RTAS_OUT_NO_SUCH_INDICATOR; 1047 } 1048 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1049 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1050 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1051 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1052 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1053 } 1054 1055 trace_spapr_drc_set_dr_indicator(idx, state); 1056 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1057 return RTAS_OUT_SUCCESS; 1058 } 1059 1060 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1061 uint32_t token, 1062 uint32_t nargs, target_ulong args, 1063 uint32_t nret, target_ulong rets) 1064 { 1065 uint32_t type, idx, state; 1066 uint32_t ret = RTAS_OUT_SUCCESS; 1067 1068 if (nargs != 3 || nret != 1) { 1069 ret = RTAS_OUT_PARAM_ERROR; 1070 goto out; 1071 } 1072 1073 type = rtas_ld(args, 0); 1074 idx = rtas_ld(args, 1); 1075 state = rtas_ld(args, 2); 1076 1077 switch (type) { 1078 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1079 ret = rtas_set_isolation_state(idx, state); 1080 break; 1081 case RTAS_SENSOR_TYPE_DR: 1082 ret = rtas_set_dr_indicator(idx, state); 1083 break; 1084 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1085 ret = rtas_set_allocation_state(idx, state); 1086 break; 1087 default: 1088 ret = RTAS_OUT_NOT_SUPPORTED; 1089 } 1090 1091 out: 1092 rtas_st(rets, 0, ret); 1093 } 1094 1095 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1096 uint32_t token, uint32_t nargs, 1097 target_ulong args, uint32_t nret, 1098 target_ulong rets) 1099 { 1100 uint32_t sensor_type; 1101 uint32_t sensor_index; 1102 uint32_t sensor_state = 0; 1103 SpaprDrc *drc; 1104 SpaprDrcClass *drck; 1105 uint32_t ret = RTAS_OUT_SUCCESS; 1106 1107 if (nargs != 2 || nret != 2) { 1108 ret = RTAS_OUT_PARAM_ERROR; 1109 goto out; 1110 } 1111 1112 sensor_type = rtas_ld(args, 0); 1113 sensor_index = rtas_ld(args, 1); 1114 1115 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1116 /* currently only DR-related sensors are implemented */ 1117 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1118 sensor_type); 1119 ret = RTAS_OUT_NOT_SUPPORTED; 1120 goto out; 1121 } 1122 1123 drc = spapr_drc_by_index(sensor_index); 1124 if (!drc) { 1125 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1126 ret = RTAS_OUT_PARAM_ERROR; 1127 goto out; 1128 } 1129 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1130 sensor_state = drck->dr_entity_sense(drc); 1131 1132 out: 1133 rtas_st(rets, 0, ret); 1134 rtas_st(rets, 1, sensor_state); 1135 } 1136 1137 /* configure-connector work area offsets, int32_t units for field 1138 * indexes, bytes for field offset/len values. 1139 * 1140 * as documented by PAPR+ v2.7, 13.5.3.5 1141 */ 1142 #define CC_IDX_NODE_NAME_OFFSET 2 1143 #define CC_IDX_PROP_NAME_OFFSET 2 1144 #define CC_IDX_PROP_LEN 3 1145 #define CC_IDX_PROP_DATA_OFFSET 4 1146 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1147 #define CC_WA_LEN 4096 1148 1149 static void configure_connector_st(target_ulong addr, target_ulong offset, 1150 const void *buf, size_t len) 1151 { 1152 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1153 buf, MIN(len, CC_WA_LEN - offset)); 1154 } 1155 1156 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1157 SpaprMachineState *spapr, 1158 uint32_t token, uint32_t nargs, 1159 target_ulong args, uint32_t nret, 1160 target_ulong rets) 1161 { 1162 uint64_t wa_addr; 1163 uint64_t wa_offset; 1164 uint32_t drc_index; 1165 SpaprDrc *drc; 1166 SpaprDrcClass *drck; 1167 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1168 int rc; 1169 1170 if (nargs != 2 || nret != 1) { 1171 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1172 return; 1173 } 1174 1175 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1176 1177 drc_index = rtas_ld(wa_addr, 0); 1178 drc = spapr_drc_by_index(drc_index); 1179 if (!drc) { 1180 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1181 rc = RTAS_OUT_PARAM_ERROR; 1182 goto out; 1183 } 1184 1185 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1186 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1187 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1188 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1189 /* 1190 * Need to unisolate the device before configuring 1191 * or it should already be in configured state to 1192 * allow configure-connector be called repeatedly. 1193 */ 1194 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1195 goto out; 1196 } 1197 1198 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1199 1200 /* 1201 * This indicates that the kernel is reconfiguring a LMB due to 1202 * a failed hotunplug. Rollback the DIMM unplug process. 1203 */ 1204 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB && 1205 drc->unplug_requested) { 1206 spapr_memory_unplug_rollback(spapr, drc->dev); 1207 } 1208 1209 if (!drc->fdt) { 1210 void *fdt; 1211 int fdt_size; 1212 1213 fdt = create_device_tree(&fdt_size); 1214 1215 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1216 NULL)) { 1217 g_free(fdt); 1218 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1219 goto out; 1220 } 1221 1222 drc->fdt = fdt; 1223 drc->ccs_offset = drc->fdt_start_offset; 1224 drc->ccs_depth = 0; 1225 } 1226 1227 do { 1228 uint32_t tag; 1229 const char *name; 1230 const struct fdt_property *prop; 1231 int fdt_offset_next, prop_len; 1232 1233 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1234 1235 switch (tag) { 1236 case FDT_BEGIN_NODE: 1237 drc->ccs_depth++; 1238 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1239 1240 /* provide the name of the next OF node */ 1241 wa_offset = CC_VAL_DATA_OFFSET; 1242 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1243 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1244 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1245 break; 1246 case FDT_END_NODE: 1247 drc->ccs_depth--; 1248 if (drc->ccs_depth == 0) { 1249 /* done sending the device tree, move to configured state */ 1250 trace_spapr_drc_set_configured(drc_index); 1251 drc->state = drck->ready_state; 1252 /* 1253 * Ensure that we are able to send the FDT fragment 1254 * again via configure-connector call if the guest requests. 1255 */ 1256 drc->ccs_offset = drc->fdt_start_offset; 1257 drc->ccs_depth = 0; 1258 fdt_offset_next = drc->fdt_start_offset; 1259 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1260 } else { 1261 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1262 } 1263 break; 1264 case FDT_PROP: 1265 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1266 &prop_len); 1267 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1268 1269 /* provide the name of the next OF property */ 1270 wa_offset = CC_VAL_DATA_OFFSET; 1271 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1272 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1273 1274 /* provide the length and value of the OF property. data gets 1275 * placed immediately after NULL terminator of the OF property's 1276 * name string 1277 */ 1278 wa_offset += strlen(name) + 1, 1279 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1280 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1281 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1282 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1283 break; 1284 case FDT_END: 1285 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1286 default: 1287 /* keep seeking for an actionable tag */ 1288 break; 1289 } 1290 if (drc->ccs_offset >= 0) { 1291 drc->ccs_offset = fdt_offset_next; 1292 } 1293 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1294 1295 rc = resp; 1296 out: 1297 rtas_st(rets, 0, rc); 1298 } 1299 1300 static void spapr_drc_register_types(void) 1301 { 1302 type_register_static(&spapr_dr_connector_info); 1303 type_register_static(&spapr_drc_physical_info); 1304 type_register_static(&spapr_drc_logical_info); 1305 type_register_static(&spapr_drc_cpu_info); 1306 type_register_static(&spapr_drc_pci_info); 1307 type_register_static(&spapr_drc_lmb_info); 1308 type_register_static(&spapr_drc_phb_info); 1309 type_register_static(&spapr_drc_pmem_info); 1310 1311 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1312 rtas_set_indicator); 1313 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1314 rtas_get_sensor_state); 1315 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1316 rtas_ibm_configure_connector); 1317 } 1318 type_init(spapr_drc_register_types) 1319