xref: /qemu/hw/ppc/spapr_drc.c (revision 75610acfd3cb9260c0f2fe45492f81d637bfd62c)
1 /*
2  * QEMU SPAPR Dynamic Reconfiguration Connector Implementation
3  *
4  * Copyright IBM Corp. 2014
5  *
6  * Authors:
7  *  Michael Roth      <mdroth@linux.vnet.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qapi/error.h"
15 #include "qapi/qmp/qnull.h"
16 #include "qemu/cutils.h"
17 #include "hw/ppc/spapr_drc.h"
18 #include "qom/object.h"
19 #include "migration/vmstate.h"
20 #include "qapi/error.h"
21 #include "qapi/qapi-events-qdev.h"
22 #include "qapi/visitor.h"
23 #include "qemu/error-report.h"
24 #include "hw/ppc/spapr.h" /* for RTAS return codes */
25 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */
26 #include "hw/ppc/spapr_nvdimm.h"
27 #include "sysemu/device_tree.h"
28 #include "sysemu/reset.h"
29 #include "trace.h"
30 
31 #define DRC_CONTAINER_PATH "/dr-connector"
32 #define DRC_INDEX_TYPE_SHIFT 28
33 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1)
34 
35 SpaprDrcType spapr_drc_type(SpaprDrc *drc)
36 {
37     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
38 
39     return 1 << drck->typeshift;
40 }
41 
42 uint32_t spapr_drc_index(SpaprDrc *drc)
43 {
44     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
45 
46     /* no set format for a drc index: it only needs to be globally
47      * unique. this is how we encode the DRC type on bare-metal
48      * however, so might as well do that here
49      */
50     return (drck->typeshift << DRC_INDEX_TYPE_SHIFT)
51         | (drc->id & DRC_INDEX_ID_MASK);
52 }
53 
54 static void spapr_drc_release(SpaprDrc *drc)
55 {
56     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
57 
58     drck->release(drc->dev);
59 
60     drc->unplug_requested = false;
61     g_free(drc->fdt);
62     drc->fdt = NULL;
63     drc->fdt_start_offset = 0;
64     object_property_del(OBJECT(drc), "device");
65     drc->dev = NULL;
66 }
67 
68 static uint32_t drc_isolate_physical(SpaprDrc *drc)
69 {
70     switch (drc->state) {
71     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
72         return RTAS_OUT_SUCCESS; /* Nothing to do */
73     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
74         break; /* see below */
75     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
76         return RTAS_OUT_PARAM_ERROR; /* not allowed */
77     default:
78         g_assert_not_reached();
79     }
80 
81     drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
82 
83     if (drc->unplug_requested) {
84         uint32_t drc_index = spapr_drc_index(drc);
85         trace_spapr_drc_set_isolation_state_finalizing(drc_index);
86         spapr_drc_release(drc);
87     }
88 
89     return RTAS_OUT_SUCCESS;
90 }
91 
92 static uint32_t drc_unisolate_physical(SpaprDrc *drc)
93 {
94     switch (drc->state) {
95     case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE:
96     case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED:
97         return RTAS_OUT_SUCCESS; /* Nothing to do */
98     case SPAPR_DRC_STATE_PHYSICAL_POWERON:
99         break; /* see below */
100     default:
101         g_assert_not_reached();
102     }
103 
104     /* cannot unisolate a non-existent resource, and, or resources
105      * which are in an 'UNUSABLE' allocation state. (PAPR 2.7,
106      * 13.5.3.5)
107      */
108     if (!drc->dev) {
109         return RTAS_OUT_NO_SUCH_INDICATOR;
110     }
111 
112     drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE;
113     drc->ccs_offset = drc->fdt_start_offset;
114     drc->ccs_depth = 0;
115 
116     return RTAS_OUT_SUCCESS;
117 }
118 
119 static uint32_t drc_isolate_logical(SpaprDrc *drc)
120 {
121     switch (drc->state) {
122     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
123     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
124         return RTAS_OUT_SUCCESS; /* Nothing to do */
125     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
126         break; /* see below */
127     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
128         return RTAS_OUT_PARAM_ERROR; /* not allowed */
129     default:
130         g_assert_not_reached();
131     }
132 
133     /*
134      * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't
135      * belong to a DIMM device that is marked for removal.
136      *
137      * Currently the guest userspace tool drmgr that drives the memory
138      * hotplug/unplug will just try to remove a set of 'removable' LMBs
139      * in response to a hot unplug request that is based on drc-count.
140      * If the LMB being removed doesn't belong to a DIMM device that is
141      * actually being unplugged, fail the isolation request here.
142      */
143     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB
144         && !drc->unplug_requested) {
145         return RTAS_OUT_HW_ERROR;
146     }
147 
148     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
149 
150     return RTAS_OUT_SUCCESS;
151 }
152 
153 static uint32_t drc_unisolate_logical(SpaprDrc *drc)
154 {
155     SpaprMachineState *spapr = NULL;
156 
157     switch (drc->state) {
158     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
159     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
160         /*
161          * Unisolating a logical DRC that was marked for unplug
162          * means that the kernel is refusing the removal.
163          */
164         if (drc->unplug_requested && drc->dev) {
165             if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) {
166                 spapr = SPAPR_MACHINE(qdev_get_machine());
167 
168                 spapr_memory_unplug_rollback(spapr, drc->dev);
169             }
170 
171             drc->unplug_requested = false;
172 
173             if (drc->dev->id) {
174                 error_report("Device hotunplug rejected by the guest "
175                              "for device %s", drc->dev->id);
176             }
177 
178             qapi_event_send_device_unplug_guest_error(!!drc->dev->id,
179                                                       drc->dev->id,
180                                                       drc->dev->canonical_path);
181         }
182 
183         return RTAS_OUT_SUCCESS; /* Nothing to do */
184     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
185         break; /* see below */
186     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
187         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
188     default:
189         g_assert_not_reached();
190     }
191 
192     /* Move to AVAILABLE state should have ensured device was present */
193     g_assert(drc->dev);
194 
195     drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE;
196     drc->ccs_offset = drc->fdt_start_offset;
197     drc->ccs_depth = 0;
198 
199     return RTAS_OUT_SUCCESS;
200 }
201 
202 static uint32_t drc_set_usable(SpaprDrc *drc)
203 {
204     switch (drc->state) {
205     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
206     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
207     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
208         return RTAS_OUT_SUCCESS; /* Nothing to do */
209     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
210         break; /* see below */
211     default:
212         g_assert_not_reached();
213     }
214 
215     /* if there's no resource/device associated with the DRC, there's
216      * no way for us to put it in an allocation state consistent with
217      * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should
218      * result in an RTAS return code of -3 / "no such indicator"
219      */
220     if (!drc->dev) {
221         return RTAS_OUT_NO_SUCH_INDICATOR;
222     }
223     if (drc->unplug_requested) {
224         /* Don't allow the guest to move a device away from UNUSABLE
225          * state when we want to unplug it */
226         return RTAS_OUT_NO_SUCH_INDICATOR;
227     }
228 
229     drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE;
230 
231     return RTAS_OUT_SUCCESS;
232 }
233 
234 static uint32_t drc_set_unusable(SpaprDrc *drc)
235 {
236     switch (drc->state) {
237     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
238         return RTAS_OUT_SUCCESS; /* Nothing to do */
239     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
240         break; /* see below */
241     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
242     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
243         return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */
244     default:
245         g_assert_not_reached();
246     }
247 
248     drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
249     if (drc->unplug_requested) {
250         uint32_t drc_index = spapr_drc_index(drc);
251         trace_spapr_drc_set_allocation_state_finalizing(drc_index);
252         spapr_drc_release(drc);
253     }
254 
255     return RTAS_OUT_SUCCESS;
256 }
257 
258 static char *spapr_drc_name(SpaprDrc *drc)
259 {
260     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
261 
262     /* human-readable name for a DRC to encode into the DT
263      * description. this is mainly only used within a guest in place
264      * of the unique DRC index.
265      *
266      * in the case of VIO/PCI devices, it corresponds to a "location
267      * code" that maps a logical device/function (DRC index) to a
268      * physical (or virtual in the case of VIO) location in the system
269      * by chaining together the "location label" for each
270      * encapsulating component.
271      *
272      * since this is more to do with diagnosing physical hardware
273      * issues than guest compatibility, we choose location codes/DRC
274      * names that adhere to the documented format, but avoid encoding
275      * the entire topology information into the label/code, instead
276      * just using the location codes based on the labels for the
277      * endpoints (VIO/PCI adaptor connectors), which is basically just
278      * "C" followed by an integer ID.
279      *
280      * DRC names as documented by PAPR+ v2.7, 13.5.2.4
281      * location codes as documented by PAPR+ v2.7, 12.3.1.5
282      */
283     return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id);
284 }
285 
286 /*
287  * dr-entity-sense sensor value
288  * returned via get-sensor-state RTAS calls
289  * as expected by state diagram in PAPR+ 2.7, 13.4
290  * based on the current allocation/indicator/power states
291  * for the DR connector.
292  */
293 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc)
294 {
295     /* this assumes all PCI devices are assigned to a 'live insertion'
296      * power domain, where QEMU manages power state automatically as
297      * opposed to the guest. present, non-PCI resources are unaffected
298      * by power state.
299      */
300     return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT
301         : SPAPR_DR_ENTITY_SENSE_EMPTY;
302 }
303 
304 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc)
305 {
306     switch (drc->state) {
307     case SPAPR_DRC_STATE_LOGICAL_UNUSABLE:
308         return SPAPR_DR_ENTITY_SENSE_UNUSABLE;
309     case SPAPR_DRC_STATE_LOGICAL_AVAILABLE:
310     case SPAPR_DRC_STATE_LOGICAL_UNISOLATE:
311     case SPAPR_DRC_STATE_LOGICAL_CONFIGURED:
312         g_assert(drc->dev);
313         return SPAPR_DR_ENTITY_SENSE_PRESENT;
314     default:
315         g_assert_not_reached();
316     }
317 }
318 
319 static void prop_get_index(Object *obj, Visitor *v, const char *name,
320                            void *opaque, Error **errp)
321 {
322     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
323     uint32_t value = spapr_drc_index(drc);
324     visit_type_uint32(v, name, &value, errp);
325 }
326 
327 static void prop_get_fdt(Object *obj, Visitor *v, const char *name,
328                          void *opaque, Error **errp)
329 {
330     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
331     QNull *null = NULL;
332     int fdt_offset_next, fdt_offset, fdt_depth;
333     void *fdt;
334 
335     if (!drc->fdt) {
336         visit_type_null(v, NULL, &null, errp);
337         qobject_unref(null);
338         return;
339     }
340 
341     fdt = drc->fdt;
342     fdt_offset = drc->fdt_start_offset;
343     fdt_depth = 0;
344 
345     do {
346         const char *name = NULL;
347         const struct fdt_property *prop = NULL;
348         int prop_len = 0, name_len = 0;
349         uint32_t tag;
350         bool ok;
351 
352         tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next);
353         switch (tag) {
354         case FDT_BEGIN_NODE:
355             fdt_depth++;
356             name = fdt_get_name(fdt, fdt_offset, &name_len);
357             if (!visit_start_struct(v, name, NULL, 0, errp)) {
358                 return;
359             }
360             break;
361         case FDT_END_NODE:
362             /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */
363             g_assert(fdt_depth > 0);
364             ok = visit_check_struct(v, errp);
365             visit_end_struct(v, NULL);
366             if (!ok) {
367                 return;
368             }
369             fdt_depth--;
370             break;
371         case FDT_PROP: {
372             int i;
373             prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len);
374             name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff));
375             if (!visit_start_list(v, name, NULL, 0, errp)) {
376                 return;
377             }
378             for (i = 0; i < prop_len; i++) {
379                 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i],
380                                       errp)) {
381                     return;
382                 }
383             }
384             ok = visit_check_list(v, errp);
385             visit_end_list(v, NULL);
386             if (!ok) {
387                 return;
388             }
389             break;
390         }
391         default:
392             error_report("device FDT in unexpected state: %d", tag);
393             abort();
394         }
395         fdt_offset = fdt_offset_next;
396     } while (fdt_depth != 0);
397 }
398 
399 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d)
400 {
401     trace_spapr_drc_attach(spapr_drc_index(drc));
402 
403     g_assert(!drc->dev);
404     g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE)
405              || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON));
406 
407     drc->dev = d;
408 
409     object_property_add_link(OBJECT(drc), "device",
410                              object_get_typename(OBJECT(drc->dev)),
411                              (Object **)(&drc->dev),
412                              NULL, 0);
413 }
414 
415 void spapr_drc_unplug_request(SpaprDrc *drc)
416 {
417     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
418 
419     trace_spapr_drc_unplug_request(spapr_drc_index(drc));
420 
421     g_assert(drc->dev);
422 
423     drc->unplug_requested = true;
424 
425     if (drc->state != drck->empty_state) {
426         trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc));
427         return;
428     }
429 
430     spapr_drc_release(drc);
431 }
432 
433 bool spapr_drc_reset(SpaprDrc *drc)
434 {
435     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
436     bool unplug_completed = false;
437 
438     trace_spapr_drc_reset(spapr_drc_index(drc));
439 
440     /* immediately upon reset we can safely assume DRCs whose devices
441      * are pending removal can be safely removed.
442      */
443     if (drc->unplug_requested) {
444         spapr_drc_release(drc);
445         unplug_completed = true;
446     }
447 
448     if (drc->dev) {
449         /* A device present at reset is ready to go, same as coldplugged */
450         drc->state = drck->ready_state;
451         /*
452          * Ensure that we are able to send the FDT fragment again
453          * via configure-connector call if the guest requests.
454          */
455         drc->ccs_offset = drc->fdt_start_offset;
456         drc->ccs_depth = 0;
457     } else {
458         drc->state = drck->empty_state;
459         drc->ccs_offset = -1;
460         drc->ccs_depth = -1;
461     }
462 
463     return unplug_completed;
464 }
465 
466 static bool spapr_drc_unplug_requested_needed(void *opaque)
467 {
468     return spapr_drc_unplug_requested(opaque);
469 }
470 
471 static const VMStateDescription vmstate_spapr_drc_unplug_requested = {
472     .name = "spapr_drc/unplug_requested",
473     .version_id = 1,
474     .minimum_version_id = 1,
475     .needed = spapr_drc_unplug_requested_needed,
476     .fields  = (VMStateField []) {
477         VMSTATE_BOOL(unplug_requested, SpaprDrc),
478         VMSTATE_END_OF_LIST()
479     }
480 };
481 
482 static bool spapr_drc_needed(void *opaque)
483 {
484     SpaprDrc *drc = opaque;
485     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
486 
487     /*
488      * If no dev is plugged in there is no need to migrate the DRC state
489      * nor to reset the DRC at CAS.
490      */
491     if (!drc->dev) {
492         return false;
493     }
494 
495     /*
496      * We need to reset the DRC at CAS or to migrate the DRC state if it's
497      * not equal to the expected long-term state, which is the same as the
498      * coldplugged initial state, or if an unplug request is pending.
499      */
500     return drc->state != drck->ready_state ||
501         spapr_drc_unplug_requested(drc);
502 }
503 
504 static const VMStateDescription vmstate_spapr_drc = {
505     .name = "spapr_drc",
506     .version_id = 1,
507     .minimum_version_id = 1,
508     .needed = spapr_drc_needed,
509     .fields  = (VMStateField []) {
510         VMSTATE_UINT32(state, SpaprDrc),
511         VMSTATE_END_OF_LIST()
512     },
513     .subsections = (const VMStateDescription * []) {
514         &vmstate_spapr_drc_unplug_requested,
515         NULL
516     }
517 };
518 
519 static void drc_realize(DeviceState *d, Error **errp)
520 {
521     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
522     Object *root_container;
523     gchar *link_name;
524     const char *child_name;
525 
526     trace_spapr_drc_realize(spapr_drc_index(drc));
527     /* NOTE: we do this as part of realize/unrealize due to the fact
528      * that the guest will communicate with the DRC via RTAS calls
529      * referencing the global DRC index. By unlinking the DRC
530      * from DRC_CONTAINER_PATH/<drc_index> we effectively make it
531      * inaccessible by the guest, since lookups rely on this path
532      * existing in the composition tree
533      */
534     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
535     link_name = g_strdup_printf("%x", spapr_drc_index(drc));
536     child_name = object_get_canonical_path_component(OBJECT(drc));
537     trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name);
538     object_property_add_alias(root_container, link_name,
539                               drc->owner, child_name);
540     g_free(link_name);
541     vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc,
542                      drc);
543     trace_spapr_drc_realize_complete(spapr_drc_index(drc));
544 }
545 
546 static void drc_unrealize(DeviceState *d)
547 {
548     SpaprDrc *drc = SPAPR_DR_CONNECTOR(d);
549     Object *root_container;
550     gchar *name;
551 
552     trace_spapr_drc_unrealize(spapr_drc_index(drc));
553     vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc);
554     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
555     name = g_strdup_printf("%x", spapr_drc_index(drc));
556     object_property_del(root_container, name);
557     g_free(name);
558 }
559 
560 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type,
561                                          uint32_t id)
562 {
563     SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type));
564     char *prop_name;
565 
566     drc->id = id;
567     drc->owner = owner;
568     prop_name = g_strdup_printf("dr-connector[%"PRIu32"]",
569                                 spapr_drc_index(drc));
570     object_property_add_child(owner, prop_name, OBJECT(drc));
571     object_unref(OBJECT(drc));
572     qdev_realize(DEVICE(drc), NULL, NULL);
573     g_free(prop_name);
574 
575     return drc;
576 }
577 
578 static void spapr_dr_connector_instance_init(Object *obj)
579 {
580     SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj);
581     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
582 
583     object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ);
584     object_property_add(obj, "index", "uint32", prop_get_index,
585                         NULL, NULL, NULL);
586     object_property_add(obj, "fdt", "struct", prop_get_fdt,
587                         NULL, NULL, NULL);
588     drc->state = drck->empty_state;
589 }
590 
591 static void spapr_dr_connector_class_init(ObjectClass *k, void *data)
592 {
593     DeviceClass *dk = DEVICE_CLASS(k);
594 
595     dk->realize = drc_realize;
596     dk->unrealize = drc_unrealize;
597     /*
598      * Reason: DR connector needs to be wired to either the machine or to a
599      * PHB in spapr_dr_connector_new().
600      */
601     dk->user_creatable = false;
602 }
603 
604 static bool drc_physical_needed(void *opaque)
605 {
606     SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque;
607     SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp);
608 
609     if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE))
610         || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) {
611         return false;
612     }
613     return true;
614 }
615 
616 static const VMStateDescription vmstate_spapr_drc_physical = {
617     .name = "spapr_drc/physical",
618     .version_id = 1,
619     .minimum_version_id = 1,
620     .needed = drc_physical_needed,
621     .fields  = (VMStateField []) {
622         VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical),
623         VMSTATE_END_OF_LIST()
624     }
625 };
626 
627 static void drc_physical_reset(void *opaque)
628 {
629     SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque);
630     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc);
631 
632     if (drc->dev) {
633         drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE;
634     } else {
635         drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE;
636     }
637 }
638 
639 static void realize_physical(DeviceState *d, Error **errp)
640 {
641     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
642     Error *local_err = NULL;
643 
644     drc_realize(d, &local_err);
645     if (local_err) {
646         error_propagate(errp, local_err);
647         return;
648     }
649 
650     vmstate_register(VMSTATE_IF(drcp),
651                      spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)),
652                      &vmstate_spapr_drc_physical, drcp);
653     qemu_register_reset(drc_physical_reset, drcp);
654 }
655 
656 static void unrealize_physical(DeviceState *d)
657 {
658     SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d);
659 
660     drc_unrealize(d);
661     vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp);
662     qemu_unregister_reset(drc_physical_reset, drcp);
663 }
664 
665 static void spapr_drc_physical_class_init(ObjectClass *k, void *data)
666 {
667     DeviceClass *dk = DEVICE_CLASS(k);
668     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
669 
670     dk->realize = realize_physical;
671     dk->unrealize = unrealize_physical;
672     drck->dr_entity_sense = physical_entity_sense;
673     drck->isolate = drc_isolate_physical;
674     drck->unisolate = drc_unisolate_physical;
675     drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED;
676     drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON;
677 }
678 
679 static void spapr_drc_logical_class_init(ObjectClass *k, void *data)
680 {
681     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
682 
683     drck->dr_entity_sense = logical_entity_sense;
684     drck->isolate = drc_isolate_logical;
685     drck->unisolate = drc_unisolate_logical;
686     drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED;
687     drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE;
688 }
689 
690 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data)
691 {
692     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
693 
694     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU;
695     drck->typename = "CPU";
696     drck->drc_name_prefix = "CPU ";
697     drck->release = spapr_core_release;
698     drck->dt_populate = spapr_core_dt_populate;
699 }
700 
701 static void spapr_drc_pci_class_init(ObjectClass *k, void *data)
702 {
703     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
704 
705     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI;
706     drck->typename = "28";
707     drck->drc_name_prefix = "C";
708     drck->release = spapr_phb_remove_pci_device_cb;
709     drck->dt_populate = spapr_pci_dt_populate;
710 }
711 
712 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data)
713 {
714     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
715 
716     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB;
717     drck->typename = "MEM";
718     drck->drc_name_prefix = "LMB ";
719     drck->release = spapr_lmb_release;
720     drck->dt_populate = spapr_lmb_dt_populate;
721 }
722 
723 static void spapr_drc_phb_class_init(ObjectClass *k, void *data)
724 {
725     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
726 
727     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB;
728     drck->typename = "PHB";
729     drck->drc_name_prefix = "PHB ";
730     drck->release = spapr_phb_release;
731     drck->dt_populate = spapr_phb_dt_populate;
732 }
733 
734 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data)
735 {
736     SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k);
737 
738     drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM;
739     drck->typename = "PMEM";
740     drck->drc_name_prefix = "PMEM ";
741     drck->release = NULL;
742     drck->dt_populate = spapr_pmem_dt_populate;
743 }
744 
745 static const TypeInfo spapr_dr_connector_info = {
746     .name          = TYPE_SPAPR_DR_CONNECTOR,
747     .parent        = TYPE_DEVICE,
748     .instance_size = sizeof(SpaprDrc),
749     .instance_init = spapr_dr_connector_instance_init,
750     .class_size    = sizeof(SpaprDrcClass),
751     .class_init    = spapr_dr_connector_class_init,
752     .abstract      = true,
753 };
754 
755 static const TypeInfo spapr_drc_physical_info = {
756     .name          = TYPE_SPAPR_DRC_PHYSICAL,
757     .parent        = TYPE_SPAPR_DR_CONNECTOR,
758     .instance_size = sizeof(SpaprDrcPhysical),
759     .class_init    = spapr_drc_physical_class_init,
760     .abstract      = true,
761 };
762 
763 static const TypeInfo spapr_drc_logical_info = {
764     .name          = TYPE_SPAPR_DRC_LOGICAL,
765     .parent        = TYPE_SPAPR_DR_CONNECTOR,
766     .class_init    = spapr_drc_logical_class_init,
767     .abstract      = true,
768 };
769 
770 static const TypeInfo spapr_drc_cpu_info = {
771     .name          = TYPE_SPAPR_DRC_CPU,
772     .parent        = TYPE_SPAPR_DRC_LOGICAL,
773     .class_init    = spapr_drc_cpu_class_init,
774 };
775 
776 static const TypeInfo spapr_drc_pci_info = {
777     .name          = TYPE_SPAPR_DRC_PCI,
778     .parent        = TYPE_SPAPR_DRC_PHYSICAL,
779     .class_init    = spapr_drc_pci_class_init,
780 };
781 
782 static const TypeInfo spapr_drc_lmb_info = {
783     .name          = TYPE_SPAPR_DRC_LMB,
784     .parent        = TYPE_SPAPR_DRC_LOGICAL,
785     .class_init    = spapr_drc_lmb_class_init,
786 };
787 
788 static const TypeInfo spapr_drc_phb_info = {
789     .name          = TYPE_SPAPR_DRC_PHB,
790     .parent        = TYPE_SPAPR_DRC_LOGICAL,
791     .instance_size = sizeof(SpaprDrc),
792     .class_init    = spapr_drc_phb_class_init,
793 };
794 
795 static const TypeInfo spapr_drc_pmem_info = {
796     .name          = TYPE_SPAPR_DRC_PMEM,
797     .parent        = TYPE_SPAPR_DRC_LOGICAL,
798     .class_init    = spapr_drc_pmem_class_init,
799 };
800 
801 /* helper functions for external users */
802 
803 SpaprDrc *spapr_drc_by_index(uint32_t index)
804 {
805     Object *obj;
806     gchar *name;
807 
808     name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index);
809     obj = object_resolve_path(name, NULL);
810     g_free(name);
811 
812     return !obj ? NULL : SPAPR_DR_CONNECTOR(obj);
813 }
814 
815 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id)
816 {
817     SpaprDrcClass *drck
818         = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type));
819 
820     return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT
821                               | (id & DRC_INDEX_ID_MASK));
822 }
823 
824 /**
825  * spapr_dt_drc
826  *
827  * @fdt: libfdt device tree
828  * @path: path in the DT to generate properties
829  * @owner: parent Object/DeviceState for which to generate DRC
830  *         descriptions for
831  * @drc_type_mask: mask of SpaprDrcType values corresponding
832  *   to the types of DRCs to generate entries for
833  *
834  * generate OF properties to describe DRC topology/indices to guests
835  *
836  * as documented in PAPR+ v2.1, 13.5.2
837  */
838 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask)
839 {
840     Object *root_container;
841     ObjectProperty *prop;
842     ObjectPropertyIterator iter;
843     uint32_t drc_count = 0;
844     g_autoptr(GArray) drc_indexes = g_array_new(false, true,
845                                                 sizeof(uint32_t));
846     g_autoptr(GArray) drc_power_domains = g_array_new(false, true,
847                                                       sizeof(uint32_t));
848     g_autoptr(GString) drc_names = g_string_set_size(g_string_new(NULL),
849                                                      sizeof(uint32_t));
850     g_autoptr(GString) drc_types = g_string_set_size(g_string_new(NULL),
851                                                      sizeof(uint32_t));
852     int ret;
853 
854     /*
855      * This should really be only called once per node since it overwrites
856      * the OF properties if they already exist.
857      */
858     g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL));
859 
860     /* the first entry of each properties is a 32-bit integer encoding
861      * the number of elements in the array. we won't know this until
862      * we complete the iteration through all the matching DRCs, but
863      * reserve the space now and set the offsets accordingly so we
864      * can fill them in later.
865      */
866     drc_indexes = g_array_set_size(drc_indexes, 1);
867     drc_power_domains = g_array_set_size(drc_power_domains, 1);
868 
869     /* aliases for all DRConnector objects will be rooted in QOM
870      * composition tree at DRC_CONTAINER_PATH
871      */
872     root_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
873 
874     object_property_iter_init(&iter, root_container);
875     while ((prop = object_property_iter_next(&iter))) {
876         Object *obj;
877         SpaprDrc *drc;
878         SpaprDrcClass *drck;
879         g_autofree char *drc_name = NULL;
880         uint32_t drc_index, drc_power_domain;
881 
882         if (!strstart(prop->type, "link<", NULL)) {
883             continue;
884         }
885 
886         obj = object_property_get_link(root_container, prop->name,
887                                        &error_abort);
888         drc = SPAPR_DR_CONNECTOR(obj);
889         drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
890 
891         if (owner && (drc->owner != owner)) {
892             continue;
893         }
894 
895         if ((spapr_drc_type(drc) & drc_type_mask) == 0) {
896             continue;
897         }
898 
899         drc_count++;
900 
901         /* ibm,drc-indexes */
902         drc_index = cpu_to_be32(spapr_drc_index(drc));
903         g_array_append_val(drc_indexes, drc_index);
904 
905         /* ibm,drc-power-domains */
906         drc_power_domain = cpu_to_be32(-1);
907         g_array_append_val(drc_power_domains, drc_power_domain);
908 
909         /* ibm,drc-names */
910         drc_name = spapr_drc_name(drc);
911         drc_names = g_string_append(drc_names, drc_name);
912         drc_names = g_string_insert_len(drc_names, -1, "\0", 1);
913 
914         /* ibm,drc-types */
915         drc_types = g_string_append(drc_types, drck->typename);
916         drc_types = g_string_insert_len(drc_types, -1, "\0", 1);
917     }
918 
919     /* now write the drc count into the space we reserved at the
920      * beginning of the arrays previously
921      */
922     *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count);
923     *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count);
924     *(uint32_t *)drc_names->str = cpu_to_be32(drc_count);
925     *(uint32_t *)drc_types->str = cpu_to_be32(drc_count);
926 
927     ret = fdt_setprop(fdt, offset, "ibm,drc-indexes",
928                       drc_indexes->data,
929                       drc_indexes->len * sizeof(uint32_t));
930     if (ret) {
931         error_report("Couldn't create ibm,drc-indexes property");
932         return ret;
933     }
934 
935     ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains",
936                       drc_power_domains->data,
937                       drc_power_domains->len * sizeof(uint32_t));
938     if (ret) {
939         error_report("Couldn't finalize ibm,drc-power-domains property");
940         return ret;
941     }
942 
943     ret = fdt_setprop(fdt, offset, "ibm,drc-names",
944                       drc_names->str, drc_names->len);
945     if (ret) {
946         error_report("Couldn't finalize ibm,drc-names property");
947         return ret;
948     }
949 
950     ret = fdt_setprop(fdt, offset, "ibm,drc-types",
951                       drc_types->str, drc_types->len);
952     if (ret) {
953         error_report("Couldn't finalize ibm,drc-types property");
954     }
955 
956     return ret;
957 }
958 
959 void spapr_drc_reset_all(SpaprMachineState *spapr)
960 {
961     Object *drc_container;
962     ObjectProperty *prop;
963     ObjectPropertyIterator iter;
964 
965     drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH);
966 restart:
967     object_property_iter_init(&iter, drc_container);
968     while ((prop = object_property_iter_next(&iter))) {
969         SpaprDrc *drc;
970 
971         if (!strstart(prop->type, "link<", NULL)) {
972             continue;
973         }
974         drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container,
975                                                           prop->name,
976                                                           &error_abort));
977 
978         /*
979          * This will complete any pending plug/unplug requests.
980          * In case of a unplugged PHB or PCI bridge, this will
981          * cause some DRCs to be destroyed and thus potentially
982          * invalidate the iterator.
983          */
984         if (spapr_drc_reset(drc)) {
985             goto restart;
986         }
987     }
988 }
989 
990 /*
991  * RTAS calls
992  */
993 
994 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state)
995 {
996     SpaprDrc *drc = spapr_drc_by_index(idx);
997     SpaprDrcClass *drck;
998 
999     if (!drc) {
1000         return RTAS_OUT_NO_SUCH_INDICATOR;
1001     }
1002 
1003     trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state);
1004 
1005     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1006 
1007     switch (state) {
1008     case SPAPR_DR_ISOLATION_STATE_ISOLATED:
1009         return drck->isolate(drc);
1010 
1011     case SPAPR_DR_ISOLATION_STATE_UNISOLATED:
1012         return drck->unisolate(drc);
1013 
1014     default:
1015         return RTAS_OUT_PARAM_ERROR;
1016     }
1017 }
1018 
1019 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state)
1020 {
1021     SpaprDrc *drc = spapr_drc_by_index(idx);
1022 
1023     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) {
1024         return RTAS_OUT_NO_SUCH_INDICATOR;
1025     }
1026 
1027     trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state);
1028 
1029     switch (state) {
1030     case SPAPR_DR_ALLOCATION_STATE_USABLE:
1031         return drc_set_usable(drc);
1032 
1033     case SPAPR_DR_ALLOCATION_STATE_UNUSABLE:
1034         return drc_set_unusable(drc);
1035 
1036     default:
1037         return RTAS_OUT_PARAM_ERROR;
1038     }
1039 }
1040 
1041 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state)
1042 {
1043     SpaprDrc *drc = spapr_drc_by_index(idx);
1044 
1045     if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) {
1046         return RTAS_OUT_NO_SUCH_INDICATOR;
1047     }
1048     if ((state != SPAPR_DR_INDICATOR_INACTIVE)
1049         && (state != SPAPR_DR_INDICATOR_ACTIVE)
1050         && (state != SPAPR_DR_INDICATOR_IDENTIFY)
1051         && (state != SPAPR_DR_INDICATOR_ACTION)) {
1052         return RTAS_OUT_PARAM_ERROR; /* bad state parameter */
1053     }
1054 
1055     trace_spapr_drc_set_dr_indicator(idx, state);
1056     SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state;
1057     return RTAS_OUT_SUCCESS;
1058 }
1059 
1060 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr,
1061                                uint32_t token,
1062                                uint32_t nargs, target_ulong args,
1063                                uint32_t nret, target_ulong rets)
1064 {
1065     uint32_t type, idx, state;
1066     uint32_t ret = RTAS_OUT_SUCCESS;
1067 
1068     if (nargs != 3 || nret != 1) {
1069         ret = RTAS_OUT_PARAM_ERROR;
1070         goto out;
1071     }
1072 
1073     type = rtas_ld(args, 0);
1074     idx = rtas_ld(args, 1);
1075     state = rtas_ld(args, 2);
1076 
1077     switch (type) {
1078     case RTAS_SENSOR_TYPE_ISOLATION_STATE:
1079         ret = rtas_set_isolation_state(idx, state);
1080         break;
1081     case RTAS_SENSOR_TYPE_DR:
1082         ret = rtas_set_dr_indicator(idx, state);
1083         break;
1084     case RTAS_SENSOR_TYPE_ALLOCATION_STATE:
1085         ret = rtas_set_allocation_state(idx, state);
1086         break;
1087     default:
1088         ret = RTAS_OUT_NOT_SUPPORTED;
1089     }
1090 
1091 out:
1092     rtas_st(rets, 0, ret);
1093 }
1094 
1095 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr,
1096                                   uint32_t token, uint32_t nargs,
1097                                   target_ulong args, uint32_t nret,
1098                                   target_ulong rets)
1099 {
1100     uint32_t sensor_type;
1101     uint32_t sensor_index;
1102     uint32_t sensor_state = 0;
1103     SpaprDrc *drc;
1104     SpaprDrcClass *drck;
1105     uint32_t ret = RTAS_OUT_SUCCESS;
1106 
1107     if (nargs != 2 || nret != 2) {
1108         ret = RTAS_OUT_PARAM_ERROR;
1109         goto out;
1110     }
1111 
1112     sensor_type = rtas_ld(args, 0);
1113     sensor_index = rtas_ld(args, 1);
1114 
1115     if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) {
1116         /* currently only DR-related sensors are implemented */
1117         trace_spapr_rtas_get_sensor_state_not_supported(sensor_index,
1118                                                         sensor_type);
1119         ret = RTAS_OUT_NOT_SUPPORTED;
1120         goto out;
1121     }
1122 
1123     drc = spapr_drc_by_index(sensor_index);
1124     if (!drc) {
1125         trace_spapr_rtas_get_sensor_state_invalid(sensor_index);
1126         ret = RTAS_OUT_PARAM_ERROR;
1127         goto out;
1128     }
1129     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1130     sensor_state = drck->dr_entity_sense(drc);
1131 
1132 out:
1133     rtas_st(rets, 0, ret);
1134     rtas_st(rets, 1, sensor_state);
1135 }
1136 
1137 /* configure-connector work area offsets, int32_t units for field
1138  * indexes, bytes for field offset/len values.
1139  *
1140  * as documented by PAPR+ v2.7, 13.5.3.5
1141  */
1142 #define CC_IDX_NODE_NAME_OFFSET 2
1143 #define CC_IDX_PROP_NAME_OFFSET 2
1144 #define CC_IDX_PROP_LEN 3
1145 #define CC_IDX_PROP_DATA_OFFSET 4
1146 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4)
1147 #define CC_WA_LEN 4096
1148 
1149 static void configure_connector_st(target_ulong addr, target_ulong offset,
1150                                    const void *buf, size_t len)
1151 {
1152     cpu_physical_memory_write(ppc64_phys_to_real(addr + offset),
1153                               buf, MIN(len, CC_WA_LEN - offset));
1154 }
1155 
1156 static void rtas_ibm_configure_connector(PowerPCCPU *cpu,
1157                                          SpaprMachineState *spapr,
1158                                          uint32_t token, uint32_t nargs,
1159                                          target_ulong args, uint32_t nret,
1160                                          target_ulong rets)
1161 {
1162     uint64_t wa_addr;
1163     uint64_t wa_offset;
1164     uint32_t drc_index;
1165     SpaprDrc *drc;
1166     SpaprDrcClass *drck;
1167     SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE;
1168     int rc;
1169 
1170     if (nargs != 2 || nret != 1) {
1171         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
1172         return;
1173     }
1174 
1175     wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0);
1176 
1177     drc_index = rtas_ld(wa_addr, 0);
1178     drc = spapr_drc_by_index(drc_index);
1179     if (!drc) {
1180         trace_spapr_rtas_ibm_configure_connector_invalid(drc_index);
1181         rc = RTAS_OUT_PARAM_ERROR;
1182         goto out;
1183     }
1184 
1185     if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE)
1186         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE)
1187         && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED)
1188         && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) {
1189         /*
1190          * Need to unisolate the device before configuring
1191          * or it should already be in configured state to
1192          * allow configure-connector be called repeatedly.
1193          */
1194         rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE;
1195         goto out;
1196     }
1197 
1198     drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc);
1199 
1200     /*
1201      * This indicates that the kernel is reconfiguring a LMB due to
1202      * a failed hotunplug. Rollback the DIMM unplug process.
1203      */
1204     if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB &&
1205         drc->unplug_requested) {
1206         spapr_memory_unplug_rollback(spapr, drc->dev);
1207     }
1208 
1209     if (!drc->fdt) {
1210         void *fdt;
1211         int fdt_size;
1212 
1213         fdt = create_device_tree(&fdt_size);
1214 
1215         if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset,
1216                               NULL)) {
1217             g_free(fdt);
1218             rc = SPAPR_DR_CC_RESPONSE_ERROR;
1219             goto out;
1220         }
1221 
1222         drc->fdt = fdt;
1223         drc->ccs_offset = drc->fdt_start_offset;
1224         drc->ccs_depth = 0;
1225     }
1226 
1227     do {
1228         uint32_t tag;
1229         const char *name;
1230         const struct fdt_property *prop;
1231         int fdt_offset_next, prop_len;
1232 
1233         tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next);
1234 
1235         switch (tag) {
1236         case FDT_BEGIN_NODE:
1237             drc->ccs_depth++;
1238             name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL);
1239 
1240             /* provide the name of the next OF node */
1241             wa_offset = CC_VAL_DATA_OFFSET;
1242             rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset);
1243             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1244             resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD;
1245             break;
1246         case FDT_END_NODE:
1247             drc->ccs_depth--;
1248             if (drc->ccs_depth == 0) {
1249                 uint32_t drc_index = spapr_drc_index(drc);
1250 
1251                 /* done sending the device tree, move to configured state */
1252                 trace_spapr_drc_set_configured(drc_index);
1253                 drc->state = drck->ready_state;
1254                 /*
1255                  * Ensure that we are able to send the FDT fragment
1256                  * again via configure-connector call if the guest requests.
1257                  */
1258                 drc->ccs_offset = drc->fdt_start_offset;
1259                 drc->ccs_depth = 0;
1260                 fdt_offset_next = drc->fdt_start_offset;
1261                 resp = SPAPR_DR_CC_RESPONSE_SUCCESS;
1262             } else {
1263                 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT;
1264             }
1265             break;
1266         case FDT_PROP:
1267             prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset,
1268                                               &prop_len);
1269             name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff));
1270 
1271             /* provide the name of the next OF property */
1272             wa_offset = CC_VAL_DATA_OFFSET;
1273             rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset);
1274             configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1);
1275 
1276             /* provide the length and value of the OF property. data gets
1277              * placed immediately after NULL terminator of the OF property's
1278              * name string
1279              */
1280             wa_offset += strlen(name) + 1,
1281             rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len);
1282             rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset);
1283             configure_connector_st(wa_addr, wa_offset, prop->data, prop_len);
1284             resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY;
1285             break;
1286         case FDT_END:
1287             resp = SPAPR_DR_CC_RESPONSE_ERROR;
1288         default:
1289             /* keep seeking for an actionable tag */
1290             break;
1291         }
1292         if (drc->ccs_offset >= 0) {
1293             drc->ccs_offset = fdt_offset_next;
1294         }
1295     } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE);
1296 
1297     rc = resp;
1298 out:
1299     rtas_st(rets, 0, rc);
1300 }
1301 
1302 static void spapr_drc_register_types(void)
1303 {
1304     type_register_static(&spapr_dr_connector_info);
1305     type_register_static(&spapr_drc_physical_info);
1306     type_register_static(&spapr_drc_logical_info);
1307     type_register_static(&spapr_drc_cpu_info);
1308     type_register_static(&spapr_drc_pci_info);
1309     type_register_static(&spapr_drc_lmb_info);
1310     type_register_static(&spapr_drc_phb_info);
1311     type_register_static(&spapr_drc_pmem_info);
1312 
1313     spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator",
1314                         rtas_set_indicator);
1315     spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state",
1316                         rtas_get_sensor_state);
1317     spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector",
1318                         rtas_ibm_configure_connector);
1319 }
1320 type_init(spapr_drc_register_types)
1321