1 /* 2 * QEMU SPAPR Dynamic Reconfiguration Connector Implementation 3 * 4 * Copyright IBM Corp. 2014 5 * 6 * Authors: 7 * Michael Roth <mdroth@linux.vnet.ibm.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or later. 10 * See the COPYING file in the top-level directory. 11 */ 12 13 #include "qemu/osdep.h" 14 #include "qapi/error.h" 15 #include "qapi/qmp/qnull.h" 16 #include "qemu/cutils.h" 17 #include "hw/ppc/spapr_drc.h" 18 #include "qom/object.h" 19 #include "migration/vmstate.h" 20 #include "qapi/error.h" 21 #include "qapi/qapi-events-qdev.h" 22 #include "qapi/visitor.h" 23 #include "qemu/error-report.h" 24 #include "hw/ppc/spapr.h" /* for RTAS return codes */ 25 #include "hw/pci-host/spapr.h" /* spapr_phb_remove_pci_device_cb callback */ 26 #include "hw/ppc/spapr_nvdimm.h" 27 #include "sysemu/device_tree.h" 28 #include "sysemu/reset.h" 29 #include "trace.h" 30 31 #define DRC_CONTAINER_PATH "/dr-connector" 32 #define DRC_INDEX_TYPE_SHIFT 28 33 #define DRC_INDEX_ID_MASK ((1ULL << DRC_INDEX_TYPE_SHIFT) - 1) 34 35 SpaprDrcType spapr_drc_type(SpaprDrc *drc) 36 { 37 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 38 39 return 1 << drck->typeshift; 40 } 41 42 uint32_t spapr_drc_index(SpaprDrc *drc) 43 { 44 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 45 46 /* no set format for a drc index: it only needs to be globally 47 * unique. this is how we encode the DRC type on bare-metal 48 * however, so might as well do that here 49 */ 50 return (drck->typeshift << DRC_INDEX_TYPE_SHIFT) 51 | (drc->id & DRC_INDEX_ID_MASK); 52 } 53 54 static void spapr_drc_release(SpaprDrc *drc) 55 { 56 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 57 58 drck->release(drc->dev); 59 60 drc->unplug_requested = false; 61 g_free(drc->fdt); 62 drc->fdt = NULL; 63 drc->fdt_start_offset = 0; 64 object_property_del(OBJECT(drc), "device"); 65 drc->dev = NULL; 66 } 67 68 static uint32_t drc_isolate_physical(SpaprDrc *drc) 69 { 70 switch (drc->state) { 71 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 72 return RTAS_OUT_SUCCESS; /* Nothing to do */ 73 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 74 break; /* see below */ 75 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 76 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 77 default: 78 g_assert_not_reached(); 79 } 80 81 drc->state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 82 83 if (drc->unplug_requested) { 84 uint32_t drc_index = spapr_drc_index(drc); 85 trace_spapr_drc_set_isolation_state_finalizing(drc_index); 86 spapr_drc_release(drc); 87 } 88 89 return RTAS_OUT_SUCCESS; 90 } 91 92 static uint32_t drc_unisolate_physical(SpaprDrc *drc) 93 { 94 switch (drc->state) { 95 case SPAPR_DRC_STATE_PHYSICAL_UNISOLATE: 96 case SPAPR_DRC_STATE_PHYSICAL_CONFIGURED: 97 return RTAS_OUT_SUCCESS; /* Nothing to do */ 98 case SPAPR_DRC_STATE_PHYSICAL_POWERON: 99 break; /* see below */ 100 default: 101 g_assert_not_reached(); 102 } 103 104 /* cannot unisolate a non-existent resource, and, or resources 105 * which are in an 'UNUSABLE' allocation state. (PAPR 2.7, 106 * 13.5.3.5) 107 */ 108 if (!drc->dev) { 109 return RTAS_OUT_NO_SUCH_INDICATOR; 110 } 111 112 drc->state = SPAPR_DRC_STATE_PHYSICAL_UNISOLATE; 113 drc->ccs_offset = drc->fdt_start_offset; 114 drc->ccs_depth = 0; 115 116 return RTAS_OUT_SUCCESS; 117 } 118 119 static uint32_t drc_isolate_logical(SpaprDrc *drc) 120 { 121 switch (drc->state) { 122 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 123 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 124 return RTAS_OUT_SUCCESS; /* Nothing to do */ 125 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 126 break; /* see below */ 127 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 128 return RTAS_OUT_PARAM_ERROR; /* not allowed */ 129 default: 130 g_assert_not_reached(); 131 } 132 133 /* 134 * Fail any requests to ISOLATE the LMB DRC if this LMB doesn't 135 * belong to a DIMM device that is marked for removal. 136 * 137 * Currently the guest userspace tool drmgr that drives the memory 138 * hotplug/unplug will just try to remove a set of 'removable' LMBs 139 * in response to a hot unplug request that is based on drc-count. 140 * If the LMB being removed doesn't belong to a DIMM device that is 141 * actually being unplugged, fail the isolation request here. 142 */ 143 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB 144 && !drc->unplug_requested) { 145 return RTAS_OUT_HW_ERROR; 146 } 147 148 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 149 150 return RTAS_OUT_SUCCESS; 151 } 152 153 static uint32_t drc_unisolate_logical(SpaprDrc *drc) 154 { 155 SpaprMachineState *spapr = NULL; 156 157 switch (drc->state) { 158 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 159 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 160 /* 161 * Unisolating a logical DRC that was marked for unplug 162 * means that the kernel is refusing the removal. 163 */ 164 if (drc->unplug_requested && drc->dev) { 165 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB) { 166 spapr = SPAPR_MACHINE(qdev_get_machine()); 167 168 spapr_memory_unplug_rollback(spapr, drc->dev); 169 } 170 171 drc->unplug_requested = false; 172 173 if (drc->dev->id) { 174 error_report("Device hotunplug rejected by the guest " 175 "for device %s", drc->dev->id); 176 } 177 178 qapi_event_send_device_unplug_guest_error(!!drc->dev->id, 179 drc->dev->id, 180 drc->dev->canonical_path); 181 } 182 183 return RTAS_OUT_SUCCESS; /* Nothing to do */ 184 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 185 break; /* see below */ 186 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 187 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 188 default: 189 g_assert_not_reached(); 190 } 191 192 /* Move to AVAILABLE state should have ensured device was present */ 193 g_assert(drc->dev); 194 195 drc->state = SPAPR_DRC_STATE_LOGICAL_UNISOLATE; 196 drc->ccs_offset = drc->fdt_start_offset; 197 drc->ccs_depth = 0; 198 199 return RTAS_OUT_SUCCESS; 200 } 201 202 static uint32_t drc_set_usable(SpaprDrc *drc) 203 { 204 switch (drc->state) { 205 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 206 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 207 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 208 return RTAS_OUT_SUCCESS; /* Nothing to do */ 209 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 210 break; /* see below */ 211 default: 212 g_assert_not_reached(); 213 } 214 215 /* if there's no resource/device associated with the DRC, there's 216 * no way for us to put it in an allocation state consistent with 217 * being 'USABLE'. PAPR 2.7, 13.5.3.4 documents that this should 218 * result in an RTAS return code of -3 / "no such indicator" 219 */ 220 if (!drc->dev) { 221 return RTAS_OUT_NO_SUCH_INDICATOR; 222 } 223 if (drc->unplug_requested) { 224 /* Don't allow the guest to move a device away from UNUSABLE 225 * state when we want to unplug it */ 226 return RTAS_OUT_NO_SUCH_INDICATOR; 227 } 228 229 drc->state = SPAPR_DRC_STATE_LOGICAL_AVAILABLE; 230 231 return RTAS_OUT_SUCCESS; 232 } 233 234 static uint32_t drc_set_unusable(SpaprDrc *drc) 235 { 236 switch (drc->state) { 237 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 238 return RTAS_OUT_SUCCESS; /* Nothing to do */ 239 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 240 break; /* see below */ 241 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 242 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 243 return RTAS_OUT_NO_SUCH_INDICATOR; /* not allowed */ 244 default: 245 g_assert_not_reached(); 246 } 247 248 drc->state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 249 if (drc->unplug_requested) { 250 uint32_t drc_index = spapr_drc_index(drc); 251 trace_spapr_drc_set_allocation_state_finalizing(drc_index); 252 spapr_drc_release(drc); 253 } 254 255 return RTAS_OUT_SUCCESS; 256 } 257 258 static char *spapr_drc_name(SpaprDrc *drc) 259 { 260 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 261 262 /* human-readable name for a DRC to encode into the DT 263 * description. this is mainly only used within a guest in place 264 * of the unique DRC index. 265 * 266 * in the case of VIO/PCI devices, it corresponds to a "location 267 * code" that maps a logical device/function (DRC index) to a 268 * physical (or virtual in the case of VIO) location in the system 269 * by chaining together the "location label" for each 270 * encapsulating component. 271 * 272 * since this is more to do with diagnosing physical hardware 273 * issues than guest compatibility, we choose location codes/DRC 274 * names that adhere to the documented format, but avoid encoding 275 * the entire topology information into the label/code, instead 276 * just using the location codes based on the labels for the 277 * endpoints (VIO/PCI adaptor connectors), which is basically just 278 * "C" followed by an integer ID. 279 * 280 * DRC names as documented by PAPR+ v2.7, 13.5.2.4 281 * location codes as documented by PAPR+ v2.7, 12.3.1.5 282 */ 283 return g_strdup_printf("%s%d", drck->drc_name_prefix, drc->id); 284 } 285 286 /* 287 * dr-entity-sense sensor value 288 * returned via get-sensor-state RTAS calls 289 * as expected by state diagram in PAPR+ 2.7, 13.4 290 * based on the current allocation/indicator/power states 291 * for the DR connector. 292 */ 293 static SpaprDREntitySense physical_entity_sense(SpaprDrc *drc) 294 { 295 /* this assumes all PCI devices are assigned to a 'live insertion' 296 * power domain, where QEMU manages power state automatically as 297 * opposed to the guest. present, non-PCI resources are unaffected 298 * by power state. 299 */ 300 return drc->dev ? SPAPR_DR_ENTITY_SENSE_PRESENT 301 : SPAPR_DR_ENTITY_SENSE_EMPTY; 302 } 303 304 static SpaprDREntitySense logical_entity_sense(SpaprDrc *drc) 305 { 306 switch (drc->state) { 307 case SPAPR_DRC_STATE_LOGICAL_UNUSABLE: 308 return SPAPR_DR_ENTITY_SENSE_UNUSABLE; 309 case SPAPR_DRC_STATE_LOGICAL_AVAILABLE: 310 case SPAPR_DRC_STATE_LOGICAL_UNISOLATE: 311 case SPAPR_DRC_STATE_LOGICAL_CONFIGURED: 312 g_assert(drc->dev); 313 return SPAPR_DR_ENTITY_SENSE_PRESENT; 314 default: 315 g_assert_not_reached(); 316 } 317 } 318 319 static void prop_get_index(Object *obj, Visitor *v, const char *name, 320 void *opaque, Error **errp) 321 { 322 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 323 uint32_t value = spapr_drc_index(drc); 324 visit_type_uint32(v, name, &value, errp); 325 } 326 327 static void prop_get_fdt(Object *obj, Visitor *v, const char *name, 328 void *opaque, Error **errp) 329 { 330 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 331 QNull *null = NULL; 332 int fdt_offset_next, fdt_offset, fdt_depth; 333 void *fdt; 334 335 if (!drc->fdt) { 336 visit_type_null(v, NULL, &null, errp); 337 qobject_unref(null); 338 return; 339 } 340 341 fdt = drc->fdt; 342 fdt_offset = drc->fdt_start_offset; 343 fdt_depth = 0; 344 345 do { 346 const char *name = NULL; 347 const struct fdt_property *prop = NULL; 348 int prop_len = 0, name_len = 0; 349 uint32_t tag; 350 bool ok; 351 352 tag = fdt_next_tag(fdt, fdt_offset, &fdt_offset_next); 353 switch (tag) { 354 case FDT_BEGIN_NODE: 355 fdt_depth++; 356 name = fdt_get_name(fdt, fdt_offset, &name_len); 357 if (!visit_start_struct(v, name, NULL, 0, errp)) { 358 return; 359 } 360 break; 361 case FDT_END_NODE: 362 /* shouldn't ever see an FDT_END_NODE before FDT_BEGIN_NODE */ 363 g_assert(fdt_depth > 0); 364 ok = visit_check_struct(v, errp); 365 visit_end_struct(v, NULL); 366 if (!ok) { 367 return; 368 } 369 fdt_depth--; 370 break; 371 case FDT_PROP: { 372 int i; 373 prop = fdt_get_property_by_offset(fdt, fdt_offset, &prop_len); 374 name = fdt_string(fdt, fdt32_to_cpu(prop->nameoff)); 375 if (!visit_start_list(v, name, NULL, 0, errp)) { 376 return; 377 } 378 for (i = 0; i < prop_len; i++) { 379 if (!visit_type_uint8(v, NULL, (uint8_t *)&prop->data[i], 380 errp)) { 381 return; 382 } 383 } 384 ok = visit_check_list(v, errp); 385 visit_end_list(v, NULL); 386 if (!ok) { 387 return; 388 } 389 break; 390 } 391 default: 392 error_report("device FDT in unexpected state: %d", tag); 393 abort(); 394 } 395 fdt_offset = fdt_offset_next; 396 } while (fdt_depth != 0); 397 } 398 399 void spapr_drc_attach(SpaprDrc *drc, DeviceState *d) 400 { 401 trace_spapr_drc_attach(spapr_drc_index(drc)); 402 403 g_assert(!drc->dev); 404 g_assert((drc->state == SPAPR_DRC_STATE_LOGICAL_UNUSABLE) 405 || (drc->state == SPAPR_DRC_STATE_PHYSICAL_POWERON)); 406 407 drc->dev = d; 408 409 object_property_add_link(OBJECT(drc), "device", 410 object_get_typename(OBJECT(drc->dev)), 411 (Object **)(&drc->dev), 412 NULL, 0); 413 } 414 415 void spapr_drc_unplug_request(SpaprDrc *drc) 416 { 417 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 418 419 trace_spapr_drc_unplug_request(spapr_drc_index(drc)); 420 421 g_assert(drc->dev); 422 423 drc->unplug_requested = true; 424 425 if (drc->state != drck->empty_state) { 426 trace_spapr_drc_awaiting_quiesce(spapr_drc_index(drc)); 427 return; 428 } 429 430 spapr_drc_release(drc); 431 } 432 433 bool spapr_drc_reset(SpaprDrc *drc) 434 { 435 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 436 bool unplug_completed = false; 437 438 trace_spapr_drc_reset(spapr_drc_index(drc)); 439 440 /* immediately upon reset we can safely assume DRCs whose devices 441 * are pending removal can be safely removed. 442 */ 443 if (drc->unplug_requested) { 444 spapr_drc_release(drc); 445 unplug_completed = true; 446 } 447 448 if (drc->dev) { 449 /* A device present at reset is ready to go, same as coldplugged */ 450 drc->state = drck->ready_state; 451 /* 452 * Ensure that we are able to send the FDT fragment again 453 * via configure-connector call if the guest requests. 454 */ 455 drc->ccs_offset = drc->fdt_start_offset; 456 drc->ccs_depth = 0; 457 } else { 458 drc->state = drck->empty_state; 459 drc->ccs_offset = -1; 460 drc->ccs_depth = -1; 461 } 462 463 return unplug_completed; 464 } 465 466 static bool spapr_drc_unplug_requested_needed(void *opaque) 467 { 468 return spapr_drc_unplug_requested(opaque); 469 } 470 471 static const VMStateDescription vmstate_spapr_drc_unplug_requested = { 472 .name = "spapr_drc/unplug_requested", 473 .version_id = 1, 474 .minimum_version_id = 1, 475 .needed = spapr_drc_unplug_requested_needed, 476 .fields = (VMStateField []) { 477 VMSTATE_BOOL(unplug_requested, SpaprDrc), 478 VMSTATE_END_OF_LIST() 479 } 480 }; 481 482 static bool spapr_drc_needed(void *opaque) 483 { 484 SpaprDrc *drc = opaque; 485 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 486 487 /* 488 * If no dev is plugged in there is no need to migrate the DRC state 489 * nor to reset the DRC at CAS. 490 */ 491 if (!drc->dev) { 492 return false; 493 } 494 495 /* 496 * We need to reset the DRC at CAS or to migrate the DRC state if it's 497 * not equal to the expected long-term state, which is the same as the 498 * coldplugged initial state, or if an unplug request is pending. 499 */ 500 return drc->state != drck->ready_state || 501 spapr_drc_unplug_requested(drc); 502 } 503 504 static const VMStateDescription vmstate_spapr_drc = { 505 .name = "spapr_drc", 506 .version_id = 1, 507 .minimum_version_id = 1, 508 .needed = spapr_drc_needed, 509 .fields = (VMStateField []) { 510 VMSTATE_UINT32(state, SpaprDrc), 511 VMSTATE_END_OF_LIST() 512 }, 513 .subsections = (const VMStateDescription * []) { 514 &vmstate_spapr_drc_unplug_requested, 515 NULL 516 } 517 }; 518 519 static void drc_realize(DeviceState *d, Error **errp) 520 { 521 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 522 Object *root_container; 523 gchar *link_name; 524 const char *child_name; 525 526 trace_spapr_drc_realize(spapr_drc_index(drc)); 527 /* NOTE: we do this as part of realize/unrealize due to the fact 528 * that the guest will communicate with the DRC via RTAS calls 529 * referencing the global DRC index. By unlinking the DRC 530 * from DRC_CONTAINER_PATH/<drc_index> we effectively make it 531 * inaccessible by the guest, since lookups rely on this path 532 * existing in the composition tree 533 */ 534 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 535 link_name = g_strdup_printf("%x", spapr_drc_index(drc)); 536 child_name = object_get_canonical_path_component(OBJECT(drc)); 537 trace_spapr_drc_realize_child(spapr_drc_index(drc), child_name); 538 object_property_add_alias(root_container, link_name, 539 drc->owner, child_name); 540 g_free(link_name); 541 vmstate_register(VMSTATE_IF(drc), spapr_drc_index(drc), &vmstate_spapr_drc, 542 drc); 543 trace_spapr_drc_realize_complete(spapr_drc_index(drc)); 544 } 545 546 static void drc_unrealize(DeviceState *d) 547 { 548 SpaprDrc *drc = SPAPR_DR_CONNECTOR(d); 549 Object *root_container; 550 gchar *name; 551 552 trace_spapr_drc_unrealize(spapr_drc_index(drc)); 553 vmstate_unregister(VMSTATE_IF(drc), &vmstate_spapr_drc, drc); 554 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 555 name = g_strdup_printf("%x", spapr_drc_index(drc)); 556 object_property_del(root_container, name); 557 g_free(name); 558 } 559 560 SpaprDrc *spapr_dr_connector_new(Object *owner, const char *type, 561 uint32_t id) 562 { 563 SpaprDrc *drc = SPAPR_DR_CONNECTOR(object_new(type)); 564 char *prop_name; 565 566 drc->id = id; 567 drc->owner = owner; 568 prop_name = g_strdup_printf("dr-connector[%"PRIu32"]", 569 spapr_drc_index(drc)); 570 object_property_add_child(owner, prop_name, OBJECT(drc)); 571 object_unref(OBJECT(drc)); 572 qdev_realize(DEVICE(drc), NULL, NULL); 573 g_free(prop_name); 574 575 return drc; 576 } 577 578 static void spapr_dr_connector_instance_init(Object *obj) 579 { 580 SpaprDrc *drc = SPAPR_DR_CONNECTOR(obj); 581 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 582 583 object_property_add_uint32_ptr(obj, "id", &drc->id, OBJ_PROP_FLAG_READ); 584 object_property_add(obj, "index", "uint32", prop_get_index, 585 NULL, NULL, NULL); 586 object_property_add(obj, "fdt", "struct", prop_get_fdt, 587 NULL, NULL, NULL); 588 drc->state = drck->empty_state; 589 } 590 591 static void spapr_dr_connector_class_init(ObjectClass *k, void *data) 592 { 593 DeviceClass *dk = DEVICE_CLASS(k); 594 595 dk->realize = drc_realize; 596 dk->unrealize = drc_unrealize; 597 /* 598 * Reason: DR connector needs to be wired to either the machine or to a 599 * PHB in spapr_dr_connector_new(). 600 */ 601 dk->user_creatable = false; 602 } 603 604 static bool drc_physical_needed(void *opaque) 605 { 606 SpaprDrcPhysical *drcp = (SpaprDrcPhysical *)opaque; 607 SpaprDrc *drc = SPAPR_DR_CONNECTOR(drcp); 608 609 if ((drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_ACTIVE)) 610 || (!drc->dev && (drcp->dr_indicator == SPAPR_DR_INDICATOR_INACTIVE))) { 611 return false; 612 } 613 return true; 614 } 615 616 static const VMStateDescription vmstate_spapr_drc_physical = { 617 .name = "spapr_drc/physical", 618 .version_id = 1, 619 .minimum_version_id = 1, 620 .needed = drc_physical_needed, 621 .fields = (VMStateField []) { 622 VMSTATE_UINT32(dr_indicator, SpaprDrcPhysical), 623 VMSTATE_END_OF_LIST() 624 } 625 }; 626 627 static void drc_physical_reset(void *opaque) 628 { 629 SpaprDrc *drc = SPAPR_DR_CONNECTOR(opaque); 630 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(drc); 631 632 if (drc->dev) { 633 drcp->dr_indicator = SPAPR_DR_INDICATOR_ACTIVE; 634 } else { 635 drcp->dr_indicator = SPAPR_DR_INDICATOR_INACTIVE; 636 } 637 } 638 639 static void realize_physical(DeviceState *d, Error **errp) 640 { 641 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 642 Error *local_err = NULL; 643 644 drc_realize(d, &local_err); 645 if (local_err) { 646 error_propagate(errp, local_err); 647 return; 648 } 649 650 vmstate_register(VMSTATE_IF(drcp), 651 spapr_drc_index(SPAPR_DR_CONNECTOR(drcp)), 652 &vmstate_spapr_drc_physical, drcp); 653 qemu_register_reset(drc_physical_reset, drcp); 654 } 655 656 static void unrealize_physical(DeviceState *d) 657 { 658 SpaprDrcPhysical *drcp = SPAPR_DRC_PHYSICAL(d); 659 660 drc_unrealize(d); 661 vmstate_unregister(VMSTATE_IF(drcp), &vmstate_spapr_drc_physical, drcp); 662 qemu_unregister_reset(drc_physical_reset, drcp); 663 } 664 665 static void spapr_drc_physical_class_init(ObjectClass *k, void *data) 666 { 667 DeviceClass *dk = DEVICE_CLASS(k); 668 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 669 670 dk->realize = realize_physical; 671 dk->unrealize = unrealize_physical; 672 drck->dr_entity_sense = physical_entity_sense; 673 drck->isolate = drc_isolate_physical; 674 drck->unisolate = drc_unisolate_physical; 675 drck->ready_state = SPAPR_DRC_STATE_PHYSICAL_CONFIGURED; 676 drck->empty_state = SPAPR_DRC_STATE_PHYSICAL_POWERON; 677 } 678 679 static void spapr_drc_logical_class_init(ObjectClass *k, void *data) 680 { 681 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 682 683 drck->dr_entity_sense = logical_entity_sense; 684 drck->isolate = drc_isolate_logical; 685 drck->unisolate = drc_unisolate_logical; 686 drck->ready_state = SPAPR_DRC_STATE_LOGICAL_CONFIGURED; 687 drck->empty_state = SPAPR_DRC_STATE_LOGICAL_UNUSABLE; 688 } 689 690 static void spapr_drc_cpu_class_init(ObjectClass *k, void *data) 691 { 692 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 693 694 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_CPU; 695 drck->typename = "CPU"; 696 drck->drc_name_prefix = "CPU "; 697 drck->release = spapr_core_release; 698 drck->dt_populate = spapr_core_dt_populate; 699 } 700 701 static void spapr_drc_pci_class_init(ObjectClass *k, void *data) 702 { 703 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 704 705 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PCI; 706 drck->typename = "28"; 707 drck->drc_name_prefix = "C"; 708 drck->release = spapr_phb_remove_pci_device_cb; 709 drck->dt_populate = spapr_pci_dt_populate; 710 } 711 712 static void spapr_drc_lmb_class_init(ObjectClass *k, void *data) 713 { 714 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 715 716 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_LMB; 717 drck->typename = "MEM"; 718 drck->drc_name_prefix = "LMB "; 719 drck->release = spapr_lmb_release; 720 drck->dt_populate = spapr_lmb_dt_populate; 721 } 722 723 static void spapr_drc_phb_class_init(ObjectClass *k, void *data) 724 { 725 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 726 727 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PHB; 728 drck->typename = "PHB"; 729 drck->drc_name_prefix = "PHB "; 730 drck->release = spapr_phb_release; 731 drck->dt_populate = spapr_phb_dt_populate; 732 } 733 734 static void spapr_drc_pmem_class_init(ObjectClass *k, void *data) 735 { 736 SpaprDrcClass *drck = SPAPR_DR_CONNECTOR_CLASS(k); 737 738 drck->typeshift = SPAPR_DR_CONNECTOR_TYPE_SHIFT_PMEM; 739 drck->typename = "PMEM"; 740 drck->drc_name_prefix = "PMEM "; 741 drck->release = NULL; 742 drck->dt_populate = spapr_pmem_dt_populate; 743 } 744 745 static const TypeInfo spapr_dr_connector_info = { 746 .name = TYPE_SPAPR_DR_CONNECTOR, 747 .parent = TYPE_DEVICE, 748 .instance_size = sizeof(SpaprDrc), 749 .instance_init = spapr_dr_connector_instance_init, 750 .class_size = sizeof(SpaprDrcClass), 751 .class_init = spapr_dr_connector_class_init, 752 .abstract = true, 753 }; 754 755 static const TypeInfo spapr_drc_physical_info = { 756 .name = TYPE_SPAPR_DRC_PHYSICAL, 757 .parent = TYPE_SPAPR_DR_CONNECTOR, 758 .instance_size = sizeof(SpaprDrcPhysical), 759 .class_init = spapr_drc_physical_class_init, 760 .abstract = true, 761 }; 762 763 static const TypeInfo spapr_drc_logical_info = { 764 .name = TYPE_SPAPR_DRC_LOGICAL, 765 .parent = TYPE_SPAPR_DR_CONNECTOR, 766 .class_init = spapr_drc_logical_class_init, 767 .abstract = true, 768 }; 769 770 static const TypeInfo spapr_drc_cpu_info = { 771 .name = TYPE_SPAPR_DRC_CPU, 772 .parent = TYPE_SPAPR_DRC_LOGICAL, 773 .class_init = spapr_drc_cpu_class_init, 774 }; 775 776 static const TypeInfo spapr_drc_pci_info = { 777 .name = TYPE_SPAPR_DRC_PCI, 778 .parent = TYPE_SPAPR_DRC_PHYSICAL, 779 .class_init = spapr_drc_pci_class_init, 780 }; 781 782 static const TypeInfo spapr_drc_lmb_info = { 783 .name = TYPE_SPAPR_DRC_LMB, 784 .parent = TYPE_SPAPR_DRC_LOGICAL, 785 .class_init = spapr_drc_lmb_class_init, 786 }; 787 788 static const TypeInfo spapr_drc_phb_info = { 789 .name = TYPE_SPAPR_DRC_PHB, 790 .parent = TYPE_SPAPR_DRC_LOGICAL, 791 .instance_size = sizeof(SpaprDrc), 792 .class_init = spapr_drc_phb_class_init, 793 }; 794 795 static const TypeInfo spapr_drc_pmem_info = { 796 .name = TYPE_SPAPR_DRC_PMEM, 797 .parent = TYPE_SPAPR_DRC_LOGICAL, 798 .class_init = spapr_drc_pmem_class_init, 799 }; 800 801 /* helper functions for external users */ 802 803 SpaprDrc *spapr_drc_by_index(uint32_t index) 804 { 805 Object *obj; 806 gchar *name; 807 808 name = g_strdup_printf("%s/%x", DRC_CONTAINER_PATH, index); 809 obj = object_resolve_path(name, NULL); 810 g_free(name); 811 812 return !obj ? NULL : SPAPR_DR_CONNECTOR(obj); 813 } 814 815 SpaprDrc *spapr_drc_by_id(const char *type, uint32_t id) 816 { 817 SpaprDrcClass *drck 818 = SPAPR_DR_CONNECTOR_CLASS(object_class_by_name(type)); 819 820 return spapr_drc_by_index(drck->typeshift << DRC_INDEX_TYPE_SHIFT 821 | (id & DRC_INDEX_ID_MASK)); 822 } 823 824 /** 825 * spapr_dt_drc 826 * 827 * @fdt: libfdt device tree 828 * @path: path in the DT to generate properties 829 * @owner: parent Object/DeviceState for which to generate DRC 830 * descriptions for 831 * @drc_type_mask: mask of SpaprDrcType values corresponding 832 * to the types of DRCs to generate entries for 833 * 834 * generate OF properties to describe DRC topology/indices to guests 835 * 836 * as documented in PAPR+ v2.1, 13.5.2 837 */ 838 int spapr_dt_drc(void *fdt, int offset, Object *owner, uint32_t drc_type_mask) 839 { 840 Object *root_container; 841 ObjectProperty *prop; 842 ObjectPropertyIterator iter; 843 uint32_t drc_count = 0; 844 g_autoptr(GArray) drc_indexes = g_array_new(false, true, 845 sizeof(uint32_t)); 846 g_autoptr(GArray) drc_power_domains = g_array_new(false, true, 847 sizeof(uint32_t)); 848 g_autoptr(GString) drc_names = g_string_set_size(g_string_new(NULL), 849 sizeof(uint32_t)); 850 g_autoptr(GString) drc_types = g_string_set_size(g_string_new(NULL), 851 sizeof(uint32_t)); 852 int ret; 853 854 /* 855 * This should really be only called once per node since it overwrites 856 * the OF properties if they already exist. 857 */ 858 g_assert(!fdt_get_property(fdt, offset, "ibm,drc-indexes", NULL)); 859 860 /* the first entry of each properties is a 32-bit integer encoding 861 * the number of elements in the array. we won't know this until 862 * we complete the iteration through all the matching DRCs, but 863 * reserve the space now and set the offsets accordingly so we 864 * can fill them in later. 865 */ 866 drc_indexes = g_array_set_size(drc_indexes, 1); 867 drc_power_domains = g_array_set_size(drc_power_domains, 1); 868 869 /* aliases for all DRConnector objects will be rooted in QOM 870 * composition tree at DRC_CONTAINER_PATH 871 */ 872 root_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 873 874 object_property_iter_init(&iter, root_container); 875 while ((prop = object_property_iter_next(&iter))) { 876 Object *obj; 877 SpaprDrc *drc; 878 SpaprDrcClass *drck; 879 g_autofree char *drc_name = NULL; 880 uint32_t drc_index, drc_power_domain; 881 882 if (!strstart(prop->type, "link<", NULL)) { 883 continue; 884 } 885 886 obj = object_property_get_link(root_container, prop->name, 887 &error_abort); 888 drc = SPAPR_DR_CONNECTOR(obj); 889 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 890 891 if (owner && (drc->owner != owner)) { 892 continue; 893 } 894 895 if ((spapr_drc_type(drc) & drc_type_mask) == 0) { 896 continue; 897 } 898 899 drc_count++; 900 901 /* ibm,drc-indexes */ 902 drc_index = cpu_to_be32(spapr_drc_index(drc)); 903 g_array_append_val(drc_indexes, drc_index); 904 905 /* ibm,drc-power-domains */ 906 drc_power_domain = cpu_to_be32(-1); 907 g_array_append_val(drc_power_domains, drc_power_domain); 908 909 /* ibm,drc-names */ 910 drc_name = spapr_drc_name(drc); 911 drc_names = g_string_append(drc_names, drc_name); 912 drc_names = g_string_insert_len(drc_names, -1, "\0", 1); 913 914 /* ibm,drc-types */ 915 drc_types = g_string_append(drc_types, drck->typename); 916 drc_types = g_string_insert_len(drc_types, -1, "\0", 1); 917 } 918 919 /* now write the drc count into the space we reserved at the 920 * beginning of the arrays previously 921 */ 922 *(uint32_t *)drc_indexes->data = cpu_to_be32(drc_count); 923 *(uint32_t *)drc_power_domains->data = cpu_to_be32(drc_count); 924 *(uint32_t *)drc_names->str = cpu_to_be32(drc_count); 925 *(uint32_t *)drc_types->str = cpu_to_be32(drc_count); 926 927 ret = fdt_setprop(fdt, offset, "ibm,drc-indexes", 928 drc_indexes->data, 929 drc_indexes->len * sizeof(uint32_t)); 930 if (ret) { 931 error_report("Couldn't create ibm,drc-indexes property"); 932 return ret; 933 } 934 935 ret = fdt_setprop(fdt, offset, "ibm,drc-power-domains", 936 drc_power_domains->data, 937 drc_power_domains->len * sizeof(uint32_t)); 938 if (ret) { 939 error_report("Couldn't finalize ibm,drc-power-domains property"); 940 return ret; 941 } 942 943 ret = fdt_setprop(fdt, offset, "ibm,drc-names", 944 drc_names->str, drc_names->len); 945 if (ret) { 946 error_report("Couldn't finalize ibm,drc-names property"); 947 return ret; 948 } 949 950 ret = fdt_setprop(fdt, offset, "ibm,drc-types", 951 drc_types->str, drc_types->len); 952 if (ret) { 953 error_report("Couldn't finalize ibm,drc-types property"); 954 } 955 956 return ret; 957 } 958 959 void spapr_drc_reset_all(SpaprMachineState *spapr) 960 { 961 Object *drc_container; 962 ObjectProperty *prop; 963 ObjectPropertyIterator iter; 964 965 drc_container = container_get(object_get_root(), DRC_CONTAINER_PATH); 966 restart: 967 object_property_iter_init(&iter, drc_container); 968 while ((prop = object_property_iter_next(&iter))) { 969 SpaprDrc *drc; 970 971 if (!strstart(prop->type, "link<", NULL)) { 972 continue; 973 } 974 drc = SPAPR_DR_CONNECTOR(object_property_get_link(drc_container, 975 prop->name, 976 &error_abort)); 977 978 /* 979 * This will complete any pending plug/unplug requests. 980 * In case of a unplugged PHB or PCI bridge, this will 981 * cause some DRCs to be destroyed and thus potentially 982 * invalidate the iterator. 983 */ 984 if (spapr_drc_reset(drc)) { 985 goto restart; 986 } 987 } 988 } 989 990 /* 991 * RTAS calls 992 */ 993 994 static uint32_t rtas_set_isolation_state(uint32_t idx, uint32_t state) 995 { 996 SpaprDrc *drc = spapr_drc_by_index(idx); 997 SpaprDrcClass *drck; 998 999 if (!drc) { 1000 return RTAS_OUT_NO_SUCH_INDICATOR; 1001 } 1002 1003 trace_spapr_drc_set_isolation_state(spapr_drc_index(drc), state); 1004 1005 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1006 1007 switch (state) { 1008 case SPAPR_DR_ISOLATION_STATE_ISOLATED: 1009 return drck->isolate(drc); 1010 1011 case SPAPR_DR_ISOLATION_STATE_UNISOLATED: 1012 return drck->unisolate(drc); 1013 1014 default: 1015 return RTAS_OUT_PARAM_ERROR; 1016 } 1017 } 1018 1019 static uint32_t rtas_set_allocation_state(uint32_t idx, uint32_t state) 1020 { 1021 SpaprDrc *drc = spapr_drc_by_index(idx); 1022 1023 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_LOGICAL)) { 1024 return RTAS_OUT_NO_SUCH_INDICATOR; 1025 } 1026 1027 trace_spapr_drc_set_allocation_state(spapr_drc_index(drc), state); 1028 1029 switch (state) { 1030 case SPAPR_DR_ALLOCATION_STATE_USABLE: 1031 return drc_set_usable(drc); 1032 1033 case SPAPR_DR_ALLOCATION_STATE_UNUSABLE: 1034 return drc_set_unusable(drc); 1035 1036 default: 1037 return RTAS_OUT_PARAM_ERROR; 1038 } 1039 } 1040 1041 static uint32_t rtas_set_dr_indicator(uint32_t idx, uint32_t state) 1042 { 1043 SpaprDrc *drc = spapr_drc_by_index(idx); 1044 1045 if (!drc || !object_dynamic_cast(OBJECT(drc), TYPE_SPAPR_DRC_PHYSICAL)) { 1046 return RTAS_OUT_NO_SUCH_INDICATOR; 1047 } 1048 if ((state != SPAPR_DR_INDICATOR_INACTIVE) 1049 && (state != SPAPR_DR_INDICATOR_ACTIVE) 1050 && (state != SPAPR_DR_INDICATOR_IDENTIFY) 1051 && (state != SPAPR_DR_INDICATOR_ACTION)) { 1052 return RTAS_OUT_PARAM_ERROR; /* bad state parameter */ 1053 } 1054 1055 trace_spapr_drc_set_dr_indicator(idx, state); 1056 SPAPR_DRC_PHYSICAL(drc)->dr_indicator = state; 1057 return RTAS_OUT_SUCCESS; 1058 } 1059 1060 static void rtas_set_indicator(PowerPCCPU *cpu, SpaprMachineState *spapr, 1061 uint32_t token, 1062 uint32_t nargs, target_ulong args, 1063 uint32_t nret, target_ulong rets) 1064 { 1065 uint32_t type, idx, state; 1066 uint32_t ret = RTAS_OUT_SUCCESS; 1067 1068 if (nargs != 3 || nret != 1) { 1069 ret = RTAS_OUT_PARAM_ERROR; 1070 goto out; 1071 } 1072 1073 type = rtas_ld(args, 0); 1074 idx = rtas_ld(args, 1); 1075 state = rtas_ld(args, 2); 1076 1077 switch (type) { 1078 case RTAS_SENSOR_TYPE_ISOLATION_STATE: 1079 ret = rtas_set_isolation_state(idx, state); 1080 break; 1081 case RTAS_SENSOR_TYPE_DR: 1082 ret = rtas_set_dr_indicator(idx, state); 1083 break; 1084 case RTAS_SENSOR_TYPE_ALLOCATION_STATE: 1085 ret = rtas_set_allocation_state(idx, state); 1086 break; 1087 default: 1088 ret = RTAS_OUT_NOT_SUPPORTED; 1089 } 1090 1091 out: 1092 rtas_st(rets, 0, ret); 1093 } 1094 1095 static void rtas_get_sensor_state(PowerPCCPU *cpu, SpaprMachineState *spapr, 1096 uint32_t token, uint32_t nargs, 1097 target_ulong args, uint32_t nret, 1098 target_ulong rets) 1099 { 1100 uint32_t sensor_type; 1101 uint32_t sensor_index; 1102 uint32_t sensor_state = 0; 1103 SpaprDrc *drc; 1104 SpaprDrcClass *drck; 1105 uint32_t ret = RTAS_OUT_SUCCESS; 1106 1107 if (nargs != 2 || nret != 2) { 1108 ret = RTAS_OUT_PARAM_ERROR; 1109 goto out; 1110 } 1111 1112 sensor_type = rtas_ld(args, 0); 1113 sensor_index = rtas_ld(args, 1); 1114 1115 if (sensor_type != RTAS_SENSOR_TYPE_ENTITY_SENSE) { 1116 /* currently only DR-related sensors are implemented */ 1117 trace_spapr_rtas_get_sensor_state_not_supported(sensor_index, 1118 sensor_type); 1119 ret = RTAS_OUT_NOT_SUPPORTED; 1120 goto out; 1121 } 1122 1123 drc = spapr_drc_by_index(sensor_index); 1124 if (!drc) { 1125 trace_spapr_rtas_get_sensor_state_invalid(sensor_index); 1126 ret = RTAS_OUT_PARAM_ERROR; 1127 goto out; 1128 } 1129 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1130 sensor_state = drck->dr_entity_sense(drc); 1131 1132 out: 1133 rtas_st(rets, 0, ret); 1134 rtas_st(rets, 1, sensor_state); 1135 } 1136 1137 /* configure-connector work area offsets, int32_t units for field 1138 * indexes, bytes for field offset/len values. 1139 * 1140 * as documented by PAPR+ v2.7, 13.5.3.5 1141 */ 1142 #define CC_IDX_NODE_NAME_OFFSET 2 1143 #define CC_IDX_PROP_NAME_OFFSET 2 1144 #define CC_IDX_PROP_LEN 3 1145 #define CC_IDX_PROP_DATA_OFFSET 4 1146 #define CC_VAL_DATA_OFFSET ((CC_IDX_PROP_DATA_OFFSET + 1) * 4) 1147 #define CC_WA_LEN 4096 1148 1149 static void configure_connector_st(target_ulong addr, target_ulong offset, 1150 const void *buf, size_t len) 1151 { 1152 cpu_physical_memory_write(ppc64_phys_to_real(addr + offset), 1153 buf, MIN(len, CC_WA_LEN - offset)); 1154 } 1155 1156 static void rtas_ibm_configure_connector(PowerPCCPU *cpu, 1157 SpaprMachineState *spapr, 1158 uint32_t token, uint32_t nargs, 1159 target_ulong args, uint32_t nret, 1160 target_ulong rets) 1161 { 1162 uint64_t wa_addr; 1163 uint64_t wa_offset; 1164 uint32_t drc_index; 1165 SpaprDrc *drc; 1166 SpaprDrcClass *drck; 1167 SpaprDRCCResponse resp = SPAPR_DR_CC_RESPONSE_CONTINUE; 1168 int rc; 1169 1170 if (nargs != 2 || nret != 1) { 1171 rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR); 1172 return; 1173 } 1174 1175 wa_addr = ((uint64_t)rtas_ld(args, 1) << 32) | rtas_ld(args, 0); 1176 1177 drc_index = rtas_ld(wa_addr, 0); 1178 drc = spapr_drc_by_index(drc_index); 1179 if (!drc) { 1180 trace_spapr_rtas_ibm_configure_connector_invalid(drc_index); 1181 rc = RTAS_OUT_PARAM_ERROR; 1182 goto out; 1183 } 1184 1185 if ((drc->state != SPAPR_DRC_STATE_LOGICAL_UNISOLATE) 1186 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_UNISOLATE) 1187 && (drc->state != SPAPR_DRC_STATE_LOGICAL_CONFIGURED) 1188 && (drc->state != SPAPR_DRC_STATE_PHYSICAL_CONFIGURED)) { 1189 /* 1190 * Need to unisolate the device before configuring 1191 * or it should already be in configured state to 1192 * allow configure-connector be called repeatedly. 1193 */ 1194 rc = SPAPR_DR_CC_RESPONSE_NOT_CONFIGURABLE; 1195 goto out; 1196 } 1197 1198 drck = SPAPR_DR_CONNECTOR_GET_CLASS(drc); 1199 1200 /* 1201 * This indicates that the kernel is reconfiguring a LMB due to 1202 * a failed hotunplug. Rollback the DIMM unplug process. 1203 */ 1204 if (spapr_drc_type(drc) == SPAPR_DR_CONNECTOR_TYPE_LMB && 1205 drc->unplug_requested) { 1206 spapr_memory_unplug_rollback(spapr, drc->dev); 1207 } 1208 1209 if (!drc->fdt) { 1210 void *fdt; 1211 int fdt_size; 1212 1213 fdt = create_device_tree(&fdt_size); 1214 1215 if (drck->dt_populate(drc, spapr, fdt, &drc->fdt_start_offset, 1216 NULL)) { 1217 g_free(fdt); 1218 rc = SPAPR_DR_CC_RESPONSE_ERROR; 1219 goto out; 1220 } 1221 1222 drc->fdt = fdt; 1223 drc->ccs_offset = drc->fdt_start_offset; 1224 drc->ccs_depth = 0; 1225 } 1226 1227 do { 1228 uint32_t tag; 1229 const char *name; 1230 const struct fdt_property *prop; 1231 int fdt_offset_next, prop_len; 1232 1233 tag = fdt_next_tag(drc->fdt, drc->ccs_offset, &fdt_offset_next); 1234 1235 switch (tag) { 1236 case FDT_BEGIN_NODE: 1237 drc->ccs_depth++; 1238 name = fdt_get_name(drc->fdt, drc->ccs_offset, NULL); 1239 1240 /* provide the name of the next OF node */ 1241 wa_offset = CC_VAL_DATA_OFFSET; 1242 rtas_st(wa_addr, CC_IDX_NODE_NAME_OFFSET, wa_offset); 1243 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1244 resp = SPAPR_DR_CC_RESPONSE_NEXT_CHILD; 1245 break; 1246 case FDT_END_NODE: 1247 drc->ccs_depth--; 1248 if (drc->ccs_depth == 0) { 1249 uint32_t drc_index = spapr_drc_index(drc); 1250 1251 /* done sending the device tree, move to configured state */ 1252 trace_spapr_drc_set_configured(drc_index); 1253 drc->state = drck->ready_state; 1254 /* 1255 * Ensure that we are able to send the FDT fragment 1256 * again via configure-connector call if the guest requests. 1257 */ 1258 drc->ccs_offset = drc->fdt_start_offset; 1259 drc->ccs_depth = 0; 1260 fdt_offset_next = drc->fdt_start_offset; 1261 resp = SPAPR_DR_CC_RESPONSE_SUCCESS; 1262 } else { 1263 resp = SPAPR_DR_CC_RESPONSE_PREV_PARENT; 1264 } 1265 break; 1266 case FDT_PROP: 1267 prop = fdt_get_property_by_offset(drc->fdt, drc->ccs_offset, 1268 &prop_len); 1269 name = fdt_string(drc->fdt, fdt32_to_cpu(prop->nameoff)); 1270 1271 /* provide the name of the next OF property */ 1272 wa_offset = CC_VAL_DATA_OFFSET; 1273 rtas_st(wa_addr, CC_IDX_PROP_NAME_OFFSET, wa_offset); 1274 configure_connector_st(wa_addr, wa_offset, name, strlen(name) + 1); 1275 1276 /* provide the length and value of the OF property. data gets 1277 * placed immediately after NULL terminator of the OF property's 1278 * name string 1279 */ 1280 wa_offset += strlen(name) + 1, 1281 rtas_st(wa_addr, CC_IDX_PROP_LEN, prop_len); 1282 rtas_st(wa_addr, CC_IDX_PROP_DATA_OFFSET, wa_offset); 1283 configure_connector_st(wa_addr, wa_offset, prop->data, prop_len); 1284 resp = SPAPR_DR_CC_RESPONSE_NEXT_PROPERTY; 1285 break; 1286 case FDT_END: 1287 resp = SPAPR_DR_CC_RESPONSE_ERROR; 1288 default: 1289 /* keep seeking for an actionable tag */ 1290 break; 1291 } 1292 if (drc->ccs_offset >= 0) { 1293 drc->ccs_offset = fdt_offset_next; 1294 } 1295 } while (resp == SPAPR_DR_CC_RESPONSE_CONTINUE); 1296 1297 rc = resp; 1298 out: 1299 rtas_st(rets, 0, rc); 1300 } 1301 1302 static void spapr_drc_register_types(void) 1303 { 1304 type_register_static(&spapr_dr_connector_info); 1305 type_register_static(&spapr_drc_physical_info); 1306 type_register_static(&spapr_drc_logical_info); 1307 type_register_static(&spapr_drc_cpu_info); 1308 type_register_static(&spapr_drc_pci_info); 1309 type_register_static(&spapr_drc_lmb_info); 1310 type_register_static(&spapr_drc_phb_info); 1311 type_register_static(&spapr_drc_pmem_info); 1312 1313 spapr_rtas_register(RTAS_SET_INDICATOR, "set-indicator", 1314 rtas_set_indicator); 1315 spapr_rtas_register(RTAS_GET_SENSOR_STATE, "get-sensor-state", 1316 rtas_get_sensor_state); 1317 spapr_rtas_register(RTAS_IBM_CONFIGURE_CONNECTOR, "ibm,configure-connector", 1318 rtas_ibm_configure_connector); 1319 } 1320 type_init(spapr_drc_register_types) 1321