1 /* 2 * sPAPR CPU core device, acts as container of CPU thread devices. 3 * 4 * Copyright (C) 2016 Bharata B Rao <bharata@linux.vnet.ibm.com> 5 * 6 * This work is licensed under the terms of the GNU GPL, version 2 or later. 7 * See the COPYING file in the top-level directory. 8 */ 9 #include "qemu/osdep.h" 10 #include "hw/cpu/core.h" 11 #include "hw/ppc/spapr_cpu_core.h" 12 #include "target/ppc/cpu.h" 13 #include "hw/ppc/spapr.h" 14 #include "hw/boards.h" 15 #include "qapi/error.h" 16 #include "sysemu/cpus.h" 17 #include "sysemu/kvm.h" 18 #include "target/ppc/kvm_ppc.h" 19 #include "hw/ppc/ppc.h" 20 #include "target/ppc/mmu-hash64.h" 21 #include "sysemu/numa.h" 22 #include "sysemu/hw_accel.h" 23 #include "qemu/error-report.h" 24 25 static void spapr_cpu_reset(void *opaque) 26 { 27 PowerPCCPU *cpu = opaque; 28 CPUState *cs = CPU(cpu); 29 CPUPPCState *env = &cpu->env; 30 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 31 sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu); 32 target_ulong lpcr; 33 34 cpu_reset(cs); 35 36 /* All CPUs start halted. CPU0 is unhalted from the machine level 37 * reset code and the rest are explicitly started up by the guest 38 * using an RTAS call */ 39 cs->halted = 1; 40 41 /* Set compatibility mode to match the boot CPU, which was either set 42 * by the machine reset code or by CAS. This should never fail. 43 */ 44 ppc_set_compat(cpu, POWERPC_CPU(first_cpu)->compat_pvr, &error_abort); 45 46 env->spr[SPR_HIOR] = 0; 47 48 lpcr = env->spr[SPR_LPCR]; 49 50 /* Set emulated LPCR to not send interrupts to hypervisor. Note that 51 * under KVM, the actual HW LPCR will be set differently by KVM itself, 52 * the settings below ensure proper operations with TCG in absence of 53 * a real hypervisor. 54 * 55 * Clearing VPM0 will also cause us to use RMOR in mmu-hash64.c for 56 * real mode accesses, which thankfully defaults to 0 and isn't 57 * accessible in guest mode. 58 * 59 * Disable Power-saving mode Exit Cause exceptions for the CPU, so 60 * we don't get spurious wakups before an RTAS start-cpu call. 61 */ 62 lpcr &= ~(LPCR_VPM0 | LPCR_VPM1 | LPCR_ISL | LPCR_KBV | pcc->lpcr_pm); 63 lpcr |= LPCR_LPES0 | LPCR_LPES1; 64 65 /* Set RMLS to the max (ie, 16G) */ 66 lpcr &= ~LPCR_RMLS; 67 lpcr |= 1ull << LPCR_RMLS_SHIFT; 68 69 ppc_store_lpcr(cpu, lpcr); 70 71 /* Set a full AMOR so guest can use the AMR as it sees fit */ 72 env->spr[SPR_AMOR] = 0xffffffffffffffffull; 73 74 spapr_cpu->vpa_addr = 0; 75 spapr_cpu->slb_shadow_addr = 0; 76 spapr_cpu->slb_shadow_size = 0; 77 spapr_cpu->dtl_addr = 0; 78 spapr_cpu->dtl_size = 0; 79 80 spapr_caps_cpu_apply(SPAPR_MACHINE(qdev_get_machine()), cpu); 81 82 kvm_check_mmu(cpu, &error_fatal); 83 } 84 85 void spapr_cpu_set_entry_state(PowerPCCPU *cpu, target_ulong nip, target_ulong r3) 86 { 87 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu); 88 CPUPPCState *env = &cpu->env; 89 90 env->nip = nip; 91 env->gpr[3] = r3; 92 kvmppc_set_reg_ppc_online(cpu, 1); 93 CPU(cpu)->halted = 0; 94 /* Enable Power-saving mode Exit Cause exceptions */ 95 ppc_store_lpcr(cpu, env->spr[SPR_LPCR] | pcc->lpcr_pm); 96 } 97 98 /* 99 * Return the sPAPR CPU core type for @model which essentially is the CPU 100 * model specified with -cpu cmdline option. 101 */ 102 const char *spapr_get_cpu_core_type(const char *cpu_type) 103 { 104 int len = strlen(cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX); 105 char *core_type = g_strdup_printf(SPAPR_CPU_CORE_TYPE_NAME("%.*s"), 106 len, cpu_type); 107 ObjectClass *oc = object_class_by_name(core_type); 108 109 g_free(core_type); 110 if (!oc) { 111 return NULL; 112 } 113 114 return object_class_get_name(oc); 115 } 116 117 static bool slb_shadow_needed(void *opaque) 118 { 119 sPAPRCPUState *spapr_cpu = opaque; 120 121 return spapr_cpu->slb_shadow_addr != 0; 122 } 123 124 static const VMStateDescription vmstate_spapr_cpu_slb_shadow = { 125 .name = "spapr_cpu/vpa/slb_shadow", 126 .version_id = 1, 127 .minimum_version_id = 1, 128 .needed = slb_shadow_needed, 129 .fields = (VMStateField[]) { 130 VMSTATE_UINT64(slb_shadow_addr, sPAPRCPUState), 131 VMSTATE_UINT64(slb_shadow_size, sPAPRCPUState), 132 VMSTATE_END_OF_LIST() 133 } 134 }; 135 136 static bool dtl_needed(void *opaque) 137 { 138 sPAPRCPUState *spapr_cpu = opaque; 139 140 return spapr_cpu->dtl_addr != 0; 141 } 142 143 static const VMStateDescription vmstate_spapr_cpu_dtl = { 144 .name = "spapr_cpu/vpa/dtl", 145 .version_id = 1, 146 .minimum_version_id = 1, 147 .needed = dtl_needed, 148 .fields = (VMStateField[]) { 149 VMSTATE_UINT64(dtl_addr, sPAPRCPUState), 150 VMSTATE_UINT64(dtl_size, sPAPRCPUState), 151 VMSTATE_END_OF_LIST() 152 } 153 }; 154 155 static bool vpa_needed(void *opaque) 156 { 157 sPAPRCPUState *spapr_cpu = opaque; 158 159 return spapr_cpu->vpa_addr != 0; 160 } 161 162 static const VMStateDescription vmstate_spapr_cpu_vpa = { 163 .name = "spapr_cpu/vpa", 164 .version_id = 1, 165 .minimum_version_id = 1, 166 .needed = vpa_needed, 167 .fields = (VMStateField[]) { 168 VMSTATE_UINT64(vpa_addr, sPAPRCPUState), 169 VMSTATE_END_OF_LIST() 170 }, 171 .subsections = (const VMStateDescription * []) { 172 &vmstate_spapr_cpu_slb_shadow, 173 &vmstate_spapr_cpu_dtl, 174 NULL 175 } 176 }; 177 178 static const VMStateDescription vmstate_spapr_cpu_state = { 179 .name = "spapr_cpu", 180 .version_id = 1, 181 .minimum_version_id = 1, 182 .fields = (VMStateField[]) { 183 VMSTATE_END_OF_LIST() 184 }, 185 .subsections = (const VMStateDescription * []) { 186 &vmstate_spapr_cpu_vpa, 187 NULL 188 } 189 }; 190 191 static void spapr_unrealize_vcpu(PowerPCCPU *cpu, sPAPRCPUCore *sc) 192 { 193 if (!sc->pre_3_0_migration) { 194 vmstate_unregister(NULL, &vmstate_spapr_cpu_state, cpu->machine_data); 195 } 196 qemu_unregister_reset(spapr_cpu_reset, cpu); 197 object_unparent(cpu->intc); 198 cpu_remove_sync(CPU(cpu)); 199 object_unparent(OBJECT(cpu)); 200 } 201 202 static void spapr_cpu_core_unrealize(DeviceState *dev, Error **errp) 203 { 204 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 205 CPUCore *cc = CPU_CORE(dev); 206 int i; 207 208 for (i = 0; i < cc->nr_threads; i++) { 209 spapr_unrealize_vcpu(sc->threads[i], sc); 210 } 211 g_free(sc->threads); 212 } 213 214 static void spapr_realize_vcpu(PowerPCCPU *cpu, sPAPRMachineState *spapr, 215 sPAPRCPUCore *sc, Error **errp) 216 { 217 CPUPPCState *env = &cpu->env; 218 CPUState *cs = CPU(cpu); 219 Error *local_err = NULL; 220 221 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); 222 if (local_err) { 223 goto error; 224 } 225 226 /* Set time-base frequency to 512 MHz */ 227 cpu_ppc_tb_init(env, SPAPR_TIMEBASE_FREQ); 228 229 cpu_ppc_set_vhyp(cpu, PPC_VIRTUAL_HYPERVISOR(spapr)); 230 kvmppc_set_papr(cpu); 231 232 qemu_register_reset(spapr_cpu_reset, cpu); 233 spapr_cpu_reset(cpu); 234 235 cpu->intc = spapr->irq->cpu_intc_create(spapr, OBJECT(cpu), &local_err); 236 if (local_err) { 237 goto error_unregister; 238 } 239 240 if (!sc->pre_3_0_migration) { 241 vmstate_register(NULL, cs->cpu_index, &vmstate_spapr_cpu_state, 242 cpu->machine_data); 243 } 244 245 return; 246 247 error_unregister: 248 qemu_unregister_reset(spapr_cpu_reset, cpu); 249 cpu_remove_sync(CPU(cpu)); 250 error: 251 error_propagate(errp, local_err); 252 } 253 254 static PowerPCCPU *spapr_create_vcpu(sPAPRCPUCore *sc, int i, Error **errp) 255 { 256 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_GET_CLASS(sc); 257 CPUCore *cc = CPU_CORE(sc); 258 Object *obj; 259 char *id; 260 CPUState *cs; 261 PowerPCCPU *cpu; 262 Error *local_err = NULL; 263 264 obj = object_new(scc->cpu_type); 265 266 cs = CPU(obj); 267 cpu = POWERPC_CPU(obj); 268 cs->cpu_index = cc->core_id + i; 269 spapr_set_vcpu_id(cpu, cs->cpu_index, &local_err); 270 if (local_err) { 271 goto err; 272 } 273 274 cpu->node_id = sc->node_id; 275 276 id = g_strdup_printf("thread[%d]", i); 277 object_property_add_child(OBJECT(sc), id, obj, &local_err); 278 g_free(id); 279 if (local_err) { 280 goto err; 281 } 282 283 cpu->machine_data = g_new0(sPAPRCPUState, 1); 284 285 object_unref(obj); 286 return cpu; 287 288 err: 289 object_unref(obj); 290 error_propagate(errp, local_err); 291 return NULL; 292 } 293 294 static void spapr_delete_vcpu(PowerPCCPU *cpu, sPAPRCPUCore *sc) 295 { 296 sPAPRCPUState *spapr_cpu = spapr_cpu_state(cpu); 297 298 cpu->machine_data = NULL; 299 g_free(spapr_cpu); 300 object_unparent(OBJECT(cpu)); 301 } 302 303 static void spapr_cpu_core_realize(DeviceState *dev, Error **errp) 304 { 305 /* We don't use SPAPR_MACHINE() in order to exit gracefully if the user 306 * tries to add a sPAPR CPU core to a non-pseries machine. 307 */ 308 sPAPRMachineState *spapr = 309 (sPAPRMachineState *) object_dynamic_cast(qdev_get_machine(), 310 TYPE_SPAPR_MACHINE); 311 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 312 CPUCore *cc = CPU_CORE(OBJECT(dev)); 313 Error *local_err = NULL; 314 int i, j; 315 316 if (!spapr) { 317 error_setg(errp, TYPE_SPAPR_CPU_CORE " needs a pseries machine"); 318 return; 319 } 320 321 sc->threads = g_new(PowerPCCPU *, cc->nr_threads); 322 for (i = 0; i < cc->nr_threads; i++) { 323 sc->threads[i] = spapr_create_vcpu(sc, i, &local_err); 324 if (local_err) { 325 goto err; 326 } 327 } 328 329 for (j = 0; j < cc->nr_threads; j++) { 330 spapr_realize_vcpu(sc->threads[j], spapr, sc, &local_err); 331 if (local_err) { 332 goto err_unrealize; 333 } 334 } 335 return; 336 337 err_unrealize: 338 while (--j >= 0) { 339 spapr_unrealize_vcpu(sc->threads[j], sc); 340 } 341 err: 342 while (--i >= 0) { 343 spapr_delete_vcpu(sc->threads[i], sc); 344 } 345 g_free(sc->threads); 346 error_propagate(errp, local_err); 347 } 348 349 static Property spapr_cpu_core_properties[] = { 350 DEFINE_PROP_INT32("node-id", sPAPRCPUCore, node_id, CPU_UNSET_NUMA_NODE_ID), 351 DEFINE_PROP_BOOL("pre-3.0-migration", sPAPRCPUCore, pre_3_0_migration, 352 false), 353 DEFINE_PROP_END_OF_LIST() 354 }; 355 356 static void spapr_cpu_core_class_init(ObjectClass *oc, void *data) 357 { 358 DeviceClass *dc = DEVICE_CLASS(oc); 359 sPAPRCPUCoreClass *scc = SPAPR_CPU_CORE_CLASS(oc); 360 361 dc->realize = spapr_cpu_core_realize; 362 dc->unrealize = spapr_cpu_core_unrealize; 363 dc->props = spapr_cpu_core_properties; 364 scc->cpu_type = data; 365 } 366 367 #define DEFINE_SPAPR_CPU_CORE_TYPE(cpu_model) \ 368 { \ 369 .parent = TYPE_SPAPR_CPU_CORE, \ 370 .class_data = (void *) POWERPC_CPU_TYPE_NAME(cpu_model), \ 371 .class_init = spapr_cpu_core_class_init, \ 372 .name = SPAPR_CPU_CORE_TYPE_NAME(cpu_model), \ 373 } 374 375 static const TypeInfo spapr_cpu_core_type_infos[] = { 376 { 377 .name = TYPE_SPAPR_CPU_CORE, 378 .parent = TYPE_CPU_CORE, 379 .abstract = true, 380 .instance_size = sizeof(sPAPRCPUCore), 381 .class_size = sizeof(sPAPRCPUCoreClass), 382 }, 383 DEFINE_SPAPR_CPU_CORE_TYPE("970_v2.2"), 384 DEFINE_SPAPR_CPU_CORE_TYPE("970mp_v1.0"), 385 DEFINE_SPAPR_CPU_CORE_TYPE("970mp_v1.1"), 386 DEFINE_SPAPR_CPU_CORE_TYPE("power5+_v2.1"), 387 DEFINE_SPAPR_CPU_CORE_TYPE("power7_v2.3"), 388 DEFINE_SPAPR_CPU_CORE_TYPE("power7+_v2.1"), 389 DEFINE_SPAPR_CPU_CORE_TYPE("power8_v2.0"), 390 DEFINE_SPAPR_CPU_CORE_TYPE("power8e_v2.1"), 391 DEFINE_SPAPR_CPU_CORE_TYPE("power8nvl_v1.0"), 392 DEFINE_SPAPR_CPU_CORE_TYPE("power9_v1.0"), 393 DEFINE_SPAPR_CPU_CORE_TYPE("power9_v2.0"), 394 #ifdef CONFIG_KVM 395 DEFINE_SPAPR_CPU_CORE_TYPE("host"), 396 #endif 397 }; 398 399 DEFINE_TYPES(spapr_cpu_core_type_infos) 400