xref: /qemu/hw/ppc/spapr.c (revision f767b1ac5766fcc48cc3939eeb7db7b95b98408b) !
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 
84 #include "monitor/monitor.h"
85 
86 #include <libfdt.h>
87 
88 /* SLOF memory layout:
89  *
90  * SLOF raw image loaded at 0, copies its romfs right below the flat
91  * device-tree, then position SLOF itself 31M below that
92  *
93  * So we set FW_OVERHEAD to 40MB which should account for all of that
94  * and more
95  *
96  * We load our kernel at 4M, leaving space for SLOF initial image
97  */
98 #define FDT_MAX_SIZE            0x100000
99 #define RTAS_MAX_SIZE           0x10000
100 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE             0x400000
102 #define FW_FILE_NAME            "slof.bin"
103 #define FW_OVERHEAD             0x2800000
104 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
105 
106 #define MIN_RMA_SLOF            128UL
107 
108 #define PHANDLE_INTC            0x00001111
109 
110 /* These two functions implement the VCPU id numbering: one to compute them
111  * all and one to identify thread 0 of a VCORE. Any change to the first one
112  * is likely to have an impact on the second one, so let's keep them close.
113  */
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 {
116     MachineState *ms = MACHINE(spapr);
117     unsigned int smp_threads = ms->smp.threads;
118 
119     assert(spapr->vsmt);
120     return
121         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 }
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124                                       PowerPCCPU *cpu)
125 {
126     assert(spapr->vsmt);
127     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 }
129 
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133      * and newer QEMUs don't even have them. In both cases, we don't want
134      * to send anything on the wire.
135      */
136     return false;
137 }
138 
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140     .name = "icp/server",
141     .version_id = 1,
142     .minimum_version_id = 1,
143     .needed = pre_2_10_vmstate_dummy_icp_needed,
144     .fields = (VMStateField[]) {
145         VMSTATE_UNUSED(4), /* uint32_t xirr */
146         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147         VMSTATE_UNUSED(1), /* uint8_t mfrr */
148         VMSTATE_END_OF_LIST()
149     },
150 };
151 
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155                      (void *)(uintptr_t) i);
156 }
157 
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161                        (void *)(uintptr_t) i);
162 }
163 
164 int spapr_max_server_number(SpaprMachineState *spapr)
165 {
166     MachineState *ms = MACHINE(spapr);
167 
168     assert(spapr->vsmt);
169     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 }
171 
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173                                   int smt_threads)
174 {
175     int i, ret = 0;
176     uint32_t servers_prop[smt_threads];
177     uint32_t gservers_prop[smt_threads * 2];
178     int index = spapr_get_vcpu_id(cpu);
179 
180     if (cpu->compat_pvr) {
181         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182         if (ret < 0) {
183             return ret;
184         }
185     }
186 
187     /* Build interrupt servers and gservers properties */
188     for (i = 0; i < smt_threads; i++) {
189         servers_prop[i] = cpu_to_be32(index + i);
190         /* Hack, direct the group queues back to cpu 0 */
191         gservers_prop[i*2] = cpu_to_be32(index + i);
192         gservers_prop[i*2 + 1] = 0;
193     }
194     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195                       servers_prop, sizeof(servers_prop));
196     if (ret < 0) {
197         return ret;
198     }
199     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200                       gservers_prop, sizeof(gservers_prop));
201 
202     return ret;
203 }
204 
205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 {
207     int index = spapr_get_vcpu_id(cpu);
208     uint32_t associativity[] = {cpu_to_be32(0x5),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(0x0),
211                                 cpu_to_be32(0x0),
212                                 cpu_to_be32(cpu->node_id),
213                                 cpu_to_be32(index)};
214 
215     /* Advertise NUMA via ibm,associativity */
216     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
217                           sizeof(associativity));
218 }
219 
220 /* Populate the "ibm,pa-features" property */
221 static void spapr_populate_pa_features(SpaprMachineState *spapr,
222                                        PowerPCCPU *cpu,
223                                        void *fdt, int offset)
224 {
225     uint8_t pa_features_206[] = { 6, 0,
226         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
227     uint8_t pa_features_207[] = { 24, 0,
228         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
229         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
230         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
231         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
232     uint8_t pa_features_300[] = { 66, 0,
233         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
234         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
235         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
236         /* 6: DS207 */
237         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
238         /* 16: Vector */
239         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
240         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
241         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
242         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
243         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
244         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
245         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
246         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
247         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
248         /* 42: PM, 44: PC RA, 46: SC vec'd */
249         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
250         /* 48: SIMD, 50: QP BFP, 52: String */
251         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
252         /* 54: DecFP, 56: DecI, 58: SHA */
253         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
254         /* 60: NM atomic, 62: RNG */
255         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
256     };
257     uint8_t *pa_features = NULL;
258     size_t pa_size;
259 
260     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
261         pa_features = pa_features_206;
262         pa_size = sizeof(pa_features_206);
263     }
264     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
265         pa_features = pa_features_207;
266         pa_size = sizeof(pa_features_207);
267     }
268     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
269         pa_features = pa_features_300;
270         pa_size = sizeof(pa_features_300);
271     }
272     if (!pa_features) {
273         return;
274     }
275 
276     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
277         /*
278          * Note: we keep CI large pages off by default because a 64K capable
279          * guest provisioned with large pages might otherwise try to map a qemu
280          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
281          * even if that qemu runs on a 4k host.
282          * We dd this bit back here if we are confident this is not an issue
283          */
284         pa_features[3] |= 0x20;
285     }
286     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
287         pa_features[24] |= 0x80;    /* Transactional memory support */
288     }
289     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
290         /* Workaround for broken kernels that attempt (guest) radix
291          * mode when they can't handle it, if they see the radix bit set
292          * in pa-features. So hide it from them. */
293         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
294     }
295 
296     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
297 }
298 
299 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
300 {
301     MachineState *ms = MACHINE(spapr);
302     int ret = 0, offset, cpus_offset;
303     CPUState *cs;
304     char cpu_model[32];
305     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
306 
307     CPU_FOREACH(cs) {
308         PowerPCCPU *cpu = POWERPC_CPU(cs);
309         DeviceClass *dc = DEVICE_GET_CLASS(cs);
310         int index = spapr_get_vcpu_id(cpu);
311         int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
312 
313         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
314             continue;
315         }
316 
317         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
318 
319         cpus_offset = fdt_path_offset(fdt, "/cpus");
320         if (cpus_offset < 0) {
321             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
322             if (cpus_offset < 0) {
323                 return cpus_offset;
324             }
325         }
326         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
327         if (offset < 0) {
328             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
329             if (offset < 0) {
330                 return offset;
331             }
332         }
333 
334         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
335                           pft_size_prop, sizeof(pft_size_prop));
336         if (ret < 0) {
337             return ret;
338         }
339 
340         if (ms->numa_state->num_nodes > 1) {
341             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
342             if (ret < 0) {
343                 return ret;
344             }
345         }
346 
347         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
348         if (ret < 0) {
349             return ret;
350         }
351 
352         spapr_populate_pa_features(spapr, cpu, fdt, offset);
353     }
354     return ret;
355 }
356 
357 static hwaddr spapr_node0_size(MachineState *machine)
358 {
359     if (machine->numa_state->num_nodes) {
360         int i;
361         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
362             if (machine->numa_state->nodes[i].node_mem) {
363                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
364                            machine->ram_size);
365             }
366         }
367     }
368     return machine->ram_size;
369 }
370 
371 static void add_str(GString *s, const gchar *s1)
372 {
373     g_string_append_len(s, s1, strlen(s1) + 1);
374 }
375 
376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
377                                        hwaddr size)
378 {
379     uint32_t associativity[] = {
380         cpu_to_be32(0x4), /* length */
381         cpu_to_be32(0x0), cpu_to_be32(0x0),
382         cpu_to_be32(0x0), cpu_to_be32(nodeid)
383     };
384     char mem_name[32];
385     uint64_t mem_reg_property[2];
386     int off;
387 
388     mem_reg_property[0] = cpu_to_be64(start);
389     mem_reg_property[1] = cpu_to_be64(size);
390 
391     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
392     off = fdt_add_subnode(fdt, 0, mem_name);
393     _FDT(off);
394     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
395     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
396                       sizeof(mem_reg_property))));
397     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
398                       sizeof(associativity))));
399     return off;
400 }
401 
402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
403 {
404     MachineState *machine = MACHINE(spapr);
405     hwaddr mem_start, node_size;
406     int i, nb_nodes = machine->numa_state->num_nodes;
407     NodeInfo *nodes = machine->numa_state->nodes;
408     NodeInfo ramnode;
409 
410     /* No NUMA nodes, assume there is just one node with whole RAM */
411     if (!nb_nodes) {
412         nb_nodes = 1;
413         ramnode.node_mem = machine->ram_size;
414         nodes = &ramnode;
415     }
416 
417     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
418         if (!nodes[i].node_mem) {
419             continue;
420         }
421         if (mem_start >= machine->ram_size) {
422             node_size = 0;
423         } else {
424             node_size = nodes[i].node_mem;
425             if (node_size > machine->ram_size - mem_start) {
426                 node_size = machine->ram_size - mem_start;
427             }
428         }
429         if (!mem_start) {
430             /* spapr_machine_init() checks for rma_size <= node0_size
431              * already */
432             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
433             mem_start += spapr->rma_size;
434             node_size -= spapr->rma_size;
435         }
436         for ( ; node_size; ) {
437             hwaddr sizetmp = pow2floor(node_size);
438 
439             /* mem_start != 0 here */
440             if (ctzl(mem_start) < ctzl(sizetmp)) {
441                 sizetmp = 1ULL << ctzl(mem_start);
442             }
443 
444             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
445             node_size -= sizetmp;
446             mem_start += sizetmp;
447         }
448     }
449 
450     return 0;
451 }
452 
453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
454                                   SpaprMachineState *spapr)
455 {
456     MachineState *ms = MACHINE(spapr);
457     PowerPCCPU *cpu = POWERPC_CPU(cs);
458     CPUPPCState *env = &cpu->env;
459     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
460     int index = spapr_get_vcpu_id(cpu);
461     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
462                        0xffffffff, 0xffffffff};
463     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
464         : SPAPR_TIMEBASE_FREQ;
465     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
466     uint32_t page_sizes_prop[64];
467     size_t page_sizes_prop_size;
468     unsigned int smp_threads = ms->smp.threads;
469     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
470     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
471     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
472     SpaprDrc *drc;
473     int drc_index;
474     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
475     int i;
476 
477     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
478     if (drc) {
479         drc_index = spapr_drc_index(drc);
480         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
481     }
482 
483     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
484     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
485 
486     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
487     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
488                            env->dcache_line_size)));
489     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
490                            env->dcache_line_size)));
491     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
492                            env->icache_line_size)));
493     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
494                            env->icache_line_size)));
495 
496     if (pcc->l1_dcache_size) {
497         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
498                                pcc->l1_dcache_size)));
499     } else {
500         warn_report("Unknown L1 dcache size for cpu");
501     }
502     if (pcc->l1_icache_size) {
503         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
504                                pcc->l1_icache_size)));
505     } else {
506         warn_report("Unknown L1 icache size for cpu");
507     }
508 
509     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
510     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
511     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
512     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
513     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
514     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
515 
516     if (env->spr_cb[SPR_PURR].oea_read) {
517         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
518     }
519     if (env->spr_cb[SPR_SPURR].oea_read) {
520         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
521     }
522 
523     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
524         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
525                           segs, sizeof(segs))));
526     }
527 
528     /* Advertise VSX (vector extensions) if available
529      *   1               == VMX / Altivec available
530      *   2               == VSX available
531      *
532      * Only CPUs for which we create core types in spapr_cpu_core.c
533      * are possible, and all of those have VMX */
534     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
535         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
536     } else {
537         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
538     }
539 
540     /* Advertise DFP (Decimal Floating Point) if available
541      *   0 / no property == no DFP
542      *   1               == DFP available */
543     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
544         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
545     }
546 
547     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
548                                                       sizeof(page_sizes_prop));
549     if (page_sizes_prop_size) {
550         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
551                           page_sizes_prop, page_sizes_prop_size)));
552     }
553 
554     spapr_populate_pa_features(spapr, cpu, fdt, offset);
555 
556     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
557                            cs->cpu_index / vcpus_per_socket)));
558 
559     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
560                       pft_size_prop, sizeof(pft_size_prop))));
561 
562     if (ms->numa_state->num_nodes > 1) {
563         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
564     }
565 
566     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
567 
568     if (pcc->radix_page_info) {
569         for (i = 0; i < pcc->radix_page_info->count; i++) {
570             radix_AP_encodings[i] =
571                 cpu_to_be32(pcc->radix_page_info->entries[i]);
572         }
573         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
574                           radix_AP_encodings,
575                           pcc->radix_page_info->count *
576                           sizeof(radix_AP_encodings[0]))));
577     }
578 
579     /*
580      * We set this property to let the guest know that it can use the large
581      * decrementer and its width in bits.
582      */
583     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
584         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
585                               pcc->lrg_decr_bits)));
586 }
587 
588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
589 {
590     CPUState **rev;
591     CPUState *cs;
592     int n_cpus;
593     int cpus_offset;
594     char *nodename;
595     int i;
596 
597     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
598     _FDT(cpus_offset);
599     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
600     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
601 
602     /*
603      * We walk the CPUs in reverse order to ensure that CPU DT nodes
604      * created by fdt_add_subnode() end up in the right order in FDT
605      * for the guest kernel the enumerate the CPUs correctly.
606      *
607      * The CPU list cannot be traversed in reverse order, so we need
608      * to do extra work.
609      */
610     n_cpus = 0;
611     rev = NULL;
612     CPU_FOREACH(cs) {
613         rev = g_renew(CPUState *, rev, n_cpus + 1);
614         rev[n_cpus++] = cs;
615     }
616 
617     for (i = n_cpus - 1; i >= 0; i--) {
618         CPUState *cs = rev[i];
619         PowerPCCPU *cpu = POWERPC_CPU(cs);
620         int index = spapr_get_vcpu_id(cpu);
621         DeviceClass *dc = DEVICE_GET_CLASS(cs);
622         int offset;
623 
624         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
625             continue;
626         }
627 
628         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
629         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
630         g_free(nodename);
631         _FDT(offset);
632         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
633     }
634 
635     g_free(rev);
636 }
637 
638 static int spapr_rng_populate_dt(void *fdt)
639 {
640     int node;
641     int ret;
642 
643     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
644     if (node <= 0) {
645         return -1;
646     }
647     ret = fdt_setprop_string(fdt, node, "device_type",
648                              "ibm,platform-facilities");
649     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
650     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
651 
652     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
653     if (node <= 0) {
654         return -1;
655     }
656     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
657 
658     return ret ? -1 : 0;
659 }
660 
661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
662 {
663     MemoryDeviceInfoList *info;
664 
665     for (info = list; info; info = info->next) {
666         MemoryDeviceInfo *value = info->value;
667 
668         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
669             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
670 
671             if (addr >= pcdimm_info->addr &&
672                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
673                 return pcdimm_info->node;
674             }
675         }
676     }
677 
678     return -1;
679 }
680 
681 struct sPAPRDrconfCellV2 {
682      uint32_t seq_lmbs;
683      uint64_t base_addr;
684      uint32_t drc_index;
685      uint32_t aa_index;
686      uint32_t flags;
687 } QEMU_PACKED;
688 
689 typedef struct DrconfCellQueue {
690     struct sPAPRDrconfCellV2 cell;
691     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
692 } DrconfCellQueue;
693 
694 static DrconfCellQueue *
695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
696                       uint32_t drc_index, uint32_t aa_index,
697                       uint32_t flags)
698 {
699     DrconfCellQueue *elem;
700 
701     elem = g_malloc0(sizeof(*elem));
702     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
703     elem->cell.base_addr = cpu_to_be64(base_addr);
704     elem->cell.drc_index = cpu_to_be32(drc_index);
705     elem->cell.aa_index = cpu_to_be32(aa_index);
706     elem->cell.flags = cpu_to_be32(flags);
707 
708     return elem;
709 }
710 
711 /* ibm,dynamic-memory-v2 */
712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
713                                    int offset, MemoryDeviceInfoList *dimms)
714 {
715     MachineState *machine = MACHINE(spapr);
716     uint8_t *int_buf, *cur_index;
717     int ret;
718     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
719     uint64_t addr, cur_addr, size;
720     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
721     uint64_t mem_end = machine->device_memory->base +
722                        memory_region_size(&machine->device_memory->mr);
723     uint32_t node, buf_len, nr_entries = 0;
724     SpaprDrc *drc;
725     DrconfCellQueue *elem, *next;
726     MemoryDeviceInfoList *info;
727     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
728         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
729 
730     /* Entry to cover RAM and the gap area */
731     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
732                                  SPAPR_LMB_FLAGS_RESERVED |
733                                  SPAPR_LMB_FLAGS_DRC_INVALID);
734     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735     nr_entries++;
736 
737     cur_addr = machine->device_memory->base;
738     for (info = dimms; info; info = info->next) {
739         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
740 
741         addr = di->addr;
742         size = di->size;
743         node = di->node;
744 
745         /* Entry for hot-pluggable area */
746         if (cur_addr < addr) {
747             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
748             g_assert(drc);
749             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
750                                          cur_addr, spapr_drc_index(drc), -1, 0);
751             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
752             nr_entries++;
753         }
754 
755         /* Entry for DIMM */
756         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
757         g_assert(drc);
758         elem = spapr_get_drconf_cell(size / lmb_size, addr,
759                                      spapr_drc_index(drc), node,
760                                      SPAPR_LMB_FLAGS_ASSIGNED);
761         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762         nr_entries++;
763         cur_addr = addr + size;
764     }
765 
766     /* Entry for remaining hotpluggable area */
767     if (cur_addr < mem_end) {
768         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
769         g_assert(drc);
770         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
771                                      cur_addr, spapr_drc_index(drc), -1, 0);
772         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
773         nr_entries++;
774     }
775 
776     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
777     int_buf = cur_index = g_malloc0(buf_len);
778     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
779     cur_index += sizeof(nr_entries);
780 
781     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
782         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
783         cur_index += sizeof(elem->cell);
784         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
785         g_free(elem);
786     }
787 
788     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
789     g_free(int_buf);
790     if (ret < 0) {
791         return -1;
792     }
793     return 0;
794 }
795 
796 /* ibm,dynamic-memory */
797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
798                                    int offset, MemoryDeviceInfoList *dimms)
799 {
800     MachineState *machine = MACHINE(spapr);
801     int i, ret;
802     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
803     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
804     uint32_t nr_lmbs = (machine->device_memory->base +
805                        memory_region_size(&machine->device_memory->mr)) /
806                        lmb_size;
807     uint32_t *int_buf, *cur_index, buf_len;
808 
809     /*
810      * Allocate enough buffer size to fit in ibm,dynamic-memory
811      */
812     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
813     cur_index = int_buf = g_malloc0(buf_len);
814     int_buf[0] = cpu_to_be32(nr_lmbs);
815     cur_index++;
816     for (i = 0; i < nr_lmbs; i++) {
817         uint64_t addr = i * lmb_size;
818         uint32_t *dynamic_memory = cur_index;
819 
820         if (i >= device_lmb_start) {
821             SpaprDrc *drc;
822 
823             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
824             g_assert(drc);
825 
826             dynamic_memory[0] = cpu_to_be32(addr >> 32);
827             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
828             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
829             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
830             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
831             if (memory_region_present(get_system_memory(), addr)) {
832                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
833             } else {
834                 dynamic_memory[5] = cpu_to_be32(0);
835             }
836         } else {
837             /*
838              * LMB information for RMA, boot time RAM and gap b/n RAM and
839              * device memory region -- all these are marked as reserved
840              * and as having no valid DRC.
841              */
842             dynamic_memory[0] = cpu_to_be32(addr >> 32);
843             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
844             dynamic_memory[2] = cpu_to_be32(0);
845             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
846             dynamic_memory[4] = cpu_to_be32(-1);
847             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
848                                             SPAPR_LMB_FLAGS_DRC_INVALID);
849         }
850 
851         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
852     }
853     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
854     g_free(int_buf);
855     if (ret < 0) {
856         return -1;
857     }
858     return 0;
859 }
860 
861 /*
862  * Adds ibm,dynamic-reconfiguration-memory node.
863  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
864  * of this device tree node.
865  */
866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
867 {
868     MachineState *machine = MACHINE(spapr);
869     int nb_numa_nodes = machine->numa_state->num_nodes;
870     int ret, i, offset;
871     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
872     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
873     uint32_t *int_buf, *cur_index, buf_len;
874     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
875     MemoryDeviceInfoList *dimms = NULL;
876 
877     /*
878      * Don't create the node if there is no device memory
879      */
880     if (machine->ram_size == machine->maxram_size) {
881         return 0;
882     }
883 
884     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
885 
886     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
887                     sizeof(prop_lmb_size));
888     if (ret < 0) {
889         return ret;
890     }
891 
892     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
893     if (ret < 0) {
894         return ret;
895     }
896 
897     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
898     if (ret < 0) {
899         return ret;
900     }
901 
902     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
903     dimms = qmp_memory_device_list();
904     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
905         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
906     } else {
907         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
908     }
909     qapi_free_MemoryDeviceInfoList(dimms);
910 
911     if (ret < 0) {
912         return ret;
913     }
914 
915     /* ibm,associativity-lookup-arrays */
916     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
917     cur_index = int_buf = g_malloc0(buf_len);
918     int_buf[0] = cpu_to_be32(nr_nodes);
919     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
920     cur_index += 2;
921     for (i = 0; i < nr_nodes; i++) {
922         uint32_t associativity[] = {
923             cpu_to_be32(0x0),
924             cpu_to_be32(0x0),
925             cpu_to_be32(0x0),
926             cpu_to_be32(i)
927         };
928         memcpy(cur_index, associativity, sizeof(associativity));
929         cur_index += 4;
930     }
931     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
932             (cur_index - int_buf) * sizeof(uint32_t));
933     g_free(int_buf);
934 
935     return ret;
936 }
937 
938 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
939                                 SpaprOptionVector *ov5_updates)
940 {
941     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
942     int ret = 0, offset;
943 
944     /* Generate ibm,dynamic-reconfiguration-memory node if required */
945     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
946         g_assert(smc->dr_lmb_enabled);
947         ret = spapr_populate_drconf_memory(spapr, fdt);
948         if (ret) {
949             goto out;
950         }
951     }
952 
953     offset = fdt_path_offset(fdt, "/chosen");
954     if (offset < 0) {
955         offset = fdt_add_subnode(fdt, 0, "chosen");
956         if (offset < 0) {
957             return offset;
958         }
959     }
960     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
961                                  "ibm,architecture-vec-5");
962 
963 out:
964     return ret;
965 }
966 
967 static bool spapr_hotplugged_dev_before_cas(void)
968 {
969     Object *drc_container, *obj;
970     ObjectProperty *prop;
971     ObjectPropertyIterator iter;
972 
973     drc_container = container_get(object_get_root(), "/dr-connector");
974     object_property_iter_init(&iter, drc_container);
975     while ((prop = object_property_iter_next(&iter))) {
976         if (!strstart(prop->type, "link<", NULL)) {
977             continue;
978         }
979         obj = object_property_get_link(drc_container, prop->name, NULL);
980         if (spapr_drc_needed(obj)) {
981             return true;
982         }
983     }
984     return false;
985 }
986 
987 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
988                                  target_ulong addr, target_ulong size,
989                                  SpaprOptionVector *ov5_updates)
990 {
991     void *fdt, *fdt_skel;
992     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
993 
994     if (spapr_hotplugged_dev_before_cas()) {
995         return 1;
996     }
997 
998     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
999         error_report("SLOF provided an unexpected CAS buffer size "
1000                      TARGET_FMT_lu " (min: %zu, max: %u)",
1001                      size, sizeof(hdr), FW_MAX_SIZE);
1002         exit(EXIT_FAILURE);
1003     }
1004 
1005     size -= sizeof(hdr);
1006 
1007     /* Create skeleton */
1008     fdt_skel = g_malloc0(size);
1009     _FDT((fdt_create(fdt_skel, size)));
1010     _FDT((fdt_finish_reservemap(fdt_skel)));
1011     _FDT((fdt_begin_node(fdt_skel, "")));
1012     _FDT((fdt_end_node(fdt_skel)));
1013     _FDT((fdt_finish(fdt_skel)));
1014     fdt = g_malloc0(size);
1015     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1016     g_free(fdt_skel);
1017 
1018     /* Fixup cpu nodes */
1019     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1020 
1021     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1022         return -1;
1023     }
1024 
1025     /* Pack resulting tree */
1026     _FDT((fdt_pack(fdt)));
1027 
1028     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1029         g_free(fdt);
1030         trace_spapr_cas_failed(size);
1031         return -1;
1032     }
1033 
1034     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1035     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1036     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1037     g_free(fdt);
1038 
1039     return 0;
1040 }
1041 
1042 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1043 {
1044     MachineState *ms = MACHINE(spapr);
1045     int rtas;
1046     GString *hypertas = g_string_sized_new(256);
1047     GString *qemu_hypertas = g_string_sized_new(256);
1048     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1049     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1050         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1051     uint32_t lrdr_capacity[] = {
1052         cpu_to_be32(max_device_addr >> 32),
1053         cpu_to_be32(max_device_addr & 0xffffffff),
1054         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1055         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1056     };
1057     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1058     uint32_t maxdomains[] = {
1059         cpu_to_be32(4),
1060         maxdomain,
1061         maxdomain,
1062         maxdomain,
1063         cpu_to_be32(spapr->gpu_numa_id),
1064     };
1065 
1066     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1067 
1068     /* hypertas */
1069     add_str(hypertas, "hcall-pft");
1070     add_str(hypertas, "hcall-term");
1071     add_str(hypertas, "hcall-dabr");
1072     add_str(hypertas, "hcall-interrupt");
1073     add_str(hypertas, "hcall-tce");
1074     add_str(hypertas, "hcall-vio");
1075     add_str(hypertas, "hcall-splpar");
1076     add_str(hypertas, "hcall-join");
1077     add_str(hypertas, "hcall-bulk");
1078     add_str(hypertas, "hcall-set-mode");
1079     add_str(hypertas, "hcall-sprg0");
1080     add_str(hypertas, "hcall-copy");
1081     add_str(hypertas, "hcall-debug");
1082     add_str(hypertas, "hcall-vphn");
1083     add_str(qemu_hypertas, "hcall-memop1");
1084 
1085     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1086         add_str(hypertas, "hcall-multi-tce");
1087     }
1088 
1089     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1090         add_str(hypertas, "hcall-hpt-resize");
1091     }
1092 
1093     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1094                      hypertas->str, hypertas->len));
1095     g_string_free(hypertas, TRUE);
1096     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1097                      qemu_hypertas->str, qemu_hypertas->len));
1098     g_string_free(qemu_hypertas, TRUE);
1099 
1100     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1101                      refpoints, sizeof(refpoints)));
1102 
1103     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1104                      maxdomains, sizeof(maxdomains)));
1105 
1106     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1107                           RTAS_ERROR_LOG_MAX));
1108     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1109                           RTAS_EVENT_SCAN_RATE));
1110 
1111     g_assert(msi_nonbroken);
1112     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1113 
1114     /*
1115      * According to PAPR, rtas ibm,os-term does not guarantee a return
1116      * back to the guest cpu.
1117      *
1118      * While an additional ibm,extended-os-term property indicates
1119      * that rtas call return will always occur. Set this property.
1120      */
1121     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1122 
1123     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1124                      lrdr_capacity, sizeof(lrdr_capacity)));
1125 
1126     spapr_dt_rtas_tokens(fdt, rtas);
1127 }
1128 
1129 /*
1130  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1131  * and the XIVE features that the guest may request and thus the valid
1132  * values for bytes 23..26 of option vector 5:
1133  */
1134 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1135                                           int chosen)
1136 {
1137     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1138 
1139     char val[2 * 4] = {
1140         23, spapr->irq->ov5, /* Xive mode. */
1141         24, 0x00, /* Hash/Radix, filled in below. */
1142         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1143         26, 0x40, /* Radix options: GTSE == yes. */
1144     };
1145 
1146     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1147                           first_ppc_cpu->compat_pvr)) {
1148         /*
1149          * If we're in a pre POWER9 compat mode then the guest should
1150          * do hash and use the legacy interrupt mode
1151          */
1152         val[1] = 0x00; /* XICS */
1153         val[3] = 0x00; /* Hash */
1154     } else if (kvm_enabled()) {
1155         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1156             val[3] = 0x80; /* OV5_MMU_BOTH */
1157         } else if (kvmppc_has_cap_mmu_radix()) {
1158             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1159         } else {
1160             val[3] = 0x00; /* Hash */
1161         }
1162     } else {
1163         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1164         val[3] = 0xC0;
1165     }
1166     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1167                      val, sizeof(val)));
1168 }
1169 
1170 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1171 {
1172     MachineState *machine = MACHINE(spapr);
1173     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1174     int chosen;
1175     const char *boot_device = machine->boot_order;
1176     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1177     size_t cb = 0;
1178     char *bootlist = get_boot_devices_list(&cb);
1179 
1180     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1181 
1182     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1183     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1184                           spapr->initrd_base));
1185     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1186                           spapr->initrd_base + spapr->initrd_size));
1187 
1188     if (spapr->kernel_size) {
1189         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1190                               cpu_to_be64(spapr->kernel_size) };
1191 
1192         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1193                          &kprop, sizeof(kprop)));
1194         if (spapr->kernel_le) {
1195             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1196         }
1197     }
1198     if (boot_menu) {
1199         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1200     }
1201     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1202     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1203     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1204 
1205     if (cb && bootlist) {
1206         int i;
1207 
1208         for (i = 0; i < cb; i++) {
1209             if (bootlist[i] == '\n') {
1210                 bootlist[i] = ' ';
1211             }
1212         }
1213         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1214     }
1215 
1216     if (boot_device && strlen(boot_device)) {
1217         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1218     }
1219 
1220     if (!spapr->has_graphics && stdout_path) {
1221         /*
1222          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1223          * kernel. New platforms should only use the "stdout-path" property. Set
1224          * the new property and continue using older property to remain
1225          * compatible with the existing firmware.
1226          */
1227         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1228         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1229     }
1230 
1231     /* We can deal with BAR reallocation just fine, advertise it to the guest */
1232     if (smc->linux_pci_probe) {
1233         _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1234     }
1235 
1236     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1237 
1238     g_free(stdout_path);
1239     g_free(bootlist);
1240 }
1241 
1242 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1243 {
1244     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1245      * KVM to work under pHyp with some guest co-operation */
1246     int hypervisor;
1247     uint8_t hypercall[16];
1248 
1249     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1250     /* indicate KVM hypercall interface */
1251     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1252     if (kvmppc_has_cap_fixup_hcalls()) {
1253         /*
1254          * Older KVM versions with older guest kernels were broken
1255          * with the magic page, don't allow the guest to map it.
1256          */
1257         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1258                                   sizeof(hypercall))) {
1259             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1260                              hypercall, sizeof(hypercall)));
1261         }
1262     }
1263 }
1264 
1265 static void *spapr_build_fdt(SpaprMachineState *spapr)
1266 {
1267     MachineState *machine = MACHINE(spapr);
1268     MachineClass *mc = MACHINE_GET_CLASS(machine);
1269     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1270     int ret;
1271     void *fdt;
1272     SpaprPhbState *phb;
1273     char *buf;
1274 
1275     fdt = g_malloc0(FDT_MAX_SIZE);
1276     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1277 
1278     /* Root node */
1279     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1280     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1281     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1282 
1283     /* Guest UUID & Name*/
1284     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1285     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1286     if (qemu_uuid_set) {
1287         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1288     }
1289     g_free(buf);
1290 
1291     if (qemu_get_vm_name()) {
1292         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1293                                 qemu_get_vm_name()));
1294     }
1295 
1296     /* Host Model & Serial Number */
1297     if (spapr->host_model) {
1298         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1299     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1300         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1301         g_free(buf);
1302     }
1303 
1304     if (spapr->host_serial) {
1305         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1306     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1307         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1308         g_free(buf);
1309     }
1310 
1311     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1312     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1313 
1314     /* /interrupt controller */
1315     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1316                           PHANDLE_INTC);
1317 
1318     ret = spapr_populate_memory(spapr, fdt);
1319     if (ret < 0) {
1320         error_report("couldn't setup memory nodes in fdt");
1321         exit(1);
1322     }
1323 
1324     /* /vdevice */
1325     spapr_dt_vdevice(spapr->vio_bus, fdt);
1326 
1327     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1328         ret = spapr_rng_populate_dt(fdt);
1329         if (ret < 0) {
1330             error_report("could not set up rng device in the fdt");
1331             exit(1);
1332         }
1333     }
1334 
1335     QLIST_FOREACH(phb, &spapr->phbs, list) {
1336         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1337         if (ret < 0) {
1338             error_report("couldn't setup PCI devices in fdt");
1339             exit(1);
1340         }
1341     }
1342 
1343     /* cpus */
1344     spapr_populate_cpus_dt_node(fdt, spapr);
1345 
1346     if (smc->dr_lmb_enabled) {
1347         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1348     }
1349 
1350     if (mc->has_hotpluggable_cpus) {
1351         int offset = fdt_path_offset(fdt, "/cpus");
1352         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1353         if (ret < 0) {
1354             error_report("Couldn't set up CPU DR device tree properties");
1355             exit(1);
1356         }
1357     }
1358 
1359     /* /event-sources */
1360     spapr_dt_events(spapr, fdt);
1361 
1362     /* /rtas */
1363     spapr_dt_rtas(spapr, fdt);
1364 
1365     /* /chosen */
1366     spapr_dt_chosen(spapr, fdt);
1367 
1368     /* /hypervisor */
1369     if (kvm_enabled()) {
1370         spapr_dt_hypervisor(spapr, fdt);
1371     }
1372 
1373     /* Build memory reserve map */
1374     if (spapr->kernel_size) {
1375         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1376     }
1377     if (spapr->initrd_size) {
1378         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1379     }
1380 
1381     /* ibm,client-architecture-support updates */
1382     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1383     if (ret < 0) {
1384         error_report("couldn't setup CAS properties fdt");
1385         exit(1);
1386     }
1387 
1388     if (smc->dr_phb_enabled) {
1389         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1390         if (ret < 0) {
1391             error_report("Couldn't set up PHB DR device tree properties");
1392             exit(1);
1393         }
1394     }
1395 
1396     return fdt;
1397 }
1398 
1399 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1400 {
1401     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1402 }
1403 
1404 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1405                                     PowerPCCPU *cpu)
1406 {
1407     CPUPPCState *env = &cpu->env;
1408 
1409     /* The TCG path should also be holding the BQL at this point */
1410     g_assert(qemu_mutex_iothread_locked());
1411 
1412     if (msr_pr) {
1413         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1414         env->gpr[3] = H_PRIVILEGE;
1415     } else {
1416         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1417     }
1418 }
1419 
1420 struct LPCRSyncState {
1421     target_ulong value;
1422     target_ulong mask;
1423 };
1424 
1425 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1426 {
1427     struct LPCRSyncState *s = arg.host_ptr;
1428     PowerPCCPU *cpu = POWERPC_CPU(cs);
1429     CPUPPCState *env = &cpu->env;
1430     target_ulong lpcr;
1431 
1432     cpu_synchronize_state(cs);
1433     lpcr = env->spr[SPR_LPCR];
1434     lpcr &= ~s->mask;
1435     lpcr |= s->value;
1436     ppc_store_lpcr(cpu, lpcr);
1437 }
1438 
1439 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1440 {
1441     CPUState *cs;
1442     struct LPCRSyncState s = {
1443         .value = value,
1444         .mask = mask
1445     };
1446     CPU_FOREACH(cs) {
1447         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1448     }
1449 }
1450 
1451 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1452 {
1453     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1454 
1455     /* Copy PATE1:GR into PATE0:HR */
1456     entry->dw0 = spapr->patb_entry & PATE0_HR;
1457     entry->dw1 = spapr->patb_entry;
1458 }
1459 
1460 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1461 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1462 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1463 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1464 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1465 
1466 /*
1467  * Get the fd to access the kernel htab, re-opening it if necessary
1468  */
1469 static int get_htab_fd(SpaprMachineState *spapr)
1470 {
1471     Error *local_err = NULL;
1472 
1473     if (spapr->htab_fd >= 0) {
1474         return spapr->htab_fd;
1475     }
1476 
1477     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1478     if (spapr->htab_fd < 0) {
1479         error_report_err(local_err);
1480     }
1481 
1482     return spapr->htab_fd;
1483 }
1484 
1485 void close_htab_fd(SpaprMachineState *spapr)
1486 {
1487     if (spapr->htab_fd >= 0) {
1488         close(spapr->htab_fd);
1489     }
1490     spapr->htab_fd = -1;
1491 }
1492 
1493 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1494 {
1495     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1496 
1497     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1498 }
1499 
1500 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1501 {
1502     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1503 
1504     assert(kvm_enabled());
1505 
1506     if (!spapr->htab) {
1507         return 0;
1508     }
1509 
1510     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1511 }
1512 
1513 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1514                                                 hwaddr ptex, int n)
1515 {
1516     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1517     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1518 
1519     if (!spapr->htab) {
1520         /*
1521          * HTAB is controlled by KVM. Fetch into temporary buffer
1522          */
1523         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1524         kvmppc_read_hptes(hptes, ptex, n);
1525         return hptes;
1526     }
1527 
1528     /*
1529      * HTAB is controlled by QEMU. Just point to the internally
1530      * accessible PTEG.
1531      */
1532     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1533 }
1534 
1535 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1536                               const ppc_hash_pte64_t *hptes,
1537                               hwaddr ptex, int n)
1538 {
1539     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1540 
1541     if (!spapr->htab) {
1542         g_free((void *)hptes);
1543     }
1544 
1545     /* Nothing to do for qemu managed HPT */
1546 }
1547 
1548 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1549                       uint64_t pte0, uint64_t pte1)
1550 {
1551     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1552     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1553 
1554     if (!spapr->htab) {
1555         kvmppc_write_hpte(ptex, pte0, pte1);
1556     } else {
1557         if (pte0 & HPTE64_V_VALID) {
1558             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1559             /*
1560              * When setting valid, we write PTE1 first. This ensures
1561              * proper synchronization with the reading code in
1562              * ppc_hash64_pteg_search()
1563              */
1564             smp_wmb();
1565             stq_p(spapr->htab + offset, pte0);
1566         } else {
1567             stq_p(spapr->htab + offset, pte0);
1568             /*
1569              * When clearing it we set PTE0 first. This ensures proper
1570              * synchronization with the reading code in
1571              * ppc_hash64_pteg_search()
1572              */
1573             smp_wmb();
1574             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1575         }
1576     }
1577 }
1578 
1579 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1580                              uint64_t pte1)
1581 {
1582     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1583     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1584 
1585     if (!spapr->htab) {
1586         /* There should always be a hash table when this is called */
1587         error_report("spapr_hpte_set_c called with no hash table !");
1588         return;
1589     }
1590 
1591     /* The HW performs a non-atomic byte update */
1592     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1593 }
1594 
1595 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1596                              uint64_t pte1)
1597 {
1598     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1599     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1600 
1601     if (!spapr->htab) {
1602         /* There should always be a hash table when this is called */
1603         error_report("spapr_hpte_set_r called with no hash table !");
1604         return;
1605     }
1606 
1607     /* The HW performs a non-atomic byte update */
1608     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1609 }
1610 
1611 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1612 {
1613     int shift;
1614 
1615     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1616      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1617      * that's much more than is needed for Linux guests */
1618     shift = ctz64(pow2ceil(ramsize)) - 7;
1619     shift = MAX(shift, 18); /* Minimum architected size */
1620     shift = MIN(shift, 46); /* Maximum architected size */
1621     return shift;
1622 }
1623 
1624 void spapr_free_hpt(SpaprMachineState *spapr)
1625 {
1626     g_free(spapr->htab);
1627     spapr->htab = NULL;
1628     spapr->htab_shift = 0;
1629     close_htab_fd(spapr);
1630 }
1631 
1632 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1633                           Error **errp)
1634 {
1635     long rc;
1636 
1637     /* Clean up any HPT info from a previous boot */
1638     spapr_free_hpt(spapr);
1639 
1640     rc = kvmppc_reset_htab(shift);
1641     if (rc < 0) {
1642         /* kernel-side HPT needed, but couldn't allocate one */
1643         error_setg_errno(errp, errno,
1644                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1645                          shift);
1646         /* This is almost certainly fatal, but if the caller really
1647          * wants to carry on with shift == 0, it's welcome to try */
1648     } else if (rc > 0) {
1649         /* kernel-side HPT allocated */
1650         if (rc != shift) {
1651             error_setg(errp,
1652                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1653                        shift, rc);
1654         }
1655 
1656         spapr->htab_shift = shift;
1657         spapr->htab = NULL;
1658     } else {
1659         /* kernel-side HPT not needed, allocate in userspace instead */
1660         size_t size = 1ULL << shift;
1661         int i;
1662 
1663         spapr->htab = qemu_memalign(size, size);
1664         if (!spapr->htab) {
1665             error_setg_errno(errp, errno,
1666                              "Could not allocate HPT of order %d", shift);
1667             return;
1668         }
1669 
1670         memset(spapr->htab, 0, size);
1671         spapr->htab_shift = shift;
1672 
1673         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1674             DIRTY_HPTE(HPTE(spapr->htab, i));
1675         }
1676     }
1677     /* We're setting up a hash table, so that means we're not radix */
1678     spapr->patb_entry = 0;
1679     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1680 }
1681 
1682 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1683 {
1684     int hpt_shift;
1685 
1686     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1687         || (spapr->cas_reboot
1688             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1689         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1690     } else {
1691         uint64_t current_ram_size;
1692 
1693         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1694         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1695     }
1696     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1697 
1698     if (spapr->vrma_adjust) {
1699         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1700                                           spapr->htab_shift);
1701     }
1702 }
1703 
1704 static int spapr_reset_drcs(Object *child, void *opaque)
1705 {
1706     SpaprDrc *drc =
1707         (SpaprDrc *) object_dynamic_cast(child,
1708                                                  TYPE_SPAPR_DR_CONNECTOR);
1709 
1710     if (drc) {
1711         spapr_drc_reset(drc);
1712     }
1713 
1714     return 0;
1715 }
1716 
1717 static void spapr_machine_reset(MachineState *machine)
1718 {
1719     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1720     PowerPCCPU *first_ppc_cpu;
1721     uint32_t rtas_limit;
1722     hwaddr rtas_addr, fdt_addr;
1723     void *fdt;
1724     int rc;
1725 
1726     spapr_caps_apply(spapr);
1727 
1728     first_ppc_cpu = POWERPC_CPU(first_cpu);
1729     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1730         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1731                               spapr->max_compat_pvr)) {
1732         /*
1733          * If using KVM with radix mode available, VCPUs can be started
1734          * without a HPT because KVM will start them in radix mode.
1735          * Set the GR bit in PATE so that we know there is no HPT.
1736          */
1737         spapr->patb_entry = PATE1_GR;
1738         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1739     } else {
1740         spapr_setup_hpt_and_vrma(spapr);
1741     }
1742 
1743     qemu_devices_reset();
1744 
1745     /*
1746      * If this reset wasn't generated by CAS, we should reset our
1747      * negotiated options and start from scratch
1748      */
1749     if (!spapr->cas_reboot) {
1750         spapr_ovec_cleanup(spapr->ov5_cas);
1751         spapr->ov5_cas = spapr_ovec_new();
1752 
1753         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1754     }
1755 
1756     /*
1757      * This is fixing some of the default configuration of the XIVE
1758      * devices. To be called after the reset of the machine devices.
1759      */
1760     spapr_irq_reset(spapr, &error_fatal);
1761 
1762     /*
1763      * There is no CAS under qtest. Simulate one to please the code that
1764      * depends on spapr->ov5_cas. This is especially needed to test device
1765      * unplug, so we do that before resetting the DRCs.
1766      */
1767     if (qtest_enabled()) {
1768         spapr_ovec_cleanup(spapr->ov5_cas);
1769         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1770     }
1771 
1772     /* DRC reset may cause a device to be unplugged. This will cause troubles
1773      * if this device is used by another device (eg, a running vhost backend
1774      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1775      * situations, we reset DRCs after all devices have been reset.
1776      */
1777     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1778 
1779     spapr_clear_pending_events(spapr);
1780 
1781     /*
1782      * We place the device tree and RTAS just below either the top of the RMA,
1783      * or just below 2GB, whichever is lower, so that it can be
1784      * processed with 32-bit real mode code if necessary
1785      */
1786     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1787     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1788     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1789 
1790     fdt = spapr_build_fdt(spapr);
1791 
1792     spapr_load_rtas(spapr, fdt, rtas_addr);
1793 
1794     rc = fdt_pack(fdt);
1795 
1796     /* Should only fail if we've built a corrupted tree */
1797     assert(rc == 0);
1798 
1799     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1800         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1801                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1802         exit(1);
1803     }
1804 
1805     /* Load the fdt */
1806     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1807     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1808     g_free(spapr->fdt_blob);
1809     spapr->fdt_size = fdt_totalsize(fdt);
1810     spapr->fdt_initial_size = spapr->fdt_size;
1811     spapr->fdt_blob = fdt;
1812 
1813     /* Set up the entry state */
1814     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1815     first_ppc_cpu->env.gpr[5] = 0;
1816 
1817     spapr->cas_reboot = false;
1818 }
1819 
1820 static void spapr_create_nvram(SpaprMachineState *spapr)
1821 {
1822     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1823     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1824 
1825     if (dinfo) {
1826         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1827                             &error_fatal);
1828     }
1829 
1830     qdev_init_nofail(dev);
1831 
1832     spapr->nvram = (struct SpaprNvram *)dev;
1833 }
1834 
1835 static void spapr_rtc_create(SpaprMachineState *spapr)
1836 {
1837     object_initialize_child(OBJECT(spapr), "rtc",
1838                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1839                             &error_fatal, NULL);
1840     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1841                               &error_fatal);
1842     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1843                               "date", &error_fatal);
1844 }
1845 
1846 /* Returns whether we want to use VGA or not */
1847 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1848 {
1849     switch (vga_interface_type) {
1850     case VGA_NONE:
1851         return false;
1852     case VGA_DEVICE:
1853         return true;
1854     case VGA_STD:
1855     case VGA_VIRTIO:
1856     case VGA_CIRRUS:
1857         return pci_vga_init(pci_bus) != NULL;
1858     default:
1859         error_setg(errp,
1860                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1861         return false;
1862     }
1863 }
1864 
1865 static int spapr_pre_load(void *opaque)
1866 {
1867     int rc;
1868 
1869     rc = spapr_caps_pre_load(opaque);
1870     if (rc) {
1871         return rc;
1872     }
1873 
1874     return 0;
1875 }
1876 
1877 static int spapr_post_load(void *opaque, int version_id)
1878 {
1879     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1880     int err = 0;
1881 
1882     err = spapr_caps_post_migration(spapr);
1883     if (err) {
1884         return err;
1885     }
1886 
1887     /*
1888      * In earlier versions, there was no separate qdev for the PAPR
1889      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1890      * So when migrating from those versions, poke the incoming offset
1891      * value into the RTC device
1892      */
1893     if (version_id < 3) {
1894         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1895         if (err) {
1896             return err;
1897         }
1898     }
1899 
1900     if (kvm_enabled() && spapr->patb_entry) {
1901         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1902         bool radix = !!(spapr->patb_entry & PATE1_GR);
1903         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1904 
1905         /*
1906          * Update LPCR:HR and UPRT as they may not be set properly in
1907          * the stream
1908          */
1909         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1910                             LPCR_HR | LPCR_UPRT);
1911 
1912         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1913         if (err) {
1914             error_report("Process table config unsupported by the host");
1915             return -EINVAL;
1916         }
1917     }
1918 
1919     err = spapr_irq_post_load(spapr, version_id);
1920     if (err) {
1921         return err;
1922     }
1923 
1924     return err;
1925 }
1926 
1927 static int spapr_pre_save(void *opaque)
1928 {
1929     int rc;
1930 
1931     rc = spapr_caps_pre_save(opaque);
1932     if (rc) {
1933         return rc;
1934     }
1935 
1936     return 0;
1937 }
1938 
1939 static bool version_before_3(void *opaque, int version_id)
1940 {
1941     return version_id < 3;
1942 }
1943 
1944 static bool spapr_pending_events_needed(void *opaque)
1945 {
1946     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1947     return !QTAILQ_EMPTY(&spapr->pending_events);
1948 }
1949 
1950 static const VMStateDescription vmstate_spapr_event_entry = {
1951     .name = "spapr_event_log_entry",
1952     .version_id = 1,
1953     .minimum_version_id = 1,
1954     .fields = (VMStateField[]) {
1955         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1956         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1957         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1958                                      NULL, extended_length),
1959         VMSTATE_END_OF_LIST()
1960     },
1961 };
1962 
1963 static const VMStateDescription vmstate_spapr_pending_events = {
1964     .name = "spapr_pending_events",
1965     .version_id = 1,
1966     .minimum_version_id = 1,
1967     .needed = spapr_pending_events_needed,
1968     .fields = (VMStateField[]) {
1969         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1970                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1971         VMSTATE_END_OF_LIST()
1972     },
1973 };
1974 
1975 static bool spapr_ov5_cas_needed(void *opaque)
1976 {
1977     SpaprMachineState *spapr = opaque;
1978     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1979     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1980     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1981     bool cas_needed;
1982 
1983     /* Prior to the introduction of SpaprOptionVector, we had two option
1984      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1985      * Both of these options encode machine topology into the device-tree
1986      * in such a way that the now-booted OS should still be able to interact
1987      * appropriately with QEMU regardless of what options were actually
1988      * negotiatied on the source side.
1989      *
1990      * As such, we can avoid migrating the CAS-negotiated options if these
1991      * are the only options available on the current machine/platform.
1992      * Since these are the only options available for pseries-2.7 and
1993      * earlier, this allows us to maintain old->new/new->old migration
1994      * compatibility.
1995      *
1996      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1997      * via default pseries-2.8 machines and explicit command-line parameters.
1998      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1999      * of the actual CAS-negotiated values to continue working properly. For
2000      * example, availability of memory unplug depends on knowing whether
2001      * OV5_HP_EVT was negotiated via CAS.
2002      *
2003      * Thus, for any cases where the set of available CAS-negotiatable
2004      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2005      * include the CAS-negotiated options in the migration stream, unless
2006      * if they affect boot time behaviour only.
2007      */
2008     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2009     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2010     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2011 
2012     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2013      * the mask itself since in the future it's possible "legacy" bits may be
2014      * removed via machine options, which could generate a false positive
2015      * that breaks migration.
2016      */
2017     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2018     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2019 
2020     spapr_ovec_cleanup(ov5_mask);
2021     spapr_ovec_cleanup(ov5_legacy);
2022     spapr_ovec_cleanup(ov5_removed);
2023 
2024     return cas_needed;
2025 }
2026 
2027 static const VMStateDescription vmstate_spapr_ov5_cas = {
2028     .name = "spapr_option_vector_ov5_cas",
2029     .version_id = 1,
2030     .minimum_version_id = 1,
2031     .needed = spapr_ov5_cas_needed,
2032     .fields = (VMStateField[]) {
2033         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2034                                  vmstate_spapr_ovec, SpaprOptionVector),
2035         VMSTATE_END_OF_LIST()
2036     },
2037 };
2038 
2039 static bool spapr_patb_entry_needed(void *opaque)
2040 {
2041     SpaprMachineState *spapr = opaque;
2042 
2043     return !!spapr->patb_entry;
2044 }
2045 
2046 static const VMStateDescription vmstate_spapr_patb_entry = {
2047     .name = "spapr_patb_entry",
2048     .version_id = 1,
2049     .minimum_version_id = 1,
2050     .needed = spapr_patb_entry_needed,
2051     .fields = (VMStateField[]) {
2052         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2053         VMSTATE_END_OF_LIST()
2054     },
2055 };
2056 
2057 static bool spapr_irq_map_needed(void *opaque)
2058 {
2059     SpaprMachineState *spapr = opaque;
2060 
2061     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2062 }
2063 
2064 static const VMStateDescription vmstate_spapr_irq_map = {
2065     .name = "spapr_irq_map",
2066     .version_id = 1,
2067     .minimum_version_id = 1,
2068     .needed = spapr_irq_map_needed,
2069     .fields = (VMStateField[]) {
2070         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2071         VMSTATE_END_OF_LIST()
2072     },
2073 };
2074 
2075 static bool spapr_dtb_needed(void *opaque)
2076 {
2077     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2078 
2079     return smc->update_dt_enabled;
2080 }
2081 
2082 static int spapr_dtb_pre_load(void *opaque)
2083 {
2084     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2085 
2086     g_free(spapr->fdt_blob);
2087     spapr->fdt_blob = NULL;
2088     spapr->fdt_size = 0;
2089 
2090     return 0;
2091 }
2092 
2093 static const VMStateDescription vmstate_spapr_dtb = {
2094     .name = "spapr_dtb",
2095     .version_id = 1,
2096     .minimum_version_id = 1,
2097     .needed = spapr_dtb_needed,
2098     .pre_load = spapr_dtb_pre_load,
2099     .fields = (VMStateField[]) {
2100         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2101         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2102         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2103                                      fdt_size),
2104         VMSTATE_END_OF_LIST()
2105     },
2106 };
2107 
2108 static const VMStateDescription vmstate_spapr = {
2109     .name = "spapr",
2110     .version_id = 3,
2111     .minimum_version_id = 1,
2112     .pre_load = spapr_pre_load,
2113     .post_load = spapr_post_load,
2114     .pre_save = spapr_pre_save,
2115     .fields = (VMStateField[]) {
2116         /* used to be @next_irq */
2117         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2118 
2119         /* RTC offset */
2120         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2121 
2122         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2123         VMSTATE_END_OF_LIST()
2124     },
2125     .subsections = (const VMStateDescription*[]) {
2126         &vmstate_spapr_ov5_cas,
2127         &vmstate_spapr_patb_entry,
2128         &vmstate_spapr_pending_events,
2129         &vmstate_spapr_cap_htm,
2130         &vmstate_spapr_cap_vsx,
2131         &vmstate_spapr_cap_dfp,
2132         &vmstate_spapr_cap_cfpc,
2133         &vmstate_spapr_cap_sbbc,
2134         &vmstate_spapr_cap_ibs,
2135         &vmstate_spapr_cap_hpt_maxpagesize,
2136         &vmstate_spapr_irq_map,
2137         &vmstate_spapr_cap_nested_kvm_hv,
2138         &vmstate_spapr_dtb,
2139         &vmstate_spapr_cap_large_decr,
2140         &vmstate_spapr_cap_ccf_assist,
2141         NULL
2142     }
2143 };
2144 
2145 static int htab_save_setup(QEMUFile *f, void *opaque)
2146 {
2147     SpaprMachineState *spapr = opaque;
2148 
2149     /* "Iteration" header */
2150     if (!spapr->htab_shift) {
2151         qemu_put_be32(f, -1);
2152     } else {
2153         qemu_put_be32(f, spapr->htab_shift);
2154     }
2155 
2156     if (spapr->htab) {
2157         spapr->htab_save_index = 0;
2158         spapr->htab_first_pass = true;
2159     } else {
2160         if (spapr->htab_shift) {
2161             assert(kvm_enabled());
2162         }
2163     }
2164 
2165 
2166     return 0;
2167 }
2168 
2169 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2170                             int chunkstart, int n_valid, int n_invalid)
2171 {
2172     qemu_put_be32(f, chunkstart);
2173     qemu_put_be16(f, n_valid);
2174     qemu_put_be16(f, n_invalid);
2175     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2176                     HASH_PTE_SIZE_64 * n_valid);
2177 }
2178 
2179 static void htab_save_end_marker(QEMUFile *f)
2180 {
2181     qemu_put_be32(f, 0);
2182     qemu_put_be16(f, 0);
2183     qemu_put_be16(f, 0);
2184 }
2185 
2186 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2187                                  int64_t max_ns)
2188 {
2189     bool has_timeout = max_ns != -1;
2190     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2191     int index = spapr->htab_save_index;
2192     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2193 
2194     assert(spapr->htab_first_pass);
2195 
2196     do {
2197         int chunkstart;
2198 
2199         /* Consume invalid HPTEs */
2200         while ((index < htabslots)
2201                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2202             CLEAN_HPTE(HPTE(spapr->htab, index));
2203             index++;
2204         }
2205 
2206         /* Consume valid HPTEs */
2207         chunkstart = index;
2208         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2209                && HPTE_VALID(HPTE(spapr->htab, index))) {
2210             CLEAN_HPTE(HPTE(spapr->htab, index));
2211             index++;
2212         }
2213 
2214         if (index > chunkstart) {
2215             int n_valid = index - chunkstart;
2216 
2217             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2218 
2219             if (has_timeout &&
2220                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2221                 break;
2222             }
2223         }
2224     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2225 
2226     if (index >= htabslots) {
2227         assert(index == htabslots);
2228         index = 0;
2229         spapr->htab_first_pass = false;
2230     }
2231     spapr->htab_save_index = index;
2232 }
2233 
2234 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2235                                 int64_t max_ns)
2236 {
2237     bool final = max_ns < 0;
2238     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2239     int examined = 0, sent = 0;
2240     int index = spapr->htab_save_index;
2241     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2242 
2243     assert(!spapr->htab_first_pass);
2244 
2245     do {
2246         int chunkstart, invalidstart;
2247 
2248         /* Consume non-dirty HPTEs */
2249         while ((index < htabslots)
2250                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2251             index++;
2252             examined++;
2253         }
2254 
2255         chunkstart = index;
2256         /* Consume valid dirty HPTEs */
2257         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2258                && HPTE_DIRTY(HPTE(spapr->htab, index))
2259                && HPTE_VALID(HPTE(spapr->htab, index))) {
2260             CLEAN_HPTE(HPTE(spapr->htab, index));
2261             index++;
2262             examined++;
2263         }
2264 
2265         invalidstart = index;
2266         /* Consume invalid dirty HPTEs */
2267         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2268                && HPTE_DIRTY(HPTE(spapr->htab, index))
2269                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2270             CLEAN_HPTE(HPTE(spapr->htab, index));
2271             index++;
2272             examined++;
2273         }
2274 
2275         if (index > chunkstart) {
2276             int n_valid = invalidstart - chunkstart;
2277             int n_invalid = index - invalidstart;
2278 
2279             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2280             sent += index - chunkstart;
2281 
2282             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2283                 break;
2284             }
2285         }
2286 
2287         if (examined >= htabslots) {
2288             break;
2289         }
2290 
2291         if (index >= htabslots) {
2292             assert(index == htabslots);
2293             index = 0;
2294         }
2295     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2296 
2297     if (index >= htabslots) {
2298         assert(index == htabslots);
2299         index = 0;
2300     }
2301 
2302     spapr->htab_save_index = index;
2303 
2304     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2305 }
2306 
2307 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2308 #define MAX_KVM_BUF_SIZE    2048
2309 
2310 static int htab_save_iterate(QEMUFile *f, void *opaque)
2311 {
2312     SpaprMachineState *spapr = opaque;
2313     int fd;
2314     int rc = 0;
2315 
2316     /* Iteration header */
2317     if (!spapr->htab_shift) {
2318         qemu_put_be32(f, -1);
2319         return 1;
2320     } else {
2321         qemu_put_be32(f, 0);
2322     }
2323 
2324     if (!spapr->htab) {
2325         assert(kvm_enabled());
2326 
2327         fd = get_htab_fd(spapr);
2328         if (fd < 0) {
2329             return fd;
2330         }
2331 
2332         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2333         if (rc < 0) {
2334             return rc;
2335         }
2336     } else  if (spapr->htab_first_pass) {
2337         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2338     } else {
2339         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2340     }
2341 
2342     htab_save_end_marker(f);
2343 
2344     return rc;
2345 }
2346 
2347 static int htab_save_complete(QEMUFile *f, void *opaque)
2348 {
2349     SpaprMachineState *spapr = opaque;
2350     int fd;
2351 
2352     /* Iteration header */
2353     if (!spapr->htab_shift) {
2354         qemu_put_be32(f, -1);
2355         return 0;
2356     } else {
2357         qemu_put_be32(f, 0);
2358     }
2359 
2360     if (!spapr->htab) {
2361         int rc;
2362 
2363         assert(kvm_enabled());
2364 
2365         fd = get_htab_fd(spapr);
2366         if (fd < 0) {
2367             return fd;
2368         }
2369 
2370         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2371         if (rc < 0) {
2372             return rc;
2373         }
2374     } else {
2375         if (spapr->htab_first_pass) {
2376             htab_save_first_pass(f, spapr, -1);
2377         }
2378         htab_save_later_pass(f, spapr, -1);
2379     }
2380 
2381     /* End marker */
2382     htab_save_end_marker(f);
2383 
2384     return 0;
2385 }
2386 
2387 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2388 {
2389     SpaprMachineState *spapr = opaque;
2390     uint32_t section_hdr;
2391     int fd = -1;
2392     Error *local_err = NULL;
2393 
2394     if (version_id < 1 || version_id > 1) {
2395         error_report("htab_load() bad version");
2396         return -EINVAL;
2397     }
2398 
2399     section_hdr = qemu_get_be32(f);
2400 
2401     if (section_hdr == -1) {
2402         spapr_free_hpt(spapr);
2403         return 0;
2404     }
2405 
2406     if (section_hdr) {
2407         /* First section gives the htab size */
2408         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2409         if (local_err) {
2410             error_report_err(local_err);
2411             return -EINVAL;
2412         }
2413         return 0;
2414     }
2415 
2416     if (!spapr->htab) {
2417         assert(kvm_enabled());
2418 
2419         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2420         if (fd < 0) {
2421             error_report_err(local_err);
2422             return fd;
2423         }
2424     }
2425 
2426     while (true) {
2427         uint32_t index;
2428         uint16_t n_valid, n_invalid;
2429 
2430         index = qemu_get_be32(f);
2431         n_valid = qemu_get_be16(f);
2432         n_invalid = qemu_get_be16(f);
2433 
2434         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2435             /* End of Stream */
2436             break;
2437         }
2438 
2439         if ((index + n_valid + n_invalid) >
2440             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2441             /* Bad index in stream */
2442             error_report(
2443                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2444                 index, n_valid, n_invalid, spapr->htab_shift);
2445             return -EINVAL;
2446         }
2447 
2448         if (spapr->htab) {
2449             if (n_valid) {
2450                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2451                                 HASH_PTE_SIZE_64 * n_valid);
2452             }
2453             if (n_invalid) {
2454                 memset(HPTE(spapr->htab, index + n_valid), 0,
2455                        HASH_PTE_SIZE_64 * n_invalid);
2456             }
2457         } else {
2458             int rc;
2459 
2460             assert(fd >= 0);
2461 
2462             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2463             if (rc < 0) {
2464                 return rc;
2465             }
2466         }
2467     }
2468 
2469     if (!spapr->htab) {
2470         assert(fd >= 0);
2471         close(fd);
2472     }
2473 
2474     return 0;
2475 }
2476 
2477 static void htab_save_cleanup(void *opaque)
2478 {
2479     SpaprMachineState *spapr = opaque;
2480 
2481     close_htab_fd(spapr);
2482 }
2483 
2484 static SaveVMHandlers savevm_htab_handlers = {
2485     .save_setup = htab_save_setup,
2486     .save_live_iterate = htab_save_iterate,
2487     .save_live_complete_precopy = htab_save_complete,
2488     .save_cleanup = htab_save_cleanup,
2489     .load_state = htab_load,
2490 };
2491 
2492 static void spapr_boot_set(void *opaque, const char *boot_device,
2493                            Error **errp)
2494 {
2495     MachineState *machine = MACHINE(opaque);
2496     machine->boot_order = g_strdup(boot_device);
2497 }
2498 
2499 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2500 {
2501     MachineState *machine = MACHINE(spapr);
2502     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2503     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2504     int i;
2505 
2506     for (i = 0; i < nr_lmbs; i++) {
2507         uint64_t addr;
2508 
2509         addr = i * lmb_size + machine->device_memory->base;
2510         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2511                                addr / lmb_size);
2512     }
2513 }
2514 
2515 /*
2516  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2517  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2518  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2519  */
2520 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2521 {
2522     int i;
2523 
2524     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2525         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2526                    " is not aligned to %" PRIu64 " MiB",
2527                    machine->ram_size,
2528                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2529         return;
2530     }
2531 
2532     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2533         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2534                    " is not aligned to %" PRIu64 " MiB",
2535                    machine->ram_size,
2536                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2537         return;
2538     }
2539 
2540     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2541         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2542             error_setg(errp,
2543                        "Node %d memory size 0x%" PRIx64
2544                        " is not aligned to %" PRIu64 " MiB",
2545                        i, machine->numa_state->nodes[i].node_mem,
2546                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2547             return;
2548         }
2549     }
2550 }
2551 
2552 /* find cpu slot in machine->possible_cpus by core_id */
2553 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2554 {
2555     int index = id / ms->smp.threads;
2556 
2557     if (index >= ms->possible_cpus->len) {
2558         return NULL;
2559     }
2560     if (idx) {
2561         *idx = index;
2562     }
2563     return &ms->possible_cpus->cpus[index];
2564 }
2565 
2566 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2567 {
2568     MachineState *ms = MACHINE(spapr);
2569     Error *local_err = NULL;
2570     bool vsmt_user = !!spapr->vsmt;
2571     int kvm_smt = kvmppc_smt_threads();
2572     int ret;
2573     unsigned int smp_threads = ms->smp.threads;
2574 
2575     if (!kvm_enabled() && (smp_threads > 1)) {
2576         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2577                      "on a pseries machine");
2578         goto out;
2579     }
2580     if (!is_power_of_2(smp_threads)) {
2581         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2582                      "machine because it must be a power of 2", smp_threads);
2583         goto out;
2584     }
2585 
2586     /* Detemine the VSMT mode to use: */
2587     if (vsmt_user) {
2588         if (spapr->vsmt < smp_threads) {
2589             error_setg(&local_err, "Cannot support VSMT mode %d"
2590                          " because it must be >= threads/core (%d)",
2591                          spapr->vsmt, smp_threads);
2592             goto out;
2593         }
2594         /* In this case, spapr->vsmt has been set by the command line */
2595     } else {
2596         /*
2597          * Default VSMT value is tricky, because we need it to be as
2598          * consistent as possible (for migration), but this requires
2599          * changing it for at least some existing cases.  We pick 8 as
2600          * the value that we'd get with KVM on POWER8, the
2601          * overwhelmingly common case in production systems.
2602          */
2603         spapr->vsmt = MAX(8, smp_threads);
2604     }
2605 
2606     /* KVM: If necessary, set the SMT mode: */
2607     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2608         ret = kvmppc_set_smt_threads(spapr->vsmt);
2609         if (ret) {
2610             /* Looks like KVM isn't able to change VSMT mode */
2611             error_setg(&local_err,
2612                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2613                        spapr->vsmt, ret);
2614             /* We can live with that if the default one is big enough
2615              * for the number of threads, and a submultiple of the one
2616              * we want.  In this case we'll waste some vcpu ids, but
2617              * behaviour will be correct */
2618             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2619                 warn_report_err(local_err);
2620                 local_err = NULL;
2621                 goto out;
2622             } else {
2623                 if (!vsmt_user) {
2624                     error_append_hint(&local_err,
2625                                       "On PPC, a VM with %d threads/core"
2626                                       " on a host with %d threads/core"
2627                                       " requires the use of VSMT mode %d.\n",
2628                                       smp_threads, kvm_smt, spapr->vsmt);
2629                 }
2630                 kvmppc_hint_smt_possible(&local_err);
2631                 goto out;
2632             }
2633         }
2634     }
2635     /* else TCG: nothing to do currently */
2636 out:
2637     error_propagate(errp, local_err);
2638 }
2639 
2640 static void spapr_init_cpus(SpaprMachineState *spapr)
2641 {
2642     MachineState *machine = MACHINE(spapr);
2643     MachineClass *mc = MACHINE_GET_CLASS(machine);
2644     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2645     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2646     const CPUArchIdList *possible_cpus;
2647     unsigned int smp_cpus = machine->smp.cpus;
2648     unsigned int smp_threads = machine->smp.threads;
2649     unsigned int max_cpus = machine->smp.max_cpus;
2650     int boot_cores_nr = smp_cpus / smp_threads;
2651     int i;
2652 
2653     possible_cpus = mc->possible_cpu_arch_ids(machine);
2654     if (mc->has_hotpluggable_cpus) {
2655         if (smp_cpus % smp_threads) {
2656             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2657                          smp_cpus, smp_threads);
2658             exit(1);
2659         }
2660         if (max_cpus % smp_threads) {
2661             error_report("max_cpus (%u) must be multiple of threads (%u)",
2662                          max_cpus, smp_threads);
2663             exit(1);
2664         }
2665     } else {
2666         if (max_cpus != smp_cpus) {
2667             error_report("This machine version does not support CPU hotplug");
2668             exit(1);
2669         }
2670         boot_cores_nr = possible_cpus->len;
2671     }
2672 
2673     if (smc->pre_2_10_has_unused_icps) {
2674         int i;
2675 
2676         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2677             /* Dummy entries get deregistered when real ICPState objects
2678              * are registered during CPU core hotplug.
2679              */
2680             pre_2_10_vmstate_register_dummy_icp(i);
2681         }
2682     }
2683 
2684     for (i = 0; i < possible_cpus->len; i++) {
2685         int core_id = i * smp_threads;
2686 
2687         if (mc->has_hotpluggable_cpus) {
2688             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2689                                    spapr_vcpu_id(spapr, core_id));
2690         }
2691 
2692         if (i < boot_cores_nr) {
2693             Object *core  = object_new(type);
2694             int nr_threads = smp_threads;
2695 
2696             /* Handle the partially filled core for older machine types */
2697             if ((i + 1) * smp_threads >= smp_cpus) {
2698                 nr_threads = smp_cpus - i * smp_threads;
2699             }
2700 
2701             object_property_set_int(core, nr_threads, "nr-threads",
2702                                     &error_fatal);
2703             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2704                                     &error_fatal);
2705             object_property_set_bool(core, true, "realized", &error_fatal);
2706 
2707             object_unref(core);
2708         }
2709     }
2710 }
2711 
2712 static PCIHostState *spapr_create_default_phb(void)
2713 {
2714     DeviceState *dev;
2715 
2716     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2717     qdev_prop_set_uint32(dev, "index", 0);
2718     qdev_init_nofail(dev);
2719 
2720     return PCI_HOST_BRIDGE(dev);
2721 }
2722 
2723 /* pSeries LPAR / sPAPR hardware init */
2724 static void spapr_machine_init(MachineState *machine)
2725 {
2726     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2727     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2728     const char *kernel_filename = machine->kernel_filename;
2729     const char *initrd_filename = machine->initrd_filename;
2730     PCIHostState *phb;
2731     int i;
2732     MemoryRegion *sysmem = get_system_memory();
2733     MemoryRegion *ram = g_new(MemoryRegion, 1);
2734     hwaddr node0_size = spapr_node0_size(machine);
2735     long load_limit, fw_size;
2736     char *filename;
2737     Error *resize_hpt_err = NULL;
2738 
2739     msi_nonbroken = true;
2740 
2741     QLIST_INIT(&spapr->phbs);
2742     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2743 
2744     /* Determine capabilities to run with */
2745     spapr_caps_init(spapr);
2746 
2747     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2748     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2749         /*
2750          * If the user explicitly requested a mode we should either
2751          * supply it, or fail completely (which we do below).  But if
2752          * it's not set explicitly, we reset our mode to something
2753          * that works
2754          */
2755         if (resize_hpt_err) {
2756             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2757             error_free(resize_hpt_err);
2758             resize_hpt_err = NULL;
2759         } else {
2760             spapr->resize_hpt = smc->resize_hpt_default;
2761         }
2762     }
2763 
2764     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2765 
2766     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2767         /*
2768          * User requested HPT resize, but this host can't supply it.  Bail out
2769          */
2770         error_report_err(resize_hpt_err);
2771         exit(1);
2772     }
2773 
2774     spapr->rma_size = node0_size;
2775 
2776     /* With KVM, we don't actually know whether KVM supports an
2777      * unbounded RMA (PR KVM) or is limited by the hash table size
2778      * (HV KVM using VRMA), so we always assume the latter
2779      *
2780      * In that case, we also limit the initial allocations for RTAS
2781      * etc... to 256M since we have no way to know what the VRMA size
2782      * is going to be as it depends on the size of the hash table
2783      * which isn't determined yet.
2784      */
2785     if (kvm_enabled()) {
2786         spapr->vrma_adjust = 1;
2787         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2788     }
2789 
2790     /* Actually we don't support unbounded RMA anymore since we added
2791      * proper emulation of HV mode. The max we can get is 16G which
2792      * also happens to be what we configure for PAPR mode so make sure
2793      * we don't do anything bigger than that
2794      */
2795     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2796 
2797     if (spapr->rma_size > node0_size) {
2798         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2799                      spapr->rma_size);
2800         exit(1);
2801     }
2802 
2803     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2804     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2805 
2806     /*
2807      * VSMT must be set in order to be able to compute VCPU ids, ie to
2808      * call spapr_max_server_number() or spapr_vcpu_id().
2809      */
2810     spapr_set_vsmt_mode(spapr, &error_fatal);
2811 
2812     /* Set up Interrupt Controller before we create the VCPUs */
2813     spapr_irq_init(spapr, &error_fatal);
2814 
2815     /* Set up containers for ibm,client-architecture-support negotiated options
2816      */
2817     spapr->ov5 = spapr_ovec_new();
2818     spapr->ov5_cas = spapr_ovec_new();
2819 
2820     if (smc->dr_lmb_enabled) {
2821         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2822         spapr_validate_node_memory(machine, &error_fatal);
2823     }
2824 
2825     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2826 
2827     /* advertise support for dedicated HP event source to guests */
2828     if (spapr->use_hotplug_event_source) {
2829         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2830     }
2831 
2832     /* advertise support for HPT resizing */
2833     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2834         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2835     }
2836 
2837     /* advertise support for ibm,dyamic-memory-v2 */
2838     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2839 
2840     /* advertise XIVE on POWER9 machines */
2841     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2842         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2843     }
2844 
2845     /* init CPUs */
2846     spapr_init_cpus(spapr);
2847 
2848     /*
2849      * check we don't have a memory-less/cpu-less NUMA node
2850      * Firmware relies on the existing memory/cpu topology to provide the
2851      * NUMA topology to the kernel.
2852      * And the linux kernel needs to know the NUMA topology at start
2853      * to be able to hotplug CPUs later.
2854      */
2855     if (machine->numa_state->num_nodes) {
2856         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2857             /* check for memory-less node */
2858             if (machine->numa_state->nodes[i].node_mem == 0) {
2859                 CPUState *cs;
2860                 int found = 0;
2861                 /* check for cpu-less node */
2862                 CPU_FOREACH(cs) {
2863                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2864                     if (cpu->node_id == i) {
2865                         found = 1;
2866                         break;
2867                     }
2868                 }
2869                 /* memory-less and cpu-less node */
2870                 if (!found) {
2871                     error_report(
2872                        "Memory-less/cpu-less nodes are not supported (node %d)",
2873                                  i);
2874                     exit(1);
2875                 }
2876             }
2877         }
2878 
2879     }
2880 
2881     /*
2882      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2883      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2884      * called from vPHB reset handler so we initialize the counter here.
2885      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2886      * must be equally distant from any other node.
2887      * The final value of spapr->gpu_numa_id is going to be written to
2888      * max-associativity-domains in spapr_build_fdt().
2889      */
2890     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2891 
2892     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2893         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2894                               spapr->max_compat_pvr)) {
2895         /* KVM and TCG always allow GTSE with radix... */
2896         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2897     }
2898     /* ... but not with hash (currently). */
2899 
2900     if (kvm_enabled()) {
2901         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2902         kvmppc_enable_logical_ci_hcalls();
2903         kvmppc_enable_set_mode_hcall();
2904 
2905         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2906         kvmppc_enable_clear_ref_mod_hcalls();
2907 
2908         /* Enable H_PAGE_INIT */
2909         kvmppc_enable_h_page_init();
2910     }
2911 
2912     /* allocate RAM */
2913     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2914                                          machine->ram_size);
2915     memory_region_add_subregion(sysmem, 0, ram);
2916 
2917     /* always allocate the device memory information */
2918     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2919 
2920     /* initialize hotplug memory address space */
2921     if (machine->ram_size < machine->maxram_size) {
2922         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2923         /*
2924          * Limit the number of hotpluggable memory slots to half the number
2925          * slots that KVM supports, leaving the other half for PCI and other
2926          * devices. However ensure that number of slots doesn't drop below 32.
2927          */
2928         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2929                            SPAPR_MAX_RAM_SLOTS;
2930 
2931         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2932             max_memslots = SPAPR_MAX_RAM_SLOTS;
2933         }
2934         if (machine->ram_slots > max_memslots) {
2935             error_report("Specified number of memory slots %"
2936                          PRIu64" exceeds max supported %d",
2937                          machine->ram_slots, max_memslots);
2938             exit(1);
2939         }
2940 
2941         machine->device_memory->base = ROUND_UP(machine->ram_size,
2942                                                 SPAPR_DEVICE_MEM_ALIGN);
2943         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2944                            "device-memory", device_mem_size);
2945         memory_region_add_subregion(sysmem, machine->device_memory->base,
2946                                     &machine->device_memory->mr);
2947     }
2948 
2949     if (smc->dr_lmb_enabled) {
2950         spapr_create_lmb_dr_connectors(spapr);
2951     }
2952 
2953     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2954     if (!filename) {
2955         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2956         exit(1);
2957     }
2958     spapr->rtas_size = get_image_size(filename);
2959     if (spapr->rtas_size < 0) {
2960         error_report("Could not get size of LPAR rtas '%s'", filename);
2961         exit(1);
2962     }
2963     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2964     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2965         error_report("Could not load LPAR rtas '%s'", filename);
2966         exit(1);
2967     }
2968     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2969         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2970                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2971         exit(1);
2972     }
2973     g_free(filename);
2974 
2975     /* Set up RTAS event infrastructure */
2976     spapr_events_init(spapr);
2977 
2978     /* Set up the RTC RTAS interfaces */
2979     spapr_rtc_create(spapr);
2980 
2981     /* Set up VIO bus */
2982     spapr->vio_bus = spapr_vio_bus_init();
2983 
2984     for (i = 0; i < serial_max_hds(); i++) {
2985         if (serial_hd(i)) {
2986             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2987         }
2988     }
2989 
2990     /* We always have at least the nvram device on VIO */
2991     spapr_create_nvram(spapr);
2992 
2993     /*
2994      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2995      * connectors (described in root DT node's "ibm,drc-types" property)
2996      * are pre-initialized here. additional child connectors (such as
2997      * connectors for a PHBs PCI slots) are added as needed during their
2998      * parent's realization.
2999      */
3000     if (smc->dr_phb_enabled) {
3001         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3002             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3003         }
3004     }
3005 
3006     /* Set up PCI */
3007     spapr_pci_rtas_init();
3008 
3009     phb = spapr_create_default_phb();
3010 
3011     for (i = 0; i < nb_nics; i++) {
3012         NICInfo *nd = &nd_table[i];
3013 
3014         if (!nd->model) {
3015             nd->model = g_strdup("spapr-vlan");
3016         }
3017 
3018         if (g_str_equal(nd->model, "spapr-vlan") ||
3019             g_str_equal(nd->model, "ibmveth")) {
3020             spapr_vlan_create(spapr->vio_bus, nd);
3021         } else {
3022             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
3023         }
3024     }
3025 
3026     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3027         spapr_vscsi_create(spapr->vio_bus);
3028     }
3029 
3030     /* Graphics */
3031     if (spapr_vga_init(phb->bus, &error_fatal)) {
3032         spapr->has_graphics = true;
3033         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3034     }
3035 
3036     if (machine->usb) {
3037         if (smc->use_ohci_by_default) {
3038             pci_create_simple(phb->bus, -1, "pci-ohci");
3039         } else {
3040             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3041         }
3042 
3043         if (spapr->has_graphics) {
3044             USBBus *usb_bus = usb_bus_find(-1);
3045 
3046             usb_create_simple(usb_bus, "usb-kbd");
3047             usb_create_simple(usb_bus, "usb-mouse");
3048         }
3049     }
3050 
3051     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3052         error_report(
3053             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3054             MIN_RMA_SLOF);
3055         exit(1);
3056     }
3057 
3058     if (kernel_filename) {
3059         uint64_t lowaddr = 0;
3060 
3061         spapr->kernel_size = load_elf(kernel_filename, NULL,
3062                                       translate_kernel_address, NULL,
3063                                       NULL, &lowaddr, NULL, 1,
3064                                       PPC_ELF_MACHINE, 0, 0);
3065         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3066             spapr->kernel_size = load_elf(kernel_filename, NULL,
3067                                           translate_kernel_address, NULL, NULL,
3068                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3069                                           0, 0);
3070             spapr->kernel_le = spapr->kernel_size > 0;
3071         }
3072         if (spapr->kernel_size < 0) {
3073             error_report("error loading %s: %s", kernel_filename,
3074                          load_elf_strerror(spapr->kernel_size));
3075             exit(1);
3076         }
3077 
3078         /* load initrd */
3079         if (initrd_filename) {
3080             /* Try to locate the initrd in the gap between the kernel
3081              * and the firmware. Add a bit of space just in case
3082              */
3083             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3084                                   + 0x1ffff) & ~0xffff;
3085             spapr->initrd_size = load_image_targphys(initrd_filename,
3086                                                      spapr->initrd_base,
3087                                                      load_limit
3088                                                      - spapr->initrd_base);
3089             if (spapr->initrd_size < 0) {
3090                 error_report("could not load initial ram disk '%s'",
3091                              initrd_filename);
3092                 exit(1);
3093             }
3094         }
3095     }
3096 
3097     if (bios_name == NULL) {
3098         bios_name = FW_FILE_NAME;
3099     }
3100     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3101     if (!filename) {
3102         error_report("Could not find LPAR firmware '%s'", bios_name);
3103         exit(1);
3104     }
3105     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3106     if (fw_size <= 0) {
3107         error_report("Could not load LPAR firmware '%s'", filename);
3108         exit(1);
3109     }
3110     g_free(filename);
3111 
3112     /* FIXME: Should register things through the MachineState's qdev
3113      * interface, this is a legacy from the sPAPREnvironment structure
3114      * which predated MachineState but had a similar function */
3115     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3116     register_savevm_live("spapr/htab", -1, 1,
3117                          &savevm_htab_handlers, spapr);
3118 
3119     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3120                              &error_fatal);
3121 
3122     qemu_register_boot_set(spapr_boot_set, spapr);
3123 
3124     /*
3125      * Nothing needs to be done to resume a suspended guest because
3126      * suspending does not change the machine state, so no need for
3127      * a ->wakeup method.
3128      */
3129     qemu_register_wakeup_support();
3130 
3131     if (kvm_enabled()) {
3132         /* to stop and start vmclock */
3133         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3134                                          &spapr->tb);
3135 
3136         kvmppc_spapr_enable_inkernel_multitce();
3137     }
3138 }
3139 
3140 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3141 {
3142     if (!vm_type) {
3143         return 0;
3144     }
3145 
3146     if (!strcmp(vm_type, "HV")) {
3147         return 1;
3148     }
3149 
3150     if (!strcmp(vm_type, "PR")) {
3151         return 2;
3152     }
3153 
3154     error_report("Unknown kvm-type specified '%s'", vm_type);
3155     exit(1);
3156 }
3157 
3158 /*
3159  * Implementation of an interface to adjust firmware path
3160  * for the bootindex property handling.
3161  */
3162 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3163                                    DeviceState *dev)
3164 {
3165 #define CAST(type, obj, name) \
3166     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3167     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3168     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3169     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3170 
3171     if (d) {
3172         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3173         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3174         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3175 
3176         if (spapr) {
3177             /*
3178              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3179              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3180              * 0x8000 | (target << 8) | (bus << 5) | lun
3181              * (see the "Logical unit addressing format" table in SAM5)
3182              */
3183             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3184             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3185                                    (uint64_t)id << 48);
3186         } else if (virtio) {
3187             /*
3188              * We use SRP luns of the form 01000000 | (target << 8) | lun
3189              * in the top 32 bits of the 64-bit LUN
3190              * Note: the quote above is from SLOF and it is wrong,
3191              * the actual binding is:
3192              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3193              */
3194             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3195             if (d->lun >= 256) {
3196                 /* Use the LUN "flat space addressing method" */
3197                 id |= 0x4000;
3198             }
3199             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3200                                    (uint64_t)id << 32);
3201         } else if (usb) {
3202             /*
3203              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3204              * in the top 32 bits of the 64-bit LUN
3205              */
3206             unsigned usb_port = atoi(usb->port->path);
3207             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3208             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3209                                    (uint64_t)id << 32);
3210         }
3211     }
3212 
3213     /*
3214      * SLOF probes the USB devices, and if it recognizes that the device is a
3215      * storage device, it changes its name to "storage" instead of "usb-host",
3216      * and additionally adds a child node for the SCSI LUN, so the correct
3217      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3218      */
3219     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3220         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3221         if (usb_host_dev_is_scsi_storage(usbdev)) {
3222             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3223         }
3224     }
3225 
3226     if (phb) {
3227         /* Replace "pci" with "pci@800000020000000" */
3228         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3229     }
3230 
3231     if (vsc) {
3232         /* Same logic as virtio above */
3233         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3234         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3235     }
3236 
3237     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3238         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3239         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3240         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3241     }
3242 
3243     return NULL;
3244 }
3245 
3246 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3247 {
3248     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3249 
3250     return g_strdup(spapr->kvm_type);
3251 }
3252 
3253 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3254 {
3255     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3256 
3257     g_free(spapr->kvm_type);
3258     spapr->kvm_type = g_strdup(value);
3259 }
3260 
3261 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3262 {
3263     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264 
3265     return spapr->use_hotplug_event_source;
3266 }
3267 
3268 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3269                                             Error **errp)
3270 {
3271     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3272 
3273     spapr->use_hotplug_event_source = value;
3274 }
3275 
3276 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3277 {
3278     return true;
3279 }
3280 
3281 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3282 {
3283     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3284 
3285     switch (spapr->resize_hpt) {
3286     case SPAPR_RESIZE_HPT_DEFAULT:
3287         return g_strdup("default");
3288     case SPAPR_RESIZE_HPT_DISABLED:
3289         return g_strdup("disabled");
3290     case SPAPR_RESIZE_HPT_ENABLED:
3291         return g_strdup("enabled");
3292     case SPAPR_RESIZE_HPT_REQUIRED:
3293         return g_strdup("required");
3294     }
3295     g_assert_not_reached();
3296 }
3297 
3298 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3299 {
3300     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3301 
3302     if (strcmp(value, "default") == 0) {
3303         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3304     } else if (strcmp(value, "disabled") == 0) {
3305         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3306     } else if (strcmp(value, "enabled") == 0) {
3307         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3308     } else if (strcmp(value, "required") == 0) {
3309         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3310     } else {
3311         error_setg(errp, "Bad value for \"resize-hpt\" property");
3312     }
3313 }
3314 
3315 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3316                                    void *opaque, Error **errp)
3317 {
3318     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3319 }
3320 
3321 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3322                                    void *opaque, Error **errp)
3323 {
3324     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3325 }
3326 
3327 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3328 {
3329     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3330 
3331     if (spapr->irq == &spapr_irq_xics_legacy) {
3332         return g_strdup("legacy");
3333     } else if (spapr->irq == &spapr_irq_xics) {
3334         return g_strdup("xics");
3335     } else if (spapr->irq == &spapr_irq_xive) {
3336         return g_strdup("xive");
3337     } else if (spapr->irq == &spapr_irq_dual) {
3338         return g_strdup("dual");
3339     }
3340     g_assert_not_reached();
3341 }
3342 
3343 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3344 {
3345     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3346 
3347     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3348         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3349         return;
3350     }
3351 
3352     /* The legacy IRQ backend can not be set */
3353     if (strcmp(value, "xics") == 0) {
3354         spapr->irq = &spapr_irq_xics;
3355     } else if (strcmp(value, "xive") == 0) {
3356         spapr->irq = &spapr_irq_xive;
3357     } else if (strcmp(value, "dual") == 0) {
3358         spapr->irq = &spapr_irq_dual;
3359     } else {
3360         error_setg(errp, "Bad value for \"ic-mode\" property");
3361     }
3362 }
3363 
3364 static char *spapr_get_host_model(Object *obj, Error **errp)
3365 {
3366     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3367 
3368     return g_strdup(spapr->host_model);
3369 }
3370 
3371 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3372 {
3373     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3374 
3375     g_free(spapr->host_model);
3376     spapr->host_model = g_strdup(value);
3377 }
3378 
3379 static char *spapr_get_host_serial(Object *obj, Error **errp)
3380 {
3381     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3382 
3383     return g_strdup(spapr->host_serial);
3384 }
3385 
3386 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3387 {
3388     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3389 
3390     g_free(spapr->host_serial);
3391     spapr->host_serial = g_strdup(value);
3392 }
3393 
3394 static void spapr_instance_init(Object *obj)
3395 {
3396     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3397     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3398 
3399     spapr->htab_fd = -1;
3400     spapr->use_hotplug_event_source = true;
3401     object_property_add_str(obj, "kvm-type",
3402                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3403     object_property_set_description(obj, "kvm-type",
3404                                     "Specifies the KVM virtualization mode (HV, PR)",
3405                                     NULL);
3406     object_property_add_bool(obj, "modern-hotplug-events",
3407                             spapr_get_modern_hotplug_events,
3408                             spapr_set_modern_hotplug_events,
3409                             NULL);
3410     object_property_set_description(obj, "modern-hotplug-events",
3411                                     "Use dedicated hotplug event mechanism in"
3412                                     " place of standard EPOW events when possible"
3413                                     " (required for memory hot-unplug support)",
3414                                     NULL);
3415     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3416                             "Maximum permitted CPU compatibility mode",
3417                             &error_fatal);
3418 
3419     object_property_add_str(obj, "resize-hpt",
3420                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3421     object_property_set_description(obj, "resize-hpt",
3422                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3423                                     NULL);
3424     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3425                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3426     object_property_set_description(obj, "vsmt",
3427                                     "Virtual SMT: KVM behaves as if this were"
3428                                     " the host's SMT mode", &error_abort);
3429     object_property_add_bool(obj, "vfio-no-msix-emulation",
3430                              spapr_get_msix_emulation, NULL, NULL);
3431 
3432     /* The machine class defines the default interrupt controller mode */
3433     spapr->irq = smc->irq;
3434     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3435                             spapr_set_ic_mode, NULL);
3436     object_property_set_description(obj, "ic-mode",
3437                  "Specifies the interrupt controller mode (xics, xive, dual)",
3438                  NULL);
3439 
3440     object_property_add_str(obj, "host-model",
3441         spapr_get_host_model, spapr_set_host_model,
3442         &error_abort);
3443     object_property_set_description(obj, "host-model",
3444         "Host model to advertise in guest device tree", &error_abort);
3445     object_property_add_str(obj, "host-serial",
3446         spapr_get_host_serial, spapr_set_host_serial,
3447         &error_abort);
3448     object_property_set_description(obj, "host-serial",
3449         "Host serial number to advertise in guest device tree", &error_abort);
3450 }
3451 
3452 static void spapr_machine_finalizefn(Object *obj)
3453 {
3454     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3455 
3456     g_free(spapr->kvm_type);
3457 }
3458 
3459 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3460 {
3461     cpu_synchronize_state(cs);
3462     ppc_cpu_do_system_reset(cs);
3463 }
3464 
3465 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3466 {
3467     CPUState *cs;
3468 
3469     CPU_FOREACH(cs) {
3470         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3471     }
3472 }
3473 
3474 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3475                           void *fdt, int *fdt_start_offset, Error **errp)
3476 {
3477     uint64_t addr;
3478     uint32_t node;
3479 
3480     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3481     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3482                                     &error_abort);
3483     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3484                                                    SPAPR_MEMORY_BLOCK_SIZE);
3485     return 0;
3486 }
3487 
3488 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3489                            bool dedicated_hp_event_source, Error **errp)
3490 {
3491     SpaprDrc *drc;
3492     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3493     int i;
3494     uint64_t addr = addr_start;
3495     bool hotplugged = spapr_drc_hotplugged(dev);
3496     Error *local_err = NULL;
3497 
3498     for (i = 0; i < nr_lmbs; i++) {
3499         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3500                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3501         g_assert(drc);
3502 
3503         spapr_drc_attach(drc, dev, &local_err);
3504         if (local_err) {
3505             while (addr > addr_start) {
3506                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3507                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3508                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3509                 spapr_drc_detach(drc);
3510             }
3511             error_propagate(errp, local_err);
3512             return;
3513         }
3514         if (!hotplugged) {
3515             spapr_drc_reset(drc);
3516         }
3517         addr += SPAPR_MEMORY_BLOCK_SIZE;
3518     }
3519     /* send hotplug notification to the
3520      * guest only in case of hotplugged memory
3521      */
3522     if (hotplugged) {
3523         if (dedicated_hp_event_source) {
3524             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3525                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3526             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3527                                                    nr_lmbs,
3528                                                    spapr_drc_index(drc));
3529         } else {
3530             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3531                                            nr_lmbs);
3532         }
3533     }
3534 }
3535 
3536 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3537                               Error **errp)
3538 {
3539     Error *local_err = NULL;
3540     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3541     PCDIMMDevice *dimm = PC_DIMM(dev);
3542     uint64_t size, addr;
3543 
3544     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3545 
3546     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3547     if (local_err) {
3548         goto out;
3549     }
3550 
3551     addr = object_property_get_uint(OBJECT(dimm),
3552                                     PC_DIMM_ADDR_PROP, &local_err);
3553     if (local_err) {
3554         goto out_unplug;
3555     }
3556 
3557     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3558                    &local_err);
3559     if (local_err) {
3560         goto out_unplug;
3561     }
3562 
3563     return;
3564 
3565 out_unplug:
3566     pc_dimm_unplug(dimm, MACHINE(ms));
3567 out:
3568     error_propagate(errp, local_err);
3569 }
3570 
3571 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3572                                   Error **errp)
3573 {
3574     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3575     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3576     PCDIMMDevice *dimm = PC_DIMM(dev);
3577     Error *local_err = NULL;
3578     uint64_t size;
3579     Object *memdev;
3580     hwaddr pagesize;
3581 
3582     if (!smc->dr_lmb_enabled) {
3583         error_setg(errp, "Memory hotplug not supported for this machine");
3584         return;
3585     }
3586 
3587     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3588     if (local_err) {
3589         error_propagate(errp, local_err);
3590         return;
3591     }
3592 
3593     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3594         error_setg(errp, "Hotplugged memory size must be a multiple of "
3595                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3596         return;
3597     }
3598 
3599     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3600                                       &error_abort);
3601     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3602     spapr_check_pagesize(spapr, pagesize, &local_err);
3603     if (local_err) {
3604         error_propagate(errp, local_err);
3605         return;
3606     }
3607 
3608     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3609 }
3610 
3611 struct SpaprDimmState {
3612     PCDIMMDevice *dimm;
3613     uint32_t nr_lmbs;
3614     QTAILQ_ENTRY(SpaprDimmState) next;
3615 };
3616 
3617 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3618                                                        PCDIMMDevice *dimm)
3619 {
3620     SpaprDimmState *dimm_state = NULL;
3621 
3622     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3623         if (dimm_state->dimm == dimm) {
3624             break;
3625         }
3626     }
3627     return dimm_state;
3628 }
3629 
3630 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3631                                                       uint32_t nr_lmbs,
3632                                                       PCDIMMDevice *dimm)
3633 {
3634     SpaprDimmState *ds = NULL;
3635 
3636     /*
3637      * If this request is for a DIMM whose removal had failed earlier
3638      * (due to guest's refusal to remove the LMBs), we would have this
3639      * dimm already in the pending_dimm_unplugs list. In that
3640      * case don't add again.
3641      */
3642     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3643     if (!ds) {
3644         ds = g_malloc0(sizeof(SpaprDimmState));
3645         ds->nr_lmbs = nr_lmbs;
3646         ds->dimm = dimm;
3647         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3648     }
3649     return ds;
3650 }
3651 
3652 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3653                                               SpaprDimmState *dimm_state)
3654 {
3655     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3656     g_free(dimm_state);
3657 }
3658 
3659 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3660                                                         PCDIMMDevice *dimm)
3661 {
3662     SpaprDrc *drc;
3663     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3664                                                   &error_abort);
3665     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3666     uint32_t avail_lmbs = 0;
3667     uint64_t addr_start, addr;
3668     int i;
3669 
3670     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3671                                          &error_abort);
3672 
3673     addr = addr_start;
3674     for (i = 0; i < nr_lmbs; i++) {
3675         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3676                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3677         g_assert(drc);
3678         if (drc->dev) {
3679             avail_lmbs++;
3680         }
3681         addr += SPAPR_MEMORY_BLOCK_SIZE;
3682     }
3683 
3684     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3685 }
3686 
3687 /* Callback to be called during DRC release. */
3688 void spapr_lmb_release(DeviceState *dev)
3689 {
3690     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3691     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3692     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3693 
3694     /* This information will get lost if a migration occurs
3695      * during the unplug process. In this case recover it. */
3696     if (ds == NULL) {
3697         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3698         g_assert(ds);
3699         /* The DRC being examined by the caller at least must be counted */
3700         g_assert(ds->nr_lmbs);
3701     }
3702 
3703     if (--ds->nr_lmbs) {
3704         return;
3705     }
3706 
3707     /*
3708      * Now that all the LMBs have been removed by the guest, call the
3709      * unplug handler chain. This can never fail.
3710      */
3711     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3712     object_unparent(OBJECT(dev));
3713 }
3714 
3715 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3716 {
3717     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3718     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3719 
3720     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3721     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3722     spapr_pending_dimm_unplugs_remove(spapr, ds);
3723 }
3724 
3725 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3726                                         DeviceState *dev, Error **errp)
3727 {
3728     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3729     Error *local_err = NULL;
3730     PCDIMMDevice *dimm = PC_DIMM(dev);
3731     uint32_t nr_lmbs;
3732     uint64_t size, addr_start, addr;
3733     int i;
3734     SpaprDrc *drc;
3735 
3736     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3737     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3738 
3739     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3740                                          &local_err);
3741     if (local_err) {
3742         goto out;
3743     }
3744 
3745     /*
3746      * An existing pending dimm state for this DIMM means that there is an
3747      * unplug operation in progress, waiting for the spapr_lmb_release
3748      * callback to complete the job (BQL can't cover that far). In this case,
3749      * bail out to avoid detaching DRCs that were already released.
3750      */
3751     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3752         error_setg(&local_err,
3753                    "Memory unplug already in progress for device %s",
3754                    dev->id);
3755         goto out;
3756     }
3757 
3758     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3759 
3760     addr = addr_start;
3761     for (i = 0; i < nr_lmbs; i++) {
3762         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3763                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3764         g_assert(drc);
3765 
3766         spapr_drc_detach(drc);
3767         addr += SPAPR_MEMORY_BLOCK_SIZE;
3768     }
3769 
3770     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3771                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3772     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3773                                               nr_lmbs, spapr_drc_index(drc));
3774 out:
3775     error_propagate(errp, local_err);
3776 }
3777 
3778 /* Callback to be called during DRC release. */
3779 void spapr_core_release(DeviceState *dev)
3780 {
3781     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3782 
3783     /* Call the unplug handler chain. This can never fail. */
3784     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3785     object_unparent(OBJECT(dev));
3786 }
3787 
3788 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3789 {
3790     MachineState *ms = MACHINE(hotplug_dev);
3791     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3792     CPUCore *cc = CPU_CORE(dev);
3793     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3794 
3795     if (smc->pre_2_10_has_unused_icps) {
3796         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3797         int i;
3798 
3799         for (i = 0; i < cc->nr_threads; i++) {
3800             CPUState *cs = CPU(sc->threads[i]);
3801 
3802             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3803         }
3804     }
3805 
3806     assert(core_slot);
3807     core_slot->cpu = NULL;
3808     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3809 }
3810 
3811 static
3812 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3813                                Error **errp)
3814 {
3815     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3816     int index;
3817     SpaprDrc *drc;
3818     CPUCore *cc = CPU_CORE(dev);
3819 
3820     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3821         error_setg(errp, "Unable to find CPU core with core-id: %d",
3822                    cc->core_id);
3823         return;
3824     }
3825     if (index == 0) {
3826         error_setg(errp, "Boot CPU core may not be unplugged");
3827         return;
3828     }
3829 
3830     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3831                           spapr_vcpu_id(spapr, cc->core_id));
3832     g_assert(drc);
3833 
3834     spapr_drc_detach(drc);
3835 
3836     spapr_hotplug_req_remove_by_index(drc);
3837 }
3838 
3839 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3840                            void *fdt, int *fdt_start_offset, Error **errp)
3841 {
3842     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3843     CPUState *cs = CPU(core->threads[0]);
3844     PowerPCCPU *cpu = POWERPC_CPU(cs);
3845     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3846     int id = spapr_get_vcpu_id(cpu);
3847     char *nodename;
3848     int offset;
3849 
3850     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3851     offset = fdt_add_subnode(fdt, 0, nodename);
3852     g_free(nodename);
3853 
3854     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3855 
3856     *fdt_start_offset = offset;
3857     return 0;
3858 }
3859 
3860 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3861                             Error **errp)
3862 {
3863     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3864     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3865     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3866     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3867     CPUCore *cc = CPU_CORE(dev);
3868     CPUState *cs;
3869     SpaprDrc *drc;
3870     Error *local_err = NULL;
3871     CPUArchId *core_slot;
3872     int index;
3873     bool hotplugged = spapr_drc_hotplugged(dev);
3874     int i;
3875 
3876     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3877     if (!core_slot) {
3878         error_setg(errp, "Unable to find CPU core with core-id: %d",
3879                    cc->core_id);
3880         return;
3881     }
3882     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3883                           spapr_vcpu_id(spapr, cc->core_id));
3884 
3885     g_assert(drc || !mc->has_hotpluggable_cpus);
3886 
3887     if (drc) {
3888         spapr_drc_attach(drc, dev, &local_err);
3889         if (local_err) {
3890             error_propagate(errp, local_err);
3891             return;
3892         }
3893 
3894         if (hotplugged) {
3895             /*
3896              * Send hotplug notification interrupt to the guest only
3897              * in case of hotplugged CPUs.
3898              */
3899             spapr_hotplug_req_add_by_index(drc);
3900         } else {
3901             spapr_drc_reset(drc);
3902         }
3903     }
3904 
3905     core_slot->cpu = OBJECT(dev);
3906 
3907     if (smc->pre_2_10_has_unused_icps) {
3908         for (i = 0; i < cc->nr_threads; i++) {
3909             cs = CPU(core->threads[i]);
3910             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3911         }
3912     }
3913 
3914     /*
3915      * Set compatibility mode to match the boot CPU, which was either set
3916      * by the machine reset code or by CAS.
3917      */
3918     if (hotplugged) {
3919         for (i = 0; i < cc->nr_threads; i++) {
3920             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3921                            &local_err);
3922             if (local_err) {
3923                 error_propagate(errp, local_err);
3924                 return;
3925             }
3926         }
3927     }
3928 }
3929 
3930 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3931                                 Error **errp)
3932 {
3933     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3934     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3935     Error *local_err = NULL;
3936     CPUCore *cc = CPU_CORE(dev);
3937     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3938     const char *type = object_get_typename(OBJECT(dev));
3939     CPUArchId *core_slot;
3940     int index;
3941     unsigned int smp_threads = machine->smp.threads;
3942 
3943     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3944         error_setg(&local_err, "CPU hotplug not supported for this machine");
3945         goto out;
3946     }
3947 
3948     if (strcmp(base_core_type, type)) {
3949         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3950         goto out;
3951     }
3952 
3953     if (cc->core_id % smp_threads) {
3954         error_setg(&local_err, "invalid core id %d", cc->core_id);
3955         goto out;
3956     }
3957 
3958     /*
3959      * In general we should have homogeneous threads-per-core, but old
3960      * (pre hotplug support) machine types allow the last core to have
3961      * reduced threads as a compatibility hack for when we allowed
3962      * total vcpus not a multiple of threads-per-core.
3963      */
3964     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3965         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3966                    cc->nr_threads, smp_threads);
3967         goto out;
3968     }
3969 
3970     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3971     if (!core_slot) {
3972         error_setg(&local_err, "core id %d out of range", cc->core_id);
3973         goto out;
3974     }
3975 
3976     if (core_slot->cpu) {
3977         error_setg(&local_err, "core %d already populated", cc->core_id);
3978         goto out;
3979     }
3980 
3981     numa_cpu_pre_plug(core_slot, dev, &local_err);
3982 
3983 out:
3984     error_propagate(errp, local_err);
3985 }
3986 
3987 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3988                           void *fdt, int *fdt_start_offset, Error **errp)
3989 {
3990     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3991     int intc_phandle;
3992 
3993     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3994     if (intc_phandle <= 0) {
3995         return -1;
3996     }
3997 
3998     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3999                      fdt_start_offset)) {
4000         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4001         return -1;
4002     }
4003 
4004     /* generally SLOF creates these, for hotplug it's up to QEMU */
4005     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4006 
4007     return 0;
4008 }
4009 
4010 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4011                                Error **errp)
4012 {
4013     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4014     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4015     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4016     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4017 
4018     if (dev->hotplugged && !smc->dr_phb_enabled) {
4019         error_setg(errp, "PHB hotplug not supported for this machine");
4020         return;
4021     }
4022 
4023     if (sphb->index == (uint32_t)-1) {
4024         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4025         return;
4026     }
4027 
4028     /*
4029      * This will check that sphb->index doesn't exceed the maximum number of
4030      * PHBs for the current machine type.
4031      */
4032     smc->phb_placement(spapr, sphb->index,
4033                        &sphb->buid, &sphb->io_win_addr,
4034                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
4035                        windows_supported, sphb->dma_liobn,
4036                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4037                        errp);
4038 }
4039 
4040 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4041                            Error **errp)
4042 {
4043     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4044     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4045     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4046     SpaprDrc *drc;
4047     bool hotplugged = spapr_drc_hotplugged(dev);
4048     Error *local_err = NULL;
4049 
4050     if (!smc->dr_phb_enabled) {
4051         return;
4052     }
4053 
4054     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4055     /* hotplug hooks should check it's enabled before getting this far */
4056     assert(drc);
4057 
4058     spapr_drc_attach(drc, DEVICE(dev), &local_err);
4059     if (local_err) {
4060         error_propagate(errp, local_err);
4061         return;
4062     }
4063 
4064     if (hotplugged) {
4065         spapr_hotplug_req_add_by_index(drc);
4066     } else {
4067         spapr_drc_reset(drc);
4068     }
4069 }
4070 
4071 void spapr_phb_release(DeviceState *dev)
4072 {
4073     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4074 
4075     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4076     object_unparent(OBJECT(dev));
4077 }
4078 
4079 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4080 {
4081     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4082 }
4083 
4084 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4085                                      DeviceState *dev, Error **errp)
4086 {
4087     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4088     SpaprDrc *drc;
4089 
4090     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4091     assert(drc);
4092 
4093     if (!spapr_drc_unplug_requested(drc)) {
4094         spapr_drc_detach(drc);
4095         spapr_hotplug_req_remove_by_index(drc);
4096     }
4097 }
4098 
4099 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4100                                  Error **errp)
4101 {
4102     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4103     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4104 
4105     if (spapr->tpm_proxy != NULL) {
4106         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4107         return;
4108     }
4109 
4110     spapr->tpm_proxy = tpm_proxy;
4111 }
4112 
4113 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4114 {
4115     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4116 
4117     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4118     object_unparent(OBJECT(dev));
4119     spapr->tpm_proxy = NULL;
4120 }
4121 
4122 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4123                                       DeviceState *dev, Error **errp)
4124 {
4125     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4126         spapr_memory_plug(hotplug_dev, dev, errp);
4127     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4128         spapr_core_plug(hotplug_dev, dev, errp);
4129     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4130         spapr_phb_plug(hotplug_dev, dev, errp);
4131     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4132         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4133     }
4134 }
4135 
4136 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4137                                         DeviceState *dev, Error **errp)
4138 {
4139     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4140         spapr_memory_unplug(hotplug_dev, dev);
4141     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4142         spapr_core_unplug(hotplug_dev, dev);
4143     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4144         spapr_phb_unplug(hotplug_dev, dev);
4145     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4146         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4147     }
4148 }
4149 
4150 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4151                                                 DeviceState *dev, Error **errp)
4152 {
4153     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4154     MachineClass *mc = MACHINE_GET_CLASS(sms);
4155     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4156 
4157     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4158         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4159             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4160         } else {
4161             /* NOTE: this means there is a window after guest reset, prior to
4162              * CAS negotiation, where unplug requests will fail due to the
4163              * capability not being detected yet. This is a bit different than
4164              * the case with PCI unplug, where the events will be queued and
4165              * eventually handled by the guest after boot
4166              */
4167             error_setg(errp, "Memory hot unplug not supported for this guest");
4168         }
4169     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4170         if (!mc->has_hotpluggable_cpus) {
4171             error_setg(errp, "CPU hot unplug not supported on this machine");
4172             return;
4173         }
4174         spapr_core_unplug_request(hotplug_dev, dev, errp);
4175     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4176         if (!smc->dr_phb_enabled) {
4177             error_setg(errp, "PHB hot unplug not supported on this machine");
4178             return;
4179         }
4180         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4181     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4182         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4183     }
4184 }
4185 
4186 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4187                                           DeviceState *dev, Error **errp)
4188 {
4189     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4190         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4191     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4192         spapr_core_pre_plug(hotplug_dev, dev, errp);
4193     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4194         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4195     }
4196 }
4197 
4198 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4199                                                  DeviceState *dev)
4200 {
4201     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4202         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4203         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4204         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4205         return HOTPLUG_HANDLER(machine);
4206     }
4207     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4208         PCIDevice *pcidev = PCI_DEVICE(dev);
4209         PCIBus *root = pci_device_root_bus(pcidev);
4210         SpaprPhbState *phb =
4211             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4212                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4213 
4214         if (phb) {
4215             return HOTPLUG_HANDLER(phb);
4216         }
4217     }
4218     return NULL;
4219 }
4220 
4221 static CpuInstanceProperties
4222 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4223 {
4224     CPUArchId *core_slot;
4225     MachineClass *mc = MACHINE_GET_CLASS(machine);
4226 
4227     /* make sure possible_cpu are intialized */
4228     mc->possible_cpu_arch_ids(machine);
4229     /* get CPU core slot containing thread that matches cpu_index */
4230     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4231     assert(core_slot);
4232     return core_slot->props;
4233 }
4234 
4235 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4236 {
4237     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4238 }
4239 
4240 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4241 {
4242     int i;
4243     unsigned int smp_threads = machine->smp.threads;
4244     unsigned int smp_cpus = machine->smp.cpus;
4245     const char *core_type;
4246     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4247     MachineClass *mc = MACHINE_GET_CLASS(machine);
4248 
4249     if (!mc->has_hotpluggable_cpus) {
4250         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4251     }
4252     if (machine->possible_cpus) {
4253         assert(machine->possible_cpus->len == spapr_max_cores);
4254         return machine->possible_cpus;
4255     }
4256 
4257     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4258     if (!core_type) {
4259         error_report("Unable to find sPAPR CPU Core definition");
4260         exit(1);
4261     }
4262 
4263     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4264                              sizeof(CPUArchId) * spapr_max_cores);
4265     machine->possible_cpus->len = spapr_max_cores;
4266     for (i = 0; i < machine->possible_cpus->len; i++) {
4267         int core_id = i * smp_threads;
4268 
4269         machine->possible_cpus->cpus[i].type = core_type;
4270         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4271         machine->possible_cpus->cpus[i].arch_id = core_id;
4272         machine->possible_cpus->cpus[i].props.has_core_id = true;
4273         machine->possible_cpus->cpus[i].props.core_id = core_id;
4274     }
4275     return machine->possible_cpus;
4276 }
4277 
4278 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4279                                 uint64_t *buid, hwaddr *pio,
4280                                 hwaddr *mmio32, hwaddr *mmio64,
4281                                 unsigned n_dma, uint32_t *liobns,
4282                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4283 {
4284     /*
4285      * New-style PHB window placement.
4286      *
4287      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4288      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4289      * windows.
4290      *
4291      * Some guest kernels can't work with MMIO windows above 1<<46
4292      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4293      *
4294      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4295      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4296      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4297      * 1TiB 64-bit MMIO windows for each PHB.
4298      */
4299     const uint64_t base_buid = 0x800000020000000ULL;
4300     int i;
4301 
4302     /* Sanity check natural alignments */
4303     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4304     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4305     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4306     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4307     /* Sanity check bounds */
4308     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4309                       SPAPR_PCI_MEM32_WIN_SIZE);
4310     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4311                       SPAPR_PCI_MEM64_WIN_SIZE);
4312 
4313     if (index >= SPAPR_MAX_PHBS) {
4314         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4315                    SPAPR_MAX_PHBS - 1);
4316         return;
4317     }
4318 
4319     *buid = base_buid + index;
4320     for (i = 0; i < n_dma; ++i) {
4321         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4322     }
4323 
4324     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4325     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4326     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4327 
4328     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4329     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4330 }
4331 
4332 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4333 {
4334     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4335 
4336     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4337 }
4338 
4339 static void spapr_ics_resend(XICSFabric *dev)
4340 {
4341     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4342 
4343     ics_resend(spapr->ics);
4344 }
4345 
4346 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4347 {
4348     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4349 
4350     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4351 }
4352 
4353 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4354                                  Monitor *mon)
4355 {
4356     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4357 
4358     spapr->irq->print_info(spapr, mon);
4359     monitor_printf(mon, "irqchip: %s\n",
4360                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4361 }
4362 
4363 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4364 {
4365     return cpu->vcpu_id;
4366 }
4367 
4368 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4369 {
4370     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4371     MachineState *ms = MACHINE(spapr);
4372     int vcpu_id;
4373 
4374     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4375 
4376     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4377         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4378         error_append_hint(errp, "Adjust the number of cpus to %d "
4379                           "or try to raise the number of threads per core\n",
4380                           vcpu_id * ms->smp.threads / spapr->vsmt);
4381         return;
4382     }
4383 
4384     cpu->vcpu_id = vcpu_id;
4385 }
4386 
4387 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4388 {
4389     CPUState *cs;
4390 
4391     CPU_FOREACH(cs) {
4392         PowerPCCPU *cpu = POWERPC_CPU(cs);
4393 
4394         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4395             return cpu;
4396         }
4397     }
4398 
4399     return NULL;
4400 }
4401 
4402 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4403 {
4404     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4405 
4406     /* These are only called by TCG, KVM maintains dispatch state */
4407 
4408     spapr_cpu->prod = false;
4409     if (spapr_cpu->vpa_addr) {
4410         CPUState *cs = CPU(cpu);
4411         uint32_t dispatch;
4412 
4413         dispatch = ldl_be_phys(cs->as,
4414                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4415         dispatch++;
4416         if ((dispatch & 1) != 0) {
4417             qemu_log_mask(LOG_GUEST_ERROR,
4418                           "VPA: incorrect dispatch counter value for "
4419                           "dispatched partition %u, correcting.\n", dispatch);
4420             dispatch++;
4421         }
4422         stl_be_phys(cs->as,
4423                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4424     }
4425 }
4426 
4427 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4428 {
4429     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4430 
4431     if (spapr_cpu->vpa_addr) {
4432         CPUState *cs = CPU(cpu);
4433         uint32_t dispatch;
4434 
4435         dispatch = ldl_be_phys(cs->as,
4436                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4437         dispatch++;
4438         if ((dispatch & 1) != 1) {
4439             qemu_log_mask(LOG_GUEST_ERROR,
4440                           "VPA: incorrect dispatch counter value for "
4441                           "preempted partition %u, correcting.\n", dispatch);
4442             dispatch++;
4443         }
4444         stl_be_phys(cs->as,
4445                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4446     }
4447 }
4448 
4449 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4450 {
4451     MachineClass *mc = MACHINE_CLASS(oc);
4452     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4453     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4454     NMIClass *nc = NMI_CLASS(oc);
4455     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4456     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4457     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4458     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4459 
4460     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4461     mc->ignore_boot_device_suffixes = true;
4462 
4463     /*
4464      * We set up the default / latest behaviour here.  The class_init
4465      * functions for the specific versioned machine types can override
4466      * these details for backwards compatibility
4467      */
4468     mc->init = spapr_machine_init;
4469     mc->reset = spapr_machine_reset;
4470     mc->block_default_type = IF_SCSI;
4471     mc->max_cpus = 1024;
4472     mc->no_parallel = 1;
4473     mc->default_boot_order = "";
4474     mc->default_ram_size = 512 * MiB;
4475     mc->default_display = "std";
4476     mc->kvm_type = spapr_kvm_type;
4477     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4478     mc->pci_allow_0_address = true;
4479     assert(!mc->get_hotplug_handler);
4480     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4481     hc->pre_plug = spapr_machine_device_pre_plug;
4482     hc->plug = spapr_machine_device_plug;
4483     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4484     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4485     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4486     hc->unplug_request = spapr_machine_device_unplug_request;
4487     hc->unplug = spapr_machine_device_unplug;
4488 
4489     smc->dr_lmb_enabled = true;
4490     smc->update_dt_enabled = true;
4491     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4492     mc->has_hotpluggable_cpus = true;
4493     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4494     fwc->get_dev_path = spapr_get_fw_dev_path;
4495     nc->nmi_monitor_handler = spapr_nmi;
4496     smc->phb_placement = spapr_phb_placement;
4497     vhc->hypercall = emulate_spapr_hypercall;
4498     vhc->hpt_mask = spapr_hpt_mask;
4499     vhc->map_hptes = spapr_map_hptes;
4500     vhc->unmap_hptes = spapr_unmap_hptes;
4501     vhc->hpte_set_c = spapr_hpte_set_c;
4502     vhc->hpte_set_r = spapr_hpte_set_r;
4503     vhc->get_pate = spapr_get_pate;
4504     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4505     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4506     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4507     xic->ics_get = spapr_ics_get;
4508     xic->ics_resend = spapr_ics_resend;
4509     xic->icp_get = spapr_icp_get;
4510     ispc->print_info = spapr_pic_print_info;
4511     /* Force NUMA node memory size to be a multiple of
4512      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4513      * in which LMBs are represented and hot-added
4514      */
4515     mc->numa_mem_align_shift = 28;
4516     mc->numa_mem_supported = true;
4517 
4518     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4519     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4520     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4521     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4522     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4523     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4524     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4525     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4526     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4527     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4528     spapr_caps_add_properties(smc, &error_abort);
4529     smc->irq = &spapr_irq_dual;
4530     smc->dr_phb_enabled = true;
4531     smc->linux_pci_probe = true;
4532 }
4533 
4534 static const TypeInfo spapr_machine_info = {
4535     .name          = TYPE_SPAPR_MACHINE,
4536     .parent        = TYPE_MACHINE,
4537     .abstract      = true,
4538     .instance_size = sizeof(SpaprMachineState),
4539     .instance_init = spapr_instance_init,
4540     .instance_finalize = spapr_machine_finalizefn,
4541     .class_size    = sizeof(SpaprMachineClass),
4542     .class_init    = spapr_machine_class_init,
4543     .interfaces = (InterfaceInfo[]) {
4544         { TYPE_FW_PATH_PROVIDER },
4545         { TYPE_NMI },
4546         { TYPE_HOTPLUG_HANDLER },
4547         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4548         { TYPE_XICS_FABRIC },
4549         { TYPE_INTERRUPT_STATS_PROVIDER },
4550         { }
4551     },
4552 };
4553 
4554 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4555     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4556                                                     void *data)      \
4557     {                                                                \
4558         MachineClass *mc = MACHINE_CLASS(oc);                        \
4559         spapr_machine_##suffix##_class_options(mc);                  \
4560         if (latest) {                                                \
4561             mc->alias = "pseries";                                   \
4562             mc->is_default = 1;                                      \
4563         }                                                            \
4564     }                                                                \
4565     static const TypeInfo spapr_machine_##suffix##_info = {          \
4566         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4567         .parent = TYPE_SPAPR_MACHINE,                                \
4568         .class_init = spapr_machine_##suffix##_class_init,           \
4569     };                                                               \
4570     static void spapr_machine_register_##suffix(void)                \
4571     {                                                                \
4572         type_register(&spapr_machine_##suffix##_info);               \
4573     }                                                                \
4574     type_init(spapr_machine_register_##suffix)
4575 
4576 /*
4577  * pseries-4.2
4578  */
4579 static void spapr_machine_4_2_class_options(MachineClass *mc)
4580 {
4581     /* Defaults for the latest behaviour inherited from the base class */
4582 }
4583 
4584 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4585 
4586 /*
4587  * pseries-4.1
4588  */
4589 static void spapr_machine_4_1_class_options(MachineClass *mc)
4590 {
4591     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4592     static GlobalProperty compat[] = {
4593         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4594         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4595     };
4596 
4597     spapr_machine_4_2_class_options(mc);
4598     smc->linux_pci_probe = false;
4599     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4600     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4601 }
4602 
4603 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4604 
4605 /*
4606  * pseries-4.0
4607  */
4608 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4609                               uint64_t *buid, hwaddr *pio,
4610                               hwaddr *mmio32, hwaddr *mmio64,
4611                               unsigned n_dma, uint32_t *liobns,
4612                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4613 {
4614     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4615                         nv2gpa, nv2atsd, errp);
4616     *nv2gpa = 0;
4617     *nv2atsd = 0;
4618 }
4619 
4620 static void spapr_machine_4_0_class_options(MachineClass *mc)
4621 {
4622     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4623 
4624     spapr_machine_4_1_class_options(mc);
4625     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4626     smc->phb_placement = phb_placement_4_0;
4627     smc->irq = &spapr_irq_xics;
4628     smc->pre_4_1_migration = true;
4629 }
4630 
4631 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4632 
4633 /*
4634  * pseries-3.1
4635  */
4636 static void spapr_machine_3_1_class_options(MachineClass *mc)
4637 {
4638     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4639 
4640     spapr_machine_4_0_class_options(mc);
4641     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4642 
4643     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4644     smc->update_dt_enabled = false;
4645     smc->dr_phb_enabled = false;
4646     smc->broken_host_serial_model = true;
4647     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4648     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4649     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4650     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4651 }
4652 
4653 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4654 
4655 /*
4656  * pseries-3.0
4657  */
4658 
4659 static void spapr_machine_3_0_class_options(MachineClass *mc)
4660 {
4661     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4662 
4663     spapr_machine_3_1_class_options(mc);
4664     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4665 
4666     smc->legacy_irq_allocation = true;
4667     smc->irq = &spapr_irq_xics_legacy;
4668 }
4669 
4670 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4671 
4672 /*
4673  * pseries-2.12
4674  */
4675 static void spapr_machine_2_12_class_options(MachineClass *mc)
4676 {
4677     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4678     static GlobalProperty compat[] = {
4679         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4680         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4681     };
4682 
4683     spapr_machine_3_0_class_options(mc);
4684     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4685     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4686 
4687     /* We depend on kvm_enabled() to choose a default value for the
4688      * hpt-max-page-size capability. Of course we can't do it here
4689      * because this is too early and the HW accelerator isn't initialzed
4690      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4691      */
4692     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4693 }
4694 
4695 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4696 
4697 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4698 {
4699     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4700 
4701     spapr_machine_2_12_class_options(mc);
4702     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4703     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4704     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4705 }
4706 
4707 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4708 
4709 /*
4710  * pseries-2.11
4711  */
4712 
4713 static void spapr_machine_2_11_class_options(MachineClass *mc)
4714 {
4715     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4716 
4717     spapr_machine_2_12_class_options(mc);
4718     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4719     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4720 }
4721 
4722 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4723 
4724 /*
4725  * pseries-2.10
4726  */
4727 
4728 static void spapr_machine_2_10_class_options(MachineClass *mc)
4729 {
4730     spapr_machine_2_11_class_options(mc);
4731     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4732 }
4733 
4734 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4735 
4736 /*
4737  * pseries-2.9
4738  */
4739 
4740 static void spapr_machine_2_9_class_options(MachineClass *mc)
4741 {
4742     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4743     static GlobalProperty compat[] = {
4744         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4745     };
4746 
4747     spapr_machine_2_10_class_options(mc);
4748     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4749     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4750     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4751     smc->pre_2_10_has_unused_icps = true;
4752     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4753 }
4754 
4755 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4756 
4757 /*
4758  * pseries-2.8
4759  */
4760 
4761 static void spapr_machine_2_8_class_options(MachineClass *mc)
4762 {
4763     static GlobalProperty compat[] = {
4764         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4765     };
4766 
4767     spapr_machine_2_9_class_options(mc);
4768     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4769     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4770     mc->numa_mem_align_shift = 23;
4771 }
4772 
4773 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4774 
4775 /*
4776  * pseries-2.7
4777  */
4778 
4779 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4780                               uint64_t *buid, hwaddr *pio,
4781                               hwaddr *mmio32, hwaddr *mmio64,
4782                               unsigned n_dma, uint32_t *liobns,
4783                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4784 {
4785     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4786     const uint64_t base_buid = 0x800000020000000ULL;
4787     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4788     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4789     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4790     const uint32_t max_index = 255;
4791     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4792 
4793     uint64_t ram_top = MACHINE(spapr)->ram_size;
4794     hwaddr phb0_base, phb_base;
4795     int i;
4796 
4797     /* Do we have device memory? */
4798     if (MACHINE(spapr)->maxram_size > ram_top) {
4799         /* Can't just use maxram_size, because there may be an
4800          * alignment gap between normal and device memory regions
4801          */
4802         ram_top = MACHINE(spapr)->device_memory->base +
4803             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4804     }
4805 
4806     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4807 
4808     if (index > max_index) {
4809         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4810                    max_index);
4811         return;
4812     }
4813 
4814     *buid = base_buid + index;
4815     for (i = 0; i < n_dma; ++i) {
4816         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4817     }
4818 
4819     phb_base = phb0_base + index * phb_spacing;
4820     *pio = phb_base + pio_offset;
4821     *mmio32 = phb_base + mmio_offset;
4822     /*
4823      * We don't set the 64-bit MMIO window, relying on the PHB's
4824      * fallback behaviour of automatically splitting a large "32-bit"
4825      * window into contiguous 32-bit and 64-bit windows
4826      */
4827 
4828     *nv2gpa = 0;
4829     *nv2atsd = 0;
4830 }
4831 
4832 static void spapr_machine_2_7_class_options(MachineClass *mc)
4833 {
4834     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4835     static GlobalProperty compat[] = {
4836         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4837         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4838         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4839         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4840     };
4841 
4842     spapr_machine_2_8_class_options(mc);
4843     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4844     mc->default_machine_opts = "modern-hotplug-events=off";
4845     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4846     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4847     smc->phb_placement = phb_placement_2_7;
4848 }
4849 
4850 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4851 
4852 /*
4853  * pseries-2.6
4854  */
4855 
4856 static void spapr_machine_2_6_class_options(MachineClass *mc)
4857 {
4858     static GlobalProperty compat[] = {
4859         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4860     };
4861 
4862     spapr_machine_2_7_class_options(mc);
4863     mc->has_hotpluggable_cpus = false;
4864     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4865     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4866 }
4867 
4868 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4869 
4870 /*
4871  * pseries-2.5
4872  */
4873 
4874 static void spapr_machine_2_5_class_options(MachineClass *mc)
4875 {
4876     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4877     static GlobalProperty compat[] = {
4878         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4879     };
4880 
4881     spapr_machine_2_6_class_options(mc);
4882     smc->use_ohci_by_default = true;
4883     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4884     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4885 }
4886 
4887 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4888 
4889 /*
4890  * pseries-2.4
4891  */
4892 
4893 static void spapr_machine_2_4_class_options(MachineClass *mc)
4894 {
4895     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4896 
4897     spapr_machine_2_5_class_options(mc);
4898     smc->dr_lmb_enabled = false;
4899     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4900 }
4901 
4902 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4903 
4904 /*
4905  * pseries-2.3
4906  */
4907 
4908 static void spapr_machine_2_3_class_options(MachineClass *mc)
4909 {
4910     static GlobalProperty compat[] = {
4911         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4912     };
4913     spapr_machine_2_4_class_options(mc);
4914     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4915     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4916 }
4917 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4918 
4919 /*
4920  * pseries-2.2
4921  */
4922 
4923 static void spapr_machine_2_2_class_options(MachineClass *mc)
4924 {
4925     static GlobalProperty compat[] = {
4926         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4927     };
4928 
4929     spapr_machine_2_3_class_options(mc);
4930     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4931     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4932     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4933 }
4934 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4935 
4936 /*
4937  * pseries-2.1
4938  */
4939 
4940 static void spapr_machine_2_1_class_options(MachineClass *mc)
4941 {
4942     spapr_machine_2_2_class_options(mc);
4943     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4944 }
4945 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4946 
4947 static void spapr_machine_register_types(void)
4948 {
4949     type_register_static(&spapr_machine_info);
4950 }
4951 
4952 type_init(spapr_machine_register_types)
4953