xref: /qemu/hw/ppc/spapr.c (revision edfdbf9c6baf6f8dc17842bd300cd2dd78d5f0d4)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
54 
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
58 
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
65 
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
70 
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79 
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 
85 #include "monitor/monitor.h"
86 
87 #include <libfdt.h>
88 
89 /* SLOF memory layout:
90  *
91  * SLOF raw image loaded at 0, copies its romfs right below the flat
92  * device-tree, then position SLOF itself 31M below that
93  *
94  * So we set FW_OVERHEAD to 40MB which should account for all of that
95  * and more
96  *
97  * We load our kernel at 4M, leaving space for SLOF initial image
98  */
99 #define FDT_MAX_SIZE            0x100000
100 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE             0x400000
102 #define FW_FILE_NAME            "slof.bin"
103 #define FW_OVERHEAD             0x2800000
104 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
105 
106 #define MIN_RMA_SLOF            (128 * MiB)
107 
108 #define PHANDLE_INTC            0x00001111
109 
110 /* These two functions implement the VCPU id numbering: one to compute them
111  * all and one to identify thread 0 of a VCORE. Any change to the first one
112  * is likely to have an impact on the second one, so let's keep them close.
113  */
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 {
116     MachineState *ms = MACHINE(spapr);
117     unsigned int smp_threads = ms->smp.threads;
118 
119     assert(spapr->vsmt);
120     return
121         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 }
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124                                       PowerPCCPU *cpu)
125 {
126     assert(spapr->vsmt);
127     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 }
129 
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133      * and newer QEMUs don't even have them. In both cases, we don't want
134      * to send anything on the wire.
135      */
136     return false;
137 }
138 
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140     .name = "icp/server",
141     .version_id = 1,
142     .minimum_version_id = 1,
143     .needed = pre_2_10_vmstate_dummy_icp_needed,
144     .fields = (VMStateField[]) {
145         VMSTATE_UNUSED(4), /* uint32_t xirr */
146         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147         VMSTATE_UNUSED(1), /* uint8_t mfrr */
148         VMSTATE_END_OF_LIST()
149     },
150 };
151 
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155                      (void *)(uintptr_t) i);
156 }
157 
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161                        (void *)(uintptr_t) i);
162 }
163 
164 int spapr_max_server_number(SpaprMachineState *spapr)
165 {
166     MachineState *ms = MACHINE(spapr);
167 
168     assert(spapr->vsmt);
169     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 }
171 
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173                                   int smt_threads)
174 {
175     int i, ret = 0;
176     uint32_t servers_prop[smt_threads];
177     uint32_t gservers_prop[smt_threads * 2];
178     int index = spapr_get_vcpu_id(cpu);
179 
180     if (cpu->compat_pvr) {
181         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182         if (ret < 0) {
183             return ret;
184         }
185     }
186 
187     /* Build interrupt servers and gservers properties */
188     for (i = 0; i < smt_threads; i++) {
189         servers_prop[i] = cpu_to_be32(index + i);
190         /* Hack, direct the group queues back to cpu 0 */
191         gservers_prop[i*2] = cpu_to_be32(index + i);
192         gservers_prop[i*2 + 1] = 0;
193     }
194     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195                       servers_prop, sizeof(servers_prop));
196     if (ret < 0) {
197         return ret;
198     }
199     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200                       gservers_prop, sizeof(gservers_prop));
201 
202     return ret;
203 }
204 
205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 {
207     int index = spapr_get_vcpu_id(cpu);
208     uint32_t associativity[] = {cpu_to_be32(0x5),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(0x0),
211                                 cpu_to_be32(0x0),
212                                 cpu_to_be32(cpu->node_id),
213                                 cpu_to_be32(index)};
214 
215     /* Advertise NUMA via ibm,associativity */
216     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
217                           sizeof(associativity));
218 }
219 
220 static void spapr_dt_pa_features(SpaprMachineState *spapr,
221                                  PowerPCCPU *cpu,
222                                  void *fdt, int offset)
223 {
224     uint8_t pa_features_206[] = { 6, 0,
225         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226     uint8_t pa_features_207[] = { 24, 0,
227         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231     uint8_t pa_features_300[] = { 66, 0,
232         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235         /* 6: DS207 */
236         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237         /* 16: Vector */
238         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247         /* 42: PM, 44: PC RA, 46: SC vec'd */
248         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249         /* 48: SIMD, 50: QP BFP, 52: String */
250         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251         /* 54: DecFP, 56: DecI, 58: SHA */
252         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253         /* 60: NM atomic, 62: RNG */
254         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255     };
256     uint8_t *pa_features = NULL;
257     size_t pa_size;
258 
259     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260         pa_features = pa_features_206;
261         pa_size = sizeof(pa_features_206);
262     }
263     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264         pa_features = pa_features_207;
265         pa_size = sizeof(pa_features_207);
266     }
267     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268         pa_features = pa_features_300;
269         pa_size = sizeof(pa_features_300);
270     }
271     if (!pa_features) {
272         return;
273     }
274 
275     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276         /*
277          * Note: we keep CI large pages off by default because a 64K capable
278          * guest provisioned with large pages might otherwise try to map a qemu
279          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280          * even if that qemu runs on a 4k host.
281          * We dd this bit back here if we are confident this is not an issue
282          */
283         pa_features[3] |= 0x20;
284     }
285     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286         pa_features[24] |= 0x80;    /* Transactional memory support */
287     }
288     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
289         /* Workaround for broken kernels that attempt (guest) radix
290          * mode when they can't handle it, if they see the radix bit set
291          * in pa-features. So hide it from them. */
292         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293     }
294 
295     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297 
298 static hwaddr spapr_node0_size(MachineState *machine)
299 {
300     if (machine->numa_state->num_nodes) {
301         int i;
302         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
303             if (machine->numa_state->nodes[i].node_mem) {
304                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
305                            machine->ram_size);
306             }
307         }
308     }
309     return machine->ram_size;
310 }
311 
312 static void add_str(GString *s, const gchar *s1)
313 {
314     g_string_append_len(s, s1, strlen(s1) + 1);
315 }
316 
317 static int spapr_dt_memory_node(void *fdt, int nodeid, hwaddr start,
318                                 hwaddr size)
319 {
320     uint32_t associativity[] = {
321         cpu_to_be32(0x4), /* length */
322         cpu_to_be32(0x0), cpu_to_be32(0x0),
323         cpu_to_be32(0x0), cpu_to_be32(nodeid)
324     };
325     char mem_name[32];
326     uint64_t mem_reg_property[2];
327     int off;
328 
329     mem_reg_property[0] = cpu_to_be64(start);
330     mem_reg_property[1] = cpu_to_be64(size);
331 
332     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
333     off = fdt_add_subnode(fdt, 0, mem_name);
334     _FDT(off);
335     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
336     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
337                       sizeof(mem_reg_property))));
338     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
339                       sizeof(associativity))));
340     return off;
341 }
342 
343 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
344 {
345     MemoryDeviceInfoList *info;
346 
347     for (info = list; info; info = info->next) {
348         MemoryDeviceInfo *value = info->value;
349 
350         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
351             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
352 
353             if (addr >= pcdimm_info->addr &&
354                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
355                 return pcdimm_info->node;
356             }
357         }
358     }
359 
360     return -1;
361 }
362 
363 struct sPAPRDrconfCellV2 {
364      uint32_t seq_lmbs;
365      uint64_t base_addr;
366      uint32_t drc_index;
367      uint32_t aa_index;
368      uint32_t flags;
369 } QEMU_PACKED;
370 
371 typedef struct DrconfCellQueue {
372     struct sPAPRDrconfCellV2 cell;
373     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
374 } DrconfCellQueue;
375 
376 static DrconfCellQueue *
377 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
378                       uint32_t drc_index, uint32_t aa_index,
379                       uint32_t flags)
380 {
381     DrconfCellQueue *elem;
382 
383     elem = g_malloc0(sizeof(*elem));
384     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
385     elem->cell.base_addr = cpu_to_be64(base_addr);
386     elem->cell.drc_index = cpu_to_be32(drc_index);
387     elem->cell.aa_index = cpu_to_be32(aa_index);
388     elem->cell.flags = cpu_to_be32(flags);
389 
390     return elem;
391 }
392 
393 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
394                                       int offset, MemoryDeviceInfoList *dimms)
395 {
396     MachineState *machine = MACHINE(spapr);
397     uint8_t *int_buf, *cur_index;
398     int ret;
399     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
400     uint64_t addr, cur_addr, size;
401     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
402     uint64_t mem_end = machine->device_memory->base +
403                        memory_region_size(&machine->device_memory->mr);
404     uint32_t node, buf_len, nr_entries = 0;
405     SpaprDrc *drc;
406     DrconfCellQueue *elem, *next;
407     MemoryDeviceInfoList *info;
408     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
409         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
410 
411     /* Entry to cover RAM and the gap area */
412     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
413                                  SPAPR_LMB_FLAGS_RESERVED |
414                                  SPAPR_LMB_FLAGS_DRC_INVALID);
415     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
416     nr_entries++;
417 
418     cur_addr = machine->device_memory->base;
419     for (info = dimms; info; info = info->next) {
420         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
421 
422         addr = di->addr;
423         size = di->size;
424         node = di->node;
425 
426         /*
427          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
428          * area is marked hotpluggable in the next iteration for the bigger
429          * chunk including the NVDIMM occupied area.
430          */
431         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
432             continue;
433 
434         /* Entry for hot-pluggable area */
435         if (cur_addr < addr) {
436             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
437             g_assert(drc);
438             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
439                                          cur_addr, spapr_drc_index(drc), -1, 0);
440             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
441             nr_entries++;
442         }
443 
444         /* Entry for DIMM */
445         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
446         g_assert(drc);
447         elem = spapr_get_drconf_cell(size / lmb_size, addr,
448                                      spapr_drc_index(drc), node,
449                                      SPAPR_LMB_FLAGS_ASSIGNED);
450         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
451         nr_entries++;
452         cur_addr = addr + size;
453     }
454 
455     /* Entry for remaining hotpluggable area */
456     if (cur_addr < mem_end) {
457         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
458         g_assert(drc);
459         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
460                                      cur_addr, spapr_drc_index(drc), -1, 0);
461         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
462         nr_entries++;
463     }
464 
465     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
466     int_buf = cur_index = g_malloc0(buf_len);
467     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
468     cur_index += sizeof(nr_entries);
469 
470     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
471         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
472         cur_index += sizeof(elem->cell);
473         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
474         g_free(elem);
475     }
476 
477     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
478     g_free(int_buf);
479     if (ret < 0) {
480         return -1;
481     }
482     return 0;
483 }
484 
485 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
486                                    int offset, MemoryDeviceInfoList *dimms)
487 {
488     MachineState *machine = MACHINE(spapr);
489     int i, ret;
490     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
491     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
492     uint32_t nr_lmbs = (machine->device_memory->base +
493                        memory_region_size(&machine->device_memory->mr)) /
494                        lmb_size;
495     uint32_t *int_buf, *cur_index, buf_len;
496 
497     /*
498      * Allocate enough buffer size to fit in ibm,dynamic-memory
499      */
500     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
501     cur_index = int_buf = g_malloc0(buf_len);
502     int_buf[0] = cpu_to_be32(nr_lmbs);
503     cur_index++;
504     for (i = 0; i < nr_lmbs; i++) {
505         uint64_t addr = i * lmb_size;
506         uint32_t *dynamic_memory = cur_index;
507 
508         if (i >= device_lmb_start) {
509             SpaprDrc *drc;
510 
511             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
512             g_assert(drc);
513 
514             dynamic_memory[0] = cpu_to_be32(addr >> 32);
515             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
516             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
517             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
518             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
519             if (memory_region_present(get_system_memory(), addr)) {
520                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
521             } else {
522                 dynamic_memory[5] = cpu_to_be32(0);
523             }
524         } else {
525             /*
526              * LMB information for RMA, boot time RAM and gap b/n RAM and
527              * device memory region -- all these are marked as reserved
528              * and as having no valid DRC.
529              */
530             dynamic_memory[0] = cpu_to_be32(addr >> 32);
531             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
532             dynamic_memory[2] = cpu_to_be32(0);
533             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
534             dynamic_memory[4] = cpu_to_be32(-1);
535             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
536                                             SPAPR_LMB_FLAGS_DRC_INVALID);
537         }
538 
539         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
540     }
541     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
542     g_free(int_buf);
543     if (ret < 0) {
544         return -1;
545     }
546     return 0;
547 }
548 
549 /*
550  * Adds ibm,dynamic-reconfiguration-memory node.
551  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
552  * of this device tree node.
553  */
554 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
555                                                    void *fdt)
556 {
557     MachineState *machine = MACHINE(spapr);
558     int nb_numa_nodes = machine->numa_state->num_nodes;
559     int ret, i, offset;
560     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
561     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
562     uint32_t *int_buf, *cur_index, buf_len;
563     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
564     MemoryDeviceInfoList *dimms = NULL;
565 
566     /*
567      * Don't create the node if there is no device memory
568      */
569     if (machine->ram_size == machine->maxram_size) {
570         return 0;
571     }
572 
573     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
574 
575     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
576                     sizeof(prop_lmb_size));
577     if (ret < 0) {
578         return ret;
579     }
580 
581     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
582     if (ret < 0) {
583         return ret;
584     }
585 
586     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
587     if (ret < 0) {
588         return ret;
589     }
590 
591     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
592     dimms = qmp_memory_device_list();
593     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
594         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
595     } else {
596         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
597     }
598     qapi_free_MemoryDeviceInfoList(dimms);
599 
600     if (ret < 0) {
601         return ret;
602     }
603 
604     /* ibm,associativity-lookup-arrays */
605     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
606     cur_index = int_buf = g_malloc0(buf_len);
607     int_buf[0] = cpu_to_be32(nr_nodes);
608     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
609     cur_index += 2;
610     for (i = 0; i < nr_nodes; i++) {
611         uint32_t associativity[] = {
612             cpu_to_be32(0x0),
613             cpu_to_be32(0x0),
614             cpu_to_be32(0x0),
615             cpu_to_be32(i)
616         };
617         memcpy(cur_index, associativity, sizeof(associativity));
618         cur_index += 4;
619     }
620     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
621             (cur_index - int_buf) * sizeof(uint32_t));
622     g_free(int_buf);
623 
624     return ret;
625 }
626 
627 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
628 {
629     MachineState *machine = MACHINE(spapr);
630     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
631     hwaddr mem_start, node_size;
632     int i, nb_nodes = machine->numa_state->num_nodes;
633     NodeInfo *nodes = machine->numa_state->nodes;
634 
635     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
636         if (!nodes[i].node_mem) {
637             continue;
638         }
639         if (mem_start >= machine->ram_size) {
640             node_size = 0;
641         } else {
642             node_size = nodes[i].node_mem;
643             if (node_size > machine->ram_size - mem_start) {
644                 node_size = machine->ram_size - mem_start;
645             }
646         }
647         if (!mem_start) {
648             /* spapr_machine_init() checks for rma_size <= node0_size
649              * already */
650             spapr_dt_memory_node(fdt, i, 0, spapr->rma_size);
651             mem_start += spapr->rma_size;
652             node_size -= spapr->rma_size;
653         }
654         for ( ; node_size; ) {
655             hwaddr sizetmp = pow2floor(node_size);
656 
657             /* mem_start != 0 here */
658             if (ctzl(mem_start) < ctzl(sizetmp)) {
659                 sizetmp = 1ULL << ctzl(mem_start);
660             }
661 
662             spapr_dt_memory_node(fdt, i, mem_start, sizetmp);
663             node_size -= sizetmp;
664             mem_start += sizetmp;
665         }
666     }
667 
668     /* Generate ibm,dynamic-reconfiguration-memory node if required */
669     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
670         int ret;
671 
672         g_assert(smc->dr_lmb_enabled);
673         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
674         if (ret) {
675             return ret;
676         }
677     }
678 
679     return 0;
680 }
681 
682 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
683                          SpaprMachineState *spapr)
684 {
685     MachineState *ms = MACHINE(spapr);
686     PowerPCCPU *cpu = POWERPC_CPU(cs);
687     CPUPPCState *env = &cpu->env;
688     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
689     int index = spapr_get_vcpu_id(cpu);
690     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
691                        0xffffffff, 0xffffffff};
692     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
693         : SPAPR_TIMEBASE_FREQ;
694     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
695     uint32_t page_sizes_prop[64];
696     size_t page_sizes_prop_size;
697     unsigned int smp_threads = ms->smp.threads;
698     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
699     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
700     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
701     SpaprDrc *drc;
702     int drc_index;
703     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
704     int i;
705 
706     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
707     if (drc) {
708         drc_index = spapr_drc_index(drc);
709         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
710     }
711 
712     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
713     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
714 
715     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
716     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
717                            env->dcache_line_size)));
718     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
719                            env->dcache_line_size)));
720     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
721                            env->icache_line_size)));
722     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
723                            env->icache_line_size)));
724 
725     if (pcc->l1_dcache_size) {
726         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
727                                pcc->l1_dcache_size)));
728     } else {
729         warn_report("Unknown L1 dcache size for cpu");
730     }
731     if (pcc->l1_icache_size) {
732         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
733                                pcc->l1_icache_size)));
734     } else {
735         warn_report("Unknown L1 icache size for cpu");
736     }
737 
738     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
739     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
740     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
741     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
742     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
743     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
744 
745     if (env->spr_cb[SPR_PURR].oea_read) {
746         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
747     }
748     if (env->spr_cb[SPR_SPURR].oea_read) {
749         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
750     }
751 
752     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
753         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
754                           segs, sizeof(segs))));
755     }
756 
757     /* Advertise VSX (vector extensions) if available
758      *   1               == VMX / Altivec available
759      *   2               == VSX available
760      *
761      * Only CPUs for which we create core types in spapr_cpu_core.c
762      * are possible, and all of those have VMX */
763     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
764         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
765     } else {
766         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
767     }
768 
769     /* Advertise DFP (Decimal Floating Point) if available
770      *   0 / no property == no DFP
771      *   1               == DFP available */
772     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
773         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
774     }
775 
776     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
777                                                       sizeof(page_sizes_prop));
778     if (page_sizes_prop_size) {
779         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
780                           page_sizes_prop, page_sizes_prop_size)));
781     }
782 
783     spapr_dt_pa_features(spapr, cpu, fdt, offset);
784 
785     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
786                            cs->cpu_index / vcpus_per_socket)));
787 
788     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
789                       pft_size_prop, sizeof(pft_size_prop))));
790 
791     if (ms->numa_state->num_nodes > 1) {
792         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
793     }
794 
795     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
796 
797     if (pcc->radix_page_info) {
798         for (i = 0; i < pcc->radix_page_info->count; i++) {
799             radix_AP_encodings[i] =
800                 cpu_to_be32(pcc->radix_page_info->entries[i]);
801         }
802         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
803                           radix_AP_encodings,
804                           pcc->radix_page_info->count *
805                           sizeof(radix_AP_encodings[0]))));
806     }
807 
808     /*
809      * We set this property to let the guest know that it can use the large
810      * decrementer and its width in bits.
811      */
812     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
813         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
814                               pcc->lrg_decr_bits)));
815 }
816 
817 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
818 {
819     CPUState **rev;
820     CPUState *cs;
821     int n_cpus;
822     int cpus_offset;
823     char *nodename;
824     int i;
825 
826     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
827     _FDT(cpus_offset);
828     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
829     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
830 
831     /*
832      * We walk the CPUs in reverse order to ensure that CPU DT nodes
833      * created by fdt_add_subnode() end up in the right order in FDT
834      * for the guest kernel the enumerate the CPUs correctly.
835      *
836      * The CPU list cannot be traversed in reverse order, so we need
837      * to do extra work.
838      */
839     n_cpus = 0;
840     rev = NULL;
841     CPU_FOREACH(cs) {
842         rev = g_renew(CPUState *, rev, n_cpus + 1);
843         rev[n_cpus++] = cs;
844     }
845 
846     for (i = n_cpus - 1; i >= 0; i--) {
847         CPUState *cs = rev[i];
848         PowerPCCPU *cpu = POWERPC_CPU(cs);
849         int index = spapr_get_vcpu_id(cpu);
850         DeviceClass *dc = DEVICE_GET_CLASS(cs);
851         int offset;
852 
853         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
854             continue;
855         }
856 
857         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
858         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
859         g_free(nodename);
860         _FDT(offset);
861         spapr_dt_cpu(cs, fdt, offset, spapr);
862     }
863 
864     g_free(rev);
865 }
866 
867 static int spapr_dt_rng(void *fdt)
868 {
869     int node;
870     int ret;
871 
872     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
873     if (node <= 0) {
874         return -1;
875     }
876     ret = fdt_setprop_string(fdt, node, "device_type",
877                              "ibm,platform-facilities");
878     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
879     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
880 
881     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
882     if (node <= 0) {
883         return -1;
884     }
885     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
886 
887     return ret ? -1 : 0;
888 }
889 
890 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
891 {
892     MachineState *ms = MACHINE(spapr);
893     int rtas;
894     GString *hypertas = g_string_sized_new(256);
895     GString *qemu_hypertas = g_string_sized_new(256);
896     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
897     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
898         memory_region_size(&MACHINE(spapr)->device_memory->mr);
899     uint32_t lrdr_capacity[] = {
900         cpu_to_be32(max_device_addr >> 32),
901         cpu_to_be32(max_device_addr & 0xffffffff),
902         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
903         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
904     };
905     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
906     uint32_t maxdomains[] = {
907         cpu_to_be32(4),
908         maxdomain,
909         maxdomain,
910         maxdomain,
911         cpu_to_be32(spapr->gpu_numa_id),
912     };
913 
914     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
915 
916     /* hypertas */
917     add_str(hypertas, "hcall-pft");
918     add_str(hypertas, "hcall-term");
919     add_str(hypertas, "hcall-dabr");
920     add_str(hypertas, "hcall-interrupt");
921     add_str(hypertas, "hcall-tce");
922     add_str(hypertas, "hcall-vio");
923     add_str(hypertas, "hcall-splpar");
924     add_str(hypertas, "hcall-join");
925     add_str(hypertas, "hcall-bulk");
926     add_str(hypertas, "hcall-set-mode");
927     add_str(hypertas, "hcall-sprg0");
928     add_str(hypertas, "hcall-copy");
929     add_str(hypertas, "hcall-debug");
930     add_str(hypertas, "hcall-vphn");
931     add_str(qemu_hypertas, "hcall-memop1");
932 
933     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
934         add_str(hypertas, "hcall-multi-tce");
935     }
936 
937     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
938         add_str(hypertas, "hcall-hpt-resize");
939     }
940 
941     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
942                      hypertas->str, hypertas->len));
943     g_string_free(hypertas, TRUE);
944     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
945                      qemu_hypertas->str, qemu_hypertas->len));
946     g_string_free(qemu_hypertas, TRUE);
947 
948     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
949                      refpoints, sizeof(refpoints)));
950 
951     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
952                      maxdomains, sizeof(maxdomains)));
953 
954     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_SIZE));
955     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
956                           RTAS_ERROR_LOG_MAX));
957     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
958                           RTAS_EVENT_SCAN_RATE));
959 
960     g_assert(msi_nonbroken);
961     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
962 
963     /*
964      * According to PAPR, rtas ibm,os-term does not guarantee a return
965      * back to the guest cpu.
966      *
967      * While an additional ibm,extended-os-term property indicates
968      * that rtas call return will always occur. Set this property.
969      */
970     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
971 
972     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
973                      lrdr_capacity, sizeof(lrdr_capacity)));
974 
975     spapr_dt_rtas_tokens(fdt, rtas);
976 }
977 
978 /*
979  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
980  * and the XIVE features that the guest may request and thus the valid
981  * values for bytes 23..26 of option vector 5:
982  */
983 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
984                                           int chosen)
985 {
986     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
987 
988     char val[2 * 4] = {
989         23, 0x00, /* XICS / XIVE mode */
990         24, 0x00, /* Hash/Radix, filled in below. */
991         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
992         26, 0x40, /* Radix options: GTSE == yes. */
993     };
994 
995     if (spapr->irq->xics && spapr->irq->xive) {
996         val[1] = SPAPR_OV5_XIVE_BOTH;
997     } else if (spapr->irq->xive) {
998         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
999     } else {
1000         assert(spapr->irq->xics);
1001         val[1] = SPAPR_OV5_XIVE_LEGACY;
1002     }
1003 
1004     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1005                           first_ppc_cpu->compat_pvr)) {
1006         /*
1007          * If we're in a pre POWER9 compat mode then the guest should
1008          * do hash and use the legacy interrupt mode
1009          */
1010         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1011         val[3] = 0x00; /* Hash */
1012     } else if (kvm_enabled()) {
1013         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1014             val[3] = 0x80; /* OV5_MMU_BOTH */
1015         } else if (kvmppc_has_cap_mmu_radix()) {
1016             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1017         } else {
1018             val[3] = 0x00; /* Hash */
1019         }
1020     } else {
1021         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1022         val[3] = 0xC0;
1023     }
1024     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1025                      val, sizeof(val)));
1026 }
1027 
1028 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1029 {
1030     MachineState *machine = MACHINE(spapr);
1031     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1032     int chosen;
1033 
1034     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1035 
1036     if (reset) {
1037         const char *boot_device = machine->boot_order;
1038         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1039         size_t cb = 0;
1040         char *bootlist = get_boot_devices_list(&cb);
1041 
1042         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1043             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1044                                     machine->kernel_cmdline));
1045         }
1046 
1047         if (spapr->initrd_size) {
1048             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1049                                   spapr->initrd_base));
1050             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1051                                   spapr->initrd_base + spapr->initrd_size));
1052         }
1053 
1054         if (spapr->kernel_size) {
1055             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1056                                   cpu_to_be64(spapr->kernel_size) };
1057 
1058             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1059                          &kprop, sizeof(kprop)));
1060             if (spapr->kernel_le) {
1061                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1062             }
1063         }
1064         if (boot_menu) {
1065             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1066         }
1067         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1068         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1069         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1070 
1071         if (cb && bootlist) {
1072             int i;
1073 
1074             for (i = 0; i < cb; i++) {
1075                 if (bootlist[i] == '\n') {
1076                     bootlist[i] = ' ';
1077                 }
1078             }
1079             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1080         }
1081 
1082         if (boot_device && strlen(boot_device)) {
1083             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1084         }
1085 
1086         if (!spapr->has_graphics && stdout_path) {
1087             /*
1088              * "linux,stdout-path" and "stdout" properties are
1089              * deprecated by linux kernel. New platforms should only
1090              * use the "stdout-path" property. Set the new property
1091              * and continue using older property to remain compatible
1092              * with the existing firmware.
1093              */
1094             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1095             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1096         }
1097 
1098         /*
1099          * We can deal with BAR reallocation just fine, advertise it
1100          * to the guest
1101          */
1102         if (smc->linux_pci_probe) {
1103             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1104         }
1105 
1106         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1107 
1108         g_free(stdout_path);
1109         g_free(bootlist);
1110     }
1111 
1112     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1113 }
1114 
1115 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1116 {
1117     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1118      * KVM to work under pHyp with some guest co-operation */
1119     int hypervisor;
1120     uint8_t hypercall[16];
1121 
1122     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1123     /* indicate KVM hypercall interface */
1124     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1125     if (kvmppc_has_cap_fixup_hcalls()) {
1126         /*
1127          * Older KVM versions with older guest kernels were broken
1128          * with the magic page, don't allow the guest to map it.
1129          */
1130         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1131                                   sizeof(hypercall))) {
1132             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1133                              hypercall, sizeof(hypercall)));
1134         }
1135     }
1136 }
1137 
1138 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1139 {
1140     MachineState *machine = MACHINE(spapr);
1141     MachineClass *mc = MACHINE_GET_CLASS(machine);
1142     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1143     int ret;
1144     void *fdt;
1145     SpaprPhbState *phb;
1146     char *buf;
1147 
1148     fdt = g_malloc0(space);
1149     _FDT((fdt_create_empty_tree(fdt, space)));
1150 
1151     /* Root node */
1152     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1153     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1154     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1155 
1156     /* Guest UUID & Name*/
1157     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1158     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1159     if (qemu_uuid_set) {
1160         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1161     }
1162     g_free(buf);
1163 
1164     if (qemu_get_vm_name()) {
1165         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1166                                 qemu_get_vm_name()));
1167     }
1168 
1169     /* Host Model & Serial Number */
1170     if (spapr->host_model) {
1171         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1172     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1173         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1174         g_free(buf);
1175     }
1176 
1177     if (spapr->host_serial) {
1178         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1179     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1180         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1181         g_free(buf);
1182     }
1183 
1184     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1185     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1186 
1187     /* /interrupt controller */
1188     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1189 
1190     ret = spapr_dt_memory(spapr, fdt);
1191     if (ret < 0) {
1192         error_report("couldn't setup memory nodes in fdt");
1193         exit(1);
1194     }
1195 
1196     /* /vdevice */
1197     spapr_dt_vdevice(spapr->vio_bus, fdt);
1198 
1199     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1200         ret = spapr_dt_rng(fdt);
1201         if (ret < 0) {
1202             error_report("could not set up rng device in the fdt");
1203             exit(1);
1204         }
1205     }
1206 
1207     QLIST_FOREACH(phb, &spapr->phbs, list) {
1208         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1209         if (ret < 0) {
1210             error_report("couldn't setup PCI devices in fdt");
1211             exit(1);
1212         }
1213     }
1214 
1215     spapr_dt_cpus(fdt, spapr);
1216 
1217     if (smc->dr_lmb_enabled) {
1218         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1219     }
1220 
1221     if (mc->has_hotpluggable_cpus) {
1222         int offset = fdt_path_offset(fdt, "/cpus");
1223         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1224         if (ret < 0) {
1225             error_report("Couldn't set up CPU DR device tree properties");
1226             exit(1);
1227         }
1228     }
1229 
1230     /* /event-sources */
1231     spapr_dt_events(spapr, fdt);
1232 
1233     /* /rtas */
1234     spapr_dt_rtas(spapr, fdt);
1235 
1236     /* /chosen */
1237     spapr_dt_chosen(spapr, fdt, reset);
1238 
1239     /* /hypervisor */
1240     if (kvm_enabled()) {
1241         spapr_dt_hypervisor(spapr, fdt);
1242     }
1243 
1244     /* Build memory reserve map */
1245     if (reset) {
1246         if (spapr->kernel_size) {
1247             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1248                                   spapr->kernel_size)));
1249         }
1250         if (spapr->initrd_size) {
1251             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1252                                   spapr->initrd_size)));
1253         }
1254     }
1255 
1256     if (smc->dr_phb_enabled) {
1257         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1258         if (ret < 0) {
1259             error_report("Couldn't set up PHB DR device tree properties");
1260             exit(1);
1261         }
1262     }
1263 
1264     /* NVDIMM devices */
1265     if (mc->nvdimm_supported) {
1266         spapr_dt_persistent_memory(fdt);
1267     }
1268 
1269     return fdt;
1270 }
1271 
1272 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1273 {
1274     SpaprMachineState *spapr = opaque;
1275 
1276     return (addr & 0x0fffffff) + spapr->kernel_addr;
1277 }
1278 
1279 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1280                                     PowerPCCPU *cpu)
1281 {
1282     CPUPPCState *env = &cpu->env;
1283 
1284     /* The TCG path should also be holding the BQL at this point */
1285     g_assert(qemu_mutex_iothread_locked());
1286 
1287     if (msr_pr) {
1288         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1289         env->gpr[3] = H_PRIVILEGE;
1290     } else {
1291         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1292     }
1293 }
1294 
1295 struct LPCRSyncState {
1296     target_ulong value;
1297     target_ulong mask;
1298 };
1299 
1300 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1301 {
1302     struct LPCRSyncState *s = arg.host_ptr;
1303     PowerPCCPU *cpu = POWERPC_CPU(cs);
1304     CPUPPCState *env = &cpu->env;
1305     target_ulong lpcr;
1306 
1307     cpu_synchronize_state(cs);
1308     lpcr = env->spr[SPR_LPCR];
1309     lpcr &= ~s->mask;
1310     lpcr |= s->value;
1311     ppc_store_lpcr(cpu, lpcr);
1312 }
1313 
1314 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1315 {
1316     CPUState *cs;
1317     struct LPCRSyncState s = {
1318         .value = value,
1319         .mask = mask
1320     };
1321     CPU_FOREACH(cs) {
1322         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1323     }
1324 }
1325 
1326 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1327 {
1328     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1329 
1330     /* Copy PATE1:GR into PATE0:HR */
1331     entry->dw0 = spapr->patb_entry & PATE0_HR;
1332     entry->dw1 = spapr->patb_entry;
1333 }
1334 
1335 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1336 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1337 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1338 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1339 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1340 
1341 /*
1342  * Get the fd to access the kernel htab, re-opening it if necessary
1343  */
1344 static int get_htab_fd(SpaprMachineState *spapr)
1345 {
1346     Error *local_err = NULL;
1347 
1348     if (spapr->htab_fd >= 0) {
1349         return spapr->htab_fd;
1350     }
1351 
1352     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1353     if (spapr->htab_fd < 0) {
1354         error_report_err(local_err);
1355     }
1356 
1357     return spapr->htab_fd;
1358 }
1359 
1360 void close_htab_fd(SpaprMachineState *spapr)
1361 {
1362     if (spapr->htab_fd >= 0) {
1363         close(spapr->htab_fd);
1364     }
1365     spapr->htab_fd = -1;
1366 }
1367 
1368 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1369 {
1370     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1371 
1372     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1373 }
1374 
1375 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1376 {
1377     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1378 
1379     assert(kvm_enabled());
1380 
1381     if (!spapr->htab) {
1382         return 0;
1383     }
1384 
1385     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1386 }
1387 
1388 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1389                                                 hwaddr ptex, int n)
1390 {
1391     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1392     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1393 
1394     if (!spapr->htab) {
1395         /*
1396          * HTAB is controlled by KVM. Fetch into temporary buffer
1397          */
1398         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1399         kvmppc_read_hptes(hptes, ptex, n);
1400         return hptes;
1401     }
1402 
1403     /*
1404      * HTAB is controlled by QEMU. Just point to the internally
1405      * accessible PTEG.
1406      */
1407     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1408 }
1409 
1410 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1411                               const ppc_hash_pte64_t *hptes,
1412                               hwaddr ptex, int n)
1413 {
1414     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1415 
1416     if (!spapr->htab) {
1417         g_free((void *)hptes);
1418     }
1419 
1420     /* Nothing to do for qemu managed HPT */
1421 }
1422 
1423 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1424                       uint64_t pte0, uint64_t pte1)
1425 {
1426     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1427     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1428 
1429     if (!spapr->htab) {
1430         kvmppc_write_hpte(ptex, pte0, pte1);
1431     } else {
1432         if (pte0 & HPTE64_V_VALID) {
1433             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1434             /*
1435              * When setting valid, we write PTE1 first. This ensures
1436              * proper synchronization with the reading code in
1437              * ppc_hash64_pteg_search()
1438              */
1439             smp_wmb();
1440             stq_p(spapr->htab + offset, pte0);
1441         } else {
1442             stq_p(spapr->htab + offset, pte0);
1443             /*
1444              * When clearing it we set PTE0 first. This ensures proper
1445              * synchronization with the reading code in
1446              * ppc_hash64_pteg_search()
1447              */
1448             smp_wmb();
1449             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1450         }
1451     }
1452 }
1453 
1454 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1455                              uint64_t pte1)
1456 {
1457     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1458     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1459 
1460     if (!spapr->htab) {
1461         /* There should always be a hash table when this is called */
1462         error_report("spapr_hpte_set_c called with no hash table !");
1463         return;
1464     }
1465 
1466     /* The HW performs a non-atomic byte update */
1467     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1468 }
1469 
1470 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1471                              uint64_t pte1)
1472 {
1473     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1474     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1475 
1476     if (!spapr->htab) {
1477         /* There should always be a hash table when this is called */
1478         error_report("spapr_hpte_set_r called with no hash table !");
1479         return;
1480     }
1481 
1482     /* The HW performs a non-atomic byte update */
1483     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1484 }
1485 
1486 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1487 {
1488     int shift;
1489 
1490     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1491      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1492      * that's much more than is needed for Linux guests */
1493     shift = ctz64(pow2ceil(ramsize)) - 7;
1494     shift = MAX(shift, 18); /* Minimum architected size */
1495     shift = MIN(shift, 46); /* Maximum architected size */
1496     return shift;
1497 }
1498 
1499 void spapr_free_hpt(SpaprMachineState *spapr)
1500 {
1501     g_free(spapr->htab);
1502     spapr->htab = NULL;
1503     spapr->htab_shift = 0;
1504     close_htab_fd(spapr);
1505 }
1506 
1507 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1508                           Error **errp)
1509 {
1510     long rc;
1511 
1512     /* Clean up any HPT info from a previous boot */
1513     spapr_free_hpt(spapr);
1514 
1515     rc = kvmppc_reset_htab(shift);
1516     if (rc < 0) {
1517         /* kernel-side HPT needed, but couldn't allocate one */
1518         error_setg_errno(errp, errno,
1519                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1520                          shift);
1521         /* This is almost certainly fatal, but if the caller really
1522          * wants to carry on with shift == 0, it's welcome to try */
1523     } else if (rc > 0) {
1524         /* kernel-side HPT allocated */
1525         if (rc != shift) {
1526             error_setg(errp,
1527                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1528                        shift, rc);
1529         }
1530 
1531         spapr->htab_shift = shift;
1532         spapr->htab = NULL;
1533     } else {
1534         /* kernel-side HPT not needed, allocate in userspace instead */
1535         size_t size = 1ULL << shift;
1536         int i;
1537 
1538         spapr->htab = qemu_memalign(size, size);
1539         if (!spapr->htab) {
1540             error_setg_errno(errp, errno,
1541                              "Could not allocate HPT of order %d", shift);
1542             return;
1543         }
1544 
1545         memset(spapr->htab, 0, size);
1546         spapr->htab_shift = shift;
1547 
1548         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1549             DIRTY_HPTE(HPTE(spapr->htab, i));
1550         }
1551     }
1552     /* We're setting up a hash table, so that means we're not radix */
1553     spapr->patb_entry = 0;
1554     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1555 }
1556 
1557 void spapr_setup_hpt(SpaprMachineState *spapr)
1558 {
1559     int hpt_shift;
1560 
1561     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1562         || (spapr->cas_reboot
1563             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1564         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1565     } else {
1566         uint64_t current_ram_size;
1567 
1568         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1569         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1570     }
1571     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1572 
1573     if (kvm_enabled()) {
1574         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1575 
1576         /* Check our RMA fits in the possible VRMA */
1577         if (vrma_limit < spapr->rma_size) {
1578             error_report("Unable to create %" HWADDR_PRIu
1579                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1580                          spapr->rma_size / MiB, vrma_limit / MiB);
1581             exit(EXIT_FAILURE);
1582         }
1583     }
1584 }
1585 
1586 static int spapr_reset_drcs(Object *child, void *opaque)
1587 {
1588     SpaprDrc *drc =
1589         (SpaprDrc *) object_dynamic_cast(child,
1590                                                  TYPE_SPAPR_DR_CONNECTOR);
1591 
1592     if (drc) {
1593         spapr_drc_reset(drc);
1594     }
1595 
1596     return 0;
1597 }
1598 
1599 static void spapr_machine_reset(MachineState *machine)
1600 {
1601     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1602     PowerPCCPU *first_ppc_cpu;
1603     hwaddr fdt_addr;
1604     void *fdt;
1605     int rc;
1606 
1607     kvmppc_svm_off(&error_fatal);
1608     spapr_caps_apply(spapr);
1609 
1610     first_ppc_cpu = POWERPC_CPU(first_cpu);
1611     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1612         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1613                               spapr->max_compat_pvr)) {
1614         /*
1615          * If using KVM with radix mode available, VCPUs can be started
1616          * without a HPT because KVM will start them in radix mode.
1617          * Set the GR bit in PATE so that we know there is no HPT.
1618          */
1619         spapr->patb_entry = PATE1_GR;
1620         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1621     } else {
1622         spapr_setup_hpt(spapr);
1623     }
1624 
1625     qemu_devices_reset();
1626 
1627     /*
1628      * If this reset wasn't generated by CAS, we should reset our
1629      * negotiated options and start from scratch
1630      */
1631     if (!spapr->cas_reboot) {
1632         spapr_ovec_cleanup(spapr->ov5_cas);
1633         spapr->ov5_cas = spapr_ovec_new();
1634 
1635         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1636     }
1637 
1638     /*
1639      * This is fixing some of the default configuration of the XIVE
1640      * devices. To be called after the reset of the machine devices.
1641      */
1642     spapr_irq_reset(spapr, &error_fatal);
1643 
1644     /*
1645      * There is no CAS under qtest. Simulate one to please the code that
1646      * depends on spapr->ov5_cas. This is especially needed to test device
1647      * unplug, so we do that before resetting the DRCs.
1648      */
1649     if (qtest_enabled()) {
1650         spapr_ovec_cleanup(spapr->ov5_cas);
1651         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1652     }
1653 
1654     /* DRC reset may cause a device to be unplugged. This will cause troubles
1655      * if this device is used by another device (eg, a running vhost backend
1656      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1657      * situations, we reset DRCs after all devices have been reset.
1658      */
1659     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1660 
1661     spapr_clear_pending_events(spapr);
1662 
1663     /*
1664      * We place the device tree and RTAS just below either the top of the RMA,
1665      * or just below 2GB, whichever is lower, so that it can be
1666      * processed with 32-bit real mode code if necessary
1667      */
1668     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1669 
1670     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1671 
1672     rc = fdt_pack(fdt);
1673 
1674     /* Should only fail if we've built a corrupted tree */
1675     assert(rc == 0);
1676 
1677     /* Load the fdt */
1678     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1679     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1680     g_free(spapr->fdt_blob);
1681     spapr->fdt_size = fdt_totalsize(fdt);
1682     spapr->fdt_initial_size = spapr->fdt_size;
1683     spapr->fdt_blob = fdt;
1684 
1685     /* Set up the entry state */
1686     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1687     first_ppc_cpu->env.gpr[5] = 0;
1688 
1689     spapr->cas_reboot = false;
1690 
1691     spapr->fwnmi_system_reset_addr = -1;
1692     spapr->fwnmi_machine_check_addr = -1;
1693     spapr->fwnmi_machine_check_interlock = -1;
1694 
1695     /* Signal all vCPUs waiting on this condition */
1696     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1697 
1698     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1699 }
1700 
1701 static void spapr_create_nvram(SpaprMachineState *spapr)
1702 {
1703     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1704     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1705 
1706     if (dinfo) {
1707         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1708                             &error_fatal);
1709     }
1710 
1711     qdev_init_nofail(dev);
1712 
1713     spapr->nvram = (struct SpaprNvram *)dev;
1714 }
1715 
1716 static void spapr_rtc_create(SpaprMachineState *spapr)
1717 {
1718     object_initialize_child(OBJECT(spapr), "rtc",
1719                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1720                             &error_fatal, NULL);
1721     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1722                               &error_fatal);
1723     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1724                               "date", &error_fatal);
1725 }
1726 
1727 /* Returns whether we want to use VGA or not */
1728 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1729 {
1730     switch (vga_interface_type) {
1731     case VGA_NONE:
1732         return false;
1733     case VGA_DEVICE:
1734         return true;
1735     case VGA_STD:
1736     case VGA_VIRTIO:
1737     case VGA_CIRRUS:
1738         return pci_vga_init(pci_bus) != NULL;
1739     default:
1740         error_setg(errp,
1741                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1742         return false;
1743     }
1744 }
1745 
1746 static int spapr_pre_load(void *opaque)
1747 {
1748     int rc;
1749 
1750     rc = spapr_caps_pre_load(opaque);
1751     if (rc) {
1752         return rc;
1753     }
1754 
1755     return 0;
1756 }
1757 
1758 static int spapr_post_load(void *opaque, int version_id)
1759 {
1760     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1761     int err = 0;
1762 
1763     err = spapr_caps_post_migration(spapr);
1764     if (err) {
1765         return err;
1766     }
1767 
1768     /*
1769      * In earlier versions, there was no separate qdev for the PAPR
1770      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1771      * So when migrating from those versions, poke the incoming offset
1772      * value into the RTC device
1773      */
1774     if (version_id < 3) {
1775         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1776         if (err) {
1777             return err;
1778         }
1779     }
1780 
1781     if (kvm_enabled() && spapr->patb_entry) {
1782         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1783         bool radix = !!(spapr->patb_entry & PATE1_GR);
1784         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1785 
1786         /*
1787          * Update LPCR:HR and UPRT as they may not be set properly in
1788          * the stream
1789          */
1790         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1791                             LPCR_HR | LPCR_UPRT);
1792 
1793         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1794         if (err) {
1795             error_report("Process table config unsupported by the host");
1796             return -EINVAL;
1797         }
1798     }
1799 
1800     err = spapr_irq_post_load(spapr, version_id);
1801     if (err) {
1802         return err;
1803     }
1804 
1805     return err;
1806 }
1807 
1808 static int spapr_pre_save(void *opaque)
1809 {
1810     int rc;
1811 
1812     rc = spapr_caps_pre_save(opaque);
1813     if (rc) {
1814         return rc;
1815     }
1816 
1817     return 0;
1818 }
1819 
1820 static bool version_before_3(void *opaque, int version_id)
1821 {
1822     return version_id < 3;
1823 }
1824 
1825 static bool spapr_pending_events_needed(void *opaque)
1826 {
1827     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1828     return !QTAILQ_EMPTY(&spapr->pending_events);
1829 }
1830 
1831 static const VMStateDescription vmstate_spapr_event_entry = {
1832     .name = "spapr_event_log_entry",
1833     .version_id = 1,
1834     .minimum_version_id = 1,
1835     .fields = (VMStateField[]) {
1836         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1837         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1838         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1839                                      NULL, extended_length),
1840         VMSTATE_END_OF_LIST()
1841     },
1842 };
1843 
1844 static const VMStateDescription vmstate_spapr_pending_events = {
1845     .name = "spapr_pending_events",
1846     .version_id = 1,
1847     .minimum_version_id = 1,
1848     .needed = spapr_pending_events_needed,
1849     .fields = (VMStateField[]) {
1850         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1851                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1852         VMSTATE_END_OF_LIST()
1853     },
1854 };
1855 
1856 static bool spapr_ov5_cas_needed(void *opaque)
1857 {
1858     SpaprMachineState *spapr = opaque;
1859     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1860     bool cas_needed;
1861 
1862     /* Prior to the introduction of SpaprOptionVector, we had two option
1863      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1864      * Both of these options encode machine topology into the device-tree
1865      * in such a way that the now-booted OS should still be able to interact
1866      * appropriately with QEMU regardless of what options were actually
1867      * negotiatied on the source side.
1868      *
1869      * As such, we can avoid migrating the CAS-negotiated options if these
1870      * are the only options available on the current machine/platform.
1871      * Since these are the only options available for pseries-2.7 and
1872      * earlier, this allows us to maintain old->new/new->old migration
1873      * compatibility.
1874      *
1875      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1876      * via default pseries-2.8 machines and explicit command-line parameters.
1877      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1878      * of the actual CAS-negotiated values to continue working properly. For
1879      * example, availability of memory unplug depends on knowing whether
1880      * OV5_HP_EVT was negotiated via CAS.
1881      *
1882      * Thus, for any cases where the set of available CAS-negotiatable
1883      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1884      * include the CAS-negotiated options in the migration stream, unless
1885      * if they affect boot time behaviour only.
1886      */
1887     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1888     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1889     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1890 
1891     /* We need extra information if we have any bits outside the mask
1892      * defined above */
1893     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1894 
1895     spapr_ovec_cleanup(ov5_mask);
1896 
1897     return cas_needed;
1898 }
1899 
1900 static const VMStateDescription vmstate_spapr_ov5_cas = {
1901     .name = "spapr_option_vector_ov5_cas",
1902     .version_id = 1,
1903     .minimum_version_id = 1,
1904     .needed = spapr_ov5_cas_needed,
1905     .fields = (VMStateField[]) {
1906         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1907                                  vmstate_spapr_ovec, SpaprOptionVector),
1908         VMSTATE_END_OF_LIST()
1909     },
1910 };
1911 
1912 static bool spapr_patb_entry_needed(void *opaque)
1913 {
1914     SpaprMachineState *spapr = opaque;
1915 
1916     return !!spapr->patb_entry;
1917 }
1918 
1919 static const VMStateDescription vmstate_spapr_patb_entry = {
1920     .name = "spapr_patb_entry",
1921     .version_id = 1,
1922     .minimum_version_id = 1,
1923     .needed = spapr_patb_entry_needed,
1924     .fields = (VMStateField[]) {
1925         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1926         VMSTATE_END_OF_LIST()
1927     },
1928 };
1929 
1930 static bool spapr_irq_map_needed(void *opaque)
1931 {
1932     SpaprMachineState *spapr = opaque;
1933 
1934     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1935 }
1936 
1937 static const VMStateDescription vmstate_spapr_irq_map = {
1938     .name = "spapr_irq_map",
1939     .version_id = 1,
1940     .minimum_version_id = 1,
1941     .needed = spapr_irq_map_needed,
1942     .fields = (VMStateField[]) {
1943         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1944         VMSTATE_END_OF_LIST()
1945     },
1946 };
1947 
1948 static bool spapr_dtb_needed(void *opaque)
1949 {
1950     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1951 
1952     return smc->update_dt_enabled;
1953 }
1954 
1955 static int spapr_dtb_pre_load(void *opaque)
1956 {
1957     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1958 
1959     g_free(spapr->fdt_blob);
1960     spapr->fdt_blob = NULL;
1961     spapr->fdt_size = 0;
1962 
1963     return 0;
1964 }
1965 
1966 static const VMStateDescription vmstate_spapr_dtb = {
1967     .name = "spapr_dtb",
1968     .version_id = 1,
1969     .minimum_version_id = 1,
1970     .needed = spapr_dtb_needed,
1971     .pre_load = spapr_dtb_pre_load,
1972     .fields = (VMStateField[]) {
1973         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1974         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1975         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1976                                      fdt_size),
1977         VMSTATE_END_OF_LIST()
1978     },
1979 };
1980 
1981 static bool spapr_fwnmi_needed(void *opaque)
1982 {
1983     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1984 
1985     return spapr->fwnmi_machine_check_addr != -1;
1986 }
1987 
1988 static int spapr_fwnmi_pre_save(void *opaque)
1989 {
1990     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1991 
1992     /*
1993      * Check if machine check handling is in progress and print a
1994      * warning message.
1995      */
1996     if (spapr->fwnmi_machine_check_interlock != -1) {
1997         warn_report("A machine check is being handled during migration. The"
1998                 "handler may run and log hardware error on the destination");
1999     }
2000 
2001     return 0;
2002 }
2003 
2004 static const VMStateDescription vmstate_spapr_fwnmi = {
2005     .name = "spapr_fwnmi",
2006     .version_id = 1,
2007     .minimum_version_id = 1,
2008     .needed = spapr_fwnmi_needed,
2009     .pre_save = spapr_fwnmi_pre_save,
2010     .fields = (VMStateField[]) {
2011         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2012         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2013         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2014         VMSTATE_END_OF_LIST()
2015     },
2016 };
2017 
2018 static const VMStateDescription vmstate_spapr = {
2019     .name = "spapr",
2020     .version_id = 3,
2021     .minimum_version_id = 1,
2022     .pre_load = spapr_pre_load,
2023     .post_load = spapr_post_load,
2024     .pre_save = spapr_pre_save,
2025     .fields = (VMStateField[]) {
2026         /* used to be @next_irq */
2027         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2028 
2029         /* RTC offset */
2030         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2031 
2032         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2033         VMSTATE_END_OF_LIST()
2034     },
2035     .subsections = (const VMStateDescription*[]) {
2036         &vmstate_spapr_ov5_cas,
2037         &vmstate_spapr_patb_entry,
2038         &vmstate_spapr_pending_events,
2039         &vmstate_spapr_cap_htm,
2040         &vmstate_spapr_cap_vsx,
2041         &vmstate_spapr_cap_dfp,
2042         &vmstate_spapr_cap_cfpc,
2043         &vmstate_spapr_cap_sbbc,
2044         &vmstate_spapr_cap_ibs,
2045         &vmstate_spapr_cap_hpt_maxpagesize,
2046         &vmstate_spapr_irq_map,
2047         &vmstate_spapr_cap_nested_kvm_hv,
2048         &vmstate_spapr_dtb,
2049         &vmstate_spapr_cap_large_decr,
2050         &vmstate_spapr_cap_ccf_assist,
2051         &vmstate_spapr_cap_fwnmi,
2052         &vmstate_spapr_fwnmi,
2053         NULL
2054     }
2055 };
2056 
2057 static int htab_save_setup(QEMUFile *f, void *opaque)
2058 {
2059     SpaprMachineState *spapr = opaque;
2060 
2061     /* "Iteration" header */
2062     if (!spapr->htab_shift) {
2063         qemu_put_be32(f, -1);
2064     } else {
2065         qemu_put_be32(f, spapr->htab_shift);
2066     }
2067 
2068     if (spapr->htab) {
2069         spapr->htab_save_index = 0;
2070         spapr->htab_first_pass = true;
2071     } else {
2072         if (spapr->htab_shift) {
2073             assert(kvm_enabled());
2074         }
2075     }
2076 
2077 
2078     return 0;
2079 }
2080 
2081 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2082                             int chunkstart, int n_valid, int n_invalid)
2083 {
2084     qemu_put_be32(f, chunkstart);
2085     qemu_put_be16(f, n_valid);
2086     qemu_put_be16(f, n_invalid);
2087     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2088                     HASH_PTE_SIZE_64 * n_valid);
2089 }
2090 
2091 static void htab_save_end_marker(QEMUFile *f)
2092 {
2093     qemu_put_be32(f, 0);
2094     qemu_put_be16(f, 0);
2095     qemu_put_be16(f, 0);
2096 }
2097 
2098 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2099                                  int64_t max_ns)
2100 {
2101     bool has_timeout = max_ns != -1;
2102     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2103     int index = spapr->htab_save_index;
2104     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2105 
2106     assert(spapr->htab_first_pass);
2107 
2108     do {
2109         int chunkstart;
2110 
2111         /* Consume invalid HPTEs */
2112         while ((index < htabslots)
2113                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2114             CLEAN_HPTE(HPTE(spapr->htab, index));
2115             index++;
2116         }
2117 
2118         /* Consume valid HPTEs */
2119         chunkstart = index;
2120         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2121                && HPTE_VALID(HPTE(spapr->htab, index))) {
2122             CLEAN_HPTE(HPTE(spapr->htab, index));
2123             index++;
2124         }
2125 
2126         if (index > chunkstart) {
2127             int n_valid = index - chunkstart;
2128 
2129             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2130 
2131             if (has_timeout &&
2132                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2133                 break;
2134             }
2135         }
2136     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2137 
2138     if (index >= htabslots) {
2139         assert(index == htabslots);
2140         index = 0;
2141         spapr->htab_first_pass = false;
2142     }
2143     spapr->htab_save_index = index;
2144 }
2145 
2146 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2147                                 int64_t max_ns)
2148 {
2149     bool final = max_ns < 0;
2150     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2151     int examined = 0, sent = 0;
2152     int index = spapr->htab_save_index;
2153     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2154 
2155     assert(!spapr->htab_first_pass);
2156 
2157     do {
2158         int chunkstart, invalidstart;
2159 
2160         /* Consume non-dirty HPTEs */
2161         while ((index < htabslots)
2162                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2163             index++;
2164             examined++;
2165         }
2166 
2167         chunkstart = index;
2168         /* Consume valid dirty HPTEs */
2169         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2170                && HPTE_DIRTY(HPTE(spapr->htab, index))
2171                && HPTE_VALID(HPTE(spapr->htab, index))) {
2172             CLEAN_HPTE(HPTE(spapr->htab, index));
2173             index++;
2174             examined++;
2175         }
2176 
2177         invalidstart = index;
2178         /* Consume invalid dirty HPTEs */
2179         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2180                && HPTE_DIRTY(HPTE(spapr->htab, index))
2181                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2182             CLEAN_HPTE(HPTE(spapr->htab, index));
2183             index++;
2184             examined++;
2185         }
2186 
2187         if (index > chunkstart) {
2188             int n_valid = invalidstart - chunkstart;
2189             int n_invalid = index - invalidstart;
2190 
2191             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2192             sent += index - chunkstart;
2193 
2194             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2195                 break;
2196             }
2197         }
2198 
2199         if (examined >= htabslots) {
2200             break;
2201         }
2202 
2203         if (index >= htabslots) {
2204             assert(index == htabslots);
2205             index = 0;
2206         }
2207     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2208 
2209     if (index >= htabslots) {
2210         assert(index == htabslots);
2211         index = 0;
2212     }
2213 
2214     spapr->htab_save_index = index;
2215 
2216     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2217 }
2218 
2219 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2220 #define MAX_KVM_BUF_SIZE    2048
2221 
2222 static int htab_save_iterate(QEMUFile *f, void *opaque)
2223 {
2224     SpaprMachineState *spapr = opaque;
2225     int fd;
2226     int rc = 0;
2227 
2228     /* Iteration header */
2229     if (!spapr->htab_shift) {
2230         qemu_put_be32(f, -1);
2231         return 1;
2232     } else {
2233         qemu_put_be32(f, 0);
2234     }
2235 
2236     if (!spapr->htab) {
2237         assert(kvm_enabled());
2238 
2239         fd = get_htab_fd(spapr);
2240         if (fd < 0) {
2241             return fd;
2242         }
2243 
2244         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2245         if (rc < 0) {
2246             return rc;
2247         }
2248     } else  if (spapr->htab_first_pass) {
2249         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2250     } else {
2251         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2252     }
2253 
2254     htab_save_end_marker(f);
2255 
2256     return rc;
2257 }
2258 
2259 static int htab_save_complete(QEMUFile *f, void *opaque)
2260 {
2261     SpaprMachineState *spapr = opaque;
2262     int fd;
2263 
2264     /* Iteration header */
2265     if (!spapr->htab_shift) {
2266         qemu_put_be32(f, -1);
2267         return 0;
2268     } else {
2269         qemu_put_be32(f, 0);
2270     }
2271 
2272     if (!spapr->htab) {
2273         int rc;
2274 
2275         assert(kvm_enabled());
2276 
2277         fd = get_htab_fd(spapr);
2278         if (fd < 0) {
2279             return fd;
2280         }
2281 
2282         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2283         if (rc < 0) {
2284             return rc;
2285         }
2286     } else {
2287         if (spapr->htab_first_pass) {
2288             htab_save_first_pass(f, spapr, -1);
2289         }
2290         htab_save_later_pass(f, spapr, -1);
2291     }
2292 
2293     /* End marker */
2294     htab_save_end_marker(f);
2295 
2296     return 0;
2297 }
2298 
2299 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2300 {
2301     SpaprMachineState *spapr = opaque;
2302     uint32_t section_hdr;
2303     int fd = -1;
2304     Error *local_err = NULL;
2305 
2306     if (version_id < 1 || version_id > 1) {
2307         error_report("htab_load() bad version");
2308         return -EINVAL;
2309     }
2310 
2311     section_hdr = qemu_get_be32(f);
2312 
2313     if (section_hdr == -1) {
2314         spapr_free_hpt(spapr);
2315         return 0;
2316     }
2317 
2318     if (section_hdr) {
2319         /* First section gives the htab size */
2320         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2321         if (local_err) {
2322             error_report_err(local_err);
2323             return -EINVAL;
2324         }
2325         return 0;
2326     }
2327 
2328     if (!spapr->htab) {
2329         assert(kvm_enabled());
2330 
2331         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2332         if (fd < 0) {
2333             error_report_err(local_err);
2334             return fd;
2335         }
2336     }
2337 
2338     while (true) {
2339         uint32_t index;
2340         uint16_t n_valid, n_invalid;
2341 
2342         index = qemu_get_be32(f);
2343         n_valid = qemu_get_be16(f);
2344         n_invalid = qemu_get_be16(f);
2345 
2346         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2347             /* End of Stream */
2348             break;
2349         }
2350 
2351         if ((index + n_valid + n_invalid) >
2352             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2353             /* Bad index in stream */
2354             error_report(
2355                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2356                 index, n_valid, n_invalid, spapr->htab_shift);
2357             return -EINVAL;
2358         }
2359 
2360         if (spapr->htab) {
2361             if (n_valid) {
2362                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2363                                 HASH_PTE_SIZE_64 * n_valid);
2364             }
2365             if (n_invalid) {
2366                 memset(HPTE(spapr->htab, index + n_valid), 0,
2367                        HASH_PTE_SIZE_64 * n_invalid);
2368             }
2369         } else {
2370             int rc;
2371 
2372             assert(fd >= 0);
2373 
2374             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2375             if (rc < 0) {
2376                 return rc;
2377             }
2378         }
2379     }
2380 
2381     if (!spapr->htab) {
2382         assert(fd >= 0);
2383         close(fd);
2384     }
2385 
2386     return 0;
2387 }
2388 
2389 static void htab_save_cleanup(void *opaque)
2390 {
2391     SpaprMachineState *spapr = opaque;
2392 
2393     close_htab_fd(spapr);
2394 }
2395 
2396 static SaveVMHandlers savevm_htab_handlers = {
2397     .save_setup = htab_save_setup,
2398     .save_live_iterate = htab_save_iterate,
2399     .save_live_complete_precopy = htab_save_complete,
2400     .save_cleanup = htab_save_cleanup,
2401     .load_state = htab_load,
2402 };
2403 
2404 static void spapr_boot_set(void *opaque, const char *boot_device,
2405                            Error **errp)
2406 {
2407     MachineState *machine = MACHINE(opaque);
2408     machine->boot_order = g_strdup(boot_device);
2409 }
2410 
2411 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2412 {
2413     MachineState *machine = MACHINE(spapr);
2414     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2415     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2416     int i;
2417 
2418     for (i = 0; i < nr_lmbs; i++) {
2419         uint64_t addr;
2420 
2421         addr = i * lmb_size + machine->device_memory->base;
2422         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2423                                addr / lmb_size);
2424     }
2425 }
2426 
2427 /*
2428  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2429  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2430  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2431  */
2432 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2433 {
2434     int i;
2435 
2436     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2437         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2438                    " is not aligned to %" PRIu64 " MiB",
2439                    machine->ram_size,
2440                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2441         return;
2442     }
2443 
2444     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2445         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2446                    " is not aligned to %" PRIu64 " MiB",
2447                    machine->ram_size,
2448                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2449         return;
2450     }
2451 
2452     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2453         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2454             error_setg(errp,
2455                        "Node %d memory size 0x%" PRIx64
2456                        " is not aligned to %" PRIu64 " MiB",
2457                        i, machine->numa_state->nodes[i].node_mem,
2458                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2459             return;
2460         }
2461     }
2462 }
2463 
2464 /* find cpu slot in machine->possible_cpus by core_id */
2465 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2466 {
2467     int index = id / ms->smp.threads;
2468 
2469     if (index >= ms->possible_cpus->len) {
2470         return NULL;
2471     }
2472     if (idx) {
2473         *idx = index;
2474     }
2475     return &ms->possible_cpus->cpus[index];
2476 }
2477 
2478 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2479 {
2480     MachineState *ms = MACHINE(spapr);
2481     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2482     Error *local_err = NULL;
2483     bool vsmt_user = !!spapr->vsmt;
2484     int kvm_smt = kvmppc_smt_threads();
2485     int ret;
2486     unsigned int smp_threads = ms->smp.threads;
2487 
2488     if (!kvm_enabled() && (smp_threads > 1)) {
2489         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2490                      "on a pseries machine");
2491         goto out;
2492     }
2493     if (!is_power_of_2(smp_threads)) {
2494         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2495                      "machine because it must be a power of 2", smp_threads);
2496         goto out;
2497     }
2498 
2499     /* Detemine the VSMT mode to use: */
2500     if (vsmt_user) {
2501         if (spapr->vsmt < smp_threads) {
2502             error_setg(&local_err, "Cannot support VSMT mode %d"
2503                          " because it must be >= threads/core (%d)",
2504                          spapr->vsmt, smp_threads);
2505             goto out;
2506         }
2507         /* In this case, spapr->vsmt has been set by the command line */
2508     } else if (!smc->smp_threads_vsmt) {
2509         /*
2510          * Default VSMT value is tricky, because we need it to be as
2511          * consistent as possible (for migration), but this requires
2512          * changing it for at least some existing cases.  We pick 8 as
2513          * the value that we'd get with KVM on POWER8, the
2514          * overwhelmingly common case in production systems.
2515          */
2516         spapr->vsmt = MAX(8, smp_threads);
2517     } else {
2518         spapr->vsmt = smp_threads;
2519     }
2520 
2521     /* KVM: If necessary, set the SMT mode: */
2522     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2523         ret = kvmppc_set_smt_threads(spapr->vsmt);
2524         if (ret) {
2525             /* Looks like KVM isn't able to change VSMT mode */
2526             error_setg(&local_err,
2527                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2528                        spapr->vsmt, ret);
2529             /* We can live with that if the default one is big enough
2530              * for the number of threads, and a submultiple of the one
2531              * we want.  In this case we'll waste some vcpu ids, but
2532              * behaviour will be correct */
2533             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2534                 warn_report_err(local_err);
2535                 local_err = NULL;
2536                 goto out;
2537             } else {
2538                 if (!vsmt_user) {
2539                     error_append_hint(&local_err,
2540                                       "On PPC, a VM with %d threads/core"
2541                                       " on a host with %d threads/core"
2542                                       " requires the use of VSMT mode %d.\n",
2543                                       smp_threads, kvm_smt, spapr->vsmt);
2544                 }
2545                 kvmppc_error_append_smt_possible_hint(&local_err);
2546                 goto out;
2547             }
2548         }
2549     }
2550     /* else TCG: nothing to do currently */
2551 out:
2552     error_propagate(errp, local_err);
2553 }
2554 
2555 static void spapr_init_cpus(SpaprMachineState *spapr)
2556 {
2557     MachineState *machine = MACHINE(spapr);
2558     MachineClass *mc = MACHINE_GET_CLASS(machine);
2559     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2560     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2561     const CPUArchIdList *possible_cpus;
2562     unsigned int smp_cpus = machine->smp.cpus;
2563     unsigned int smp_threads = machine->smp.threads;
2564     unsigned int max_cpus = machine->smp.max_cpus;
2565     int boot_cores_nr = smp_cpus / smp_threads;
2566     int i;
2567 
2568     possible_cpus = mc->possible_cpu_arch_ids(machine);
2569     if (mc->has_hotpluggable_cpus) {
2570         if (smp_cpus % smp_threads) {
2571             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2572                          smp_cpus, smp_threads);
2573             exit(1);
2574         }
2575         if (max_cpus % smp_threads) {
2576             error_report("max_cpus (%u) must be multiple of threads (%u)",
2577                          max_cpus, smp_threads);
2578             exit(1);
2579         }
2580     } else {
2581         if (max_cpus != smp_cpus) {
2582             error_report("This machine version does not support CPU hotplug");
2583             exit(1);
2584         }
2585         boot_cores_nr = possible_cpus->len;
2586     }
2587 
2588     if (smc->pre_2_10_has_unused_icps) {
2589         int i;
2590 
2591         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2592             /* Dummy entries get deregistered when real ICPState objects
2593              * are registered during CPU core hotplug.
2594              */
2595             pre_2_10_vmstate_register_dummy_icp(i);
2596         }
2597     }
2598 
2599     for (i = 0; i < possible_cpus->len; i++) {
2600         int core_id = i * smp_threads;
2601 
2602         if (mc->has_hotpluggable_cpus) {
2603             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2604                                    spapr_vcpu_id(spapr, core_id));
2605         }
2606 
2607         if (i < boot_cores_nr) {
2608             Object *core  = object_new(type);
2609             int nr_threads = smp_threads;
2610 
2611             /* Handle the partially filled core for older machine types */
2612             if ((i + 1) * smp_threads >= smp_cpus) {
2613                 nr_threads = smp_cpus - i * smp_threads;
2614             }
2615 
2616             object_property_set_int(core, nr_threads, "nr-threads",
2617                                     &error_fatal);
2618             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2619                                     &error_fatal);
2620             object_property_set_bool(core, true, "realized", &error_fatal);
2621 
2622             object_unref(core);
2623         }
2624     }
2625 }
2626 
2627 static PCIHostState *spapr_create_default_phb(void)
2628 {
2629     DeviceState *dev;
2630 
2631     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2632     qdev_prop_set_uint32(dev, "index", 0);
2633     qdev_init_nofail(dev);
2634 
2635     return PCI_HOST_BRIDGE(dev);
2636 }
2637 
2638 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2639 {
2640     MachineState *machine = MACHINE(spapr);
2641     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2642     hwaddr rma_size = machine->ram_size;
2643     hwaddr node0_size = spapr_node0_size(machine);
2644 
2645     /* RMA has to fit in the first NUMA node */
2646     rma_size = MIN(rma_size, node0_size);
2647 
2648     /*
2649      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2650      * never exceed that
2651      */
2652     rma_size = MIN(rma_size, 1 * TiB);
2653 
2654     /*
2655      * Clamp the RMA size based on machine type.  This is for
2656      * migration compatibility with older qemu versions, which limited
2657      * the RMA size for complicated and mostly bad reasons.
2658      */
2659     if (smc->rma_limit) {
2660         rma_size = MIN(rma_size, smc->rma_limit);
2661     }
2662 
2663     if (rma_size < MIN_RMA_SLOF) {
2664         error_setg(errp,
2665                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2666                    "ldMiB guest RMA (Real Mode Area memory)",
2667                    MIN_RMA_SLOF / MiB);
2668         return 0;
2669     }
2670 
2671     return rma_size;
2672 }
2673 
2674 /* pSeries LPAR / sPAPR hardware init */
2675 static void spapr_machine_init(MachineState *machine)
2676 {
2677     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2678     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2679     MachineClass *mc = MACHINE_GET_CLASS(machine);
2680     const char *kernel_filename = machine->kernel_filename;
2681     const char *initrd_filename = machine->initrd_filename;
2682     PCIHostState *phb;
2683     int i;
2684     MemoryRegion *sysmem = get_system_memory();
2685     long load_limit, fw_size;
2686     char *filename;
2687     Error *resize_hpt_err = NULL;
2688 
2689     msi_nonbroken = true;
2690 
2691     QLIST_INIT(&spapr->phbs);
2692     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2693 
2694     /* Determine capabilities to run with */
2695     spapr_caps_init(spapr);
2696 
2697     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2698     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2699         /*
2700          * If the user explicitly requested a mode we should either
2701          * supply it, or fail completely (which we do below).  But if
2702          * it's not set explicitly, we reset our mode to something
2703          * that works
2704          */
2705         if (resize_hpt_err) {
2706             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2707             error_free(resize_hpt_err);
2708             resize_hpt_err = NULL;
2709         } else {
2710             spapr->resize_hpt = smc->resize_hpt_default;
2711         }
2712     }
2713 
2714     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2715 
2716     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2717         /*
2718          * User requested HPT resize, but this host can't supply it.  Bail out
2719          */
2720         error_report_err(resize_hpt_err);
2721         exit(1);
2722     }
2723 
2724     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2725 
2726     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2727     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2728 
2729     /*
2730      * VSMT must be set in order to be able to compute VCPU ids, ie to
2731      * call spapr_max_server_number() or spapr_vcpu_id().
2732      */
2733     spapr_set_vsmt_mode(spapr, &error_fatal);
2734 
2735     /* Set up Interrupt Controller before we create the VCPUs */
2736     spapr_irq_init(spapr, &error_fatal);
2737 
2738     /* Set up containers for ibm,client-architecture-support negotiated options
2739      */
2740     spapr->ov5 = spapr_ovec_new();
2741     spapr->ov5_cas = spapr_ovec_new();
2742 
2743     if (smc->dr_lmb_enabled) {
2744         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2745         spapr_validate_node_memory(machine, &error_fatal);
2746     }
2747 
2748     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2749 
2750     /* advertise support for dedicated HP event source to guests */
2751     if (spapr->use_hotplug_event_source) {
2752         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2753     }
2754 
2755     /* advertise support for HPT resizing */
2756     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2757         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2758     }
2759 
2760     /* advertise support for ibm,dyamic-memory-v2 */
2761     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2762 
2763     /* advertise XIVE on POWER9 machines */
2764     if (spapr->irq->xive) {
2765         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2766     }
2767 
2768     /* init CPUs */
2769     spapr_init_cpus(spapr);
2770 
2771     /*
2772      * check we don't have a memory-less/cpu-less NUMA node
2773      * Firmware relies on the existing memory/cpu topology to provide the
2774      * NUMA topology to the kernel.
2775      * And the linux kernel needs to know the NUMA topology at start
2776      * to be able to hotplug CPUs later.
2777      */
2778     if (machine->numa_state->num_nodes) {
2779         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2780             /* check for memory-less node */
2781             if (machine->numa_state->nodes[i].node_mem == 0) {
2782                 CPUState *cs;
2783                 int found = 0;
2784                 /* check for cpu-less node */
2785                 CPU_FOREACH(cs) {
2786                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2787                     if (cpu->node_id == i) {
2788                         found = 1;
2789                         break;
2790                     }
2791                 }
2792                 /* memory-less and cpu-less node */
2793                 if (!found) {
2794                     error_report(
2795                        "Memory-less/cpu-less nodes are not supported (node %d)",
2796                                  i);
2797                     exit(1);
2798                 }
2799             }
2800         }
2801 
2802     }
2803 
2804     /*
2805      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2806      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2807      * called from vPHB reset handler so we initialize the counter here.
2808      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2809      * must be equally distant from any other node.
2810      * The final value of spapr->gpu_numa_id is going to be written to
2811      * max-associativity-domains in spapr_build_fdt().
2812      */
2813     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2814 
2815     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2816         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2817                               spapr->max_compat_pvr)) {
2818         /* KVM and TCG always allow GTSE with radix... */
2819         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2820     }
2821     /* ... but not with hash (currently). */
2822 
2823     if (kvm_enabled()) {
2824         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2825         kvmppc_enable_logical_ci_hcalls();
2826         kvmppc_enable_set_mode_hcall();
2827 
2828         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2829         kvmppc_enable_clear_ref_mod_hcalls();
2830 
2831         /* Enable H_PAGE_INIT */
2832         kvmppc_enable_h_page_init();
2833     }
2834 
2835     /* map RAM */
2836     memory_region_add_subregion(sysmem, 0, machine->ram);
2837 
2838     /* always allocate the device memory information */
2839     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2840 
2841     /* initialize hotplug memory address space */
2842     if (machine->ram_size < machine->maxram_size) {
2843         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2844         /*
2845          * Limit the number of hotpluggable memory slots to half the number
2846          * slots that KVM supports, leaving the other half for PCI and other
2847          * devices. However ensure that number of slots doesn't drop below 32.
2848          */
2849         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2850                            SPAPR_MAX_RAM_SLOTS;
2851 
2852         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2853             max_memslots = SPAPR_MAX_RAM_SLOTS;
2854         }
2855         if (machine->ram_slots > max_memslots) {
2856             error_report("Specified number of memory slots %"
2857                          PRIu64" exceeds max supported %d",
2858                          machine->ram_slots, max_memslots);
2859             exit(1);
2860         }
2861 
2862         machine->device_memory->base = ROUND_UP(machine->ram_size,
2863                                                 SPAPR_DEVICE_MEM_ALIGN);
2864         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2865                            "device-memory", device_mem_size);
2866         memory_region_add_subregion(sysmem, machine->device_memory->base,
2867                                     &machine->device_memory->mr);
2868     }
2869 
2870     if (smc->dr_lmb_enabled) {
2871         spapr_create_lmb_dr_connectors(spapr);
2872     }
2873 
2874     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2875         /* Create the error string for live migration blocker */
2876         error_setg(&spapr->fwnmi_migration_blocker,
2877             "A machine check is being handled during migration. The handler"
2878             "may run and log hardware error on the destination");
2879     }
2880 
2881     if (mc->nvdimm_supported) {
2882         spapr_create_nvdimm_dr_connectors(spapr);
2883     }
2884 
2885     /* Set up RTAS event infrastructure */
2886     spapr_events_init(spapr);
2887 
2888     /* Set up the RTC RTAS interfaces */
2889     spapr_rtc_create(spapr);
2890 
2891     /* Set up VIO bus */
2892     spapr->vio_bus = spapr_vio_bus_init();
2893 
2894     for (i = 0; i < serial_max_hds(); i++) {
2895         if (serial_hd(i)) {
2896             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2897         }
2898     }
2899 
2900     /* We always have at least the nvram device on VIO */
2901     spapr_create_nvram(spapr);
2902 
2903     /*
2904      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2905      * connectors (described in root DT node's "ibm,drc-types" property)
2906      * are pre-initialized here. additional child connectors (such as
2907      * connectors for a PHBs PCI slots) are added as needed during their
2908      * parent's realization.
2909      */
2910     if (smc->dr_phb_enabled) {
2911         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2912             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2913         }
2914     }
2915 
2916     /* Set up PCI */
2917     spapr_pci_rtas_init();
2918 
2919     phb = spapr_create_default_phb();
2920 
2921     for (i = 0; i < nb_nics; i++) {
2922         NICInfo *nd = &nd_table[i];
2923 
2924         if (!nd->model) {
2925             nd->model = g_strdup("spapr-vlan");
2926         }
2927 
2928         if (g_str_equal(nd->model, "spapr-vlan") ||
2929             g_str_equal(nd->model, "ibmveth")) {
2930             spapr_vlan_create(spapr->vio_bus, nd);
2931         } else {
2932             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2933         }
2934     }
2935 
2936     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2937         spapr_vscsi_create(spapr->vio_bus);
2938     }
2939 
2940     /* Graphics */
2941     if (spapr_vga_init(phb->bus, &error_fatal)) {
2942         spapr->has_graphics = true;
2943         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2944     }
2945 
2946     if (machine->usb) {
2947         if (smc->use_ohci_by_default) {
2948             pci_create_simple(phb->bus, -1, "pci-ohci");
2949         } else {
2950             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2951         }
2952 
2953         if (spapr->has_graphics) {
2954             USBBus *usb_bus = usb_bus_find(-1);
2955 
2956             usb_create_simple(usb_bus, "usb-kbd");
2957             usb_create_simple(usb_bus, "usb-mouse");
2958         }
2959     }
2960 
2961     if (kernel_filename) {
2962         uint64_t lowaddr = 0;
2963 
2964         spapr->kernel_size = load_elf(kernel_filename, NULL,
2965                                       translate_kernel_address, spapr,
2966                                       NULL, &lowaddr, NULL, NULL, 1,
2967                                       PPC_ELF_MACHINE, 0, 0);
2968         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2969             spapr->kernel_size = load_elf(kernel_filename, NULL,
2970                                           translate_kernel_address, spapr, NULL,
2971                                           &lowaddr, NULL, NULL, 0,
2972                                           PPC_ELF_MACHINE,
2973                                           0, 0);
2974             spapr->kernel_le = spapr->kernel_size > 0;
2975         }
2976         if (spapr->kernel_size < 0) {
2977             error_report("error loading %s: %s", kernel_filename,
2978                          load_elf_strerror(spapr->kernel_size));
2979             exit(1);
2980         }
2981 
2982         /* load initrd */
2983         if (initrd_filename) {
2984             /* Try to locate the initrd in the gap between the kernel
2985              * and the firmware. Add a bit of space just in case
2986              */
2987             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2988                                   + 0x1ffff) & ~0xffff;
2989             spapr->initrd_size = load_image_targphys(initrd_filename,
2990                                                      spapr->initrd_base,
2991                                                      load_limit
2992                                                      - spapr->initrd_base);
2993             if (spapr->initrd_size < 0) {
2994                 error_report("could not load initial ram disk '%s'",
2995                              initrd_filename);
2996                 exit(1);
2997             }
2998         }
2999     }
3000 
3001     if (bios_name == NULL) {
3002         bios_name = FW_FILE_NAME;
3003     }
3004     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3005     if (!filename) {
3006         error_report("Could not find LPAR firmware '%s'", bios_name);
3007         exit(1);
3008     }
3009     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3010     if (fw_size <= 0) {
3011         error_report("Could not load LPAR firmware '%s'", filename);
3012         exit(1);
3013     }
3014     g_free(filename);
3015 
3016     /* FIXME: Should register things through the MachineState's qdev
3017      * interface, this is a legacy from the sPAPREnvironment structure
3018      * which predated MachineState but had a similar function */
3019     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3020     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3021                          &savevm_htab_handlers, spapr);
3022 
3023     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3024                              &error_fatal);
3025 
3026     qemu_register_boot_set(spapr_boot_set, spapr);
3027 
3028     /*
3029      * Nothing needs to be done to resume a suspended guest because
3030      * suspending does not change the machine state, so no need for
3031      * a ->wakeup method.
3032      */
3033     qemu_register_wakeup_support();
3034 
3035     if (kvm_enabled()) {
3036         /* to stop and start vmclock */
3037         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3038                                          &spapr->tb);
3039 
3040         kvmppc_spapr_enable_inkernel_multitce();
3041     }
3042 
3043     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3044 }
3045 
3046 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3047 {
3048     if (!vm_type) {
3049         return 0;
3050     }
3051 
3052     if (!strcmp(vm_type, "HV")) {
3053         return 1;
3054     }
3055 
3056     if (!strcmp(vm_type, "PR")) {
3057         return 2;
3058     }
3059 
3060     error_report("Unknown kvm-type specified '%s'", vm_type);
3061     exit(1);
3062 }
3063 
3064 /*
3065  * Implementation of an interface to adjust firmware path
3066  * for the bootindex property handling.
3067  */
3068 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3069                                    DeviceState *dev)
3070 {
3071 #define CAST(type, obj, name) \
3072     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3073     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3074     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3075     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3076 
3077     if (d) {
3078         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3079         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3080         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3081 
3082         if (spapr) {
3083             /*
3084              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3085              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3086              * 0x8000 | (target << 8) | (bus << 5) | lun
3087              * (see the "Logical unit addressing format" table in SAM5)
3088              */
3089             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3090             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3091                                    (uint64_t)id << 48);
3092         } else if (virtio) {
3093             /*
3094              * We use SRP luns of the form 01000000 | (target << 8) | lun
3095              * in the top 32 bits of the 64-bit LUN
3096              * Note: the quote above is from SLOF and it is wrong,
3097              * the actual binding is:
3098              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3099              */
3100             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3101             if (d->lun >= 256) {
3102                 /* Use the LUN "flat space addressing method" */
3103                 id |= 0x4000;
3104             }
3105             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3106                                    (uint64_t)id << 32);
3107         } else if (usb) {
3108             /*
3109              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3110              * in the top 32 bits of the 64-bit LUN
3111              */
3112             unsigned usb_port = atoi(usb->port->path);
3113             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3114             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3115                                    (uint64_t)id << 32);
3116         }
3117     }
3118 
3119     /*
3120      * SLOF probes the USB devices, and if it recognizes that the device is a
3121      * storage device, it changes its name to "storage" instead of "usb-host",
3122      * and additionally adds a child node for the SCSI LUN, so the correct
3123      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3124      */
3125     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3126         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3127         if (usb_host_dev_is_scsi_storage(usbdev)) {
3128             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3129         }
3130     }
3131 
3132     if (phb) {
3133         /* Replace "pci" with "pci@800000020000000" */
3134         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3135     }
3136 
3137     if (vsc) {
3138         /* Same logic as virtio above */
3139         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3140         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3141     }
3142 
3143     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3144         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3145         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3146         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3147     }
3148 
3149     return NULL;
3150 }
3151 
3152 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3153 {
3154     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3155 
3156     return g_strdup(spapr->kvm_type);
3157 }
3158 
3159 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3160 {
3161     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3162 
3163     g_free(spapr->kvm_type);
3164     spapr->kvm_type = g_strdup(value);
3165 }
3166 
3167 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3168 {
3169     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3170 
3171     return spapr->use_hotplug_event_source;
3172 }
3173 
3174 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3175                                             Error **errp)
3176 {
3177     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3178 
3179     spapr->use_hotplug_event_source = value;
3180 }
3181 
3182 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3183 {
3184     return true;
3185 }
3186 
3187 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3188 {
3189     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3190 
3191     switch (spapr->resize_hpt) {
3192     case SPAPR_RESIZE_HPT_DEFAULT:
3193         return g_strdup("default");
3194     case SPAPR_RESIZE_HPT_DISABLED:
3195         return g_strdup("disabled");
3196     case SPAPR_RESIZE_HPT_ENABLED:
3197         return g_strdup("enabled");
3198     case SPAPR_RESIZE_HPT_REQUIRED:
3199         return g_strdup("required");
3200     }
3201     g_assert_not_reached();
3202 }
3203 
3204 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3205 {
3206     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207 
3208     if (strcmp(value, "default") == 0) {
3209         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3210     } else if (strcmp(value, "disabled") == 0) {
3211         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3212     } else if (strcmp(value, "enabled") == 0) {
3213         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3214     } else if (strcmp(value, "required") == 0) {
3215         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3216     } else {
3217         error_setg(errp, "Bad value for \"resize-hpt\" property");
3218     }
3219 }
3220 
3221 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3222                                    void *opaque, Error **errp)
3223 {
3224     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3225 }
3226 
3227 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3228                                    void *opaque, Error **errp)
3229 {
3230     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3231 }
3232 
3233 static void spapr_get_kernel_addr(Object *obj, Visitor *v, const char *name,
3234                                   void *opaque, Error **errp)
3235 {
3236     visit_type_uint64(v, name, (uint64_t *)opaque, errp);
3237 }
3238 
3239 static void spapr_set_kernel_addr(Object *obj, Visitor *v, const char *name,
3240                                   void *opaque, Error **errp)
3241 {
3242     visit_type_uint64(v, name, (uint64_t *)opaque, errp);
3243 }
3244 
3245 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3246 {
3247     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3248 
3249     if (spapr->irq == &spapr_irq_xics_legacy) {
3250         return g_strdup("legacy");
3251     } else if (spapr->irq == &spapr_irq_xics) {
3252         return g_strdup("xics");
3253     } else if (spapr->irq == &spapr_irq_xive) {
3254         return g_strdup("xive");
3255     } else if (spapr->irq == &spapr_irq_dual) {
3256         return g_strdup("dual");
3257     }
3258     g_assert_not_reached();
3259 }
3260 
3261 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3262 {
3263     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3264 
3265     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3266         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3267         return;
3268     }
3269 
3270     /* The legacy IRQ backend can not be set */
3271     if (strcmp(value, "xics") == 0) {
3272         spapr->irq = &spapr_irq_xics;
3273     } else if (strcmp(value, "xive") == 0) {
3274         spapr->irq = &spapr_irq_xive;
3275     } else if (strcmp(value, "dual") == 0) {
3276         spapr->irq = &spapr_irq_dual;
3277     } else {
3278         error_setg(errp, "Bad value for \"ic-mode\" property");
3279     }
3280 }
3281 
3282 static char *spapr_get_host_model(Object *obj, Error **errp)
3283 {
3284     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3285 
3286     return g_strdup(spapr->host_model);
3287 }
3288 
3289 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3290 {
3291     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3292 
3293     g_free(spapr->host_model);
3294     spapr->host_model = g_strdup(value);
3295 }
3296 
3297 static char *spapr_get_host_serial(Object *obj, Error **errp)
3298 {
3299     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300 
3301     return g_strdup(spapr->host_serial);
3302 }
3303 
3304 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3305 {
3306     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3307 
3308     g_free(spapr->host_serial);
3309     spapr->host_serial = g_strdup(value);
3310 }
3311 
3312 static void spapr_instance_init(Object *obj)
3313 {
3314     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3315     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3316 
3317     spapr->htab_fd = -1;
3318     spapr->use_hotplug_event_source = true;
3319     object_property_add_str(obj, "kvm-type",
3320                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3321     object_property_set_description(obj, "kvm-type",
3322                                     "Specifies the KVM virtualization mode (HV, PR)",
3323                                     NULL);
3324     object_property_add_bool(obj, "modern-hotplug-events",
3325                             spapr_get_modern_hotplug_events,
3326                             spapr_set_modern_hotplug_events,
3327                             NULL);
3328     object_property_set_description(obj, "modern-hotplug-events",
3329                                     "Use dedicated hotplug event mechanism in"
3330                                     " place of standard EPOW events when possible"
3331                                     " (required for memory hot-unplug support)",
3332                                     NULL);
3333     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3334                             "Maximum permitted CPU compatibility mode",
3335                             &error_fatal);
3336 
3337     object_property_add_str(obj, "resize-hpt",
3338                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3339     object_property_set_description(obj, "resize-hpt",
3340                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3341                                     NULL);
3342     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3343                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3344     object_property_set_description(obj, "vsmt",
3345                                     "Virtual SMT: KVM behaves as if this were"
3346                                     " the host's SMT mode", &error_abort);
3347     object_property_add_bool(obj, "vfio-no-msix-emulation",
3348                              spapr_get_msix_emulation, NULL, NULL);
3349 
3350     object_property_add(obj, "kernel-addr", "uint64", spapr_get_kernel_addr,
3351                         spapr_set_kernel_addr, NULL, &spapr->kernel_addr,
3352                         &error_abort);
3353     object_property_set_description(obj, "kernel-addr",
3354                                     stringify(KERNEL_LOAD_ADDR)
3355                                     " for -kernel is the default",
3356                                     NULL);
3357     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3358     /* The machine class defines the default interrupt controller mode */
3359     spapr->irq = smc->irq;
3360     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3361                             spapr_set_ic_mode, NULL);
3362     object_property_set_description(obj, "ic-mode",
3363                  "Specifies the interrupt controller mode (xics, xive, dual)",
3364                  NULL);
3365 
3366     object_property_add_str(obj, "host-model",
3367         spapr_get_host_model, spapr_set_host_model,
3368         &error_abort);
3369     object_property_set_description(obj, "host-model",
3370         "Host model to advertise in guest device tree", &error_abort);
3371     object_property_add_str(obj, "host-serial",
3372         spapr_get_host_serial, spapr_set_host_serial,
3373         &error_abort);
3374     object_property_set_description(obj, "host-serial",
3375         "Host serial number to advertise in guest device tree", &error_abort);
3376 }
3377 
3378 static void spapr_machine_finalizefn(Object *obj)
3379 {
3380     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3381 
3382     g_free(spapr->kvm_type);
3383 }
3384 
3385 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3386 {
3387     cpu_synchronize_state(cs);
3388     ppc_cpu_do_system_reset(cs);
3389 }
3390 
3391 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3392 {
3393     CPUState *cs;
3394 
3395     CPU_FOREACH(cs) {
3396         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3397     }
3398 }
3399 
3400 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3401                           void *fdt, int *fdt_start_offset, Error **errp)
3402 {
3403     uint64_t addr;
3404     uint32_t node;
3405 
3406     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3407     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3408                                     &error_abort);
3409     *fdt_start_offset = spapr_dt_memory_node(fdt, node, addr,
3410                                              SPAPR_MEMORY_BLOCK_SIZE);
3411     return 0;
3412 }
3413 
3414 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3415                            bool dedicated_hp_event_source, Error **errp)
3416 {
3417     SpaprDrc *drc;
3418     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3419     int i;
3420     uint64_t addr = addr_start;
3421     bool hotplugged = spapr_drc_hotplugged(dev);
3422     Error *local_err = NULL;
3423 
3424     for (i = 0; i < nr_lmbs; i++) {
3425         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3426                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3427         g_assert(drc);
3428 
3429         spapr_drc_attach(drc, dev, &local_err);
3430         if (local_err) {
3431             while (addr > addr_start) {
3432                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3433                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3434                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3435                 spapr_drc_detach(drc);
3436             }
3437             error_propagate(errp, local_err);
3438             return;
3439         }
3440         if (!hotplugged) {
3441             spapr_drc_reset(drc);
3442         }
3443         addr += SPAPR_MEMORY_BLOCK_SIZE;
3444     }
3445     /* send hotplug notification to the
3446      * guest only in case of hotplugged memory
3447      */
3448     if (hotplugged) {
3449         if (dedicated_hp_event_source) {
3450             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3451                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3452             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3453                                                    nr_lmbs,
3454                                                    spapr_drc_index(drc));
3455         } else {
3456             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3457                                            nr_lmbs);
3458         }
3459     }
3460 }
3461 
3462 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3463                               Error **errp)
3464 {
3465     Error *local_err = NULL;
3466     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3467     PCDIMMDevice *dimm = PC_DIMM(dev);
3468     uint64_t size, addr, slot;
3469     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3470 
3471     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3472 
3473     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3474     if (local_err) {
3475         goto out;
3476     }
3477 
3478     if (!is_nvdimm) {
3479         addr = object_property_get_uint(OBJECT(dimm),
3480                                         PC_DIMM_ADDR_PROP, &local_err);
3481         if (local_err) {
3482             goto out_unplug;
3483         }
3484         spapr_add_lmbs(dev, addr, size,
3485                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3486                        &local_err);
3487     } else {
3488         slot = object_property_get_uint(OBJECT(dimm),
3489                                         PC_DIMM_SLOT_PROP, &local_err);
3490         if (local_err) {
3491             goto out_unplug;
3492         }
3493         spapr_add_nvdimm(dev, slot, &local_err);
3494     }
3495 
3496     if (local_err) {
3497         goto out_unplug;
3498     }
3499 
3500     return;
3501 
3502 out_unplug:
3503     pc_dimm_unplug(dimm, MACHINE(ms));
3504 out:
3505     error_propagate(errp, local_err);
3506 }
3507 
3508 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3509                                   Error **errp)
3510 {
3511     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3512     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3513     const MachineClass *mc = MACHINE_CLASS(smc);
3514     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3515     PCDIMMDevice *dimm = PC_DIMM(dev);
3516     Error *local_err = NULL;
3517     uint64_t size;
3518     Object *memdev;
3519     hwaddr pagesize;
3520 
3521     if (!smc->dr_lmb_enabled) {
3522         error_setg(errp, "Memory hotplug not supported for this machine");
3523         return;
3524     }
3525 
3526     if (is_nvdimm && !mc->nvdimm_supported) {
3527         error_setg(errp, "NVDIMM hotplug not supported for this machine");
3528         return;
3529     }
3530 
3531     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3532     if (local_err) {
3533         error_propagate(errp, local_err);
3534         return;
3535     }
3536 
3537     if (!is_nvdimm && size % SPAPR_MEMORY_BLOCK_SIZE) {
3538         error_setg(errp, "Hotplugged memory size must be a multiple of "
3539                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3540         return;
3541     } else if (is_nvdimm) {
3542         spapr_nvdimm_validate_opts(NVDIMM(dev), size, &local_err);
3543         if (local_err) {
3544             error_propagate(errp, local_err);
3545             return;
3546         }
3547     }
3548 
3549     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3550                                       &error_abort);
3551     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3552     spapr_check_pagesize(spapr, pagesize, &local_err);
3553     if (local_err) {
3554         error_propagate(errp, local_err);
3555         return;
3556     }
3557 
3558     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3559 }
3560 
3561 struct SpaprDimmState {
3562     PCDIMMDevice *dimm;
3563     uint32_t nr_lmbs;
3564     QTAILQ_ENTRY(SpaprDimmState) next;
3565 };
3566 
3567 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3568                                                        PCDIMMDevice *dimm)
3569 {
3570     SpaprDimmState *dimm_state = NULL;
3571 
3572     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3573         if (dimm_state->dimm == dimm) {
3574             break;
3575         }
3576     }
3577     return dimm_state;
3578 }
3579 
3580 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3581                                                       uint32_t nr_lmbs,
3582                                                       PCDIMMDevice *dimm)
3583 {
3584     SpaprDimmState *ds = NULL;
3585 
3586     /*
3587      * If this request is for a DIMM whose removal had failed earlier
3588      * (due to guest's refusal to remove the LMBs), we would have this
3589      * dimm already in the pending_dimm_unplugs list. In that
3590      * case don't add again.
3591      */
3592     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3593     if (!ds) {
3594         ds = g_malloc0(sizeof(SpaprDimmState));
3595         ds->nr_lmbs = nr_lmbs;
3596         ds->dimm = dimm;
3597         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3598     }
3599     return ds;
3600 }
3601 
3602 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3603                                               SpaprDimmState *dimm_state)
3604 {
3605     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3606     g_free(dimm_state);
3607 }
3608 
3609 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3610                                                         PCDIMMDevice *dimm)
3611 {
3612     SpaprDrc *drc;
3613     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3614                                                   &error_abort);
3615     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3616     uint32_t avail_lmbs = 0;
3617     uint64_t addr_start, addr;
3618     int i;
3619 
3620     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3621                                          &error_abort);
3622 
3623     addr = addr_start;
3624     for (i = 0; i < nr_lmbs; i++) {
3625         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3626                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3627         g_assert(drc);
3628         if (drc->dev) {
3629             avail_lmbs++;
3630         }
3631         addr += SPAPR_MEMORY_BLOCK_SIZE;
3632     }
3633 
3634     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3635 }
3636 
3637 /* Callback to be called during DRC release. */
3638 void spapr_lmb_release(DeviceState *dev)
3639 {
3640     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3641     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3642     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3643 
3644     /* This information will get lost if a migration occurs
3645      * during the unplug process. In this case recover it. */
3646     if (ds == NULL) {
3647         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3648         g_assert(ds);
3649         /* The DRC being examined by the caller at least must be counted */
3650         g_assert(ds->nr_lmbs);
3651     }
3652 
3653     if (--ds->nr_lmbs) {
3654         return;
3655     }
3656 
3657     /*
3658      * Now that all the LMBs have been removed by the guest, call the
3659      * unplug handler chain. This can never fail.
3660      */
3661     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3662     object_unparent(OBJECT(dev));
3663 }
3664 
3665 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3666 {
3667     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3668     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3669 
3670     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3671     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3672     spapr_pending_dimm_unplugs_remove(spapr, ds);
3673 }
3674 
3675 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3676                                         DeviceState *dev, Error **errp)
3677 {
3678     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3679     Error *local_err = NULL;
3680     PCDIMMDevice *dimm = PC_DIMM(dev);
3681     uint32_t nr_lmbs;
3682     uint64_t size, addr_start, addr;
3683     int i;
3684     SpaprDrc *drc;
3685 
3686     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3687         error_setg(&local_err,
3688                    "nvdimm device hot unplug is not supported yet.");
3689         goto out;
3690     }
3691 
3692     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3693     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3694 
3695     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3696                                          &local_err);
3697     if (local_err) {
3698         goto out;
3699     }
3700 
3701     /*
3702      * An existing pending dimm state for this DIMM means that there is an
3703      * unplug operation in progress, waiting for the spapr_lmb_release
3704      * callback to complete the job (BQL can't cover that far). In this case,
3705      * bail out to avoid detaching DRCs that were already released.
3706      */
3707     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3708         error_setg(&local_err,
3709                    "Memory unplug already in progress for device %s",
3710                    dev->id);
3711         goto out;
3712     }
3713 
3714     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3715 
3716     addr = addr_start;
3717     for (i = 0; i < nr_lmbs; i++) {
3718         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3719                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3720         g_assert(drc);
3721 
3722         spapr_drc_detach(drc);
3723         addr += SPAPR_MEMORY_BLOCK_SIZE;
3724     }
3725 
3726     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3727                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3728     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3729                                               nr_lmbs, spapr_drc_index(drc));
3730 out:
3731     error_propagate(errp, local_err);
3732 }
3733 
3734 /* Callback to be called during DRC release. */
3735 void spapr_core_release(DeviceState *dev)
3736 {
3737     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3738 
3739     /* Call the unplug handler chain. This can never fail. */
3740     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3741     object_unparent(OBJECT(dev));
3742 }
3743 
3744 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3745 {
3746     MachineState *ms = MACHINE(hotplug_dev);
3747     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3748     CPUCore *cc = CPU_CORE(dev);
3749     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3750 
3751     if (smc->pre_2_10_has_unused_icps) {
3752         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3753         int i;
3754 
3755         for (i = 0; i < cc->nr_threads; i++) {
3756             CPUState *cs = CPU(sc->threads[i]);
3757 
3758             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3759         }
3760     }
3761 
3762     assert(core_slot);
3763     core_slot->cpu = NULL;
3764     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3765 }
3766 
3767 static
3768 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3769                                Error **errp)
3770 {
3771     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3772     int index;
3773     SpaprDrc *drc;
3774     CPUCore *cc = CPU_CORE(dev);
3775 
3776     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3777         error_setg(errp, "Unable to find CPU core with core-id: %d",
3778                    cc->core_id);
3779         return;
3780     }
3781     if (index == 0) {
3782         error_setg(errp, "Boot CPU core may not be unplugged");
3783         return;
3784     }
3785 
3786     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3787                           spapr_vcpu_id(spapr, cc->core_id));
3788     g_assert(drc);
3789 
3790     if (!spapr_drc_unplug_requested(drc)) {
3791         spapr_drc_detach(drc);
3792         spapr_hotplug_req_remove_by_index(drc);
3793     }
3794 }
3795 
3796 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3797                            void *fdt, int *fdt_start_offset, Error **errp)
3798 {
3799     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3800     CPUState *cs = CPU(core->threads[0]);
3801     PowerPCCPU *cpu = POWERPC_CPU(cs);
3802     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3803     int id = spapr_get_vcpu_id(cpu);
3804     char *nodename;
3805     int offset;
3806 
3807     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3808     offset = fdt_add_subnode(fdt, 0, nodename);
3809     g_free(nodename);
3810 
3811     spapr_dt_cpu(cs, fdt, offset, spapr);
3812 
3813     *fdt_start_offset = offset;
3814     return 0;
3815 }
3816 
3817 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3818                             Error **errp)
3819 {
3820     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3821     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3822     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3823     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3824     CPUCore *cc = CPU_CORE(dev);
3825     CPUState *cs;
3826     SpaprDrc *drc;
3827     Error *local_err = NULL;
3828     CPUArchId *core_slot;
3829     int index;
3830     bool hotplugged = spapr_drc_hotplugged(dev);
3831     int i;
3832 
3833     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3834     if (!core_slot) {
3835         error_setg(errp, "Unable to find CPU core with core-id: %d",
3836                    cc->core_id);
3837         return;
3838     }
3839     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3840                           spapr_vcpu_id(spapr, cc->core_id));
3841 
3842     g_assert(drc || !mc->has_hotpluggable_cpus);
3843 
3844     if (drc) {
3845         spapr_drc_attach(drc, dev, &local_err);
3846         if (local_err) {
3847             error_propagate(errp, local_err);
3848             return;
3849         }
3850 
3851         if (hotplugged) {
3852             /*
3853              * Send hotplug notification interrupt to the guest only
3854              * in case of hotplugged CPUs.
3855              */
3856             spapr_hotplug_req_add_by_index(drc);
3857         } else {
3858             spapr_drc_reset(drc);
3859         }
3860     }
3861 
3862     core_slot->cpu = OBJECT(dev);
3863 
3864     if (smc->pre_2_10_has_unused_icps) {
3865         for (i = 0; i < cc->nr_threads; i++) {
3866             cs = CPU(core->threads[i]);
3867             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3868         }
3869     }
3870 
3871     /*
3872      * Set compatibility mode to match the boot CPU, which was either set
3873      * by the machine reset code or by CAS.
3874      */
3875     if (hotplugged) {
3876         for (i = 0; i < cc->nr_threads; i++) {
3877             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3878                            &local_err);
3879             if (local_err) {
3880                 error_propagate(errp, local_err);
3881                 return;
3882             }
3883         }
3884     }
3885 }
3886 
3887 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3888                                 Error **errp)
3889 {
3890     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3891     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3892     Error *local_err = NULL;
3893     CPUCore *cc = CPU_CORE(dev);
3894     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3895     const char *type = object_get_typename(OBJECT(dev));
3896     CPUArchId *core_slot;
3897     int index;
3898     unsigned int smp_threads = machine->smp.threads;
3899 
3900     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3901         error_setg(&local_err, "CPU hotplug not supported for this machine");
3902         goto out;
3903     }
3904 
3905     if (strcmp(base_core_type, type)) {
3906         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3907         goto out;
3908     }
3909 
3910     if (cc->core_id % smp_threads) {
3911         error_setg(&local_err, "invalid core id %d", cc->core_id);
3912         goto out;
3913     }
3914 
3915     /*
3916      * In general we should have homogeneous threads-per-core, but old
3917      * (pre hotplug support) machine types allow the last core to have
3918      * reduced threads as a compatibility hack for when we allowed
3919      * total vcpus not a multiple of threads-per-core.
3920      */
3921     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3922         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3923                    cc->nr_threads, smp_threads);
3924         goto out;
3925     }
3926 
3927     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3928     if (!core_slot) {
3929         error_setg(&local_err, "core id %d out of range", cc->core_id);
3930         goto out;
3931     }
3932 
3933     if (core_slot->cpu) {
3934         error_setg(&local_err, "core %d already populated", cc->core_id);
3935         goto out;
3936     }
3937 
3938     numa_cpu_pre_plug(core_slot, dev, &local_err);
3939 
3940 out:
3941     error_propagate(errp, local_err);
3942 }
3943 
3944 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3945                           void *fdt, int *fdt_start_offset, Error **errp)
3946 {
3947     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3948     int intc_phandle;
3949 
3950     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3951     if (intc_phandle <= 0) {
3952         return -1;
3953     }
3954 
3955     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3956         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3957         return -1;
3958     }
3959 
3960     /* generally SLOF creates these, for hotplug it's up to QEMU */
3961     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3962 
3963     return 0;
3964 }
3965 
3966 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3967                                Error **errp)
3968 {
3969     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3970     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3971     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3972     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3973 
3974     if (dev->hotplugged && !smc->dr_phb_enabled) {
3975         error_setg(errp, "PHB hotplug not supported for this machine");
3976         return;
3977     }
3978 
3979     if (sphb->index == (uint32_t)-1) {
3980         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3981         return;
3982     }
3983 
3984     /*
3985      * This will check that sphb->index doesn't exceed the maximum number of
3986      * PHBs for the current machine type.
3987      */
3988     smc->phb_placement(spapr, sphb->index,
3989                        &sphb->buid, &sphb->io_win_addr,
3990                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3991                        windows_supported, sphb->dma_liobn,
3992                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3993                        errp);
3994 }
3995 
3996 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3997                            Error **errp)
3998 {
3999     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4000     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4001     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4002     SpaprDrc *drc;
4003     bool hotplugged = spapr_drc_hotplugged(dev);
4004     Error *local_err = NULL;
4005 
4006     if (!smc->dr_phb_enabled) {
4007         return;
4008     }
4009 
4010     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4011     /* hotplug hooks should check it's enabled before getting this far */
4012     assert(drc);
4013 
4014     spapr_drc_attach(drc, DEVICE(dev), &local_err);
4015     if (local_err) {
4016         error_propagate(errp, local_err);
4017         return;
4018     }
4019 
4020     if (hotplugged) {
4021         spapr_hotplug_req_add_by_index(drc);
4022     } else {
4023         spapr_drc_reset(drc);
4024     }
4025 }
4026 
4027 void spapr_phb_release(DeviceState *dev)
4028 {
4029     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4030 
4031     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4032     object_unparent(OBJECT(dev));
4033 }
4034 
4035 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4036 {
4037     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4038 }
4039 
4040 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4041                                      DeviceState *dev, Error **errp)
4042 {
4043     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4044     SpaprDrc *drc;
4045 
4046     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4047     assert(drc);
4048 
4049     if (!spapr_drc_unplug_requested(drc)) {
4050         spapr_drc_detach(drc);
4051         spapr_hotplug_req_remove_by_index(drc);
4052     }
4053 }
4054 
4055 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4056                                  Error **errp)
4057 {
4058     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4059     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4060 
4061     if (spapr->tpm_proxy != NULL) {
4062         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4063         return;
4064     }
4065 
4066     spapr->tpm_proxy = tpm_proxy;
4067 }
4068 
4069 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4070 {
4071     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4072 
4073     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4074     object_unparent(OBJECT(dev));
4075     spapr->tpm_proxy = NULL;
4076 }
4077 
4078 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4079                                       DeviceState *dev, Error **errp)
4080 {
4081     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4082         spapr_memory_plug(hotplug_dev, dev, errp);
4083     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4084         spapr_core_plug(hotplug_dev, dev, errp);
4085     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4086         spapr_phb_plug(hotplug_dev, dev, errp);
4087     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4088         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4089     }
4090 }
4091 
4092 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4093                                         DeviceState *dev, Error **errp)
4094 {
4095     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4096         spapr_memory_unplug(hotplug_dev, dev);
4097     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4098         spapr_core_unplug(hotplug_dev, dev);
4099     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4100         spapr_phb_unplug(hotplug_dev, dev);
4101     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4102         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4103     }
4104 }
4105 
4106 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4107                                                 DeviceState *dev, Error **errp)
4108 {
4109     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4110     MachineClass *mc = MACHINE_GET_CLASS(sms);
4111     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4112 
4113     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4114         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4115             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4116         } else {
4117             /* NOTE: this means there is a window after guest reset, prior to
4118              * CAS negotiation, where unplug requests will fail due to the
4119              * capability not being detected yet. This is a bit different than
4120              * the case with PCI unplug, where the events will be queued and
4121              * eventually handled by the guest after boot
4122              */
4123             error_setg(errp, "Memory hot unplug not supported for this guest");
4124         }
4125     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4126         if (!mc->has_hotpluggable_cpus) {
4127             error_setg(errp, "CPU hot unplug not supported on this machine");
4128             return;
4129         }
4130         spapr_core_unplug_request(hotplug_dev, dev, errp);
4131     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4132         if (!smc->dr_phb_enabled) {
4133             error_setg(errp, "PHB hot unplug not supported on this machine");
4134             return;
4135         }
4136         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4137     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4138         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4139     }
4140 }
4141 
4142 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4143                                           DeviceState *dev, Error **errp)
4144 {
4145     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4146         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4147     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4148         spapr_core_pre_plug(hotplug_dev, dev, errp);
4149     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4150         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4151     }
4152 }
4153 
4154 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4155                                                  DeviceState *dev)
4156 {
4157     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4158         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4159         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4160         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4161         return HOTPLUG_HANDLER(machine);
4162     }
4163     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4164         PCIDevice *pcidev = PCI_DEVICE(dev);
4165         PCIBus *root = pci_device_root_bus(pcidev);
4166         SpaprPhbState *phb =
4167             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4168                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4169 
4170         if (phb) {
4171             return HOTPLUG_HANDLER(phb);
4172         }
4173     }
4174     return NULL;
4175 }
4176 
4177 static CpuInstanceProperties
4178 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4179 {
4180     CPUArchId *core_slot;
4181     MachineClass *mc = MACHINE_GET_CLASS(machine);
4182 
4183     /* make sure possible_cpu are intialized */
4184     mc->possible_cpu_arch_ids(machine);
4185     /* get CPU core slot containing thread that matches cpu_index */
4186     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4187     assert(core_slot);
4188     return core_slot->props;
4189 }
4190 
4191 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4192 {
4193     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4194 }
4195 
4196 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4197 {
4198     int i;
4199     unsigned int smp_threads = machine->smp.threads;
4200     unsigned int smp_cpus = machine->smp.cpus;
4201     const char *core_type;
4202     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4203     MachineClass *mc = MACHINE_GET_CLASS(machine);
4204 
4205     if (!mc->has_hotpluggable_cpus) {
4206         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4207     }
4208     if (machine->possible_cpus) {
4209         assert(machine->possible_cpus->len == spapr_max_cores);
4210         return machine->possible_cpus;
4211     }
4212 
4213     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4214     if (!core_type) {
4215         error_report("Unable to find sPAPR CPU Core definition");
4216         exit(1);
4217     }
4218 
4219     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4220                              sizeof(CPUArchId) * spapr_max_cores);
4221     machine->possible_cpus->len = spapr_max_cores;
4222     for (i = 0; i < machine->possible_cpus->len; i++) {
4223         int core_id = i * smp_threads;
4224 
4225         machine->possible_cpus->cpus[i].type = core_type;
4226         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4227         machine->possible_cpus->cpus[i].arch_id = core_id;
4228         machine->possible_cpus->cpus[i].props.has_core_id = true;
4229         machine->possible_cpus->cpus[i].props.core_id = core_id;
4230     }
4231     return machine->possible_cpus;
4232 }
4233 
4234 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4235                                 uint64_t *buid, hwaddr *pio,
4236                                 hwaddr *mmio32, hwaddr *mmio64,
4237                                 unsigned n_dma, uint32_t *liobns,
4238                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4239 {
4240     /*
4241      * New-style PHB window placement.
4242      *
4243      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4244      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4245      * windows.
4246      *
4247      * Some guest kernels can't work with MMIO windows above 1<<46
4248      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4249      *
4250      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4251      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4252      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4253      * 1TiB 64-bit MMIO windows for each PHB.
4254      */
4255     const uint64_t base_buid = 0x800000020000000ULL;
4256     int i;
4257 
4258     /* Sanity check natural alignments */
4259     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4260     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4261     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4262     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4263     /* Sanity check bounds */
4264     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4265                       SPAPR_PCI_MEM32_WIN_SIZE);
4266     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4267                       SPAPR_PCI_MEM64_WIN_SIZE);
4268 
4269     if (index >= SPAPR_MAX_PHBS) {
4270         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4271                    SPAPR_MAX_PHBS - 1);
4272         return;
4273     }
4274 
4275     *buid = base_buid + index;
4276     for (i = 0; i < n_dma; ++i) {
4277         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4278     }
4279 
4280     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4281     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4282     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4283 
4284     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4285     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4286 }
4287 
4288 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4289 {
4290     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4291 
4292     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4293 }
4294 
4295 static void spapr_ics_resend(XICSFabric *dev)
4296 {
4297     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4298 
4299     ics_resend(spapr->ics);
4300 }
4301 
4302 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4303 {
4304     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4305 
4306     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4307 }
4308 
4309 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4310                                  Monitor *mon)
4311 {
4312     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4313 
4314     spapr_irq_print_info(spapr, mon);
4315     monitor_printf(mon, "irqchip: %s\n",
4316                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4317 }
4318 
4319 /*
4320  * This is a XIVE only operation
4321  */
4322 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4323                            uint8_t nvt_blk, uint32_t nvt_idx,
4324                            bool cam_ignore, uint8_t priority,
4325                            uint32_t logic_serv, XiveTCTXMatch *match)
4326 {
4327     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4328     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4329     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4330     int count;
4331 
4332     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4333                            priority, logic_serv, match);
4334     if (count < 0) {
4335         return count;
4336     }
4337 
4338     /*
4339      * When we implement the save and restore of the thread interrupt
4340      * contexts in the enter/exit CPU handlers of the machine and the
4341      * escalations in QEMU, we should be able to handle non dispatched
4342      * vCPUs.
4343      *
4344      * Until this is done, the sPAPR machine should find at least one
4345      * matching context always.
4346      */
4347     if (count == 0) {
4348         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4349                       nvt_blk, nvt_idx);
4350     }
4351 
4352     return count;
4353 }
4354 
4355 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4356 {
4357     return cpu->vcpu_id;
4358 }
4359 
4360 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4361 {
4362     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4363     MachineState *ms = MACHINE(spapr);
4364     int vcpu_id;
4365 
4366     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4367 
4368     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4369         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4370         error_append_hint(errp, "Adjust the number of cpus to %d "
4371                           "or try to raise the number of threads per core\n",
4372                           vcpu_id * ms->smp.threads / spapr->vsmt);
4373         return;
4374     }
4375 
4376     cpu->vcpu_id = vcpu_id;
4377 }
4378 
4379 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4380 {
4381     CPUState *cs;
4382 
4383     CPU_FOREACH(cs) {
4384         PowerPCCPU *cpu = POWERPC_CPU(cs);
4385 
4386         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4387             return cpu;
4388         }
4389     }
4390 
4391     return NULL;
4392 }
4393 
4394 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4395 {
4396     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4397 
4398     /* These are only called by TCG, KVM maintains dispatch state */
4399 
4400     spapr_cpu->prod = false;
4401     if (spapr_cpu->vpa_addr) {
4402         CPUState *cs = CPU(cpu);
4403         uint32_t dispatch;
4404 
4405         dispatch = ldl_be_phys(cs->as,
4406                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4407         dispatch++;
4408         if ((dispatch & 1) != 0) {
4409             qemu_log_mask(LOG_GUEST_ERROR,
4410                           "VPA: incorrect dispatch counter value for "
4411                           "dispatched partition %u, correcting.\n", dispatch);
4412             dispatch++;
4413         }
4414         stl_be_phys(cs->as,
4415                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4416     }
4417 }
4418 
4419 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4420 {
4421     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4422 
4423     if (spapr_cpu->vpa_addr) {
4424         CPUState *cs = CPU(cpu);
4425         uint32_t dispatch;
4426 
4427         dispatch = ldl_be_phys(cs->as,
4428                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4429         dispatch++;
4430         if ((dispatch & 1) != 1) {
4431             qemu_log_mask(LOG_GUEST_ERROR,
4432                           "VPA: incorrect dispatch counter value for "
4433                           "preempted partition %u, correcting.\n", dispatch);
4434             dispatch++;
4435         }
4436         stl_be_phys(cs->as,
4437                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4438     }
4439 }
4440 
4441 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4442 {
4443     MachineClass *mc = MACHINE_CLASS(oc);
4444     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4445     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4446     NMIClass *nc = NMI_CLASS(oc);
4447     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4448     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4449     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4450     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4451     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4452 
4453     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4454     mc->ignore_boot_device_suffixes = true;
4455 
4456     /*
4457      * We set up the default / latest behaviour here.  The class_init
4458      * functions for the specific versioned machine types can override
4459      * these details for backwards compatibility
4460      */
4461     mc->init = spapr_machine_init;
4462     mc->reset = spapr_machine_reset;
4463     mc->block_default_type = IF_SCSI;
4464     mc->max_cpus = 1024;
4465     mc->no_parallel = 1;
4466     mc->default_boot_order = "";
4467     mc->default_ram_size = 512 * MiB;
4468     mc->default_ram_id = "ppc_spapr.ram";
4469     mc->default_display = "std";
4470     mc->kvm_type = spapr_kvm_type;
4471     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4472     mc->pci_allow_0_address = true;
4473     assert(!mc->get_hotplug_handler);
4474     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4475     hc->pre_plug = spapr_machine_device_pre_plug;
4476     hc->plug = spapr_machine_device_plug;
4477     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4478     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4479     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4480     hc->unplug_request = spapr_machine_device_unplug_request;
4481     hc->unplug = spapr_machine_device_unplug;
4482 
4483     smc->dr_lmb_enabled = true;
4484     smc->update_dt_enabled = true;
4485     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4486     mc->has_hotpluggable_cpus = true;
4487     mc->nvdimm_supported = true;
4488     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4489     fwc->get_dev_path = spapr_get_fw_dev_path;
4490     nc->nmi_monitor_handler = spapr_nmi;
4491     smc->phb_placement = spapr_phb_placement;
4492     vhc->hypercall = emulate_spapr_hypercall;
4493     vhc->hpt_mask = spapr_hpt_mask;
4494     vhc->map_hptes = spapr_map_hptes;
4495     vhc->unmap_hptes = spapr_unmap_hptes;
4496     vhc->hpte_set_c = spapr_hpte_set_c;
4497     vhc->hpte_set_r = spapr_hpte_set_r;
4498     vhc->get_pate = spapr_get_pate;
4499     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4500     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4501     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4502     xic->ics_get = spapr_ics_get;
4503     xic->ics_resend = spapr_ics_resend;
4504     xic->icp_get = spapr_icp_get;
4505     ispc->print_info = spapr_pic_print_info;
4506     /* Force NUMA node memory size to be a multiple of
4507      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4508      * in which LMBs are represented and hot-added
4509      */
4510     mc->numa_mem_align_shift = 28;
4511     mc->numa_mem_supported = true;
4512     mc->auto_enable_numa = true;
4513 
4514     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4515     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4516     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4517     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4518     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4519     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4520     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4521     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4522     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4523     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4524     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4525     spapr_caps_add_properties(smc, &error_abort);
4526     smc->irq = &spapr_irq_dual;
4527     smc->dr_phb_enabled = true;
4528     smc->linux_pci_probe = true;
4529     smc->smp_threads_vsmt = true;
4530     smc->nr_xirqs = SPAPR_NR_XIRQS;
4531     xfc->match_nvt = spapr_match_nvt;
4532 }
4533 
4534 static const TypeInfo spapr_machine_info = {
4535     .name          = TYPE_SPAPR_MACHINE,
4536     .parent        = TYPE_MACHINE,
4537     .abstract      = true,
4538     .instance_size = sizeof(SpaprMachineState),
4539     .instance_init = spapr_instance_init,
4540     .instance_finalize = spapr_machine_finalizefn,
4541     .class_size    = sizeof(SpaprMachineClass),
4542     .class_init    = spapr_machine_class_init,
4543     .interfaces = (InterfaceInfo[]) {
4544         { TYPE_FW_PATH_PROVIDER },
4545         { TYPE_NMI },
4546         { TYPE_HOTPLUG_HANDLER },
4547         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4548         { TYPE_XICS_FABRIC },
4549         { TYPE_INTERRUPT_STATS_PROVIDER },
4550         { TYPE_XIVE_FABRIC },
4551         { }
4552     },
4553 };
4554 
4555 static void spapr_machine_latest_class_options(MachineClass *mc)
4556 {
4557     mc->alias = "pseries";
4558     mc->is_default = true;
4559 }
4560 
4561 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4562     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4563                                                     void *data)      \
4564     {                                                                \
4565         MachineClass *mc = MACHINE_CLASS(oc);                        \
4566         spapr_machine_##suffix##_class_options(mc);                  \
4567         if (latest) {                                                \
4568             spapr_machine_latest_class_options(mc);                  \
4569         }                                                            \
4570     }                                                                \
4571     static const TypeInfo spapr_machine_##suffix##_info = {          \
4572         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4573         .parent = TYPE_SPAPR_MACHINE,                                \
4574         .class_init = spapr_machine_##suffix##_class_init,           \
4575     };                                                               \
4576     static void spapr_machine_register_##suffix(void)                \
4577     {                                                                \
4578         type_register(&spapr_machine_##suffix##_info);               \
4579     }                                                                \
4580     type_init(spapr_machine_register_##suffix)
4581 
4582 /*
4583  * pseries-5.0
4584  */
4585 static void spapr_machine_5_0_class_options(MachineClass *mc)
4586 {
4587     /* Defaults for the latest behaviour inherited from the base class */
4588 }
4589 
4590 DEFINE_SPAPR_MACHINE(5_0, "5.0", true);
4591 
4592 /*
4593  * pseries-4.2
4594  */
4595 static void spapr_machine_4_2_class_options(MachineClass *mc)
4596 {
4597     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4598 
4599     spapr_machine_5_0_class_options(mc);
4600     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4601     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4602     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4603     smc->rma_limit = 16 * GiB;
4604     mc->nvdimm_supported = false;
4605 }
4606 
4607 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4608 
4609 /*
4610  * pseries-4.1
4611  */
4612 static void spapr_machine_4_1_class_options(MachineClass *mc)
4613 {
4614     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4615     static GlobalProperty compat[] = {
4616         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4617         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4618     };
4619 
4620     spapr_machine_4_2_class_options(mc);
4621     smc->linux_pci_probe = false;
4622     smc->smp_threads_vsmt = false;
4623     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4624     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4625 }
4626 
4627 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4628 
4629 /*
4630  * pseries-4.0
4631  */
4632 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4633                               uint64_t *buid, hwaddr *pio,
4634                               hwaddr *mmio32, hwaddr *mmio64,
4635                               unsigned n_dma, uint32_t *liobns,
4636                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4637 {
4638     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4639                         nv2gpa, nv2atsd, errp);
4640     *nv2gpa = 0;
4641     *nv2atsd = 0;
4642 }
4643 
4644 static void spapr_machine_4_0_class_options(MachineClass *mc)
4645 {
4646     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4647 
4648     spapr_machine_4_1_class_options(mc);
4649     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4650     smc->phb_placement = phb_placement_4_0;
4651     smc->irq = &spapr_irq_xics;
4652     smc->pre_4_1_migration = true;
4653 }
4654 
4655 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4656 
4657 /*
4658  * pseries-3.1
4659  */
4660 static void spapr_machine_3_1_class_options(MachineClass *mc)
4661 {
4662     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4663 
4664     spapr_machine_4_0_class_options(mc);
4665     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4666 
4667     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4668     smc->update_dt_enabled = false;
4669     smc->dr_phb_enabled = false;
4670     smc->broken_host_serial_model = true;
4671     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4672     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4673     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4674     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4675 }
4676 
4677 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4678 
4679 /*
4680  * pseries-3.0
4681  */
4682 
4683 static void spapr_machine_3_0_class_options(MachineClass *mc)
4684 {
4685     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4686 
4687     spapr_machine_3_1_class_options(mc);
4688     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4689 
4690     smc->legacy_irq_allocation = true;
4691     smc->nr_xirqs = 0x400;
4692     smc->irq = &spapr_irq_xics_legacy;
4693 }
4694 
4695 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4696 
4697 /*
4698  * pseries-2.12
4699  */
4700 static void spapr_machine_2_12_class_options(MachineClass *mc)
4701 {
4702     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4703     static GlobalProperty compat[] = {
4704         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4705         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4706     };
4707 
4708     spapr_machine_3_0_class_options(mc);
4709     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4710     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4711 
4712     /* We depend on kvm_enabled() to choose a default value for the
4713      * hpt-max-page-size capability. Of course we can't do it here
4714      * because this is too early and the HW accelerator isn't initialzed
4715      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4716      */
4717     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4718 }
4719 
4720 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4721 
4722 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4723 {
4724     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4725 
4726     spapr_machine_2_12_class_options(mc);
4727     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4728     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4729     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4730 }
4731 
4732 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4733 
4734 /*
4735  * pseries-2.11
4736  */
4737 
4738 static void spapr_machine_2_11_class_options(MachineClass *mc)
4739 {
4740     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4741 
4742     spapr_machine_2_12_class_options(mc);
4743     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4744     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4745 }
4746 
4747 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4748 
4749 /*
4750  * pseries-2.10
4751  */
4752 
4753 static void spapr_machine_2_10_class_options(MachineClass *mc)
4754 {
4755     spapr_machine_2_11_class_options(mc);
4756     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4757 }
4758 
4759 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4760 
4761 /*
4762  * pseries-2.9
4763  */
4764 
4765 static void spapr_machine_2_9_class_options(MachineClass *mc)
4766 {
4767     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4768     static GlobalProperty compat[] = {
4769         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4770     };
4771 
4772     spapr_machine_2_10_class_options(mc);
4773     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4774     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4775     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4776     smc->pre_2_10_has_unused_icps = true;
4777     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4778 }
4779 
4780 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4781 
4782 /*
4783  * pseries-2.8
4784  */
4785 
4786 static void spapr_machine_2_8_class_options(MachineClass *mc)
4787 {
4788     static GlobalProperty compat[] = {
4789         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4790     };
4791 
4792     spapr_machine_2_9_class_options(mc);
4793     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4794     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4795     mc->numa_mem_align_shift = 23;
4796 }
4797 
4798 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4799 
4800 /*
4801  * pseries-2.7
4802  */
4803 
4804 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4805                               uint64_t *buid, hwaddr *pio,
4806                               hwaddr *mmio32, hwaddr *mmio64,
4807                               unsigned n_dma, uint32_t *liobns,
4808                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4809 {
4810     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4811     const uint64_t base_buid = 0x800000020000000ULL;
4812     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4813     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4814     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4815     const uint32_t max_index = 255;
4816     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4817 
4818     uint64_t ram_top = MACHINE(spapr)->ram_size;
4819     hwaddr phb0_base, phb_base;
4820     int i;
4821 
4822     /* Do we have device memory? */
4823     if (MACHINE(spapr)->maxram_size > ram_top) {
4824         /* Can't just use maxram_size, because there may be an
4825          * alignment gap between normal and device memory regions
4826          */
4827         ram_top = MACHINE(spapr)->device_memory->base +
4828             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4829     }
4830 
4831     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4832 
4833     if (index > max_index) {
4834         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4835                    max_index);
4836         return;
4837     }
4838 
4839     *buid = base_buid + index;
4840     for (i = 0; i < n_dma; ++i) {
4841         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4842     }
4843 
4844     phb_base = phb0_base + index * phb_spacing;
4845     *pio = phb_base + pio_offset;
4846     *mmio32 = phb_base + mmio_offset;
4847     /*
4848      * We don't set the 64-bit MMIO window, relying on the PHB's
4849      * fallback behaviour of automatically splitting a large "32-bit"
4850      * window into contiguous 32-bit and 64-bit windows
4851      */
4852 
4853     *nv2gpa = 0;
4854     *nv2atsd = 0;
4855 }
4856 
4857 static void spapr_machine_2_7_class_options(MachineClass *mc)
4858 {
4859     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4860     static GlobalProperty compat[] = {
4861         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4862         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4863         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4864         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4865     };
4866 
4867     spapr_machine_2_8_class_options(mc);
4868     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4869     mc->default_machine_opts = "modern-hotplug-events=off";
4870     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4871     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4872     smc->phb_placement = phb_placement_2_7;
4873 }
4874 
4875 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4876 
4877 /*
4878  * pseries-2.6
4879  */
4880 
4881 static void spapr_machine_2_6_class_options(MachineClass *mc)
4882 {
4883     static GlobalProperty compat[] = {
4884         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4885     };
4886 
4887     spapr_machine_2_7_class_options(mc);
4888     mc->has_hotpluggable_cpus = false;
4889     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4890     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4891 }
4892 
4893 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4894 
4895 /*
4896  * pseries-2.5
4897  */
4898 
4899 static void spapr_machine_2_5_class_options(MachineClass *mc)
4900 {
4901     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4902     static GlobalProperty compat[] = {
4903         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4904     };
4905 
4906     spapr_machine_2_6_class_options(mc);
4907     smc->use_ohci_by_default = true;
4908     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4909     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4910 }
4911 
4912 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4913 
4914 /*
4915  * pseries-2.4
4916  */
4917 
4918 static void spapr_machine_2_4_class_options(MachineClass *mc)
4919 {
4920     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4921 
4922     spapr_machine_2_5_class_options(mc);
4923     smc->dr_lmb_enabled = false;
4924     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4925 }
4926 
4927 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4928 
4929 /*
4930  * pseries-2.3
4931  */
4932 
4933 static void spapr_machine_2_3_class_options(MachineClass *mc)
4934 {
4935     static GlobalProperty compat[] = {
4936         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4937     };
4938     spapr_machine_2_4_class_options(mc);
4939     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4940     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4941 }
4942 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4943 
4944 /*
4945  * pseries-2.2
4946  */
4947 
4948 static void spapr_machine_2_2_class_options(MachineClass *mc)
4949 {
4950     static GlobalProperty compat[] = {
4951         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4952     };
4953 
4954     spapr_machine_2_3_class_options(mc);
4955     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4956     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4957     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4958 }
4959 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4960 
4961 /*
4962  * pseries-2.1
4963  */
4964 
4965 static void spapr_machine_2_1_class_options(MachineClass *mc)
4966 {
4967     spapr_machine_2_2_class_options(mc);
4968     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4969 }
4970 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4971 
4972 static void spapr_machine_register_types(void)
4973 {
4974     type_register_static(&spapr_machine_info);
4975 }
4976 
4977 type_init(spapr_machine_register_types)
4978