1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "hw/core/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "qemu/cutils.h" 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 #include "hw/ppc/spapr_tpm_proxy.h" 83 84 #include "monitor/monitor.h" 85 86 #include <libfdt.h> 87 88 /* SLOF memory layout: 89 * 90 * SLOF raw image loaded at 0, copies its romfs right below the flat 91 * device-tree, then position SLOF itself 31M below that 92 * 93 * So we set FW_OVERHEAD to 40MB which should account for all of that 94 * and more 95 * 96 * We load our kernel at 4M, leaving space for SLOF initial image 97 */ 98 #define FDT_MAX_SIZE 0x100000 99 #define RTAS_MAX_SIZE 0x10000 100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 101 #define FW_MAX_SIZE 0x400000 102 #define FW_FILE_NAME "slof.bin" 103 #define FW_OVERHEAD 0x2800000 104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 105 106 #define MIN_RMA_SLOF 128UL 107 108 #define PHANDLE_INTC 0x00001111 109 110 /* These two functions implement the VCPU id numbering: one to compute them 111 * all and one to identify thread 0 of a VCORE. Any change to the first one 112 * is likely to have an impact on the second one, so let's keep them close. 113 */ 114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 115 { 116 MachineState *ms = MACHINE(spapr); 117 unsigned int smp_threads = ms->smp.threads; 118 119 assert(spapr->vsmt); 120 return 121 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 122 } 123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 124 PowerPCCPU *cpu) 125 { 126 assert(spapr->vsmt); 127 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 128 } 129 130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 131 { 132 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 133 * and newer QEMUs don't even have them. In both cases, we don't want 134 * to send anything on the wire. 135 */ 136 return false; 137 } 138 139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 140 .name = "icp/server", 141 .version_id = 1, 142 .minimum_version_id = 1, 143 .needed = pre_2_10_vmstate_dummy_icp_needed, 144 .fields = (VMStateField[]) { 145 VMSTATE_UNUSED(4), /* uint32_t xirr */ 146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 147 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 148 VMSTATE_END_OF_LIST() 149 }, 150 }; 151 152 static void pre_2_10_vmstate_register_dummy_icp(int i) 153 { 154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 155 (void *)(uintptr_t) i); 156 } 157 158 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 159 { 160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 161 (void *)(uintptr_t) i); 162 } 163 164 int spapr_max_server_number(SpaprMachineState *spapr) 165 { 166 MachineState *ms = MACHINE(spapr); 167 168 assert(spapr->vsmt); 169 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 170 } 171 172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 173 int smt_threads) 174 { 175 int i, ret = 0; 176 uint32_t servers_prop[smt_threads]; 177 uint32_t gservers_prop[smt_threads * 2]; 178 int index = spapr_get_vcpu_id(cpu); 179 180 if (cpu->compat_pvr) { 181 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 182 if (ret < 0) { 183 return ret; 184 } 185 } 186 187 /* Build interrupt servers and gservers properties */ 188 for (i = 0; i < smt_threads; i++) { 189 servers_prop[i] = cpu_to_be32(index + i); 190 /* Hack, direct the group queues back to cpu 0 */ 191 gservers_prop[i*2] = cpu_to_be32(index + i); 192 gservers_prop[i*2 + 1] = 0; 193 } 194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 195 servers_prop, sizeof(servers_prop)); 196 if (ret < 0) { 197 return ret; 198 } 199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 200 gservers_prop, sizeof(gservers_prop)); 201 202 return ret; 203 } 204 205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 206 { 207 int index = spapr_get_vcpu_id(cpu); 208 uint32_t associativity[] = {cpu_to_be32(0x5), 209 cpu_to_be32(0x0), 210 cpu_to_be32(0x0), 211 cpu_to_be32(0x0), 212 cpu_to_be32(cpu->node_id), 213 cpu_to_be32(index)}; 214 215 /* Advertise NUMA via ibm,associativity */ 216 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 217 sizeof(associativity)); 218 } 219 220 /* Populate the "ibm,pa-features" property */ 221 static void spapr_populate_pa_features(SpaprMachineState *spapr, 222 PowerPCCPU *cpu, 223 void *fdt, int offset) 224 { 225 uint8_t pa_features_206[] = { 6, 0, 226 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 227 uint8_t pa_features_207[] = { 24, 0, 228 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 229 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 230 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 232 uint8_t pa_features_300[] = { 66, 0, 233 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 234 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 235 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 236 /* 6: DS207 */ 237 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 238 /* 16: Vector */ 239 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 240 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 241 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 242 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 244 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 245 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 246 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 248 /* 42: PM, 44: PC RA, 46: SC vec'd */ 249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 250 /* 48: SIMD, 50: QP BFP, 52: String */ 251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 252 /* 54: DecFP, 56: DecI, 58: SHA */ 253 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 254 /* 60: NM atomic, 62: RNG */ 255 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 256 }; 257 uint8_t *pa_features = NULL; 258 size_t pa_size; 259 260 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 261 pa_features = pa_features_206; 262 pa_size = sizeof(pa_features_206); 263 } 264 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 265 pa_features = pa_features_207; 266 pa_size = sizeof(pa_features_207); 267 } 268 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 269 pa_features = pa_features_300; 270 pa_size = sizeof(pa_features_300); 271 } 272 if (!pa_features) { 273 return; 274 } 275 276 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 277 /* 278 * Note: we keep CI large pages off by default because a 64K capable 279 * guest provisioned with large pages might otherwise try to map a qemu 280 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 281 * even if that qemu runs on a 4k host. 282 * We dd this bit back here if we are confident this is not an issue 283 */ 284 pa_features[3] |= 0x20; 285 } 286 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 287 pa_features[24] |= 0x80; /* Transactional memory support */ 288 } 289 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 290 /* Workaround for broken kernels that attempt (guest) radix 291 * mode when they can't handle it, if they see the radix bit set 292 * in pa-features. So hide it from them. */ 293 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 294 } 295 296 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 297 } 298 299 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 300 { 301 MachineState *ms = MACHINE(spapr); 302 int ret = 0, offset, cpus_offset; 303 CPUState *cs; 304 char cpu_model[32]; 305 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 306 307 CPU_FOREACH(cs) { 308 PowerPCCPU *cpu = POWERPC_CPU(cs); 309 DeviceClass *dc = DEVICE_GET_CLASS(cs); 310 int index = spapr_get_vcpu_id(cpu); 311 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu)); 312 313 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 314 continue; 315 } 316 317 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 318 319 cpus_offset = fdt_path_offset(fdt, "/cpus"); 320 if (cpus_offset < 0) { 321 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 322 if (cpus_offset < 0) { 323 return cpus_offset; 324 } 325 } 326 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 327 if (offset < 0) { 328 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 329 if (offset < 0) { 330 return offset; 331 } 332 } 333 334 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 335 pft_size_prop, sizeof(pft_size_prop)); 336 if (ret < 0) { 337 return ret; 338 } 339 340 if (ms->numa_state->num_nodes > 1) { 341 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 342 if (ret < 0) { 343 return ret; 344 } 345 } 346 347 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 348 if (ret < 0) { 349 return ret; 350 } 351 352 spapr_populate_pa_features(spapr, cpu, fdt, offset); 353 } 354 return ret; 355 } 356 357 static hwaddr spapr_node0_size(MachineState *machine) 358 { 359 if (machine->numa_state->num_nodes) { 360 int i; 361 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 362 if (machine->numa_state->nodes[i].node_mem) { 363 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 364 machine->ram_size); 365 } 366 } 367 } 368 return machine->ram_size; 369 } 370 371 static void add_str(GString *s, const gchar *s1) 372 { 373 g_string_append_len(s, s1, strlen(s1) + 1); 374 } 375 376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 377 hwaddr size) 378 { 379 uint32_t associativity[] = { 380 cpu_to_be32(0x4), /* length */ 381 cpu_to_be32(0x0), cpu_to_be32(0x0), 382 cpu_to_be32(0x0), cpu_to_be32(nodeid) 383 }; 384 char mem_name[32]; 385 uint64_t mem_reg_property[2]; 386 int off; 387 388 mem_reg_property[0] = cpu_to_be64(start); 389 mem_reg_property[1] = cpu_to_be64(size); 390 391 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 392 off = fdt_add_subnode(fdt, 0, mem_name); 393 _FDT(off); 394 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 395 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 396 sizeof(mem_reg_property)))); 397 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 398 sizeof(associativity)))); 399 return off; 400 } 401 402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 403 { 404 MachineState *machine = MACHINE(spapr); 405 hwaddr mem_start, node_size; 406 int i, nb_nodes = machine->numa_state->num_nodes; 407 NodeInfo *nodes = machine->numa_state->nodes; 408 NodeInfo ramnode; 409 410 /* No NUMA nodes, assume there is just one node with whole RAM */ 411 if (!nb_nodes) { 412 nb_nodes = 1; 413 ramnode.node_mem = machine->ram_size; 414 nodes = &ramnode; 415 } 416 417 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 418 if (!nodes[i].node_mem) { 419 continue; 420 } 421 if (mem_start >= machine->ram_size) { 422 node_size = 0; 423 } else { 424 node_size = nodes[i].node_mem; 425 if (node_size > machine->ram_size - mem_start) { 426 node_size = machine->ram_size - mem_start; 427 } 428 } 429 if (!mem_start) { 430 /* spapr_machine_init() checks for rma_size <= node0_size 431 * already */ 432 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 433 mem_start += spapr->rma_size; 434 node_size -= spapr->rma_size; 435 } 436 for ( ; node_size; ) { 437 hwaddr sizetmp = pow2floor(node_size); 438 439 /* mem_start != 0 here */ 440 if (ctzl(mem_start) < ctzl(sizetmp)) { 441 sizetmp = 1ULL << ctzl(mem_start); 442 } 443 444 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 445 node_size -= sizetmp; 446 mem_start += sizetmp; 447 } 448 } 449 450 return 0; 451 } 452 453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 454 SpaprMachineState *spapr) 455 { 456 MachineState *ms = MACHINE(spapr); 457 PowerPCCPU *cpu = POWERPC_CPU(cs); 458 CPUPPCState *env = &cpu->env; 459 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 460 int index = spapr_get_vcpu_id(cpu); 461 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 462 0xffffffff, 0xffffffff}; 463 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 464 : SPAPR_TIMEBASE_FREQ; 465 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 466 uint32_t page_sizes_prop[64]; 467 size_t page_sizes_prop_size; 468 unsigned int smp_threads = ms->smp.threads; 469 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 470 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 471 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 472 SpaprDrc *drc; 473 int drc_index; 474 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 475 int i; 476 477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 478 if (drc) { 479 drc_index = spapr_drc_index(drc); 480 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 481 } 482 483 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 484 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 485 486 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 488 env->dcache_line_size))); 489 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 490 env->dcache_line_size))); 491 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 492 env->icache_line_size))); 493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 494 env->icache_line_size))); 495 496 if (pcc->l1_dcache_size) { 497 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 498 pcc->l1_dcache_size))); 499 } else { 500 warn_report("Unknown L1 dcache size for cpu"); 501 } 502 if (pcc->l1_icache_size) { 503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 504 pcc->l1_icache_size))); 505 } else { 506 warn_report("Unknown L1 icache size for cpu"); 507 } 508 509 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 510 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 511 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 513 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 514 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 515 516 if (env->spr_cb[SPR_PURR].oea_read) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 518 } 519 if (env->spr_cb[SPR_SPURR].oea_read) { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 521 } 522 523 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 524 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 525 segs, sizeof(segs)))); 526 } 527 528 /* Advertise VSX (vector extensions) if available 529 * 1 == VMX / Altivec available 530 * 2 == VSX available 531 * 532 * Only CPUs for which we create core types in spapr_cpu_core.c 533 * are possible, and all of those have VMX */ 534 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 536 } else { 537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 538 } 539 540 /* Advertise DFP (Decimal Floating Point) if available 541 * 0 / no property == no DFP 542 * 1 == DFP available */ 543 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 545 } 546 547 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 548 sizeof(page_sizes_prop)); 549 if (page_sizes_prop_size) { 550 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 551 page_sizes_prop, page_sizes_prop_size))); 552 } 553 554 spapr_populate_pa_features(spapr, cpu, fdt, offset); 555 556 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 557 cs->cpu_index / vcpus_per_socket))); 558 559 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 560 pft_size_prop, sizeof(pft_size_prop)))); 561 562 if (ms->numa_state->num_nodes > 1) { 563 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 564 } 565 566 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 567 568 if (pcc->radix_page_info) { 569 for (i = 0; i < pcc->radix_page_info->count; i++) { 570 radix_AP_encodings[i] = 571 cpu_to_be32(pcc->radix_page_info->entries[i]); 572 } 573 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 574 radix_AP_encodings, 575 pcc->radix_page_info->count * 576 sizeof(radix_AP_encodings[0])))); 577 } 578 579 /* 580 * We set this property to let the guest know that it can use the large 581 * decrementer and its width in bits. 582 */ 583 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 584 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 585 pcc->lrg_decr_bits))); 586 } 587 588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 589 { 590 CPUState **rev; 591 CPUState *cs; 592 int n_cpus; 593 int cpus_offset; 594 char *nodename; 595 int i; 596 597 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 598 _FDT(cpus_offset); 599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 600 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 601 602 /* 603 * We walk the CPUs in reverse order to ensure that CPU DT nodes 604 * created by fdt_add_subnode() end up in the right order in FDT 605 * for the guest kernel the enumerate the CPUs correctly. 606 * 607 * The CPU list cannot be traversed in reverse order, so we need 608 * to do extra work. 609 */ 610 n_cpus = 0; 611 rev = NULL; 612 CPU_FOREACH(cs) { 613 rev = g_renew(CPUState *, rev, n_cpus + 1); 614 rev[n_cpus++] = cs; 615 } 616 617 for (i = n_cpus - 1; i >= 0; i--) { 618 CPUState *cs = rev[i]; 619 PowerPCCPU *cpu = POWERPC_CPU(cs); 620 int index = spapr_get_vcpu_id(cpu); 621 DeviceClass *dc = DEVICE_GET_CLASS(cs); 622 int offset; 623 624 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 625 continue; 626 } 627 628 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 629 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 630 g_free(nodename); 631 _FDT(offset); 632 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 633 } 634 635 g_free(rev); 636 } 637 638 static int spapr_rng_populate_dt(void *fdt) 639 { 640 int node; 641 int ret; 642 643 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 644 if (node <= 0) { 645 return -1; 646 } 647 ret = fdt_setprop_string(fdt, node, "device_type", 648 "ibm,platform-facilities"); 649 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 650 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 651 652 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 653 if (node <= 0) { 654 return -1; 655 } 656 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 657 658 return ret ? -1 : 0; 659 } 660 661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 662 { 663 MemoryDeviceInfoList *info; 664 665 for (info = list; info; info = info->next) { 666 MemoryDeviceInfo *value = info->value; 667 668 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 669 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 670 671 if (addr >= pcdimm_info->addr && 672 addr < (pcdimm_info->addr + pcdimm_info->size)) { 673 return pcdimm_info->node; 674 } 675 } 676 } 677 678 return -1; 679 } 680 681 struct sPAPRDrconfCellV2 { 682 uint32_t seq_lmbs; 683 uint64_t base_addr; 684 uint32_t drc_index; 685 uint32_t aa_index; 686 uint32_t flags; 687 } QEMU_PACKED; 688 689 typedef struct DrconfCellQueue { 690 struct sPAPRDrconfCellV2 cell; 691 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 692 } DrconfCellQueue; 693 694 static DrconfCellQueue * 695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 696 uint32_t drc_index, uint32_t aa_index, 697 uint32_t flags) 698 { 699 DrconfCellQueue *elem; 700 701 elem = g_malloc0(sizeof(*elem)); 702 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 703 elem->cell.base_addr = cpu_to_be64(base_addr); 704 elem->cell.drc_index = cpu_to_be32(drc_index); 705 elem->cell.aa_index = cpu_to_be32(aa_index); 706 elem->cell.flags = cpu_to_be32(flags); 707 708 return elem; 709 } 710 711 /* ibm,dynamic-memory-v2 */ 712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 713 int offset, MemoryDeviceInfoList *dimms) 714 { 715 MachineState *machine = MACHINE(spapr); 716 uint8_t *int_buf, *cur_index; 717 int ret; 718 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 719 uint64_t addr, cur_addr, size; 720 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 721 uint64_t mem_end = machine->device_memory->base + 722 memory_region_size(&machine->device_memory->mr); 723 uint32_t node, buf_len, nr_entries = 0; 724 SpaprDrc *drc; 725 DrconfCellQueue *elem, *next; 726 MemoryDeviceInfoList *info; 727 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 728 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 729 730 /* Entry to cover RAM and the gap area */ 731 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 732 SPAPR_LMB_FLAGS_RESERVED | 733 SPAPR_LMB_FLAGS_DRC_INVALID); 734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 735 nr_entries++; 736 737 cur_addr = machine->device_memory->base; 738 for (info = dimms; info; info = info->next) { 739 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 740 741 addr = di->addr; 742 size = di->size; 743 node = di->node; 744 745 /* Entry for hot-pluggable area */ 746 if (cur_addr < addr) { 747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 748 g_assert(drc); 749 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 750 cur_addr, spapr_drc_index(drc), -1, 0); 751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 752 nr_entries++; 753 } 754 755 /* Entry for DIMM */ 756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 757 g_assert(drc); 758 elem = spapr_get_drconf_cell(size / lmb_size, addr, 759 spapr_drc_index(drc), node, 760 SPAPR_LMB_FLAGS_ASSIGNED); 761 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 762 nr_entries++; 763 cur_addr = addr + size; 764 } 765 766 /* Entry for remaining hotpluggable area */ 767 if (cur_addr < mem_end) { 768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 769 g_assert(drc); 770 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 771 cur_addr, spapr_drc_index(drc), -1, 0); 772 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 773 nr_entries++; 774 } 775 776 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 777 int_buf = cur_index = g_malloc0(buf_len); 778 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 779 cur_index += sizeof(nr_entries); 780 781 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 782 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 783 cur_index += sizeof(elem->cell); 784 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 785 g_free(elem); 786 } 787 788 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 789 g_free(int_buf); 790 if (ret < 0) { 791 return -1; 792 } 793 return 0; 794 } 795 796 /* ibm,dynamic-memory */ 797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 798 int offset, MemoryDeviceInfoList *dimms) 799 { 800 MachineState *machine = MACHINE(spapr); 801 int i, ret; 802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 803 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 804 uint32_t nr_lmbs = (machine->device_memory->base + 805 memory_region_size(&machine->device_memory->mr)) / 806 lmb_size; 807 uint32_t *int_buf, *cur_index, buf_len; 808 809 /* 810 * Allocate enough buffer size to fit in ibm,dynamic-memory 811 */ 812 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 813 cur_index = int_buf = g_malloc0(buf_len); 814 int_buf[0] = cpu_to_be32(nr_lmbs); 815 cur_index++; 816 for (i = 0; i < nr_lmbs; i++) { 817 uint64_t addr = i * lmb_size; 818 uint32_t *dynamic_memory = cur_index; 819 820 if (i >= device_lmb_start) { 821 SpaprDrc *drc; 822 823 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 824 g_assert(drc); 825 826 dynamic_memory[0] = cpu_to_be32(addr >> 32); 827 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 828 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 829 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 830 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 831 if (memory_region_present(get_system_memory(), addr)) { 832 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 833 } else { 834 dynamic_memory[5] = cpu_to_be32(0); 835 } 836 } else { 837 /* 838 * LMB information for RMA, boot time RAM and gap b/n RAM and 839 * device memory region -- all these are marked as reserved 840 * and as having no valid DRC. 841 */ 842 dynamic_memory[0] = cpu_to_be32(addr >> 32); 843 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 844 dynamic_memory[2] = cpu_to_be32(0); 845 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 846 dynamic_memory[4] = cpu_to_be32(-1); 847 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 848 SPAPR_LMB_FLAGS_DRC_INVALID); 849 } 850 851 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 852 } 853 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 854 g_free(int_buf); 855 if (ret < 0) { 856 return -1; 857 } 858 return 0; 859 } 860 861 /* 862 * Adds ibm,dynamic-reconfiguration-memory node. 863 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 864 * of this device tree node. 865 */ 866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 867 { 868 MachineState *machine = MACHINE(spapr); 869 int nb_numa_nodes = machine->numa_state->num_nodes; 870 int ret, i, offset; 871 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 872 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 873 uint32_t *int_buf, *cur_index, buf_len; 874 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 875 MemoryDeviceInfoList *dimms = NULL; 876 877 /* 878 * Don't create the node if there is no device memory 879 */ 880 if (machine->ram_size == machine->maxram_size) { 881 return 0; 882 } 883 884 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 885 886 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 887 sizeof(prop_lmb_size)); 888 if (ret < 0) { 889 return ret; 890 } 891 892 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 893 if (ret < 0) { 894 return ret; 895 } 896 897 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 898 if (ret < 0) { 899 return ret; 900 } 901 902 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 903 dimms = qmp_memory_device_list(); 904 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 905 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 906 } else { 907 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 908 } 909 qapi_free_MemoryDeviceInfoList(dimms); 910 911 if (ret < 0) { 912 return ret; 913 } 914 915 /* ibm,associativity-lookup-arrays */ 916 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 917 cur_index = int_buf = g_malloc0(buf_len); 918 int_buf[0] = cpu_to_be32(nr_nodes); 919 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 920 cur_index += 2; 921 for (i = 0; i < nr_nodes; i++) { 922 uint32_t associativity[] = { 923 cpu_to_be32(0x0), 924 cpu_to_be32(0x0), 925 cpu_to_be32(0x0), 926 cpu_to_be32(i) 927 }; 928 memcpy(cur_index, associativity, sizeof(associativity)); 929 cur_index += 4; 930 } 931 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 932 (cur_index - int_buf) * sizeof(uint32_t)); 933 g_free(int_buf); 934 935 return ret; 936 } 937 938 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 939 SpaprOptionVector *ov5_updates) 940 { 941 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 942 int ret = 0, offset; 943 944 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 945 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 946 g_assert(smc->dr_lmb_enabled); 947 ret = spapr_populate_drconf_memory(spapr, fdt); 948 if (ret) { 949 goto out; 950 } 951 } 952 953 offset = fdt_path_offset(fdt, "/chosen"); 954 if (offset < 0) { 955 offset = fdt_add_subnode(fdt, 0, "chosen"); 956 if (offset < 0) { 957 return offset; 958 } 959 } 960 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 961 "ibm,architecture-vec-5"); 962 963 out: 964 return ret; 965 } 966 967 static bool spapr_hotplugged_dev_before_cas(void) 968 { 969 Object *drc_container, *obj; 970 ObjectProperty *prop; 971 ObjectPropertyIterator iter; 972 973 drc_container = container_get(object_get_root(), "/dr-connector"); 974 object_property_iter_init(&iter, drc_container); 975 while ((prop = object_property_iter_next(&iter))) { 976 if (!strstart(prop->type, "link<", NULL)) { 977 continue; 978 } 979 obj = object_property_get_link(drc_container, prop->name, NULL); 980 if (spapr_drc_needed(obj)) { 981 return true; 982 } 983 } 984 return false; 985 } 986 987 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 988 target_ulong addr, target_ulong size, 989 SpaprOptionVector *ov5_updates) 990 { 991 void *fdt, *fdt_skel; 992 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 993 994 if (spapr_hotplugged_dev_before_cas()) { 995 return 1; 996 } 997 998 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 999 error_report("SLOF provided an unexpected CAS buffer size " 1000 TARGET_FMT_lu " (min: %zu, max: %u)", 1001 size, sizeof(hdr), FW_MAX_SIZE); 1002 exit(EXIT_FAILURE); 1003 } 1004 1005 size -= sizeof(hdr); 1006 1007 /* Create skeleton */ 1008 fdt_skel = g_malloc0(size); 1009 _FDT((fdt_create(fdt_skel, size))); 1010 _FDT((fdt_finish_reservemap(fdt_skel))); 1011 _FDT((fdt_begin_node(fdt_skel, ""))); 1012 _FDT((fdt_end_node(fdt_skel))); 1013 _FDT((fdt_finish(fdt_skel))); 1014 fdt = g_malloc0(size); 1015 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1016 g_free(fdt_skel); 1017 1018 /* Fixup cpu nodes */ 1019 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1020 1021 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1022 return -1; 1023 } 1024 1025 /* Pack resulting tree */ 1026 _FDT((fdt_pack(fdt))); 1027 1028 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1029 trace_spapr_cas_failed(size); 1030 return -1; 1031 } 1032 1033 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1034 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1035 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1036 g_free(fdt); 1037 1038 return 0; 1039 } 1040 1041 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1042 { 1043 MachineState *ms = MACHINE(spapr); 1044 int rtas; 1045 GString *hypertas = g_string_sized_new(256); 1046 GString *qemu_hypertas = g_string_sized_new(256); 1047 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1048 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1049 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1050 uint32_t lrdr_capacity[] = { 1051 cpu_to_be32(max_device_addr >> 32), 1052 cpu_to_be32(max_device_addr & 0xffffffff), 1053 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1054 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 1055 }; 1056 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1057 uint32_t maxdomains[] = { 1058 cpu_to_be32(4), 1059 maxdomain, 1060 maxdomain, 1061 maxdomain, 1062 cpu_to_be32(spapr->gpu_numa_id), 1063 }; 1064 1065 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1066 1067 /* hypertas */ 1068 add_str(hypertas, "hcall-pft"); 1069 add_str(hypertas, "hcall-term"); 1070 add_str(hypertas, "hcall-dabr"); 1071 add_str(hypertas, "hcall-interrupt"); 1072 add_str(hypertas, "hcall-tce"); 1073 add_str(hypertas, "hcall-vio"); 1074 add_str(hypertas, "hcall-splpar"); 1075 add_str(hypertas, "hcall-join"); 1076 add_str(hypertas, "hcall-bulk"); 1077 add_str(hypertas, "hcall-set-mode"); 1078 add_str(hypertas, "hcall-sprg0"); 1079 add_str(hypertas, "hcall-copy"); 1080 add_str(hypertas, "hcall-debug"); 1081 add_str(hypertas, "hcall-vphn"); 1082 add_str(qemu_hypertas, "hcall-memop1"); 1083 1084 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1085 add_str(hypertas, "hcall-multi-tce"); 1086 } 1087 1088 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1089 add_str(hypertas, "hcall-hpt-resize"); 1090 } 1091 1092 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1093 hypertas->str, hypertas->len)); 1094 g_string_free(hypertas, TRUE); 1095 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1096 qemu_hypertas->str, qemu_hypertas->len)); 1097 g_string_free(qemu_hypertas, TRUE); 1098 1099 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1100 refpoints, sizeof(refpoints))); 1101 1102 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1103 maxdomains, sizeof(maxdomains))); 1104 1105 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1106 RTAS_ERROR_LOG_MAX)); 1107 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1108 RTAS_EVENT_SCAN_RATE)); 1109 1110 g_assert(msi_nonbroken); 1111 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1112 1113 /* 1114 * According to PAPR, rtas ibm,os-term does not guarantee a return 1115 * back to the guest cpu. 1116 * 1117 * While an additional ibm,extended-os-term property indicates 1118 * that rtas call return will always occur. Set this property. 1119 */ 1120 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1121 1122 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1123 lrdr_capacity, sizeof(lrdr_capacity))); 1124 1125 spapr_dt_rtas_tokens(fdt, rtas); 1126 } 1127 1128 /* 1129 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1130 * and the XIVE features that the guest may request and thus the valid 1131 * values for bytes 23..26 of option vector 5: 1132 */ 1133 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1134 int chosen) 1135 { 1136 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1137 1138 char val[2 * 4] = { 1139 23, spapr->irq->ov5, /* Xive mode. */ 1140 24, 0x00, /* Hash/Radix, filled in below. */ 1141 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1142 26, 0x40, /* Radix options: GTSE == yes. */ 1143 }; 1144 1145 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1146 first_ppc_cpu->compat_pvr)) { 1147 /* 1148 * If we're in a pre POWER9 compat mode then the guest should 1149 * do hash and use the legacy interrupt mode 1150 */ 1151 val[1] = 0x00; /* XICS */ 1152 val[3] = 0x00; /* Hash */ 1153 } else if (kvm_enabled()) { 1154 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1155 val[3] = 0x80; /* OV5_MMU_BOTH */ 1156 } else if (kvmppc_has_cap_mmu_radix()) { 1157 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1158 } else { 1159 val[3] = 0x00; /* Hash */ 1160 } 1161 } else { 1162 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1163 val[3] = 0xC0; 1164 } 1165 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1166 val, sizeof(val))); 1167 } 1168 1169 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1170 { 1171 MachineState *machine = MACHINE(spapr); 1172 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1173 int chosen; 1174 const char *boot_device = machine->boot_order; 1175 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1176 size_t cb = 0; 1177 char *bootlist = get_boot_devices_list(&cb); 1178 1179 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1180 1181 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1182 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1183 spapr->initrd_base)); 1184 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1185 spapr->initrd_base + spapr->initrd_size)); 1186 1187 if (spapr->kernel_size) { 1188 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1189 cpu_to_be64(spapr->kernel_size) }; 1190 1191 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1192 &kprop, sizeof(kprop))); 1193 if (spapr->kernel_le) { 1194 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1195 } 1196 } 1197 if (boot_menu) { 1198 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1199 } 1200 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1201 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1202 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1203 1204 if (cb && bootlist) { 1205 int i; 1206 1207 for (i = 0; i < cb; i++) { 1208 if (bootlist[i] == '\n') { 1209 bootlist[i] = ' '; 1210 } 1211 } 1212 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1213 } 1214 1215 if (boot_device && strlen(boot_device)) { 1216 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1217 } 1218 1219 if (!spapr->has_graphics && stdout_path) { 1220 /* 1221 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1222 * kernel. New platforms should only use the "stdout-path" property. Set 1223 * the new property and continue using older property to remain 1224 * compatible with the existing firmware. 1225 */ 1226 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1227 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1228 } 1229 1230 /* We can deal with BAR reallocation just fine, advertise it to the guest */ 1231 if (smc->linux_pci_probe) { 1232 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1233 } 1234 1235 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1236 1237 g_free(stdout_path); 1238 g_free(bootlist); 1239 } 1240 1241 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1242 { 1243 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1244 * KVM to work under pHyp with some guest co-operation */ 1245 int hypervisor; 1246 uint8_t hypercall[16]; 1247 1248 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1249 /* indicate KVM hypercall interface */ 1250 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1251 if (kvmppc_has_cap_fixup_hcalls()) { 1252 /* 1253 * Older KVM versions with older guest kernels were broken 1254 * with the magic page, don't allow the guest to map it. 1255 */ 1256 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1257 sizeof(hypercall))) { 1258 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1259 hypercall, sizeof(hypercall))); 1260 } 1261 } 1262 } 1263 1264 static void *spapr_build_fdt(SpaprMachineState *spapr) 1265 { 1266 MachineState *machine = MACHINE(spapr); 1267 MachineClass *mc = MACHINE_GET_CLASS(machine); 1268 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1269 int ret; 1270 void *fdt; 1271 SpaprPhbState *phb; 1272 char *buf; 1273 1274 fdt = g_malloc0(FDT_MAX_SIZE); 1275 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1276 1277 /* Root node */ 1278 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1279 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1280 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1281 1282 /* Guest UUID & Name*/ 1283 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1284 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1285 if (qemu_uuid_set) { 1286 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1287 } 1288 g_free(buf); 1289 1290 if (qemu_get_vm_name()) { 1291 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1292 qemu_get_vm_name())); 1293 } 1294 1295 /* Host Model & Serial Number */ 1296 if (spapr->host_model) { 1297 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1298 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1299 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1300 g_free(buf); 1301 } 1302 1303 if (spapr->host_serial) { 1304 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1305 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1306 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1307 g_free(buf); 1308 } 1309 1310 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1311 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1312 1313 /* /interrupt controller */ 1314 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1315 PHANDLE_INTC); 1316 1317 ret = spapr_populate_memory(spapr, fdt); 1318 if (ret < 0) { 1319 error_report("couldn't setup memory nodes in fdt"); 1320 exit(1); 1321 } 1322 1323 /* /vdevice */ 1324 spapr_dt_vdevice(spapr->vio_bus, fdt); 1325 1326 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1327 ret = spapr_rng_populate_dt(fdt); 1328 if (ret < 0) { 1329 error_report("could not set up rng device in the fdt"); 1330 exit(1); 1331 } 1332 } 1333 1334 QLIST_FOREACH(phb, &spapr->phbs, list) { 1335 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1336 if (ret < 0) { 1337 error_report("couldn't setup PCI devices in fdt"); 1338 exit(1); 1339 } 1340 } 1341 1342 /* cpus */ 1343 spapr_populate_cpus_dt_node(fdt, spapr); 1344 1345 if (smc->dr_lmb_enabled) { 1346 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1347 } 1348 1349 if (mc->has_hotpluggable_cpus) { 1350 int offset = fdt_path_offset(fdt, "/cpus"); 1351 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1352 if (ret < 0) { 1353 error_report("Couldn't set up CPU DR device tree properties"); 1354 exit(1); 1355 } 1356 } 1357 1358 /* /event-sources */ 1359 spapr_dt_events(spapr, fdt); 1360 1361 /* /rtas */ 1362 spapr_dt_rtas(spapr, fdt); 1363 1364 /* /chosen */ 1365 spapr_dt_chosen(spapr, fdt); 1366 1367 /* /hypervisor */ 1368 if (kvm_enabled()) { 1369 spapr_dt_hypervisor(spapr, fdt); 1370 } 1371 1372 /* Build memory reserve map */ 1373 if (spapr->kernel_size) { 1374 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1375 } 1376 if (spapr->initrd_size) { 1377 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1378 } 1379 1380 /* ibm,client-architecture-support updates */ 1381 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1382 if (ret < 0) { 1383 error_report("couldn't setup CAS properties fdt"); 1384 exit(1); 1385 } 1386 1387 if (smc->dr_phb_enabled) { 1388 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1389 if (ret < 0) { 1390 error_report("Couldn't set up PHB DR device tree properties"); 1391 exit(1); 1392 } 1393 } 1394 1395 return fdt; 1396 } 1397 1398 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1399 { 1400 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1401 } 1402 1403 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1404 PowerPCCPU *cpu) 1405 { 1406 CPUPPCState *env = &cpu->env; 1407 1408 /* The TCG path should also be holding the BQL at this point */ 1409 g_assert(qemu_mutex_iothread_locked()); 1410 1411 if (msr_pr) { 1412 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1413 env->gpr[3] = H_PRIVILEGE; 1414 } else { 1415 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1416 } 1417 } 1418 1419 struct LPCRSyncState { 1420 target_ulong value; 1421 target_ulong mask; 1422 }; 1423 1424 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1425 { 1426 struct LPCRSyncState *s = arg.host_ptr; 1427 PowerPCCPU *cpu = POWERPC_CPU(cs); 1428 CPUPPCState *env = &cpu->env; 1429 target_ulong lpcr; 1430 1431 cpu_synchronize_state(cs); 1432 lpcr = env->spr[SPR_LPCR]; 1433 lpcr &= ~s->mask; 1434 lpcr |= s->value; 1435 ppc_store_lpcr(cpu, lpcr); 1436 } 1437 1438 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1439 { 1440 CPUState *cs; 1441 struct LPCRSyncState s = { 1442 .value = value, 1443 .mask = mask 1444 }; 1445 CPU_FOREACH(cs) { 1446 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1447 } 1448 } 1449 1450 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1451 { 1452 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1453 1454 /* Copy PATE1:GR into PATE0:HR */ 1455 entry->dw0 = spapr->patb_entry & PATE0_HR; 1456 entry->dw1 = spapr->patb_entry; 1457 } 1458 1459 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1460 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1461 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1462 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1463 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1464 1465 /* 1466 * Get the fd to access the kernel htab, re-opening it if necessary 1467 */ 1468 static int get_htab_fd(SpaprMachineState *spapr) 1469 { 1470 Error *local_err = NULL; 1471 1472 if (spapr->htab_fd >= 0) { 1473 return spapr->htab_fd; 1474 } 1475 1476 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1477 if (spapr->htab_fd < 0) { 1478 error_report_err(local_err); 1479 } 1480 1481 return spapr->htab_fd; 1482 } 1483 1484 void close_htab_fd(SpaprMachineState *spapr) 1485 { 1486 if (spapr->htab_fd >= 0) { 1487 close(spapr->htab_fd); 1488 } 1489 spapr->htab_fd = -1; 1490 } 1491 1492 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1493 { 1494 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1495 1496 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1497 } 1498 1499 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1500 { 1501 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1502 1503 assert(kvm_enabled()); 1504 1505 if (!spapr->htab) { 1506 return 0; 1507 } 1508 1509 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1510 } 1511 1512 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1513 hwaddr ptex, int n) 1514 { 1515 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1516 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1517 1518 if (!spapr->htab) { 1519 /* 1520 * HTAB is controlled by KVM. Fetch into temporary buffer 1521 */ 1522 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1523 kvmppc_read_hptes(hptes, ptex, n); 1524 return hptes; 1525 } 1526 1527 /* 1528 * HTAB is controlled by QEMU. Just point to the internally 1529 * accessible PTEG. 1530 */ 1531 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1532 } 1533 1534 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1535 const ppc_hash_pte64_t *hptes, 1536 hwaddr ptex, int n) 1537 { 1538 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1539 1540 if (!spapr->htab) { 1541 g_free((void *)hptes); 1542 } 1543 1544 /* Nothing to do for qemu managed HPT */ 1545 } 1546 1547 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1548 uint64_t pte0, uint64_t pte1) 1549 { 1550 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1551 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1552 1553 if (!spapr->htab) { 1554 kvmppc_write_hpte(ptex, pte0, pte1); 1555 } else { 1556 if (pte0 & HPTE64_V_VALID) { 1557 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1558 /* 1559 * When setting valid, we write PTE1 first. This ensures 1560 * proper synchronization with the reading code in 1561 * ppc_hash64_pteg_search() 1562 */ 1563 smp_wmb(); 1564 stq_p(spapr->htab + offset, pte0); 1565 } else { 1566 stq_p(spapr->htab + offset, pte0); 1567 /* 1568 * When clearing it we set PTE0 first. This ensures proper 1569 * synchronization with the reading code in 1570 * ppc_hash64_pteg_search() 1571 */ 1572 smp_wmb(); 1573 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1574 } 1575 } 1576 } 1577 1578 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1579 uint64_t pte1) 1580 { 1581 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1582 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1583 1584 if (!spapr->htab) { 1585 /* There should always be a hash table when this is called */ 1586 error_report("spapr_hpte_set_c called with no hash table !"); 1587 return; 1588 } 1589 1590 /* The HW performs a non-atomic byte update */ 1591 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1592 } 1593 1594 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1595 uint64_t pte1) 1596 { 1597 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1598 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1599 1600 if (!spapr->htab) { 1601 /* There should always be a hash table when this is called */ 1602 error_report("spapr_hpte_set_r called with no hash table !"); 1603 return; 1604 } 1605 1606 /* The HW performs a non-atomic byte update */ 1607 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1608 } 1609 1610 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1611 { 1612 int shift; 1613 1614 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1615 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1616 * that's much more than is needed for Linux guests */ 1617 shift = ctz64(pow2ceil(ramsize)) - 7; 1618 shift = MAX(shift, 18); /* Minimum architected size */ 1619 shift = MIN(shift, 46); /* Maximum architected size */ 1620 return shift; 1621 } 1622 1623 void spapr_free_hpt(SpaprMachineState *spapr) 1624 { 1625 g_free(spapr->htab); 1626 spapr->htab = NULL; 1627 spapr->htab_shift = 0; 1628 close_htab_fd(spapr); 1629 } 1630 1631 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1632 Error **errp) 1633 { 1634 long rc; 1635 1636 /* Clean up any HPT info from a previous boot */ 1637 spapr_free_hpt(spapr); 1638 1639 rc = kvmppc_reset_htab(shift); 1640 if (rc < 0) { 1641 /* kernel-side HPT needed, but couldn't allocate one */ 1642 error_setg_errno(errp, errno, 1643 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1644 shift); 1645 /* This is almost certainly fatal, but if the caller really 1646 * wants to carry on with shift == 0, it's welcome to try */ 1647 } else if (rc > 0) { 1648 /* kernel-side HPT allocated */ 1649 if (rc != shift) { 1650 error_setg(errp, 1651 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1652 shift, rc); 1653 } 1654 1655 spapr->htab_shift = shift; 1656 spapr->htab = NULL; 1657 } else { 1658 /* kernel-side HPT not needed, allocate in userspace instead */ 1659 size_t size = 1ULL << shift; 1660 int i; 1661 1662 spapr->htab = qemu_memalign(size, size); 1663 if (!spapr->htab) { 1664 error_setg_errno(errp, errno, 1665 "Could not allocate HPT of order %d", shift); 1666 return; 1667 } 1668 1669 memset(spapr->htab, 0, size); 1670 spapr->htab_shift = shift; 1671 1672 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1673 DIRTY_HPTE(HPTE(spapr->htab, i)); 1674 } 1675 } 1676 /* We're setting up a hash table, so that means we're not radix */ 1677 spapr->patb_entry = 0; 1678 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1679 } 1680 1681 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1682 { 1683 int hpt_shift; 1684 1685 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1686 || (spapr->cas_reboot 1687 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1688 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1689 } else { 1690 uint64_t current_ram_size; 1691 1692 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1693 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1694 } 1695 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1696 1697 if (spapr->vrma_adjust) { 1698 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1699 spapr->htab_shift); 1700 } 1701 } 1702 1703 static int spapr_reset_drcs(Object *child, void *opaque) 1704 { 1705 SpaprDrc *drc = 1706 (SpaprDrc *) object_dynamic_cast(child, 1707 TYPE_SPAPR_DR_CONNECTOR); 1708 1709 if (drc) { 1710 spapr_drc_reset(drc); 1711 } 1712 1713 return 0; 1714 } 1715 1716 static void spapr_machine_reset(MachineState *machine) 1717 { 1718 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1719 PowerPCCPU *first_ppc_cpu; 1720 uint32_t rtas_limit; 1721 hwaddr rtas_addr, fdt_addr; 1722 void *fdt; 1723 int rc; 1724 1725 spapr_caps_apply(spapr); 1726 1727 first_ppc_cpu = POWERPC_CPU(first_cpu); 1728 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1729 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1730 spapr->max_compat_pvr)) { 1731 /* 1732 * If using KVM with radix mode available, VCPUs can be started 1733 * without a HPT because KVM will start them in radix mode. 1734 * Set the GR bit in PATE so that we know there is no HPT. 1735 */ 1736 spapr->patb_entry = PATE1_GR; 1737 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1738 } else { 1739 spapr_setup_hpt_and_vrma(spapr); 1740 } 1741 1742 qemu_devices_reset(); 1743 1744 /* 1745 * If this reset wasn't generated by CAS, we should reset our 1746 * negotiated options and start from scratch 1747 */ 1748 if (!spapr->cas_reboot) { 1749 spapr_ovec_cleanup(spapr->ov5_cas); 1750 spapr->ov5_cas = spapr_ovec_new(); 1751 1752 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1753 } 1754 1755 /* 1756 * This is fixing some of the default configuration of the XIVE 1757 * devices. To be called after the reset of the machine devices. 1758 */ 1759 spapr_irq_reset(spapr, &error_fatal); 1760 1761 /* 1762 * There is no CAS under qtest. Simulate one to please the code that 1763 * depends on spapr->ov5_cas. This is especially needed to test device 1764 * unplug, so we do that before resetting the DRCs. 1765 */ 1766 if (qtest_enabled()) { 1767 spapr_ovec_cleanup(spapr->ov5_cas); 1768 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1769 } 1770 1771 /* DRC reset may cause a device to be unplugged. This will cause troubles 1772 * if this device is used by another device (eg, a running vhost backend 1773 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1774 * situations, we reset DRCs after all devices have been reset. 1775 */ 1776 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1777 1778 spapr_clear_pending_events(spapr); 1779 1780 /* 1781 * We place the device tree and RTAS just below either the top of the RMA, 1782 * or just below 2GB, whichever is lower, so that it can be 1783 * processed with 32-bit real mode code if necessary 1784 */ 1785 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1786 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1787 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1788 1789 fdt = spapr_build_fdt(spapr); 1790 1791 spapr_load_rtas(spapr, fdt, rtas_addr); 1792 1793 rc = fdt_pack(fdt); 1794 1795 /* Should only fail if we've built a corrupted tree */ 1796 assert(rc == 0); 1797 1798 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1799 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1800 fdt_totalsize(fdt), FDT_MAX_SIZE); 1801 exit(1); 1802 } 1803 1804 /* Load the fdt */ 1805 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1806 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1807 g_free(spapr->fdt_blob); 1808 spapr->fdt_size = fdt_totalsize(fdt); 1809 spapr->fdt_initial_size = spapr->fdt_size; 1810 spapr->fdt_blob = fdt; 1811 1812 /* Set up the entry state */ 1813 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1814 first_ppc_cpu->env.gpr[5] = 0; 1815 1816 spapr->cas_reboot = false; 1817 } 1818 1819 static void spapr_create_nvram(SpaprMachineState *spapr) 1820 { 1821 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1822 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1823 1824 if (dinfo) { 1825 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1826 &error_fatal); 1827 } 1828 1829 qdev_init_nofail(dev); 1830 1831 spapr->nvram = (struct SpaprNvram *)dev; 1832 } 1833 1834 static void spapr_rtc_create(SpaprMachineState *spapr) 1835 { 1836 object_initialize_child(OBJECT(spapr), "rtc", 1837 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1838 &error_fatal, NULL); 1839 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1840 &error_fatal); 1841 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1842 "date", &error_fatal); 1843 } 1844 1845 /* Returns whether we want to use VGA or not */ 1846 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1847 { 1848 switch (vga_interface_type) { 1849 case VGA_NONE: 1850 return false; 1851 case VGA_DEVICE: 1852 return true; 1853 case VGA_STD: 1854 case VGA_VIRTIO: 1855 case VGA_CIRRUS: 1856 return pci_vga_init(pci_bus) != NULL; 1857 default: 1858 error_setg(errp, 1859 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1860 return false; 1861 } 1862 } 1863 1864 static int spapr_pre_load(void *opaque) 1865 { 1866 int rc; 1867 1868 rc = spapr_caps_pre_load(opaque); 1869 if (rc) { 1870 return rc; 1871 } 1872 1873 return 0; 1874 } 1875 1876 static int spapr_post_load(void *opaque, int version_id) 1877 { 1878 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1879 int err = 0; 1880 1881 err = spapr_caps_post_migration(spapr); 1882 if (err) { 1883 return err; 1884 } 1885 1886 /* 1887 * In earlier versions, there was no separate qdev for the PAPR 1888 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1889 * So when migrating from those versions, poke the incoming offset 1890 * value into the RTC device 1891 */ 1892 if (version_id < 3) { 1893 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1894 if (err) { 1895 return err; 1896 } 1897 } 1898 1899 if (kvm_enabled() && spapr->patb_entry) { 1900 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1901 bool radix = !!(spapr->patb_entry & PATE1_GR); 1902 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1903 1904 /* 1905 * Update LPCR:HR and UPRT as they may not be set properly in 1906 * the stream 1907 */ 1908 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1909 LPCR_HR | LPCR_UPRT); 1910 1911 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1912 if (err) { 1913 error_report("Process table config unsupported by the host"); 1914 return -EINVAL; 1915 } 1916 } 1917 1918 err = spapr_irq_post_load(spapr, version_id); 1919 if (err) { 1920 return err; 1921 } 1922 1923 return err; 1924 } 1925 1926 static int spapr_pre_save(void *opaque) 1927 { 1928 int rc; 1929 1930 rc = spapr_caps_pre_save(opaque); 1931 if (rc) { 1932 return rc; 1933 } 1934 1935 return 0; 1936 } 1937 1938 static bool version_before_3(void *opaque, int version_id) 1939 { 1940 return version_id < 3; 1941 } 1942 1943 static bool spapr_pending_events_needed(void *opaque) 1944 { 1945 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1946 return !QTAILQ_EMPTY(&spapr->pending_events); 1947 } 1948 1949 static const VMStateDescription vmstate_spapr_event_entry = { 1950 .name = "spapr_event_log_entry", 1951 .version_id = 1, 1952 .minimum_version_id = 1, 1953 .fields = (VMStateField[]) { 1954 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1955 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1956 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1957 NULL, extended_length), 1958 VMSTATE_END_OF_LIST() 1959 }, 1960 }; 1961 1962 static const VMStateDescription vmstate_spapr_pending_events = { 1963 .name = "spapr_pending_events", 1964 .version_id = 1, 1965 .minimum_version_id = 1, 1966 .needed = spapr_pending_events_needed, 1967 .fields = (VMStateField[]) { 1968 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1969 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1970 VMSTATE_END_OF_LIST() 1971 }, 1972 }; 1973 1974 static bool spapr_ov5_cas_needed(void *opaque) 1975 { 1976 SpaprMachineState *spapr = opaque; 1977 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1978 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1979 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1980 bool cas_needed; 1981 1982 /* Prior to the introduction of SpaprOptionVector, we had two option 1983 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1984 * Both of these options encode machine topology into the device-tree 1985 * in such a way that the now-booted OS should still be able to interact 1986 * appropriately with QEMU regardless of what options were actually 1987 * negotiatied on the source side. 1988 * 1989 * As such, we can avoid migrating the CAS-negotiated options if these 1990 * are the only options available on the current machine/platform. 1991 * Since these are the only options available for pseries-2.7 and 1992 * earlier, this allows us to maintain old->new/new->old migration 1993 * compatibility. 1994 * 1995 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1996 * via default pseries-2.8 machines and explicit command-line parameters. 1997 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1998 * of the actual CAS-negotiated values to continue working properly. For 1999 * example, availability of memory unplug depends on knowing whether 2000 * OV5_HP_EVT was negotiated via CAS. 2001 * 2002 * Thus, for any cases where the set of available CAS-negotiatable 2003 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2004 * include the CAS-negotiated options in the migration stream, unless 2005 * if they affect boot time behaviour only. 2006 */ 2007 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2008 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2009 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2010 2011 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2012 * the mask itself since in the future it's possible "legacy" bits may be 2013 * removed via machine options, which could generate a false positive 2014 * that breaks migration. 2015 */ 2016 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2017 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2018 2019 spapr_ovec_cleanup(ov5_mask); 2020 spapr_ovec_cleanup(ov5_legacy); 2021 spapr_ovec_cleanup(ov5_removed); 2022 2023 return cas_needed; 2024 } 2025 2026 static const VMStateDescription vmstate_spapr_ov5_cas = { 2027 .name = "spapr_option_vector_ov5_cas", 2028 .version_id = 1, 2029 .minimum_version_id = 1, 2030 .needed = spapr_ov5_cas_needed, 2031 .fields = (VMStateField[]) { 2032 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2033 vmstate_spapr_ovec, SpaprOptionVector), 2034 VMSTATE_END_OF_LIST() 2035 }, 2036 }; 2037 2038 static bool spapr_patb_entry_needed(void *opaque) 2039 { 2040 SpaprMachineState *spapr = opaque; 2041 2042 return !!spapr->patb_entry; 2043 } 2044 2045 static const VMStateDescription vmstate_spapr_patb_entry = { 2046 .name = "spapr_patb_entry", 2047 .version_id = 1, 2048 .minimum_version_id = 1, 2049 .needed = spapr_patb_entry_needed, 2050 .fields = (VMStateField[]) { 2051 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2052 VMSTATE_END_OF_LIST() 2053 }, 2054 }; 2055 2056 static bool spapr_irq_map_needed(void *opaque) 2057 { 2058 SpaprMachineState *spapr = opaque; 2059 2060 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2061 } 2062 2063 static const VMStateDescription vmstate_spapr_irq_map = { 2064 .name = "spapr_irq_map", 2065 .version_id = 1, 2066 .minimum_version_id = 1, 2067 .needed = spapr_irq_map_needed, 2068 .fields = (VMStateField[]) { 2069 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2070 VMSTATE_END_OF_LIST() 2071 }, 2072 }; 2073 2074 static bool spapr_dtb_needed(void *opaque) 2075 { 2076 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2077 2078 return smc->update_dt_enabled; 2079 } 2080 2081 static int spapr_dtb_pre_load(void *opaque) 2082 { 2083 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2084 2085 g_free(spapr->fdt_blob); 2086 spapr->fdt_blob = NULL; 2087 spapr->fdt_size = 0; 2088 2089 return 0; 2090 } 2091 2092 static const VMStateDescription vmstate_spapr_dtb = { 2093 .name = "spapr_dtb", 2094 .version_id = 1, 2095 .minimum_version_id = 1, 2096 .needed = spapr_dtb_needed, 2097 .pre_load = spapr_dtb_pre_load, 2098 .fields = (VMStateField[]) { 2099 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2100 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2101 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2102 fdt_size), 2103 VMSTATE_END_OF_LIST() 2104 }, 2105 }; 2106 2107 static const VMStateDescription vmstate_spapr = { 2108 .name = "spapr", 2109 .version_id = 3, 2110 .minimum_version_id = 1, 2111 .pre_load = spapr_pre_load, 2112 .post_load = spapr_post_load, 2113 .pre_save = spapr_pre_save, 2114 .fields = (VMStateField[]) { 2115 /* used to be @next_irq */ 2116 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2117 2118 /* RTC offset */ 2119 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2120 2121 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2122 VMSTATE_END_OF_LIST() 2123 }, 2124 .subsections = (const VMStateDescription*[]) { 2125 &vmstate_spapr_ov5_cas, 2126 &vmstate_spapr_patb_entry, 2127 &vmstate_spapr_pending_events, 2128 &vmstate_spapr_cap_htm, 2129 &vmstate_spapr_cap_vsx, 2130 &vmstate_spapr_cap_dfp, 2131 &vmstate_spapr_cap_cfpc, 2132 &vmstate_spapr_cap_sbbc, 2133 &vmstate_spapr_cap_ibs, 2134 &vmstate_spapr_cap_hpt_maxpagesize, 2135 &vmstate_spapr_irq_map, 2136 &vmstate_spapr_cap_nested_kvm_hv, 2137 &vmstate_spapr_dtb, 2138 &vmstate_spapr_cap_large_decr, 2139 &vmstate_spapr_cap_ccf_assist, 2140 NULL 2141 } 2142 }; 2143 2144 static int htab_save_setup(QEMUFile *f, void *opaque) 2145 { 2146 SpaprMachineState *spapr = opaque; 2147 2148 /* "Iteration" header */ 2149 if (!spapr->htab_shift) { 2150 qemu_put_be32(f, -1); 2151 } else { 2152 qemu_put_be32(f, spapr->htab_shift); 2153 } 2154 2155 if (spapr->htab) { 2156 spapr->htab_save_index = 0; 2157 spapr->htab_first_pass = true; 2158 } else { 2159 if (spapr->htab_shift) { 2160 assert(kvm_enabled()); 2161 } 2162 } 2163 2164 2165 return 0; 2166 } 2167 2168 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2169 int chunkstart, int n_valid, int n_invalid) 2170 { 2171 qemu_put_be32(f, chunkstart); 2172 qemu_put_be16(f, n_valid); 2173 qemu_put_be16(f, n_invalid); 2174 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2175 HASH_PTE_SIZE_64 * n_valid); 2176 } 2177 2178 static void htab_save_end_marker(QEMUFile *f) 2179 { 2180 qemu_put_be32(f, 0); 2181 qemu_put_be16(f, 0); 2182 qemu_put_be16(f, 0); 2183 } 2184 2185 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2186 int64_t max_ns) 2187 { 2188 bool has_timeout = max_ns != -1; 2189 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2190 int index = spapr->htab_save_index; 2191 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2192 2193 assert(spapr->htab_first_pass); 2194 2195 do { 2196 int chunkstart; 2197 2198 /* Consume invalid HPTEs */ 2199 while ((index < htabslots) 2200 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2201 CLEAN_HPTE(HPTE(spapr->htab, index)); 2202 index++; 2203 } 2204 2205 /* Consume valid HPTEs */ 2206 chunkstart = index; 2207 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2208 && HPTE_VALID(HPTE(spapr->htab, index))) { 2209 CLEAN_HPTE(HPTE(spapr->htab, index)); 2210 index++; 2211 } 2212 2213 if (index > chunkstart) { 2214 int n_valid = index - chunkstart; 2215 2216 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2217 2218 if (has_timeout && 2219 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2220 break; 2221 } 2222 } 2223 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2224 2225 if (index >= htabslots) { 2226 assert(index == htabslots); 2227 index = 0; 2228 spapr->htab_first_pass = false; 2229 } 2230 spapr->htab_save_index = index; 2231 } 2232 2233 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2234 int64_t max_ns) 2235 { 2236 bool final = max_ns < 0; 2237 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2238 int examined = 0, sent = 0; 2239 int index = spapr->htab_save_index; 2240 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2241 2242 assert(!spapr->htab_first_pass); 2243 2244 do { 2245 int chunkstart, invalidstart; 2246 2247 /* Consume non-dirty HPTEs */ 2248 while ((index < htabslots) 2249 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2250 index++; 2251 examined++; 2252 } 2253 2254 chunkstart = index; 2255 /* Consume valid dirty HPTEs */ 2256 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2257 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2258 && HPTE_VALID(HPTE(spapr->htab, index))) { 2259 CLEAN_HPTE(HPTE(spapr->htab, index)); 2260 index++; 2261 examined++; 2262 } 2263 2264 invalidstart = index; 2265 /* Consume invalid dirty HPTEs */ 2266 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2267 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2268 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2269 CLEAN_HPTE(HPTE(spapr->htab, index)); 2270 index++; 2271 examined++; 2272 } 2273 2274 if (index > chunkstart) { 2275 int n_valid = invalidstart - chunkstart; 2276 int n_invalid = index - invalidstart; 2277 2278 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2279 sent += index - chunkstart; 2280 2281 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2282 break; 2283 } 2284 } 2285 2286 if (examined >= htabslots) { 2287 break; 2288 } 2289 2290 if (index >= htabslots) { 2291 assert(index == htabslots); 2292 index = 0; 2293 } 2294 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2295 2296 if (index >= htabslots) { 2297 assert(index == htabslots); 2298 index = 0; 2299 } 2300 2301 spapr->htab_save_index = index; 2302 2303 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2304 } 2305 2306 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2307 #define MAX_KVM_BUF_SIZE 2048 2308 2309 static int htab_save_iterate(QEMUFile *f, void *opaque) 2310 { 2311 SpaprMachineState *spapr = opaque; 2312 int fd; 2313 int rc = 0; 2314 2315 /* Iteration header */ 2316 if (!spapr->htab_shift) { 2317 qemu_put_be32(f, -1); 2318 return 1; 2319 } else { 2320 qemu_put_be32(f, 0); 2321 } 2322 2323 if (!spapr->htab) { 2324 assert(kvm_enabled()); 2325 2326 fd = get_htab_fd(spapr); 2327 if (fd < 0) { 2328 return fd; 2329 } 2330 2331 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2332 if (rc < 0) { 2333 return rc; 2334 } 2335 } else if (spapr->htab_first_pass) { 2336 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2337 } else { 2338 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2339 } 2340 2341 htab_save_end_marker(f); 2342 2343 return rc; 2344 } 2345 2346 static int htab_save_complete(QEMUFile *f, void *opaque) 2347 { 2348 SpaprMachineState *spapr = opaque; 2349 int fd; 2350 2351 /* Iteration header */ 2352 if (!spapr->htab_shift) { 2353 qemu_put_be32(f, -1); 2354 return 0; 2355 } else { 2356 qemu_put_be32(f, 0); 2357 } 2358 2359 if (!spapr->htab) { 2360 int rc; 2361 2362 assert(kvm_enabled()); 2363 2364 fd = get_htab_fd(spapr); 2365 if (fd < 0) { 2366 return fd; 2367 } 2368 2369 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2370 if (rc < 0) { 2371 return rc; 2372 } 2373 } else { 2374 if (spapr->htab_first_pass) { 2375 htab_save_first_pass(f, spapr, -1); 2376 } 2377 htab_save_later_pass(f, spapr, -1); 2378 } 2379 2380 /* End marker */ 2381 htab_save_end_marker(f); 2382 2383 return 0; 2384 } 2385 2386 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2387 { 2388 SpaprMachineState *spapr = opaque; 2389 uint32_t section_hdr; 2390 int fd = -1; 2391 Error *local_err = NULL; 2392 2393 if (version_id < 1 || version_id > 1) { 2394 error_report("htab_load() bad version"); 2395 return -EINVAL; 2396 } 2397 2398 section_hdr = qemu_get_be32(f); 2399 2400 if (section_hdr == -1) { 2401 spapr_free_hpt(spapr); 2402 return 0; 2403 } 2404 2405 if (section_hdr) { 2406 /* First section gives the htab size */ 2407 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2408 if (local_err) { 2409 error_report_err(local_err); 2410 return -EINVAL; 2411 } 2412 return 0; 2413 } 2414 2415 if (!spapr->htab) { 2416 assert(kvm_enabled()); 2417 2418 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2419 if (fd < 0) { 2420 error_report_err(local_err); 2421 return fd; 2422 } 2423 } 2424 2425 while (true) { 2426 uint32_t index; 2427 uint16_t n_valid, n_invalid; 2428 2429 index = qemu_get_be32(f); 2430 n_valid = qemu_get_be16(f); 2431 n_invalid = qemu_get_be16(f); 2432 2433 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2434 /* End of Stream */ 2435 break; 2436 } 2437 2438 if ((index + n_valid + n_invalid) > 2439 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2440 /* Bad index in stream */ 2441 error_report( 2442 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2443 index, n_valid, n_invalid, spapr->htab_shift); 2444 return -EINVAL; 2445 } 2446 2447 if (spapr->htab) { 2448 if (n_valid) { 2449 qemu_get_buffer(f, HPTE(spapr->htab, index), 2450 HASH_PTE_SIZE_64 * n_valid); 2451 } 2452 if (n_invalid) { 2453 memset(HPTE(spapr->htab, index + n_valid), 0, 2454 HASH_PTE_SIZE_64 * n_invalid); 2455 } 2456 } else { 2457 int rc; 2458 2459 assert(fd >= 0); 2460 2461 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2462 if (rc < 0) { 2463 return rc; 2464 } 2465 } 2466 } 2467 2468 if (!spapr->htab) { 2469 assert(fd >= 0); 2470 close(fd); 2471 } 2472 2473 return 0; 2474 } 2475 2476 static void htab_save_cleanup(void *opaque) 2477 { 2478 SpaprMachineState *spapr = opaque; 2479 2480 close_htab_fd(spapr); 2481 } 2482 2483 static SaveVMHandlers savevm_htab_handlers = { 2484 .save_setup = htab_save_setup, 2485 .save_live_iterate = htab_save_iterate, 2486 .save_live_complete_precopy = htab_save_complete, 2487 .save_cleanup = htab_save_cleanup, 2488 .load_state = htab_load, 2489 }; 2490 2491 static void spapr_boot_set(void *opaque, const char *boot_device, 2492 Error **errp) 2493 { 2494 MachineState *machine = MACHINE(opaque); 2495 machine->boot_order = g_strdup(boot_device); 2496 } 2497 2498 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2499 { 2500 MachineState *machine = MACHINE(spapr); 2501 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2502 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2503 int i; 2504 2505 for (i = 0; i < nr_lmbs; i++) { 2506 uint64_t addr; 2507 2508 addr = i * lmb_size + machine->device_memory->base; 2509 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2510 addr / lmb_size); 2511 } 2512 } 2513 2514 /* 2515 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2516 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2517 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2518 */ 2519 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2520 { 2521 int i; 2522 2523 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2524 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2525 " is not aligned to %" PRIu64 " MiB", 2526 machine->ram_size, 2527 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2528 return; 2529 } 2530 2531 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2532 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2533 " is not aligned to %" PRIu64 " MiB", 2534 machine->ram_size, 2535 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2536 return; 2537 } 2538 2539 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2540 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2541 error_setg(errp, 2542 "Node %d memory size 0x%" PRIx64 2543 " is not aligned to %" PRIu64 " MiB", 2544 i, machine->numa_state->nodes[i].node_mem, 2545 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2546 return; 2547 } 2548 } 2549 } 2550 2551 /* find cpu slot in machine->possible_cpus by core_id */ 2552 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2553 { 2554 int index = id / ms->smp.threads; 2555 2556 if (index >= ms->possible_cpus->len) { 2557 return NULL; 2558 } 2559 if (idx) { 2560 *idx = index; 2561 } 2562 return &ms->possible_cpus->cpus[index]; 2563 } 2564 2565 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2566 { 2567 MachineState *ms = MACHINE(spapr); 2568 Error *local_err = NULL; 2569 bool vsmt_user = !!spapr->vsmt; 2570 int kvm_smt = kvmppc_smt_threads(); 2571 int ret; 2572 unsigned int smp_threads = ms->smp.threads; 2573 2574 if (!kvm_enabled() && (smp_threads > 1)) { 2575 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2576 "on a pseries machine"); 2577 goto out; 2578 } 2579 if (!is_power_of_2(smp_threads)) { 2580 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2581 "machine because it must be a power of 2", smp_threads); 2582 goto out; 2583 } 2584 2585 /* Detemine the VSMT mode to use: */ 2586 if (vsmt_user) { 2587 if (spapr->vsmt < smp_threads) { 2588 error_setg(&local_err, "Cannot support VSMT mode %d" 2589 " because it must be >= threads/core (%d)", 2590 spapr->vsmt, smp_threads); 2591 goto out; 2592 } 2593 /* In this case, spapr->vsmt has been set by the command line */ 2594 } else { 2595 /* 2596 * Default VSMT value is tricky, because we need it to be as 2597 * consistent as possible (for migration), but this requires 2598 * changing it for at least some existing cases. We pick 8 as 2599 * the value that we'd get with KVM on POWER8, the 2600 * overwhelmingly common case in production systems. 2601 */ 2602 spapr->vsmt = MAX(8, smp_threads); 2603 } 2604 2605 /* KVM: If necessary, set the SMT mode: */ 2606 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2607 ret = kvmppc_set_smt_threads(spapr->vsmt); 2608 if (ret) { 2609 /* Looks like KVM isn't able to change VSMT mode */ 2610 error_setg(&local_err, 2611 "Failed to set KVM's VSMT mode to %d (errno %d)", 2612 spapr->vsmt, ret); 2613 /* We can live with that if the default one is big enough 2614 * for the number of threads, and a submultiple of the one 2615 * we want. In this case we'll waste some vcpu ids, but 2616 * behaviour will be correct */ 2617 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2618 warn_report_err(local_err); 2619 local_err = NULL; 2620 goto out; 2621 } else { 2622 if (!vsmt_user) { 2623 error_append_hint(&local_err, 2624 "On PPC, a VM with %d threads/core" 2625 " on a host with %d threads/core" 2626 " requires the use of VSMT mode %d.\n", 2627 smp_threads, kvm_smt, spapr->vsmt); 2628 } 2629 kvmppc_hint_smt_possible(&local_err); 2630 goto out; 2631 } 2632 } 2633 } 2634 /* else TCG: nothing to do currently */ 2635 out: 2636 error_propagate(errp, local_err); 2637 } 2638 2639 static void spapr_init_cpus(SpaprMachineState *spapr) 2640 { 2641 MachineState *machine = MACHINE(spapr); 2642 MachineClass *mc = MACHINE_GET_CLASS(machine); 2643 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2644 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2645 const CPUArchIdList *possible_cpus; 2646 unsigned int smp_cpus = machine->smp.cpus; 2647 unsigned int smp_threads = machine->smp.threads; 2648 unsigned int max_cpus = machine->smp.max_cpus; 2649 int boot_cores_nr = smp_cpus / smp_threads; 2650 int i; 2651 2652 possible_cpus = mc->possible_cpu_arch_ids(machine); 2653 if (mc->has_hotpluggable_cpus) { 2654 if (smp_cpus % smp_threads) { 2655 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2656 smp_cpus, smp_threads); 2657 exit(1); 2658 } 2659 if (max_cpus % smp_threads) { 2660 error_report("max_cpus (%u) must be multiple of threads (%u)", 2661 max_cpus, smp_threads); 2662 exit(1); 2663 } 2664 } else { 2665 if (max_cpus != smp_cpus) { 2666 error_report("This machine version does not support CPU hotplug"); 2667 exit(1); 2668 } 2669 boot_cores_nr = possible_cpus->len; 2670 } 2671 2672 if (smc->pre_2_10_has_unused_icps) { 2673 int i; 2674 2675 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2676 /* Dummy entries get deregistered when real ICPState objects 2677 * are registered during CPU core hotplug. 2678 */ 2679 pre_2_10_vmstate_register_dummy_icp(i); 2680 } 2681 } 2682 2683 for (i = 0; i < possible_cpus->len; i++) { 2684 int core_id = i * smp_threads; 2685 2686 if (mc->has_hotpluggable_cpus) { 2687 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2688 spapr_vcpu_id(spapr, core_id)); 2689 } 2690 2691 if (i < boot_cores_nr) { 2692 Object *core = object_new(type); 2693 int nr_threads = smp_threads; 2694 2695 /* Handle the partially filled core for older machine types */ 2696 if ((i + 1) * smp_threads >= smp_cpus) { 2697 nr_threads = smp_cpus - i * smp_threads; 2698 } 2699 2700 object_property_set_int(core, nr_threads, "nr-threads", 2701 &error_fatal); 2702 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2703 &error_fatal); 2704 object_property_set_bool(core, true, "realized", &error_fatal); 2705 2706 object_unref(core); 2707 } 2708 } 2709 } 2710 2711 static PCIHostState *spapr_create_default_phb(void) 2712 { 2713 DeviceState *dev; 2714 2715 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2716 qdev_prop_set_uint32(dev, "index", 0); 2717 qdev_init_nofail(dev); 2718 2719 return PCI_HOST_BRIDGE(dev); 2720 } 2721 2722 /* pSeries LPAR / sPAPR hardware init */ 2723 static void spapr_machine_init(MachineState *machine) 2724 { 2725 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2726 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2727 const char *kernel_filename = machine->kernel_filename; 2728 const char *initrd_filename = machine->initrd_filename; 2729 PCIHostState *phb; 2730 int i; 2731 MemoryRegion *sysmem = get_system_memory(); 2732 MemoryRegion *ram = g_new(MemoryRegion, 1); 2733 hwaddr node0_size = spapr_node0_size(machine); 2734 long load_limit, fw_size; 2735 char *filename; 2736 Error *resize_hpt_err = NULL; 2737 2738 msi_nonbroken = true; 2739 2740 QLIST_INIT(&spapr->phbs); 2741 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2742 2743 /* Determine capabilities to run with */ 2744 spapr_caps_init(spapr); 2745 2746 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2747 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2748 /* 2749 * If the user explicitly requested a mode we should either 2750 * supply it, or fail completely (which we do below). But if 2751 * it's not set explicitly, we reset our mode to something 2752 * that works 2753 */ 2754 if (resize_hpt_err) { 2755 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2756 error_free(resize_hpt_err); 2757 resize_hpt_err = NULL; 2758 } else { 2759 spapr->resize_hpt = smc->resize_hpt_default; 2760 } 2761 } 2762 2763 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2764 2765 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2766 /* 2767 * User requested HPT resize, but this host can't supply it. Bail out 2768 */ 2769 error_report_err(resize_hpt_err); 2770 exit(1); 2771 } 2772 2773 spapr->rma_size = node0_size; 2774 2775 /* With KVM, we don't actually know whether KVM supports an 2776 * unbounded RMA (PR KVM) or is limited by the hash table size 2777 * (HV KVM using VRMA), so we always assume the latter 2778 * 2779 * In that case, we also limit the initial allocations for RTAS 2780 * etc... to 256M since we have no way to know what the VRMA size 2781 * is going to be as it depends on the size of the hash table 2782 * which isn't determined yet. 2783 */ 2784 if (kvm_enabled()) { 2785 spapr->vrma_adjust = 1; 2786 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2787 } 2788 2789 /* Actually we don't support unbounded RMA anymore since we added 2790 * proper emulation of HV mode. The max we can get is 16G which 2791 * also happens to be what we configure for PAPR mode so make sure 2792 * we don't do anything bigger than that 2793 */ 2794 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2795 2796 if (spapr->rma_size > node0_size) { 2797 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2798 spapr->rma_size); 2799 exit(1); 2800 } 2801 2802 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2803 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2804 2805 /* 2806 * VSMT must be set in order to be able to compute VCPU ids, ie to 2807 * call spapr_max_server_number() or spapr_vcpu_id(). 2808 */ 2809 spapr_set_vsmt_mode(spapr, &error_fatal); 2810 2811 /* Set up Interrupt Controller before we create the VCPUs */ 2812 spapr_irq_init(spapr, &error_fatal); 2813 2814 /* Set up containers for ibm,client-architecture-support negotiated options 2815 */ 2816 spapr->ov5 = spapr_ovec_new(); 2817 spapr->ov5_cas = spapr_ovec_new(); 2818 2819 if (smc->dr_lmb_enabled) { 2820 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2821 spapr_validate_node_memory(machine, &error_fatal); 2822 } 2823 2824 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2825 2826 /* advertise support for dedicated HP event source to guests */ 2827 if (spapr->use_hotplug_event_source) { 2828 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2829 } 2830 2831 /* advertise support for HPT resizing */ 2832 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2833 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2834 } 2835 2836 /* advertise support for ibm,dyamic-memory-v2 */ 2837 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2838 2839 /* advertise XIVE on POWER9 machines */ 2840 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2841 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2842 } 2843 2844 /* init CPUs */ 2845 spapr_init_cpus(spapr); 2846 2847 /* 2848 * check we don't have a memory-less/cpu-less NUMA node 2849 * Firmware relies on the existing memory/cpu topology to provide the 2850 * NUMA topology to the kernel. 2851 * And the linux kernel needs to know the NUMA topology at start 2852 * to be able to hotplug CPUs later. 2853 */ 2854 if (machine->numa_state->num_nodes) { 2855 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 2856 /* check for memory-less node */ 2857 if (machine->numa_state->nodes[i].node_mem == 0) { 2858 CPUState *cs; 2859 int found = 0; 2860 /* check for cpu-less node */ 2861 CPU_FOREACH(cs) { 2862 PowerPCCPU *cpu = POWERPC_CPU(cs); 2863 if (cpu->node_id == i) { 2864 found = 1; 2865 break; 2866 } 2867 } 2868 /* memory-less and cpu-less node */ 2869 if (!found) { 2870 error_report( 2871 "Memory-less/cpu-less nodes are not supported (node %d)", 2872 i); 2873 exit(1); 2874 } 2875 } 2876 } 2877 2878 } 2879 2880 /* 2881 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 2882 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 2883 * called from vPHB reset handler so we initialize the counter here. 2884 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 2885 * must be equally distant from any other node. 2886 * The final value of spapr->gpu_numa_id is going to be written to 2887 * max-associativity-domains in spapr_build_fdt(). 2888 */ 2889 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes); 2890 2891 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2892 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2893 spapr->max_compat_pvr)) { 2894 /* KVM and TCG always allow GTSE with radix... */ 2895 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2896 } 2897 /* ... but not with hash (currently). */ 2898 2899 if (kvm_enabled()) { 2900 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2901 kvmppc_enable_logical_ci_hcalls(); 2902 kvmppc_enable_set_mode_hcall(); 2903 2904 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2905 kvmppc_enable_clear_ref_mod_hcalls(); 2906 2907 /* Enable H_PAGE_INIT */ 2908 kvmppc_enable_h_page_init(); 2909 } 2910 2911 /* allocate RAM */ 2912 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2913 machine->ram_size); 2914 memory_region_add_subregion(sysmem, 0, ram); 2915 2916 /* always allocate the device memory information */ 2917 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2918 2919 /* initialize hotplug memory address space */ 2920 if (machine->ram_size < machine->maxram_size) { 2921 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2922 /* 2923 * Limit the number of hotpluggable memory slots to half the number 2924 * slots that KVM supports, leaving the other half for PCI and other 2925 * devices. However ensure that number of slots doesn't drop below 32. 2926 */ 2927 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2928 SPAPR_MAX_RAM_SLOTS; 2929 2930 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2931 max_memslots = SPAPR_MAX_RAM_SLOTS; 2932 } 2933 if (machine->ram_slots > max_memslots) { 2934 error_report("Specified number of memory slots %" 2935 PRIu64" exceeds max supported %d", 2936 machine->ram_slots, max_memslots); 2937 exit(1); 2938 } 2939 2940 machine->device_memory->base = ROUND_UP(machine->ram_size, 2941 SPAPR_DEVICE_MEM_ALIGN); 2942 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2943 "device-memory", device_mem_size); 2944 memory_region_add_subregion(sysmem, machine->device_memory->base, 2945 &machine->device_memory->mr); 2946 } 2947 2948 if (smc->dr_lmb_enabled) { 2949 spapr_create_lmb_dr_connectors(spapr); 2950 } 2951 2952 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2953 if (!filename) { 2954 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2955 exit(1); 2956 } 2957 spapr->rtas_size = get_image_size(filename); 2958 if (spapr->rtas_size < 0) { 2959 error_report("Could not get size of LPAR rtas '%s'", filename); 2960 exit(1); 2961 } 2962 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2963 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2964 error_report("Could not load LPAR rtas '%s'", filename); 2965 exit(1); 2966 } 2967 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2968 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2969 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2970 exit(1); 2971 } 2972 g_free(filename); 2973 2974 /* Set up RTAS event infrastructure */ 2975 spapr_events_init(spapr); 2976 2977 /* Set up the RTC RTAS interfaces */ 2978 spapr_rtc_create(spapr); 2979 2980 /* Set up VIO bus */ 2981 spapr->vio_bus = spapr_vio_bus_init(); 2982 2983 for (i = 0; i < serial_max_hds(); i++) { 2984 if (serial_hd(i)) { 2985 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2986 } 2987 } 2988 2989 /* We always have at least the nvram device on VIO */ 2990 spapr_create_nvram(spapr); 2991 2992 /* 2993 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2994 * connectors (described in root DT node's "ibm,drc-types" property) 2995 * are pre-initialized here. additional child connectors (such as 2996 * connectors for a PHBs PCI slots) are added as needed during their 2997 * parent's realization. 2998 */ 2999 if (smc->dr_phb_enabled) { 3000 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 3001 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 3002 } 3003 } 3004 3005 /* Set up PCI */ 3006 spapr_pci_rtas_init(); 3007 3008 phb = spapr_create_default_phb(); 3009 3010 for (i = 0; i < nb_nics; i++) { 3011 NICInfo *nd = &nd_table[i]; 3012 3013 if (!nd->model) { 3014 nd->model = g_strdup("spapr-vlan"); 3015 } 3016 3017 if (g_str_equal(nd->model, "spapr-vlan") || 3018 g_str_equal(nd->model, "ibmveth")) { 3019 spapr_vlan_create(spapr->vio_bus, nd); 3020 } else { 3021 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 3022 } 3023 } 3024 3025 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 3026 spapr_vscsi_create(spapr->vio_bus); 3027 } 3028 3029 /* Graphics */ 3030 if (spapr_vga_init(phb->bus, &error_fatal)) { 3031 spapr->has_graphics = true; 3032 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3033 } 3034 3035 if (machine->usb) { 3036 if (smc->use_ohci_by_default) { 3037 pci_create_simple(phb->bus, -1, "pci-ohci"); 3038 } else { 3039 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3040 } 3041 3042 if (spapr->has_graphics) { 3043 USBBus *usb_bus = usb_bus_find(-1); 3044 3045 usb_create_simple(usb_bus, "usb-kbd"); 3046 usb_create_simple(usb_bus, "usb-mouse"); 3047 } 3048 } 3049 3050 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 3051 error_report( 3052 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 3053 MIN_RMA_SLOF); 3054 exit(1); 3055 } 3056 3057 if (kernel_filename) { 3058 uint64_t lowaddr = 0; 3059 3060 spapr->kernel_size = load_elf(kernel_filename, NULL, 3061 translate_kernel_address, NULL, 3062 NULL, &lowaddr, NULL, 1, 3063 PPC_ELF_MACHINE, 0, 0); 3064 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3065 spapr->kernel_size = load_elf(kernel_filename, NULL, 3066 translate_kernel_address, NULL, NULL, 3067 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3068 0, 0); 3069 spapr->kernel_le = spapr->kernel_size > 0; 3070 } 3071 if (spapr->kernel_size < 0) { 3072 error_report("error loading %s: %s", kernel_filename, 3073 load_elf_strerror(spapr->kernel_size)); 3074 exit(1); 3075 } 3076 3077 /* load initrd */ 3078 if (initrd_filename) { 3079 /* Try to locate the initrd in the gap between the kernel 3080 * and the firmware. Add a bit of space just in case 3081 */ 3082 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3083 + 0x1ffff) & ~0xffff; 3084 spapr->initrd_size = load_image_targphys(initrd_filename, 3085 spapr->initrd_base, 3086 load_limit 3087 - spapr->initrd_base); 3088 if (spapr->initrd_size < 0) { 3089 error_report("could not load initial ram disk '%s'", 3090 initrd_filename); 3091 exit(1); 3092 } 3093 } 3094 } 3095 3096 if (bios_name == NULL) { 3097 bios_name = FW_FILE_NAME; 3098 } 3099 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3100 if (!filename) { 3101 error_report("Could not find LPAR firmware '%s'", bios_name); 3102 exit(1); 3103 } 3104 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3105 if (fw_size <= 0) { 3106 error_report("Could not load LPAR firmware '%s'", filename); 3107 exit(1); 3108 } 3109 g_free(filename); 3110 3111 /* FIXME: Should register things through the MachineState's qdev 3112 * interface, this is a legacy from the sPAPREnvironment structure 3113 * which predated MachineState but had a similar function */ 3114 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3115 register_savevm_live("spapr/htab", -1, 1, 3116 &savevm_htab_handlers, spapr); 3117 3118 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3119 &error_fatal); 3120 3121 qemu_register_boot_set(spapr_boot_set, spapr); 3122 3123 /* 3124 * Nothing needs to be done to resume a suspended guest because 3125 * suspending does not change the machine state, so no need for 3126 * a ->wakeup method. 3127 */ 3128 qemu_register_wakeup_support(); 3129 3130 if (kvm_enabled()) { 3131 /* to stop and start vmclock */ 3132 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3133 &spapr->tb); 3134 3135 kvmppc_spapr_enable_inkernel_multitce(); 3136 } 3137 } 3138 3139 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3140 { 3141 if (!vm_type) { 3142 return 0; 3143 } 3144 3145 if (!strcmp(vm_type, "HV")) { 3146 return 1; 3147 } 3148 3149 if (!strcmp(vm_type, "PR")) { 3150 return 2; 3151 } 3152 3153 error_report("Unknown kvm-type specified '%s'", vm_type); 3154 exit(1); 3155 } 3156 3157 /* 3158 * Implementation of an interface to adjust firmware path 3159 * for the bootindex property handling. 3160 */ 3161 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3162 DeviceState *dev) 3163 { 3164 #define CAST(type, obj, name) \ 3165 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3166 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3167 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3168 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3169 3170 if (d) { 3171 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3172 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3173 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3174 3175 if (spapr) { 3176 /* 3177 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3178 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3179 * 0x8000 | (target << 8) | (bus << 5) | lun 3180 * (see the "Logical unit addressing format" table in SAM5) 3181 */ 3182 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3183 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3184 (uint64_t)id << 48); 3185 } else if (virtio) { 3186 /* 3187 * We use SRP luns of the form 01000000 | (target << 8) | lun 3188 * in the top 32 bits of the 64-bit LUN 3189 * Note: the quote above is from SLOF and it is wrong, 3190 * the actual binding is: 3191 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3192 */ 3193 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3194 if (d->lun >= 256) { 3195 /* Use the LUN "flat space addressing method" */ 3196 id |= 0x4000; 3197 } 3198 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3199 (uint64_t)id << 32); 3200 } else if (usb) { 3201 /* 3202 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3203 * in the top 32 bits of the 64-bit LUN 3204 */ 3205 unsigned usb_port = atoi(usb->port->path); 3206 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3207 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3208 (uint64_t)id << 32); 3209 } 3210 } 3211 3212 /* 3213 * SLOF probes the USB devices, and if it recognizes that the device is a 3214 * storage device, it changes its name to "storage" instead of "usb-host", 3215 * and additionally adds a child node for the SCSI LUN, so the correct 3216 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3217 */ 3218 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3219 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3220 if (usb_host_dev_is_scsi_storage(usbdev)) { 3221 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3222 } 3223 } 3224 3225 if (phb) { 3226 /* Replace "pci" with "pci@800000020000000" */ 3227 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3228 } 3229 3230 if (vsc) { 3231 /* Same logic as virtio above */ 3232 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3233 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3234 } 3235 3236 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3237 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3238 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3239 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3240 } 3241 3242 return NULL; 3243 } 3244 3245 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3246 { 3247 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3248 3249 return g_strdup(spapr->kvm_type); 3250 } 3251 3252 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3253 { 3254 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3255 3256 g_free(spapr->kvm_type); 3257 spapr->kvm_type = g_strdup(value); 3258 } 3259 3260 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3261 { 3262 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3263 3264 return spapr->use_hotplug_event_source; 3265 } 3266 3267 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3268 Error **errp) 3269 { 3270 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3271 3272 spapr->use_hotplug_event_source = value; 3273 } 3274 3275 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3276 { 3277 return true; 3278 } 3279 3280 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3281 { 3282 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3283 3284 switch (spapr->resize_hpt) { 3285 case SPAPR_RESIZE_HPT_DEFAULT: 3286 return g_strdup("default"); 3287 case SPAPR_RESIZE_HPT_DISABLED: 3288 return g_strdup("disabled"); 3289 case SPAPR_RESIZE_HPT_ENABLED: 3290 return g_strdup("enabled"); 3291 case SPAPR_RESIZE_HPT_REQUIRED: 3292 return g_strdup("required"); 3293 } 3294 g_assert_not_reached(); 3295 } 3296 3297 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3298 { 3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3300 3301 if (strcmp(value, "default") == 0) { 3302 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3303 } else if (strcmp(value, "disabled") == 0) { 3304 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3305 } else if (strcmp(value, "enabled") == 0) { 3306 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3307 } else if (strcmp(value, "required") == 0) { 3308 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3309 } else { 3310 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3311 } 3312 } 3313 3314 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3315 void *opaque, Error **errp) 3316 { 3317 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3318 } 3319 3320 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3321 void *opaque, Error **errp) 3322 { 3323 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3324 } 3325 3326 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3327 { 3328 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3329 3330 if (spapr->irq == &spapr_irq_xics_legacy) { 3331 return g_strdup("legacy"); 3332 } else if (spapr->irq == &spapr_irq_xics) { 3333 return g_strdup("xics"); 3334 } else if (spapr->irq == &spapr_irq_xive) { 3335 return g_strdup("xive"); 3336 } else if (spapr->irq == &spapr_irq_dual) { 3337 return g_strdup("dual"); 3338 } 3339 g_assert_not_reached(); 3340 } 3341 3342 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3343 { 3344 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3345 3346 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3347 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3348 return; 3349 } 3350 3351 /* The legacy IRQ backend can not be set */ 3352 if (strcmp(value, "xics") == 0) { 3353 spapr->irq = &spapr_irq_xics; 3354 } else if (strcmp(value, "xive") == 0) { 3355 spapr->irq = &spapr_irq_xive; 3356 } else if (strcmp(value, "dual") == 0) { 3357 spapr->irq = &spapr_irq_dual; 3358 } else { 3359 error_setg(errp, "Bad value for \"ic-mode\" property"); 3360 } 3361 } 3362 3363 static char *spapr_get_host_model(Object *obj, Error **errp) 3364 { 3365 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3366 3367 return g_strdup(spapr->host_model); 3368 } 3369 3370 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3371 { 3372 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3373 3374 g_free(spapr->host_model); 3375 spapr->host_model = g_strdup(value); 3376 } 3377 3378 static char *spapr_get_host_serial(Object *obj, Error **errp) 3379 { 3380 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3381 3382 return g_strdup(spapr->host_serial); 3383 } 3384 3385 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3386 { 3387 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3388 3389 g_free(spapr->host_serial); 3390 spapr->host_serial = g_strdup(value); 3391 } 3392 3393 static void spapr_instance_init(Object *obj) 3394 { 3395 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3396 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3397 3398 spapr->htab_fd = -1; 3399 spapr->use_hotplug_event_source = true; 3400 object_property_add_str(obj, "kvm-type", 3401 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3402 object_property_set_description(obj, "kvm-type", 3403 "Specifies the KVM virtualization mode (HV, PR)", 3404 NULL); 3405 object_property_add_bool(obj, "modern-hotplug-events", 3406 spapr_get_modern_hotplug_events, 3407 spapr_set_modern_hotplug_events, 3408 NULL); 3409 object_property_set_description(obj, "modern-hotplug-events", 3410 "Use dedicated hotplug event mechanism in" 3411 " place of standard EPOW events when possible" 3412 " (required for memory hot-unplug support)", 3413 NULL); 3414 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3415 "Maximum permitted CPU compatibility mode", 3416 &error_fatal); 3417 3418 object_property_add_str(obj, "resize-hpt", 3419 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3420 object_property_set_description(obj, "resize-hpt", 3421 "Resizing of the Hash Page Table (enabled, disabled, required)", 3422 NULL); 3423 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3424 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3425 object_property_set_description(obj, "vsmt", 3426 "Virtual SMT: KVM behaves as if this were" 3427 " the host's SMT mode", &error_abort); 3428 object_property_add_bool(obj, "vfio-no-msix-emulation", 3429 spapr_get_msix_emulation, NULL, NULL); 3430 3431 /* The machine class defines the default interrupt controller mode */ 3432 spapr->irq = smc->irq; 3433 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3434 spapr_set_ic_mode, NULL); 3435 object_property_set_description(obj, "ic-mode", 3436 "Specifies the interrupt controller mode (xics, xive, dual)", 3437 NULL); 3438 3439 object_property_add_str(obj, "host-model", 3440 spapr_get_host_model, spapr_set_host_model, 3441 &error_abort); 3442 object_property_set_description(obj, "host-model", 3443 "Host model to advertise in guest device tree", &error_abort); 3444 object_property_add_str(obj, "host-serial", 3445 spapr_get_host_serial, spapr_set_host_serial, 3446 &error_abort); 3447 object_property_set_description(obj, "host-serial", 3448 "Host serial number to advertise in guest device tree", &error_abort); 3449 } 3450 3451 static void spapr_machine_finalizefn(Object *obj) 3452 { 3453 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3454 3455 g_free(spapr->kvm_type); 3456 } 3457 3458 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3459 { 3460 cpu_synchronize_state(cs); 3461 ppc_cpu_do_system_reset(cs); 3462 } 3463 3464 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3465 { 3466 CPUState *cs; 3467 3468 CPU_FOREACH(cs) { 3469 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3470 } 3471 } 3472 3473 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3474 void *fdt, int *fdt_start_offset, Error **errp) 3475 { 3476 uint64_t addr; 3477 uint32_t node; 3478 3479 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3480 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3481 &error_abort); 3482 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3483 SPAPR_MEMORY_BLOCK_SIZE); 3484 return 0; 3485 } 3486 3487 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3488 bool dedicated_hp_event_source, Error **errp) 3489 { 3490 SpaprDrc *drc; 3491 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3492 int i; 3493 uint64_t addr = addr_start; 3494 bool hotplugged = spapr_drc_hotplugged(dev); 3495 Error *local_err = NULL; 3496 3497 for (i = 0; i < nr_lmbs; i++) { 3498 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3499 addr / SPAPR_MEMORY_BLOCK_SIZE); 3500 g_assert(drc); 3501 3502 spapr_drc_attach(drc, dev, &local_err); 3503 if (local_err) { 3504 while (addr > addr_start) { 3505 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3506 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3507 addr / SPAPR_MEMORY_BLOCK_SIZE); 3508 spapr_drc_detach(drc); 3509 } 3510 error_propagate(errp, local_err); 3511 return; 3512 } 3513 if (!hotplugged) { 3514 spapr_drc_reset(drc); 3515 } 3516 addr += SPAPR_MEMORY_BLOCK_SIZE; 3517 } 3518 /* send hotplug notification to the 3519 * guest only in case of hotplugged memory 3520 */ 3521 if (hotplugged) { 3522 if (dedicated_hp_event_source) { 3523 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3524 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3525 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3526 nr_lmbs, 3527 spapr_drc_index(drc)); 3528 } else { 3529 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3530 nr_lmbs); 3531 } 3532 } 3533 } 3534 3535 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3536 Error **errp) 3537 { 3538 Error *local_err = NULL; 3539 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3540 PCDIMMDevice *dimm = PC_DIMM(dev); 3541 uint64_t size, addr; 3542 3543 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3544 3545 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3546 if (local_err) { 3547 goto out; 3548 } 3549 3550 addr = object_property_get_uint(OBJECT(dimm), 3551 PC_DIMM_ADDR_PROP, &local_err); 3552 if (local_err) { 3553 goto out_unplug; 3554 } 3555 3556 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3557 &local_err); 3558 if (local_err) { 3559 goto out_unplug; 3560 } 3561 3562 return; 3563 3564 out_unplug: 3565 pc_dimm_unplug(dimm, MACHINE(ms)); 3566 out: 3567 error_propagate(errp, local_err); 3568 } 3569 3570 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3571 Error **errp) 3572 { 3573 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3574 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3575 PCDIMMDevice *dimm = PC_DIMM(dev); 3576 Error *local_err = NULL; 3577 uint64_t size; 3578 Object *memdev; 3579 hwaddr pagesize; 3580 3581 if (!smc->dr_lmb_enabled) { 3582 error_setg(errp, "Memory hotplug not supported for this machine"); 3583 return; 3584 } 3585 3586 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3587 if (local_err) { 3588 error_propagate(errp, local_err); 3589 return; 3590 } 3591 3592 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3593 error_setg(errp, "Hotplugged memory size must be a multiple of " 3594 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3595 return; 3596 } 3597 3598 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3599 &error_abort); 3600 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3601 spapr_check_pagesize(spapr, pagesize, &local_err); 3602 if (local_err) { 3603 error_propagate(errp, local_err); 3604 return; 3605 } 3606 3607 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3608 } 3609 3610 struct SpaprDimmState { 3611 PCDIMMDevice *dimm; 3612 uint32_t nr_lmbs; 3613 QTAILQ_ENTRY(SpaprDimmState) next; 3614 }; 3615 3616 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3617 PCDIMMDevice *dimm) 3618 { 3619 SpaprDimmState *dimm_state = NULL; 3620 3621 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3622 if (dimm_state->dimm == dimm) { 3623 break; 3624 } 3625 } 3626 return dimm_state; 3627 } 3628 3629 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3630 uint32_t nr_lmbs, 3631 PCDIMMDevice *dimm) 3632 { 3633 SpaprDimmState *ds = NULL; 3634 3635 /* 3636 * If this request is for a DIMM whose removal had failed earlier 3637 * (due to guest's refusal to remove the LMBs), we would have this 3638 * dimm already in the pending_dimm_unplugs list. In that 3639 * case don't add again. 3640 */ 3641 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3642 if (!ds) { 3643 ds = g_malloc0(sizeof(SpaprDimmState)); 3644 ds->nr_lmbs = nr_lmbs; 3645 ds->dimm = dimm; 3646 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3647 } 3648 return ds; 3649 } 3650 3651 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3652 SpaprDimmState *dimm_state) 3653 { 3654 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3655 g_free(dimm_state); 3656 } 3657 3658 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3659 PCDIMMDevice *dimm) 3660 { 3661 SpaprDrc *drc; 3662 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3663 &error_abort); 3664 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3665 uint32_t avail_lmbs = 0; 3666 uint64_t addr_start, addr; 3667 int i; 3668 3669 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3670 &error_abort); 3671 3672 addr = addr_start; 3673 for (i = 0; i < nr_lmbs; i++) { 3674 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3675 addr / SPAPR_MEMORY_BLOCK_SIZE); 3676 g_assert(drc); 3677 if (drc->dev) { 3678 avail_lmbs++; 3679 } 3680 addr += SPAPR_MEMORY_BLOCK_SIZE; 3681 } 3682 3683 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3684 } 3685 3686 /* Callback to be called during DRC release. */ 3687 void spapr_lmb_release(DeviceState *dev) 3688 { 3689 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3690 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3691 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3692 3693 /* This information will get lost if a migration occurs 3694 * during the unplug process. In this case recover it. */ 3695 if (ds == NULL) { 3696 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3697 g_assert(ds); 3698 /* The DRC being examined by the caller at least must be counted */ 3699 g_assert(ds->nr_lmbs); 3700 } 3701 3702 if (--ds->nr_lmbs) { 3703 return; 3704 } 3705 3706 /* 3707 * Now that all the LMBs have been removed by the guest, call the 3708 * unplug handler chain. This can never fail. 3709 */ 3710 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3711 object_unparent(OBJECT(dev)); 3712 } 3713 3714 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3715 { 3716 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3717 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3718 3719 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3720 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3721 spapr_pending_dimm_unplugs_remove(spapr, ds); 3722 } 3723 3724 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3725 DeviceState *dev, Error **errp) 3726 { 3727 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3728 Error *local_err = NULL; 3729 PCDIMMDevice *dimm = PC_DIMM(dev); 3730 uint32_t nr_lmbs; 3731 uint64_t size, addr_start, addr; 3732 int i; 3733 SpaprDrc *drc; 3734 3735 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3736 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3737 3738 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3739 &local_err); 3740 if (local_err) { 3741 goto out; 3742 } 3743 3744 /* 3745 * An existing pending dimm state for this DIMM means that there is an 3746 * unplug operation in progress, waiting for the spapr_lmb_release 3747 * callback to complete the job (BQL can't cover that far). In this case, 3748 * bail out to avoid detaching DRCs that were already released. 3749 */ 3750 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3751 error_setg(&local_err, 3752 "Memory unplug already in progress for device %s", 3753 dev->id); 3754 goto out; 3755 } 3756 3757 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3758 3759 addr = addr_start; 3760 for (i = 0; i < nr_lmbs; i++) { 3761 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3762 addr / SPAPR_MEMORY_BLOCK_SIZE); 3763 g_assert(drc); 3764 3765 spapr_drc_detach(drc); 3766 addr += SPAPR_MEMORY_BLOCK_SIZE; 3767 } 3768 3769 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3770 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3771 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3772 nr_lmbs, spapr_drc_index(drc)); 3773 out: 3774 error_propagate(errp, local_err); 3775 } 3776 3777 /* Callback to be called during DRC release. */ 3778 void spapr_core_release(DeviceState *dev) 3779 { 3780 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3781 3782 /* Call the unplug handler chain. This can never fail. */ 3783 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3784 object_unparent(OBJECT(dev)); 3785 } 3786 3787 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3788 { 3789 MachineState *ms = MACHINE(hotplug_dev); 3790 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3791 CPUCore *cc = CPU_CORE(dev); 3792 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3793 3794 if (smc->pre_2_10_has_unused_icps) { 3795 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3796 int i; 3797 3798 for (i = 0; i < cc->nr_threads; i++) { 3799 CPUState *cs = CPU(sc->threads[i]); 3800 3801 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3802 } 3803 } 3804 3805 assert(core_slot); 3806 core_slot->cpu = NULL; 3807 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3808 } 3809 3810 static 3811 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3812 Error **errp) 3813 { 3814 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3815 int index; 3816 SpaprDrc *drc; 3817 CPUCore *cc = CPU_CORE(dev); 3818 3819 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3820 error_setg(errp, "Unable to find CPU core with core-id: %d", 3821 cc->core_id); 3822 return; 3823 } 3824 if (index == 0) { 3825 error_setg(errp, "Boot CPU core may not be unplugged"); 3826 return; 3827 } 3828 3829 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3830 spapr_vcpu_id(spapr, cc->core_id)); 3831 g_assert(drc); 3832 3833 spapr_drc_detach(drc); 3834 3835 spapr_hotplug_req_remove_by_index(drc); 3836 } 3837 3838 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3839 void *fdt, int *fdt_start_offset, Error **errp) 3840 { 3841 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3842 CPUState *cs = CPU(core->threads[0]); 3843 PowerPCCPU *cpu = POWERPC_CPU(cs); 3844 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3845 int id = spapr_get_vcpu_id(cpu); 3846 char *nodename; 3847 int offset; 3848 3849 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3850 offset = fdt_add_subnode(fdt, 0, nodename); 3851 g_free(nodename); 3852 3853 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3854 3855 *fdt_start_offset = offset; 3856 return 0; 3857 } 3858 3859 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3860 Error **errp) 3861 { 3862 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3863 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3864 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3865 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3866 CPUCore *cc = CPU_CORE(dev); 3867 CPUState *cs; 3868 SpaprDrc *drc; 3869 Error *local_err = NULL; 3870 CPUArchId *core_slot; 3871 int index; 3872 bool hotplugged = spapr_drc_hotplugged(dev); 3873 int i; 3874 3875 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3876 if (!core_slot) { 3877 error_setg(errp, "Unable to find CPU core with core-id: %d", 3878 cc->core_id); 3879 return; 3880 } 3881 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3882 spapr_vcpu_id(spapr, cc->core_id)); 3883 3884 g_assert(drc || !mc->has_hotpluggable_cpus); 3885 3886 if (drc) { 3887 spapr_drc_attach(drc, dev, &local_err); 3888 if (local_err) { 3889 error_propagate(errp, local_err); 3890 return; 3891 } 3892 3893 if (hotplugged) { 3894 /* 3895 * Send hotplug notification interrupt to the guest only 3896 * in case of hotplugged CPUs. 3897 */ 3898 spapr_hotplug_req_add_by_index(drc); 3899 } else { 3900 spapr_drc_reset(drc); 3901 } 3902 } 3903 3904 core_slot->cpu = OBJECT(dev); 3905 3906 if (smc->pre_2_10_has_unused_icps) { 3907 for (i = 0; i < cc->nr_threads; i++) { 3908 cs = CPU(core->threads[i]); 3909 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3910 } 3911 } 3912 3913 /* 3914 * Set compatibility mode to match the boot CPU, which was either set 3915 * by the machine reset code or by CAS. 3916 */ 3917 if (hotplugged) { 3918 for (i = 0; i < cc->nr_threads; i++) { 3919 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3920 &local_err); 3921 if (local_err) { 3922 error_propagate(errp, local_err); 3923 return; 3924 } 3925 } 3926 } 3927 } 3928 3929 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3930 Error **errp) 3931 { 3932 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3933 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3934 Error *local_err = NULL; 3935 CPUCore *cc = CPU_CORE(dev); 3936 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3937 const char *type = object_get_typename(OBJECT(dev)); 3938 CPUArchId *core_slot; 3939 int index; 3940 unsigned int smp_threads = machine->smp.threads; 3941 3942 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3943 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3944 goto out; 3945 } 3946 3947 if (strcmp(base_core_type, type)) { 3948 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3949 goto out; 3950 } 3951 3952 if (cc->core_id % smp_threads) { 3953 error_setg(&local_err, "invalid core id %d", cc->core_id); 3954 goto out; 3955 } 3956 3957 /* 3958 * In general we should have homogeneous threads-per-core, but old 3959 * (pre hotplug support) machine types allow the last core to have 3960 * reduced threads as a compatibility hack for when we allowed 3961 * total vcpus not a multiple of threads-per-core. 3962 */ 3963 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3964 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3965 cc->nr_threads, smp_threads); 3966 goto out; 3967 } 3968 3969 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3970 if (!core_slot) { 3971 error_setg(&local_err, "core id %d out of range", cc->core_id); 3972 goto out; 3973 } 3974 3975 if (core_slot->cpu) { 3976 error_setg(&local_err, "core %d already populated", cc->core_id); 3977 goto out; 3978 } 3979 3980 numa_cpu_pre_plug(core_slot, dev, &local_err); 3981 3982 out: 3983 error_propagate(errp, local_err); 3984 } 3985 3986 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3987 void *fdt, int *fdt_start_offset, Error **errp) 3988 { 3989 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3990 int intc_phandle; 3991 3992 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3993 if (intc_phandle <= 0) { 3994 return -1; 3995 } 3996 3997 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3998 fdt_start_offset)) { 3999 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4000 return -1; 4001 } 4002 4003 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4004 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4005 4006 return 0; 4007 } 4008 4009 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4010 Error **errp) 4011 { 4012 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4013 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4014 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4015 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4016 4017 if (dev->hotplugged && !smc->dr_phb_enabled) { 4018 error_setg(errp, "PHB hotplug not supported for this machine"); 4019 return; 4020 } 4021 4022 if (sphb->index == (uint32_t)-1) { 4023 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4024 return; 4025 } 4026 4027 /* 4028 * This will check that sphb->index doesn't exceed the maximum number of 4029 * PHBs for the current machine type. 4030 */ 4031 smc->phb_placement(spapr, sphb->index, 4032 &sphb->buid, &sphb->io_win_addr, 4033 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4034 windows_supported, sphb->dma_liobn, 4035 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 4036 errp); 4037 } 4038 4039 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4040 Error **errp) 4041 { 4042 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4043 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4044 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4045 SpaprDrc *drc; 4046 bool hotplugged = spapr_drc_hotplugged(dev); 4047 Error *local_err = NULL; 4048 4049 if (!smc->dr_phb_enabled) { 4050 return; 4051 } 4052 4053 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4054 /* hotplug hooks should check it's enabled before getting this far */ 4055 assert(drc); 4056 4057 spapr_drc_attach(drc, DEVICE(dev), &local_err); 4058 if (local_err) { 4059 error_propagate(errp, local_err); 4060 return; 4061 } 4062 4063 if (hotplugged) { 4064 spapr_hotplug_req_add_by_index(drc); 4065 } else { 4066 spapr_drc_reset(drc); 4067 } 4068 } 4069 4070 void spapr_phb_release(DeviceState *dev) 4071 { 4072 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4073 4074 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4075 object_unparent(OBJECT(dev)); 4076 } 4077 4078 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4079 { 4080 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4081 } 4082 4083 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4084 DeviceState *dev, Error **errp) 4085 { 4086 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4087 SpaprDrc *drc; 4088 4089 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4090 assert(drc); 4091 4092 if (!spapr_drc_unplug_requested(drc)) { 4093 spapr_drc_detach(drc); 4094 spapr_hotplug_req_remove_by_index(drc); 4095 } 4096 } 4097 4098 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4099 Error **errp) 4100 { 4101 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4102 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4103 4104 if (spapr->tpm_proxy != NULL) { 4105 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4106 return; 4107 } 4108 4109 spapr->tpm_proxy = tpm_proxy; 4110 } 4111 4112 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4113 { 4114 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4115 4116 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4117 object_unparent(OBJECT(dev)); 4118 spapr->tpm_proxy = NULL; 4119 } 4120 4121 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4122 DeviceState *dev, Error **errp) 4123 { 4124 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4125 spapr_memory_plug(hotplug_dev, dev, errp); 4126 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4127 spapr_core_plug(hotplug_dev, dev, errp); 4128 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4129 spapr_phb_plug(hotplug_dev, dev, errp); 4130 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4131 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 4132 } 4133 } 4134 4135 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4136 DeviceState *dev, Error **errp) 4137 { 4138 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4139 spapr_memory_unplug(hotplug_dev, dev); 4140 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4141 spapr_core_unplug(hotplug_dev, dev); 4142 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4143 spapr_phb_unplug(hotplug_dev, dev); 4144 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4145 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4146 } 4147 } 4148 4149 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4150 DeviceState *dev, Error **errp) 4151 { 4152 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4153 MachineClass *mc = MACHINE_GET_CLASS(sms); 4154 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4155 4156 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4157 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4158 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4159 } else { 4160 /* NOTE: this means there is a window after guest reset, prior to 4161 * CAS negotiation, where unplug requests will fail due to the 4162 * capability not being detected yet. This is a bit different than 4163 * the case with PCI unplug, where the events will be queued and 4164 * eventually handled by the guest after boot 4165 */ 4166 error_setg(errp, "Memory hot unplug not supported for this guest"); 4167 } 4168 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4169 if (!mc->has_hotpluggable_cpus) { 4170 error_setg(errp, "CPU hot unplug not supported on this machine"); 4171 return; 4172 } 4173 spapr_core_unplug_request(hotplug_dev, dev, errp); 4174 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4175 if (!smc->dr_phb_enabled) { 4176 error_setg(errp, "PHB hot unplug not supported on this machine"); 4177 return; 4178 } 4179 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4180 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4181 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4182 } 4183 } 4184 4185 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4186 DeviceState *dev, Error **errp) 4187 { 4188 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4189 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4190 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4191 spapr_core_pre_plug(hotplug_dev, dev, errp); 4192 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4193 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4194 } 4195 } 4196 4197 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4198 DeviceState *dev) 4199 { 4200 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4201 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4202 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4203 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4204 return HOTPLUG_HANDLER(machine); 4205 } 4206 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4207 PCIDevice *pcidev = PCI_DEVICE(dev); 4208 PCIBus *root = pci_device_root_bus(pcidev); 4209 SpaprPhbState *phb = 4210 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4211 TYPE_SPAPR_PCI_HOST_BRIDGE); 4212 4213 if (phb) { 4214 return HOTPLUG_HANDLER(phb); 4215 } 4216 } 4217 return NULL; 4218 } 4219 4220 static CpuInstanceProperties 4221 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4222 { 4223 CPUArchId *core_slot; 4224 MachineClass *mc = MACHINE_GET_CLASS(machine); 4225 4226 /* make sure possible_cpu are intialized */ 4227 mc->possible_cpu_arch_ids(machine); 4228 /* get CPU core slot containing thread that matches cpu_index */ 4229 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4230 assert(core_slot); 4231 return core_slot->props; 4232 } 4233 4234 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4235 { 4236 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4237 } 4238 4239 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4240 { 4241 int i; 4242 unsigned int smp_threads = machine->smp.threads; 4243 unsigned int smp_cpus = machine->smp.cpus; 4244 const char *core_type; 4245 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4246 MachineClass *mc = MACHINE_GET_CLASS(machine); 4247 4248 if (!mc->has_hotpluggable_cpus) { 4249 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4250 } 4251 if (machine->possible_cpus) { 4252 assert(machine->possible_cpus->len == spapr_max_cores); 4253 return machine->possible_cpus; 4254 } 4255 4256 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4257 if (!core_type) { 4258 error_report("Unable to find sPAPR CPU Core definition"); 4259 exit(1); 4260 } 4261 4262 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4263 sizeof(CPUArchId) * spapr_max_cores); 4264 machine->possible_cpus->len = spapr_max_cores; 4265 for (i = 0; i < machine->possible_cpus->len; i++) { 4266 int core_id = i * smp_threads; 4267 4268 machine->possible_cpus->cpus[i].type = core_type; 4269 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4270 machine->possible_cpus->cpus[i].arch_id = core_id; 4271 machine->possible_cpus->cpus[i].props.has_core_id = true; 4272 machine->possible_cpus->cpus[i].props.core_id = core_id; 4273 } 4274 return machine->possible_cpus; 4275 } 4276 4277 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4278 uint64_t *buid, hwaddr *pio, 4279 hwaddr *mmio32, hwaddr *mmio64, 4280 unsigned n_dma, uint32_t *liobns, 4281 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4282 { 4283 /* 4284 * New-style PHB window placement. 4285 * 4286 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4287 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4288 * windows. 4289 * 4290 * Some guest kernels can't work with MMIO windows above 1<<46 4291 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4292 * 4293 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4294 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4295 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4296 * 1TiB 64-bit MMIO windows for each PHB. 4297 */ 4298 const uint64_t base_buid = 0x800000020000000ULL; 4299 int i; 4300 4301 /* Sanity check natural alignments */ 4302 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4303 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4304 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4305 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4306 /* Sanity check bounds */ 4307 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4308 SPAPR_PCI_MEM32_WIN_SIZE); 4309 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4310 SPAPR_PCI_MEM64_WIN_SIZE); 4311 4312 if (index >= SPAPR_MAX_PHBS) { 4313 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4314 SPAPR_MAX_PHBS - 1); 4315 return; 4316 } 4317 4318 *buid = base_buid + index; 4319 for (i = 0; i < n_dma; ++i) { 4320 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4321 } 4322 4323 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4324 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4325 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4326 4327 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4328 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4329 } 4330 4331 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4332 { 4333 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4334 4335 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4336 } 4337 4338 static void spapr_ics_resend(XICSFabric *dev) 4339 { 4340 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4341 4342 ics_resend(spapr->ics); 4343 } 4344 4345 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4346 { 4347 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4348 4349 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4350 } 4351 4352 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4353 Monitor *mon) 4354 { 4355 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4356 4357 spapr->irq->print_info(spapr, mon); 4358 monitor_printf(mon, "irqchip: %s\n", 4359 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4360 } 4361 4362 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4363 { 4364 return cpu->vcpu_id; 4365 } 4366 4367 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4368 { 4369 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4370 MachineState *ms = MACHINE(spapr); 4371 int vcpu_id; 4372 4373 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4374 4375 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4376 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4377 error_append_hint(errp, "Adjust the number of cpus to %d " 4378 "or try to raise the number of threads per core\n", 4379 vcpu_id * ms->smp.threads / spapr->vsmt); 4380 return; 4381 } 4382 4383 cpu->vcpu_id = vcpu_id; 4384 } 4385 4386 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4387 { 4388 CPUState *cs; 4389 4390 CPU_FOREACH(cs) { 4391 PowerPCCPU *cpu = POWERPC_CPU(cs); 4392 4393 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4394 return cpu; 4395 } 4396 } 4397 4398 return NULL; 4399 } 4400 4401 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4402 { 4403 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4404 4405 /* These are only called by TCG, KVM maintains dispatch state */ 4406 4407 spapr_cpu->prod = false; 4408 if (spapr_cpu->vpa_addr) { 4409 CPUState *cs = CPU(cpu); 4410 uint32_t dispatch; 4411 4412 dispatch = ldl_be_phys(cs->as, 4413 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4414 dispatch++; 4415 if ((dispatch & 1) != 0) { 4416 qemu_log_mask(LOG_GUEST_ERROR, 4417 "VPA: incorrect dispatch counter value for " 4418 "dispatched partition %u, correcting.\n", dispatch); 4419 dispatch++; 4420 } 4421 stl_be_phys(cs->as, 4422 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4423 } 4424 } 4425 4426 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4427 { 4428 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4429 4430 if (spapr_cpu->vpa_addr) { 4431 CPUState *cs = CPU(cpu); 4432 uint32_t dispatch; 4433 4434 dispatch = ldl_be_phys(cs->as, 4435 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4436 dispatch++; 4437 if ((dispatch & 1) != 1) { 4438 qemu_log_mask(LOG_GUEST_ERROR, 4439 "VPA: incorrect dispatch counter value for " 4440 "preempted partition %u, correcting.\n", dispatch); 4441 dispatch++; 4442 } 4443 stl_be_phys(cs->as, 4444 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4445 } 4446 } 4447 4448 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4449 { 4450 MachineClass *mc = MACHINE_CLASS(oc); 4451 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4452 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4453 NMIClass *nc = NMI_CLASS(oc); 4454 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4455 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4456 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4457 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4458 4459 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4460 mc->ignore_boot_device_suffixes = true; 4461 4462 /* 4463 * We set up the default / latest behaviour here. The class_init 4464 * functions for the specific versioned machine types can override 4465 * these details for backwards compatibility 4466 */ 4467 mc->init = spapr_machine_init; 4468 mc->reset = spapr_machine_reset; 4469 mc->block_default_type = IF_SCSI; 4470 mc->max_cpus = 1024; 4471 mc->no_parallel = 1; 4472 mc->default_boot_order = ""; 4473 mc->default_ram_size = 512 * MiB; 4474 mc->default_display = "std"; 4475 mc->kvm_type = spapr_kvm_type; 4476 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4477 mc->pci_allow_0_address = true; 4478 assert(!mc->get_hotplug_handler); 4479 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4480 hc->pre_plug = spapr_machine_device_pre_plug; 4481 hc->plug = spapr_machine_device_plug; 4482 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4483 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4484 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4485 hc->unplug_request = spapr_machine_device_unplug_request; 4486 hc->unplug = spapr_machine_device_unplug; 4487 4488 smc->dr_lmb_enabled = true; 4489 smc->update_dt_enabled = true; 4490 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4491 mc->has_hotpluggable_cpus = true; 4492 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4493 fwc->get_dev_path = spapr_get_fw_dev_path; 4494 nc->nmi_monitor_handler = spapr_nmi; 4495 smc->phb_placement = spapr_phb_placement; 4496 vhc->hypercall = emulate_spapr_hypercall; 4497 vhc->hpt_mask = spapr_hpt_mask; 4498 vhc->map_hptes = spapr_map_hptes; 4499 vhc->unmap_hptes = spapr_unmap_hptes; 4500 vhc->hpte_set_c = spapr_hpte_set_c; 4501 vhc->hpte_set_r = spapr_hpte_set_r; 4502 vhc->get_pate = spapr_get_pate; 4503 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4504 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4505 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4506 xic->ics_get = spapr_ics_get; 4507 xic->ics_resend = spapr_ics_resend; 4508 xic->icp_get = spapr_icp_get; 4509 ispc->print_info = spapr_pic_print_info; 4510 /* Force NUMA node memory size to be a multiple of 4511 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4512 * in which LMBs are represented and hot-added 4513 */ 4514 mc->numa_mem_align_shift = 28; 4515 mc->numa_mem_supported = true; 4516 4517 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4518 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4519 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4520 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4521 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4522 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4523 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4524 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4525 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4526 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4527 spapr_caps_add_properties(smc, &error_abort); 4528 smc->irq = &spapr_irq_dual; 4529 smc->dr_phb_enabled = true; 4530 smc->linux_pci_probe = true; 4531 } 4532 4533 static const TypeInfo spapr_machine_info = { 4534 .name = TYPE_SPAPR_MACHINE, 4535 .parent = TYPE_MACHINE, 4536 .abstract = true, 4537 .instance_size = sizeof(SpaprMachineState), 4538 .instance_init = spapr_instance_init, 4539 .instance_finalize = spapr_machine_finalizefn, 4540 .class_size = sizeof(SpaprMachineClass), 4541 .class_init = spapr_machine_class_init, 4542 .interfaces = (InterfaceInfo[]) { 4543 { TYPE_FW_PATH_PROVIDER }, 4544 { TYPE_NMI }, 4545 { TYPE_HOTPLUG_HANDLER }, 4546 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4547 { TYPE_XICS_FABRIC }, 4548 { TYPE_INTERRUPT_STATS_PROVIDER }, 4549 { } 4550 }, 4551 }; 4552 4553 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4554 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4555 void *data) \ 4556 { \ 4557 MachineClass *mc = MACHINE_CLASS(oc); \ 4558 spapr_machine_##suffix##_class_options(mc); \ 4559 if (latest) { \ 4560 mc->alias = "pseries"; \ 4561 mc->is_default = 1; \ 4562 } \ 4563 } \ 4564 static const TypeInfo spapr_machine_##suffix##_info = { \ 4565 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4566 .parent = TYPE_SPAPR_MACHINE, \ 4567 .class_init = spapr_machine_##suffix##_class_init, \ 4568 }; \ 4569 static void spapr_machine_register_##suffix(void) \ 4570 { \ 4571 type_register(&spapr_machine_##suffix##_info); \ 4572 } \ 4573 type_init(spapr_machine_register_##suffix) 4574 4575 /* 4576 * pseries-4.2 4577 */ 4578 static void spapr_machine_4_2_class_options(MachineClass *mc) 4579 { 4580 /* Defaults for the latest behaviour inherited from the base class */ 4581 } 4582 4583 DEFINE_SPAPR_MACHINE(4_2, "4.2", true); 4584 4585 /* 4586 * pseries-4.1 4587 */ 4588 static void spapr_machine_4_1_class_options(MachineClass *mc) 4589 { 4590 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4591 static GlobalProperty compat[] = { 4592 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4593 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4594 }; 4595 4596 spapr_machine_4_2_class_options(mc); 4597 smc->linux_pci_probe = false; 4598 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4599 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4600 } 4601 4602 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4603 4604 /* 4605 * pseries-4.0 4606 */ 4607 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4608 uint64_t *buid, hwaddr *pio, 4609 hwaddr *mmio32, hwaddr *mmio64, 4610 unsigned n_dma, uint32_t *liobns, 4611 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4612 { 4613 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4614 nv2gpa, nv2atsd, errp); 4615 *nv2gpa = 0; 4616 *nv2atsd = 0; 4617 } 4618 4619 static void spapr_machine_4_0_class_options(MachineClass *mc) 4620 { 4621 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4622 4623 spapr_machine_4_1_class_options(mc); 4624 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4625 smc->phb_placement = phb_placement_4_0; 4626 smc->irq = &spapr_irq_xics; 4627 smc->pre_4_1_migration = true; 4628 } 4629 4630 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4631 4632 /* 4633 * pseries-3.1 4634 */ 4635 static void spapr_machine_3_1_class_options(MachineClass *mc) 4636 { 4637 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4638 4639 spapr_machine_4_0_class_options(mc); 4640 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4641 4642 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4643 smc->update_dt_enabled = false; 4644 smc->dr_phb_enabled = false; 4645 smc->broken_host_serial_model = true; 4646 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4647 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4648 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4649 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4650 } 4651 4652 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4653 4654 /* 4655 * pseries-3.0 4656 */ 4657 4658 static void spapr_machine_3_0_class_options(MachineClass *mc) 4659 { 4660 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4661 4662 spapr_machine_3_1_class_options(mc); 4663 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4664 4665 smc->legacy_irq_allocation = true; 4666 smc->irq = &spapr_irq_xics_legacy; 4667 } 4668 4669 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4670 4671 /* 4672 * pseries-2.12 4673 */ 4674 static void spapr_machine_2_12_class_options(MachineClass *mc) 4675 { 4676 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4677 static GlobalProperty compat[] = { 4678 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4679 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4680 }; 4681 4682 spapr_machine_3_0_class_options(mc); 4683 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4684 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4685 4686 /* We depend on kvm_enabled() to choose a default value for the 4687 * hpt-max-page-size capability. Of course we can't do it here 4688 * because this is too early and the HW accelerator isn't initialzed 4689 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4690 */ 4691 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4692 } 4693 4694 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4695 4696 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4697 { 4698 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4699 4700 spapr_machine_2_12_class_options(mc); 4701 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4702 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4703 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4704 } 4705 4706 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4707 4708 /* 4709 * pseries-2.11 4710 */ 4711 4712 static void spapr_machine_2_11_class_options(MachineClass *mc) 4713 { 4714 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4715 4716 spapr_machine_2_12_class_options(mc); 4717 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4718 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4719 } 4720 4721 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4722 4723 /* 4724 * pseries-2.10 4725 */ 4726 4727 static void spapr_machine_2_10_class_options(MachineClass *mc) 4728 { 4729 spapr_machine_2_11_class_options(mc); 4730 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4731 } 4732 4733 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4734 4735 /* 4736 * pseries-2.9 4737 */ 4738 4739 static void spapr_machine_2_9_class_options(MachineClass *mc) 4740 { 4741 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4742 static GlobalProperty compat[] = { 4743 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4744 }; 4745 4746 spapr_machine_2_10_class_options(mc); 4747 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4748 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4749 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4750 smc->pre_2_10_has_unused_icps = true; 4751 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4752 } 4753 4754 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4755 4756 /* 4757 * pseries-2.8 4758 */ 4759 4760 static void spapr_machine_2_8_class_options(MachineClass *mc) 4761 { 4762 static GlobalProperty compat[] = { 4763 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4764 }; 4765 4766 spapr_machine_2_9_class_options(mc); 4767 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4768 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4769 mc->numa_mem_align_shift = 23; 4770 } 4771 4772 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4773 4774 /* 4775 * pseries-2.7 4776 */ 4777 4778 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4779 uint64_t *buid, hwaddr *pio, 4780 hwaddr *mmio32, hwaddr *mmio64, 4781 unsigned n_dma, uint32_t *liobns, 4782 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4783 { 4784 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4785 const uint64_t base_buid = 0x800000020000000ULL; 4786 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4787 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4788 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4789 const uint32_t max_index = 255; 4790 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4791 4792 uint64_t ram_top = MACHINE(spapr)->ram_size; 4793 hwaddr phb0_base, phb_base; 4794 int i; 4795 4796 /* Do we have device memory? */ 4797 if (MACHINE(spapr)->maxram_size > ram_top) { 4798 /* Can't just use maxram_size, because there may be an 4799 * alignment gap between normal and device memory regions 4800 */ 4801 ram_top = MACHINE(spapr)->device_memory->base + 4802 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4803 } 4804 4805 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4806 4807 if (index > max_index) { 4808 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4809 max_index); 4810 return; 4811 } 4812 4813 *buid = base_buid + index; 4814 for (i = 0; i < n_dma; ++i) { 4815 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4816 } 4817 4818 phb_base = phb0_base + index * phb_spacing; 4819 *pio = phb_base + pio_offset; 4820 *mmio32 = phb_base + mmio_offset; 4821 /* 4822 * We don't set the 64-bit MMIO window, relying on the PHB's 4823 * fallback behaviour of automatically splitting a large "32-bit" 4824 * window into contiguous 32-bit and 64-bit windows 4825 */ 4826 4827 *nv2gpa = 0; 4828 *nv2atsd = 0; 4829 } 4830 4831 static void spapr_machine_2_7_class_options(MachineClass *mc) 4832 { 4833 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4834 static GlobalProperty compat[] = { 4835 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4836 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4837 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4838 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4839 }; 4840 4841 spapr_machine_2_8_class_options(mc); 4842 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4843 mc->default_machine_opts = "modern-hotplug-events=off"; 4844 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4845 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4846 smc->phb_placement = phb_placement_2_7; 4847 } 4848 4849 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4850 4851 /* 4852 * pseries-2.6 4853 */ 4854 4855 static void spapr_machine_2_6_class_options(MachineClass *mc) 4856 { 4857 static GlobalProperty compat[] = { 4858 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4859 }; 4860 4861 spapr_machine_2_7_class_options(mc); 4862 mc->has_hotpluggable_cpus = false; 4863 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4864 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4865 } 4866 4867 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4868 4869 /* 4870 * pseries-2.5 4871 */ 4872 4873 static void spapr_machine_2_5_class_options(MachineClass *mc) 4874 { 4875 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4876 static GlobalProperty compat[] = { 4877 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4878 }; 4879 4880 spapr_machine_2_6_class_options(mc); 4881 smc->use_ohci_by_default = true; 4882 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4883 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4884 } 4885 4886 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4887 4888 /* 4889 * pseries-2.4 4890 */ 4891 4892 static void spapr_machine_2_4_class_options(MachineClass *mc) 4893 { 4894 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4895 4896 spapr_machine_2_5_class_options(mc); 4897 smc->dr_lmb_enabled = false; 4898 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4899 } 4900 4901 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4902 4903 /* 4904 * pseries-2.3 4905 */ 4906 4907 static void spapr_machine_2_3_class_options(MachineClass *mc) 4908 { 4909 static GlobalProperty compat[] = { 4910 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4911 }; 4912 spapr_machine_2_4_class_options(mc); 4913 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4914 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4915 } 4916 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4917 4918 /* 4919 * pseries-2.2 4920 */ 4921 4922 static void spapr_machine_2_2_class_options(MachineClass *mc) 4923 { 4924 static GlobalProperty compat[] = { 4925 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4926 }; 4927 4928 spapr_machine_2_3_class_options(mc); 4929 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4930 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4931 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4932 } 4933 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4934 4935 /* 4936 * pseries-2.1 4937 */ 4938 4939 static void spapr_machine_2_1_class_options(MachineClass *mc) 4940 { 4941 spapr_machine_2_2_class_options(mc); 4942 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4943 } 4944 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4945 4946 static void spapr_machine_register_types(void) 4947 { 4948 type_register_static(&spapr_machine_info); 4949 } 4950 4951 type_init(spapr_machine_register_types) 4952