xref: /qemu/hw/ppc/spapr.c (revision daa36379ce1a0a683562d40ca20f9b722ef595e1)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 
84 #include "monitor/monitor.h"
85 
86 #include <libfdt.h>
87 
88 /* SLOF memory layout:
89  *
90  * SLOF raw image loaded at 0, copies its romfs right below the flat
91  * device-tree, then position SLOF itself 31M below that
92  *
93  * So we set FW_OVERHEAD to 40MB which should account for all of that
94  * and more
95  *
96  * We load our kernel at 4M, leaving space for SLOF initial image
97  */
98 #define FDT_MAX_SIZE            0x100000
99 #define RTAS_MAX_SIZE           0x10000
100 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE             0x400000
102 #define FW_FILE_NAME            "slof.bin"
103 #define FW_OVERHEAD             0x2800000
104 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
105 
106 #define MIN_RMA_SLOF            128UL
107 
108 #define PHANDLE_INTC            0x00001111
109 
110 /* These two functions implement the VCPU id numbering: one to compute them
111  * all and one to identify thread 0 of a VCORE. Any change to the first one
112  * is likely to have an impact on the second one, so let's keep them close.
113  */
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 {
116     MachineState *ms = MACHINE(spapr);
117     unsigned int smp_threads = ms->smp.threads;
118 
119     assert(spapr->vsmt);
120     return
121         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 }
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124                                       PowerPCCPU *cpu)
125 {
126     assert(spapr->vsmt);
127     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 }
129 
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133      * and newer QEMUs don't even have them. In both cases, we don't want
134      * to send anything on the wire.
135      */
136     return false;
137 }
138 
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140     .name = "icp/server",
141     .version_id = 1,
142     .minimum_version_id = 1,
143     .needed = pre_2_10_vmstate_dummy_icp_needed,
144     .fields = (VMStateField[]) {
145         VMSTATE_UNUSED(4), /* uint32_t xirr */
146         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147         VMSTATE_UNUSED(1), /* uint8_t mfrr */
148         VMSTATE_END_OF_LIST()
149     },
150 };
151 
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155                      (void *)(uintptr_t) i);
156 }
157 
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161                        (void *)(uintptr_t) i);
162 }
163 
164 int spapr_max_server_number(SpaprMachineState *spapr)
165 {
166     MachineState *ms = MACHINE(spapr);
167 
168     assert(spapr->vsmt);
169     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 }
171 
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173                                   int smt_threads)
174 {
175     int i, ret = 0;
176     uint32_t servers_prop[smt_threads];
177     uint32_t gservers_prop[smt_threads * 2];
178     int index = spapr_get_vcpu_id(cpu);
179 
180     if (cpu->compat_pvr) {
181         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182         if (ret < 0) {
183             return ret;
184         }
185     }
186 
187     /* Build interrupt servers and gservers properties */
188     for (i = 0; i < smt_threads; i++) {
189         servers_prop[i] = cpu_to_be32(index + i);
190         /* Hack, direct the group queues back to cpu 0 */
191         gservers_prop[i*2] = cpu_to_be32(index + i);
192         gservers_prop[i*2 + 1] = 0;
193     }
194     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195                       servers_prop, sizeof(servers_prop));
196     if (ret < 0) {
197         return ret;
198     }
199     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200                       gservers_prop, sizeof(gservers_prop));
201 
202     return ret;
203 }
204 
205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
206 {
207     int index = spapr_get_vcpu_id(cpu);
208     uint32_t associativity[] = {cpu_to_be32(0x5),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(0x0),
211                                 cpu_to_be32(0x0),
212                                 cpu_to_be32(cpu->node_id),
213                                 cpu_to_be32(index)};
214 
215     /* Advertise NUMA via ibm,associativity */
216     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
217                           sizeof(associativity));
218 }
219 
220 /* Populate the "ibm,pa-features" property */
221 static void spapr_populate_pa_features(SpaprMachineState *spapr,
222                                        PowerPCCPU *cpu,
223                                        void *fdt, int offset)
224 {
225     uint8_t pa_features_206[] = { 6, 0,
226         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
227     uint8_t pa_features_207[] = { 24, 0,
228         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
229         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
230         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
231         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
232     uint8_t pa_features_300[] = { 66, 0,
233         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
234         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
235         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
236         /* 6: DS207 */
237         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
238         /* 16: Vector */
239         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
240         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
241         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
242         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
243         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
244         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
245         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
246         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
247         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
248         /* 42: PM, 44: PC RA, 46: SC vec'd */
249         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
250         /* 48: SIMD, 50: QP BFP, 52: String */
251         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
252         /* 54: DecFP, 56: DecI, 58: SHA */
253         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
254         /* 60: NM atomic, 62: RNG */
255         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
256     };
257     uint8_t *pa_features = NULL;
258     size_t pa_size;
259 
260     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
261         pa_features = pa_features_206;
262         pa_size = sizeof(pa_features_206);
263     }
264     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
265         pa_features = pa_features_207;
266         pa_size = sizeof(pa_features_207);
267     }
268     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
269         pa_features = pa_features_300;
270         pa_size = sizeof(pa_features_300);
271     }
272     if (!pa_features) {
273         return;
274     }
275 
276     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
277         /*
278          * Note: we keep CI large pages off by default because a 64K capable
279          * guest provisioned with large pages might otherwise try to map a qemu
280          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
281          * even if that qemu runs on a 4k host.
282          * We dd this bit back here if we are confident this is not an issue
283          */
284         pa_features[3] |= 0x20;
285     }
286     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
287         pa_features[24] |= 0x80;    /* Transactional memory support */
288     }
289     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
290         /* Workaround for broken kernels that attempt (guest) radix
291          * mode when they can't handle it, if they see the radix bit set
292          * in pa-features. So hide it from them. */
293         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
294     }
295 
296     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
297 }
298 
299 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
300 {
301     MachineState *ms = MACHINE(spapr);
302     int ret = 0, offset, cpus_offset;
303     CPUState *cs;
304     char cpu_model[32];
305     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
306 
307     CPU_FOREACH(cs) {
308         PowerPCCPU *cpu = POWERPC_CPU(cs);
309         DeviceClass *dc = DEVICE_GET_CLASS(cs);
310         int index = spapr_get_vcpu_id(cpu);
311         int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
312 
313         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
314             continue;
315         }
316 
317         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
318 
319         cpus_offset = fdt_path_offset(fdt, "/cpus");
320         if (cpus_offset < 0) {
321             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
322             if (cpus_offset < 0) {
323                 return cpus_offset;
324             }
325         }
326         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
327         if (offset < 0) {
328             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
329             if (offset < 0) {
330                 return offset;
331             }
332         }
333 
334         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
335                           pft_size_prop, sizeof(pft_size_prop));
336         if (ret < 0) {
337             return ret;
338         }
339 
340         if (ms->numa_state->num_nodes > 1) {
341             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
342             if (ret < 0) {
343                 return ret;
344             }
345         }
346 
347         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
348         if (ret < 0) {
349             return ret;
350         }
351 
352         spapr_populate_pa_features(spapr, cpu, fdt, offset);
353     }
354     return ret;
355 }
356 
357 static hwaddr spapr_node0_size(MachineState *machine)
358 {
359     if (machine->numa_state->num_nodes) {
360         int i;
361         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
362             if (machine->numa_state->nodes[i].node_mem) {
363                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
364                            machine->ram_size);
365             }
366         }
367     }
368     return machine->ram_size;
369 }
370 
371 static void add_str(GString *s, const gchar *s1)
372 {
373     g_string_append_len(s, s1, strlen(s1) + 1);
374 }
375 
376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
377                                        hwaddr size)
378 {
379     uint32_t associativity[] = {
380         cpu_to_be32(0x4), /* length */
381         cpu_to_be32(0x0), cpu_to_be32(0x0),
382         cpu_to_be32(0x0), cpu_to_be32(nodeid)
383     };
384     char mem_name[32];
385     uint64_t mem_reg_property[2];
386     int off;
387 
388     mem_reg_property[0] = cpu_to_be64(start);
389     mem_reg_property[1] = cpu_to_be64(size);
390 
391     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
392     off = fdt_add_subnode(fdt, 0, mem_name);
393     _FDT(off);
394     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
395     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
396                       sizeof(mem_reg_property))));
397     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
398                       sizeof(associativity))));
399     return off;
400 }
401 
402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
403 {
404     MachineState *machine = MACHINE(spapr);
405     hwaddr mem_start, node_size;
406     int i, nb_nodes = machine->numa_state->num_nodes;
407     NodeInfo *nodes = machine->numa_state->nodes;
408     NodeInfo ramnode;
409 
410     /* No NUMA nodes, assume there is just one node with whole RAM */
411     if (!nb_nodes) {
412         nb_nodes = 1;
413         ramnode.node_mem = machine->ram_size;
414         nodes = &ramnode;
415     }
416 
417     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
418         if (!nodes[i].node_mem) {
419             continue;
420         }
421         if (mem_start >= machine->ram_size) {
422             node_size = 0;
423         } else {
424             node_size = nodes[i].node_mem;
425             if (node_size > machine->ram_size - mem_start) {
426                 node_size = machine->ram_size - mem_start;
427             }
428         }
429         if (!mem_start) {
430             /* spapr_machine_init() checks for rma_size <= node0_size
431              * already */
432             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
433             mem_start += spapr->rma_size;
434             node_size -= spapr->rma_size;
435         }
436         for ( ; node_size; ) {
437             hwaddr sizetmp = pow2floor(node_size);
438 
439             /* mem_start != 0 here */
440             if (ctzl(mem_start) < ctzl(sizetmp)) {
441                 sizetmp = 1ULL << ctzl(mem_start);
442             }
443 
444             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
445             node_size -= sizetmp;
446             mem_start += sizetmp;
447         }
448     }
449 
450     return 0;
451 }
452 
453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
454                                   SpaprMachineState *spapr)
455 {
456     MachineState *ms = MACHINE(spapr);
457     PowerPCCPU *cpu = POWERPC_CPU(cs);
458     CPUPPCState *env = &cpu->env;
459     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
460     int index = spapr_get_vcpu_id(cpu);
461     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
462                        0xffffffff, 0xffffffff};
463     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
464         : SPAPR_TIMEBASE_FREQ;
465     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
466     uint32_t page_sizes_prop[64];
467     size_t page_sizes_prop_size;
468     unsigned int smp_threads = ms->smp.threads;
469     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
470     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
471     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
472     SpaprDrc *drc;
473     int drc_index;
474     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
475     int i;
476 
477     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
478     if (drc) {
479         drc_index = spapr_drc_index(drc);
480         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
481     }
482 
483     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
484     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
485 
486     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
487     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
488                            env->dcache_line_size)));
489     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
490                            env->dcache_line_size)));
491     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
492                            env->icache_line_size)));
493     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
494                            env->icache_line_size)));
495 
496     if (pcc->l1_dcache_size) {
497         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
498                                pcc->l1_dcache_size)));
499     } else {
500         warn_report("Unknown L1 dcache size for cpu");
501     }
502     if (pcc->l1_icache_size) {
503         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
504                                pcc->l1_icache_size)));
505     } else {
506         warn_report("Unknown L1 icache size for cpu");
507     }
508 
509     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
510     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
511     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
512     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
513     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
514     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
515 
516     if (env->spr_cb[SPR_PURR].oea_read) {
517         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
518     }
519     if (env->spr_cb[SPR_SPURR].oea_read) {
520         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
521     }
522 
523     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
524         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
525                           segs, sizeof(segs))));
526     }
527 
528     /* Advertise VSX (vector extensions) if available
529      *   1               == VMX / Altivec available
530      *   2               == VSX available
531      *
532      * Only CPUs for which we create core types in spapr_cpu_core.c
533      * are possible, and all of those have VMX */
534     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
535         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
536     } else {
537         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
538     }
539 
540     /* Advertise DFP (Decimal Floating Point) if available
541      *   0 / no property == no DFP
542      *   1               == DFP available */
543     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
544         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
545     }
546 
547     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
548                                                       sizeof(page_sizes_prop));
549     if (page_sizes_prop_size) {
550         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
551                           page_sizes_prop, page_sizes_prop_size)));
552     }
553 
554     spapr_populate_pa_features(spapr, cpu, fdt, offset);
555 
556     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
557                            cs->cpu_index / vcpus_per_socket)));
558 
559     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
560                       pft_size_prop, sizeof(pft_size_prop))));
561 
562     if (ms->numa_state->num_nodes > 1) {
563         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
564     }
565 
566     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
567 
568     if (pcc->radix_page_info) {
569         for (i = 0; i < pcc->radix_page_info->count; i++) {
570             radix_AP_encodings[i] =
571                 cpu_to_be32(pcc->radix_page_info->entries[i]);
572         }
573         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
574                           radix_AP_encodings,
575                           pcc->radix_page_info->count *
576                           sizeof(radix_AP_encodings[0]))));
577     }
578 
579     /*
580      * We set this property to let the guest know that it can use the large
581      * decrementer and its width in bits.
582      */
583     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
584         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
585                               pcc->lrg_decr_bits)));
586 }
587 
588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
589 {
590     CPUState **rev;
591     CPUState *cs;
592     int n_cpus;
593     int cpus_offset;
594     char *nodename;
595     int i;
596 
597     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
598     _FDT(cpus_offset);
599     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
600     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
601 
602     /*
603      * We walk the CPUs in reverse order to ensure that CPU DT nodes
604      * created by fdt_add_subnode() end up in the right order in FDT
605      * for the guest kernel the enumerate the CPUs correctly.
606      *
607      * The CPU list cannot be traversed in reverse order, so we need
608      * to do extra work.
609      */
610     n_cpus = 0;
611     rev = NULL;
612     CPU_FOREACH(cs) {
613         rev = g_renew(CPUState *, rev, n_cpus + 1);
614         rev[n_cpus++] = cs;
615     }
616 
617     for (i = n_cpus - 1; i >= 0; i--) {
618         CPUState *cs = rev[i];
619         PowerPCCPU *cpu = POWERPC_CPU(cs);
620         int index = spapr_get_vcpu_id(cpu);
621         DeviceClass *dc = DEVICE_GET_CLASS(cs);
622         int offset;
623 
624         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
625             continue;
626         }
627 
628         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
629         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
630         g_free(nodename);
631         _FDT(offset);
632         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
633     }
634 
635     g_free(rev);
636 }
637 
638 static int spapr_rng_populate_dt(void *fdt)
639 {
640     int node;
641     int ret;
642 
643     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
644     if (node <= 0) {
645         return -1;
646     }
647     ret = fdt_setprop_string(fdt, node, "device_type",
648                              "ibm,platform-facilities");
649     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
650     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
651 
652     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
653     if (node <= 0) {
654         return -1;
655     }
656     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
657 
658     return ret ? -1 : 0;
659 }
660 
661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
662 {
663     MemoryDeviceInfoList *info;
664 
665     for (info = list; info; info = info->next) {
666         MemoryDeviceInfo *value = info->value;
667 
668         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
669             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
670 
671             if (addr >= pcdimm_info->addr &&
672                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
673                 return pcdimm_info->node;
674             }
675         }
676     }
677 
678     return -1;
679 }
680 
681 struct sPAPRDrconfCellV2 {
682      uint32_t seq_lmbs;
683      uint64_t base_addr;
684      uint32_t drc_index;
685      uint32_t aa_index;
686      uint32_t flags;
687 } QEMU_PACKED;
688 
689 typedef struct DrconfCellQueue {
690     struct sPAPRDrconfCellV2 cell;
691     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
692 } DrconfCellQueue;
693 
694 static DrconfCellQueue *
695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
696                       uint32_t drc_index, uint32_t aa_index,
697                       uint32_t flags)
698 {
699     DrconfCellQueue *elem;
700 
701     elem = g_malloc0(sizeof(*elem));
702     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
703     elem->cell.base_addr = cpu_to_be64(base_addr);
704     elem->cell.drc_index = cpu_to_be32(drc_index);
705     elem->cell.aa_index = cpu_to_be32(aa_index);
706     elem->cell.flags = cpu_to_be32(flags);
707 
708     return elem;
709 }
710 
711 /* ibm,dynamic-memory-v2 */
712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
713                                    int offset, MemoryDeviceInfoList *dimms)
714 {
715     MachineState *machine = MACHINE(spapr);
716     uint8_t *int_buf, *cur_index;
717     int ret;
718     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
719     uint64_t addr, cur_addr, size;
720     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
721     uint64_t mem_end = machine->device_memory->base +
722                        memory_region_size(&machine->device_memory->mr);
723     uint32_t node, buf_len, nr_entries = 0;
724     SpaprDrc *drc;
725     DrconfCellQueue *elem, *next;
726     MemoryDeviceInfoList *info;
727     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
728         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
729 
730     /* Entry to cover RAM and the gap area */
731     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
732                                  SPAPR_LMB_FLAGS_RESERVED |
733                                  SPAPR_LMB_FLAGS_DRC_INVALID);
734     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735     nr_entries++;
736 
737     cur_addr = machine->device_memory->base;
738     for (info = dimms; info; info = info->next) {
739         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
740 
741         addr = di->addr;
742         size = di->size;
743         node = di->node;
744 
745         /* Entry for hot-pluggable area */
746         if (cur_addr < addr) {
747             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
748             g_assert(drc);
749             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
750                                          cur_addr, spapr_drc_index(drc), -1, 0);
751             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
752             nr_entries++;
753         }
754 
755         /* Entry for DIMM */
756         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
757         g_assert(drc);
758         elem = spapr_get_drconf_cell(size / lmb_size, addr,
759                                      spapr_drc_index(drc), node,
760                                      SPAPR_LMB_FLAGS_ASSIGNED);
761         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762         nr_entries++;
763         cur_addr = addr + size;
764     }
765 
766     /* Entry for remaining hotpluggable area */
767     if (cur_addr < mem_end) {
768         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
769         g_assert(drc);
770         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
771                                      cur_addr, spapr_drc_index(drc), -1, 0);
772         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
773         nr_entries++;
774     }
775 
776     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
777     int_buf = cur_index = g_malloc0(buf_len);
778     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
779     cur_index += sizeof(nr_entries);
780 
781     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
782         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
783         cur_index += sizeof(elem->cell);
784         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
785         g_free(elem);
786     }
787 
788     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
789     g_free(int_buf);
790     if (ret < 0) {
791         return -1;
792     }
793     return 0;
794 }
795 
796 /* ibm,dynamic-memory */
797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
798                                    int offset, MemoryDeviceInfoList *dimms)
799 {
800     MachineState *machine = MACHINE(spapr);
801     int i, ret;
802     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
803     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
804     uint32_t nr_lmbs = (machine->device_memory->base +
805                        memory_region_size(&machine->device_memory->mr)) /
806                        lmb_size;
807     uint32_t *int_buf, *cur_index, buf_len;
808 
809     /*
810      * Allocate enough buffer size to fit in ibm,dynamic-memory
811      */
812     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
813     cur_index = int_buf = g_malloc0(buf_len);
814     int_buf[0] = cpu_to_be32(nr_lmbs);
815     cur_index++;
816     for (i = 0; i < nr_lmbs; i++) {
817         uint64_t addr = i * lmb_size;
818         uint32_t *dynamic_memory = cur_index;
819 
820         if (i >= device_lmb_start) {
821             SpaprDrc *drc;
822 
823             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
824             g_assert(drc);
825 
826             dynamic_memory[0] = cpu_to_be32(addr >> 32);
827             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
828             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
829             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
830             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
831             if (memory_region_present(get_system_memory(), addr)) {
832                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
833             } else {
834                 dynamic_memory[5] = cpu_to_be32(0);
835             }
836         } else {
837             /*
838              * LMB information for RMA, boot time RAM and gap b/n RAM and
839              * device memory region -- all these are marked as reserved
840              * and as having no valid DRC.
841              */
842             dynamic_memory[0] = cpu_to_be32(addr >> 32);
843             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
844             dynamic_memory[2] = cpu_to_be32(0);
845             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
846             dynamic_memory[4] = cpu_to_be32(-1);
847             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
848                                             SPAPR_LMB_FLAGS_DRC_INVALID);
849         }
850 
851         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
852     }
853     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
854     g_free(int_buf);
855     if (ret < 0) {
856         return -1;
857     }
858     return 0;
859 }
860 
861 /*
862  * Adds ibm,dynamic-reconfiguration-memory node.
863  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
864  * of this device tree node.
865  */
866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
867 {
868     MachineState *machine = MACHINE(spapr);
869     int nb_numa_nodes = machine->numa_state->num_nodes;
870     int ret, i, offset;
871     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
872     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
873     uint32_t *int_buf, *cur_index, buf_len;
874     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
875     MemoryDeviceInfoList *dimms = NULL;
876 
877     /*
878      * Don't create the node if there is no device memory
879      */
880     if (machine->ram_size == machine->maxram_size) {
881         return 0;
882     }
883 
884     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
885 
886     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
887                     sizeof(prop_lmb_size));
888     if (ret < 0) {
889         return ret;
890     }
891 
892     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
893     if (ret < 0) {
894         return ret;
895     }
896 
897     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
898     if (ret < 0) {
899         return ret;
900     }
901 
902     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
903     dimms = qmp_memory_device_list();
904     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
905         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
906     } else {
907         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
908     }
909     qapi_free_MemoryDeviceInfoList(dimms);
910 
911     if (ret < 0) {
912         return ret;
913     }
914 
915     /* ibm,associativity-lookup-arrays */
916     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
917     cur_index = int_buf = g_malloc0(buf_len);
918     int_buf[0] = cpu_to_be32(nr_nodes);
919     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
920     cur_index += 2;
921     for (i = 0; i < nr_nodes; i++) {
922         uint32_t associativity[] = {
923             cpu_to_be32(0x0),
924             cpu_to_be32(0x0),
925             cpu_to_be32(0x0),
926             cpu_to_be32(i)
927         };
928         memcpy(cur_index, associativity, sizeof(associativity));
929         cur_index += 4;
930     }
931     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
932             (cur_index - int_buf) * sizeof(uint32_t));
933     g_free(int_buf);
934 
935     return ret;
936 }
937 
938 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
939                                 SpaprOptionVector *ov5_updates)
940 {
941     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
942     int ret = 0, offset;
943 
944     /* Generate ibm,dynamic-reconfiguration-memory node if required */
945     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
946         g_assert(smc->dr_lmb_enabled);
947         ret = spapr_populate_drconf_memory(spapr, fdt);
948         if (ret) {
949             goto out;
950         }
951     }
952 
953     offset = fdt_path_offset(fdt, "/chosen");
954     if (offset < 0) {
955         offset = fdt_add_subnode(fdt, 0, "chosen");
956         if (offset < 0) {
957             return offset;
958         }
959     }
960     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
961                                  "ibm,architecture-vec-5");
962 
963 out:
964     return ret;
965 }
966 
967 static bool spapr_hotplugged_dev_before_cas(void)
968 {
969     Object *drc_container, *obj;
970     ObjectProperty *prop;
971     ObjectPropertyIterator iter;
972 
973     drc_container = container_get(object_get_root(), "/dr-connector");
974     object_property_iter_init(&iter, drc_container);
975     while ((prop = object_property_iter_next(&iter))) {
976         if (!strstart(prop->type, "link<", NULL)) {
977             continue;
978         }
979         obj = object_property_get_link(drc_container, prop->name, NULL);
980         if (spapr_drc_needed(obj)) {
981             return true;
982         }
983     }
984     return false;
985 }
986 
987 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
988                                  target_ulong addr, target_ulong size,
989                                  SpaprOptionVector *ov5_updates)
990 {
991     void *fdt, *fdt_skel;
992     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
993 
994     if (spapr_hotplugged_dev_before_cas()) {
995         return 1;
996     }
997 
998     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
999         error_report("SLOF provided an unexpected CAS buffer size "
1000                      TARGET_FMT_lu " (min: %zu, max: %u)",
1001                      size, sizeof(hdr), FW_MAX_SIZE);
1002         exit(EXIT_FAILURE);
1003     }
1004 
1005     size -= sizeof(hdr);
1006 
1007     /* Create skeleton */
1008     fdt_skel = g_malloc0(size);
1009     _FDT((fdt_create(fdt_skel, size)));
1010     _FDT((fdt_finish_reservemap(fdt_skel)));
1011     _FDT((fdt_begin_node(fdt_skel, "")));
1012     _FDT((fdt_end_node(fdt_skel)));
1013     _FDT((fdt_finish(fdt_skel)));
1014     fdt = g_malloc0(size);
1015     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1016     g_free(fdt_skel);
1017 
1018     /* Fixup cpu nodes */
1019     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1020 
1021     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1022         return -1;
1023     }
1024 
1025     /* Pack resulting tree */
1026     _FDT((fdt_pack(fdt)));
1027 
1028     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1029         trace_spapr_cas_failed(size);
1030         return -1;
1031     }
1032 
1033     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1034     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1035     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1036     g_free(fdt);
1037 
1038     return 0;
1039 }
1040 
1041 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1042 {
1043     MachineState *ms = MACHINE(spapr);
1044     int rtas;
1045     GString *hypertas = g_string_sized_new(256);
1046     GString *qemu_hypertas = g_string_sized_new(256);
1047     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1048     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1049         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1050     uint32_t lrdr_capacity[] = {
1051         cpu_to_be32(max_device_addr >> 32),
1052         cpu_to_be32(max_device_addr & 0xffffffff),
1053         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1054         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1055     };
1056     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1057     uint32_t maxdomains[] = {
1058         cpu_to_be32(4),
1059         maxdomain,
1060         maxdomain,
1061         maxdomain,
1062         cpu_to_be32(spapr->gpu_numa_id),
1063     };
1064 
1065     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1066 
1067     /* hypertas */
1068     add_str(hypertas, "hcall-pft");
1069     add_str(hypertas, "hcall-term");
1070     add_str(hypertas, "hcall-dabr");
1071     add_str(hypertas, "hcall-interrupt");
1072     add_str(hypertas, "hcall-tce");
1073     add_str(hypertas, "hcall-vio");
1074     add_str(hypertas, "hcall-splpar");
1075     add_str(hypertas, "hcall-join");
1076     add_str(hypertas, "hcall-bulk");
1077     add_str(hypertas, "hcall-set-mode");
1078     add_str(hypertas, "hcall-sprg0");
1079     add_str(hypertas, "hcall-copy");
1080     add_str(hypertas, "hcall-debug");
1081     add_str(hypertas, "hcall-vphn");
1082     add_str(qemu_hypertas, "hcall-memop1");
1083 
1084     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1085         add_str(hypertas, "hcall-multi-tce");
1086     }
1087 
1088     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1089         add_str(hypertas, "hcall-hpt-resize");
1090     }
1091 
1092     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1093                      hypertas->str, hypertas->len));
1094     g_string_free(hypertas, TRUE);
1095     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1096                      qemu_hypertas->str, qemu_hypertas->len));
1097     g_string_free(qemu_hypertas, TRUE);
1098 
1099     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1100                      refpoints, sizeof(refpoints)));
1101 
1102     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1103                      maxdomains, sizeof(maxdomains)));
1104 
1105     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1106                           RTAS_ERROR_LOG_MAX));
1107     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1108                           RTAS_EVENT_SCAN_RATE));
1109 
1110     g_assert(msi_nonbroken);
1111     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1112 
1113     /*
1114      * According to PAPR, rtas ibm,os-term does not guarantee a return
1115      * back to the guest cpu.
1116      *
1117      * While an additional ibm,extended-os-term property indicates
1118      * that rtas call return will always occur. Set this property.
1119      */
1120     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1121 
1122     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1123                      lrdr_capacity, sizeof(lrdr_capacity)));
1124 
1125     spapr_dt_rtas_tokens(fdt, rtas);
1126 }
1127 
1128 /*
1129  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1130  * and the XIVE features that the guest may request and thus the valid
1131  * values for bytes 23..26 of option vector 5:
1132  */
1133 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1134                                           int chosen)
1135 {
1136     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1137 
1138     char val[2 * 4] = {
1139         23, spapr->irq->ov5, /* Xive mode. */
1140         24, 0x00, /* Hash/Radix, filled in below. */
1141         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1142         26, 0x40, /* Radix options: GTSE == yes. */
1143     };
1144 
1145     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1146                           first_ppc_cpu->compat_pvr)) {
1147         /*
1148          * If we're in a pre POWER9 compat mode then the guest should
1149          * do hash and use the legacy interrupt mode
1150          */
1151         val[1] = 0x00; /* XICS */
1152         val[3] = 0x00; /* Hash */
1153     } else if (kvm_enabled()) {
1154         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1155             val[3] = 0x80; /* OV5_MMU_BOTH */
1156         } else if (kvmppc_has_cap_mmu_radix()) {
1157             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1158         } else {
1159             val[3] = 0x00; /* Hash */
1160         }
1161     } else {
1162         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1163         val[3] = 0xC0;
1164     }
1165     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1166                      val, sizeof(val)));
1167 }
1168 
1169 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1170 {
1171     MachineState *machine = MACHINE(spapr);
1172     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1173     int chosen;
1174     const char *boot_device = machine->boot_order;
1175     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1176     size_t cb = 0;
1177     char *bootlist = get_boot_devices_list(&cb);
1178 
1179     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1180 
1181     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1182     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1183                           spapr->initrd_base));
1184     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1185                           spapr->initrd_base + spapr->initrd_size));
1186 
1187     if (spapr->kernel_size) {
1188         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1189                               cpu_to_be64(spapr->kernel_size) };
1190 
1191         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1192                          &kprop, sizeof(kprop)));
1193         if (spapr->kernel_le) {
1194             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1195         }
1196     }
1197     if (boot_menu) {
1198         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1199     }
1200     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1201     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1202     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1203 
1204     if (cb && bootlist) {
1205         int i;
1206 
1207         for (i = 0; i < cb; i++) {
1208             if (bootlist[i] == '\n') {
1209                 bootlist[i] = ' ';
1210             }
1211         }
1212         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1213     }
1214 
1215     if (boot_device && strlen(boot_device)) {
1216         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1217     }
1218 
1219     if (!spapr->has_graphics && stdout_path) {
1220         /*
1221          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1222          * kernel. New platforms should only use the "stdout-path" property. Set
1223          * the new property and continue using older property to remain
1224          * compatible with the existing firmware.
1225          */
1226         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1227         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1228     }
1229 
1230     /* We can deal with BAR reallocation just fine, advertise it to the guest */
1231     if (smc->linux_pci_probe) {
1232         _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1233     }
1234 
1235     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1236 
1237     g_free(stdout_path);
1238     g_free(bootlist);
1239 }
1240 
1241 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1242 {
1243     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1244      * KVM to work under pHyp with some guest co-operation */
1245     int hypervisor;
1246     uint8_t hypercall[16];
1247 
1248     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1249     /* indicate KVM hypercall interface */
1250     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1251     if (kvmppc_has_cap_fixup_hcalls()) {
1252         /*
1253          * Older KVM versions with older guest kernels were broken
1254          * with the magic page, don't allow the guest to map it.
1255          */
1256         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1257                                   sizeof(hypercall))) {
1258             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1259                              hypercall, sizeof(hypercall)));
1260         }
1261     }
1262 }
1263 
1264 static void *spapr_build_fdt(SpaprMachineState *spapr)
1265 {
1266     MachineState *machine = MACHINE(spapr);
1267     MachineClass *mc = MACHINE_GET_CLASS(machine);
1268     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1269     int ret;
1270     void *fdt;
1271     SpaprPhbState *phb;
1272     char *buf;
1273 
1274     fdt = g_malloc0(FDT_MAX_SIZE);
1275     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1276 
1277     /* Root node */
1278     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1279     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1280     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1281 
1282     /* Guest UUID & Name*/
1283     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1284     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1285     if (qemu_uuid_set) {
1286         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1287     }
1288     g_free(buf);
1289 
1290     if (qemu_get_vm_name()) {
1291         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1292                                 qemu_get_vm_name()));
1293     }
1294 
1295     /* Host Model & Serial Number */
1296     if (spapr->host_model) {
1297         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1298     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1299         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1300         g_free(buf);
1301     }
1302 
1303     if (spapr->host_serial) {
1304         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1305     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1306         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1307         g_free(buf);
1308     }
1309 
1310     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1311     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1312 
1313     /* /interrupt controller */
1314     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1315                           PHANDLE_INTC);
1316 
1317     ret = spapr_populate_memory(spapr, fdt);
1318     if (ret < 0) {
1319         error_report("couldn't setup memory nodes in fdt");
1320         exit(1);
1321     }
1322 
1323     /* /vdevice */
1324     spapr_dt_vdevice(spapr->vio_bus, fdt);
1325 
1326     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1327         ret = spapr_rng_populate_dt(fdt);
1328         if (ret < 0) {
1329             error_report("could not set up rng device in the fdt");
1330             exit(1);
1331         }
1332     }
1333 
1334     QLIST_FOREACH(phb, &spapr->phbs, list) {
1335         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1336         if (ret < 0) {
1337             error_report("couldn't setup PCI devices in fdt");
1338             exit(1);
1339         }
1340     }
1341 
1342     /* cpus */
1343     spapr_populate_cpus_dt_node(fdt, spapr);
1344 
1345     if (smc->dr_lmb_enabled) {
1346         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1347     }
1348 
1349     if (mc->has_hotpluggable_cpus) {
1350         int offset = fdt_path_offset(fdt, "/cpus");
1351         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1352         if (ret < 0) {
1353             error_report("Couldn't set up CPU DR device tree properties");
1354             exit(1);
1355         }
1356     }
1357 
1358     /* /event-sources */
1359     spapr_dt_events(spapr, fdt);
1360 
1361     /* /rtas */
1362     spapr_dt_rtas(spapr, fdt);
1363 
1364     /* /chosen */
1365     spapr_dt_chosen(spapr, fdt);
1366 
1367     /* /hypervisor */
1368     if (kvm_enabled()) {
1369         spapr_dt_hypervisor(spapr, fdt);
1370     }
1371 
1372     /* Build memory reserve map */
1373     if (spapr->kernel_size) {
1374         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1375     }
1376     if (spapr->initrd_size) {
1377         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1378     }
1379 
1380     /* ibm,client-architecture-support updates */
1381     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1382     if (ret < 0) {
1383         error_report("couldn't setup CAS properties fdt");
1384         exit(1);
1385     }
1386 
1387     if (smc->dr_phb_enabled) {
1388         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1389         if (ret < 0) {
1390             error_report("Couldn't set up PHB DR device tree properties");
1391             exit(1);
1392         }
1393     }
1394 
1395     return fdt;
1396 }
1397 
1398 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1399 {
1400     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1401 }
1402 
1403 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1404                                     PowerPCCPU *cpu)
1405 {
1406     CPUPPCState *env = &cpu->env;
1407 
1408     /* The TCG path should also be holding the BQL at this point */
1409     g_assert(qemu_mutex_iothread_locked());
1410 
1411     if (msr_pr) {
1412         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1413         env->gpr[3] = H_PRIVILEGE;
1414     } else {
1415         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1416     }
1417 }
1418 
1419 struct LPCRSyncState {
1420     target_ulong value;
1421     target_ulong mask;
1422 };
1423 
1424 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1425 {
1426     struct LPCRSyncState *s = arg.host_ptr;
1427     PowerPCCPU *cpu = POWERPC_CPU(cs);
1428     CPUPPCState *env = &cpu->env;
1429     target_ulong lpcr;
1430 
1431     cpu_synchronize_state(cs);
1432     lpcr = env->spr[SPR_LPCR];
1433     lpcr &= ~s->mask;
1434     lpcr |= s->value;
1435     ppc_store_lpcr(cpu, lpcr);
1436 }
1437 
1438 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1439 {
1440     CPUState *cs;
1441     struct LPCRSyncState s = {
1442         .value = value,
1443         .mask = mask
1444     };
1445     CPU_FOREACH(cs) {
1446         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1447     }
1448 }
1449 
1450 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1451 {
1452     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1453 
1454     /* Copy PATE1:GR into PATE0:HR */
1455     entry->dw0 = spapr->patb_entry & PATE0_HR;
1456     entry->dw1 = spapr->patb_entry;
1457 }
1458 
1459 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1460 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1461 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1462 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1463 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1464 
1465 /*
1466  * Get the fd to access the kernel htab, re-opening it if necessary
1467  */
1468 static int get_htab_fd(SpaprMachineState *spapr)
1469 {
1470     Error *local_err = NULL;
1471 
1472     if (spapr->htab_fd >= 0) {
1473         return spapr->htab_fd;
1474     }
1475 
1476     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1477     if (spapr->htab_fd < 0) {
1478         error_report_err(local_err);
1479     }
1480 
1481     return spapr->htab_fd;
1482 }
1483 
1484 void close_htab_fd(SpaprMachineState *spapr)
1485 {
1486     if (spapr->htab_fd >= 0) {
1487         close(spapr->htab_fd);
1488     }
1489     spapr->htab_fd = -1;
1490 }
1491 
1492 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1493 {
1494     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1495 
1496     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1497 }
1498 
1499 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1500 {
1501     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1502 
1503     assert(kvm_enabled());
1504 
1505     if (!spapr->htab) {
1506         return 0;
1507     }
1508 
1509     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1510 }
1511 
1512 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1513                                                 hwaddr ptex, int n)
1514 {
1515     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1516     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1517 
1518     if (!spapr->htab) {
1519         /*
1520          * HTAB is controlled by KVM. Fetch into temporary buffer
1521          */
1522         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1523         kvmppc_read_hptes(hptes, ptex, n);
1524         return hptes;
1525     }
1526 
1527     /*
1528      * HTAB is controlled by QEMU. Just point to the internally
1529      * accessible PTEG.
1530      */
1531     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1532 }
1533 
1534 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1535                               const ppc_hash_pte64_t *hptes,
1536                               hwaddr ptex, int n)
1537 {
1538     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1539 
1540     if (!spapr->htab) {
1541         g_free((void *)hptes);
1542     }
1543 
1544     /* Nothing to do for qemu managed HPT */
1545 }
1546 
1547 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1548                       uint64_t pte0, uint64_t pte1)
1549 {
1550     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1551     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1552 
1553     if (!spapr->htab) {
1554         kvmppc_write_hpte(ptex, pte0, pte1);
1555     } else {
1556         if (pte0 & HPTE64_V_VALID) {
1557             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1558             /*
1559              * When setting valid, we write PTE1 first. This ensures
1560              * proper synchronization with the reading code in
1561              * ppc_hash64_pteg_search()
1562              */
1563             smp_wmb();
1564             stq_p(spapr->htab + offset, pte0);
1565         } else {
1566             stq_p(spapr->htab + offset, pte0);
1567             /*
1568              * When clearing it we set PTE0 first. This ensures proper
1569              * synchronization with the reading code in
1570              * ppc_hash64_pteg_search()
1571              */
1572             smp_wmb();
1573             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1574         }
1575     }
1576 }
1577 
1578 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1579                              uint64_t pte1)
1580 {
1581     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1582     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1583 
1584     if (!spapr->htab) {
1585         /* There should always be a hash table when this is called */
1586         error_report("spapr_hpte_set_c called with no hash table !");
1587         return;
1588     }
1589 
1590     /* The HW performs a non-atomic byte update */
1591     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1592 }
1593 
1594 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1595                              uint64_t pte1)
1596 {
1597     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1598     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1599 
1600     if (!spapr->htab) {
1601         /* There should always be a hash table when this is called */
1602         error_report("spapr_hpte_set_r called with no hash table !");
1603         return;
1604     }
1605 
1606     /* The HW performs a non-atomic byte update */
1607     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1608 }
1609 
1610 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1611 {
1612     int shift;
1613 
1614     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1615      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1616      * that's much more than is needed for Linux guests */
1617     shift = ctz64(pow2ceil(ramsize)) - 7;
1618     shift = MAX(shift, 18); /* Minimum architected size */
1619     shift = MIN(shift, 46); /* Maximum architected size */
1620     return shift;
1621 }
1622 
1623 void spapr_free_hpt(SpaprMachineState *spapr)
1624 {
1625     g_free(spapr->htab);
1626     spapr->htab = NULL;
1627     spapr->htab_shift = 0;
1628     close_htab_fd(spapr);
1629 }
1630 
1631 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1632                           Error **errp)
1633 {
1634     long rc;
1635 
1636     /* Clean up any HPT info from a previous boot */
1637     spapr_free_hpt(spapr);
1638 
1639     rc = kvmppc_reset_htab(shift);
1640     if (rc < 0) {
1641         /* kernel-side HPT needed, but couldn't allocate one */
1642         error_setg_errno(errp, errno,
1643                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1644                          shift);
1645         /* This is almost certainly fatal, but if the caller really
1646          * wants to carry on with shift == 0, it's welcome to try */
1647     } else if (rc > 0) {
1648         /* kernel-side HPT allocated */
1649         if (rc != shift) {
1650             error_setg(errp,
1651                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1652                        shift, rc);
1653         }
1654 
1655         spapr->htab_shift = shift;
1656         spapr->htab = NULL;
1657     } else {
1658         /* kernel-side HPT not needed, allocate in userspace instead */
1659         size_t size = 1ULL << shift;
1660         int i;
1661 
1662         spapr->htab = qemu_memalign(size, size);
1663         if (!spapr->htab) {
1664             error_setg_errno(errp, errno,
1665                              "Could not allocate HPT of order %d", shift);
1666             return;
1667         }
1668 
1669         memset(spapr->htab, 0, size);
1670         spapr->htab_shift = shift;
1671 
1672         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1673             DIRTY_HPTE(HPTE(spapr->htab, i));
1674         }
1675     }
1676     /* We're setting up a hash table, so that means we're not radix */
1677     spapr->patb_entry = 0;
1678     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1679 }
1680 
1681 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1682 {
1683     int hpt_shift;
1684 
1685     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1686         || (spapr->cas_reboot
1687             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1688         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1689     } else {
1690         uint64_t current_ram_size;
1691 
1692         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1693         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1694     }
1695     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1696 
1697     if (spapr->vrma_adjust) {
1698         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1699                                           spapr->htab_shift);
1700     }
1701 }
1702 
1703 static int spapr_reset_drcs(Object *child, void *opaque)
1704 {
1705     SpaprDrc *drc =
1706         (SpaprDrc *) object_dynamic_cast(child,
1707                                                  TYPE_SPAPR_DR_CONNECTOR);
1708 
1709     if (drc) {
1710         spapr_drc_reset(drc);
1711     }
1712 
1713     return 0;
1714 }
1715 
1716 static void spapr_machine_reset(MachineState *machine)
1717 {
1718     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1719     PowerPCCPU *first_ppc_cpu;
1720     uint32_t rtas_limit;
1721     hwaddr rtas_addr, fdt_addr;
1722     void *fdt;
1723     int rc;
1724 
1725     spapr_caps_apply(spapr);
1726 
1727     first_ppc_cpu = POWERPC_CPU(first_cpu);
1728     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1729         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1730                               spapr->max_compat_pvr)) {
1731         /*
1732          * If using KVM with radix mode available, VCPUs can be started
1733          * without a HPT because KVM will start them in radix mode.
1734          * Set the GR bit in PATE so that we know there is no HPT.
1735          */
1736         spapr->patb_entry = PATE1_GR;
1737         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1738     } else {
1739         spapr_setup_hpt_and_vrma(spapr);
1740     }
1741 
1742     /*
1743      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1744      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1745      * called from vPHB reset handler so we initialize the counter here.
1746      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1747      * must be equally distant from any other node.
1748      * The final value of spapr->gpu_numa_id is going to be written to
1749      * max-associativity-domains in spapr_build_fdt().
1750      */
1751     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
1752     qemu_devices_reset();
1753 
1754     /*
1755      * If this reset wasn't generated by CAS, we should reset our
1756      * negotiated options and start from scratch
1757      */
1758     if (!spapr->cas_reboot) {
1759         spapr_ovec_cleanup(spapr->ov5_cas);
1760         spapr->ov5_cas = spapr_ovec_new();
1761 
1762         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1763     }
1764 
1765     /*
1766      * This is fixing some of the default configuration of the XIVE
1767      * devices. To be called after the reset of the machine devices.
1768      */
1769     spapr_irq_reset(spapr, &error_fatal);
1770 
1771     /*
1772      * There is no CAS under qtest. Simulate one to please the code that
1773      * depends on spapr->ov5_cas. This is especially needed to test device
1774      * unplug, so we do that before resetting the DRCs.
1775      */
1776     if (qtest_enabled()) {
1777         spapr_ovec_cleanup(spapr->ov5_cas);
1778         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1779     }
1780 
1781     /* DRC reset may cause a device to be unplugged. This will cause troubles
1782      * if this device is used by another device (eg, a running vhost backend
1783      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1784      * situations, we reset DRCs after all devices have been reset.
1785      */
1786     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1787 
1788     spapr_clear_pending_events(spapr);
1789 
1790     /*
1791      * We place the device tree and RTAS just below either the top of the RMA,
1792      * or just below 2GB, whichever is lower, so that it can be
1793      * processed with 32-bit real mode code if necessary
1794      */
1795     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1796     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1797     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1798 
1799     fdt = spapr_build_fdt(spapr);
1800 
1801     spapr_load_rtas(spapr, fdt, rtas_addr);
1802 
1803     rc = fdt_pack(fdt);
1804 
1805     /* Should only fail if we've built a corrupted tree */
1806     assert(rc == 0);
1807 
1808     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1809         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1810                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1811         exit(1);
1812     }
1813 
1814     /* Load the fdt */
1815     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1816     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1817     g_free(spapr->fdt_blob);
1818     spapr->fdt_size = fdt_totalsize(fdt);
1819     spapr->fdt_initial_size = spapr->fdt_size;
1820     spapr->fdt_blob = fdt;
1821 
1822     /* Set up the entry state */
1823     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1824     first_ppc_cpu->env.gpr[5] = 0;
1825 
1826     spapr->cas_reboot = false;
1827 }
1828 
1829 static void spapr_create_nvram(SpaprMachineState *spapr)
1830 {
1831     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1832     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1833 
1834     if (dinfo) {
1835         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1836                             &error_fatal);
1837     }
1838 
1839     qdev_init_nofail(dev);
1840 
1841     spapr->nvram = (struct SpaprNvram *)dev;
1842 }
1843 
1844 static void spapr_rtc_create(SpaprMachineState *spapr)
1845 {
1846     object_initialize_child(OBJECT(spapr), "rtc",
1847                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1848                             &error_fatal, NULL);
1849     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1850                               &error_fatal);
1851     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1852                               "date", &error_fatal);
1853 }
1854 
1855 /* Returns whether we want to use VGA or not */
1856 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1857 {
1858     switch (vga_interface_type) {
1859     case VGA_NONE:
1860         return false;
1861     case VGA_DEVICE:
1862         return true;
1863     case VGA_STD:
1864     case VGA_VIRTIO:
1865     case VGA_CIRRUS:
1866         return pci_vga_init(pci_bus) != NULL;
1867     default:
1868         error_setg(errp,
1869                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1870         return false;
1871     }
1872 }
1873 
1874 static int spapr_pre_load(void *opaque)
1875 {
1876     int rc;
1877 
1878     rc = spapr_caps_pre_load(opaque);
1879     if (rc) {
1880         return rc;
1881     }
1882 
1883     return 0;
1884 }
1885 
1886 static int spapr_post_load(void *opaque, int version_id)
1887 {
1888     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1889     int err = 0;
1890 
1891     err = spapr_caps_post_migration(spapr);
1892     if (err) {
1893         return err;
1894     }
1895 
1896     /*
1897      * In earlier versions, there was no separate qdev for the PAPR
1898      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1899      * So when migrating from those versions, poke the incoming offset
1900      * value into the RTC device
1901      */
1902     if (version_id < 3) {
1903         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1904         if (err) {
1905             return err;
1906         }
1907     }
1908 
1909     if (kvm_enabled() && spapr->patb_entry) {
1910         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1911         bool radix = !!(spapr->patb_entry & PATE1_GR);
1912         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1913 
1914         /*
1915          * Update LPCR:HR and UPRT as they may not be set properly in
1916          * the stream
1917          */
1918         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1919                             LPCR_HR | LPCR_UPRT);
1920 
1921         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1922         if (err) {
1923             error_report("Process table config unsupported by the host");
1924             return -EINVAL;
1925         }
1926     }
1927 
1928     err = spapr_irq_post_load(spapr, version_id);
1929     if (err) {
1930         return err;
1931     }
1932 
1933     return err;
1934 }
1935 
1936 static int spapr_pre_save(void *opaque)
1937 {
1938     int rc;
1939 
1940     rc = spapr_caps_pre_save(opaque);
1941     if (rc) {
1942         return rc;
1943     }
1944 
1945     return 0;
1946 }
1947 
1948 static bool version_before_3(void *opaque, int version_id)
1949 {
1950     return version_id < 3;
1951 }
1952 
1953 static bool spapr_pending_events_needed(void *opaque)
1954 {
1955     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1956     return !QTAILQ_EMPTY(&spapr->pending_events);
1957 }
1958 
1959 static const VMStateDescription vmstate_spapr_event_entry = {
1960     .name = "spapr_event_log_entry",
1961     .version_id = 1,
1962     .minimum_version_id = 1,
1963     .fields = (VMStateField[]) {
1964         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1965         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1966         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1967                                      NULL, extended_length),
1968         VMSTATE_END_OF_LIST()
1969     },
1970 };
1971 
1972 static const VMStateDescription vmstate_spapr_pending_events = {
1973     .name = "spapr_pending_events",
1974     .version_id = 1,
1975     .minimum_version_id = 1,
1976     .needed = spapr_pending_events_needed,
1977     .fields = (VMStateField[]) {
1978         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1979                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1980         VMSTATE_END_OF_LIST()
1981     },
1982 };
1983 
1984 static bool spapr_ov5_cas_needed(void *opaque)
1985 {
1986     SpaprMachineState *spapr = opaque;
1987     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1988     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1989     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1990     bool cas_needed;
1991 
1992     /* Prior to the introduction of SpaprOptionVector, we had two option
1993      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1994      * Both of these options encode machine topology into the device-tree
1995      * in such a way that the now-booted OS should still be able to interact
1996      * appropriately with QEMU regardless of what options were actually
1997      * negotiatied on the source side.
1998      *
1999      * As such, we can avoid migrating the CAS-negotiated options if these
2000      * are the only options available on the current machine/platform.
2001      * Since these are the only options available for pseries-2.7 and
2002      * earlier, this allows us to maintain old->new/new->old migration
2003      * compatibility.
2004      *
2005      * For QEMU 2.8+, there are additional CAS-negotiatable options available
2006      * via default pseries-2.8 machines and explicit command-line parameters.
2007      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2008      * of the actual CAS-negotiated values to continue working properly. For
2009      * example, availability of memory unplug depends on knowing whether
2010      * OV5_HP_EVT was negotiated via CAS.
2011      *
2012      * Thus, for any cases where the set of available CAS-negotiatable
2013      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2014      * include the CAS-negotiated options in the migration stream, unless
2015      * if they affect boot time behaviour only.
2016      */
2017     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2018     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2019     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2020 
2021     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2022      * the mask itself since in the future it's possible "legacy" bits may be
2023      * removed via machine options, which could generate a false positive
2024      * that breaks migration.
2025      */
2026     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2027     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2028 
2029     spapr_ovec_cleanup(ov5_mask);
2030     spapr_ovec_cleanup(ov5_legacy);
2031     spapr_ovec_cleanup(ov5_removed);
2032 
2033     return cas_needed;
2034 }
2035 
2036 static const VMStateDescription vmstate_spapr_ov5_cas = {
2037     .name = "spapr_option_vector_ov5_cas",
2038     .version_id = 1,
2039     .minimum_version_id = 1,
2040     .needed = spapr_ov5_cas_needed,
2041     .fields = (VMStateField[]) {
2042         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2043                                  vmstate_spapr_ovec, SpaprOptionVector),
2044         VMSTATE_END_OF_LIST()
2045     },
2046 };
2047 
2048 static bool spapr_patb_entry_needed(void *opaque)
2049 {
2050     SpaprMachineState *spapr = opaque;
2051 
2052     return !!spapr->patb_entry;
2053 }
2054 
2055 static const VMStateDescription vmstate_spapr_patb_entry = {
2056     .name = "spapr_patb_entry",
2057     .version_id = 1,
2058     .minimum_version_id = 1,
2059     .needed = spapr_patb_entry_needed,
2060     .fields = (VMStateField[]) {
2061         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2062         VMSTATE_END_OF_LIST()
2063     },
2064 };
2065 
2066 static bool spapr_irq_map_needed(void *opaque)
2067 {
2068     SpaprMachineState *spapr = opaque;
2069 
2070     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2071 }
2072 
2073 static const VMStateDescription vmstate_spapr_irq_map = {
2074     .name = "spapr_irq_map",
2075     .version_id = 1,
2076     .minimum_version_id = 1,
2077     .needed = spapr_irq_map_needed,
2078     .fields = (VMStateField[]) {
2079         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2080         VMSTATE_END_OF_LIST()
2081     },
2082 };
2083 
2084 static bool spapr_dtb_needed(void *opaque)
2085 {
2086     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2087 
2088     return smc->update_dt_enabled;
2089 }
2090 
2091 static int spapr_dtb_pre_load(void *opaque)
2092 {
2093     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2094 
2095     g_free(spapr->fdt_blob);
2096     spapr->fdt_blob = NULL;
2097     spapr->fdt_size = 0;
2098 
2099     return 0;
2100 }
2101 
2102 static const VMStateDescription vmstate_spapr_dtb = {
2103     .name = "spapr_dtb",
2104     .version_id = 1,
2105     .minimum_version_id = 1,
2106     .needed = spapr_dtb_needed,
2107     .pre_load = spapr_dtb_pre_load,
2108     .fields = (VMStateField[]) {
2109         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2110         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2111         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2112                                      fdt_size),
2113         VMSTATE_END_OF_LIST()
2114     },
2115 };
2116 
2117 static const VMStateDescription vmstate_spapr = {
2118     .name = "spapr",
2119     .version_id = 3,
2120     .minimum_version_id = 1,
2121     .pre_load = spapr_pre_load,
2122     .post_load = spapr_post_load,
2123     .pre_save = spapr_pre_save,
2124     .fields = (VMStateField[]) {
2125         /* used to be @next_irq */
2126         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2127 
2128         /* RTC offset */
2129         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2130 
2131         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2132         VMSTATE_END_OF_LIST()
2133     },
2134     .subsections = (const VMStateDescription*[]) {
2135         &vmstate_spapr_ov5_cas,
2136         &vmstate_spapr_patb_entry,
2137         &vmstate_spapr_pending_events,
2138         &vmstate_spapr_cap_htm,
2139         &vmstate_spapr_cap_vsx,
2140         &vmstate_spapr_cap_dfp,
2141         &vmstate_spapr_cap_cfpc,
2142         &vmstate_spapr_cap_sbbc,
2143         &vmstate_spapr_cap_ibs,
2144         &vmstate_spapr_cap_hpt_maxpagesize,
2145         &vmstate_spapr_irq_map,
2146         &vmstate_spapr_cap_nested_kvm_hv,
2147         &vmstate_spapr_dtb,
2148         &vmstate_spapr_cap_large_decr,
2149         &vmstate_spapr_cap_ccf_assist,
2150         NULL
2151     }
2152 };
2153 
2154 static int htab_save_setup(QEMUFile *f, void *opaque)
2155 {
2156     SpaprMachineState *spapr = opaque;
2157 
2158     /* "Iteration" header */
2159     if (!spapr->htab_shift) {
2160         qemu_put_be32(f, -1);
2161     } else {
2162         qemu_put_be32(f, spapr->htab_shift);
2163     }
2164 
2165     if (spapr->htab) {
2166         spapr->htab_save_index = 0;
2167         spapr->htab_first_pass = true;
2168     } else {
2169         if (spapr->htab_shift) {
2170             assert(kvm_enabled());
2171         }
2172     }
2173 
2174 
2175     return 0;
2176 }
2177 
2178 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2179                             int chunkstart, int n_valid, int n_invalid)
2180 {
2181     qemu_put_be32(f, chunkstart);
2182     qemu_put_be16(f, n_valid);
2183     qemu_put_be16(f, n_invalid);
2184     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2185                     HASH_PTE_SIZE_64 * n_valid);
2186 }
2187 
2188 static void htab_save_end_marker(QEMUFile *f)
2189 {
2190     qemu_put_be32(f, 0);
2191     qemu_put_be16(f, 0);
2192     qemu_put_be16(f, 0);
2193 }
2194 
2195 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2196                                  int64_t max_ns)
2197 {
2198     bool has_timeout = max_ns != -1;
2199     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2200     int index = spapr->htab_save_index;
2201     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2202 
2203     assert(spapr->htab_first_pass);
2204 
2205     do {
2206         int chunkstart;
2207 
2208         /* Consume invalid HPTEs */
2209         while ((index < htabslots)
2210                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2211             CLEAN_HPTE(HPTE(spapr->htab, index));
2212             index++;
2213         }
2214 
2215         /* Consume valid HPTEs */
2216         chunkstart = index;
2217         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2218                && HPTE_VALID(HPTE(spapr->htab, index))) {
2219             CLEAN_HPTE(HPTE(spapr->htab, index));
2220             index++;
2221         }
2222 
2223         if (index > chunkstart) {
2224             int n_valid = index - chunkstart;
2225 
2226             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2227 
2228             if (has_timeout &&
2229                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2230                 break;
2231             }
2232         }
2233     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2234 
2235     if (index >= htabslots) {
2236         assert(index == htabslots);
2237         index = 0;
2238         spapr->htab_first_pass = false;
2239     }
2240     spapr->htab_save_index = index;
2241 }
2242 
2243 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2244                                 int64_t max_ns)
2245 {
2246     bool final = max_ns < 0;
2247     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2248     int examined = 0, sent = 0;
2249     int index = spapr->htab_save_index;
2250     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2251 
2252     assert(!spapr->htab_first_pass);
2253 
2254     do {
2255         int chunkstart, invalidstart;
2256 
2257         /* Consume non-dirty HPTEs */
2258         while ((index < htabslots)
2259                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2260             index++;
2261             examined++;
2262         }
2263 
2264         chunkstart = index;
2265         /* Consume valid dirty HPTEs */
2266         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2267                && HPTE_DIRTY(HPTE(spapr->htab, index))
2268                && HPTE_VALID(HPTE(spapr->htab, index))) {
2269             CLEAN_HPTE(HPTE(spapr->htab, index));
2270             index++;
2271             examined++;
2272         }
2273 
2274         invalidstart = index;
2275         /* Consume invalid dirty HPTEs */
2276         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2277                && HPTE_DIRTY(HPTE(spapr->htab, index))
2278                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2279             CLEAN_HPTE(HPTE(spapr->htab, index));
2280             index++;
2281             examined++;
2282         }
2283 
2284         if (index > chunkstart) {
2285             int n_valid = invalidstart - chunkstart;
2286             int n_invalid = index - invalidstart;
2287 
2288             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2289             sent += index - chunkstart;
2290 
2291             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2292                 break;
2293             }
2294         }
2295 
2296         if (examined >= htabslots) {
2297             break;
2298         }
2299 
2300         if (index >= htabslots) {
2301             assert(index == htabslots);
2302             index = 0;
2303         }
2304     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2305 
2306     if (index >= htabslots) {
2307         assert(index == htabslots);
2308         index = 0;
2309     }
2310 
2311     spapr->htab_save_index = index;
2312 
2313     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2314 }
2315 
2316 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2317 #define MAX_KVM_BUF_SIZE    2048
2318 
2319 static int htab_save_iterate(QEMUFile *f, void *opaque)
2320 {
2321     SpaprMachineState *spapr = opaque;
2322     int fd;
2323     int rc = 0;
2324 
2325     /* Iteration header */
2326     if (!spapr->htab_shift) {
2327         qemu_put_be32(f, -1);
2328         return 1;
2329     } else {
2330         qemu_put_be32(f, 0);
2331     }
2332 
2333     if (!spapr->htab) {
2334         assert(kvm_enabled());
2335 
2336         fd = get_htab_fd(spapr);
2337         if (fd < 0) {
2338             return fd;
2339         }
2340 
2341         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2342         if (rc < 0) {
2343             return rc;
2344         }
2345     } else  if (spapr->htab_first_pass) {
2346         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2347     } else {
2348         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2349     }
2350 
2351     htab_save_end_marker(f);
2352 
2353     return rc;
2354 }
2355 
2356 static int htab_save_complete(QEMUFile *f, void *opaque)
2357 {
2358     SpaprMachineState *spapr = opaque;
2359     int fd;
2360 
2361     /* Iteration header */
2362     if (!spapr->htab_shift) {
2363         qemu_put_be32(f, -1);
2364         return 0;
2365     } else {
2366         qemu_put_be32(f, 0);
2367     }
2368 
2369     if (!spapr->htab) {
2370         int rc;
2371 
2372         assert(kvm_enabled());
2373 
2374         fd = get_htab_fd(spapr);
2375         if (fd < 0) {
2376             return fd;
2377         }
2378 
2379         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2380         if (rc < 0) {
2381             return rc;
2382         }
2383     } else {
2384         if (spapr->htab_first_pass) {
2385             htab_save_first_pass(f, spapr, -1);
2386         }
2387         htab_save_later_pass(f, spapr, -1);
2388     }
2389 
2390     /* End marker */
2391     htab_save_end_marker(f);
2392 
2393     return 0;
2394 }
2395 
2396 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2397 {
2398     SpaprMachineState *spapr = opaque;
2399     uint32_t section_hdr;
2400     int fd = -1;
2401     Error *local_err = NULL;
2402 
2403     if (version_id < 1 || version_id > 1) {
2404         error_report("htab_load() bad version");
2405         return -EINVAL;
2406     }
2407 
2408     section_hdr = qemu_get_be32(f);
2409 
2410     if (section_hdr == -1) {
2411         spapr_free_hpt(spapr);
2412         return 0;
2413     }
2414 
2415     if (section_hdr) {
2416         /* First section gives the htab size */
2417         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2418         if (local_err) {
2419             error_report_err(local_err);
2420             return -EINVAL;
2421         }
2422         return 0;
2423     }
2424 
2425     if (!spapr->htab) {
2426         assert(kvm_enabled());
2427 
2428         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2429         if (fd < 0) {
2430             error_report_err(local_err);
2431             return fd;
2432         }
2433     }
2434 
2435     while (true) {
2436         uint32_t index;
2437         uint16_t n_valid, n_invalid;
2438 
2439         index = qemu_get_be32(f);
2440         n_valid = qemu_get_be16(f);
2441         n_invalid = qemu_get_be16(f);
2442 
2443         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2444             /* End of Stream */
2445             break;
2446         }
2447 
2448         if ((index + n_valid + n_invalid) >
2449             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2450             /* Bad index in stream */
2451             error_report(
2452                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2453                 index, n_valid, n_invalid, spapr->htab_shift);
2454             return -EINVAL;
2455         }
2456 
2457         if (spapr->htab) {
2458             if (n_valid) {
2459                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2460                                 HASH_PTE_SIZE_64 * n_valid);
2461             }
2462             if (n_invalid) {
2463                 memset(HPTE(spapr->htab, index + n_valid), 0,
2464                        HASH_PTE_SIZE_64 * n_invalid);
2465             }
2466         } else {
2467             int rc;
2468 
2469             assert(fd >= 0);
2470 
2471             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2472             if (rc < 0) {
2473                 return rc;
2474             }
2475         }
2476     }
2477 
2478     if (!spapr->htab) {
2479         assert(fd >= 0);
2480         close(fd);
2481     }
2482 
2483     return 0;
2484 }
2485 
2486 static void htab_save_cleanup(void *opaque)
2487 {
2488     SpaprMachineState *spapr = opaque;
2489 
2490     close_htab_fd(spapr);
2491 }
2492 
2493 static SaveVMHandlers savevm_htab_handlers = {
2494     .save_setup = htab_save_setup,
2495     .save_live_iterate = htab_save_iterate,
2496     .save_live_complete_precopy = htab_save_complete,
2497     .save_cleanup = htab_save_cleanup,
2498     .load_state = htab_load,
2499 };
2500 
2501 static void spapr_boot_set(void *opaque, const char *boot_device,
2502                            Error **errp)
2503 {
2504     MachineState *machine = MACHINE(opaque);
2505     machine->boot_order = g_strdup(boot_device);
2506 }
2507 
2508 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2509 {
2510     MachineState *machine = MACHINE(spapr);
2511     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2512     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2513     int i;
2514 
2515     for (i = 0; i < nr_lmbs; i++) {
2516         uint64_t addr;
2517 
2518         addr = i * lmb_size + machine->device_memory->base;
2519         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2520                                addr / lmb_size);
2521     }
2522 }
2523 
2524 /*
2525  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2526  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2527  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2528  */
2529 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2530 {
2531     int i;
2532 
2533     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2534         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2535                    " is not aligned to %" PRIu64 " MiB",
2536                    machine->ram_size,
2537                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2538         return;
2539     }
2540 
2541     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2542         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2543                    " is not aligned to %" PRIu64 " MiB",
2544                    machine->ram_size,
2545                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2546         return;
2547     }
2548 
2549     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2550         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2551             error_setg(errp,
2552                        "Node %d memory size 0x%" PRIx64
2553                        " is not aligned to %" PRIu64 " MiB",
2554                        i, machine->numa_state->nodes[i].node_mem,
2555                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2556             return;
2557         }
2558     }
2559 }
2560 
2561 /* find cpu slot in machine->possible_cpus by core_id */
2562 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2563 {
2564     int index = id / ms->smp.threads;
2565 
2566     if (index >= ms->possible_cpus->len) {
2567         return NULL;
2568     }
2569     if (idx) {
2570         *idx = index;
2571     }
2572     return &ms->possible_cpus->cpus[index];
2573 }
2574 
2575 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2576 {
2577     MachineState *ms = MACHINE(spapr);
2578     Error *local_err = NULL;
2579     bool vsmt_user = !!spapr->vsmt;
2580     int kvm_smt = kvmppc_smt_threads();
2581     int ret;
2582     unsigned int smp_threads = ms->smp.threads;
2583 
2584     if (!kvm_enabled() && (smp_threads > 1)) {
2585         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2586                      "on a pseries machine");
2587         goto out;
2588     }
2589     if (!is_power_of_2(smp_threads)) {
2590         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2591                      "machine because it must be a power of 2", smp_threads);
2592         goto out;
2593     }
2594 
2595     /* Detemine the VSMT mode to use: */
2596     if (vsmt_user) {
2597         if (spapr->vsmt < smp_threads) {
2598             error_setg(&local_err, "Cannot support VSMT mode %d"
2599                          " because it must be >= threads/core (%d)",
2600                          spapr->vsmt, smp_threads);
2601             goto out;
2602         }
2603         /* In this case, spapr->vsmt has been set by the command line */
2604     } else {
2605         /*
2606          * Default VSMT value is tricky, because we need it to be as
2607          * consistent as possible (for migration), but this requires
2608          * changing it for at least some existing cases.  We pick 8 as
2609          * the value that we'd get with KVM on POWER8, the
2610          * overwhelmingly common case in production systems.
2611          */
2612         spapr->vsmt = MAX(8, smp_threads);
2613     }
2614 
2615     /* KVM: If necessary, set the SMT mode: */
2616     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2617         ret = kvmppc_set_smt_threads(spapr->vsmt);
2618         if (ret) {
2619             /* Looks like KVM isn't able to change VSMT mode */
2620             error_setg(&local_err,
2621                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2622                        spapr->vsmt, ret);
2623             /* We can live with that if the default one is big enough
2624              * for the number of threads, and a submultiple of the one
2625              * we want.  In this case we'll waste some vcpu ids, but
2626              * behaviour will be correct */
2627             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2628                 warn_report_err(local_err);
2629                 local_err = NULL;
2630                 goto out;
2631             } else {
2632                 if (!vsmt_user) {
2633                     error_append_hint(&local_err,
2634                                       "On PPC, a VM with %d threads/core"
2635                                       " on a host with %d threads/core"
2636                                       " requires the use of VSMT mode %d.\n",
2637                                       smp_threads, kvm_smt, spapr->vsmt);
2638                 }
2639                 kvmppc_hint_smt_possible(&local_err);
2640                 goto out;
2641             }
2642         }
2643     }
2644     /* else TCG: nothing to do currently */
2645 out:
2646     error_propagate(errp, local_err);
2647 }
2648 
2649 static void spapr_init_cpus(SpaprMachineState *spapr)
2650 {
2651     MachineState *machine = MACHINE(spapr);
2652     MachineClass *mc = MACHINE_GET_CLASS(machine);
2653     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2654     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2655     const CPUArchIdList *possible_cpus;
2656     unsigned int smp_cpus = machine->smp.cpus;
2657     unsigned int smp_threads = machine->smp.threads;
2658     unsigned int max_cpus = machine->smp.max_cpus;
2659     int boot_cores_nr = smp_cpus / smp_threads;
2660     int i;
2661 
2662     possible_cpus = mc->possible_cpu_arch_ids(machine);
2663     if (mc->has_hotpluggable_cpus) {
2664         if (smp_cpus % smp_threads) {
2665             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2666                          smp_cpus, smp_threads);
2667             exit(1);
2668         }
2669         if (max_cpus % smp_threads) {
2670             error_report("max_cpus (%u) must be multiple of threads (%u)",
2671                          max_cpus, smp_threads);
2672             exit(1);
2673         }
2674     } else {
2675         if (max_cpus != smp_cpus) {
2676             error_report("This machine version does not support CPU hotplug");
2677             exit(1);
2678         }
2679         boot_cores_nr = possible_cpus->len;
2680     }
2681 
2682     if (smc->pre_2_10_has_unused_icps) {
2683         int i;
2684 
2685         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2686             /* Dummy entries get deregistered when real ICPState objects
2687              * are registered during CPU core hotplug.
2688              */
2689             pre_2_10_vmstate_register_dummy_icp(i);
2690         }
2691     }
2692 
2693     for (i = 0; i < possible_cpus->len; i++) {
2694         int core_id = i * smp_threads;
2695 
2696         if (mc->has_hotpluggable_cpus) {
2697             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2698                                    spapr_vcpu_id(spapr, core_id));
2699         }
2700 
2701         if (i < boot_cores_nr) {
2702             Object *core  = object_new(type);
2703             int nr_threads = smp_threads;
2704 
2705             /* Handle the partially filled core for older machine types */
2706             if ((i + 1) * smp_threads >= smp_cpus) {
2707                 nr_threads = smp_cpus - i * smp_threads;
2708             }
2709 
2710             object_property_set_int(core, nr_threads, "nr-threads",
2711                                     &error_fatal);
2712             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2713                                     &error_fatal);
2714             object_property_set_bool(core, true, "realized", &error_fatal);
2715 
2716             object_unref(core);
2717         }
2718     }
2719 }
2720 
2721 static PCIHostState *spapr_create_default_phb(void)
2722 {
2723     DeviceState *dev;
2724 
2725     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2726     qdev_prop_set_uint32(dev, "index", 0);
2727     qdev_init_nofail(dev);
2728 
2729     return PCI_HOST_BRIDGE(dev);
2730 }
2731 
2732 /* pSeries LPAR / sPAPR hardware init */
2733 static void spapr_machine_init(MachineState *machine)
2734 {
2735     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2736     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2737     const char *kernel_filename = machine->kernel_filename;
2738     const char *initrd_filename = machine->initrd_filename;
2739     PCIHostState *phb;
2740     int i;
2741     MemoryRegion *sysmem = get_system_memory();
2742     MemoryRegion *ram = g_new(MemoryRegion, 1);
2743     hwaddr node0_size = spapr_node0_size(machine);
2744     long load_limit, fw_size;
2745     char *filename;
2746     Error *resize_hpt_err = NULL;
2747 
2748     msi_nonbroken = true;
2749 
2750     QLIST_INIT(&spapr->phbs);
2751     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2752 
2753     /* Determine capabilities to run with */
2754     spapr_caps_init(spapr);
2755 
2756     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2757     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2758         /*
2759          * If the user explicitly requested a mode we should either
2760          * supply it, or fail completely (which we do below).  But if
2761          * it's not set explicitly, we reset our mode to something
2762          * that works
2763          */
2764         if (resize_hpt_err) {
2765             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2766             error_free(resize_hpt_err);
2767             resize_hpt_err = NULL;
2768         } else {
2769             spapr->resize_hpt = smc->resize_hpt_default;
2770         }
2771     }
2772 
2773     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2774 
2775     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2776         /*
2777          * User requested HPT resize, but this host can't supply it.  Bail out
2778          */
2779         error_report_err(resize_hpt_err);
2780         exit(1);
2781     }
2782 
2783     spapr->rma_size = node0_size;
2784 
2785     /* With KVM, we don't actually know whether KVM supports an
2786      * unbounded RMA (PR KVM) or is limited by the hash table size
2787      * (HV KVM using VRMA), so we always assume the latter
2788      *
2789      * In that case, we also limit the initial allocations for RTAS
2790      * etc... to 256M since we have no way to know what the VRMA size
2791      * is going to be as it depends on the size of the hash table
2792      * which isn't determined yet.
2793      */
2794     if (kvm_enabled()) {
2795         spapr->vrma_adjust = 1;
2796         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2797     }
2798 
2799     /* Actually we don't support unbounded RMA anymore since we added
2800      * proper emulation of HV mode. The max we can get is 16G which
2801      * also happens to be what we configure for PAPR mode so make sure
2802      * we don't do anything bigger than that
2803      */
2804     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2805 
2806     if (spapr->rma_size > node0_size) {
2807         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2808                      spapr->rma_size);
2809         exit(1);
2810     }
2811 
2812     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2813     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2814 
2815     /*
2816      * VSMT must be set in order to be able to compute VCPU ids, ie to
2817      * call spapr_max_server_number() or spapr_vcpu_id().
2818      */
2819     spapr_set_vsmt_mode(spapr, &error_fatal);
2820 
2821     /* Set up Interrupt Controller before we create the VCPUs */
2822     spapr_irq_init(spapr, &error_fatal);
2823 
2824     /* Set up containers for ibm,client-architecture-support negotiated options
2825      */
2826     spapr->ov5 = spapr_ovec_new();
2827     spapr->ov5_cas = spapr_ovec_new();
2828 
2829     if (smc->dr_lmb_enabled) {
2830         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2831         spapr_validate_node_memory(machine, &error_fatal);
2832     }
2833 
2834     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2835 
2836     /* advertise support for dedicated HP event source to guests */
2837     if (spapr->use_hotplug_event_source) {
2838         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2839     }
2840 
2841     /* advertise support for HPT resizing */
2842     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2843         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2844     }
2845 
2846     /* advertise support for ibm,dyamic-memory-v2 */
2847     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2848 
2849     /* advertise XIVE on POWER9 machines */
2850     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2851         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2852     }
2853 
2854     /* init CPUs */
2855     spapr_init_cpus(spapr);
2856 
2857     /*
2858      * check we don't have a memory-less/cpu-less NUMA node
2859      * Firmware relies on the existing memory/cpu topology to provide the
2860      * NUMA topology to the kernel.
2861      * And the linux kernel needs to know the NUMA topology at start
2862      * to be able to hotplug CPUs later.
2863      */
2864     if (machine->numa_state->num_nodes) {
2865         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2866             /* check for memory-less node */
2867             if (machine->numa_state->nodes[i].node_mem == 0) {
2868                 CPUState *cs;
2869                 int found = 0;
2870                 /* check for cpu-less node */
2871                 CPU_FOREACH(cs) {
2872                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2873                     if (cpu->node_id == i) {
2874                         found = 1;
2875                         break;
2876                     }
2877                 }
2878                 /* memory-less and cpu-less node */
2879                 if (!found) {
2880                     error_report(
2881                        "Memory-less/cpu-less nodes are not supported (node %d)",
2882                                  i);
2883                     exit(1);
2884                 }
2885             }
2886         }
2887 
2888     }
2889 
2890     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2891         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2892                               spapr->max_compat_pvr)) {
2893         /* KVM and TCG always allow GTSE with radix... */
2894         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2895     }
2896     /* ... but not with hash (currently). */
2897 
2898     if (kvm_enabled()) {
2899         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2900         kvmppc_enable_logical_ci_hcalls();
2901         kvmppc_enable_set_mode_hcall();
2902 
2903         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2904         kvmppc_enable_clear_ref_mod_hcalls();
2905 
2906         /* Enable H_PAGE_INIT */
2907         kvmppc_enable_h_page_init();
2908     }
2909 
2910     /* allocate RAM */
2911     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2912                                          machine->ram_size);
2913     memory_region_add_subregion(sysmem, 0, ram);
2914 
2915     /* always allocate the device memory information */
2916     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2917 
2918     /* initialize hotplug memory address space */
2919     if (machine->ram_size < machine->maxram_size) {
2920         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2921         /*
2922          * Limit the number of hotpluggable memory slots to half the number
2923          * slots that KVM supports, leaving the other half for PCI and other
2924          * devices. However ensure that number of slots doesn't drop below 32.
2925          */
2926         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2927                            SPAPR_MAX_RAM_SLOTS;
2928 
2929         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2930             max_memslots = SPAPR_MAX_RAM_SLOTS;
2931         }
2932         if (machine->ram_slots > max_memslots) {
2933             error_report("Specified number of memory slots %"
2934                          PRIu64" exceeds max supported %d",
2935                          machine->ram_slots, max_memslots);
2936             exit(1);
2937         }
2938 
2939         machine->device_memory->base = ROUND_UP(machine->ram_size,
2940                                                 SPAPR_DEVICE_MEM_ALIGN);
2941         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2942                            "device-memory", device_mem_size);
2943         memory_region_add_subregion(sysmem, machine->device_memory->base,
2944                                     &machine->device_memory->mr);
2945     }
2946 
2947     if (smc->dr_lmb_enabled) {
2948         spapr_create_lmb_dr_connectors(spapr);
2949     }
2950 
2951     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2952     if (!filename) {
2953         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2954         exit(1);
2955     }
2956     spapr->rtas_size = get_image_size(filename);
2957     if (spapr->rtas_size < 0) {
2958         error_report("Could not get size of LPAR rtas '%s'", filename);
2959         exit(1);
2960     }
2961     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2962     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2963         error_report("Could not load LPAR rtas '%s'", filename);
2964         exit(1);
2965     }
2966     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2967         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2968                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2969         exit(1);
2970     }
2971     g_free(filename);
2972 
2973     /* Set up RTAS event infrastructure */
2974     spapr_events_init(spapr);
2975 
2976     /* Set up the RTC RTAS interfaces */
2977     spapr_rtc_create(spapr);
2978 
2979     /* Set up VIO bus */
2980     spapr->vio_bus = spapr_vio_bus_init();
2981 
2982     for (i = 0; i < serial_max_hds(); i++) {
2983         if (serial_hd(i)) {
2984             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2985         }
2986     }
2987 
2988     /* We always have at least the nvram device on VIO */
2989     spapr_create_nvram(spapr);
2990 
2991     /*
2992      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2993      * connectors (described in root DT node's "ibm,drc-types" property)
2994      * are pre-initialized here. additional child connectors (such as
2995      * connectors for a PHBs PCI slots) are added as needed during their
2996      * parent's realization.
2997      */
2998     if (smc->dr_phb_enabled) {
2999         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3000             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3001         }
3002     }
3003 
3004     /* Set up PCI */
3005     spapr_pci_rtas_init();
3006 
3007     phb = spapr_create_default_phb();
3008 
3009     for (i = 0; i < nb_nics; i++) {
3010         NICInfo *nd = &nd_table[i];
3011 
3012         if (!nd->model) {
3013             nd->model = g_strdup("spapr-vlan");
3014         }
3015 
3016         if (g_str_equal(nd->model, "spapr-vlan") ||
3017             g_str_equal(nd->model, "ibmveth")) {
3018             spapr_vlan_create(spapr->vio_bus, nd);
3019         } else {
3020             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
3021         }
3022     }
3023 
3024     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3025         spapr_vscsi_create(spapr->vio_bus);
3026     }
3027 
3028     /* Graphics */
3029     if (spapr_vga_init(phb->bus, &error_fatal)) {
3030         spapr->has_graphics = true;
3031         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3032     }
3033 
3034     if (machine->usb) {
3035         if (smc->use_ohci_by_default) {
3036             pci_create_simple(phb->bus, -1, "pci-ohci");
3037         } else {
3038             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3039         }
3040 
3041         if (spapr->has_graphics) {
3042             USBBus *usb_bus = usb_bus_find(-1);
3043 
3044             usb_create_simple(usb_bus, "usb-kbd");
3045             usb_create_simple(usb_bus, "usb-mouse");
3046         }
3047     }
3048 
3049     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3050         error_report(
3051             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3052             MIN_RMA_SLOF);
3053         exit(1);
3054     }
3055 
3056     if (kernel_filename) {
3057         uint64_t lowaddr = 0;
3058 
3059         spapr->kernel_size = load_elf(kernel_filename, NULL,
3060                                       translate_kernel_address, NULL,
3061                                       NULL, &lowaddr, NULL, 1,
3062                                       PPC_ELF_MACHINE, 0, 0);
3063         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3064             spapr->kernel_size = load_elf(kernel_filename, NULL,
3065                                           translate_kernel_address, NULL, NULL,
3066                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3067                                           0, 0);
3068             spapr->kernel_le = spapr->kernel_size > 0;
3069         }
3070         if (spapr->kernel_size < 0) {
3071             error_report("error loading %s: %s", kernel_filename,
3072                          load_elf_strerror(spapr->kernel_size));
3073             exit(1);
3074         }
3075 
3076         /* load initrd */
3077         if (initrd_filename) {
3078             /* Try to locate the initrd in the gap between the kernel
3079              * and the firmware. Add a bit of space just in case
3080              */
3081             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3082                                   + 0x1ffff) & ~0xffff;
3083             spapr->initrd_size = load_image_targphys(initrd_filename,
3084                                                      spapr->initrd_base,
3085                                                      load_limit
3086                                                      - spapr->initrd_base);
3087             if (spapr->initrd_size < 0) {
3088                 error_report("could not load initial ram disk '%s'",
3089                              initrd_filename);
3090                 exit(1);
3091             }
3092         }
3093     }
3094 
3095     if (bios_name == NULL) {
3096         bios_name = FW_FILE_NAME;
3097     }
3098     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3099     if (!filename) {
3100         error_report("Could not find LPAR firmware '%s'", bios_name);
3101         exit(1);
3102     }
3103     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3104     if (fw_size <= 0) {
3105         error_report("Could not load LPAR firmware '%s'", filename);
3106         exit(1);
3107     }
3108     g_free(filename);
3109 
3110     /* FIXME: Should register things through the MachineState's qdev
3111      * interface, this is a legacy from the sPAPREnvironment structure
3112      * which predated MachineState but had a similar function */
3113     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3114     register_savevm_live("spapr/htab", -1, 1,
3115                          &savevm_htab_handlers, spapr);
3116 
3117     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3118                              &error_fatal);
3119 
3120     qemu_register_boot_set(spapr_boot_set, spapr);
3121 
3122     /*
3123      * Nothing needs to be done to resume a suspended guest because
3124      * suspending does not change the machine state, so no need for
3125      * a ->wakeup method.
3126      */
3127     qemu_register_wakeup_support();
3128 
3129     if (kvm_enabled()) {
3130         /* to stop and start vmclock */
3131         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3132                                          &spapr->tb);
3133 
3134         kvmppc_spapr_enable_inkernel_multitce();
3135     }
3136 }
3137 
3138 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3139 {
3140     if (!vm_type) {
3141         return 0;
3142     }
3143 
3144     if (!strcmp(vm_type, "HV")) {
3145         return 1;
3146     }
3147 
3148     if (!strcmp(vm_type, "PR")) {
3149         return 2;
3150     }
3151 
3152     error_report("Unknown kvm-type specified '%s'", vm_type);
3153     exit(1);
3154 }
3155 
3156 /*
3157  * Implementation of an interface to adjust firmware path
3158  * for the bootindex property handling.
3159  */
3160 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3161                                    DeviceState *dev)
3162 {
3163 #define CAST(type, obj, name) \
3164     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3165     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3166     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3167     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3168 
3169     if (d) {
3170         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3171         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3172         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3173 
3174         if (spapr) {
3175             /*
3176              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3177              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3178              * 0x8000 | (target << 8) | (bus << 5) | lun
3179              * (see the "Logical unit addressing format" table in SAM5)
3180              */
3181             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3182             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3183                                    (uint64_t)id << 48);
3184         } else if (virtio) {
3185             /*
3186              * We use SRP luns of the form 01000000 | (target << 8) | lun
3187              * in the top 32 bits of the 64-bit LUN
3188              * Note: the quote above is from SLOF and it is wrong,
3189              * the actual binding is:
3190              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3191              */
3192             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3193             if (d->lun >= 256) {
3194                 /* Use the LUN "flat space addressing method" */
3195                 id |= 0x4000;
3196             }
3197             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3198                                    (uint64_t)id << 32);
3199         } else if (usb) {
3200             /*
3201              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3202              * in the top 32 bits of the 64-bit LUN
3203              */
3204             unsigned usb_port = atoi(usb->port->path);
3205             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3206             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3207                                    (uint64_t)id << 32);
3208         }
3209     }
3210 
3211     /*
3212      * SLOF probes the USB devices, and if it recognizes that the device is a
3213      * storage device, it changes its name to "storage" instead of "usb-host",
3214      * and additionally adds a child node for the SCSI LUN, so the correct
3215      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3216      */
3217     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3218         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3219         if (usb_host_dev_is_scsi_storage(usbdev)) {
3220             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3221         }
3222     }
3223 
3224     if (phb) {
3225         /* Replace "pci" with "pci@800000020000000" */
3226         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3227     }
3228 
3229     if (vsc) {
3230         /* Same logic as virtio above */
3231         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3232         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3233     }
3234 
3235     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3236         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3237         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3238         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3239     }
3240 
3241     return NULL;
3242 }
3243 
3244 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3245 {
3246     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3247 
3248     return g_strdup(spapr->kvm_type);
3249 }
3250 
3251 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3252 {
3253     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3254 
3255     g_free(spapr->kvm_type);
3256     spapr->kvm_type = g_strdup(value);
3257 }
3258 
3259 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3260 {
3261     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3262 
3263     return spapr->use_hotplug_event_source;
3264 }
3265 
3266 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3267                                             Error **errp)
3268 {
3269     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3270 
3271     spapr->use_hotplug_event_source = value;
3272 }
3273 
3274 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3275 {
3276     return true;
3277 }
3278 
3279 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3280 {
3281     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3282 
3283     switch (spapr->resize_hpt) {
3284     case SPAPR_RESIZE_HPT_DEFAULT:
3285         return g_strdup("default");
3286     case SPAPR_RESIZE_HPT_DISABLED:
3287         return g_strdup("disabled");
3288     case SPAPR_RESIZE_HPT_ENABLED:
3289         return g_strdup("enabled");
3290     case SPAPR_RESIZE_HPT_REQUIRED:
3291         return g_strdup("required");
3292     }
3293     g_assert_not_reached();
3294 }
3295 
3296 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3297 {
3298     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3299 
3300     if (strcmp(value, "default") == 0) {
3301         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3302     } else if (strcmp(value, "disabled") == 0) {
3303         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3304     } else if (strcmp(value, "enabled") == 0) {
3305         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3306     } else if (strcmp(value, "required") == 0) {
3307         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3308     } else {
3309         error_setg(errp, "Bad value for \"resize-hpt\" property");
3310     }
3311 }
3312 
3313 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3314                                    void *opaque, Error **errp)
3315 {
3316     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3317 }
3318 
3319 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3320                                    void *opaque, Error **errp)
3321 {
3322     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3323 }
3324 
3325 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3326 {
3327     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3328 
3329     if (spapr->irq == &spapr_irq_xics_legacy) {
3330         return g_strdup("legacy");
3331     } else if (spapr->irq == &spapr_irq_xics) {
3332         return g_strdup("xics");
3333     } else if (spapr->irq == &spapr_irq_xive) {
3334         return g_strdup("xive");
3335     } else if (spapr->irq == &spapr_irq_dual) {
3336         return g_strdup("dual");
3337     }
3338     g_assert_not_reached();
3339 }
3340 
3341 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3342 {
3343     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3344 
3345     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3346         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3347         return;
3348     }
3349 
3350     /* The legacy IRQ backend can not be set */
3351     if (strcmp(value, "xics") == 0) {
3352         spapr->irq = &spapr_irq_xics;
3353     } else if (strcmp(value, "xive") == 0) {
3354         spapr->irq = &spapr_irq_xive;
3355     } else if (strcmp(value, "dual") == 0) {
3356         spapr->irq = &spapr_irq_dual;
3357     } else {
3358         error_setg(errp, "Bad value for \"ic-mode\" property");
3359     }
3360 }
3361 
3362 static char *spapr_get_host_model(Object *obj, Error **errp)
3363 {
3364     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3365 
3366     return g_strdup(spapr->host_model);
3367 }
3368 
3369 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3370 {
3371     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3372 
3373     g_free(spapr->host_model);
3374     spapr->host_model = g_strdup(value);
3375 }
3376 
3377 static char *spapr_get_host_serial(Object *obj, Error **errp)
3378 {
3379     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3380 
3381     return g_strdup(spapr->host_serial);
3382 }
3383 
3384 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3385 {
3386     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3387 
3388     g_free(spapr->host_serial);
3389     spapr->host_serial = g_strdup(value);
3390 }
3391 
3392 static void spapr_instance_init(Object *obj)
3393 {
3394     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3395     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3396 
3397     spapr->htab_fd = -1;
3398     spapr->use_hotplug_event_source = true;
3399     object_property_add_str(obj, "kvm-type",
3400                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3401     object_property_set_description(obj, "kvm-type",
3402                                     "Specifies the KVM virtualization mode (HV, PR)",
3403                                     NULL);
3404     object_property_add_bool(obj, "modern-hotplug-events",
3405                             spapr_get_modern_hotplug_events,
3406                             spapr_set_modern_hotplug_events,
3407                             NULL);
3408     object_property_set_description(obj, "modern-hotplug-events",
3409                                     "Use dedicated hotplug event mechanism in"
3410                                     " place of standard EPOW events when possible"
3411                                     " (required for memory hot-unplug support)",
3412                                     NULL);
3413     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3414                             "Maximum permitted CPU compatibility mode",
3415                             &error_fatal);
3416 
3417     object_property_add_str(obj, "resize-hpt",
3418                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3419     object_property_set_description(obj, "resize-hpt",
3420                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3421                                     NULL);
3422     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3423                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3424     object_property_set_description(obj, "vsmt",
3425                                     "Virtual SMT: KVM behaves as if this were"
3426                                     " the host's SMT mode", &error_abort);
3427     object_property_add_bool(obj, "vfio-no-msix-emulation",
3428                              spapr_get_msix_emulation, NULL, NULL);
3429 
3430     /* The machine class defines the default interrupt controller mode */
3431     spapr->irq = smc->irq;
3432     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3433                             spapr_set_ic_mode, NULL);
3434     object_property_set_description(obj, "ic-mode",
3435                  "Specifies the interrupt controller mode (xics, xive, dual)",
3436                  NULL);
3437 
3438     object_property_add_str(obj, "host-model",
3439         spapr_get_host_model, spapr_set_host_model,
3440         &error_abort);
3441     object_property_set_description(obj, "host-model",
3442         "Host model to advertise in guest device tree", &error_abort);
3443     object_property_add_str(obj, "host-serial",
3444         spapr_get_host_serial, spapr_set_host_serial,
3445         &error_abort);
3446     object_property_set_description(obj, "host-serial",
3447         "Host serial number to advertise in guest device tree", &error_abort);
3448 }
3449 
3450 static void spapr_machine_finalizefn(Object *obj)
3451 {
3452     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3453 
3454     g_free(spapr->kvm_type);
3455 }
3456 
3457 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3458 {
3459     cpu_synchronize_state(cs);
3460     ppc_cpu_do_system_reset(cs);
3461 }
3462 
3463 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3464 {
3465     CPUState *cs;
3466 
3467     CPU_FOREACH(cs) {
3468         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3469     }
3470 }
3471 
3472 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3473                           void *fdt, int *fdt_start_offset, Error **errp)
3474 {
3475     uint64_t addr;
3476     uint32_t node;
3477 
3478     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3479     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3480                                     &error_abort);
3481     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3482                                                    SPAPR_MEMORY_BLOCK_SIZE);
3483     return 0;
3484 }
3485 
3486 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3487                            bool dedicated_hp_event_source, Error **errp)
3488 {
3489     SpaprDrc *drc;
3490     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3491     int i;
3492     uint64_t addr = addr_start;
3493     bool hotplugged = spapr_drc_hotplugged(dev);
3494     Error *local_err = NULL;
3495 
3496     for (i = 0; i < nr_lmbs; i++) {
3497         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3498                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3499         g_assert(drc);
3500 
3501         spapr_drc_attach(drc, dev, &local_err);
3502         if (local_err) {
3503             while (addr > addr_start) {
3504                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3505                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3506                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3507                 spapr_drc_detach(drc);
3508             }
3509             error_propagate(errp, local_err);
3510             return;
3511         }
3512         if (!hotplugged) {
3513             spapr_drc_reset(drc);
3514         }
3515         addr += SPAPR_MEMORY_BLOCK_SIZE;
3516     }
3517     /* send hotplug notification to the
3518      * guest only in case of hotplugged memory
3519      */
3520     if (hotplugged) {
3521         if (dedicated_hp_event_source) {
3522             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3523                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3524             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3525                                                    nr_lmbs,
3526                                                    spapr_drc_index(drc));
3527         } else {
3528             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3529                                            nr_lmbs);
3530         }
3531     }
3532 }
3533 
3534 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3535                               Error **errp)
3536 {
3537     Error *local_err = NULL;
3538     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3539     PCDIMMDevice *dimm = PC_DIMM(dev);
3540     uint64_t size, addr;
3541 
3542     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3543 
3544     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3545     if (local_err) {
3546         goto out;
3547     }
3548 
3549     addr = object_property_get_uint(OBJECT(dimm),
3550                                     PC_DIMM_ADDR_PROP, &local_err);
3551     if (local_err) {
3552         goto out_unplug;
3553     }
3554 
3555     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3556                    &local_err);
3557     if (local_err) {
3558         goto out_unplug;
3559     }
3560 
3561     return;
3562 
3563 out_unplug:
3564     pc_dimm_unplug(dimm, MACHINE(ms));
3565 out:
3566     error_propagate(errp, local_err);
3567 }
3568 
3569 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3570                                   Error **errp)
3571 {
3572     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3573     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3574     PCDIMMDevice *dimm = PC_DIMM(dev);
3575     Error *local_err = NULL;
3576     uint64_t size;
3577     Object *memdev;
3578     hwaddr pagesize;
3579 
3580     if (!smc->dr_lmb_enabled) {
3581         error_setg(errp, "Memory hotplug not supported for this machine");
3582         return;
3583     }
3584 
3585     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3586     if (local_err) {
3587         error_propagate(errp, local_err);
3588         return;
3589     }
3590 
3591     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3592         error_setg(errp, "Hotplugged memory size must be a multiple of "
3593                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3594         return;
3595     }
3596 
3597     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3598                                       &error_abort);
3599     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3600     spapr_check_pagesize(spapr, pagesize, &local_err);
3601     if (local_err) {
3602         error_propagate(errp, local_err);
3603         return;
3604     }
3605 
3606     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3607 }
3608 
3609 struct SpaprDimmState {
3610     PCDIMMDevice *dimm;
3611     uint32_t nr_lmbs;
3612     QTAILQ_ENTRY(SpaprDimmState) next;
3613 };
3614 
3615 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3616                                                        PCDIMMDevice *dimm)
3617 {
3618     SpaprDimmState *dimm_state = NULL;
3619 
3620     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3621         if (dimm_state->dimm == dimm) {
3622             break;
3623         }
3624     }
3625     return dimm_state;
3626 }
3627 
3628 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3629                                                       uint32_t nr_lmbs,
3630                                                       PCDIMMDevice *dimm)
3631 {
3632     SpaprDimmState *ds = NULL;
3633 
3634     /*
3635      * If this request is for a DIMM whose removal had failed earlier
3636      * (due to guest's refusal to remove the LMBs), we would have this
3637      * dimm already in the pending_dimm_unplugs list. In that
3638      * case don't add again.
3639      */
3640     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3641     if (!ds) {
3642         ds = g_malloc0(sizeof(SpaprDimmState));
3643         ds->nr_lmbs = nr_lmbs;
3644         ds->dimm = dimm;
3645         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3646     }
3647     return ds;
3648 }
3649 
3650 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3651                                               SpaprDimmState *dimm_state)
3652 {
3653     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3654     g_free(dimm_state);
3655 }
3656 
3657 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3658                                                         PCDIMMDevice *dimm)
3659 {
3660     SpaprDrc *drc;
3661     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3662                                                   &error_abort);
3663     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3664     uint32_t avail_lmbs = 0;
3665     uint64_t addr_start, addr;
3666     int i;
3667 
3668     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3669                                          &error_abort);
3670 
3671     addr = addr_start;
3672     for (i = 0; i < nr_lmbs; i++) {
3673         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3674                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3675         g_assert(drc);
3676         if (drc->dev) {
3677             avail_lmbs++;
3678         }
3679         addr += SPAPR_MEMORY_BLOCK_SIZE;
3680     }
3681 
3682     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3683 }
3684 
3685 /* Callback to be called during DRC release. */
3686 void spapr_lmb_release(DeviceState *dev)
3687 {
3688     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3689     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3690     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3691 
3692     /* This information will get lost if a migration occurs
3693      * during the unplug process. In this case recover it. */
3694     if (ds == NULL) {
3695         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3696         g_assert(ds);
3697         /* The DRC being examined by the caller at least must be counted */
3698         g_assert(ds->nr_lmbs);
3699     }
3700 
3701     if (--ds->nr_lmbs) {
3702         return;
3703     }
3704 
3705     /*
3706      * Now that all the LMBs have been removed by the guest, call the
3707      * unplug handler chain. This can never fail.
3708      */
3709     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3710     object_unparent(OBJECT(dev));
3711 }
3712 
3713 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3714 {
3715     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3716     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3717 
3718     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3719     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3720     spapr_pending_dimm_unplugs_remove(spapr, ds);
3721 }
3722 
3723 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3724                                         DeviceState *dev, Error **errp)
3725 {
3726     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3727     Error *local_err = NULL;
3728     PCDIMMDevice *dimm = PC_DIMM(dev);
3729     uint32_t nr_lmbs;
3730     uint64_t size, addr_start, addr;
3731     int i;
3732     SpaprDrc *drc;
3733 
3734     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3735     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3736 
3737     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3738                                          &local_err);
3739     if (local_err) {
3740         goto out;
3741     }
3742 
3743     /*
3744      * An existing pending dimm state for this DIMM means that there is an
3745      * unplug operation in progress, waiting for the spapr_lmb_release
3746      * callback to complete the job (BQL can't cover that far). In this case,
3747      * bail out to avoid detaching DRCs that were already released.
3748      */
3749     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3750         error_setg(&local_err,
3751                    "Memory unplug already in progress for device %s",
3752                    dev->id);
3753         goto out;
3754     }
3755 
3756     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3757 
3758     addr = addr_start;
3759     for (i = 0; i < nr_lmbs; i++) {
3760         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3761                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3762         g_assert(drc);
3763 
3764         spapr_drc_detach(drc);
3765         addr += SPAPR_MEMORY_BLOCK_SIZE;
3766     }
3767 
3768     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3769                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3770     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3771                                               nr_lmbs, spapr_drc_index(drc));
3772 out:
3773     error_propagate(errp, local_err);
3774 }
3775 
3776 /* Callback to be called during DRC release. */
3777 void spapr_core_release(DeviceState *dev)
3778 {
3779     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3780 
3781     /* Call the unplug handler chain. This can never fail. */
3782     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3783     object_unparent(OBJECT(dev));
3784 }
3785 
3786 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3787 {
3788     MachineState *ms = MACHINE(hotplug_dev);
3789     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3790     CPUCore *cc = CPU_CORE(dev);
3791     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3792 
3793     if (smc->pre_2_10_has_unused_icps) {
3794         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3795         int i;
3796 
3797         for (i = 0; i < cc->nr_threads; i++) {
3798             CPUState *cs = CPU(sc->threads[i]);
3799 
3800             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3801         }
3802     }
3803 
3804     assert(core_slot);
3805     core_slot->cpu = NULL;
3806     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3807 }
3808 
3809 static
3810 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3811                                Error **errp)
3812 {
3813     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3814     int index;
3815     SpaprDrc *drc;
3816     CPUCore *cc = CPU_CORE(dev);
3817 
3818     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3819         error_setg(errp, "Unable to find CPU core with core-id: %d",
3820                    cc->core_id);
3821         return;
3822     }
3823     if (index == 0) {
3824         error_setg(errp, "Boot CPU core may not be unplugged");
3825         return;
3826     }
3827 
3828     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3829                           spapr_vcpu_id(spapr, cc->core_id));
3830     g_assert(drc);
3831 
3832     spapr_drc_detach(drc);
3833 
3834     spapr_hotplug_req_remove_by_index(drc);
3835 }
3836 
3837 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3838                            void *fdt, int *fdt_start_offset, Error **errp)
3839 {
3840     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3841     CPUState *cs = CPU(core->threads[0]);
3842     PowerPCCPU *cpu = POWERPC_CPU(cs);
3843     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3844     int id = spapr_get_vcpu_id(cpu);
3845     char *nodename;
3846     int offset;
3847 
3848     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3849     offset = fdt_add_subnode(fdt, 0, nodename);
3850     g_free(nodename);
3851 
3852     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3853 
3854     *fdt_start_offset = offset;
3855     return 0;
3856 }
3857 
3858 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3859                             Error **errp)
3860 {
3861     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3862     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3863     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3864     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3865     CPUCore *cc = CPU_CORE(dev);
3866     CPUState *cs;
3867     SpaprDrc *drc;
3868     Error *local_err = NULL;
3869     CPUArchId *core_slot;
3870     int index;
3871     bool hotplugged = spapr_drc_hotplugged(dev);
3872     int i;
3873 
3874     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3875     if (!core_slot) {
3876         error_setg(errp, "Unable to find CPU core with core-id: %d",
3877                    cc->core_id);
3878         return;
3879     }
3880     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3881                           spapr_vcpu_id(spapr, cc->core_id));
3882 
3883     g_assert(drc || !mc->has_hotpluggable_cpus);
3884 
3885     if (drc) {
3886         spapr_drc_attach(drc, dev, &local_err);
3887         if (local_err) {
3888             error_propagate(errp, local_err);
3889             return;
3890         }
3891 
3892         if (hotplugged) {
3893             /*
3894              * Send hotplug notification interrupt to the guest only
3895              * in case of hotplugged CPUs.
3896              */
3897             spapr_hotplug_req_add_by_index(drc);
3898         } else {
3899             spapr_drc_reset(drc);
3900         }
3901     }
3902 
3903     core_slot->cpu = OBJECT(dev);
3904 
3905     if (smc->pre_2_10_has_unused_icps) {
3906         for (i = 0; i < cc->nr_threads; i++) {
3907             cs = CPU(core->threads[i]);
3908             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3909         }
3910     }
3911 
3912     /*
3913      * Set compatibility mode to match the boot CPU, which was either set
3914      * by the machine reset code or by CAS.
3915      */
3916     if (hotplugged) {
3917         for (i = 0; i < cc->nr_threads; i++) {
3918             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3919                            &local_err);
3920             if (local_err) {
3921                 error_propagate(errp, local_err);
3922                 return;
3923             }
3924         }
3925     }
3926 }
3927 
3928 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3929                                 Error **errp)
3930 {
3931     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3932     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3933     Error *local_err = NULL;
3934     CPUCore *cc = CPU_CORE(dev);
3935     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3936     const char *type = object_get_typename(OBJECT(dev));
3937     CPUArchId *core_slot;
3938     int index;
3939     unsigned int smp_threads = machine->smp.threads;
3940 
3941     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3942         error_setg(&local_err, "CPU hotplug not supported for this machine");
3943         goto out;
3944     }
3945 
3946     if (strcmp(base_core_type, type)) {
3947         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3948         goto out;
3949     }
3950 
3951     if (cc->core_id % smp_threads) {
3952         error_setg(&local_err, "invalid core id %d", cc->core_id);
3953         goto out;
3954     }
3955 
3956     /*
3957      * In general we should have homogeneous threads-per-core, but old
3958      * (pre hotplug support) machine types allow the last core to have
3959      * reduced threads as a compatibility hack for when we allowed
3960      * total vcpus not a multiple of threads-per-core.
3961      */
3962     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3963         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3964                    cc->nr_threads, smp_threads);
3965         goto out;
3966     }
3967 
3968     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3969     if (!core_slot) {
3970         error_setg(&local_err, "core id %d out of range", cc->core_id);
3971         goto out;
3972     }
3973 
3974     if (core_slot->cpu) {
3975         error_setg(&local_err, "core %d already populated", cc->core_id);
3976         goto out;
3977     }
3978 
3979     numa_cpu_pre_plug(core_slot, dev, &local_err);
3980 
3981 out:
3982     error_propagate(errp, local_err);
3983 }
3984 
3985 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3986                           void *fdt, int *fdt_start_offset, Error **errp)
3987 {
3988     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3989     int intc_phandle;
3990 
3991     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3992     if (intc_phandle <= 0) {
3993         return -1;
3994     }
3995 
3996     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3997                      fdt_start_offset)) {
3998         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3999         return -1;
4000     }
4001 
4002     /* generally SLOF creates these, for hotplug it's up to QEMU */
4003     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4004 
4005     return 0;
4006 }
4007 
4008 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4009                                Error **errp)
4010 {
4011     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4012     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4013     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4014     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4015 
4016     if (dev->hotplugged && !smc->dr_phb_enabled) {
4017         error_setg(errp, "PHB hotplug not supported for this machine");
4018         return;
4019     }
4020 
4021     if (sphb->index == (uint32_t)-1) {
4022         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4023         return;
4024     }
4025 
4026     /*
4027      * This will check that sphb->index doesn't exceed the maximum number of
4028      * PHBs for the current machine type.
4029      */
4030     smc->phb_placement(spapr, sphb->index,
4031                        &sphb->buid, &sphb->io_win_addr,
4032                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
4033                        windows_supported, sphb->dma_liobn,
4034                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4035                        errp);
4036 }
4037 
4038 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4039                            Error **errp)
4040 {
4041     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4042     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4043     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4044     SpaprDrc *drc;
4045     bool hotplugged = spapr_drc_hotplugged(dev);
4046     Error *local_err = NULL;
4047 
4048     if (!smc->dr_phb_enabled) {
4049         return;
4050     }
4051 
4052     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4053     /* hotplug hooks should check it's enabled before getting this far */
4054     assert(drc);
4055 
4056     spapr_drc_attach(drc, DEVICE(dev), &local_err);
4057     if (local_err) {
4058         error_propagate(errp, local_err);
4059         return;
4060     }
4061 
4062     if (hotplugged) {
4063         spapr_hotplug_req_add_by_index(drc);
4064     } else {
4065         spapr_drc_reset(drc);
4066     }
4067 }
4068 
4069 void spapr_phb_release(DeviceState *dev)
4070 {
4071     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4072 
4073     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4074     object_unparent(OBJECT(dev));
4075 }
4076 
4077 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4078 {
4079     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4080 }
4081 
4082 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4083                                      DeviceState *dev, Error **errp)
4084 {
4085     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4086     SpaprDrc *drc;
4087 
4088     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4089     assert(drc);
4090 
4091     if (!spapr_drc_unplug_requested(drc)) {
4092         spapr_drc_detach(drc);
4093         spapr_hotplug_req_remove_by_index(drc);
4094     }
4095 }
4096 
4097 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4098                                  Error **errp)
4099 {
4100     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4101     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4102 
4103     if (spapr->tpm_proxy != NULL) {
4104         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4105         return;
4106     }
4107 
4108     spapr->tpm_proxy = tpm_proxy;
4109 }
4110 
4111 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4112 {
4113     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4114 
4115     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4116     object_unparent(OBJECT(dev));
4117     spapr->tpm_proxy = NULL;
4118 }
4119 
4120 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4121                                       DeviceState *dev, Error **errp)
4122 {
4123     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4124         spapr_memory_plug(hotplug_dev, dev, errp);
4125     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4126         spapr_core_plug(hotplug_dev, dev, errp);
4127     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4128         spapr_phb_plug(hotplug_dev, dev, errp);
4129     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4130         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4131     }
4132 }
4133 
4134 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4135                                         DeviceState *dev, Error **errp)
4136 {
4137     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4138         spapr_memory_unplug(hotplug_dev, dev);
4139     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4140         spapr_core_unplug(hotplug_dev, dev);
4141     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4142         spapr_phb_unplug(hotplug_dev, dev);
4143     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4144         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4145     }
4146 }
4147 
4148 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4149                                                 DeviceState *dev, Error **errp)
4150 {
4151     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4152     MachineClass *mc = MACHINE_GET_CLASS(sms);
4153     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4154 
4155     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4156         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4157             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4158         } else {
4159             /* NOTE: this means there is a window after guest reset, prior to
4160              * CAS negotiation, where unplug requests will fail due to the
4161              * capability not being detected yet. This is a bit different than
4162              * the case with PCI unplug, where the events will be queued and
4163              * eventually handled by the guest after boot
4164              */
4165             error_setg(errp, "Memory hot unplug not supported for this guest");
4166         }
4167     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4168         if (!mc->has_hotpluggable_cpus) {
4169             error_setg(errp, "CPU hot unplug not supported on this machine");
4170             return;
4171         }
4172         spapr_core_unplug_request(hotplug_dev, dev, errp);
4173     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4174         if (!smc->dr_phb_enabled) {
4175             error_setg(errp, "PHB hot unplug not supported on this machine");
4176             return;
4177         }
4178         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4179     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4180         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4181     }
4182 }
4183 
4184 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4185                                           DeviceState *dev, Error **errp)
4186 {
4187     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4188         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4189     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4190         spapr_core_pre_plug(hotplug_dev, dev, errp);
4191     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4192         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4193     }
4194 }
4195 
4196 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4197                                                  DeviceState *dev)
4198 {
4199     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4200         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4201         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4202         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4203         return HOTPLUG_HANDLER(machine);
4204     }
4205     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4206         PCIDevice *pcidev = PCI_DEVICE(dev);
4207         PCIBus *root = pci_device_root_bus(pcidev);
4208         SpaprPhbState *phb =
4209             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4210                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4211 
4212         if (phb) {
4213             return HOTPLUG_HANDLER(phb);
4214         }
4215     }
4216     return NULL;
4217 }
4218 
4219 static CpuInstanceProperties
4220 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4221 {
4222     CPUArchId *core_slot;
4223     MachineClass *mc = MACHINE_GET_CLASS(machine);
4224 
4225     /* make sure possible_cpu are intialized */
4226     mc->possible_cpu_arch_ids(machine);
4227     /* get CPU core slot containing thread that matches cpu_index */
4228     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4229     assert(core_slot);
4230     return core_slot->props;
4231 }
4232 
4233 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4234 {
4235     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4236 }
4237 
4238 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4239 {
4240     int i;
4241     unsigned int smp_threads = machine->smp.threads;
4242     unsigned int smp_cpus = machine->smp.cpus;
4243     const char *core_type;
4244     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4245     MachineClass *mc = MACHINE_GET_CLASS(machine);
4246 
4247     if (!mc->has_hotpluggable_cpus) {
4248         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4249     }
4250     if (machine->possible_cpus) {
4251         assert(machine->possible_cpus->len == spapr_max_cores);
4252         return machine->possible_cpus;
4253     }
4254 
4255     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4256     if (!core_type) {
4257         error_report("Unable to find sPAPR CPU Core definition");
4258         exit(1);
4259     }
4260 
4261     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4262                              sizeof(CPUArchId) * spapr_max_cores);
4263     machine->possible_cpus->len = spapr_max_cores;
4264     for (i = 0; i < machine->possible_cpus->len; i++) {
4265         int core_id = i * smp_threads;
4266 
4267         machine->possible_cpus->cpus[i].type = core_type;
4268         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4269         machine->possible_cpus->cpus[i].arch_id = core_id;
4270         machine->possible_cpus->cpus[i].props.has_core_id = true;
4271         machine->possible_cpus->cpus[i].props.core_id = core_id;
4272     }
4273     return machine->possible_cpus;
4274 }
4275 
4276 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4277                                 uint64_t *buid, hwaddr *pio,
4278                                 hwaddr *mmio32, hwaddr *mmio64,
4279                                 unsigned n_dma, uint32_t *liobns,
4280                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4281 {
4282     /*
4283      * New-style PHB window placement.
4284      *
4285      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4286      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4287      * windows.
4288      *
4289      * Some guest kernels can't work with MMIO windows above 1<<46
4290      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4291      *
4292      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4293      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4294      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4295      * 1TiB 64-bit MMIO windows for each PHB.
4296      */
4297     const uint64_t base_buid = 0x800000020000000ULL;
4298     int i;
4299 
4300     /* Sanity check natural alignments */
4301     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4302     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4303     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4304     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4305     /* Sanity check bounds */
4306     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4307                       SPAPR_PCI_MEM32_WIN_SIZE);
4308     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4309                       SPAPR_PCI_MEM64_WIN_SIZE);
4310 
4311     if (index >= SPAPR_MAX_PHBS) {
4312         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4313                    SPAPR_MAX_PHBS - 1);
4314         return;
4315     }
4316 
4317     *buid = base_buid + index;
4318     for (i = 0; i < n_dma; ++i) {
4319         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4320     }
4321 
4322     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4323     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4324     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4325 
4326     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4327     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4328 }
4329 
4330 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4331 {
4332     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4333 
4334     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4335 }
4336 
4337 static void spapr_ics_resend(XICSFabric *dev)
4338 {
4339     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4340 
4341     ics_resend(spapr->ics);
4342 }
4343 
4344 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4345 {
4346     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4347 
4348     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4349 }
4350 
4351 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4352                                  Monitor *mon)
4353 {
4354     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4355 
4356     spapr->irq->print_info(spapr, mon);
4357     monitor_printf(mon, "irqchip: %s\n",
4358                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4359 }
4360 
4361 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4362 {
4363     return cpu->vcpu_id;
4364 }
4365 
4366 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4367 {
4368     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4369     MachineState *ms = MACHINE(spapr);
4370     int vcpu_id;
4371 
4372     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4373 
4374     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4375         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4376         error_append_hint(errp, "Adjust the number of cpus to %d "
4377                           "or try to raise the number of threads per core\n",
4378                           vcpu_id * ms->smp.threads / spapr->vsmt);
4379         return;
4380     }
4381 
4382     cpu->vcpu_id = vcpu_id;
4383 }
4384 
4385 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4386 {
4387     CPUState *cs;
4388 
4389     CPU_FOREACH(cs) {
4390         PowerPCCPU *cpu = POWERPC_CPU(cs);
4391 
4392         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4393             return cpu;
4394         }
4395     }
4396 
4397     return NULL;
4398 }
4399 
4400 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4401 {
4402     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4403 
4404     /* These are only called by TCG, KVM maintains dispatch state */
4405 
4406     spapr_cpu->prod = false;
4407     if (spapr_cpu->vpa_addr) {
4408         CPUState *cs = CPU(cpu);
4409         uint32_t dispatch;
4410 
4411         dispatch = ldl_be_phys(cs->as,
4412                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4413         dispatch++;
4414         if ((dispatch & 1) != 0) {
4415             qemu_log_mask(LOG_GUEST_ERROR,
4416                           "VPA: incorrect dispatch counter value for "
4417                           "dispatched partition %u, correcting.\n", dispatch);
4418             dispatch++;
4419         }
4420         stl_be_phys(cs->as,
4421                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4422     }
4423 }
4424 
4425 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4426 {
4427     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4428 
4429     if (spapr_cpu->vpa_addr) {
4430         CPUState *cs = CPU(cpu);
4431         uint32_t dispatch;
4432 
4433         dispatch = ldl_be_phys(cs->as,
4434                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4435         dispatch++;
4436         if ((dispatch & 1) != 1) {
4437             qemu_log_mask(LOG_GUEST_ERROR,
4438                           "VPA: incorrect dispatch counter value for "
4439                           "preempted partition %u, correcting.\n", dispatch);
4440             dispatch++;
4441         }
4442         stl_be_phys(cs->as,
4443                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4444     }
4445 }
4446 
4447 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4448 {
4449     MachineClass *mc = MACHINE_CLASS(oc);
4450     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4451     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4452     NMIClass *nc = NMI_CLASS(oc);
4453     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4454     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4455     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4456     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4457 
4458     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4459     mc->ignore_boot_device_suffixes = true;
4460 
4461     /*
4462      * We set up the default / latest behaviour here.  The class_init
4463      * functions for the specific versioned machine types can override
4464      * these details for backwards compatibility
4465      */
4466     mc->init = spapr_machine_init;
4467     mc->reset = spapr_machine_reset;
4468     mc->block_default_type = IF_SCSI;
4469     mc->max_cpus = 1024;
4470     mc->no_parallel = 1;
4471     mc->default_boot_order = "";
4472     mc->default_ram_size = 512 * MiB;
4473     mc->default_display = "std";
4474     mc->kvm_type = spapr_kvm_type;
4475     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4476     mc->pci_allow_0_address = true;
4477     assert(!mc->get_hotplug_handler);
4478     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4479     hc->pre_plug = spapr_machine_device_pre_plug;
4480     hc->plug = spapr_machine_device_plug;
4481     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4482     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4483     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4484     hc->unplug_request = spapr_machine_device_unplug_request;
4485     hc->unplug = spapr_machine_device_unplug;
4486 
4487     smc->dr_lmb_enabled = true;
4488     smc->update_dt_enabled = true;
4489     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4490     mc->has_hotpluggable_cpus = true;
4491     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4492     fwc->get_dev_path = spapr_get_fw_dev_path;
4493     nc->nmi_monitor_handler = spapr_nmi;
4494     smc->phb_placement = spapr_phb_placement;
4495     vhc->hypercall = emulate_spapr_hypercall;
4496     vhc->hpt_mask = spapr_hpt_mask;
4497     vhc->map_hptes = spapr_map_hptes;
4498     vhc->unmap_hptes = spapr_unmap_hptes;
4499     vhc->hpte_set_c = spapr_hpte_set_c;
4500     vhc->hpte_set_r = spapr_hpte_set_r;
4501     vhc->get_pate = spapr_get_pate;
4502     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4503     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4504     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4505     xic->ics_get = spapr_ics_get;
4506     xic->ics_resend = spapr_ics_resend;
4507     xic->icp_get = spapr_icp_get;
4508     ispc->print_info = spapr_pic_print_info;
4509     /* Force NUMA node memory size to be a multiple of
4510      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4511      * in which LMBs are represented and hot-added
4512      */
4513     mc->numa_mem_align_shift = 28;
4514     mc->numa_mem_supported = true;
4515 
4516     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4517     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4518     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4519     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4520     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4521     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4522     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4523     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4524     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4525     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4526     spapr_caps_add_properties(smc, &error_abort);
4527     smc->irq = &spapr_irq_dual;
4528     smc->dr_phb_enabled = true;
4529     smc->linux_pci_probe = true;
4530 }
4531 
4532 static const TypeInfo spapr_machine_info = {
4533     .name          = TYPE_SPAPR_MACHINE,
4534     .parent        = TYPE_MACHINE,
4535     .abstract      = true,
4536     .instance_size = sizeof(SpaprMachineState),
4537     .instance_init = spapr_instance_init,
4538     .instance_finalize = spapr_machine_finalizefn,
4539     .class_size    = sizeof(SpaprMachineClass),
4540     .class_init    = spapr_machine_class_init,
4541     .interfaces = (InterfaceInfo[]) {
4542         { TYPE_FW_PATH_PROVIDER },
4543         { TYPE_NMI },
4544         { TYPE_HOTPLUG_HANDLER },
4545         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4546         { TYPE_XICS_FABRIC },
4547         { TYPE_INTERRUPT_STATS_PROVIDER },
4548         { }
4549     },
4550 };
4551 
4552 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4553     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4554                                                     void *data)      \
4555     {                                                                \
4556         MachineClass *mc = MACHINE_CLASS(oc);                        \
4557         spapr_machine_##suffix##_class_options(mc);                  \
4558         if (latest) {                                                \
4559             mc->alias = "pseries";                                   \
4560             mc->is_default = 1;                                      \
4561         }                                                            \
4562     }                                                                \
4563     static const TypeInfo spapr_machine_##suffix##_info = {          \
4564         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4565         .parent = TYPE_SPAPR_MACHINE,                                \
4566         .class_init = spapr_machine_##suffix##_class_init,           \
4567     };                                                               \
4568     static void spapr_machine_register_##suffix(void)                \
4569     {                                                                \
4570         type_register(&spapr_machine_##suffix##_info);               \
4571     }                                                                \
4572     type_init(spapr_machine_register_##suffix)
4573 
4574 /*
4575  * pseries-4.2
4576  */
4577 static void spapr_machine_4_2_class_options(MachineClass *mc)
4578 {
4579     /* Defaults for the latest behaviour inherited from the base class */
4580 }
4581 
4582 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4583 
4584 /*
4585  * pseries-4.1
4586  */
4587 static void spapr_machine_4_1_class_options(MachineClass *mc)
4588 {
4589     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4590     static GlobalProperty compat[] = {
4591         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4592         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4593     };
4594 
4595     spapr_machine_4_2_class_options(mc);
4596     smc->linux_pci_probe = false;
4597     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4598     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4599 }
4600 
4601 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4602 
4603 /*
4604  * pseries-4.0
4605  */
4606 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4607                               uint64_t *buid, hwaddr *pio,
4608                               hwaddr *mmio32, hwaddr *mmio64,
4609                               unsigned n_dma, uint32_t *liobns,
4610                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4611 {
4612     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4613                         nv2gpa, nv2atsd, errp);
4614     *nv2gpa = 0;
4615     *nv2atsd = 0;
4616 }
4617 
4618 static void spapr_machine_4_0_class_options(MachineClass *mc)
4619 {
4620     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4621 
4622     spapr_machine_4_1_class_options(mc);
4623     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4624     smc->phb_placement = phb_placement_4_0;
4625     smc->irq = &spapr_irq_xics;
4626     smc->pre_4_1_migration = true;
4627 }
4628 
4629 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4630 
4631 /*
4632  * pseries-3.1
4633  */
4634 static void spapr_machine_3_1_class_options(MachineClass *mc)
4635 {
4636     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4637 
4638     spapr_machine_4_0_class_options(mc);
4639     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4640 
4641     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4642     smc->update_dt_enabled = false;
4643     smc->dr_phb_enabled = false;
4644     smc->broken_host_serial_model = true;
4645     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4646     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4647     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4648     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4649 }
4650 
4651 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4652 
4653 /*
4654  * pseries-3.0
4655  */
4656 
4657 static void spapr_machine_3_0_class_options(MachineClass *mc)
4658 {
4659     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4660 
4661     spapr_machine_3_1_class_options(mc);
4662     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4663 
4664     smc->legacy_irq_allocation = true;
4665     smc->irq = &spapr_irq_xics_legacy;
4666 }
4667 
4668 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4669 
4670 /*
4671  * pseries-2.12
4672  */
4673 static void spapr_machine_2_12_class_options(MachineClass *mc)
4674 {
4675     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4676     static GlobalProperty compat[] = {
4677         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4678         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4679     };
4680 
4681     spapr_machine_3_0_class_options(mc);
4682     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4683     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4684 
4685     /* We depend on kvm_enabled() to choose a default value for the
4686      * hpt-max-page-size capability. Of course we can't do it here
4687      * because this is too early and the HW accelerator isn't initialzed
4688      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4689      */
4690     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4691 }
4692 
4693 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4694 
4695 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4696 {
4697     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4698 
4699     spapr_machine_2_12_class_options(mc);
4700     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4701     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4702     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4703 }
4704 
4705 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4706 
4707 /*
4708  * pseries-2.11
4709  */
4710 
4711 static void spapr_machine_2_11_class_options(MachineClass *mc)
4712 {
4713     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4714 
4715     spapr_machine_2_12_class_options(mc);
4716     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4717     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4718 }
4719 
4720 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4721 
4722 /*
4723  * pseries-2.10
4724  */
4725 
4726 static void spapr_machine_2_10_class_options(MachineClass *mc)
4727 {
4728     spapr_machine_2_11_class_options(mc);
4729     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4730 }
4731 
4732 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4733 
4734 /*
4735  * pseries-2.9
4736  */
4737 
4738 static void spapr_machine_2_9_class_options(MachineClass *mc)
4739 {
4740     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4741     static GlobalProperty compat[] = {
4742         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4743     };
4744 
4745     spapr_machine_2_10_class_options(mc);
4746     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4747     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4748     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4749     smc->pre_2_10_has_unused_icps = true;
4750     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4751 }
4752 
4753 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4754 
4755 /*
4756  * pseries-2.8
4757  */
4758 
4759 static void spapr_machine_2_8_class_options(MachineClass *mc)
4760 {
4761     static GlobalProperty compat[] = {
4762         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4763     };
4764 
4765     spapr_machine_2_9_class_options(mc);
4766     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4767     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4768     mc->numa_mem_align_shift = 23;
4769 }
4770 
4771 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4772 
4773 /*
4774  * pseries-2.7
4775  */
4776 
4777 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4778                               uint64_t *buid, hwaddr *pio,
4779                               hwaddr *mmio32, hwaddr *mmio64,
4780                               unsigned n_dma, uint32_t *liobns,
4781                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4782 {
4783     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4784     const uint64_t base_buid = 0x800000020000000ULL;
4785     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4786     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4787     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4788     const uint32_t max_index = 255;
4789     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4790 
4791     uint64_t ram_top = MACHINE(spapr)->ram_size;
4792     hwaddr phb0_base, phb_base;
4793     int i;
4794 
4795     /* Do we have device memory? */
4796     if (MACHINE(spapr)->maxram_size > ram_top) {
4797         /* Can't just use maxram_size, because there may be an
4798          * alignment gap between normal and device memory regions
4799          */
4800         ram_top = MACHINE(spapr)->device_memory->base +
4801             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4802     }
4803 
4804     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4805 
4806     if (index > max_index) {
4807         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4808                    max_index);
4809         return;
4810     }
4811 
4812     *buid = base_buid + index;
4813     for (i = 0; i < n_dma; ++i) {
4814         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4815     }
4816 
4817     phb_base = phb0_base + index * phb_spacing;
4818     *pio = phb_base + pio_offset;
4819     *mmio32 = phb_base + mmio_offset;
4820     /*
4821      * We don't set the 64-bit MMIO window, relying on the PHB's
4822      * fallback behaviour of automatically splitting a large "32-bit"
4823      * window into contiguous 32-bit and 64-bit windows
4824      */
4825 
4826     *nv2gpa = 0;
4827     *nv2atsd = 0;
4828 }
4829 
4830 static void spapr_machine_2_7_class_options(MachineClass *mc)
4831 {
4832     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4833     static GlobalProperty compat[] = {
4834         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4835         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4836         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4837         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4838     };
4839 
4840     spapr_machine_2_8_class_options(mc);
4841     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4842     mc->default_machine_opts = "modern-hotplug-events=off";
4843     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4844     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4845     smc->phb_placement = phb_placement_2_7;
4846 }
4847 
4848 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4849 
4850 /*
4851  * pseries-2.6
4852  */
4853 
4854 static void spapr_machine_2_6_class_options(MachineClass *mc)
4855 {
4856     static GlobalProperty compat[] = {
4857         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4858     };
4859 
4860     spapr_machine_2_7_class_options(mc);
4861     mc->has_hotpluggable_cpus = false;
4862     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4863     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4864 }
4865 
4866 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4867 
4868 /*
4869  * pseries-2.5
4870  */
4871 
4872 static void spapr_machine_2_5_class_options(MachineClass *mc)
4873 {
4874     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4875     static GlobalProperty compat[] = {
4876         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4877     };
4878 
4879     spapr_machine_2_6_class_options(mc);
4880     smc->use_ohci_by_default = true;
4881     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4882     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4883 }
4884 
4885 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4886 
4887 /*
4888  * pseries-2.4
4889  */
4890 
4891 static void spapr_machine_2_4_class_options(MachineClass *mc)
4892 {
4893     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4894 
4895     spapr_machine_2_5_class_options(mc);
4896     smc->dr_lmb_enabled = false;
4897     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4898 }
4899 
4900 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4901 
4902 /*
4903  * pseries-2.3
4904  */
4905 
4906 static void spapr_machine_2_3_class_options(MachineClass *mc)
4907 {
4908     static GlobalProperty compat[] = {
4909         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4910     };
4911     spapr_machine_2_4_class_options(mc);
4912     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4913     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4914 }
4915 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4916 
4917 /*
4918  * pseries-2.2
4919  */
4920 
4921 static void spapr_machine_2_2_class_options(MachineClass *mc)
4922 {
4923     static GlobalProperty compat[] = {
4924         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4925     };
4926 
4927     spapr_machine_2_3_class_options(mc);
4928     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4929     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4930     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4931 }
4932 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4933 
4934 /*
4935  * pseries-2.1
4936  */
4937 
4938 static void spapr_machine_2_1_class_options(MachineClass *mc)
4939 {
4940     spapr_machine_2_2_class_options(mc);
4941     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4942 }
4943 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4944 
4945 static void spapr_machine_register_types(void)
4946 {
4947     type_register_static(&spapr_machine_info);
4948 }
4949 
4950 type_init(spapr_machine_register_types)
4951