xref: /qemu/hw/ppc/spapr.c (revision c3e051ed6d2a0337fa5172d27231a193f18f92c4)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
54 
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
58 
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
65 
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
70 
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79 
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
85 
86 #include "monitor/monitor.h"
87 
88 #include <libfdt.h>
89 
90 /* SLOF memory layout:
91  *
92  * SLOF raw image loaded at 0, copies its romfs right below the flat
93  * device-tree, then position SLOF itself 31M below that
94  *
95  * So we set FW_OVERHEAD to 40MB which should account for all of that
96  * and more
97  *
98  * We load our kernel at 4M, leaving space for SLOF initial image
99  */
100 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE             0x400000
102 #define FW_FILE_NAME            "slof.bin"
103 #define FW_OVERHEAD             0x2800000
104 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
105 
106 #define MIN_RMA_SLOF            (128 * MiB)
107 
108 #define PHANDLE_INTC            0x00001111
109 
110 /* These two functions implement the VCPU id numbering: one to compute them
111  * all and one to identify thread 0 of a VCORE. Any change to the first one
112  * is likely to have an impact on the second one, so let's keep them close.
113  */
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 {
116     MachineState *ms = MACHINE(spapr);
117     unsigned int smp_threads = ms->smp.threads;
118 
119     assert(spapr->vsmt);
120     return
121         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 }
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124                                       PowerPCCPU *cpu)
125 {
126     assert(spapr->vsmt);
127     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 }
129 
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133      * and newer QEMUs don't even have them. In both cases, we don't want
134      * to send anything on the wire.
135      */
136     return false;
137 }
138 
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140     .name = "icp/server",
141     .version_id = 1,
142     .minimum_version_id = 1,
143     .needed = pre_2_10_vmstate_dummy_icp_needed,
144     .fields = (VMStateField[]) {
145         VMSTATE_UNUSED(4), /* uint32_t xirr */
146         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147         VMSTATE_UNUSED(1), /* uint8_t mfrr */
148         VMSTATE_END_OF_LIST()
149     },
150 };
151 
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155                      (void *)(uintptr_t) i);
156 }
157 
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161                        (void *)(uintptr_t) i);
162 }
163 
164 int spapr_max_server_number(SpaprMachineState *spapr)
165 {
166     MachineState *ms = MACHINE(spapr);
167 
168     assert(spapr->vsmt);
169     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 }
171 
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173                                   int smt_threads)
174 {
175     int i, ret = 0;
176     uint32_t servers_prop[smt_threads];
177     uint32_t gservers_prop[smt_threads * 2];
178     int index = spapr_get_vcpu_id(cpu);
179 
180     if (cpu->compat_pvr) {
181         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182         if (ret < 0) {
183             return ret;
184         }
185     }
186 
187     /* Build interrupt servers and gservers properties */
188     for (i = 0; i < smt_threads; i++) {
189         servers_prop[i] = cpu_to_be32(index + i);
190         /* Hack, direct the group queues back to cpu 0 */
191         gservers_prop[i*2] = cpu_to_be32(index + i);
192         gservers_prop[i*2 + 1] = 0;
193     }
194     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195                       servers_prop, sizeof(servers_prop));
196     if (ret < 0) {
197         return ret;
198     }
199     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200                       gservers_prop, sizeof(gservers_prop));
201 
202     return ret;
203 }
204 
205 static void spapr_dt_pa_features(SpaprMachineState *spapr,
206                                  PowerPCCPU *cpu,
207                                  void *fdt, int offset)
208 {
209     uint8_t pa_features_206[] = { 6, 0,
210         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
211     uint8_t pa_features_207[] = { 24, 0,
212         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
213         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
214         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
215         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
216     uint8_t pa_features_300[] = { 66, 0,
217         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
218         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
219         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
220         /* 6: DS207 */
221         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
222         /* 16: Vector */
223         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
224         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
225         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
226         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
227         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
228         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
229         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
230         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
231         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
232         /* 42: PM, 44: PC RA, 46: SC vec'd */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
234         /* 48: SIMD, 50: QP BFP, 52: String */
235         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
236         /* 54: DecFP, 56: DecI, 58: SHA */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
238         /* 60: NM atomic, 62: RNG */
239         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
240     };
241     uint8_t *pa_features = NULL;
242     size_t pa_size;
243 
244     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
245         pa_features = pa_features_206;
246         pa_size = sizeof(pa_features_206);
247     }
248     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
249         pa_features = pa_features_207;
250         pa_size = sizeof(pa_features_207);
251     }
252     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
253         pa_features = pa_features_300;
254         pa_size = sizeof(pa_features_300);
255     }
256     if (!pa_features) {
257         return;
258     }
259 
260     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
261         /*
262          * Note: we keep CI large pages off by default because a 64K capable
263          * guest provisioned with large pages might otherwise try to map a qemu
264          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
265          * even if that qemu runs on a 4k host.
266          * We dd this bit back here if we are confident this is not an issue
267          */
268         pa_features[3] |= 0x20;
269     }
270     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
271         pa_features[24] |= 0x80;    /* Transactional memory support */
272     }
273     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
274         /* Workaround for broken kernels that attempt (guest) radix
275          * mode when they can't handle it, if they see the radix bit set
276          * in pa-features. So hide it from them. */
277         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
278     }
279 
280     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
281 }
282 
283 static hwaddr spapr_node0_size(MachineState *machine)
284 {
285     if (machine->numa_state->num_nodes) {
286         int i;
287         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
288             if (machine->numa_state->nodes[i].node_mem) {
289                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
290                            machine->ram_size);
291             }
292         }
293     }
294     return machine->ram_size;
295 }
296 
297 bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
298 {
299     MachineState *machine = MACHINE(spapr);
300     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
301 
302     return smc->pre_5_2_numa_associativity ||
303            machine->numa_state->num_nodes <= 1;
304 }
305 
306 static void add_str(GString *s, const gchar *s1)
307 {
308     g_string_append_len(s, s1, strlen(s1) + 1);
309 }
310 
311 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
312                                 hwaddr start, hwaddr size)
313 {
314     char mem_name[32];
315     uint64_t mem_reg_property[2];
316     int off;
317 
318     mem_reg_property[0] = cpu_to_be64(start);
319     mem_reg_property[1] = cpu_to_be64(size);
320 
321     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
322     off = fdt_add_subnode(fdt, 0, mem_name);
323     _FDT(off);
324     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
325     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
326                       sizeof(mem_reg_property))));
327     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
328     return off;
329 }
330 
331 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
332 {
333     MemoryDeviceInfoList *info;
334 
335     for (info = list; info; info = info->next) {
336         MemoryDeviceInfo *value = info->value;
337 
338         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
339             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
340 
341             if (addr >= pcdimm_info->addr &&
342                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
343                 return pcdimm_info->node;
344             }
345         }
346     }
347 
348     return -1;
349 }
350 
351 struct sPAPRDrconfCellV2 {
352      uint32_t seq_lmbs;
353      uint64_t base_addr;
354      uint32_t drc_index;
355      uint32_t aa_index;
356      uint32_t flags;
357 } QEMU_PACKED;
358 
359 typedef struct DrconfCellQueue {
360     struct sPAPRDrconfCellV2 cell;
361     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
362 } DrconfCellQueue;
363 
364 static DrconfCellQueue *
365 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
366                       uint32_t drc_index, uint32_t aa_index,
367                       uint32_t flags)
368 {
369     DrconfCellQueue *elem;
370 
371     elem = g_malloc0(sizeof(*elem));
372     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
373     elem->cell.base_addr = cpu_to_be64(base_addr);
374     elem->cell.drc_index = cpu_to_be32(drc_index);
375     elem->cell.aa_index = cpu_to_be32(aa_index);
376     elem->cell.flags = cpu_to_be32(flags);
377 
378     return elem;
379 }
380 
381 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
382                                       int offset, MemoryDeviceInfoList *dimms)
383 {
384     MachineState *machine = MACHINE(spapr);
385     uint8_t *int_buf, *cur_index;
386     int ret;
387     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
388     uint64_t addr, cur_addr, size;
389     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
390     uint64_t mem_end = machine->device_memory->base +
391                        memory_region_size(&machine->device_memory->mr);
392     uint32_t node, buf_len, nr_entries = 0;
393     SpaprDrc *drc;
394     DrconfCellQueue *elem, *next;
395     MemoryDeviceInfoList *info;
396     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
397         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
398 
399     /* Entry to cover RAM and the gap area */
400     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
401                                  SPAPR_LMB_FLAGS_RESERVED |
402                                  SPAPR_LMB_FLAGS_DRC_INVALID);
403     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
404     nr_entries++;
405 
406     cur_addr = machine->device_memory->base;
407     for (info = dimms; info; info = info->next) {
408         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
409 
410         addr = di->addr;
411         size = di->size;
412         node = di->node;
413 
414         /*
415          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
416          * area is marked hotpluggable in the next iteration for the bigger
417          * chunk including the NVDIMM occupied area.
418          */
419         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
420             continue;
421 
422         /* Entry for hot-pluggable area */
423         if (cur_addr < addr) {
424             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
425             g_assert(drc);
426             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
427                                          cur_addr, spapr_drc_index(drc), -1, 0);
428             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
429             nr_entries++;
430         }
431 
432         /* Entry for DIMM */
433         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
434         g_assert(drc);
435         elem = spapr_get_drconf_cell(size / lmb_size, addr,
436                                      spapr_drc_index(drc), node,
437                                      (SPAPR_LMB_FLAGS_ASSIGNED |
438                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
439         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
440         nr_entries++;
441         cur_addr = addr + size;
442     }
443 
444     /* Entry for remaining hotpluggable area */
445     if (cur_addr < mem_end) {
446         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
447         g_assert(drc);
448         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
449                                      cur_addr, spapr_drc_index(drc), -1, 0);
450         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
451         nr_entries++;
452     }
453 
454     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
455     int_buf = cur_index = g_malloc0(buf_len);
456     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
457     cur_index += sizeof(nr_entries);
458 
459     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
460         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
461         cur_index += sizeof(elem->cell);
462         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
463         g_free(elem);
464     }
465 
466     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
467     g_free(int_buf);
468     if (ret < 0) {
469         return -1;
470     }
471     return 0;
472 }
473 
474 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
475                                    int offset, MemoryDeviceInfoList *dimms)
476 {
477     MachineState *machine = MACHINE(spapr);
478     int i, ret;
479     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
480     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
481     uint32_t nr_lmbs = (machine->device_memory->base +
482                        memory_region_size(&machine->device_memory->mr)) /
483                        lmb_size;
484     uint32_t *int_buf, *cur_index, buf_len;
485 
486     /*
487      * Allocate enough buffer size to fit in ibm,dynamic-memory
488      */
489     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
490     cur_index = int_buf = g_malloc0(buf_len);
491     int_buf[0] = cpu_to_be32(nr_lmbs);
492     cur_index++;
493     for (i = 0; i < nr_lmbs; i++) {
494         uint64_t addr = i * lmb_size;
495         uint32_t *dynamic_memory = cur_index;
496 
497         if (i >= device_lmb_start) {
498             SpaprDrc *drc;
499 
500             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
501             g_assert(drc);
502 
503             dynamic_memory[0] = cpu_to_be32(addr >> 32);
504             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
505             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
506             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
507             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
508             if (memory_region_present(get_system_memory(), addr)) {
509                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
510             } else {
511                 dynamic_memory[5] = cpu_to_be32(0);
512             }
513         } else {
514             /*
515              * LMB information for RMA, boot time RAM and gap b/n RAM and
516              * device memory region -- all these are marked as reserved
517              * and as having no valid DRC.
518              */
519             dynamic_memory[0] = cpu_to_be32(addr >> 32);
520             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
521             dynamic_memory[2] = cpu_to_be32(0);
522             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
523             dynamic_memory[4] = cpu_to_be32(-1);
524             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
525                                             SPAPR_LMB_FLAGS_DRC_INVALID);
526         }
527 
528         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
529     }
530     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
531     g_free(int_buf);
532     if (ret < 0) {
533         return -1;
534     }
535     return 0;
536 }
537 
538 /*
539  * Adds ibm,dynamic-reconfiguration-memory node.
540  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
541  * of this device tree node.
542  */
543 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
544                                                    void *fdt)
545 {
546     MachineState *machine = MACHINE(spapr);
547     int ret, offset;
548     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
549     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
550                                 cpu_to_be32(lmb_size & 0xffffffff)};
551     MemoryDeviceInfoList *dimms = NULL;
552 
553     /*
554      * Don't create the node if there is no device memory
555      */
556     if (machine->ram_size == machine->maxram_size) {
557         return 0;
558     }
559 
560     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
561 
562     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
563                     sizeof(prop_lmb_size));
564     if (ret < 0) {
565         return ret;
566     }
567 
568     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
569     if (ret < 0) {
570         return ret;
571     }
572 
573     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
574     if (ret < 0) {
575         return ret;
576     }
577 
578     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
579     dimms = qmp_memory_device_list();
580     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
581         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
582     } else {
583         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
584     }
585     qapi_free_MemoryDeviceInfoList(dimms);
586 
587     if (ret < 0) {
588         return ret;
589     }
590 
591     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
592 
593     return ret;
594 }
595 
596 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
597 {
598     MachineState *machine = MACHINE(spapr);
599     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
600     hwaddr mem_start, node_size;
601     int i, nb_nodes = machine->numa_state->num_nodes;
602     NodeInfo *nodes = machine->numa_state->nodes;
603 
604     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
605         if (!nodes[i].node_mem) {
606             continue;
607         }
608         if (mem_start >= machine->ram_size) {
609             node_size = 0;
610         } else {
611             node_size = nodes[i].node_mem;
612             if (node_size > machine->ram_size - mem_start) {
613                 node_size = machine->ram_size - mem_start;
614             }
615         }
616         if (!mem_start) {
617             /* spapr_machine_init() checks for rma_size <= node0_size
618              * already */
619             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
620             mem_start += spapr->rma_size;
621             node_size -= spapr->rma_size;
622         }
623         for ( ; node_size; ) {
624             hwaddr sizetmp = pow2floor(node_size);
625 
626             /* mem_start != 0 here */
627             if (ctzl(mem_start) < ctzl(sizetmp)) {
628                 sizetmp = 1ULL << ctzl(mem_start);
629             }
630 
631             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
632             node_size -= sizetmp;
633             mem_start += sizetmp;
634         }
635     }
636 
637     /* Generate ibm,dynamic-reconfiguration-memory node if required */
638     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
639         int ret;
640 
641         g_assert(smc->dr_lmb_enabled);
642         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
643         if (ret) {
644             return ret;
645         }
646     }
647 
648     return 0;
649 }
650 
651 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
652                          SpaprMachineState *spapr)
653 {
654     MachineState *ms = MACHINE(spapr);
655     PowerPCCPU *cpu = POWERPC_CPU(cs);
656     CPUPPCState *env = &cpu->env;
657     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
658     int index = spapr_get_vcpu_id(cpu);
659     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
660                        0xffffffff, 0xffffffff};
661     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
662         : SPAPR_TIMEBASE_FREQ;
663     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
664     uint32_t page_sizes_prop[64];
665     size_t page_sizes_prop_size;
666     unsigned int smp_threads = ms->smp.threads;
667     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
668     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
669     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
670     SpaprDrc *drc;
671     int drc_index;
672     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
673     int i;
674 
675     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
676     if (drc) {
677         drc_index = spapr_drc_index(drc);
678         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
679     }
680 
681     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
682     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
683 
684     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
685     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
686                            env->dcache_line_size)));
687     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
688                            env->dcache_line_size)));
689     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
690                            env->icache_line_size)));
691     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
692                            env->icache_line_size)));
693 
694     if (pcc->l1_dcache_size) {
695         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
696                                pcc->l1_dcache_size)));
697     } else {
698         warn_report("Unknown L1 dcache size for cpu");
699     }
700     if (pcc->l1_icache_size) {
701         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
702                                pcc->l1_icache_size)));
703     } else {
704         warn_report("Unknown L1 icache size for cpu");
705     }
706 
707     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
708     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
709     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
710     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
711     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
712     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
713 
714     if (env->spr_cb[SPR_PURR].oea_read) {
715         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
716     }
717     if (env->spr_cb[SPR_SPURR].oea_read) {
718         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
719     }
720 
721     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
722         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
723                           segs, sizeof(segs))));
724     }
725 
726     /* Advertise VSX (vector extensions) if available
727      *   1               == VMX / Altivec available
728      *   2               == VSX available
729      *
730      * Only CPUs for which we create core types in spapr_cpu_core.c
731      * are possible, and all of those have VMX */
732     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
733         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
734     } else {
735         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
736     }
737 
738     /* Advertise DFP (Decimal Floating Point) if available
739      *   0 / no property == no DFP
740      *   1               == DFP available */
741     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
742         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
743     }
744 
745     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
746                                                       sizeof(page_sizes_prop));
747     if (page_sizes_prop_size) {
748         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
749                           page_sizes_prop, page_sizes_prop_size)));
750     }
751 
752     spapr_dt_pa_features(spapr, cpu, fdt, offset);
753 
754     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
755                            cs->cpu_index / vcpus_per_socket)));
756 
757     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
758                       pft_size_prop, sizeof(pft_size_prop))));
759 
760     if (ms->numa_state->num_nodes > 1) {
761         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
762     }
763 
764     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
765 
766     if (pcc->radix_page_info) {
767         for (i = 0; i < pcc->radix_page_info->count; i++) {
768             radix_AP_encodings[i] =
769                 cpu_to_be32(pcc->radix_page_info->entries[i]);
770         }
771         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
772                           radix_AP_encodings,
773                           pcc->radix_page_info->count *
774                           sizeof(radix_AP_encodings[0]))));
775     }
776 
777     /*
778      * We set this property to let the guest know that it can use the large
779      * decrementer and its width in bits.
780      */
781     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
782         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
783                               pcc->lrg_decr_bits)));
784 }
785 
786 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
787 {
788     CPUState **rev;
789     CPUState *cs;
790     int n_cpus;
791     int cpus_offset;
792     char *nodename;
793     int i;
794 
795     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
796     _FDT(cpus_offset);
797     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
798     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
799 
800     /*
801      * We walk the CPUs in reverse order to ensure that CPU DT nodes
802      * created by fdt_add_subnode() end up in the right order in FDT
803      * for the guest kernel the enumerate the CPUs correctly.
804      *
805      * The CPU list cannot be traversed in reverse order, so we need
806      * to do extra work.
807      */
808     n_cpus = 0;
809     rev = NULL;
810     CPU_FOREACH(cs) {
811         rev = g_renew(CPUState *, rev, n_cpus + 1);
812         rev[n_cpus++] = cs;
813     }
814 
815     for (i = n_cpus - 1; i >= 0; i--) {
816         CPUState *cs = rev[i];
817         PowerPCCPU *cpu = POWERPC_CPU(cs);
818         int index = spapr_get_vcpu_id(cpu);
819         DeviceClass *dc = DEVICE_GET_CLASS(cs);
820         int offset;
821 
822         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
823             continue;
824         }
825 
826         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
827         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
828         g_free(nodename);
829         _FDT(offset);
830         spapr_dt_cpu(cs, fdt, offset, spapr);
831     }
832 
833     g_free(rev);
834 }
835 
836 static int spapr_dt_rng(void *fdt)
837 {
838     int node;
839     int ret;
840 
841     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
842     if (node <= 0) {
843         return -1;
844     }
845     ret = fdt_setprop_string(fdt, node, "device_type",
846                              "ibm,platform-facilities");
847     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
848     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
849 
850     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
851     if (node <= 0) {
852         return -1;
853     }
854     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
855 
856     return ret ? -1 : 0;
857 }
858 
859 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
860 {
861     MachineState *ms = MACHINE(spapr);
862     int rtas;
863     GString *hypertas = g_string_sized_new(256);
864     GString *qemu_hypertas = g_string_sized_new(256);
865     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
866         memory_region_size(&MACHINE(spapr)->device_memory->mr);
867     uint32_t lrdr_capacity[] = {
868         cpu_to_be32(max_device_addr >> 32),
869         cpu_to_be32(max_device_addr & 0xffffffff),
870         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
871         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
872         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
873     };
874 
875     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
876 
877     /* hypertas */
878     add_str(hypertas, "hcall-pft");
879     add_str(hypertas, "hcall-term");
880     add_str(hypertas, "hcall-dabr");
881     add_str(hypertas, "hcall-interrupt");
882     add_str(hypertas, "hcall-tce");
883     add_str(hypertas, "hcall-vio");
884     add_str(hypertas, "hcall-splpar");
885     add_str(hypertas, "hcall-join");
886     add_str(hypertas, "hcall-bulk");
887     add_str(hypertas, "hcall-set-mode");
888     add_str(hypertas, "hcall-sprg0");
889     add_str(hypertas, "hcall-copy");
890     add_str(hypertas, "hcall-debug");
891     add_str(hypertas, "hcall-vphn");
892     add_str(qemu_hypertas, "hcall-memop1");
893 
894     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
895         add_str(hypertas, "hcall-multi-tce");
896     }
897 
898     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
899         add_str(hypertas, "hcall-hpt-resize");
900     }
901 
902     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
903                      hypertas->str, hypertas->len));
904     g_string_free(hypertas, TRUE);
905     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
906                      qemu_hypertas->str, qemu_hypertas->len));
907     g_string_free(qemu_hypertas, TRUE);
908 
909     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
910 
911     /*
912      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
913      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
914      *
915      * The system reset requirements are driven by existing Linux and PowerVM
916      * implementation which (contrary to PAPR) saves r3 in the error log
917      * structure like machine check, so Linux expects to find the saved r3
918      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
919      * does not look at the error value).
920      *
921      * System reset interrupts are not subject to interlock like machine
922      * check, so this memory area could be corrupted if the sreset is
923      * interrupted by a machine check (or vice versa) if it was shared. To
924      * prevent this, system reset uses per-CPU areas for the sreset save
925      * area. A system reset that interrupts a system reset handler could
926      * still overwrite this area, but Linux doesn't try to recover in that
927      * case anyway.
928      *
929      * The extra 8 bytes is required because Linux's FWNMI error log check
930      * is off-by-one.
931      */
932     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
933 			  ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
934     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
935                           RTAS_ERROR_LOG_MAX));
936     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
937                           RTAS_EVENT_SCAN_RATE));
938 
939     g_assert(msi_nonbroken);
940     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
941 
942     /*
943      * According to PAPR, rtas ibm,os-term does not guarantee a return
944      * back to the guest cpu.
945      *
946      * While an additional ibm,extended-os-term property indicates
947      * that rtas call return will always occur. Set this property.
948      */
949     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
950 
951     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
952                      lrdr_capacity, sizeof(lrdr_capacity)));
953 
954     spapr_dt_rtas_tokens(fdt, rtas);
955 }
956 
957 /*
958  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
959  * and the XIVE features that the guest may request and thus the valid
960  * values for bytes 23..26 of option vector 5:
961  */
962 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
963                                           int chosen)
964 {
965     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
966 
967     char val[2 * 4] = {
968         23, 0x00, /* XICS / XIVE mode */
969         24, 0x00, /* Hash/Radix, filled in below. */
970         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
971         26, 0x40, /* Radix options: GTSE == yes. */
972     };
973 
974     if (spapr->irq->xics && spapr->irq->xive) {
975         val[1] = SPAPR_OV5_XIVE_BOTH;
976     } else if (spapr->irq->xive) {
977         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
978     } else {
979         assert(spapr->irq->xics);
980         val[1] = SPAPR_OV5_XIVE_LEGACY;
981     }
982 
983     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
984                           first_ppc_cpu->compat_pvr)) {
985         /*
986          * If we're in a pre POWER9 compat mode then the guest should
987          * do hash and use the legacy interrupt mode
988          */
989         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
990         val[3] = 0x00; /* Hash */
991     } else if (kvm_enabled()) {
992         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
993             val[3] = 0x80; /* OV5_MMU_BOTH */
994         } else if (kvmppc_has_cap_mmu_radix()) {
995             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
996         } else {
997             val[3] = 0x00; /* Hash */
998         }
999     } else {
1000         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1001         val[3] = 0xC0;
1002     }
1003     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1004                      val, sizeof(val)));
1005 }
1006 
1007 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1008 {
1009     MachineState *machine = MACHINE(spapr);
1010     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1011     int chosen;
1012 
1013     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1014 
1015     if (reset) {
1016         const char *boot_device = machine->boot_order;
1017         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1018         size_t cb = 0;
1019         char *bootlist = get_boot_devices_list(&cb);
1020 
1021         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1022             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1023                                     machine->kernel_cmdline));
1024         }
1025 
1026         if (spapr->initrd_size) {
1027             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1028                                   spapr->initrd_base));
1029             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1030                                   spapr->initrd_base + spapr->initrd_size));
1031         }
1032 
1033         if (spapr->kernel_size) {
1034             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1035                                   cpu_to_be64(spapr->kernel_size) };
1036 
1037             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1038                          &kprop, sizeof(kprop)));
1039             if (spapr->kernel_le) {
1040                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1041             }
1042         }
1043         if (boot_menu) {
1044             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1045         }
1046         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1047         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1048         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1049 
1050         if (cb && bootlist) {
1051             int i;
1052 
1053             for (i = 0; i < cb; i++) {
1054                 if (bootlist[i] == '\n') {
1055                     bootlist[i] = ' ';
1056                 }
1057             }
1058             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1059         }
1060 
1061         if (boot_device && strlen(boot_device)) {
1062             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1063         }
1064 
1065         if (!spapr->has_graphics && stdout_path) {
1066             /*
1067              * "linux,stdout-path" and "stdout" properties are
1068              * deprecated by linux kernel. New platforms should only
1069              * use the "stdout-path" property. Set the new property
1070              * and continue using older property to remain compatible
1071              * with the existing firmware.
1072              */
1073             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1074             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1075         }
1076 
1077         /*
1078          * We can deal with BAR reallocation just fine, advertise it
1079          * to the guest
1080          */
1081         if (smc->linux_pci_probe) {
1082             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1083         }
1084 
1085         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1086 
1087         g_free(stdout_path);
1088         g_free(bootlist);
1089     }
1090 
1091     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1092 }
1093 
1094 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1095 {
1096     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1097      * KVM to work under pHyp with some guest co-operation */
1098     int hypervisor;
1099     uint8_t hypercall[16];
1100 
1101     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1102     /* indicate KVM hypercall interface */
1103     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1104     if (kvmppc_has_cap_fixup_hcalls()) {
1105         /*
1106          * Older KVM versions with older guest kernels were broken
1107          * with the magic page, don't allow the guest to map it.
1108          */
1109         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1110                                   sizeof(hypercall))) {
1111             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1112                              hypercall, sizeof(hypercall)));
1113         }
1114     }
1115 }
1116 
1117 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1118 {
1119     MachineState *machine = MACHINE(spapr);
1120     MachineClass *mc = MACHINE_GET_CLASS(machine);
1121     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1122     int ret;
1123     void *fdt;
1124     SpaprPhbState *phb;
1125     char *buf;
1126 
1127     fdt = g_malloc0(space);
1128     _FDT((fdt_create_empty_tree(fdt, space)));
1129 
1130     /* Root node */
1131     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1132     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1133     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1134 
1135     /* Guest UUID & Name*/
1136     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1137     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1138     if (qemu_uuid_set) {
1139         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1140     }
1141     g_free(buf);
1142 
1143     if (qemu_get_vm_name()) {
1144         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1145                                 qemu_get_vm_name()));
1146     }
1147 
1148     /* Host Model & Serial Number */
1149     if (spapr->host_model) {
1150         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1151     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1152         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1153         g_free(buf);
1154     }
1155 
1156     if (spapr->host_serial) {
1157         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1158     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1159         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1160         g_free(buf);
1161     }
1162 
1163     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1164     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1165 
1166     /* /interrupt controller */
1167     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1168 
1169     ret = spapr_dt_memory(spapr, fdt);
1170     if (ret < 0) {
1171         error_report("couldn't setup memory nodes in fdt");
1172         exit(1);
1173     }
1174 
1175     /* /vdevice */
1176     spapr_dt_vdevice(spapr->vio_bus, fdt);
1177 
1178     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1179         ret = spapr_dt_rng(fdt);
1180         if (ret < 0) {
1181             error_report("could not set up rng device in the fdt");
1182             exit(1);
1183         }
1184     }
1185 
1186     QLIST_FOREACH(phb, &spapr->phbs, list) {
1187         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1188         if (ret < 0) {
1189             error_report("couldn't setup PCI devices in fdt");
1190             exit(1);
1191         }
1192     }
1193 
1194     spapr_dt_cpus(fdt, spapr);
1195 
1196     if (smc->dr_lmb_enabled) {
1197         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1198     }
1199 
1200     if (mc->has_hotpluggable_cpus) {
1201         int offset = fdt_path_offset(fdt, "/cpus");
1202         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1203         if (ret < 0) {
1204             error_report("Couldn't set up CPU DR device tree properties");
1205             exit(1);
1206         }
1207     }
1208 
1209     /* /event-sources */
1210     spapr_dt_events(spapr, fdt);
1211 
1212     /* /rtas */
1213     spapr_dt_rtas(spapr, fdt);
1214 
1215     /* /chosen */
1216     spapr_dt_chosen(spapr, fdt, reset);
1217 
1218     /* /hypervisor */
1219     if (kvm_enabled()) {
1220         spapr_dt_hypervisor(spapr, fdt);
1221     }
1222 
1223     /* Build memory reserve map */
1224     if (reset) {
1225         if (spapr->kernel_size) {
1226             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1227                                   spapr->kernel_size)));
1228         }
1229         if (spapr->initrd_size) {
1230             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1231                                   spapr->initrd_size)));
1232         }
1233     }
1234 
1235     if (smc->dr_phb_enabled) {
1236         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1237         if (ret < 0) {
1238             error_report("Couldn't set up PHB DR device tree properties");
1239             exit(1);
1240         }
1241     }
1242 
1243     /* NVDIMM devices */
1244     if (mc->nvdimm_supported) {
1245         spapr_dt_persistent_memory(spapr, fdt);
1246     }
1247 
1248     return fdt;
1249 }
1250 
1251 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1252 {
1253     SpaprMachineState *spapr = opaque;
1254 
1255     return (addr & 0x0fffffff) + spapr->kernel_addr;
1256 }
1257 
1258 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1259                                     PowerPCCPU *cpu)
1260 {
1261     CPUPPCState *env = &cpu->env;
1262 
1263     /* The TCG path should also be holding the BQL at this point */
1264     g_assert(qemu_mutex_iothread_locked());
1265 
1266     if (msr_pr) {
1267         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1268         env->gpr[3] = H_PRIVILEGE;
1269     } else {
1270         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1271     }
1272 }
1273 
1274 struct LPCRSyncState {
1275     target_ulong value;
1276     target_ulong mask;
1277 };
1278 
1279 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1280 {
1281     struct LPCRSyncState *s = arg.host_ptr;
1282     PowerPCCPU *cpu = POWERPC_CPU(cs);
1283     CPUPPCState *env = &cpu->env;
1284     target_ulong lpcr;
1285 
1286     cpu_synchronize_state(cs);
1287     lpcr = env->spr[SPR_LPCR];
1288     lpcr &= ~s->mask;
1289     lpcr |= s->value;
1290     ppc_store_lpcr(cpu, lpcr);
1291 }
1292 
1293 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1294 {
1295     CPUState *cs;
1296     struct LPCRSyncState s = {
1297         .value = value,
1298         .mask = mask
1299     };
1300     CPU_FOREACH(cs) {
1301         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1302     }
1303 }
1304 
1305 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1306 {
1307     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1308 
1309     /* Copy PATE1:GR into PATE0:HR */
1310     entry->dw0 = spapr->patb_entry & PATE0_HR;
1311     entry->dw1 = spapr->patb_entry;
1312 }
1313 
1314 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1315 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1316 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1317 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1318 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1319 
1320 /*
1321  * Get the fd to access the kernel htab, re-opening it if necessary
1322  */
1323 static int get_htab_fd(SpaprMachineState *spapr)
1324 {
1325     Error *local_err = NULL;
1326 
1327     if (spapr->htab_fd >= 0) {
1328         return spapr->htab_fd;
1329     }
1330 
1331     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1332     if (spapr->htab_fd < 0) {
1333         error_report_err(local_err);
1334     }
1335 
1336     return spapr->htab_fd;
1337 }
1338 
1339 void close_htab_fd(SpaprMachineState *spapr)
1340 {
1341     if (spapr->htab_fd >= 0) {
1342         close(spapr->htab_fd);
1343     }
1344     spapr->htab_fd = -1;
1345 }
1346 
1347 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1348 {
1349     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1350 
1351     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1352 }
1353 
1354 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1355 {
1356     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1357 
1358     assert(kvm_enabled());
1359 
1360     if (!spapr->htab) {
1361         return 0;
1362     }
1363 
1364     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1365 }
1366 
1367 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1368                                                 hwaddr ptex, int n)
1369 {
1370     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1371     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1372 
1373     if (!spapr->htab) {
1374         /*
1375          * HTAB is controlled by KVM. Fetch into temporary buffer
1376          */
1377         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1378         kvmppc_read_hptes(hptes, ptex, n);
1379         return hptes;
1380     }
1381 
1382     /*
1383      * HTAB is controlled by QEMU. Just point to the internally
1384      * accessible PTEG.
1385      */
1386     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1387 }
1388 
1389 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1390                               const ppc_hash_pte64_t *hptes,
1391                               hwaddr ptex, int n)
1392 {
1393     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1394 
1395     if (!spapr->htab) {
1396         g_free((void *)hptes);
1397     }
1398 
1399     /* Nothing to do for qemu managed HPT */
1400 }
1401 
1402 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1403                       uint64_t pte0, uint64_t pte1)
1404 {
1405     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1406     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1407 
1408     if (!spapr->htab) {
1409         kvmppc_write_hpte(ptex, pte0, pte1);
1410     } else {
1411         if (pte0 & HPTE64_V_VALID) {
1412             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1413             /*
1414              * When setting valid, we write PTE1 first. This ensures
1415              * proper synchronization with the reading code in
1416              * ppc_hash64_pteg_search()
1417              */
1418             smp_wmb();
1419             stq_p(spapr->htab + offset, pte0);
1420         } else {
1421             stq_p(spapr->htab + offset, pte0);
1422             /*
1423              * When clearing it we set PTE0 first. This ensures proper
1424              * synchronization with the reading code in
1425              * ppc_hash64_pteg_search()
1426              */
1427             smp_wmb();
1428             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1429         }
1430     }
1431 }
1432 
1433 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1434                              uint64_t pte1)
1435 {
1436     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1437     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1438 
1439     if (!spapr->htab) {
1440         /* There should always be a hash table when this is called */
1441         error_report("spapr_hpte_set_c called with no hash table !");
1442         return;
1443     }
1444 
1445     /* The HW performs a non-atomic byte update */
1446     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1447 }
1448 
1449 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1450                              uint64_t pte1)
1451 {
1452     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1453     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1454 
1455     if (!spapr->htab) {
1456         /* There should always be a hash table when this is called */
1457         error_report("spapr_hpte_set_r called with no hash table !");
1458         return;
1459     }
1460 
1461     /* The HW performs a non-atomic byte update */
1462     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1463 }
1464 
1465 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1466 {
1467     int shift;
1468 
1469     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1470      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1471      * that's much more than is needed for Linux guests */
1472     shift = ctz64(pow2ceil(ramsize)) - 7;
1473     shift = MAX(shift, 18); /* Minimum architected size */
1474     shift = MIN(shift, 46); /* Maximum architected size */
1475     return shift;
1476 }
1477 
1478 void spapr_free_hpt(SpaprMachineState *spapr)
1479 {
1480     g_free(spapr->htab);
1481     spapr->htab = NULL;
1482     spapr->htab_shift = 0;
1483     close_htab_fd(spapr);
1484 }
1485 
1486 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1487                           Error **errp)
1488 {
1489     ERRP_GUARD();
1490     long rc;
1491 
1492     /* Clean up any HPT info from a previous boot */
1493     spapr_free_hpt(spapr);
1494 
1495     rc = kvmppc_reset_htab(shift);
1496 
1497     if (rc == -EOPNOTSUPP) {
1498         error_setg(errp, "HPT not supported in nested guests");
1499         return;
1500     }
1501 
1502     if (rc < 0) {
1503         /* kernel-side HPT needed, but couldn't allocate one */
1504         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1505                          shift);
1506         error_append_hint(errp, "Try smaller maxmem?\n");
1507         /* This is almost certainly fatal, but if the caller really
1508          * wants to carry on with shift == 0, it's welcome to try */
1509     } else if (rc > 0) {
1510         /* kernel-side HPT allocated */
1511         if (rc != shift) {
1512             error_setg(errp,
1513                        "Requested order %d HPT, but kernel allocated order %ld",
1514                        shift, rc);
1515             error_append_hint(errp, "Try smaller maxmem?\n");
1516         }
1517 
1518         spapr->htab_shift = shift;
1519         spapr->htab = NULL;
1520     } else {
1521         /* kernel-side HPT not needed, allocate in userspace instead */
1522         size_t size = 1ULL << shift;
1523         int i;
1524 
1525         spapr->htab = qemu_memalign(size, size);
1526         if (!spapr->htab) {
1527             error_setg_errno(errp, errno,
1528                              "Could not allocate HPT of order %d", shift);
1529             return;
1530         }
1531 
1532         memset(spapr->htab, 0, size);
1533         spapr->htab_shift = shift;
1534 
1535         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1536             DIRTY_HPTE(HPTE(spapr->htab, i));
1537         }
1538     }
1539     /* We're setting up a hash table, so that means we're not radix */
1540     spapr->patb_entry = 0;
1541     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1542 }
1543 
1544 void spapr_setup_hpt(SpaprMachineState *spapr)
1545 {
1546     int hpt_shift;
1547 
1548     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1549         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1550     } else {
1551         uint64_t current_ram_size;
1552 
1553         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1554         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1555     }
1556     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1557 
1558     if (kvm_enabled()) {
1559         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1560 
1561         /* Check our RMA fits in the possible VRMA */
1562         if (vrma_limit < spapr->rma_size) {
1563             error_report("Unable to create %" HWADDR_PRIu
1564                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1565                          spapr->rma_size / MiB, vrma_limit / MiB);
1566             exit(EXIT_FAILURE);
1567         }
1568     }
1569 }
1570 
1571 static int spapr_reset_drcs(Object *child, void *opaque)
1572 {
1573     SpaprDrc *drc =
1574         (SpaprDrc *) object_dynamic_cast(child,
1575                                                  TYPE_SPAPR_DR_CONNECTOR);
1576 
1577     if (drc) {
1578         spapr_drc_reset(drc);
1579     }
1580 
1581     return 0;
1582 }
1583 
1584 static void spapr_machine_reset(MachineState *machine)
1585 {
1586     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1587     PowerPCCPU *first_ppc_cpu;
1588     hwaddr fdt_addr;
1589     void *fdt;
1590     int rc;
1591 
1592     kvmppc_svm_off(&error_fatal);
1593     spapr_caps_apply(spapr);
1594 
1595     first_ppc_cpu = POWERPC_CPU(first_cpu);
1596     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1597         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1598                               spapr->max_compat_pvr)) {
1599         /*
1600          * If using KVM with radix mode available, VCPUs can be started
1601          * without a HPT because KVM will start them in radix mode.
1602          * Set the GR bit in PATE so that we know there is no HPT.
1603          */
1604         spapr->patb_entry = PATE1_GR;
1605         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1606     } else {
1607         spapr_setup_hpt(spapr);
1608     }
1609 
1610     qemu_devices_reset();
1611 
1612     spapr_ovec_cleanup(spapr->ov5_cas);
1613     spapr->ov5_cas = spapr_ovec_new();
1614 
1615     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1616 
1617     /*
1618      * This is fixing some of the default configuration of the XIVE
1619      * devices. To be called after the reset of the machine devices.
1620      */
1621     spapr_irq_reset(spapr, &error_fatal);
1622 
1623     /*
1624      * There is no CAS under qtest. Simulate one to please the code that
1625      * depends on spapr->ov5_cas. This is especially needed to test device
1626      * unplug, so we do that before resetting the DRCs.
1627      */
1628     if (qtest_enabled()) {
1629         spapr_ovec_cleanup(spapr->ov5_cas);
1630         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1631     }
1632 
1633     /* DRC reset may cause a device to be unplugged. This will cause troubles
1634      * if this device is used by another device (eg, a running vhost backend
1635      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1636      * situations, we reset DRCs after all devices have been reset.
1637      */
1638     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1639 
1640     spapr_clear_pending_events(spapr);
1641 
1642     /*
1643      * We place the device tree and RTAS just below either the top of the RMA,
1644      * or just below 2GB, whichever is lower, so that it can be
1645      * processed with 32-bit real mode code if necessary
1646      */
1647     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1648 
1649     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1650 
1651     rc = fdt_pack(fdt);
1652 
1653     /* Should only fail if we've built a corrupted tree */
1654     assert(rc == 0);
1655 
1656     /* Load the fdt */
1657     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1658     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1659     g_free(spapr->fdt_blob);
1660     spapr->fdt_size = fdt_totalsize(fdt);
1661     spapr->fdt_initial_size = spapr->fdt_size;
1662     spapr->fdt_blob = fdt;
1663 
1664     /* Set up the entry state */
1665     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1666     first_ppc_cpu->env.gpr[5] = 0;
1667 
1668     spapr->fwnmi_system_reset_addr = -1;
1669     spapr->fwnmi_machine_check_addr = -1;
1670     spapr->fwnmi_machine_check_interlock = -1;
1671 
1672     /* Signal all vCPUs waiting on this condition */
1673     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1674 
1675     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1676 }
1677 
1678 static void spapr_create_nvram(SpaprMachineState *spapr)
1679 {
1680     DeviceState *dev = qdev_new("spapr-nvram");
1681     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1682 
1683     if (dinfo) {
1684         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1685                                 &error_fatal);
1686     }
1687 
1688     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1689 
1690     spapr->nvram = (struct SpaprNvram *)dev;
1691 }
1692 
1693 static void spapr_rtc_create(SpaprMachineState *spapr)
1694 {
1695     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1696                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1697                                        &error_fatal, NULL);
1698     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1699     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1700                               "date");
1701 }
1702 
1703 /* Returns whether we want to use VGA or not */
1704 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1705 {
1706     switch (vga_interface_type) {
1707     case VGA_NONE:
1708         return false;
1709     case VGA_DEVICE:
1710         return true;
1711     case VGA_STD:
1712     case VGA_VIRTIO:
1713     case VGA_CIRRUS:
1714         return pci_vga_init(pci_bus) != NULL;
1715     default:
1716         error_setg(errp,
1717                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1718         return false;
1719     }
1720 }
1721 
1722 static int spapr_pre_load(void *opaque)
1723 {
1724     int rc;
1725 
1726     rc = spapr_caps_pre_load(opaque);
1727     if (rc) {
1728         return rc;
1729     }
1730 
1731     return 0;
1732 }
1733 
1734 static int spapr_post_load(void *opaque, int version_id)
1735 {
1736     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1737     int err = 0;
1738 
1739     err = spapr_caps_post_migration(spapr);
1740     if (err) {
1741         return err;
1742     }
1743 
1744     /*
1745      * In earlier versions, there was no separate qdev for the PAPR
1746      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1747      * So when migrating from those versions, poke the incoming offset
1748      * value into the RTC device
1749      */
1750     if (version_id < 3) {
1751         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1752         if (err) {
1753             return err;
1754         }
1755     }
1756 
1757     if (kvm_enabled() && spapr->patb_entry) {
1758         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1759         bool radix = !!(spapr->patb_entry & PATE1_GR);
1760         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1761 
1762         /*
1763          * Update LPCR:HR and UPRT as they may not be set properly in
1764          * the stream
1765          */
1766         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1767                             LPCR_HR | LPCR_UPRT);
1768 
1769         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1770         if (err) {
1771             error_report("Process table config unsupported by the host");
1772             return -EINVAL;
1773         }
1774     }
1775 
1776     err = spapr_irq_post_load(spapr, version_id);
1777     if (err) {
1778         return err;
1779     }
1780 
1781     return err;
1782 }
1783 
1784 static int spapr_pre_save(void *opaque)
1785 {
1786     int rc;
1787 
1788     rc = spapr_caps_pre_save(opaque);
1789     if (rc) {
1790         return rc;
1791     }
1792 
1793     return 0;
1794 }
1795 
1796 static bool version_before_3(void *opaque, int version_id)
1797 {
1798     return version_id < 3;
1799 }
1800 
1801 static bool spapr_pending_events_needed(void *opaque)
1802 {
1803     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1804     return !QTAILQ_EMPTY(&spapr->pending_events);
1805 }
1806 
1807 static const VMStateDescription vmstate_spapr_event_entry = {
1808     .name = "spapr_event_log_entry",
1809     .version_id = 1,
1810     .minimum_version_id = 1,
1811     .fields = (VMStateField[]) {
1812         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1813         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1814         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1815                                      NULL, extended_length),
1816         VMSTATE_END_OF_LIST()
1817     },
1818 };
1819 
1820 static const VMStateDescription vmstate_spapr_pending_events = {
1821     .name = "spapr_pending_events",
1822     .version_id = 1,
1823     .minimum_version_id = 1,
1824     .needed = spapr_pending_events_needed,
1825     .fields = (VMStateField[]) {
1826         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1827                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1828         VMSTATE_END_OF_LIST()
1829     },
1830 };
1831 
1832 static bool spapr_ov5_cas_needed(void *opaque)
1833 {
1834     SpaprMachineState *spapr = opaque;
1835     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1836     bool cas_needed;
1837 
1838     /* Prior to the introduction of SpaprOptionVector, we had two option
1839      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1840      * Both of these options encode machine topology into the device-tree
1841      * in such a way that the now-booted OS should still be able to interact
1842      * appropriately with QEMU regardless of what options were actually
1843      * negotiatied on the source side.
1844      *
1845      * As such, we can avoid migrating the CAS-negotiated options if these
1846      * are the only options available on the current machine/platform.
1847      * Since these are the only options available for pseries-2.7 and
1848      * earlier, this allows us to maintain old->new/new->old migration
1849      * compatibility.
1850      *
1851      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1852      * via default pseries-2.8 machines and explicit command-line parameters.
1853      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1854      * of the actual CAS-negotiated values to continue working properly. For
1855      * example, availability of memory unplug depends on knowing whether
1856      * OV5_HP_EVT was negotiated via CAS.
1857      *
1858      * Thus, for any cases where the set of available CAS-negotiatable
1859      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1860      * include the CAS-negotiated options in the migration stream, unless
1861      * if they affect boot time behaviour only.
1862      */
1863     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1864     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1865     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1866 
1867     /* We need extra information if we have any bits outside the mask
1868      * defined above */
1869     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1870 
1871     spapr_ovec_cleanup(ov5_mask);
1872 
1873     return cas_needed;
1874 }
1875 
1876 static const VMStateDescription vmstate_spapr_ov5_cas = {
1877     .name = "spapr_option_vector_ov5_cas",
1878     .version_id = 1,
1879     .minimum_version_id = 1,
1880     .needed = spapr_ov5_cas_needed,
1881     .fields = (VMStateField[]) {
1882         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1883                                  vmstate_spapr_ovec, SpaprOptionVector),
1884         VMSTATE_END_OF_LIST()
1885     },
1886 };
1887 
1888 static bool spapr_patb_entry_needed(void *opaque)
1889 {
1890     SpaprMachineState *spapr = opaque;
1891 
1892     return !!spapr->patb_entry;
1893 }
1894 
1895 static const VMStateDescription vmstate_spapr_patb_entry = {
1896     .name = "spapr_patb_entry",
1897     .version_id = 1,
1898     .minimum_version_id = 1,
1899     .needed = spapr_patb_entry_needed,
1900     .fields = (VMStateField[]) {
1901         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1902         VMSTATE_END_OF_LIST()
1903     },
1904 };
1905 
1906 static bool spapr_irq_map_needed(void *opaque)
1907 {
1908     SpaprMachineState *spapr = opaque;
1909 
1910     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1911 }
1912 
1913 static const VMStateDescription vmstate_spapr_irq_map = {
1914     .name = "spapr_irq_map",
1915     .version_id = 1,
1916     .minimum_version_id = 1,
1917     .needed = spapr_irq_map_needed,
1918     .fields = (VMStateField[]) {
1919         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1920         VMSTATE_END_OF_LIST()
1921     },
1922 };
1923 
1924 static bool spapr_dtb_needed(void *opaque)
1925 {
1926     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1927 
1928     return smc->update_dt_enabled;
1929 }
1930 
1931 static int spapr_dtb_pre_load(void *opaque)
1932 {
1933     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1934 
1935     g_free(spapr->fdt_blob);
1936     spapr->fdt_blob = NULL;
1937     spapr->fdt_size = 0;
1938 
1939     return 0;
1940 }
1941 
1942 static const VMStateDescription vmstate_spapr_dtb = {
1943     .name = "spapr_dtb",
1944     .version_id = 1,
1945     .minimum_version_id = 1,
1946     .needed = spapr_dtb_needed,
1947     .pre_load = spapr_dtb_pre_load,
1948     .fields = (VMStateField[]) {
1949         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1950         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1951         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1952                                      fdt_size),
1953         VMSTATE_END_OF_LIST()
1954     },
1955 };
1956 
1957 static bool spapr_fwnmi_needed(void *opaque)
1958 {
1959     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1960 
1961     return spapr->fwnmi_machine_check_addr != -1;
1962 }
1963 
1964 static int spapr_fwnmi_pre_save(void *opaque)
1965 {
1966     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1967 
1968     /*
1969      * Check if machine check handling is in progress and print a
1970      * warning message.
1971      */
1972     if (spapr->fwnmi_machine_check_interlock != -1) {
1973         warn_report("A machine check is being handled during migration. The"
1974                 "handler may run and log hardware error on the destination");
1975     }
1976 
1977     return 0;
1978 }
1979 
1980 static const VMStateDescription vmstate_spapr_fwnmi = {
1981     .name = "spapr_fwnmi",
1982     .version_id = 1,
1983     .minimum_version_id = 1,
1984     .needed = spapr_fwnmi_needed,
1985     .pre_save = spapr_fwnmi_pre_save,
1986     .fields = (VMStateField[]) {
1987         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1988         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1989         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1990         VMSTATE_END_OF_LIST()
1991     },
1992 };
1993 
1994 static const VMStateDescription vmstate_spapr = {
1995     .name = "spapr",
1996     .version_id = 3,
1997     .minimum_version_id = 1,
1998     .pre_load = spapr_pre_load,
1999     .post_load = spapr_post_load,
2000     .pre_save = spapr_pre_save,
2001     .fields = (VMStateField[]) {
2002         /* used to be @next_irq */
2003         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2004 
2005         /* RTC offset */
2006         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2007 
2008         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2009         VMSTATE_END_OF_LIST()
2010     },
2011     .subsections = (const VMStateDescription*[]) {
2012         &vmstate_spapr_ov5_cas,
2013         &vmstate_spapr_patb_entry,
2014         &vmstate_spapr_pending_events,
2015         &vmstate_spapr_cap_htm,
2016         &vmstate_spapr_cap_vsx,
2017         &vmstate_spapr_cap_dfp,
2018         &vmstate_spapr_cap_cfpc,
2019         &vmstate_spapr_cap_sbbc,
2020         &vmstate_spapr_cap_ibs,
2021         &vmstate_spapr_cap_hpt_maxpagesize,
2022         &vmstate_spapr_irq_map,
2023         &vmstate_spapr_cap_nested_kvm_hv,
2024         &vmstate_spapr_dtb,
2025         &vmstate_spapr_cap_large_decr,
2026         &vmstate_spapr_cap_ccf_assist,
2027         &vmstate_spapr_cap_fwnmi,
2028         &vmstate_spapr_fwnmi,
2029         NULL
2030     }
2031 };
2032 
2033 static int htab_save_setup(QEMUFile *f, void *opaque)
2034 {
2035     SpaprMachineState *spapr = opaque;
2036 
2037     /* "Iteration" header */
2038     if (!spapr->htab_shift) {
2039         qemu_put_be32(f, -1);
2040     } else {
2041         qemu_put_be32(f, spapr->htab_shift);
2042     }
2043 
2044     if (spapr->htab) {
2045         spapr->htab_save_index = 0;
2046         spapr->htab_first_pass = true;
2047     } else {
2048         if (spapr->htab_shift) {
2049             assert(kvm_enabled());
2050         }
2051     }
2052 
2053 
2054     return 0;
2055 }
2056 
2057 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2058                             int chunkstart, int n_valid, int n_invalid)
2059 {
2060     qemu_put_be32(f, chunkstart);
2061     qemu_put_be16(f, n_valid);
2062     qemu_put_be16(f, n_invalid);
2063     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2064                     HASH_PTE_SIZE_64 * n_valid);
2065 }
2066 
2067 static void htab_save_end_marker(QEMUFile *f)
2068 {
2069     qemu_put_be32(f, 0);
2070     qemu_put_be16(f, 0);
2071     qemu_put_be16(f, 0);
2072 }
2073 
2074 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2075                                  int64_t max_ns)
2076 {
2077     bool has_timeout = max_ns != -1;
2078     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2079     int index = spapr->htab_save_index;
2080     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2081 
2082     assert(spapr->htab_first_pass);
2083 
2084     do {
2085         int chunkstart;
2086 
2087         /* Consume invalid HPTEs */
2088         while ((index < htabslots)
2089                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2090             CLEAN_HPTE(HPTE(spapr->htab, index));
2091             index++;
2092         }
2093 
2094         /* Consume valid HPTEs */
2095         chunkstart = index;
2096         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2097                && HPTE_VALID(HPTE(spapr->htab, index))) {
2098             CLEAN_HPTE(HPTE(spapr->htab, index));
2099             index++;
2100         }
2101 
2102         if (index > chunkstart) {
2103             int n_valid = index - chunkstart;
2104 
2105             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2106 
2107             if (has_timeout &&
2108                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2109                 break;
2110             }
2111         }
2112     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2113 
2114     if (index >= htabslots) {
2115         assert(index == htabslots);
2116         index = 0;
2117         spapr->htab_first_pass = false;
2118     }
2119     spapr->htab_save_index = index;
2120 }
2121 
2122 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2123                                 int64_t max_ns)
2124 {
2125     bool final = max_ns < 0;
2126     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2127     int examined = 0, sent = 0;
2128     int index = spapr->htab_save_index;
2129     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2130 
2131     assert(!spapr->htab_first_pass);
2132 
2133     do {
2134         int chunkstart, invalidstart;
2135 
2136         /* Consume non-dirty HPTEs */
2137         while ((index < htabslots)
2138                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2139             index++;
2140             examined++;
2141         }
2142 
2143         chunkstart = index;
2144         /* Consume valid dirty HPTEs */
2145         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2146                && HPTE_DIRTY(HPTE(spapr->htab, index))
2147                && HPTE_VALID(HPTE(spapr->htab, index))) {
2148             CLEAN_HPTE(HPTE(spapr->htab, index));
2149             index++;
2150             examined++;
2151         }
2152 
2153         invalidstart = index;
2154         /* Consume invalid dirty HPTEs */
2155         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2156                && HPTE_DIRTY(HPTE(spapr->htab, index))
2157                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2158             CLEAN_HPTE(HPTE(spapr->htab, index));
2159             index++;
2160             examined++;
2161         }
2162 
2163         if (index > chunkstart) {
2164             int n_valid = invalidstart - chunkstart;
2165             int n_invalid = index - invalidstart;
2166 
2167             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2168             sent += index - chunkstart;
2169 
2170             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2171                 break;
2172             }
2173         }
2174 
2175         if (examined >= htabslots) {
2176             break;
2177         }
2178 
2179         if (index >= htabslots) {
2180             assert(index == htabslots);
2181             index = 0;
2182         }
2183     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2184 
2185     if (index >= htabslots) {
2186         assert(index == htabslots);
2187         index = 0;
2188     }
2189 
2190     spapr->htab_save_index = index;
2191 
2192     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2193 }
2194 
2195 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2196 #define MAX_KVM_BUF_SIZE    2048
2197 
2198 static int htab_save_iterate(QEMUFile *f, void *opaque)
2199 {
2200     SpaprMachineState *spapr = opaque;
2201     int fd;
2202     int rc = 0;
2203 
2204     /* Iteration header */
2205     if (!spapr->htab_shift) {
2206         qemu_put_be32(f, -1);
2207         return 1;
2208     } else {
2209         qemu_put_be32(f, 0);
2210     }
2211 
2212     if (!spapr->htab) {
2213         assert(kvm_enabled());
2214 
2215         fd = get_htab_fd(spapr);
2216         if (fd < 0) {
2217             return fd;
2218         }
2219 
2220         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2221         if (rc < 0) {
2222             return rc;
2223         }
2224     } else  if (spapr->htab_first_pass) {
2225         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2226     } else {
2227         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2228     }
2229 
2230     htab_save_end_marker(f);
2231 
2232     return rc;
2233 }
2234 
2235 static int htab_save_complete(QEMUFile *f, void *opaque)
2236 {
2237     SpaprMachineState *spapr = opaque;
2238     int fd;
2239 
2240     /* Iteration header */
2241     if (!spapr->htab_shift) {
2242         qemu_put_be32(f, -1);
2243         return 0;
2244     } else {
2245         qemu_put_be32(f, 0);
2246     }
2247 
2248     if (!spapr->htab) {
2249         int rc;
2250 
2251         assert(kvm_enabled());
2252 
2253         fd = get_htab_fd(spapr);
2254         if (fd < 0) {
2255             return fd;
2256         }
2257 
2258         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2259         if (rc < 0) {
2260             return rc;
2261         }
2262     } else {
2263         if (spapr->htab_first_pass) {
2264             htab_save_first_pass(f, spapr, -1);
2265         }
2266         htab_save_later_pass(f, spapr, -1);
2267     }
2268 
2269     /* End marker */
2270     htab_save_end_marker(f);
2271 
2272     return 0;
2273 }
2274 
2275 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2276 {
2277     SpaprMachineState *spapr = opaque;
2278     uint32_t section_hdr;
2279     int fd = -1;
2280     Error *local_err = NULL;
2281 
2282     if (version_id < 1 || version_id > 1) {
2283         error_report("htab_load() bad version");
2284         return -EINVAL;
2285     }
2286 
2287     section_hdr = qemu_get_be32(f);
2288 
2289     if (section_hdr == -1) {
2290         spapr_free_hpt(spapr);
2291         return 0;
2292     }
2293 
2294     if (section_hdr) {
2295         /* First section gives the htab size */
2296         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2297         if (local_err) {
2298             error_report_err(local_err);
2299             return -EINVAL;
2300         }
2301         return 0;
2302     }
2303 
2304     if (!spapr->htab) {
2305         assert(kvm_enabled());
2306 
2307         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2308         if (fd < 0) {
2309             error_report_err(local_err);
2310             return fd;
2311         }
2312     }
2313 
2314     while (true) {
2315         uint32_t index;
2316         uint16_t n_valid, n_invalid;
2317 
2318         index = qemu_get_be32(f);
2319         n_valid = qemu_get_be16(f);
2320         n_invalid = qemu_get_be16(f);
2321 
2322         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2323             /* End of Stream */
2324             break;
2325         }
2326 
2327         if ((index + n_valid + n_invalid) >
2328             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2329             /* Bad index in stream */
2330             error_report(
2331                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2332                 index, n_valid, n_invalid, spapr->htab_shift);
2333             return -EINVAL;
2334         }
2335 
2336         if (spapr->htab) {
2337             if (n_valid) {
2338                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2339                                 HASH_PTE_SIZE_64 * n_valid);
2340             }
2341             if (n_invalid) {
2342                 memset(HPTE(spapr->htab, index + n_valid), 0,
2343                        HASH_PTE_SIZE_64 * n_invalid);
2344             }
2345         } else {
2346             int rc;
2347 
2348             assert(fd >= 0);
2349 
2350             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2351             if (rc < 0) {
2352                 return rc;
2353             }
2354         }
2355     }
2356 
2357     if (!spapr->htab) {
2358         assert(fd >= 0);
2359         close(fd);
2360     }
2361 
2362     return 0;
2363 }
2364 
2365 static void htab_save_cleanup(void *opaque)
2366 {
2367     SpaprMachineState *spapr = opaque;
2368 
2369     close_htab_fd(spapr);
2370 }
2371 
2372 static SaveVMHandlers savevm_htab_handlers = {
2373     .save_setup = htab_save_setup,
2374     .save_live_iterate = htab_save_iterate,
2375     .save_live_complete_precopy = htab_save_complete,
2376     .save_cleanup = htab_save_cleanup,
2377     .load_state = htab_load,
2378 };
2379 
2380 static void spapr_boot_set(void *opaque, const char *boot_device,
2381                            Error **errp)
2382 {
2383     MachineState *machine = MACHINE(opaque);
2384     machine->boot_order = g_strdup(boot_device);
2385 }
2386 
2387 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2388 {
2389     MachineState *machine = MACHINE(spapr);
2390     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2391     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2392     int i;
2393 
2394     for (i = 0; i < nr_lmbs; i++) {
2395         uint64_t addr;
2396 
2397         addr = i * lmb_size + machine->device_memory->base;
2398         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2399                                addr / lmb_size);
2400     }
2401 }
2402 
2403 /*
2404  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2405  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2406  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2407  */
2408 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2409 {
2410     int i;
2411 
2412     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2413         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2414                    " is not aligned to %" PRIu64 " MiB",
2415                    machine->ram_size,
2416                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2417         return;
2418     }
2419 
2420     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2421         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2422                    " is not aligned to %" PRIu64 " MiB",
2423                    machine->ram_size,
2424                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2425         return;
2426     }
2427 
2428     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2429         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2430             error_setg(errp,
2431                        "Node %d memory size 0x%" PRIx64
2432                        " is not aligned to %" PRIu64 " MiB",
2433                        i, machine->numa_state->nodes[i].node_mem,
2434                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2435             return;
2436         }
2437     }
2438 }
2439 
2440 /* find cpu slot in machine->possible_cpus by core_id */
2441 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2442 {
2443     int index = id / ms->smp.threads;
2444 
2445     if (index >= ms->possible_cpus->len) {
2446         return NULL;
2447     }
2448     if (idx) {
2449         *idx = index;
2450     }
2451     return &ms->possible_cpus->cpus[index];
2452 }
2453 
2454 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2455 {
2456     MachineState *ms = MACHINE(spapr);
2457     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2458     Error *local_err = NULL;
2459     bool vsmt_user = !!spapr->vsmt;
2460     int kvm_smt = kvmppc_smt_threads();
2461     int ret;
2462     unsigned int smp_threads = ms->smp.threads;
2463 
2464     if (!kvm_enabled() && (smp_threads > 1)) {
2465         error_setg(errp, "TCG cannot support more than 1 thread/core "
2466                    "on a pseries machine");
2467         return;
2468     }
2469     if (!is_power_of_2(smp_threads)) {
2470         error_setg(errp, "Cannot support %d threads/core on a pseries "
2471                    "machine because it must be a power of 2", smp_threads);
2472         return;
2473     }
2474 
2475     /* Detemine the VSMT mode to use: */
2476     if (vsmt_user) {
2477         if (spapr->vsmt < smp_threads) {
2478             error_setg(errp, "Cannot support VSMT mode %d"
2479                        " because it must be >= threads/core (%d)",
2480                        spapr->vsmt, smp_threads);
2481             return;
2482         }
2483         /* In this case, spapr->vsmt has been set by the command line */
2484     } else if (!smc->smp_threads_vsmt) {
2485         /*
2486          * Default VSMT value is tricky, because we need it to be as
2487          * consistent as possible (for migration), but this requires
2488          * changing it for at least some existing cases.  We pick 8 as
2489          * the value that we'd get with KVM on POWER8, the
2490          * overwhelmingly common case in production systems.
2491          */
2492         spapr->vsmt = MAX(8, smp_threads);
2493     } else {
2494         spapr->vsmt = smp_threads;
2495     }
2496 
2497     /* KVM: If necessary, set the SMT mode: */
2498     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2499         ret = kvmppc_set_smt_threads(spapr->vsmt);
2500         if (ret) {
2501             /* Looks like KVM isn't able to change VSMT mode */
2502             error_setg(&local_err,
2503                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2504                        spapr->vsmt, ret);
2505             /* We can live with that if the default one is big enough
2506              * for the number of threads, and a submultiple of the one
2507              * we want.  In this case we'll waste some vcpu ids, but
2508              * behaviour will be correct */
2509             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2510                 warn_report_err(local_err);
2511             } else {
2512                 if (!vsmt_user) {
2513                     error_append_hint(&local_err,
2514                                       "On PPC, a VM with %d threads/core"
2515                                       " on a host with %d threads/core"
2516                                       " requires the use of VSMT mode %d.\n",
2517                                       smp_threads, kvm_smt, spapr->vsmt);
2518                 }
2519                 kvmppc_error_append_smt_possible_hint(&local_err);
2520                 error_propagate(errp, local_err);
2521             }
2522         }
2523     }
2524     /* else TCG: nothing to do currently */
2525 }
2526 
2527 static void spapr_init_cpus(SpaprMachineState *spapr)
2528 {
2529     MachineState *machine = MACHINE(spapr);
2530     MachineClass *mc = MACHINE_GET_CLASS(machine);
2531     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2532     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2533     const CPUArchIdList *possible_cpus;
2534     unsigned int smp_cpus = machine->smp.cpus;
2535     unsigned int smp_threads = machine->smp.threads;
2536     unsigned int max_cpus = machine->smp.max_cpus;
2537     int boot_cores_nr = smp_cpus / smp_threads;
2538     int i;
2539 
2540     possible_cpus = mc->possible_cpu_arch_ids(machine);
2541     if (mc->has_hotpluggable_cpus) {
2542         if (smp_cpus % smp_threads) {
2543             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2544                          smp_cpus, smp_threads);
2545             exit(1);
2546         }
2547         if (max_cpus % smp_threads) {
2548             error_report("max_cpus (%u) must be multiple of threads (%u)",
2549                          max_cpus, smp_threads);
2550             exit(1);
2551         }
2552     } else {
2553         if (max_cpus != smp_cpus) {
2554             error_report("This machine version does not support CPU hotplug");
2555             exit(1);
2556         }
2557         boot_cores_nr = possible_cpus->len;
2558     }
2559 
2560     if (smc->pre_2_10_has_unused_icps) {
2561         int i;
2562 
2563         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2564             /* Dummy entries get deregistered when real ICPState objects
2565              * are registered during CPU core hotplug.
2566              */
2567             pre_2_10_vmstate_register_dummy_icp(i);
2568         }
2569     }
2570 
2571     for (i = 0; i < possible_cpus->len; i++) {
2572         int core_id = i * smp_threads;
2573 
2574         if (mc->has_hotpluggable_cpus) {
2575             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2576                                    spapr_vcpu_id(spapr, core_id));
2577         }
2578 
2579         if (i < boot_cores_nr) {
2580             Object *core  = object_new(type);
2581             int nr_threads = smp_threads;
2582 
2583             /* Handle the partially filled core for older machine types */
2584             if ((i + 1) * smp_threads >= smp_cpus) {
2585                 nr_threads = smp_cpus - i * smp_threads;
2586             }
2587 
2588             object_property_set_int(core, "nr-threads", nr_threads,
2589                                     &error_fatal);
2590             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2591                                     &error_fatal);
2592             qdev_realize(DEVICE(core), NULL, &error_fatal);
2593 
2594             object_unref(core);
2595         }
2596     }
2597 }
2598 
2599 static PCIHostState *spapr_create_default_phb(void)
2600 {
2601     DeviceState *dev;
2602 
2603     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2604     qdev_prop_set_uint32(dev, "index", 0);
2605     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2606 
2607     return PCI_HOST_BRIDGE(dev);
2608 }
2609 
2610 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2611 {
2612     MachineState *machine = MACHINE(spapr);
2613     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2614     hwaddr rma_size = machine->ram_size;
2615     hwaddr node0_size = spapr_node0_size(machine);
2616 
2617     /* RMA has to fit in the first NUMA node */
2618     rma_size = MIN(rma_size, node0_size);
2619 
2620     /*
2621      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2622      * never exceed that
2623      */
2624     rma_size = MIN(rma_size, 1 * TiB);
2625 
2626     /*
2627      * Clamp the RMA size based on machine type.  This is for
2628      * migration compatibility with older qemu versions, which limited
2629      * the RMA size for complicated and mostly bad reasons.
2630      */
2631     if (smc->rma_limit) {
2632         rma_size = MIN(rma_size, smc->rma_limit);
2633     }
2634 
2635     if (rma_size < MIN_RMA_SLOF) {
2636         error_setg(errp,
2637                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2638                    "ldMiB guest RMA (Real Mode Area memory)",
2639                    MIN_RMA_SLOF / MiB);
2640         return 0;
2641     }
2642 
2643     return rma_size;
2644 }
2645 
2646 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2647 {
2648     MachineState *machine = MACHINE(spapr);
2649     int i;
2650 
2651     for (i = 0; i < machine->ram_slots; i++) {
2652         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2653     }
2654 }
2655 
2656 /* pSeries LPAR / sPAPR hardware init */
2657 static void spapr_machine_init(MachineState *machine)
2658 {
2659     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2660     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2661     MachineClass *mc = MACHINE_GET_CLASS(machine);
2662     const char *kernel_filename = machine->kernel_filename;
2663     const char *initrd_filename = machine->initrd_filename;
2664     PCIHostState *phb;
2665     int i;
2666     MemoryRegion *sysmem = get_system_memory();
2667     long load_limit, fw_size;
2668     char *filename;
2669     Error *resize_hpt_err = NULL;
2670 
2671     msi_nonbroken = true;
2672 
2673     QLIST_INIT(&spapr->phbs);
2674     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2675 
2676     /* Determine capabilities to run with */
2677     spapr_caps_init(spapr);
2678 
2679     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2680     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2681         /*
2682          * If the user explicitly requested a mode we should either
2683          * supply it, or fail completely (which we do below).  But if
2684          * it's not set explicitly, we reset our mode to something
2685          * that works
2686          */
2687         if (resize_hpt_err) {
2688             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2689             error_free(resize_hpt_err);
2690             resize_hpt_err = NULL;
2691         } else {
2692             spapr->resize_hpt = smc->resize_hpt_default;
2693         }
2694     }
2695 
2696     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2697 
2698     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2699         /*
2700          * User requested HPT resize, but this host can't supply it.  Bail out
2701          */
2702         error_report_err(resize_hpt_err);
2703         exit(1);
2704     }
2705     error_free(resize_hpt_err);
2706 
2707     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2708 
2709     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2710     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2711 
2712     /*
2713      * VSMT must be set in order to be able to compute VCPU ids, ie to
2714      * call spapr_max_server_number() or spapr_vcpu_id().
2715      */
2716     spapr_set_vsmt_mode(spapr, &error_fatal);
2717 
2718     /* Set up Interrupt Controller before we create the VCPUs */
2719     spapr_irq_init(spapr, &error_fatal);
2720 
2721     /* Set up containers for ibm,client-architecture-support negotiated options
2722      */
2723     spapr->ov5 = spapr_ovec_new();
2724     spapr->ov5_cas = spapr_ovec_new();
2725 
2726     if (smc->dr_lmb_enabled) {
2727         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2728         spapr_validate_node_memory(machine, &error_fatal);
2729     }
2730 
2731     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2732 
2733     /* advertise support for dedicated HP event source to guests */
2734     if (spapr->use_hotplug_event_source) {
2735         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2736     }
2737 
2738     /* advertise support for HPT resizing */
2739     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2740         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2741     }
2742 
2743     /* advertise support for ibm,dyamic-memory-v2 */
2744     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2745 
2746     /* advertise XIVE on POWER9 machines */
2747     if (spapr->irq->xive) {
2748         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2749     }
2750 
2751     /* init CPUs */
2752     spapr_init_cpus(spapr);
2753 
2754     /*
2755      * check we don't have a memory-less/cpu-less NUMA node
2756      * Firmware relies on the existing memory/cpu topology to provide the
2757      * NUMA topology to the kernel.
2758      * And the linux kernel needs to know the NUMA topology at start
2759      * to be able to hotplug CPUs later.
2760      */
2761     if (machine->numa_state->num_nodes) {
2762         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2763             /* check for memory-less node */
2764             if (machine->numa_state->nodes[i].node_mem == 0) {
2765                 CPUState *cs;
2766                 int found = 0;
2767                 /* check for cpu-less node */
2768                 CPU_FOREACH(cs) {
2769                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2770                     if (cpu->node_id == i) {
2771                         found = 1;
2772                         break;
2773                     }
2774                 }
2775                 /* memory-less and cpu-less node */
2776                 if (!found) {
2777                     error_report(
2778                        "Memory-less/cpu-less nodes are not supported (node %d)",
2779                                  i);
2780                     exit(1);
2781                 }
2782             }
2783         }
2784 
2785     }
2786 
2787     /*
2788      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2789      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2790      * called from vPHB reset handler so we initialize the counter here.
2791      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2792      * must be equally distant from any other node.
2793      * The final value of spapr->gpu_numa_id is going to be written to
2794      * max-associativity-domains in spapr_build_fdt().
2795      */
2796     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2797 
2798     /* Init numa_assoc_array */
2799     spapr_numa_associativity_init(spapr, machine);
2800 
2801     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2802         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2803                               spapr->max_compat_pvr)) {
2804         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2805         /* KVM and TCG always allow GTSE with radix... */
2806         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2807     }
2808     /* ... but not with hash (currently). */
2809 
2810     if (kvm_enabled()) {
2811         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2812         kvmppc_enable_logical_ci_hcalls();
2813         kvmppc_enable_set_mode_hcall();
2814 
2815         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2816         kvmppc_enable_clear_ref_mod_hcalls();
2817 
2818         /* Enable H_PAGE_INIT */
2819         kvmppc_enable_h_page_init();
2820     }
2821 
2822     /* map RAM */
2823     memory_region_add_subregion(sysmem, 0, machine->ram);
2824 
2825     /* always allocate the device memory information */
2826     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2827 
2828     /* initialize hotplug memory address space */
2829     if (machine->ram_size < machine->maxram_size) {
2830         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2831         /*
2832          * Limit the number of hotpluggable memory slots to half the number
2833          * slots that KVM supports, leaving the other half for PCI and other
2834          * devices. However ensure that number of slots doesn't drop below 32.
2835          */
2836         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2837                            SPAPR_MAX_RAM_SLOTS;
2838 
2839         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2840             max_memslots = SPAPR_MAX_RAM_SLOTS;
2841         }
2842         if (machine->ram_slots > max_memslots) {
2843             error_report("Specified number of memory slots %"
2844                          PRIu64" exceeds max supported %d",
2845                          machine->ram_slots, max_memslots);
2846             exit(1);
2847         }
2848 
2849         machine->device_memory->base = ROUND_UP(machine->ram_size,
2850                                                 SPAPR_DEVICE_MEM_ALIGN);
2851         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2852                            "device-memory", device_mem_size);
2853         memory_region_add_subregion(sysmem, machine->device_memory->base,
2854                                     &machine->device_memory->mr);
2855     }
2856 
2857     if (smc->dr_lmb_enabled) {
2858         spapr_create_lmb_dr_connectors(spapr);
2859     }
2860 
2861     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2862         /* Create the error string for live migration blocker */
2863         error_setg(&spapr->fwnmi_migration_blocker,
2864             "A machine check is being handled during migration. The handler"
2865             "may run and log hardware error on the destination");
2866     }
2867 
2868     if (mc->nvdimm_supported) {
2869         spapr_create_nvdimm_dr_connectors(spapr);
2870     }
2871 
2872     /* Set up RTAS event infrastructure */
2873     spapr_events_init(spapr);
2874 
2875     /* Set up the RTC RTAS interfaces */
2876     spapr_rtc_create(spapr);
2877 
2878     /* Set up VIO bus */
2879     spapr->vio_bus = spapr_vio_bus_init();
2880 
2881     for (i = 0; i < serial_max_hds(); i++) {
2882         if (serial_hd(i)) {
2883             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2884         }
2885     }
2886 
2887     /* We always have at least the nvram device on VIO */
2888     spapr_create_nvram(spapr);
2889 
2890     /*
2891      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2892      * connectors (described in root DT node's "ibm,drc-types" property)
2893      * are pre-initialized here. additional child connectors (such as
2894      * connectors for a PHBs PCI slots) are added as needed during their
2895      * parent's realization.
2896      */
2897     if (smc->dr_phb_enabled) {
2898         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2899             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2900         }
2901     }
2902 
2903     /* Set up PCI */
2904     spapr_pci_rtas_init();
2905 
2906     phb = spapr_create_default_phb();
2907 
2908     for (i = 0; i < nb_nics; i++) {
2909         NICInfo *nd = &nd_table[i];
2910 
2911         if (!nd->model) {
2912             nd->model = g_strdup("spapr-vlan");
2913         }
2914 
2915         if (g_str_equal(nd->model, "spapr-vlan") ||
2916             g_str_equal(nd->model, "ibmveth")) {
2917             spapr_vlan_create(spapr->vio_bus, nd);
2918         } else {
2919             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2920         }
2921     }
2922 
2923     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2924         spapr_vscsi_create(spapr->vio_bus);
2925     }
2926 
2927     /* Graphics */
2928     if (spapr_vga_init(phb->bus, &error_fatal)) {
2929         spapr->has_graphics = true;
2930         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2931     }
2932 
2933     if (machine->usb) {
2934         if (smc->use_ohci_by_default) {
2935             pci_create_simple(phb->bus, -1, "pci-ohci");
2936         } else {
2937             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2938         }
2939 
2940         if (spapr->has_graphics) {
2941             USBBus *usb_bus = usb_bus_find(-1);
2942 
2943             usb_create_simple(usb_bus, "usb-kbd");
2944             usb_create_simple(usb_bus, "usb-mouse");
2945         }
2946     }
2947 
2948     if (kernel_filename) {
2949         spapr->kernel_size = load_elf(kernel_filename, NULL,
2950                                       translate_kernel_address, spapr,
2951                                       NULL, NULL, NULL, NULL, 1,
2952                                       PPC_ELF_MACHINE, 0, 0);
2953         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2954             spapr->kernel_size = load_elf(kernel_filename, NULL,
2955                                           translate_kernel_address, spapr,
2956                                           NULL, NULL, NULL, NULL, 0,
2957                                           PPC_ELF_MACHINE, 0, 0);
2958             spapr->kernel_le = spapr->kernel_size > 0;
2959         }
2960         if (spapr->kernel_size < 0) {
2961             error_report("error loading %s: %s", kernel_filename,
2962                          load_elf_strerror(spapr->kernel_size));
2963             exit(1);
2964         }
2965 
2966         /* load initrd */
2967         if (initrd_filename) {
2968             /* Try to locate the initrd in the gap between the kernel
2969              * and the firmware. Add a bit of space just in case
2970              */
2971             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2972                                   + 0x1ffff) & ~0xffff;
2973             spapr->initrd_size = load_image_targphys(initrd_filename,
2974                                                      spapr->initrd_base,
2975                                                      load_limit
2976                                                      - spapr->initrd_base);
2977             if (spapr->initrd_size < 0) {
2978                 error_report("could not load initial ram disk '%s'",
2979                              initrd_filename);
2980                 exit(1);
2981             }
2982         }
2983     }
2984 
2985     if (bios_name == NULL) {
2986         bios_name = FW_FILE_NAME;
2987     }
2988     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2989     if (!filename) {
2990         error_report("Could not find LPAR firmware '%s'", bios_name);
2991         exit(1);
2992     }
2993     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2994     if (fw_size <= 0) {
2995         error_report("Could not load LPAR firmware '%s'", filename);
2996         exit(1);
2997     }
2998     g_free(filename);
2999 
3000     /* FIXME: Should register things through the MachineState's qdev
3001      * interface, this is a legacy from the sPAPREnvironment structure
3002      * which predated MachineState but had a similar function */
3003     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3004     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3005                          &savevm_htab_handlers, spapr);
3006 
3007     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3008 
3009     qemu_register_boot_set(spapr_boot_set, spapr);
3010 
3011     /*
3012      * Nothing needs to be done to resume a suspended guest because
3013      * suspending does not change the machine state, so no need for
3014      * a ->wakeup method.
3015      */
3016     qemu_register_wakeup_support();
3017 
3018     if (kvm_enabled()) {
3019         /* to stop and start vmclock */
3020         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3021                                          &spapr->tb);
3022 
3023         kvmppc_spapr_enable_inkernel_multitce();
3024     }
3025 
3026     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3027 }
3028 
3029 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3030 {
3031     if (!vm_type) {
3032         return 0;
3033     }
3034 
3035     if (!strcmp(vm_type, "HV")) {
3036         return 1;
3037     }
3038 
3039     if (!strcmp(vm_type, "PR")) {
3040         return 2;
3041     }
3042 
3043     error_report("Unknown kvm-type specified '%s'", vm_type);
3044     exit(1);
3045 }
3046 
3047 /*
3048  * Implementation of an interface to adjust firmware path
3049  * for the bootindex property handling.
3050  */
3051 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3052                                    DeviceState *dev)
3053 {
3054 #define CAST(type, obj, name) \
3055     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3056     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3057     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3058     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3059 
3060     if (d) {
3061         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3062         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3063         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3064 
3065         if (spapr) {
3066             /*
3067              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3068              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3069              * 0x8000 | (target << 8) | (bus << 5) | lun
3070              * (see the "Logical unit addressing format" table in SAM5)
3071              */
3072             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3073             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3074                                    (uint64_t)id << 48);
3075         } else if (virtio) {
3076             /*
3077              * We use SRP luns of the form 01000000 | (target << 8) | lun
3078              * in the top 32 bits of the 64-bit LUN
3079              * Note: the quote above is from SLOF and it is wrong,
3080              * the actual binding is:
3081              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3082              */
3083             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3084             if (d->lun >= 256) {
3085                 /* Use the LUN "flat space addressing method" */
3086                 id |= 0x4000;
3087             }
3088             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3089                                    (uint64_t)id << 32);
3090         } else if (usb) {
3091             /*
3092              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3093              * in the top 32 bits of the 64-bit LUN
3094              */
3095             unsigned usb_port = atoi(usb->port->path);
3096             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3097             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3098                                    (uint64_t)id << 32);
3099         }
3100     }
3101 
3102     /*
3103      * SLOF probes the USB devices, and if it recognizes that the device is a
3104      * storage device, it changes its name to "storage" instead of "usb-host",
3105      * and additionally adds a child node for the SCSI LUN, so the correct
3106      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3107      */
3108     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3109         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3110         if (usb_host_dev_is_scsi_storage(usbdev)) {
3111             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3112         }
3113     }
3114 
3115     if (phb) {
3116         /* Replace "pci" with "pci@800000020000000" */
3117         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3118     }
3119 
3120     if (vsc) {
3121         /* Same logic as virtio above */
3122         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3123         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3124     }
3125 
3126     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3127         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3128         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3129         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3130     }
3131 
3132     return NULL;
3133 }
3134 
3135 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3136 {
3137     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3138 
3139     return g_strdup(spapr->kvm_type);
3140 }
3141 
3142 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3143 {
3144     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3145 
3146     g_free(spapr->kvm_type);
3147     spapr->kvm_type = g_strdup(value);
3148 }
3149 
3150 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3151 {
3152     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3153 
3154     return spapr->use_hotplug_event_source;
3155 }
3156 
3157 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3158                                             Error **errp)
3159 {
3160     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3161 
3162     spapr->use_hotplug_event_source = value;
3163 }
3164 
3165 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3166 {
3167     return true;
3168 }
3169 
3170 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3171 {
3172     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3173 
3174     switch (spapr->resize_hpt) {
3175     case SPAPR_RESIZE_HPT_DEFAULT:
3176         return g_strdup("default");
3177     case SPAPR_RESIZE_HPT_DISABLED:
3178         return g_strdup("disabled");
3179     case SPAPR_RESIZE_HPT_ENABLED:
3180         return g_strdup("enabled");
3181     case SPAPR_RESIZE_HPT_REQUIRED:
3182         return g_strdup("required");
3183     }
3184     g_assert_not_reached();
3185 }
3186 
3187 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3188 {
3189     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3190 
3191     if (strcmp(value, "default") == 0) {
3192         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3193     } else if (strcmp(value, "disabled") == 0) {
3194         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3195     } else if (strcmp(value, "enabled") == 0) {
3196         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3197     } else if (strcmp(value, "required") == 0) {
3198         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3199     } else {
3200         error_setg(errp, "Bad value for \"resize-hpt\" property");
3201     }
3202 }
3203 
3204 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3205 {
3206     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3207 
3208     if (spapr->irq == &spapr_irq_xics_legacy) {
3209         return g_strdup("legacy");
3210     } else if (spapr->irq == &spapr_irq_xics) {
3211         return g_strdup("xics");
3212     } else if (spapr->irq == &spapr_irq_xive) {
3213         return g_strdup("xive");
3214     } else if (spapr->irq == &spapr_irq_dual) {
3215         return g_strdup("dual");
3216     }
3217     g_assert_not_reached();
3218 }
3219 
3220 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3221 {
3222     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3223 
3224     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3225         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3226         return;
3227     }
3228 
3229     /* The legacy IRQ backend can not be set */
3230     if (strcmp(value, "xics") == 0) {
3231         spapr->irq = &spapr_irq_xics;
3232     } else if (strcmp(value, "xive") == 0) {
3233         spapr->irq = &spapr_irq_xive;
3234     } else if (strcmp(value, "dual") == 0) {
3235         spapr->irq = &spapr_irq_dual;
3236     } else {
3237         error_setg(errp, "Bad value for \"ic-mode\" property");
3238     }
3239 }
3240 
3241 static char *spapr_get_host_model(Object *obj, Error **errp)
3242 {
3243     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3244 
3245     return g_strdup(spapr->host_model);
3246 }
3247 
3248 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3249 {
3250     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3251 
3252     g_free(spapr->host_model);
3253     spapr->host_model = g_strdup(value);
3254 }
3255 
3256 static char *spapr_get_host_serial(Object *obj, Error **errp)
3257 {
3258     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3259 
3260     return g_strdup(spapr->host_serial);
3261 }
3262 
3263 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3264 {
3265     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3266 
3267     g_free(spapr->host_serial);
3268     spapr->host_serial = g_strdup(value);
3269 }
3270 
3271 static void spapr_instance_init(Object *obj)
3272 {
3273     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3274     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3275 
3276     spapr->htab_fd = -1;
3277     spapr->use_hotplug_event_source = true;
3278     object_property_add_str(obj, "kvm-type",
3279                             spapr_get_kvm_type, spapr_set_kvm_type);
3280     object_property_set_description(obj, "kvm-type",
3281                                     "Specifies the KVM virtualization mode (HV, PR)");
3282     object_property_add_bool(obj, "modern-hotplug-events",
3283                             spapr_get_modern_hotplug_events,
3284                             spapr_set_modern_hotplug_events);
3285     object_property_set_description(obj, "modern-hotplug-events",
3286                                     "Use dedicated hotplug event mechanism in"
3287                                     " place of standard EPOW events when possible"
3288                                     " (required for memory hot-unplug support)");
3289     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3290                             "Maximum permitted CPU compatibility mode");
3291 
3292     object_property_add_str(obj, "resize-hpt",
3293                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3294     object_property_set_description(obj, "resize-hpt",
3295                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3296     object_property_add_uint32_ptr(obj, "vsmt",
3297                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3298     object_property_set_description(obj, "vsmt",
3299                                     "Virtual SMT: KVM behaves as if this were"
3300                                     " the host's SMT mode");
3301 
3302     object_property_add_bool(obj, "vfio-no-msix-emulation",
3303                              spapr_get_msix_emulation, NULL);
3304 
3305     object_property_add_uint64_ptr(obj, "kernel-addr",
3306                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3307     object_property_set_description(obj, "kernel-addr",
3308                                     stringify(KERNEL_LOAD_ADDR)
3309                                     " for -kernel is the default");
3310     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3311     /* The machine class defines the default interrupt controller mode */
3312     spapr->irq = smc->irq;
3313     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3314                             spapr_set_ic_mode);
3315     object_property_set_description(obj, "ic-mode",
3316                  "Specifies the interrupt controller mode (xics, xive, dual)");
3317 
3318     object_property_add_str(obj, "host-model",
3319         spapr_get_host_model, spapr_set_host_model);
3320     object_property_set_description(obj, "host-model",
3321         "Host model to advertise in guest device tree");
3322     object_property_add_str(obj, "host-serial",
3323         spapr_get_host_serial, spapr_set_host_serial);
3324     object_property_set_description(obj, "host-serial",
3325         "Host serial number to advertise in guest device tree");
3326 }
3327 
3328 static void spapr_machine_finalizefn(Object *obj)
3329 {
3330     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3331 
3332     g_free(spapr->kvm_type);
3333 }
3334 
3335 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3336 {
3337     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3338     PowerPCCPU *cpu = POWERPC_CPU(cs);
3339     CPUPPCState *env = &cpu->env;
3340 
3341     cpu_synchronize_state(cs);
3342     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3343     if (spapr->fwnmi_system_reset_addr != -1) {
3344         uint64_t rtas_addr, addr;
3345 
3346         /* get rtas addr from fdt */
3347         rtas_addr = spapr_get_rtas_addr();
3348         if (!rtas_addr) {
3349             qemu_system_guest_panicked(NULL);
3350             return;
3351         }
3352 
3353         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3354         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3355         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3356         env->gpr[3] = addr;
3357     }
3358     ppc_cpu_do_system_reset(cs);
3359     if (spapr->fwnmi_system_reset_addr != -1) {
3360         env->nip = spapr->fwnmi_system_reset_addr;
3361     }
3362 }
3363 
3364 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3365 {
3366     CPUState *cs;
3367 
3368     CPU_FOREACH(cs) {
3369         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3370     }
3371 }
3372 
3373 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3374                           void *fdt, int *fdt_start_offset, Error **errp)
3375 {
3376     uint64_t addr;
3377     uint32_t node;
3378 
3379     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3380     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3381                                     &error_abort);
3382     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3383                                              SPAPR_MEMORY_BLOCK_SIZE);
3384     return 0;
3385 }
3386 
3387 static bool spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3388                            bool dedicated_hp_event_source, Error **errp)
3389 {
3390     SpaprDrc *drc;
3391     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3392     int i;
3393     uint64_t addr = addr_start;
3394     bool hotplugged = spapr_drc_hotplugged(dev);
3395 
3396     for (i = 0; i < nr_lmbs; i++) {
3397         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3398                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3399         g_assert(drc);
3400 
3401         if (!spapr_drc_attach(drc, dev, errp)) {
3402             while (addr > addr_start) {
3403                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3404                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3405                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3406                 spapr_drc_detach(drc);
3407             }
3408             return false;
3409         }
3410         if (!hotplugged) {
3411             spapr_drc_reset(drc);
3412         }
3413         addr += SPAPR_MEMORY_BLOCK_SIZE;
3414     }
3415     /* send hotplug notification to the
3416      * guest only in case of hotplugged memory
3417      */
3418     if (hotplugged) {
3419         if (dedicated_hp_event_source) {
3420             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3421                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3422             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3423                                                    nr_lmbs,
3424                                                    spapr_drc_index(drc));
3425         } else {
3426             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3427                                            nr_lmbs);
3428         }
3429     }
3430     return true;
3431 }
3432 
3433 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3434                               Error **errp)
3435 {
3436     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3437     PCDIMMDevice *dimm = PC_DIMM(dev);
3438     uint64_t size, addr;
3439     int64_t slot;
3440     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3441 
3442     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3443 
3444     pc_dimm_plug(dimm, MACHINE(ms));
3445 
3446     if (!is_nvdimm) {
3447         addr = object_property_get_uint(OBJECT(dimm),
3448                                         PC_DIMM_ADDR_PROP, &error_abort);
3449         if (!spapr_add_lmbs(dev, addr, size,
3450                             spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), errp)) {
3451             goto out_unplug;
3452         }
3453     } else {
3454         slot = object_property_get_int(OBJECT(dimm),
3455                                        PC_DIMM_SLOT_PROP, &error_abort);
3456         /* We should have valid slot number at this point */
3457         g_assert(slot >= 0);
3458         if (!spapr_add_nvdimm(dev, slot, errp)) {
3459             goto out_unplug;
3460         }
3461     }
3462 
3463     return;
3464 
3465 out_unplug:
3466     pc_dimm_unplug(dimm, MACHINE(ms));
3467 }
3468 
3469 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3470                                   Error **errp)
3471 {
3472     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3473     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3474     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3475     PCDIMMDevice *dimm = PC_DIMM(dev);
3476     Error *local_err = NULL;
3477     uint64_t size;
3478     Object *memdev;
3479     hwaddr pagesize;
3480 
3481     if (!smc->dr_lmb_enabled) {
3482         error_setg(errp, "Memory hotplug not supported for this machine");
3483         return;
3484     }
3485 
3486     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3487     if (local_err) {
3488         error_propagate(errp, local_err);
3489         return;
3490     }
3491 
3492     if (is_nvdimm) {
3493         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3494             return;
3495         }
3496     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3497         error_setg(errp, "Hotplugged memory size must be a multiple of "
3498                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3499         return;
3500     }
3501 
3502     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3503                                       &error_abort);
3504     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3505     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3506         return;
3507     }
3508 
3509     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3510 }
3511 
3512 struct SpaprDimmState {
3513     PCDIMMDevice *dimm;
3514     uint32_t nr_lmbs;
3515     QTAILQ_ENTRY(SpaprDimmState) next;
3516 };
3517 
3518 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3519                                                        PCDIMMDevice *dimm)
3520 {
3521     SpaprDimmState *dimm_state = NULL;
3522 
3523     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3524         if (dimm_state->dimm == dimm) {
3525             break;
3526         }
3527     }
3528     return dimm_state;
3529 }
3530 
3531 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3532                                                       uint32_t nr_lmbs,
3533                                                       PCDIMMDevice *dimm)
3534 {
3535     SpaprDimmState *ds = NULL;
3536 
3537     /*
3538      * If this request is for a DIMM whose removal had failed earlier
3539      * (due to guest's refusal to remove the LMBs), we would have this
3540      * dimm already in the pending_dimm_unplugs list. In that
3541      * case don't add again.
3542      */
3543     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3544     if (!ds) {
3545         ds = g_malloc0(sizeof(SpaprDimmState));
3546         ds->nr_lmbs = nr_lmbs;
3547         ds->dimm = dimm;
3548         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3549     }
3550     return ds;
3551 }
3552 
3553 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3554                                               SpaprDimmState *dimm_state)
3555 {
3556     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3557     g_free(dimm_state);
3558 }
3559 
3560 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3561                                                         PCDIMMDevice *dimm)
3562 {
3563     SpaprDrc *drc;
3564     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3565                                                   &error_abort);
3566     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3567     uint32_t avail_lmbs = 0;
3568     uint64_t addr_start, addr;
3569     int i;
3570 
3571     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3572                                           &error_abort);
3573 
3574     addr = addr_start;
3575     for (i = 0; i < nr_lmbs; i++) {
3576         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3577                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3578         g_assert(drc);
3579         if (drc->dev) {
3580             avail_lmbs++;
3581         }
3582         addr += SPAPR_MEMORY_BLOCK_SIZE;
3583     }
3584 
3585     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3586 }
3587 
3588 /* Callback to be called during DRC release. */
3589 void spapr_lmb_release(DeviceState *dev)
3590 {
3591     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3592     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3593     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3594 
3595     /* This information will get lost if a migration occurs
3596      * during the unplug process. In this case recover it. */
3597     if (ds == NULL) {
3598         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3599         g_assert(ds);
3600         /* The DRC being examined by the caller at least must be counted */
3601         g_assert(ds->nr_lmbs);
3602     }
3603 
3604     if (--ds->nr_lmbs) {
3605         return;
3606     }
3607 
3608     /*
3609      * Now that all the LMBs have been removed by the guest, call the
3610      * unplug handler chain. This can never fail.
3611      */
3612     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3613     object_unparent(OBJECT(dev));
3614 }
3615 
3616 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3617 {
3618     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3619     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3620 
3621     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3622     qdev_unrealize(dev);
3623     spapr_pending_dimm_unplugs_remove(spapr, ds);
3624 }
3625 
3626 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3627                                         DeviceState *dev, Error **errp)
3628 {
3629     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3630     PCDIMMDevice *dimm = PC_DIMM(dev);
3631     uint32_t nr_lmbs;
3632     uint64_t size, addr_start, addr;
3633     int i;
3634     SpaprDrc *drc;
3635 
3636     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3637         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3638         return;
3639     }
3640 
3641     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3642     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3643 
3644     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3645                                           &error_abort);
3646 
3647     /*
3648      * An existing pending dimm state for this DIMM means that there is an
3649      * unplug operation in progress, waiting for the spapr_lmb_release
3650      * callback to complete the job (BQL can't cover that far). In this case,
3651      * bail out to avoid detaching DRCs that were already released.
3652      */
3653     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3654         error_setg(errp, "Memory unplug already in progress for device %s",
3655                    dev->id);
3656         return;
3657     }
3658 
3659     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3660 
3661     addr = addr_start;
3662     for (i = 0; i < nr_lmbs; i++) {
3663         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3664                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3665         g_assert(drc);
3666 
3667         spapr_drc_detach(drc);
3668         addr += SPAPR_MEMORY_BLOCK_SIZE;
3669     }
3670 
3671     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3672                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3673     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3674                                               nr_lmbs, spapr_drc_index(drc));
3675 }
3676 
3677 /* Callback to be called during DRC release. */
3678 void spapr_core_release(DeviceState *dev)
3679 {
3680     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3681 
3682     /* Call the unplug handler chain. This can never fail. */
3683     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3684     object_unparent(OBJECT(dev));
3685 }
3686 
3687 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3688 {
3689     MachineState *ms = MACHINE(hotplug_dev);
3690     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3691     CPUCore *cc = CPU_CORE(dev);
3692     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3693 
3694     if (smc->pre_2_10_has_unused_icps) {
3695         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3696         int i;
3697 
3698         for (i = 0; i < cc->nr_threads; i++) {
3699             CPUState *cs = CPU(sc->threads[i]);
3700 
3701             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3702         }
3703     }
3704 
3705     assert(core_slot);
3706     core_slot->cpu = NULL;
3707     qdev_unrealize(dev);
3708 }
3709 
3710 static
3711 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3712                                Error **errp)
3713 {
3714     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3715     int index;
3716     SpaprDrc *drc;
3717     CPUCore *cc = CPU_CORE(dev);
3718 
3719     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3720         error_setg(errp, "Unable to find CPU core with core-id: %d",
3721                    cc->core_id);
3722         return;
3723     }
3724     if (index == 0) {
3725         error_setg(errp, "Boot CPU core may not be unplugged");
3726         return;
3727     }
3728 
3729     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3730                           spapr_vcpu_id(spapr, cc->core_id));
3731     g_assert(drc);
3732 
3733     if (!spapr_drc_unplug_requested(drc)) {
3734         spapr_drc_detach(drc);
3735         spapr_hotplug_req_remove_by_index(drc);
3736     }
3737 }
3738 
3739 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3740                            void *fdt, int *fdt_start_offset, Error **errp)
3741 {
3742     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3743     CPUState *cs = CPU(core->threads[0]);
3744     PowerPCCPU *cpu = POWERPC_CPU(cs);
3745     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3746     int id = spapr_get_vcpu_id(cpu);
3747     char *nodename;
3748     int offset;
3749 
3750     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3751     offset = fdt_add_subnode(fdt, 0, nodename);
3752     g_free(nodename);
3753 
3754     spapr_dt_cpu(cs, fdt, offset, spapr);
3755 
3756     *fdt_start_offset = offset;
3757     return 0;
3758 }
3759 
3760 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3761                             Error **errp)
3762 {
3763     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3764     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3765     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3766     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3767     CPUCore *cc = CPU_CORE(dev);
3768     CPUState *cs;
3769     SpaprDrc *drc;
3770     CPUArchId *core_slot;
3771     int index;
3772     bool hotplugged = spapr_drc_hotplugged(dev);
3773     int i;
3774 
3775     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3776     if (!core_slot) {
3777         error_setg(errp, "Unable to find CPU core with core-id: %d",
3778                    cc->core_id);
3779         return;
3780     }
3781     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3782                           spapr_vcpu_id(spapr, cc->core_id));
3783 
3784     g_assert(drc || !mc->has_hotpluggable_cpus);
3785 
3786     if (drc) {
3787         if (!spapr_drc_attach(drc, dev, errp)) {
3788             return;
3789         }
3790 
3791         if (hotplugged) {
3792             /*
3793              * Send hotplug notification interrupt to the guest only
3794              * in case of hotplugged CPUs.
3795              */
3796             spapr_hotplug_req_add_by_index(drc);
3797         } else {
3798             spapr_drc_reset(drc);
3799         }
3800     }
3801 
3802     core_slot->cpu = OBJECT(dev);
3803 
3804     if (smc->pre_2_10_has_unused_icps) {
3805         for (i = 0; i < cc->nr_threads; i++) {
3806             cs = CPU(core->threads[i]);
3807             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3808         }
3809     }
3810 
3811     /*
3812      * Set compatibility mode to match the boot CPU, which was either set
3813      * by the machine reset code or by CAS.
3814      */
3815     if (hotplugged) {
3816         for (i = 0; i < cc->nr_threads; i++) {
3817             if (ppc_set_compat(core->threads[i],
3818                                POWERPC_CPU(first_cpu)->compat_pvr,
3819                                errp) < 0) {
3820                 return;
3821             }
3822         }
3823     }
3824 }
3825 
3826 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3827                                 Error **errp)
3828 {
3829     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3830     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3831     CPUCore *cc = CPU_CORE(dev);
3832     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3833     const char *type = object_get_typename(OBJECT(dev));
3834     CPUArchId *core_slot;
3835     int index;
3836     unsigned int smp_threads = machine->smp.threads;
3837 
3838     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3839         error_setg(errp, "CPU hotplug not supported for this machine");
3840         return;
3841     }
3842 
3843     if (strcmp(base_core_type, type)) {
3844         error_setg(errp, "CPU core type should be %s", base_core_type);
3845         return;
3846     }
3847 
3848     if (cc->core_id % smp_threads) {
3849         error_setg(errp, "invalid core id %d", cc->core_id);
3850         return;
3851     }
3852 
3853     /*
3854      * In general we should have homogeneous threads-per-core, but old
3855      * (pre hotplug support) machine types allow the last core to have
3856      * reduced threads as a compatibility hack for when we allowed
3857      * total vcpus not a multiple of threads-per-core.
3858      */
3859     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3860         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3861                    smp_threads);
3862         return;
3863     }
3864 
3865     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3866     if (!core_slot) {
3867         error_setg(errp, "core id %d out of range", cc->core_id);
3868         return;
3869     }
3870 
3871     if (core_slot->cpu) {
3872         error_setg(errp, "core %d already populated", cc->core_id);
3873         return;
3874     }
3875 
3876     numa_cpu_pre_plug(core_slot, dev, errp);
3877 }
3878 
3879 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3880                           void *fdt, int *fdt_start_offset, Error **errp)
3881 {
3882     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3883     int intc_phandle;
3884 
3885     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3886     if (intc_phandle <= 0) {
3887         return -1;
3888     }
3889 
3890     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3891         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3892         return -1;
3893     }
3894 
3895     /* generally SLOF creates these, for hotplug it's up to QEMU */
3896     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3897 
3898     return 0;
3899 }
3900 
3901 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3902                                Error **errp)
3903 {
3904     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3905     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3906     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3907     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3908 
3909     if (dev->hotplugged && !smc->dr_phb_enabled) {
3910         error_setg(errp, "PHB hotplug not supported for this machine");
3911         return;
3912     }
3913 
3914     if (sphb->index == (uint32_t)-1) {
3915         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3916         return;
3917     }
3918 
3919     /*
3920      * This will check that sphb->index doesn't exceed the maximum number of
3921      * PHBs for the current machine type.
3922      */
3923     smc->phb_placement(spapr, sphb->index,
3924                        &sphb->buid, &sphb->io_win_addr,
3925                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3926                        windows_supported, sphb->dma_liobn,
3927                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3928                        errp);
3929 }
3930 
3931 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3932                            Error **errp)
3933 {
3934     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3935     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3936     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3937     SpaprDrc *drc;
3938     bool hotplugged = spapr_drc_hotplugged(dev);
3939 
3940     if (!smc->dr_phb_enabled) {
3941         return;
3942     }
3943 
3944     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3945     /* hotplug hooks should check it's enabled before getting this far */
3946     assert(drc);
3947 
3948     if (!spapr_drc_attach(drc, dev, errp)) {
3949         return;
3950     }
3951 
3952     if (hotplugged) {
3953         spapr_hotplug_req_add_by_index(drc);
3954     } else {
3955         spapr_drc_reset(drc);
3956     }
3957 }
3958 
3959 void spapr_phb_release(DeviceState *dev)
3960 {
3961     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3962 
3963     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3964     object_unparent(OBJECT(dev));
3965 }
3966 
3967 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3968 {
3969     qdev_unrealize(dev);
3970 }
3971 
3972 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3973                                      DeviceState *dev, Error **errp)
3974 {
3975     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3976     SpaprDrc *drc;
3977 
3978     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3979     assert(drc);
3980 
3981     if (!spapr_drc_unplug_requested(drc)) {
3982         spapr_drc_detach(drc);
3983         spapr_hotplug_req_remove_by_index(drc);
3984     }
3985 }
3986 
3987 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3988                                  Error **errp)
3989 {
3990     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3991     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
3992 
3993     if (spapr->tpm_proxy != NULL) {
3994         error_setg(errp, "Only one TPM proxy can be specified for this machine");
3995         return;
3996     }
3997 
3998     spapr->tpm_proxy = tpm_proxy;
3999 }
4000 
4001 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4002 {
4003     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4004 
4005     qdev_unrealize(dev);
4006     object_unparent(OBJECT(dev));
4007     spapr->tpm_proxy = NULL;
4008 }
4009 
4010 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4011                                       DeviceState *dev, Error **errp)
4012 {
4013     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4014         spapr_memory_plug(hotplug_dev, dev, errp);
4015     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4016         spapr_core_plug(hotplug_dev, dev, errp);
4017     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4018         spapr_phb_plug(hotplug_dev, dev, errp);
4019     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4020         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4021     }
4022 }
4023 
4024 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4025                                         DeviceState *dev, Error **errp)
4026 {
4027     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4028         spapr_memory_unplug(hotplug_dev, dev);
4029     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4030         spapr_core_unplug(hotplug_dev, dev);
4031     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4032         spapr_phb_unplug(hotplug_dev, dev);
4033     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4034         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4035     }
4036 }
4037 
4038 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4039                                                 DeviceState *dev, Error **errp)
4040 {
4041     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4042     MachineClass *mc = MACHINE_GET_CLASS(sms);
4043     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4044 
4045     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4046         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4047             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4048         } else {
4049             /* NOTE: this means there is a window after guest reset, prior to
4050              * CAS negotiation, where unplug requests will fail due to the
4051              * capability not being detected yet. This is a bit different than
4052              * the case with PCI unplug, where the events will be queued and
4053              * eventually handled by the guest after boot
4054              */
4055             error_setg(errp, "Memory hot unplug not supported for this guest");
4056         }
4057     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4058         if (!mc->has_hotpluggable_cpus) {
4059             error_setg(errp, "CPU hot unplug not supported on this machine");
4060             return;
4061         }
4062         spapr_core_unplug_request(hotplug_dev, dev, errp);
4063     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4064         if (!smc->dr_phb_enabled) {
4065             error_setg(errp, "PHB hot unplug not supported on this machine");
4066             return;
4067         }
4068         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4069     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4070         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4071     }
4072 }
4073 
4074 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4075                                           DeviceState *dev, Error **errp)
4076 {
4077     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4078         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4079     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4080         spapr_core_pre_plug(hotplug_dev, dev, errp);
4081     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4082         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4083     }
4084 }
4085 
4086 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4087                                                  DeviceState *dev)
4088 {
4089     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4090         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4091         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4092         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4093         return HOTPLUG_HANDLER(machine);
4094     }
4095     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4096         PCIDevice *pcidev = PCI_DEVICE(dev);
4097         PCIBus *root = pci_device_root_bus(pcidev);
4098         SpaprPhbState *phb =
4099             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4100                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4101 
4102         if (phb) {
4103             return HOTPLUG_HANDLER(phb);
4104         }
4105     }
4106     return NULL;
4107 }
4108 
4109 static CpuInstanceProperties
4110 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4111 {
4112     CPUArchId *core_slot;
4113     MachineClass *mc = MACHINE_GET_CLASS(machine);
4114 
4115     /* make sure possible_cpu are intialized */
4116     mc->possible_cpu_arch_ids(machine);
4117     /* get CPU core slot containing thread that matches cpu_index */
4118     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4119     assert(core_slot);
4120     return core_slot->props;
4121 }
4122 
4123 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4124 {
4125     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4126 }
4127 
4128 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4129 {
4130     int i;
4131     unsigned int smp_threads = machine->smp.threads;
4132     unsigned int smp_cpus = machine->smp.cpus;
4133     const char *core_type;
4134     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4135     MachineClass *mc = MACHINE_GET_CLASS(machine);
4136 
4137     if (!mc->has_hotpluggable_cpus) {
4138         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4139     }
4140     if (machine->possible_cpus) {
4141         assert(machine->possible_cpus->len == spapr_max_cores);
4142         return machine->possible_cpus;
4143     }
4144 
4145     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4146     if (!core_type) {
4147         error_report("Unable to find sPAPR CPU Core definition");
4148         exit(1);
4149     }
4150 
4151     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4152                              sizeof(CPUArchId) * spapr_max_cores);
4153     machine->possible_cpus->len = spapr_max_cores;
4154     for (i = 0; i < machine->possible_cpus->len; i++) {
4155         int core_id = i * smp_threads;
4156 
4157         machine->possible_cpus->cpus[i].type = core_type;
4158         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4159         machine->possible_cpus->cpus[i].arch_id = core_id;
4160         machine->possible_cpus->cpus[i].props.has_core_id = true;
4161         machine->possible_cpus->cpus[i].props.core_id = core_id;
4162     }
4163     return machine->possible_cpus;
4164 }
4165 
4166 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4167                                 uint64_t *buid, hwaddr *pio,
4168                                 hwaddr *mmio32, hwaddr *mmio64,
4169                                 unsigned n_dma, uint32_t *liobns,
4170                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4171 {
4172     /*
4173      * New-style PHB window placement.
4174      *
4175      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4176      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4177      * windows.
4178      *
4179      * Some guest kernels can't work with MMIO windows above 1<<46
4180      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4181      *
4182      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4183      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4184      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4185      * 1TiB 64-bit MMIO windows for each PHB.
4186      */
4187     const uint64_t base_buid = 0x800000020000000ULL;
4188     int i;
4189 
4190     /* Sanity check natural alignments */
4191     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4192     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4193     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4194     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4195     /* Sanity check bounds */
4196     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4197                       SPAPR_PCI_MEM32_WIN_SIZE);
4198     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4199                       SPAPR_PCI_MEM64_WIN_SIZE);
4200 
4201     if (index >= SPAPR_MAX_PHBS) {
4202         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4203                    SPAPR_MAX_PHBS - 1);
4204         return;
4205     }
4206 
4207     *buid = base_buid + index;
4208     for (i = 0; i < n_dma; ++i) {
4209         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4210     }
4211 
4212     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4213     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4214     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4215 
4216     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4217     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4218 }
4219 
4220 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4221 {
4222     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4223 
4224     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4225 }
4226 
4227 static void spapr_ics_resend(XICSFabric *dev)
4228 {
4229     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4230 
4231     ics_resend(spapr->ics);
4232 }
4233 
4234 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4235 {
4236     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4237 
4238     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4239 }
4240 
4241 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4242                                  Monitor *mon)
4243 {
4244     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4245 
4246     spapr_irq_print_info(spapr, mon);
4247     monitor_printf(mon, "irqchip: %s\n",
4248                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4249 }
4250 
4251 /*
4252  * This is a XIVE only operation
4253  */
4254 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4255                            uint8_t nvt_blk, uint32_t nvt_idx,
4256                            bool cam_ignore, uint8_t priority,
4257                            uint32_t logic_serv, XiveTCTXMatch *match)
4258 {
4259     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4260     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4261     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4262     int count;
4263 
4264     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4265                            priority, logic_serv, match);
4266     if (count < 0) {
4267         return count;
4268     }
4269 
4270     /*
4271      * When we implement the save and restore of the thread interrupt
4272      * contexts in the enter/exit CPU handlers of the machine and the
4273      * escalations in QEMU, we should be able to handle non dispatched
4274      * vCPUs.
4275      *
4276      * Until this is done, the sPAPR machine should find at least one
4277      * matching context always.
4278      */
4279     if (count == 0) {
4280         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4281                       nvt_blk, nvt_idx);
4282     }
4283 
4284     return count;
4285 }
4286 
4287 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4288 {
4289     return cpu->vcpu_id;
4290 }
4291 
4292 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4293 {
4294     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4295     MachineState *ms = MACHINE(spapr);
4296     int vcpu_id;
4297 
4298     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4299 
4300     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4301         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4302         error_append_hint(errp, "Adjust the number of cpus to %d "
4303                           "or try to raise the number of threads per core\n",
4304                           vcpu_id * ms->smp.threads / spapr->vsmt);
4305         return false;
4306     }
4307 
4308     cpu->vcpu_id = vcpu_id;
4309     return true;
4310 }
4311 
4312 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4313 {
4314     CPUState *cs;
4315 
4316     CPU_FOREACH(cs) {
4317         PowerPCCPU *cpu = POWERPC_CPU(cs);
4318 
4319         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4320             return cpu;
4321         }
4322     }
4323 
4324     return NULL;
4325 }
4326 
4327 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4328 {
4329     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4330 
4331     /* These are only called by TCG, KVM maintains dispatch state */
4332 
4333     spapr_cpu->prod = false;
4334     if (spapr_cpu->vpa_addr) {
4335         CPUState *cs = CPU(cpu);
4336         uint32_t dispatch;
4337 
4338         dispatch = ldl_be_phys(cs->as,
4339                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4340         dispatch++;
4341         if ((dispatch & 1) != 0) {
4342             qemu_log_mask(LOG_GUEST_ERROR,
4343                           "VPA: incorrect dispatch counter value for "
4344                           "dispatched partition %u, correcting.\n", dispatch);
4345             dispatch++;
4346         }
4347         stl_be_phys(cs->as,
4348                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4349     }
4350 }
4351 
4352 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4353 {
4354     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4355 
4356     if (spapr_cpu->vpa_addr) {
4357         CPUState *cs = CPU(cpu);
4358         uint32_t dispatch;
4359 
4360         dispatch = ldl_be_phys(cs->as,
4361                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4362         dispatch++;
4363         if ((dispatch & 1) != 1) {
4364             qemu_log_mask(LOG_GUEST_ERROR,
4365                           "VPA: incorrect dispatch counter value for "
4366                           "preempted partition %u, correcting.\n", dispatch);
4367             dispatch++;
4368         }
4369         stl_be_phys(cs->as,
4370                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4371     }
4372 }
4373 
4374 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4375 {
4376     MachineClass *mc = MACHINE_CLASS(oc);
4377     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4378     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4379     NMIClass *nc = NMI_CLASS(oc);
4380     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4381     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4382     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4383     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4384     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4385 
4386     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4387     mc->ignore_boot_device_suffixes = true;
4388 
4389     /*
4390      * We set up the default / latest behaviour here.  The class_init
4391      * functions for the specific versioned machine types can override
4392      * these details for backwards compatibility
4393      */
4394     mc->init = spapr_machine_init;
4395     mc->reset = spapr_machine_reset;
4396     mc->block_default_type = IF_SCSI;
4397     mc->max_cpus = 1024;
4398     mc->no_parallel = 1;
4399     mc->default_boot_order = "";
4400     mc->default_ram_size = 512 * MiB;
4401     mc->default_ram_id = "ppc_spapr.ram";
4402     mc->default_display = "std";
4403     mc->kvm_type = spapr_kvm_type;
4404     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4405     mc->pci_allow_0_address = true;
4406     assert(!mc->get_hotplug_handler);
4407     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4408     hc->pre_plug = spapr_machine_device_pre_plug;
4409     hc->plug = spapr_machine_device_plug;
4410     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4411     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4412     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4413     hc->unplug_request = spapr_machine_device_unplug_request;
4414     hc->unplug = spapr_machine_device_unplug;
4415 
4416     smc->dr_lmb_enabled = true;
4417     smc->update_dt_enabled = true;
4418     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4419     mc->has_hotpluggable_cpus = true;
4420     mc->nvdimm_supported = true;
4421     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4422     fwc->get_dev_path = spapr_get_fw_dev_path;
4423     nc->nmi_monitor_handler = spapr_nmi;
4424     smc->phb_placement = spapr_phb_placement;
4425     vhc->hypercall = emulate_spapr_hypercall;
4426     vhc->hpt_mask = spapr_hpt_mask;
4427     vhc->map_hptes = spapr_map_hptes;
4428     vhc->unmap_hptes = spapr_unmap_hptes;
4429     vhc->hpte_set_c = spapr_hpte_set_c;
4430     vhc->hpte_set_r = spapr_hpte_set_r;
4431     vhc->get_pate = spapr_get_pate;
4432     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4433     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4434     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4435     xic->ics_get = spapr_ics_get;
4436     xic->ics_resend = spapr_ics_resend;
4437     xic->icp_get = spapr_icp_get;
4438     ispc->print_info = spapr_pic_print_info;
4439     /* Force NUMA node memory size to be a multiple of
4440      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4441      * in which LMBs are represented and hot-added
4442      */
4443     mc->numa_mem_align_shift = 28;
4444     mc->auto_enable_numa = true;
4445 
4446     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4447     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4448     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4449     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4450     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4451     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4452     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4453     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4454     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4455     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4456     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4457     spapr_caps_add_properties(smc);
4458     smc->irq = &spapr_irq_dual;
4459     smc->dr_phb_enabled = true;
4460     smc->linux_pci_probe = true;
4461     smc->smp_threads_vsmt = true;
4462     smc->nr_xirqs = SPAPR_NR_XIRQS;
4463     xfc->match_nvt = spapr_match_nvt;
4464 }
4465 
4466 static const TypeInfo spapr_machine_info = {
4467     .name          = TYPE_SPAPR_MACHINE,
4468     .parent        = TYPE_MACHINE,
4469     .abstract      = true,
4470     .instance_size = sizeof(SpaprMachineState),
4471     .instance_init = spapr_instance_init,
4472     .instance_finalize = spapr_machine_finalizefn,
4473     .class_size    = sizeof(SpaprMachineClass),
4474     .class_init    = spapr_machine_class_init,
4475     .interfaces = (InterfaceInfo[]) {
4476         { TYPE_FW_PATH_PROVIDER },
4477         { TYPE_NMI },
4478         { TYPE_HOTPLUG_HANDLER },
4479         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4480         { TYPE_XICS_FABRIC },
4481         { TYPE_INTERRUPT_STATS_PROVIDER },
4482         { TYPE_XIVE_FABRIC },
4483         { }
4484     },
4485 };
4486 
4487 static void spapr_machine_latest_class_options(MachineClass *mc)
4488 {
4489     mc->alias = "pseries";
4490     mc->is_default = true;
4491 }
4492 
4493 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4494     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4495                                                     void *data)      \
4496     {                                                                \
4497         MachineClass *mc = MACHINE_CLASS(oc);                        \
4498         spapr_machine_##suffix##_class_options(mc);                  \
4499         if (latest) {                                                \
4500             spapr_machine_latest_class_options(mc);                  \
4501         }                                                            \
4502     }                                                                \
4503     static const TypeInfo spapr_machine_##suffix##_info = {          \
4504         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4505         .parent = TYPE_SPAPR_MACHINE,                                \
4506         .class_init = spapr_machine_##suffix##_class_init,           \
4507     };                                                               \
4508     static void spapr_machine_register_##suffix(void)                \
4509     {                                                                \
4510         type_register(&spapr_machine_##suffix##_info);               \
4511     }                                                                \
4512     type_init(spapr_machine_register_##suffix)
4513 
4514 /*
4515  * pseries-5.2
4516  */
4517 static void spapr_machine_5_2_class_options(MachineClass *mc)
4518 {
4519     /* Defaults for the latest behaviour inherited from the base class */
4520 }
4521 
4522 DEFINE_SPAPR_MACHINE(5_2, "5.2", true);
4523 
4524 /*
4525  * pseries-5.1
4526  */
4527 static void spapr_machine_5_1_class_options(MachineClass *mc)
4528 {
4529     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4530 
4531     spapr_machine_5_2_class_options(mc);
4532     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4533     smc->pre_5_2_numa_associativity = true;
4534 }
4535 
4536 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4537 
4538 /*
4539  * pseries-5.0
4540  */
4541 static void spapr_machine_5_0_class_options(MachineClass *mc)
4542 {
4543     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4544     static GlobalProperty compat[] = {
4545         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4546     };
4547 
4548     spapr_machine_5_1_class_options(mc);
4549     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4550     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4551     mc->numa_mem_supported = true;
4552     smc->pre_5_1_assoc_refpoints = true;
4553 }
4554 
4555 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4556 
4557 /*
4558  * pseries-4.2
4559  */
4560 static void spapr_machine_4_2_class_options(MachineClass *mc)
4561 {
4562     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4563 
4564     spapr_machine_5_0_class_options(mc);
4565     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4566     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4567     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4568     smc->rma_limit = 16 * GiB;
4569     mc->nvdimm_supported = false;
4570 }
4571 
4572 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4573 
4574 /*
4575  * pseries-4.1
4576  */
4577 static void spapr_machine_4_1_class_options(MachineClass *mc)
4578 {
4579     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4580     static GlobalProperty compat[] = {
4581         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4582         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4583     };
4584 
4585     spapr_machine_4_2_class_options(mc);
4586     smc->linux_pci_probe = false;
4587     smc->smp_threads_vsmt = false;
4588     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4589     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4590 }
4591 
4592 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4593 
4594 /*
4595  * pseries-4.0
4596  */
4597 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4598                               uint64_t *buid, hwaddr *pio,
4599                               hwaddr *mmio32, hwaddr *mmio64,
4600                               unsigned n_dma, uint32_t *liobns,
4601                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4602 {
4603     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4604                         nv2gpa, nv2atsd, errp);
4605     *nv2gpa = 0;
4606     *nv2atsd = 0;
4607 }
4608 
4609 static void spapr_machine_4_0_class_options(MachineClass *mc)
4610 {
4611     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4612 
4613     spapr_machine_4_1_class_options(mc);
4614     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4615     smc->phb_placement = phb_placement_4_0;
4616     smc->irq = &spapr_irq_xics;
4617     smc->pre_4_1_migration = true;
4618 }
4619 
4620 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4621 
4622 /*
4623  * pseries-3.1
4624  */
4625 static void spapr_machine_3_1_class_options(MachineClass *mc)
4626 {
4627     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4628 
4629     spapr_machine_4_0_class_options(mc);
4630     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4631 
4632     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4633     smc->update_dt_enabled = false;
4634     smc->dr_phb_enabled = false;
4635     smc->broken_host_serial_model = true;
4636     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4637     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4638     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4639     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4640 }
4641 
4642 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4643 
4644 /*
4645  * pseries-3.0
4646  */
4647 
4648 static void spapr_machine_3_0_class_options(MachineClass *mc)
4649 {
4650     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4651 
4652     spapr_machine_3_1_class_options(mc);
4653     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4654 
4655     smc->legacy_irq_allocation = true;
4656     smc->nr_xirqs = 0x400;
4657     smc->irq = &spapr_irq_xics_legacy;
4658 }
4659 
4660 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4661 
4662 /*
4663  * pseries-2.12
4664  */
4665 static void spapr_machine_2_12_class_options(MachineClass *mc)
4666 {
4667     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4668     static GlobalProperty compat[] = {
4669         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4670         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4671     };
4672 
4673     spapr_machine_3_0_class_options(mc);
4674     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4675     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4676 
4677     /* We depend on kvm_enabled() to choose a default value for the
4678      * hpt-max-page-size capability. Of course we can't do it here
4679      * because this is too early and the HW accelerator isn't initialzed
4680      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4681      */
4682     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4683 }
4684 
4685 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4686 
4687 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4688 {
4689     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4690 
4691     spapr_machine_2_12_class_options(mc);
4692     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4693     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4694     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4695 }
4696 
4697 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4698 
4699 /*
4700  * pseries-2.11
4701  */
4702 
4703 static void spapr_machine_2_11_class_options(MachineClass *mc)
4704 {
4705     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4706 
4707     spapr_machine_2_12_class_options(mc);
4708     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4709     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4710 }
4711 
4712 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4713 
4714 /*
4715  * pseries-2.10
4716  */
4717 
4718 static void spapr_machine_2_10_class_options(MachineClass *mc)
4719 {
4720     spapr_machine_2_11_class_options(mc);
4721     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4722 }
4723 
4724 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4725 
4726 /*
4727  * pseries-2.9
4728  */
4729 
4730 static void spapr_machine_2_9_class_options(MachineClass *mc)
4731 {
4732     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4733     static GlobalProperty compat[] = {
4734         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4735     };
4736 
4737     spapr_machine_2_10_class_options(mc);
4738     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4739     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4740     smc->pre_2_10_has_unused_icps = true;
4741     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4742 }
4743 
4744 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4745 
4746 /*
4747  * pseries-2.8
4748  */
4749 
4750 static void spapr_machine_2_8_class_options(MachineClass *mc)
4751 {
4752     static GlobalProperty compat[] = {
4753         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4754     };
4755 
4756     spapr_machine_2_9_class_options(mc);
4757     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4758     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4759     mc->numa_mem_align_shift = 23;
4760 }
4761 
4762 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4763 
4764 /*
4765  * pseries-2.7
4766  */
4767 
4768 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4769                               uint64_t *buid, hwaddr *pio,
4770                               hwaddr *mmio32, hwaddr *mmio64,
4771                               unsigned n_dma, uint32_t *liobns,
4772                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4773 {
4774     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4775     const uint64_t base_buid = 0x800000020000000ULL;
4776     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4777     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4778     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4779     const uint32_t max_index = 255;
4780     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4781 
4782     uint64_t ram_top = MACHINE(spapr)->ram_size;
4783     hwaddr phb0_base, phb_base;
4784     int i;
4785 
4786     /* Do we have device memory? */
4787     if (MACHINE(spapr)->maxram_size > ram_top) {
4788         /* Can't just use maxram_size, because there may be an
4789          * alignment gap between normal and device memory regions
4790          */
4791         ram_top = MACHINE(spapr)->device_memory->base +
4792             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4793     }
4794 
4795     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4796 
4797     if (index > max_index) {
4798         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4799                    max_index);
4800         return;
4801     }
4802 
4803     *buid = base_buid + index;
4804     for (i = 0; i < n_dma; ++i) {
4805         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4806     }
4807 
4808     phb_base = phb0_base + index * phb_spacing;
4809     *pio = phb_base + pio_offset;
4810     *mmio32 = phb_base + mmio_offset;
4811     /*
4812      * We don't set the 64-bit MMIO window, relying on the PHB's
4813      * fallback behaviour of automatically splitting a large "32-bit"
4814      * window into contiguous 32-bit and 64-bit windows
4815      */
4816 
4817     *nv2gpa = 0;
4818     *nv2atsd = 0;
4819 }
4820 
4821 static void spapr_machine_2_7_class_options(MachineClass *mc)
4822 {
4823     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4824     static GlobalProperty compat[] = {
4825         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4826         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4827         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4828         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4829     };
4830 
4831     spapr_machine_2_8_class_options(mc);
4832     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4833     mc->default_machine_opts = "modern-hotplug-events=off";
4834     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4835     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4836     smc->phb_placement = phb_placement_2_7;
4837 }
4838 
4839 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4840 
4841 /*
4842  * pseries-2.6
4843  */
4844 
4845 static void spapr_machine_2_6_class_options(MachineClass *mc)
4846 {
4847     static GlobalProperty compat[] = {
4848         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4849     };
4850 
4851     spapr_machine_2_7_class_options(mc);
4852     mc->has_hotpluggable_cpus = false;
4853     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4854     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4855 }
4856 
4857 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4858 
4859 /*
4860  * pseries-2.5
4861  */
4862 
4863 static void spapr_machine_2_5_class_options(MachineClass *mc)
4864 {
4865     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4866     static GlobalProperty compat[] = {
4867         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4868     };
4869 
4870     spapr_machine_2_6_class_options(mc);
4871     smc->use_ohci_by_default = true;
4872     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4873     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4874 }
4875 
4876 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4877 
4878 /*
4879  * pseries-2.4
4880  */
4881 
4882 static void spapr_machine_2_4_class_options(MachineClass *mc)
4883 {
4884     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4885 
4886     spapr_machine_2_5_class_options(mc);
4887     smc->dr_lmb_enabled = false;
4888     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4889 }
4890 
4891 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4892 
4893 /*
4894  * pseries-2.3
4895  */
4896 
4897 static void spapr_machine_2_3_class_options(MachineClass *mc)
4898 {
4899     static GlobalProperty compat[] = {
4900         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4901     };
4902     spapr_machine_2_4_class_options(mc);
4903     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4904     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4905 }
4906 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4907 
4908 /*
4909  * pseries-2.2
4910  */
4911 
4912 static void spapr_machine_2_2_class_options(MachineClass *mc)
4913 {
4914     static GlobalProperty compat[] = {
4915         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4916     };
4917 
4918     spapr_machine_2_3_class_options(mc);
4919     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4920     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4921     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4922 }
4923 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4924 
4925 /*
4926  * pseries-2.1
4927  */
4928 
4929 static void spapr_machine_2_1_class_options(MachineClass *mc)
4930 {
4931     spapr_machine_2_2_class_options(mc);
4932     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4933 }
4934 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4935 
4936 static void spapr_machine_register_types(void)
4937 {
4938     type_register_static(&spapr_machine_info);
4939 }
4940 
4941 type_init(spapr_machine_register_types)
4942