xref: /qemu/hw/ppc/spapr.c (revision c2813a35700a53d660d9b7f7b4810e1cef167ede)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58 
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61 
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
70 
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
75 
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
83 
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
90 
91 #include "monitor/monitor.h"
92 
93 #include <libfdt.h>
94 
95 /* SLOF memory layout:
96  *
97  * SLOF raw image loaded at 0, copies its romfs right below the flat
98  * device-tree, then position SLOF itself 31M below that
99  *
100  * So we set FW_OVERHEAD to 40MB which should account for all of that
101  * and more
102  *
103  * We load our kernel at 4M, leaving space for SLOF initial image
104  */
105 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE             0x400000
107 #define FW_FILE_NAME            "slof.bin"
108 #define FW_FILE_NAME_VOF        "vof.bin"
109 #define FW_OVERHEAD             0x2800000
110 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
111 
112 #define MIN_RMA_SLOF            (128 * MiB)
113 
114 #define PHANDLE_INTC            0x00001111
115 
116 /* These two functions implement the VCPU id numbering: one to compute them
117  * all and one to identify thread 0 of a VCORE. Any change to the first one
118  * is likely to have an impact on the second one, so let's keep them close.
119  */
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
121 {
122     MachineState *ms = MACHINE(spapr);
123     unsigned int smp_threads = ms->smp.threads;
124 
125     assert(spapr->vsmt);
126     return
127         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
128 }
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130                                       PowerPCCPU *cpu)
131 {
132     assert(spapr->vsmt);
133     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
134 }
135 
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
137 {
138     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139      * and newer QEMUs don't even have them. In both cases, we don't want
140      * to send anything on the wire.
141      */
142     return false;
143 }
144 
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146     /*
147      * Hack ahead.  We can't have two devices with the same name and
148      * instance id.  So I rename this to pass make check.
149      * Real help from people who knows the hardware is needed.
150      */
151     .name = "icp/server",
152     .version_id = 1,
153     .minimum_version_id = 1,
154     .needed = pre_2_10_vmstate_dummy_icp_needed,
155     .fields = (const VMStateField[]) {
156         VMSTATE_UNUSED(4), /* uint32_t xirr */
157         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
158         VMSTATE_UNUSED(1), /* uint8_t mfrr */
159         VMSTATE_END_OF_LIST()
160     },
161 };
162 
163 /*
164  * See comment in hw/intc/xics.c:icp_realize()
165  *
166  * You have to remove vmstate_replace_hack_for_ppc() when you remove
167  * the machine types that need the following function.
168  */
169 static void pre_2_10_vmstate_register_dummy_icp(int i)
170 {
171     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
172                      (void *)(uintptr_t) i);
173 }
174 
175 /*
176  * See comment in hw/intc/xics.c:icp_realize()
177  *
178  * You have to remove vmstate_replace_hack_for_ppc() when you remove
179  * the machine types that need the following function.
180  */
181 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
182 {
183     /*
184      * This used to be:
185      *
186      *    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
187      *                      (void *)(uintptr_t) i);
188      */
189 }
190 
191 int spapr_max_server_number(SpaprMachineState *spapr)
192 {
193     MachineState *ms = MACHINE(spapr);
194 
195     assert(spapr->vsmt);
196     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
197 }
198 
199 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
200                                   int smt_threads)
201 {
202     int i, ret = 0;
203     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
204     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
205     int index = spapr_get_vcpu_id(cpu);
206 
207     if (cpu->compat_pvr) {
208         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
209         if (ret < 0) {
210             return ret;
211         }
212     }
213 
214     /* Build interrupt servers and gservers properties */
215     for (i = 0; i < smt_threads; i++) {
216         servers_prop[i] = cpu_to_be32(index + i);
217         /* Hack, direct the group queues back to cpu 0 */
218         gservers_prop[i*2] = cpu_to_be32(index + i);
219         gservers_prop[i*2 + 1] = 0;
220     }
221     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
222                       servers_prop, sizeof(*servers_prop) * smt_threads);
223     if (ret < 0) {
224         return ret;
225     }
226     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
227                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
228 
229     return ret;
230 }
231 
232 static void spapr_dt_pa_features(SpaprMachineState *spapr,
233                                  PowerPCCPU *cpu,
234                                  void *fdt, int offset)
235 {
236     /*
237      * SSO (SAO) ordering is supported on KVM and thread=single hosts,
238      * but not MTTCG, so disable it. To advertise it, a cap would have
239      * to be added, or support implemented for MTTCG.
240      *
241      * Copy/paste is not supported by TCG, so it is not advertised. KVM
242      * can execute them but it has no accelerator drivers which are usable,
243      * so there isn't much need for it anyway.
244      */
245 
246     /* These should be kept in sync with pnv */
247     uint8_t pa_features_206[] = { 6, 0,
248         0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 };
249     uint8_t pa_features_207[] = { 24, 0,
250         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0,
251         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
252         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
253         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
254     uint8_t pa_features_300[] = { 66, 0,
255         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
256         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
257         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
258         /* 6: DS207 */
259         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
260         /* 16: Vector */
261         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
262         /* 18: Vec. Scalar, 20: Vec. XOR */
263         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
264         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
265         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
266         /* 32: LE atomic, 34: EBB + ext EBB */
267         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
268         /* 40: Radix MMU */
269         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
270         /* 42: PM, 44: PC RA, 46: SC vec'd */
271         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
272         /* 48: SIMD, 50: QP BFP, 52: String */
273         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
274         /* 54: DecFP, 56: DecI, 58: SHA */
275         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
276         /* 60: NM atomic, 62: RNG */
277         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
278     };
279     /* 3.1 removes SAO, HTM support */
280     uint8_t pa_features_31[] = { 74, 0,
281         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
282         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
283         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
284         /* 6: DS207 */
285         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
286         /* 16: Vector */
287         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
288         /* 18: Vec. Scalar, 20: Vec. XOR */
289         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
290         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
291         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
292         /* 32: LE atomic, 34: EBB + ext EBB */
293         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
294         /* 40: Radix MMU */
295         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
296         /* 42: PM, 44: PC RA, 46: SC vec'd */
297         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
298         /* 48: SIMD, 50: QP BFP, 52: String */
299         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
300         /* 54: DecFP, 56: DecI, 58: SHA */
301         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
302         /* 60: NM atomic, 62: RNG */
303         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
304         /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
305         0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
306         /* 72: [P]HASHST/[P]HASHCHK */
307         0x80, 0x00,                         /* 72 - 73 */
308     };
309     uint8_t *pa_features = NULL;
310     size_t pa_size;
311 
312     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
313         pa_features = pa_features_206;
314         pa_size = sizeof(pa_features_206);
315     }
316     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
317         pa_features = pa_features_207;
318         pa_size = sizeof(pa_features_207);
319     }
320     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
321         pa_features = pa_features_300;
322         pa_size = sizeof(pa_features_300);
323     }
324     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) {
325         pa_features = pa_features_31;
326         pa_size = sizeof(pa_features_31);
327     }
328     if (!pa_features) {
329         return;
330     }
331 
332     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
333         /*
334          * Note: we keep CI large pages off by default because a 64K capable
335          * guest provisioned with large pages might otherwise try to map a qemu
336          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
337          * even if that qemu runs on a 4k host.
338          * We dd this bit back here if we are confident this is not an issue
339          */
340         pa_features[3] |= 0x20;
341     }
342     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
343         pa_features[24] |= 0x80;    /* Transactional memory support */
344     }
345     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
346         /* Workaround for broken kernels that attempt (guest) radix
347          * mode when they can't handle it, if they see the radix bit set
348          * in pa-features. So hide it from them. */
349         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
350     }
351 
352     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
353 }
354 
355 static hwaddr spapr_node0_size(MachineState *machine)
356 {
357     if (machine->numa_state->num_nodes) {
358         int i;
359         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
360             if (machine->numa_state->nodes[i].node_mem) {
361                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
362                            machine->ram_size);
363             }
364         }
365     }
366     return machine->ram_size;
367 }
368 
369 static void add_str(GString *s, const gchar *s1)
370 {
371     g_string_append_len(s, s1, strlen(s1) + 1);
372 }
373 
374 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
375                                 hwaddr start, hwaddr size)
376 {
377     char mem_name[32];
378     uint64_t mem_reg_property[2];
379     int off;
380 
381     mem_reg_property[0] = cpu_to_be64(start);
382     mem_reg_property[1] = cpu_to_be64(size);
383 
384     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
385     off = fdt_add_subnode(fdt, 0, mem_name);
386     _FDT(off);
387     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
388     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
389                       sizeof(mem_reg_property))));
390     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
391     return off;
392 }
393 
394 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
395 {
396     MemoryDeviceInfoList *info;
397 
398     for (info = list; info; info = info->next) {
399         MemoryDeviceInfo *value = info->value;
400 
401         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
402             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
403 
404             if (addr >= pcdimm_info->addr &&
405                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
406                 return pcdimm_info->node;
407             }
408         }
409     }
410 
411     return -1;
412 }
413 
414 struct sPAPRDrconfCellV2 {
415      uint32_t seq_lmbs;
416      uint64_t base_addr;
417      uint32_t drc_index;
418      uint32_t aa_index;
419      uint32_t flags;
420 } QEMU_PACKED;
421 
422 typedef struct DrconfCellQueue {
423     struct sPAPRDrconfCellV2 cell;
424     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
425 } DrconfCellQueue;
426 
427 static DrconfCellQueue *
428 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
429                       uint32_t drc_index, uint32_t aa_index,
430                       uint32_t flags)
431 {
432     DrconfCellQueue *elem;
433 
434     elem = g_malloc0(sizeof(*elem));
435     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
436     elem->cell.base_addr = cpu_to_be64(base_addr);
437     elem->cell.drc_index = cpu_to_be32(drc_index);
438     elem->cell.aa_index = cpu_to_be32(aa_index);
439     elem->cell.flags = cpu_to_be32(flags);
440 
441     return elem;
442 }
443 
444 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
445                                       int offset, MemoryDeviceInfoList *dimms)
446 {
447     MachineState *machine = MACHINE(spapr);
448     uint8_t *int_buf, *cur_index;
449     int ret;
450     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
451     uint64_t addr, cur_addr, size;
452     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
453     uint64_t mem_end = machine->device_memory->base +
454                        memory_region_size(&machine->device_memory->mr);
455     uint32_t node, buf_len, nr_entries = 0;
456     SpaprDrc *drc;
457     DrconfCellQueue *elem, *next;
458     MemoryDeviceInfoList *info;
459     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
460         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
461 
462     /* Entry to cover RAM and the gap area */
463     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
464                                  SPAPR_LMB_FLAGS_RESERVED |
465                                  SPAPR_LMB_FLAGS_DRC_INVALID);
466     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
467     nr_entries++;
468 
469     cur_addr = machine->device_memory->base;
470     for (info = dimms; info; info = info->next) {
471         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
472 
473         addr = di->addr;
474         size = di->size;
475         node = di->node;
476 
477         /*
478          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
479          * area is marked hotpluggable in the next iteration for the bigger
480          * chunk including the NVDIMM occupied area.
481          */
482         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
483             continue;
484 
485         /* Entry for hot-pluggable area */
486         if (cur_addr < addr) {
487             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
488             g_assert(drc);
489             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
490                                          cur_addr, spapr_drc_index(drc), -1, 0);
491             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
492             nr_entries++;
493         }
494 
495         /* Entry for DIMM */
496         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
497         g_assert(drc);
498         elem = spapr_get_drconf_cell(size / lmb_size, addr,
499                                      spapr_drc_index(drc), node,
500                                      (SPAPR_LMB_FLAGS_ASSIGNED |
501                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
502         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
503         nr_entries++;
504         cur_addr = addr + size;
505     }
506 
507     /* Entry for remaining hotpluggable area */
508     if (cur_addr < mem_end) {
509         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
510         g_assert(drc);
511         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
512                                      cur_addr, spapr_drc_index(drc), -1, 0);
513         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
514         nr_entries++;
515     }
516 
517     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
518     int_buf = cur_index = g_malloc0(buf_len);
519     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
520     cur_index += sizeof(nr_entries);
521 
522     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
523         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
524         cur_index += sizeof(elem->cell);
525         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
526         g_free(elem);
527     }
528 
529     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
530     g_free(int_buf);
531     if (ret < 0) {
532         return -1;
533     }
534     return 0;
535 }
536 
537 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
538                                    int offset, MemoryDeviceInfoList *dimms)
539 {
540     MachineState *machine = MACHINE(spapr);
541     int i, ret;
542     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
543     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
544     uint32_t nr_lmbs = (machine->device_memory->base +
545                        memory_region_size(&machine->device_memory->mr)) /
546                        lmb_size;
547     uint32_t *int_buf, *cur_index, buf_len;
548 
549     /*
550      * Allocate enough buffer size to fit in ibm,dynamic-memory
551      */
552     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
553     cur_index = int_buf = g_malloc0(buf_len);
554     int_buf[0] = cpu_to_be32(nr_lmbs);
555     cur_index++;
556     for (i = 0; i < nr_lmbs; i++) {
557         uint64_t addr = i * lmb_size;
558         uint32_t *dynamic_memory = cur_index;
559 
560         if (i >= device_lmb_start) {
561             SpaprDrc *drc;
562 
563             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
564             g_assert(drc);
565 
566             dynamic_memory[0] = cpu_to_be32(addr >> 32);
567             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
568             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
569             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
570             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
571             if (memory_region_present(get_system_memory(), addr)) {
572                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
573             } else {
574                 dynamic_memory[5] = cpu_to_be32(0);
575             }
576         } else {
577             /*
578              * LMB information for RMA, boot time RAM and gap b/n RAM and
579              * device memory region -- all these are marked as reserved
580              * and as having no valid DRC.
581              */
582             dynamic_memory[0] = cpu_to_be32(addr >> 32);
583             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
584             dynamic_memory[2] = cpu_to_be32(0);
585             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
586             dynamic_memory[4] = cpu_to_be32(-1);
587             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
588                                             SPAPR_LMB_FLAGS_DRC_INVALID);
589         }
590 
591         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
592     }
593     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
594     g_free(int_buf);
595     if (ret < 0) {
596         return -1;
597     }
598     return 0;
599 }
600 
601 /*
602  * Adds ibm,dynamic-reconfiguration-memory node.
603  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
604  * of this device tree node.
605  */
606 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
607                                                    void *fdt)
608 {
609     MachineState *machine = MACHINE(spapr);
610     int ret, offset;
611     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
612     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
613                                 cpu_to_be32(lmb_size & 0xffffffff)};
614     MemoryDeviceInfoList *dimms = NULL;
615 
616     /* Don't create the node if there is no device memory. */
617     if (!machine->device_memory) {
618         return 0;
619     }
620 
621     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
622 
623     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
624                     sizeof(prop_lmb_size));
625     if (ret < 0) {
626         return ret;
627     }
628 
629     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
630     if (ret < 0) {
631         return ret;
632     }
633 
634     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
635     if (ret < 0) {
636         return ret;
637     }
638 
639     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
640     dimms = qmp_memory_device_list();
641     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
642         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
643     } else {
644         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
645     }
646     qapi_free_MemoryDeviceInfoList(dimms);
647 
648     if (ret < 0) {
649         return ret;
650     }
651 
652     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
653 
654     return ret;
655 }
656 
657 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
658 {
659     MachineState *machine = MACHINE(spapr);
660     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
661     hwaddr mem_start, node_size;
662     int i, nb_nodes = machine->numa_state->num_nodes;
663     NodeInfo *nodes = machine->numa_state->nodes;
664 
665     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
666         if (!nodes[i].node_mem) {
667             continue;
668         }
669         if (mem_start >= machine->ram_size) {
670             node_size = 0;
671         } else {
672             node_size = nodes[i].node_mem;
673             if (node_size > machine->ram_size - mem_start) {
674                 node_size = machine->ram_size - mem_start;
675             }
676         }
677         if (!mem_start) {
678             /* spapr_machine_init() checks for rma_size <= node0_size
679              * already */
680             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
681             mem_start += spapr->rma_size;
682             node_size -= spapr->rma_size;
683         }
684         for ( ; node_size; ) {
685             hwaddr sizetmp = pow2floor(node_size);
686 
687             /* mem_start != 0 here */
688             if (ctzl(mem_start) < ctzl(sizetmp)) {
689                 sizetmp = 1ULL << ctzl(mem_start);
690             }
691 
692             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
693             node_size -= sizetmp;
694             mem_start += sizetmp;
695         }
696     }
697 
698     /* Generate ibm,dynamic-reconfiguration-memory node if required */
699     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
700         int ret;
701 
702         g_assert(smc->dr_lmb_enabled);
703         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
704         if (ret) {
705             return ret;
706         }
707     }
708 
709     return 0;
710 }
711 
712 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
713                          SpaprMachineState *spapr)
714 {
715     MachineState *ms = MACHINE(spapr);
716     PowerPCCPU *cpu = POWERPC_CPU(cs);
717     CPUPPCState *env = &cpu->env;
718     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
719     int index = spapr_get_vcpu_id(cpu);
720     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
721                        0xffffffff, 0xffffffff};
722     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
723         : SPAPR_TIMEBASE_FREQ;
724     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
725     uint32_t page_sizes_prop[64];
726     size_t page_sizes_prop_size;
727     unsigned int smp_threads = ms->smp.threads;
728     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
729     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
730     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
731     SpaprDrc *drc;
732     int drc_index;
733     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
734     int i;
735 
736     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
737     if (drc) {
738         drc_index = spapr_drc_index(drc);
739         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
740     }
741 
742     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
743     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
744 
745     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
746     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
747                            env->dcache_line_size)));
748     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
749                            env->dcache_line_size)));
750     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
751                            env->icache_line_size)));
752     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
753                            env->icache_line_size)));
754 
755     if (pcc->l1_dcache_size) {
756         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
757                                pcc->l1_dcache_size)));
758     } else {
759         warn_report("Unknown L1 dcache size for cpu");
760     }
761     if (pcc->l1_icache_size) {
762         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
763                                pcc->l1_icache_size)));
764     } else {
765         warn_report("Unknown L1 icache size for cpu");
766     }
767 
768     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
769     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
770     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
771     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
772     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
773     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
774 
775     if (ppc_has_spr(cpu, SPR_PURR)) {
776         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
777     }
778     if (ppc_has_spr(cpu, SPR_PURR)) {
779         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
780     }
781 
782     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
783         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
784                           segs, sizeof(segs))));
785     }
786 
787     /* Advertise VSX (vector extensions) if available
788      *   1               == VMX / Altivec available
789      *   2               == VSX available
790      *
791      * Only CPUs for which we create core types in spapr_cpu_core.c
792      * are possible, and all of those have VMX */
793     if (env->insns_flags & PPC_ALTIVEC) {
794         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
795             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
796         } else {
797             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
798         }
799     }
800 
801     /* Advertise DFP (Decimal Floating Point) if available
802      *   0 / no property == no DFP
803      *   1               == DFP available */
804     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
805         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
806     }
807 
808     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
809                                                       sizeof(page_sizes_prop));
810     if (page_sizes_prop_size) {
811         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
812                           page_sizes_prop, page_sizes_prop_size)));
813     }
814 
815     spapr_dt_pa_features(spapr, cpu, fdt, offset);
816 
817     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
818                            cs->cpu_index / vcpus_per_socket)));
819 
820     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
821                       pft_size_prop, sizeof(pft_size_prop))));
822 
823     if (ms->numa_state->num_nodes > 1) {
824         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
825     }
826 
827     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
828 
829     if (pcc->radix_page_info) {
830         for (i = 0; i < pcc->radix_page_info->count; i++) {
831             radix_AP_encodings[i] =
832                 cpu_to_be32(pcc->radix_page_info->entries[i]);
833         }
834         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
835                           radix_AP_encodings,
836                           pcc->radix_page_info->count *
837                           sizeof(radix_AP_encodings[0]))));
838     }
839 
840     /*
841      * We set this property to let the guest know that it can use the large
842      * decrementer and its width in bits.
843      */
844     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
845         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
846                               pcc->lrg_decr_bits)));
847 }
848 
849 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs,
850                              int cpus_offset)
851 {
852     PowerPCCPU *cpu = POWERPC_CPU(cs);
853     int index = spapr_get_vcpu_id(cpu);
854     DeviceClass *dc = DEVICE_GET_CLASS(cs);
855     g_autofree char *nodename = NULL;
856     int offset;
857 
858     if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
859         return;
860     }
861 
862     nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
863     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
864     _FDT(offset);
865     spapr_dt_cpu(cs, fdt, offset, spapr);
866 }
867 
868 
869 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
870 {
871     CPUState **rev;
872     CPUState *cs;
873     int n_cpus;
874     int cpus_offset;
875     int i;
876 
877     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
878     _FDT(cpus_offset);
879     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
880     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
881 
882     /*
883      * We walk the CPUs in reverse order to ensure that CPU DT nodes
884      * created by fdt_add_subnode() end up in the right order in FDT
885      * for the guest kernel the enumerate the CPUs correctly.
886      *
887      * The CPU list cannot be traversed in reverse order, so we need
888      * to do extra work.
889      */
890     n_cpus = 0;
891     rev = NULL;
892     CPU_FOREACH(cs) {
893         rev = g_renew(CPUState *, rev, n_cpus + 1);
894         rev[n_cpus++] = cs;
895     }
896 
897     for (i = n_cpus - 1; i >= 0; i--) {
898         spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset);
899     }
900 
901     g_free(rev);
902 }
903 
904 static int spapr_dt_rng(void *fdt)
905 {
906     int node;
907     int ret;
908 
909     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
910     if (node <= 0) {
911         return -1;
912     }
913     ret = fdt_setprop_string(fdt, node, "device_type",
914                              "ibm,platform-facilities");
915     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
916     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
917 
918     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
919     if (node <= 0) {
920         return -1;
921     }
922     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
923 
924     return ret ? -1 : 0;
925 }
926 
927 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
928 {
929     MachineState *ms = MACHINE(spapr);
930     int rtas;
931     GString *hypertas = g_string_sized_new(256);
932     GString *qemu_hypertas = g_string_sized_new(256);
933     uint32_t lrdr_capacity[] = {
934         0,
935         0,
936         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
937         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
938         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
939     };
940 
941     /* Do we have device memory? */
942     if (MACHINE(spapr)->device_memory) {
943         uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
944             memory_region_size(&MACHINE(spapr)->device_memory->mr);
945 
946         lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
947         lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
948     }
949 
950     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
951 
952     /* hypertas */
953     add_str(hypertas, "hcall-pft");
954     add_str(hypertas, "hcall-term");
955     add_str(hypertas, "hcall-dabr");
956     add_str(hypertas, "hcall-interrupt");
957     add_str(hypertas, "hcall-tce");
958     add_str(hypertas, "hcall-vio");
959     add_str(hypertas, "hcall-splpar");
960     add_str(hypertas, "hcall-join");
961     add_str(hypertas, "hcall-bulk");
962     add_str(hypertas, "hcall-set-mode");
963     add_str(hypertas, "hcall-sprg0");
964     add_str(hypertas, "hcall-copy");
965     add_str(hypertas, "hcall-debug");
966     add_str(hypertas, "hcall-vphn");
967     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
968         add_str(hypertas, "hcall-rpt-invalidate");
969     }
970 
971     add_str(qemu_hypertas, "hcall-memop1");
972 
973     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
974         add_str(hypertas, "hcall-multi-tce");
975     }
976 
977     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
978         add_str(hypertas, "hcall-hpt-resize");
979     }
980 
981     add_str(hypertas, "hcall-watchdog");
982 
983     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
984                      hypertas->str, hypertas->len));
985     g_string_free(hypertas, TRUE);
986     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
987                      qemu_hypertas->str, qemu_hypertas->len));
988     g_string_free(qemu_hypertas, TRUE);
989 
990     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
991 
992     /*
993      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
994      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
995      *
996      * The system reset requirements are driven by existing Linux and PowerVM
997      * implementation which (contrary to PAPR) saves r3 in the error log
998      * structure like machine check, so Linux expects to find the saved r3
999      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
1000      * does not look at the error value).
1001      *
1002      * System reset interrupts are not subject to interlock like machine
1003      * check, so this memory area could be corrupted if the sreset is
1004      * interrupted by a machine check (or vice versa) if it was shared. To
1005      * prevent this, system reset uses per-CPU areas for the sreset save
1006      * area. A system reset that interrupts a system reset handler could
1007      * still overwrite this area, but Linux doesn't try to recover in that
1008      * case anyway.
1009      *
1010      * The extra 8 bytes is required because Linux's FWNMI error log check
1011      * is off-by-one.
1012      *
1013      * RTAS_MIN_SIZE is required for the RTAS blob itself.
1014      */
1015     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
1016                           RTAS_ERROR_LOG_MAX +
1017                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
1018                           sizeof(uint64_t)));
1019     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1020                           RTAS_ERROR_LOG_MAX));
1021     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1022                           RTAS_EVENT_SCAN_RATE));
1023 
1024     g_assert(msi_nonbroken);
1025     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1026 
1027     /*
1028      * According to PAPR, rtas ibm,os-term does not guarantee a return
1029      * back to the guest cpu.
1030      *
1031      * While an additional ibm,extended-os-term property indicates
1032      * that rtas call return will always occur. Set this property.
1033      */
1034     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1035 
1036     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1037                      lrdr_capacity, sizeof(lrdr_capacity)));
1038 
1039     spapr_dt_rtas_tokens(fdt, rtas);
1040 }
1041 
1042 /*
1043  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1044  * and the XIVE features that the guest may request and thus the valid
1045  * values for bytes 23..26 of option vector 5:
1046  */
1047 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1048                                           int chosen)
1049 {
1050     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1051 
1052     char val[2 * 4] = {
1053         23, 0x00, /* XICS / XIVE mode */
1054         24, 0x00, /* Hash/Radix, filled in below. */
1055         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1056         26, 0x40, /* Radix options: GTSE == yes. */
1057     };
1058 
1059     if (spapr->irq->xics && spapr->irq->xive) {
1060         val[1] = SPAPR_OV5_XIVE_BOTH;
1061     } else if (spapr->irq->xive) {
1062         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1063     } else {
1064         assert(spapr->irq->xics);
1065         val[1] = SPAPR_OV5_XIVE_LEGACY;
1066     }
1067 
1068     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1069                           first_ppc_cpu->compat_pvr)) {
1070         /*
1071          * If we're in a pre POWER9 compat mode then the guest should
1072          * do hash and use the legacy interrupt mode
1073          */
1074         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1075         val[3] = 0x00; /* Hash */
1076         spapr_check_mmu_mode(false);
1077     } else if (kvm_enabled()) {
1078         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1079             val[3] = 0x80; /* OV5_MMU_BOTH */
1080         } else if (kvmppc_has_cap_mmu_radix()) {
1081             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1082         } else {
1083             val[3] = 0x00; /* Hash */
1084         }
1085     } else {
1086         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1087         val[3] = 0xC0;
1088     }
1089     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1090                      val, sizeof(val)));
1091 }
1092 
1093 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1094 {
1095     MachineState *machine = MACHINE(spapr);
1096     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1097     int chosen;
1098 
1099     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1100 
1101     if (reset) {
1102         const char *boot_device = spapr->boot_device;
1103         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1104         size_t cb = 0;
1105         g_autofree char *bootlist = get_boot_devices_list(&cb);
1106 
1107         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1108             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1109                                     machine->kernel_cmdline));
1110         }
1111 
1112         if (spapr->initrd_size) {
1113             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1114                                   spapr->initrd_base));
1115             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1116                                   spapr->initrd_base + spapr->initrd_size));
1117         }
1118 
1119         if (spapr->kernel_size) {
1120             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1121                                   cpu_to_be64(spapr->kernel_size) };
1122 
1123             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1124                          &kprop, sizeof(kprop)));
1125             if (spapr->kernel_le) {
1126                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1127             }
1128         }
1129         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1130             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1131         }
1132         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1133         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1134         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1135 
1136         if (cb && bootlist) {
1137             int i;
1138 
1139             for (i = 0; i < cb; i++) {
1140                 if (bootlist[i] == '\n') {
1141                     bootlist[i] = ' ';
1142                 }
1143             }
1144             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1145         }
1146 
1147         if (boot_device && strlen(boot_device)) {
1148             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1149         }
1150 
1151         if (spapr->want_stdout_path && stdout_path) {
1152             /*
1153              * "linux,stdout-path" and "stdout" properties are
1154              * deprecated by linux kernel. New platforms should only
1155              * use the "stdout-path" property. Set the new property
1156              * and continue using older property to remain compatible
1157              * with the existing firmware.
1158              */
1159             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1160             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1161         }
1162 
1163         /*
1164          * We can deal with BAR reallocation just fine, advertise it
1165          * to the guest
1166          */
1167         if (smc->linux_pci_probe) {
1168             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1169         }
1170 
1171         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1172     }
1173 
1174     _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1175 
1176     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1177 }
1178 
1179 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1180 {
1181     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1182      * KVM to work under pHyp with some guest co-operation */
1183     int hypervisor;
1184     uint8_t hypercall[16];
1185 
1186     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1187     /* indicate KVM hypercall interface */
1188     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1189     if (kvmppc_has_cap_fixup_hcalls()) {
1190         /*
1191          * Older KVM versions with older guest kernels were broken
1192          * with the magic page, don't allow the guest to map it.
1193          */
1194         if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall,
1195                                   sizeof(hypercall))) {
1196             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1197                              hypercall, sizeof(hypercall)));
1198         }
1199     }
1200 }
1201 
1202 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1203 {
1204     MachineState *machine = MACHINE(spapr);
1205     MachineClass *mc = MACHINE_GET_CLASS(machine);
1206     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1207     uint32_t root_drc_type_mask = 0;
1208     int ret;
1209     void *fdt;
1210     SpaprPhbState *phb;
1211     char *buf;
1212 
1213     fdt = g_malloc0(space);
1214     _FDT((fdt_create_empty_tree(fdt, space)));
1215 
1216     /* Root node */
1217     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1218     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1219     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1220 
1221     /* Guest UUID & Name*/
1222     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1223     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1224     if (qemu_uuid_set) {
1225         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1226     }
1227     g_free(buf);
1228 
1229     if (qemu_get_vm_name()) {
1230         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1231                                 qemu_get_vm_name()));
1232     }
1233 
1234     /* Host Model & Serial Number */
1235     if (spapr->host_model) {
1236         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1237     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1238         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1239         g_free(buf);
1240     }
1241 
1242     if (spapr->host_serial) {
1243         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1244     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1245         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1246         g_free(buf);
1247     }
1248 
1249     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1250     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1251 
1252     /* /interrupt controller */
1253     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1254 
1255     ret = spapr_dt_memory(spapr, fdt);
1256     if (ret < 0) {
1257         error_report("couldn't setup memory nodes in fdt");
1258         exit(1);
1259     }
1260 
1261     /* /vdevice */
1262     spapr_dt_vdevice(spapr->vio_bus, fdt);
1263 
1264     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1265         ret = spapr_dt_rng(fdt);
1266         if (ret < 0) {
1267             error_report("could not set up rng device in the fdt");
1268             exit(1);
1269         }
1270     }
1271 
1272     QLIST_FOREACH(phb, &spapr->phbs, list) {
1273         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1274         if (ret < 0) {
1275             error_report("couldn't setup PCI devices in fdt");
1276             exit(1);
1277         }
1278     }
1279 
1280     spapr_dt_cpus(fdt, spapr);
1281 
1282     /* ibm,drc-indexes and friends */
1283     if (smc->dr_lmb_enabled) {
1284         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1285     }
1286     if (smc->dr_phb_enabled) {
1287         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1288     }
1289     if (mc->nvdimm_supported) {
1290         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1291     }
1292     if (root_drc_type_mask) {
1293         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1294     }
1295 
1296     if (mc->has_hotpluggable_cpus) {
1297         int offset = fdt_path_offset(fdt, "/cpus");
1298         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1299         if (ret < 0) {
1300             error_report("Couldn't set up CPU DR device tree properties");
1301             exit(1);
1302         }
1303     }
1304 
1305     /* /event-sources */
1306     spapr_dt_events(spapr, fdt);
1307 
1308     /* /rtas */
1309     spapr_dt_rtas(spapr, fdt);
1310 
1311     /* /chosen */
1312     spapr_dt_chosen(spapr, fdt, reset);
1313 
1314     /* /hypervisor */
1315     if (kvm_enabled()) {
1316         spapr_dt_hypervisor(spapr, fdt);
1317     }
1318 
1319     /* Build memory reserve map */
1320     if (reset) {
1321         if (spapr->kernel_size) {
1322             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1323                                   spapr->kernel_size)));
1324         }
1325         if (spapr->initrd_size) {
1326             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1327                                   spapr->initrd_size)));
1328         }
1329     }
1330 
1331     /* NVDIMM devices */
1332     if (mc->nvdimm_supported) {
1333         spapr_dt_persistent_memory(spapr, fdt);
1334     }
1335 
1336     return fdt;
1337 }
1338 
1339 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1340 {
1341     SpaprMachineState *spapr = opaque;
1342 
1343     return (addr & 0x0fffffff) + spapr->kernel_addr;
1344 }
1345 
1346 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1347                                     PowerPCCPU *cpu)
1348 {
1349     CPUPPCState *env = &cpu->env;
1350 
1351     /* The TCG path should also be holding the BQL at this point */
1352     g_assert(bql_locked());
1353 
1354     g_assert(!vhyp_cpu_in_nested(cpu));
1355 
1356     if (FIELD_EX64(env->msr, MSR, PR)) {
1357         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1358         env->gpr[3] = H_PRIVILEGE;
1359     } else {
1360         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1361     }
1362 }
1363 
1364 struct LPCRSyncState {
1365     target_ulong value;
1366     target_ulong mask;
1367 };
1368 
1369 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1370 {
1371     struct LPCRSyncState *s = arg.host_ptr;
1372     PowerPCCPU *cpu = POWERPC_CPU(cs);
1373     CPUPPCState *env = &cpu->env;
1374     target_ulong lpcr;
1375 
1376     cpu_synchronize_state(cs);
1377     lpcr = env->spr[SPR_LPCR];
1378     lpcr &= ~s->mask;
1379     lpcr |= s->value;
1380     ppc_store_lpcr(cpu, lpcr);
1381 }
1382 
1383 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1384 {
1385     CPUState *cs;
1386     struct LPCRSyncState s = {
1387         .value = value,
1388         .mask = mask
1389     };
1390     CPU_FOREACH(cs) {
1391         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1392     }
1393 }
1394 
1395 /* May be used when the machine is not running */
1396 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1397 {
1398     CPUState *cs;
1399     CPU_FOREACH(cs) {
1400         PowerPCCPU *cpu = POWERPC_CPU(cs);
1401         CPUPPCState *env = &cpu->env;
1402         target_ulong lpcr;
1403 
1404         lpcr = env->spr[SPR_LPCR];
1405         lpcr &= ~(LPCR_HR | LPCR_UPRT);
1406         ppc_store_lpcr(cpu, lpcr);
1407     }
1408 }
1409 
1410 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1411                            target_ulong lpid, ppc_v3_pate_t *entry)
1412 {
1413     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1414     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1415 
1416     if (!spapr_cpu->in_nested) {
1417         assert(lpid == 0);
1418 
1419         /* Copy PATE1:GR into PATE0:HR */
1420         entry->dw0 = spapr->patb_entry & PATE0_HR;
1421         entry->dw1 = spapr->patb_entry;
1422         return true;
1423     } else {
1424         return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry);
1425     }
1426 }
1427 
1428 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1429 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1430 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1431 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1432 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1433 
1434 /*
1435  * Get the fd to access the kernel htab, re-opening it if necessary
1436  */
1437 static int get_htab_fd(SpaprMachineState *spapr)
1438 {
1439     Error *local_err = NULL;
1440 
1441     if (spapr->htab_fd >= 0) {
1442         return spapr->htab_fd;
1443     }
1444 
1445     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1446     if (spapr->htab_fd < 0) {
1447         error_report_err(local_err);
1448     }
1449 
1450     return spapr->htab_fd;
1451 }
1452 
1453 void close_htab_fd(SpaprMachineState *spapr)
1454 {
1455     if (spapr->htab_fd >= 0) {
1456         close(spapr->htab_fd);
1457     }
1458     spapr->htab_fd = -1;
1459 }
1460 
1461 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1462 {
1463     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1464 
1465     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1466 }
1467 
1468 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1469 {
1470     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1471 
1472     assert(kvm_enabled());
1473 
1474     if (!spapr->htab) {
1475         return 0;
1476     }
1477 
1478     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1479 }
1480 
1481 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1482                                                 hwaddr ptex, int n)
1483 {
1484     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1485     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1486 
1487     if (!spapr->htab) {
1488         /*
1489          * HTAB is controlled by KVM. Fetch into temporary buffer
1490          */
1491         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1492         kvmppc_read_hptes(hptes, ptex, n);
1493         return hptes;
1494     }
1495 
1496     /*
1497      * HTAB is controlled by QEMU. Just point to the internally
1498      * accessible PTEG.
1499      */
1500     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1501 }
1502 
1503 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1504                               const ppc_hash_pte64_t *hptes,
1505                               hwaddr ptex, int n)
1506 {
1507     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1508 
1509     if (!spapr->htab) {
1510         g_free((void *)hptes);
1511     }
1512 
1513     /* Nothing to do for qemu managed HPT */
1514 }
1515 
1516 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1517                       uint64_t pte0, uint64_t pte1)
1518 {
1519     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1520     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1521 
1522     if (!spapr->htab) {
1523         kvmppc_write_hpte(ptex, pte0, pte1);
1524     } else {
1525         if (pte0 & HPTE64_V_VALID) {
1526             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1527             /*
1528              * When setting valid, we write PTE1 first. This ensures
1529              * proper synchronization with the reading code in
1530              * ppc_hash64_pteg_search()
1531              */
1532             smp_wmb();
1533             stq_p(spapr->htab + offset, pte0);
1534         } else {
1535             stq_p(spapr->htab + offset, pte0);
1536             /*
1537              * When clearing it we set PTE0 first. This ensures proper
1538              * synchronization with the reading code in
1539              * ppc_hash64_pteg_search()
1540              */
1541             smp_wmb();
1542             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1543         }
1544     }
1545 }
1546 
1547 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1548                              uint64_t pte1)
1549 {
1550     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1551     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1552 
1553     if (!spapr->htab) {
1554         /* There should always be a hash table when this is called */
1555         error_report("spapr_hpte_set_c called with no hash table !");
1556         return;
1557     }
1558 
1559     /* The HW performs a non-atomic byte update */
1560     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1561 }
1562 
1563 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1564                              uint64_t pte1)
1565 {
1566     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1567     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1568 
1569     if (!spapr->htab) {
1570         /* There should always be a hash table when this is called */
1571         error_report("spapr_hpte_set_r called with no hash table !");
1572         return;
1573     }
1574 
1575     /* The HW performs a non-atomic byte update */
1576     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1577 }
1578 
1579 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1580 {
1581     int shift;
1582 
1583     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1584      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1585      * that's much more than is needed for Linux guests */
1586     shift = ctz64(pow2ceil(ramsize)) - 7;
1587     shift = MAX(shift, 18); /* Minimum architected size */
1588     shift = MIN(shift, 46); /* Maximum architected size */
1589     return shift;
1590 }
1591 
1592 void spapr_free_hpt(SpaprMachineState *spapr)
1593 {
1594     qemu_vfree(spapr->htab);
1595     spapr->htab = NULL;
1596     spapr->htab_shift = 0;
1597     close_htab_fd(spapr);
1598 }
1599 
1600 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1601 {
1602     ERRP_GUARD();
1603     long rc;
1604 
1605     /* Clean up any HPT info from a previous boot */
1606     spapr_free_hpt(spapr);
1607 
1608     rc = kvmppc_reset_htab(shift);
1609 
1610     if (rc == -EOPNOTSUPP) {
1611         error_setg(errp, "HPT not supported in nested guests");
1612         return -EOPNOTSUPP;
1613     }
1614 
1615     if (rc < 0) {
1616         /* kernel-side HPT needed, but couldn't allocate one */
1617         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1618                          shift);
1619         error_append_hint(errp, "Try smaller maxmem?\n");
1620         return -errno;
1621     } else if (rc > 0) {
1622         /* kernel-side HPT allocated */
1623         if (rc != shift) {
1624             error_setg(errp,
1625                        "Requested order %d HPT, but kernel allocated order %ld",
1626                        shift, rc);
1627             error_append_hint(errp, "Try smaller maxmem?\n");
1628             return -ENOSPC;
1629         }
1630 
1631         spapr->htab_shift = shift;
1632         spapr->htab = NULL;
1633     } else {
1634         /* kernel-side HPT not needed, allocate in userspace instead */
1635         size_t size = 1ULL << shift;
1636         int i;
1637 
1638         spapr->htab = qemu_memalign(size, size);
1639         memset(spapr->htab, 0, size);
1640         spapr->htab_shift = shift;
1641 
1642         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1643             DIRTY_HPTE(HPTE(spapr->htab, i));
1644         }
1645     }
1646     /* We're setting up a hash table, so that means we're not radix */
1647     spapr->patb_entry = 0;
1648     spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1649     return 0;
1650 }
1651 
1652 void spapr_setup_hpt(SpaprMachineState *spapr)
1653 {
1654     int hpt_shift;
1655 
1656     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1657         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1658     } else {
1659         uint64_t current_ram_size;
1660 
1661         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1662         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1663     }
1664     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1665 
1666     if (kvm_enabled()) {
1667         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1668 
1669         /* Check our RMA fits in the possible VRMA */
1670         if (vrma_limit < spapr->rma_size) {
1671             error_report("Unable to create %" HWADDR_PRIu
1672                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1673                          spapr->rma_size / MiB, vrma_limit / MiB);
1674             exit(EXIT_FAILURE);
1675         }
1676     }
1677 }
1678 
1679 void spapr_check_mmu_mode(bool guest_radix)
1680 {
1681     if (guest_radix) {
1682         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1683             error_report("Guest requested unavailable MMU mode (radix).");
1684             exit(EXIT_FAILURE);
1685         }
1686     } else {
1687         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1688             && !kvmppc_has_cap_mmu_hash_v3()) {
1689             error_report("Guest requested unavailable MMU mode (hash).");
1690             exit(EXIT_FAILURE);
1691         }
1692     }
1693 }
1694 
1695 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1696 {
1697     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1698     PowerPCCPU *first_ppc_cpu;
1699     hwaddr fdt_addr;
1700     void *fdt;
1701     int rc;
1702 
1703     if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) {
1704         /*
1705          * Record-replay snapshot load must not consume random, this was
1706          * already replayed from initial machine reset.
1707          */
1708         qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1709     }
1710 
1711     pef_kvm_reset(machine->cgs, &error_fatal);
1712     spapr_caps_apply(spapr);
1713     spapr_nested_reset(spapr);
1714 
1715     first_ppc_cpu = POWERPC_CPU(first_cpu);
1716     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1717         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1718                               spapr->max_compat_pvr)) {
1719         /*
1720          * If using KVM with radix mode available, VCPUs can be started
1721          * without a HPT because KVM will start them in radix mode.
1722          * Set the GR bit in PATE so that we know there is no HPT.
1723          */
1724         spapr->patb_entry = PATE1_GR;
1725         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1726     } else {
1727         spapr_setup_hpt(spapr);
1728     }
1729 
1730     qemu_devices_reset(reason);
1731 
1732     spapr_ovec_cleanup(spapr->ov5_cas);
1733     spapr->ov5_cas = spapr_ovec_new();
1734 
1735     ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1736 
1737     /*
1738      * This is fixing some of the default configuration of the XIVE
1739      * devices. To be called after the reset of the machine devices.
1740      */
1741     spapr_irq_reset(spapr, &error_fatal);
1742 
1743     /*
1744      * There is no CAS under qtest. Simulate one to please the code that
1745      * depends on spapr->ov5_cas. This is especially needed to test device
1746      * unplug, so we do that before resetting the DRCs.
1747      */
1748     if (qtest_enabled()) {
1749         spapr_ovec_cleanup(spapr->ov5_cas);
1750         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1751     }
1752 
1753     spapr_nvdimm_finish_flushes();
1754 
1755     /* DRC reset may cause a device to be unplugged. This will cause troubles
1756      * if this device is used by another device (eg, a running vhost backend
1757      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1758      * situations, we reset DRCs after all devices have been reset.
1759      */
1760     spapr_drc_reset_all(spapr);
1761 
1762     spapr_clear_pending_events(spapr);
1763 
1764     /*
1765      * We place the device tree just below either the top of the RMA,
1766      * or just below 2GB, whichever is lower, so that it can be
1767      * processed with 32-bit real mode code if necessary
1768      */
1769     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1770 
1771     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1772     if (spapr->vof) {
1773         spapr_vof_reset(spapr, fdt, &error_fatal);
1774         /*
1775          * Do not pack the FDT as the client may change properties.
1776          * VOF client does not expect the FDT so we do not load it to the VM.
1777          */
1778     } else {
1779         rc = fdt_pack(fdt);
1780         /* Should only fail if we've built a corrupted tree */
1781         assert(rc == 0);
1782 
1783         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1784                                   0, fdt_addr, 0);
1785         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1786     }
1787     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1788 
1789     g_free(spapr->fdt_blob);
1790     spapr->fdt_size = fdt_totalsize(fdt);
1791     spapr->fdt_initial_size = spapr->fdt_size;
1792     spapr->fdt_blob = fdt;
1793 
1794     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1795     machine->fdt = fdt;
1796 
1797     /* Set up the entry state */
1798     first_ppc_cpu->env.gpr[5] = 0;
1799 
1800     spapr->fwnmi_system_reset_addr = -1;
1801     spapr->fwnmi_machine_check_addr = -1;
1802     spapr->fwnmi_machine_check_interlock = -1;
1803 
1804     /* Signal all vCPUs waiting on this condition */
1805     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1806 
1807     migrate_del_blocker(&spapr->fwnmi_migration_blocker);
1808 }
1809 
1810 static void spapr_create_nvram(SpaprMachineState *spapr)
1811 {
1812     DeviceState *dev = qdev_new("spapr-nvram");
1813     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1814 
1815     if (dinfo) {
1816         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1817                                 &error_fatal);
1818     }
1819 
1820     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1821 
1822     spapr->nvram = (struct SpaprNvram *)dev;
1823 }
1824 
1825 static void spapr_rtc_create(SpaprMachineState *spapr)
1826 {
1827     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1828                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1829                                        &error_fatal, NULL);
1830     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1831     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1832                               "date");
1833 }
1834 
1835 /* Returns whether we want to use VGA or not */
1836 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1837 {
1838     vga_interface_created = true;
1839     switch (vga_interface_type) {
1840     case VGA_NONE:
1841         return false;
1842     case VGA_DEVICE:
1843         return true;
1844     case VGA_STD:
1845     case VGA_VIRTIO:
1846     case VGA_CIRRUS:
1847         return pci_vga_init(pci_bus) != NULL;
1848     default:
1849         error_setg(errp,
1850                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1851         return false;
1852     }
1853 }
1854 
1855 static int spapr_pre_load(void *opaque)
1856 {
1857     int rc;
1858 
1859     rc = spapr_caps_pre_load(opaque);
1860     if (rc) {
1861         return rc;
1862     }
1863 
1864     return 0;
1865 }
1866 
1867 static int spapr_post_load(void *opaque, int version_id)
1868 {
1869     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1870     int err = 0;
1871 
1872     err = spapr_caps_post_migration(spapr);
1873     if (err) {
1874         return err;
1875     }
1876 
1877     /*
1878      * In earlier versions, there was no separate qdev for the PAPR
1879      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1880      * So when migrating from those versions, poke the incoming offset
1881      * value into the RTC device
1882      */
1883     if (version_id < 3) {
1884         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1885         if (err) {
1886             return err;
1887         }
1888     }
1889 
1890     if (kvm_enabled() && spapr->patb_entry) {
1891         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1892         bool radix = !!(spapr->patb_entry & PATE1_GR);
1893         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1894 
1895         /*
1896          * Update LPCR:HR and UPRT as they may not be set properly in
1897          * the stream
1898          */
1899         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1900                             LPCR_HR | LPCR_UPRT);
1901 
1902         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1903         if (err) {
1904             error_report("Process table config unsupported by the host");
1905             return -EINVAL;
1906         }
1907     }
1908 
1909     err = spapr_irq_post_load(spapr, version_id);
1910     if (err) {
1911         return err;
1912     }
1913 
1914     return err;
1915 }
1916 
1917 static int spapr_pre_save(void *opaque)
1918 {
1919     int rc;
1920 
1921     rc = spapr_caps_pre_save(opaque);
1922     if (rc) {
1923         return rc;
1924     }
1925 
1926     return 0;
1927 }
1928 
1929 static bool version_before_3(void *opaque, int version_id)
1930 {
1931     return version_id < 3;
1932 }
1933 
1934 static bool spapr_pending_events_needed(void *opaque)
1935 {
1936     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1937     return !QTAILQ_EMPTY(&spapr->pending_events);
1938 }
1939 
1940 static const VMStateDescription vmstate_spapr_event_entry = {
1941     .name = "spapr_event_log_entry",
1942     .version_id = 1,
1943     .minimum_version_id = 1,
1944     .fields = (const VMStateField[]) {
1945         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1946         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1947         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1948                                      NULL, extended_length),
1949         VMSTATE_END_OF_LIST()
1950     },
1951 };
1952 
1953 static const VMStateDescription vmstate_spapr_pending_events = {
1954     .name = "spapr_pending_events",
1955     .version_id = 1,
1956     .minimum_version_id = 1,
1957     .needed = spapr_pending_events_needed,
1958     .fields = (const VMStateField[]) {
1959         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1960                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1961         VMSTATE_END_OF_LIST()
1962     },
1963 };
1964 
1965 static bool spapr_ov5_cas_needed(void *opaque)
1966 {
1967     SpaprMachineState *spapr = opaque;
1968     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1969     bool cas_needed;
1970 
1971     /* Prior to the introduction of SpaprOptionVector, we had two option
1972      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1973      * Both of these options encode machine topology into the device-tree
1974      * in such a way that the now-booted OS should still be able to interact
1975      * appropriately with QEMU regardless of what options were actually
1976      * negotiatied on the source side.
1977      *
1978      * As such, we can avoid migrating the CAS-negotiated options if these
1979      * are the only options available on the current machine/platform.
1980      * Since these are the only options available for pseries-2.7 and
1981      * earlier, this allows us to maintain old->new/new->old migration
1982      * compatibility.
1983      *
1984      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1985      * via default pseries-2.8 machines and explicit command-line parameters.
1986      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1987      * of the actual CAS-negotiated values to continue working properly. For
1988      * example, availability of memory unplug depends on knowing whether
1989      * OV5_HP_EVT was negotiated via CAS.
1990      *
1991      * Thus, for any cases where the set of available CAS-negotiatable
1992      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1993      * include the CAS-negotiated options in the migration stream, unless
1994      * if they affect boot time behaviour only.
1995      */
1996     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1997     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1998     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1999 
2000     /* We need extra information if we have any bits outside the mask
2001      * defined above */
2002     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
2003 
2004     spapr_ovec_cleanup(ov5_mask);
2005 
2006     return cas_needed;
2007 }
2008 
2009 static const VMStateDescription vmstate_spapr_ov5_cas = {
2010     .name = "spapr_option_vector_ov5_cas",
2011     .version_id = 1,
2012     .minimum_version_id = 1,
2013     .needed = spapr_ov5_cas_needed,
2014     .fields = (const VMStateField[]) {
2015         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2016                                  vmstate_spapr_ovec, SpaprOptionVector),
2017         VMSTATE_END_OF_LIST()
2018     },
2019 };
2020 
2021 static bool spapr_patb_entry_needed(void *opaque)
2022 {
2023     SpaprMachineState *spapr = opaque;
2024 
2025     return !!spapr->patb_entry;
2026 }
2027 
2028 static const VMStateDescription vmstate_spapr_patb_entry = {
2029     .name = "spapr_patb_entry",
2030     .version_id = 1,
2031     .minimum_version_id = 1,
2032     .needed = spapr_patb_entry_needed,
2033     .fields = (const VMStateField[]) {
2034         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2035         VMSTATE_END_OF_LIST()
2036     },
2037 };
2038 
2039 static bool spapr_irq_map_needed(void *opaque)
2040 {
2041     SpaprMachineState *spapr = opaque;
2042 
2043     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2044 }
2045 
2046 static const VMStateDescription vmstate_spapr_irq_map = {
2047     .name = "spapr_irq_map",
2048     .version_id = 1,
2049     .minimum_version_id = 1,
2050     .needed = spapr_irq_map_needed,
2051     .fields = (const VMStateField[]) {
2052         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2053         VMSTATE_END_OF_LIST()
2054     },
2055 };
2056 
2057 static bool spapr_dtb_needed(void *opaque)
2058 {
2059     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2060 
2061     return smc->update_dt_enabled;
2062 }
2063 
2064 static int spapr_dtb_pre_load(void *opaque)
2065 {
2066     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2067 
2068     g_free(spapr->fdt_blob);
2069     spapr->fdt_blob = NULL;
2070     spapr->fdt_size = 0;
2071 
2072     return 0;
2073 }
2074 
2075 static const VMStateDescription vmstate_spapr_dtb = {
2076     .name = "spapr_dtb",
2077     .version_id = 1,
2078     .minimum_version_id = 1,
2079     .needed = spapr_dtb_needed,
2080     .pre_load = spapr_dtb_pre_load,
2081     .fields = (const VMStateField[]) {
2082         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2083         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2084         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2085                                      fdt_size),
2086         VMSTATE_END_OF_LIST()
2087     },
2088 };
2089 
2090 static bool spapr_fwnmi_needed(void *opaque)
2091 {
2092     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2093 
2094     return spapr->fwnmi_machine_check_addr != -1;
2095 }
2096 
2097 static int spapr_fwnmi_pre_save(void *opaque)
2098 {
2099     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2100 
2101     /*
2102      * Check if machine check handling is in progress and print a
2103      * warning message.
2104      */
2105     if (spapr->fwnmi_machine_check_interlock != -1) {
2106         warn_report("A machine check is being handled during migration. The"
2107                 "handler may run and log hardware error on the destination");
2108     }
2109 
2110     return 0;
2111 }
2112 
2113 static const VMStateDescription vmstate_spapr_fwnmi = {
2114     .name = "spapr_fwnmi",
2115     .version_id = 1,
2116     .minimum_version_id = 1,
2117     .needed = spapr_fwnmi_needed,
2118     .pre_save = spapr_fwnmi_pre_save,
2119     .fields = (const VMStateField[]) {
2120         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2121         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2122         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2123         VMSTATE_END_OF_LIST()
2124     },
2125 };
2126 
2127 static const VMStateDescription vmstate_spapr = {
2128     .name = "spapr",
2129     .version_id = 3,
2130     .minimum_version_id = 1,
2131     .pre_load = spapr_pre_load,
2132     .post_load = spapr_post_load,
2133     .pre_save = spapr_pre_save,
2134     .fields = (const VMStateField[]) {
2135         /* used to be @next_irq */
2136         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2137 
2138         /* RTC offset */
2139         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2140 
2141         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2142         VMSTATE_END_OF_LIST()
2143     },
2144     .subsections = (const VMStateDescription * const []) {
2145         &vmstate_spapr_ov5_cas,
2146         &vmstate_spapr_patb_entry,
2147         &vmstate_spapr_pending_events,
2148         &vmstate_spapr_cap_htm,
2149         &vmstate_spapr_cap_vsx,
2150         &vmstate_spapr_cap_dfp,
2151         &vmstate_spapr_cap_cfpc,
2152         &vmstate_spapr_cap_sbbc,
2153         &vmstate_spapr_cap_ibs,
2154         &vmstate_spapr_cap_hpt_maxpagesize,
2155         &vmstate_spapr_irq_map,
2156         &vmstate_spapr_cap_nested_kvm_hv,
2157         &vmstate_spapr_dtb,
2158         &vmstate_spapr_cap_large_decr,
2159         &vmstate_spapr_cap_ccf_assist,
2160         &vmstate_spapr_cap_fwnmi,
2161         &vmstate_spapr_fwnmi,
2162         &vmstate_spapr_cap_rpt_invalidate,
2163         NULL
2164     }
2165 };
2166 
2167 static int htab_save_setup(QEMUFile *f, void *opaque)
2168 {
2169     SpaprMachineState *spapr = opaque;
2170 
2171     /* "Iteration" header */
2172     if (!spapr->htab_shift) {
2173         qemu_put_be32(f, -1);
2174     } else {
2175         qemu_put_be32(f, spapr->htab_shift);
2176     }
2177 
2178     if (spapr->htab) {
2179         spapr->htab_save_index = 0;
2180         spapr->htab_first_pass = true;
2181     } else {
2182         if (spapr->htab_shift) {
2183             assert(kvm_enabled());
2184         }
2185     }
2186 
2187 
2188     return 0;
2189 }
2190 
2191 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2192                             int chunkstart, int n_valid, int n_invalid)
2193 {
2194     qemu_put_be32(f, chunkstart);
2195     qemu_put_be16(f, n_valid);
2196     qemu_put_be16(f, n_invalid);
2197     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2198                     HASH_PTE_SIZE_64 * n_valid);
2199 }
2200 
2201 static void htab_save_end_marker(QEMUFile *f)
2202 {
2203     qemu_put_be32(f, 0);
2204     qemu_put_be16(f, 0);
2205     qemu_put_be16(f, 0);
2206 }
2207 
2208 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2209                                  int64_t max_ns)
2210 {
2211     bool has_timeout = max_ns != -1;
2212     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2213     int index = spapr->htab_save_index;
2214     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2215 
2216     assert(spapr->htab_first_pass);
2217 
2218     do {
2219         int chunkstart;
2220 
2221         /* Consume invalid HPTEs */
2222         while ((index < htabslots)
2223                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2224             CLEAN_HPTE(HPTE(spapr->htab, index));
2225             index++;
2226         }
2227 
2228         /* Consume valid HPTEs */
2229         chunkstart = index;
2230         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2231                && HPTE_VALID(HPTE(spapr->htab, index))) {
2232             CLEAN_HPTE(HPTE(spapr->htab, index));
2233             index++;
2234         }
2235 
2236         if (index > chunkstart) {
2237             int n_valid = index - chunkstart;
2238 
2239             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2240 
2241             if (has_timeout &&
2242                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2243                 break;
2244             }
2245         }
2246     } while ((index < htabslots) && !migration_rate_exceeded(f));
2247 
2248     if (index >= htabslots) {
2249         assert(index == htabslots);
2250         index = 0;
2251         spapr->htab_first_pass = false;
2252     }
2253     spapr->htab_save_index = index;
2254 }
2255 
2256 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2257                                 int64_t max_ns)
2258 {
2259     bool final = max_ns < 0;
2260     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2261     int examined = 0, sent = 0;
2262     int index = spapr->htab_save_index;
2263     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2264 
2265     assert(!spapr->htab_first_pass);
2266 
2267     do {
2268         int chunkstart, invalidstart;
2269 
2270         /* Consume non-dirty HPTEs */
2271         while ((index < htabslots)
2272                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2273             index++;
2274             examined++;
2275         }
2276 
2277         chunkstart = index;
2278         /* Consume valid dirty HPTEs */
2279         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2280                && HPTE_DIRTY(HPTE(spapr->htab, index))
2281                && HPTE_VALID(HPTE(spapr->htab, index))) {
2282             CLEAN_HPTE(HPTE(spapr->htab, index));
2283             index++;
2284             examined++;
2285         }
2286 
2287         invalidstart = index;
2288         /* Consume invalid dirty HPTEs */
2289         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2290                && HPTE_DIRTY(HPTE(spapr->htab, index))
2291                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2292             CLEAN_HPTE(HPTE(spapr->htab, index));
2293             index++;
2294             examined++;
2295         }
2296 
2297         if (index > chunkstart) {
2298             int n_valid = invalidstart - chunkstart;
2299             int n_invalid = index - invalidstart;
2300 
2301             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2302             sent += index - chunkstart;
2303 
2304             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2305                 break;
2306             }
2307         }
2308 
2309         if (examined >= htabslots) {
2310             break;
2311         }
2312 
2313         if (index >= htabslots) {
2314             assert(index == htabslots);
2315             index = 0;
2316         }
2317     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2318 
2319     if (index >= htabslots) {
2320         assert(index == htabslots);
2321         index = 0;
2322     }
2323 
2324     spapr->htab_save_index = index;
2325 
2326     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2327 }
2328 
2329 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2330 #define MAX_KVM_BUF_SIZE    2048
2331 
2332 static int htab_save_iterate(QEMUFile *f, void *opaque)
2333 {
2334     SpaprMachineState *spapr = opaque;
2335     int fd;
2336     int rc = 0;
2337 
2338     /* Iteration header */
2339     if (!spapr->htab_shift) {
2340         qemu_put_be32(f, -1);
2341         return 1;
2342     } else {
2343         qemu_put_be32(f, 0);
2344     }
2345 
2346     if (!spapr->htab) {
2347         assert(kvm_enabled());
2348 
2349         fd = get_htab_fd(spapr);
2350         if (fd < 0) {
2351             return fd;
2352         }
2353 
2354         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2355         if (rc < 0) {
2356             return rc;
2357         }
2358     } else  if (spapr->htab_first_pass) {
2359         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2360     } else {
2361         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2362     }
2363 
2364     htab_save_end_marker(f);
2365 
2366     return rc;
2367 }
2368 
2369 static int htab_save_complete(QEMUFile *f, void *opaque)
2370 {
2371     SpaprMachineState *spapr = opaque;
2372     int fd;
2373 
2374     /* Iteration header */
2375     if (!spapr->htab_shift) {
2376         qemu_put_be32(f, -1);
2377         return 0;
2378     } else {
2379         qemu_put_be32(f, 0);
2380     }
2381 
2382     if (!spapr->htab) {
2383         int rc;
2384 
2385         assert(kvm_enabled());
2386 
2387         fd = get_htab_fd(spapr);
2388         if (fd < 0) {
2389             return fd;
2390         }
2391 
2392         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2393         if (rc < 0) {
2394             return rc;
2395         }
2396     } else {
2397         if (spapr->htab_first_pass) {
2398             htab_save_first_pass(f, spapr, -1);
2399         }
2400         htab_save_later_pass(f, spapr, -1);
2401     }
2402 
2403     /* End marker */
2404     htab_save_end_marker(f);
2405 
2406     return 0;
2407 }
2408 
2409 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2410 {
2411     SpaprMachineState *spapr = opaque;
2412     uint32_t section_hdr;
2413     int fd = -1;
2414     Error *local_err = NULL;
2415 
2416     if (version_id < 1 || version_id > 1) {
2417         error_report("htab_load() bad version");
2418         return -EINVAL;
2419     }
2420 
2421     section_hdr = qemu_get_be32(f);
2422 
2423     if (section_hdr == -1) {
2424         spapr_free_hpt(spapr);
2425         return 0;
2426     }
2427 
2428     if (section_hdr) {
2429         int ret;
2430 
2431         /* First section gives the htab size */
2432         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2433         if (ret < 0) {
2434             error_report_err(local_err);
2435             return ret;
2436         }
2437         return 0;
2438     }
2439 
2440     if (!spapr->htab) {
2441         assert(kvm_enabled());
2442 
2443         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2444         if (fd < 0) {
2445             error_report_err(local_err);
2446             return fd;
2447         }
2448     }
2449 
2450     while (true) {
2451         uint32_t index;
2452         uint16_t n_valid, n_invalid;
2453 
2454         index = qemu_get_be32(f);
2455         n_valid = qemu_get_be16(f);
2456         n_invalid = qemu_get_be16(f);
2457 
2458         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2459             /* End of Stream */
2460             break;
2461         }
2462 
2463         if ((index + n_valid + n_invalid) >
2464             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2465             /* Bad index in stream */
2466             error_report(
2467                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2468                 index, n_valid, n_invalid, spapr->htab_shift);
2469             return -EINVAL;
2470         }
2471 
2472         if (spapr->htab) {
2473             if (n_valid) {
2474                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2475                                 HASH_PTE_SIZE_64 * n_valid);
2476             }
2477             if (n_invalid) {
2478                 memset(HPTE(spapr->htab, index + n_valid), 0,
2479                        HASH_PTE_SIZE_64 * n_invalid);
2480             }
2481         } else {
2482             int rc;
2483 
2484             assert(fd >= 0);
2485 
2486             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2487                                         &local_err);
2488             if (rc < 0) {
2489                 error_report_err(local_err);
2490                 return rc;
2491             }
2492         }
2493     }
2494 
2495     if (!spapr->htab) {
2496         assert(fd >= 0);
2497         close(fd);
2498     }
2499 
2500     return 0;
2501 }
2502 
2503 static void htab_save_cleanup(void *opaque)
2504 {
2505     SpaprMachineState *spapr = opaque;
2506 
2507     close_htab_fd(spapr);
2508 }
2509 
2510 static SaveVMHandlers savevm_htab_handlers = {
2511     .save_setup = htab_save_setup,
2512     .save_live_iterate = htab_save_iterate,
2513     .save_live_complete_precopy = htab_save_complete,
2514     .save_cleanup = htab_save_cleanup,
2515     .load_state = htab_load,
2516 };
2517 
2518 static void spapr_boot_set(void *opaque, const char *boot_device,
2519                            Error **errp)
2520 {
2521     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2522 
2523     g_free(spapr->boot_device);
2524     spapr->boot_device = g_strdup(boot_device);
2525 }
2526 
2527 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2528 {
2529     MachineState *machine = MACHINE(spapr);
2530     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2531     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2532     int i;
2533 
2534     g_assert(!nr_lmbs || machine->device_memory);
2535     for (i = 0; i < nr_lmbs; i++) {
2536         uint64_t addr;
2537 
2538         addr = i * lmb_size + machine->device_memory->base;
2539         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2540                                addr / lmb_size);
2541     }
2542 }
2543 
2544 /*
2545  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2546  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2547  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2548  */
2549 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2550 {
2551     int i;
2552 
2553     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2554         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2555                    " is not aligned to %" PRIu64 " MiB",
2556                    machine->ram_size,
2557                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2558         return;
2559     }
2560 
2561     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2562         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2563                    " is not aligned to %" PRIu64 " MiB",
2564                    machine->ram_size,
2565                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2566         return;
2567     }
2568 
2569     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2570         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2571             error_setg(errp,
2572                        "Node %d memory size 0x%" PRIx64
2573                        " is not aligned to %" PRIu64 " MiB",
2574                        i, machine->numa_state->nodes[i].node_mem,
2575                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2576             return;
2577         }
2578     }
2579 }
2580 
2581 /* find cpu slot in machine->possible_cpus by core_id */
2582 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2583 {
2584     int index = id / ms->smp.threads;
2585 
2586     if (index >= ms->possible_cpus->len) {
2587         return NULL;
2588     }
2589     if (idx) {
2590         *idx = index;
2591     }
2592     return &ms->possible_cpus->cpus[index];
2593 }
2594 
2595 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2596 {
2597     MachineState *ms = MACHINE(spapr);
2598     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2599     Error *local_err = NULL;
2600     bool vsmt_user = !!spapr->vsmt;
2601     int kvm_smt = kvmppc_smt_threads();
2602     int ret;
2603     unsigned int smp_threads = ms->smp.threads;
2604 
2605     if (tcg_enabled()) {
2606         if (smp_threads > 1 &&
2607             !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2608                                    spapr->max_compat_pvr)) {
2609             error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2610             return;
2611         }
2612 
2613         if (smp_threads > 8) {
2614             error_setg(errp, "TCG cannot support more than 8 threads/core "
2615                        "on a pseries machine");
2616             return;
2617         }
2618     }
2619     if (!is_power_of_2(smp_threads)) {
2620         error_setg(errp, "Cannot support %d threads/core on a pseries "
2621                    "machine because it must be a power of 2", smp_threads);
2622         return;
2623     }
2624 
2625     /* Determine the VSMT mode to use: */
2626     if (vsmt_user) {
2627         if (spapr->vsmt < smp_threads) {
2628             error_setg(errp, "Cannot support VSMT mode %d"
2629                        " because it must be >= threads/core (%d)",
2630                        spapr->vsmt, smp_threads);
2631             return;
2632         }
2633         /* In this case, spapr->vsmt has been set by the command line */
2634     } else if (!smc->smp_threads_vsmt) {
2635         /*
2636          * Default VSMT value is tricky, because we need it to be as
2637          * consistent as possible (for migration), but this requires
2638          * changing it for at least some existing cases.  We pick 8 as
2639          * the value that we'd get with KVM on POWER8, the
2640          * overwhelmingly common case in production systems.
2641          */
2642         spapr->vsmt = MAX(8, smp_threads);
2643     } else {
2644         spapr->vsmt = smp_threads;
2645     }
2646 
2647     /* KVM: If necessary, set the SMT mode: */
2648     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2649         ret = kvmppc_set_smt_threads(spapr->vsmt);
2650         if (ret) {
2651             /* Looks like KVM isn't able to change VSMT mode */
2652             error_setg(&local_err,
2653                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2654                        spapr->vsmt, ret);
2655             /* We can live with that if the default one is big enough
2656              * for the number of threads, and a submultiple of the one
2657              * we want.  In this case we'll waste some vcpu ids, but
2658              * behaviour will be correct */
2659             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2660                 warn_report_err(local_err);
2661             } else {
2662                 if (!vsmt_user) {
2663                     error_append_hint(&local_err,
2664                                       "On PPC, a VM with %d threads/core"
2665                                       " on a host with %d threads/core"
2666                                       " requires the use of VSMT mode %d.\n",
2667                                       smp_threads, kvm_smt, spapr->vsmt);
2668                 }
2669                 kvmppc_error_append_smt_possible_hint(&local_err);
2670                 error_propagate(errp, local_err);
2671             }
2672         }
2673     }
2674     /* else TCG: nothing to do currently */
2675 }
2676 
2677 static void spapr_init_cpus(SpaprMachineState *spapr)
2678 {
2679     MachineState *machine = MACHINE(spapr);
2680     MachineClass *mc = MACHINE_GET_CLASS(machine);
2681     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2682     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2683     const CPUArchIdList *possible_cpus;
2684     unsigned int smp_cpus = machine->smp.cpus;
2685     unsigned int smp_threads = machine->smp.threads;
2686     unsigned int max_cpus = machine->smp.max_cpus;
2687     int boot_cores_nr = smp_cpus / smp_threads;
2688     int i;
2689 
2690     possible_cpus = mc->possible_cpu_arch_ids(machine);
2691     if (mc->has_hotpluggable_cpus) {
2692         if (smp_cpus % smp_threads) {
2693             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2694                          smp_cpus, smp_threads);
2695             exit(1);
2696         }
2697         if (max_cpus % smp_threads) {
2698             error_report("max_cpus (%u) must be multiple of threads (%u)",
2699                          max_cpus, smp_threads);
2700             exit(1);
2701         }
2702     } else {
2703         if (max_cpus != smp_cpus) {
2704             error_report("This machine version does not support CPU hotplug");
2705             exit(1);
2706         }
2707         boot_cores_nr = possible_cpus->len;
2708     }
2709 
2710     if (smc->pre_2_10_has_unused_icps) {
2711         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2712             /* Dummy entries get deregistered when real ICPState objects
2713              * are registered during CPU core hotplug.
2714              */
2715             pre_2_10_vmstate_register_dummy_icp(i);
2716         }
2717     }
2718 
2719     for (i = 0; i < possible_cpus->len; i++) {
2720         int core_id = i * smp_threads;
2721 
2722         if (mc->has_hotpluggable_cpus) {
2723             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2724                                    spapr_vcpu_id(spapr, core_id));
2725         }
2726 
2727         if (i < boot_cores_nr) {
2728             Object *core  = object_new(type);
2729             int nr_threads = smp_threads;
2730 
2731             /* Handle the partially filled core for older machine types */
2732             if ((i + 1) * smp_threads >= smp_cpus) {
2733                 nr_threads = smp_cpus - i * smp_threads;
2734             }
2735 
2736             object_property_set_int(core, "nr-threads", nr_threads,
2737                                     &error_fatal);
2738             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2739                                     &error_fatal);
2740             qdev_realize(DEVICE(core), NULL, &error_fatal);
2741 
2742             object_unref(core);
2743         }
2744     }
2745 }
2746 
2747 static PCIHostState *spapr_create_default_phb(void)
2748 {
2749     DeviceState *dev;
2750 
2751     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2752     qdev_prop_set_uint32(dev, "index", 0);
2753     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2754 
2755     return PCI_HOST_BRIDGE(dev);
2756 }
2757 
2758 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2759 {
2760     MachineState *machine = MACHINE(spapr);
2761     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2762     hwaddr rma_size = machine->ram_size;
2763     hwaddr node0_size = spapr_node0_size(machine);
2764 
2765     /* RMA has to fit in the first NUMA node */
2766     rma_size = MIN(rma_size, node0_size);
2767 
2768     /*
2769      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2770      * never exceed that
2771      */
2772     rma_size = MIN(rma_size, 1 * TiB);
2773 
2774     /*
2775      * Clamp the RMA size based on machine type.  This is for
2776      * migration compatibility with older qemu versions, which limited
2777      * the RMA size for complicated and mostly bad reasons.
2778      */
2779     if (smc->rma_limit) {
2780         rma_size = MIN(rma_size, smc->rma_limit);
2781     }
2782 
2783     if (rma_size < MIN_RMA_SLOF) {
2784         error_setg(errp,
2785                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2786                    "ldMiB guest RMA (Real Mode Area memory)",
2787                    MIN_RMA_SLOF / MiB);
2788         return 0;
2789     }
2790 
2791     return rma_size;
2792 }
2793 
2794 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2795 {
2796     MachineState *machine = MACHINE(spapr);
2797     int i;
2798 
2799     for (i = 0; i < machine->ram_slots; i++) {
2800         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2801     }
2802 }
2803 
2804 /* pSeries LPAR / sPAPR hardware init */
2805 static void spapr_machine_init(MachineState *machine)
2806 {
2807     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2808     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2809     MachineClass *mc = MACHINE_GET_CLASS(machine);
2810     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2811     const char *bios_name = machine->firmware ?: bios_default;
2812     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2813     const char *kernel_filename = machine->kernel_filename;
2814     const char *initrd_filename = machine->initrd_filename;
2815     PCIHostState *phb;
2816     bool has_vga;
2817     int i;
2818     MemoryRegion *sysmem = get_system_memory();
2819     long load_limit, fw_size;
2820     Error *resize_hpt_err = NULL;
2821     NICInfo *nd;
2822 
2823     if (!filename) {
2824         error_report("Could not find LPAR firmware '%s'", bios_name);
2825         exit(1);
2826     }
2827     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2828     if (fw_size <= 0) {
2829         error_report("Could not load LPAR firmware '%s'", filename);
2830         exit(1);
2831     }
2832 
2833     /*
2834      * if Secure VM (PEF) support is configured, then initialize it
2835      */
2836     pef_kvm_init(machine->cgs, &error_fatal);
2837 
2838     msi_nonbroken = true;
2839 
2840     QLIST_INIT(&spapr->phbs);
2841     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2842 
2843     /* Determine capabilities to run with */
2844     spapr_caps_init(spapr);
2845 
2846     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2847     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2848         /*
2849          * If the user explicitly requested a mode we should either
2850          * supply it, or fail completely (which we do below).  But if
2851          * it's not set explicitly, we reset our mode to something
2852          * that works
2853          */
2854         if (resize_hpt_err) {
2855             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2856             error_free(resize_hpt_err);
2857             resize_hpt_err = NULL;
2858         } else {
2859             spapr->resize_hpt = smc->resize_hpt_default;
2860         }
2861     }
2862 
2863     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2864 
2865     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2866         /*
2867          * User requested HPT resize, but this host can't supply it.  Bail out
2868          */
2869         error_report_err(resize_hpt_err);
2870         exit(1);
2871     }
2872     error_free(resize_hpt_err);
2873 
2874     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2875 
2876     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2877     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2878 
2879     /*
2880      * VSMT must be set in order to be able to compute VCPU ids, ie to
2881      * call spapr_max_server_number() or spapr_vcpu_id().
2882      */
2883     spapr_set_vsmt_mode(spapr, &error_fatal);
2884 
2885     /* Set up Interrupt Controller before we create the VCPUs */
2886     spapr_irq_init(spapr, &error_fatal);
2887 
2888     /* Set up containers for ibm,client-architecture-support negotiated options
2889      */
2890     spapr->ov5 = spapr_ovec_new();
2891     spapr->ov5_cas = spapr_ovec_new();
2892 
2893     if (smc->dr_lmb_enabled) {
2894         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2895         spapr_validate_node_memory(machine, &error_fatal);
2896     }
2897 
2898     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2899 
2900     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2901     if (!smc->pre_6_2_numa_affinity) {
2902         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2903     }
2904 
2905     /* advertise support for dedicated HP event source to guests */
2906     if (spapr->use_hotplug_event_source) {
2907         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2908     }
2909 
2910     /* advertise support for HPT resizing */
2911     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2912         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2913     }
2914 
2915     /* advertise support for ibm,dyamic-memory-v2 */
2916     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2917 
2918     /* advertise XIVE on POWER9 machines */
2919     if (spapr->irq->xive) {
2920         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2921     }
2922 
2923     /* init CPUs */
2924     spapr_init_cpus(spapr);
2925 
2926     /* Init numa_assoc_array */
2927     spapr_numa_associativity_init(spapr, machine);
2928 
2929     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2930         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2931                               spapr->max_compat_pvr)) {
2932         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2933         /* KVM and TCG always allow GTSE with radix... */
2934         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2935     }
2936     /* ... but not with hash (currently). */
2937 
2938     if (kvm_enabled()) {
2939         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2940         kvmppc_enable_logical_ci_hcalls();
2941         kvmppc_enable_set_mode_hcall();
2942 
2943         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2944         kvmppc_enable_clear_ref_mod_hcalls();
2945 
2946         /* Enable H_PAGE_INIT */
2947         kvmppc_enable_h_page_init();
2948     }
2949 
2950     /* map RAM */
2951     memory_region_add_subregion(sysmem, 0, machine->ram);
2952 
2953     /* initialize hotplug memory address space */
2954     if (machine->ram_size < machine->maxram_size) {
2955         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2956         hwaddr device_mem_base;
2957 
2958         /*
2959          * Limit the number of hotpluggable memory slots to half the number
2960          * slots that KVM supports, leaving the other half for PCI and other
2961          * devices. However ensure that number of slots doesn't drop below 32.
2962          */
2963         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2964                            SPAPR_MAX_RAM_SLOTS;
2965 
2966         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2967             max_memslots = SPAPR_MAX_RAM_SLOTS;
2968         }
2969         if (machine->ram_slots > max_memslots) {
2970             error_report("Specified number of memory slots %"
2971                          PRIu64" exceeds max supported %d",
2972                          machine->ram_slots, max_memslots);
2973             exit(1);
2974         }
2975 
2976         device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2977         machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2978     }
2979 
2980     if (smc->dr_lmb_enabled) {
2981         spapr_create_lmb_dr_connectors(spapr);
2982     }
2983 
2984     if (mc->nvdimm_supported) {
2985         spapr_create_nvdimm_dr_connectors(spapr);
2986     }
2987 
2988     /* Set up RTAS event infrastructure */
2989     spapr_events_init(spapr);
2990 
2991     /* Set up the RTC RTAS interfaces */
2992     spapr_rtc_create(spapr);
2993 
2994     /* Set up VIO bus */
2995     spapr->vio_bus = spapr_vio_bus_init();
2996 
2997     for (i = 0; serial_hd(i); i++) {
2998         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2999     }
3000 
3001     /* We always have at least the nvram device on VIO */
3002     spapr_create_nvram(spapr);
3003 
3004     /*
3005      * Setup hotplug / dynamic-reconfiguration connectors. top-level
3006      * connectors (described in root DT node's "ibm,drc-types" property)
3007      * are pre-initialized here. additional child connectors (such as
3008      * connectors for a PHBs PCI slots) are added as needed during their
3009      * parent's realization.
3010      */
3011     if (smc->dr_phb_enabled) {
3012         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3013             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3014         }
3015     }
3016 
3017     /* Set up PCI */
3018     spapr_pci_rtas_init();
3019 
3020     phb = spapr_create_default_phb();
3021 
3022     while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) {
3023         spapr_vlan_create(spapr->vio_bus, nd);
3024     }
3025 
3026     pci_init_nic_devices(phb->bus, NULL);
3027 
3028     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3029         spapr_vscsi_create(spapr->vio_bus);
3030     }
3031 
3032     /* Graphics */
3033     has_vga = spapr_vga_init(phb->bus, &error_fatal);
3034     if (has_vga) {
3035         spapr->want_stdout_path = !machine->enable_graphics;
3036         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3037     } else {
3038         spapr->want_stdout_path = true;
3039     }
3040 
3041     if (machine->usb) {
3042         if (smc->use_ohci_by_default) {
3043             pci_create_simple(phb->bus, -1, "pci-ohci");
3044         } else {
3045             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3046         }
3047 
3048         if (has_vga) {
3049             USBBus *usb_bus;
3050 
3051             usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS,
3052                                                               &error_abort));
3053             usb_create_simple(usb_bus, "usb-kbd");
3054             usb_create_simple(usb_bus, "usb-mouse");
3055         }
3056     }
3057 
3058     if (kernel_filename) {
3059         uint64_t loaded_addr = 0;
3060 
3061         spapr->kernel_size = load_elf(kernel_filename, NULL,
3062                                       translate_kernel_address, spapr,
3063                                       NULL, &loaded_addr, NULL, NULL, 1,
3064                                       PPC_ELF_MACHINE, 0, 0);
3065         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3066             spapr->kernel_size = load_elf(kernel_filename, NULL,
3067                                           translate_kernel_address, spapr,
3068                                           NULL, &loaded_addr, NULL, NULL, 0,
3069                                           PPC_ELF_MACHINE, 0, 0);
3070             spapr->kernel_le = spapr->kernel_size > 0;
3071         }
3072         if (spapr->kernel_size < 0) {
3073             error_report("error loading %s: %s", kernel_filename,
3074                          load_elf_strerror(spapr->kernel_size));
3075             exit(1);
3076         }
3077 
3078         if (spapr->kernel_addr != loaded_addr) {
3079             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3080                         " to 0x%"PRIx64,
3081                         spapr->kernel_addr, loaded_addr);
3082             spapr->kernel_addr = loaded_addr;
3083         }
3084 
3085         /* load initrd */
3086         if (initrd_filename) {
3087             /* Try to locate the initrd in the gap between the kernel
3088              * and the firmware. Add a bit of space just in case
3089              */
3090             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3091                                   + 0x1ffff) & ~0xffff;
3092             spapr->initrd_size = load_image_targphys(initrd_filename,
3093                                                      spapr->initrd_base,
3094                                                      load_limit
3095                                                      - spapr->initrd_base);
3096             if (spapr->initrd_size < 0) {
3097                 error_report("could not load initial ram disk '%s'",
3098                              initrd_filename);
3099                 exit(1);
3100             }
3101         }
3102     }
3103 
3104     /* FIXME: Should register things through the MachineState's qdev
3105      * interface, this is a legacy from the sPAPREnvironment structure
3106      * which predated MachineState but had a similar function */
3107     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3108     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3109                          &savevm_htab_handlers, spapr);
3110 
3111     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3112 
3113     qemu_register_boot_set(spapr_boot_set, spapr);
3114 
3115     /*
3116      * Nothing needs to be done to resume a suspended guest because
3117      * suspending does not change the machine state, so no need for
3118      * a ->wakeup method.
3119      */
3120     qemu_register_wakeup_support();
3121 
3122     if (kvm_enabled()) {
3123         /* to stop and start vmclock */
3124         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3125                                          &spapr->tb);
3126 
3127         kvmppc_spapr_enable_inkernel_multitce();
3128     }
3129 
3130     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3131     if (spapr->vof) {
3132         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3133         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3134     }
3135 
3136     spapr_watchdog_init(spapr);
3137 }
3138 
3139 #define DEFAULT_KVM_TYPE "auto"
3140 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3141 {
3142     /*
3143      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3144      * accommodate the 'HV' and 'PV' formats that exists in the
3145      * wild. The 'auto' mode is being introduced already as
3146      * lower-case, thus we don't need to bother checking for
3147      * "AUTO".
3148      */
3149     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3150         return 0;
3151     }
3152 
3153     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3154         return 1;
3155     }
3156 
3157     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3158         return 2;
3159     }
3160 
3161     error_report("Unknown kvm-type specified '%s'", vm_type);
3162     return -1;
3163 }
3164 
3165 /*
3166  * Implementation of an interface to adjust firmware path
3167  * for the bootindex property handling.
3168  */
3169 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3170                                    DeviceState *dev)
3171 {
3172 #define CAST(type, obj, name) \
3173     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3174     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3175     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3176     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3177     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3178 
3179     if (d && bus) {
3180         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3181         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3182         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3183 
3184         if (spapr) {
3185             /*
3186              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3187              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3188              * 0x8000 | (target << 8) | (bus << 5) | lun
3189              * (see the "Logical unit addressing format" table in SAM5)
3190              */
3191             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3192             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3193                                    (uint64_t)id << 48);
3194         } else if (virtio) {
3195             /*
3196              * We use SRP luns of the form 01000000 | (target << 8) | lun
3197              * in the top 32 bits of the 64-bit LUN
3198              * Note: the quote above is from SLOF and it is wrong,
3199              * the actual binding is:
3200              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3201              */
3202             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3203             if (d->lun >= 256) {
3204                 /* Use the LUN "flat space addressing method" */
3205                 id |= 0x4000;
3206             }
3207             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3208                                    (uint64_t)id << 32);
3209         } else if (usb) {
3210             /*
3211              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3212              * in the top 32 bits of the 64-bit LUN
3213              */
3214             unsigned usb_port = atoi(usb->port->path);
3215             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3216             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3217                                    (uint64_t)id << 32);
3218         }
3219     }
3220 
3221     /*
3222      * SLOF probes the USB devices, and if it recognizes that the device is a
3223      * storage device, it changes its name to "storage" instead of "usb-host",
3224      * and additionally adds a child node for the SCSI LUN, so the correct
3225      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3226      */
3227     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3228         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3229         if (usb_device_is_scsi_storage(usbdev)) {
3230             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3231         }
3232     }
3233 
3234     if (phb) {
3235         /* Replace "pci" with "pci@800000020000000" */
3236         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3237     }
3238 
3239     if (vsc) {
3240         /* Same logic as virtio above */
3241         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3242         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3243     }
3244 
3245     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3246         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3247         PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3248         return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn));
3249     }
3250 
3251     if (pcidev) {
3252         return spapr_pci_fw_dev_name(pcidev);
3253     }
3254 
3255     return NULL;
3256 }
3257 
3258 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3259 {
3260     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3261 
3262     return g_strdup(spapr->kvm_type);
3263 }
3264 
3265 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3266 {
3267     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3268 
3269     g_free(spapr->kvm_type);
3270     spapr->kvm_type = g_strdup(value);
3271 }
3272 
3273 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3274 {
3275     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3276 
3277     return spapr->use_hotplug_event_source;
3278 }
3279 
3280 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3281                                             Error **errp)
3282 {
3283     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3284 
3285     spapr->use_hotplug_event_source = value;
3286 }
3287 
3288 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3289 {
3290     return true;
3291 }
3292 
3293 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3294 {
3295     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3296 
3297     switch (spapr->resize_hpt) {
3298     case SPAPR_RESIZE_HPT_DEFAULT:
3299         return g_strdup("default");
3300     case SPAPR_RESIZE_HPT_DISABLED:
3301         return g_strdup("disabled");
3302     case SPAPR_RESIZE_HPT_ENABLED:
3303         return g_strdup("enabled");
3304     case SPAPR_RESIZE_HPT_REQUIRED:
3305         return g_strdup("required");
3306     }
3307     g_assert_not_reached();
3308 }
3309 
3310 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3311 {
3312     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3313 
3314     if (strcmp(value, "default") == 0) {
3315         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3316     } else if (strcmp(value, "disabled") == 0) {
3317         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3318     } else if (strcmp(value, "enabled") == 0) {
3319         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3320     } else if (strcmp(value, "required") == 0) {
3321         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3322     } else {
3323         error_setg(errp, "Bad value for \"resize-hpt\" property");
3324     }
3325 }
3326 
3327 static bool spapr_get_vof(Object *obj, Error **errp)
3328 {
3329     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3330 
3331     return spapr->vof != NULL;
3332 }
3333 
3334 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3335 {
3336     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3337 
3338     if (spapr->vof) {
3339         vof_cleanup(spapr->vof);
3340         g_free(spapr->vof);
3341         spapr->vof = NULL;
3342     }
3343     if (!value) {
3344         return;
3345     }
3346     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3347 }
3348 
3349 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3350 {
3351     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3352 
3353     if (spapr->irq == &spapr_irq_xics_legacy) {
3354         return g_strdup("legacy");
3355     } else if (spapr->irq == &spapr_irq_xics) {
3356         return g_strdup("xics");
3357     } else if (spapr->irq == &spapr_irq_xive) {
3358         return g_strdup("xive");
3359     } else if (spapr->irq == &spapr_irq_dual) {
3360         return g_strdup("dual");
3361     }
3362     g_assert_not_reached();
3363 }
3364 
3365 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3366 {
3367     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3368 
3369     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3370         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3371         return;
3372     }
3373 
3374     /* The legacy IRQ backend can not be set */
3375     if (strcmp(value, "xics") == 0) {
3376         spapr->irq = &spapr_irq_xics;
3377     } else if (strcmp(value, "xive") == 0) {
3378         spapr->irq = &spapr_irq_xive;
3379     } else if (strcmp(value, "dual") == 0) {
3380         spapr->irq = &spapr_irq_dual;
3381     } else {
3382         error_setg(errp, "Bad value for \"ic-mode\" property");
3383     }
3384 }
3385 
3386 static char *spapr_get_host_model(Object *obj, Error **errp)
3387 {
3388     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3389 
3390     return g_strdup(spapr->host_model);
3391 }
3392 
3393 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3394 {
3395     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3396 
3397     g_free(spapr->host_model);
3398     spapr->host_model = g_strdup(value);
3399 }
3400 
3401 static char *spapr_get_host_serial(Object *obj, Error **errp)
3402 {
3403     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3404 
3405     return g_strdup(spapr->host_serial);
3406 }
3407 
3408 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3409 {
3410     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3411 
3412     g_free(spapr->host_serial);
3413     spapr->host_serial = g_strdup(value);
3414 }
3415 
3416 static void spapr_instance_init(Object *obj)
3417 {
3418     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3419     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3420     MachineState *ms = MACHINE(spapr);
3421     MachineClass *mc = MACHINE_GET_CLASS(ms);
3422 
3423     /*
3424      * NVDIMM support went live in 5.1 without considering that, in
3425      * other archs, the user needs to enable NVDIMM support with the
3426      * 'nvdimm' machine option and the default behavior is NVDIMM
3427      * support disabled. It is too late to roll back to the standard
3428      * behavior without breaking 5.1 guests.
3429      */
3430     if (mc->nvdimm_supported) {
3431         ms->nvdimms_state->is_enabled = true;
3432     }
3433 
3434     spapr->htab_fd = -1;
3435     spapr->use_hotplug_event_source = true;
3436     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3437     object_property_add_str(obj, "kvm-type",
3438                             spapr_get_kvm_type, spapr_set_kvm_type);
3439     object_property_set_description(obj, "kvm-type",
3440                                     "Specifies the KVM virtualization mode (auto,"
3441                                     " hv, pr). Defaults to 'auto'. This mode will use"
3442                                     " any available KVM module loaded in the host,"
3443                                     " where kvm_hv takes precedence if both kvm_hv and"
3444                                     " kvm_pr are loaded.");
3445     object_property_add_bool(obj, "modern-hotplug-events",
3446                             spapr_get_modern_hotplug_events,
3447                             spapr_set_modern_hotplug_events);
3448     object_property_set_description(obj, "modern-hotplug-events",
3449                                     "Use dedicated hotplug event mechanism in"
3450                                     " place of standard EPOW events when possible"
3451                                     " (required for memory hot-unplug support)");
3452     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3453                             "Maximum permitted CPU compatibility mode");
3454 
3455     object_property_add_str(obj, "resize-hpt",
3456                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3457     object_property_set_description(obj, "resize-hpt",
3458                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3459     object_property_add_uint32_ptr(obj, "vsmt",
3460                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3461     object_property_set_description(obj, "vsmt",
3462                                     "Virtual SMT: KVM behaves as if this were"
3463                                     " the host's SMT mode");
3464 
3465     object_property_add_bool(obj, "vfio-no-msix-emulation",
3466                              spapr_get_msix_emulation, NULL);
3467 
3468     object_property_add_uint64_ptr(obj, "kernel-addr",
3469                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3470     object_property_set_description(obj, "kernel-addr",
3471                                     stringify(KERNEL_LOAD_ADDR)
3472                                     " for -kernel is the default");
3473     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3474 
3475     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3476     object_property_set_description(obj, "x-vof",
3477                                     "Enable Virtual Open Firmware (experimental)");
3478 
3479     /* The machine class defines the default interrupt controller mode */
3480     spapr->irq = smc->irq;
3481     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3482                             spapr_set_ic_mode);
3483     object_property_set_description(obj, "ic-mode",
3484                  "Specifies the interrupt controller mode (xics, xive, dual)");
3485 
3486     object_property_add_str(obj, "host-model",
3487         spapr_get_host_model, spapr_set_host_model);
3488     object_property_set_description(obj, "host-model",
3489         "Host model to advertise in guest device tree");
3490     object_property_add_str(obj, "host-serial",
3491         spapr_get_host_serial, spapr_set_host_serial);
3492     object_property_set_description(obj, "host-serial",
3493         "Host serial number to advertise in guest device tree");
3494 }
3495 
3496 static void spapr_machine_finalizefn(Object *obj)
3497 {
3498     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3499 
3500     g_free(spapr->kvm_type);
3501 }
3502 
3503 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3504 {
3505     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3506     PowerPCCPU *cpu = POWERPC_CPU(cs);
3507     CPUPPCState *env = &cpu->env;
3508 
3509     cpu_synchronize_state(cs);
3510     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3511     if (spapr->fwnmi_system_reset_addr != -1) {
3512         uint64_t rtas_addr, addr;
3513 
3514         /* get rtas addr from fdt */
3515         rtas_addr = spapr_get_rtas_addr();
3516         if (!rtas_addr) {
3517             qemu_system_guest_panicked(NULL);
3518             return;
3519         }
3520 
3521         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3522         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3523         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3524         env->gpr[3] = addr;
3525     }
3526     ppc_cpu_do_system_reset(cs);
3527     if (spapr->fwnmi_system_reset_addr != -1) {
3528         env->nip = spapr->fwnmi_system_reset_addr;
3529     }
3530 }
3531 
3532 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3533 {
3534     CPUState *cs;
3535 
3536     CPU_FOREACH(cs) {
3537         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3538     }
3539 }
3540 
3541 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3542                           void *fdt, int *fdt_start_offset, Error **errp)
3543 {
3544     uint64_t addr;
3545     uint32_t node;
3546 
3547     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3548     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3549                                     &error_abort);
3550     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3551                                              SPAPR_MEMORY_BLOCK_SIZE);
3552     return 0;
3553 }
3554 
3555 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3556                            bool dedicated_hp_event_source)
3557 {
3558     SpaprDrc *drc;
3559     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3560     int i;
3561     uint64_t addr = addr_start;
3562     bool hotplugged = spapr_drc_hotplugged(dev);
3563 
3564     for (i = 0; i < nr_lmbs; i++) {
3565         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3566                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3567         g_assert(drc);
3568 
3569         /*
3570          * memory_device_get_free_addr() provided a range of free addresses
3571          * that doesn't overlap with any existing mapping at pre-plug. The
3572          * corresponding LMB DRCs are thus assumed to be all attachable.
3573          */
3574         spapr_drc_attach(drc, dev);
3575         if (!hotplugged) {
3576             spapr_drc_reset(drc);
3577         }
3578         addr += SPAPR_MEMORY_BLOCK_SIZE;
3579     }
3580     /* send hotplug notification to the
3581      * guest only in case of hotplugged memory
3582      */
3583     if (hotplugged) {
3584         if (dedicated_hp_event_source) {
3585             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3586                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3587             g_assert(drc);
3588             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3589                                                    nr_lmbs,
3590                                                    spapr_drc_index(drc));
3591         } else {
3592             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3593                                            nr_lmbs);
3594         }
3595     }
3596 }
3597 
3598 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3599 {
3600     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3601     PCDIMMDevice *dimm = PC_DIMM(dev);
3602     uint64_t size, addr;
3603     int64_t slot;
3604     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3605 
3606     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3607 
3608     pc_dimm_plug(dimm, MACHINE(ms));
3609 
3610     if (!is_nvdimm) {
3611         addr = object_property_get_uint(OBJECT(dimm),
3612                                         PC_DIMM_ADDR_PROP, &error_abort);
3613         spapr_add_lmbs(dev, addr, size,
3614                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3615     } else {
3616         slot = object_property_get_int(OBJECT(dimm),
3617                                        PC_DIMM_SLOT_PROP, &error_abort);
3618         /* We should have valid slot number at this point */
3619         g_assert(slot >= 0);
3620         spapr_add_nvdimm(dev, slot);
3621     }
3622 }
3623 
3624 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3625                                   Error **errp)
3626 {
3627     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3628     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3629     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3630     PCDIMMDevice *dimm = PC_DIMM(dev);
3631     Error *local_err = NULL;
3632     uint64_t size;
3633     Object *memdev;
3634     hwaddr pagesize;
3635 
3636     if (!smc->dr_lmb_enabled) {
3637         error_setg(errp, "Memory hotplug not supported for this machine");
3638         return;
3639     }
3640 
3641     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3642     if (local_err) {
3643         error_propagate(errp, local_err);
3644         return;
3645     }
3646 
3647     if (is_nvdimm) {
3648         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3649             return;
3650         }
3651     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3652         error_setg(errp, "Hotplugged memory size must be a multiple of "
3653                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3654         return;
3655     }
3656 
3657     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3658                                       &error_abort);
3659     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3660     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3661         return;
3662     }
3663 
3664     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3665 }
3666 
3667 struct SpaprDimmState {
3668     PCDIMMDevice *dimm;
3669     uint32_t nr_lmbs;
3670     QTAILQ_ENTRY(SpaprDimmState) next;
3671 };
3672 
3673 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3674                                                        PCDIMMDevice *dimm)
3675 {
3676     SpaprDimmState *dimm_state = NULL;
3677 
3678     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3679         if (dimm_state->dimm == dimm) {
3680             break;
3681         }
3682     }
3683     return dimm_state;
3684 }
3685 
3686 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3687                                                       uint32_t nr_lmbs,
3688                                                       PCDIMMDevice *dimm)
3689 {
3690     SpaprDimmState *ds = NULL;
3691 
3692     /*
3693      * If this request is for a DIMM whose removal had failed earlier
3694      * (due to guest's refusal to remove the LMBs), we would have this
3695      * dimm already in the pending_dimm_unplugs list. In that
3696      * case don't add again.
3697      */
3698     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3699     if (!ds) {
3700         ds = g_new0(SpaprDimmState, 1);
3701         ds->nr_lmbs = nr_lmbs;
3702         ds->dimm = dimm;
3703         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3704     }
3705     return ds;
3706 }
3707 
3708 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3709                                               SpaprDimmState *dimm_state)
3710 {
3711     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3712     g_free(dimm_state);
3713 }
3714 
3715 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3716                                                         PCDIMMDevice *dimm)
3717 {
3718     SpaprDrc *drc;
3719     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3720                                                   &error_abort);
3721     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3722     uint32_t avail_lmbs = 0;
3723     uint64_t addr_start, addr;
3724     int i;
3725 
3726     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3727                                           &error_abort);
3728 
3729     addr = addr_start;
3730     for (i = 0; i < nr_lmbs; i++) {
3731         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3732                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3733         g_assert(drc);
3734         if (drc->dev) {
3735             avail_lmbs++;
3736         }
3737         addr += SPAPR_MEMORY_BLOCK_SIZE;
3738     }
3739 
3740     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3741 }
3742 
3743 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3744 {
3745     SpaprDimmState *ds;
3746     PCDIMMDevice *dimm;
3747     SpaprDrc *drc;
3748     uint32_t nr_lmbs;
3749     uint64_t size, addr_start, addr;
3750     g_autofree char *qapi_error = NULL;
3751     int i;
3752 
3753     if (!dev) {
3754         return;
3755     }
3756 
3757     dimm = PC_DIMM(dev);
3758     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3759 
3760     /*
3761      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3762      * unplug state, but one of its DRC is marked as unplug_requested.
3763      * This is bad and weird enough to g_assert() out.
3764      */
3765     g_assert(ds);
3766 
3767     spapr_pending_dimm_unplugs_remove(spapr, ds);
3768 
3769     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3770     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3771 
3772     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3773                                           &error_abort);
3774 
3775     addr = addr_start;
3776     for (i = 0; i < nr_lmbs; i++) {
3777         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3778                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3779         g_assert(drc);
3780 
3781         drc->unplug_requested = false;
3782         addr += SPAPR_MEMORY_BLOCK_SIZE;
3783     }
3784 
3785     /*
3786      * Tell QAPI that something happened and the memory
3787      * hotunplug wasn't successful. Keep sending
3788      * MEM_UNPLUG_ERROR even while sending
3789      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3790      * MEM_UNPLUG_ERROR is due.
3791      */
3792     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3793                                  "for device %s", dev->id);
3794 
3795     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3796 
3797     qapi_event_send_device_unplug_guest_error(dev->id,
3798                                               dev->canonical_path);
3799 }
3800 
3801 /* Callback to be called during DRC release. */
3802 void spapr_lmb_release(DeviceState *dev)
3803 {
3804     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3805     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3806     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3807 
3808     /* This information will get lost if a migration occurs
3809      * during the unplug process. In this case recover it. */
3810     if (ds == NULL) {
3811         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3812         g_assert(ds);
3813         /* The DRC being examined by the caller at least must be counted */
3814         g_assert(ds->nr_lmbs);
3815     }
3816 
3817     if (--ds->nr_lmbs) {
3818         return;
3819     }
3820 
3821     /*
3822      * Now that all the LMBs have been removed by the guest, call the
3823      * unplug handler chain. This can never fail.
3824      */
3825     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3826     object_unparent(OBJECT(dev));
3827 }
3828 
3829 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3830 {
3831     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3832     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3833 
3834     /* We really shouldn't get this far without anything to unplug */
3835     g_assert(ds);
3836 
3837     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3838     qdev_unrealize(dev);
3839     spapr_pending_dimm_unplugs_remove(spapr, ds);
3840 }
3841 
3842 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3843                                         DeviceState *dev, Error **errp)
3844 {
3845     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3846     PCDIMMDevice *dimm = PC_DIMM(dev);
3847     uint32_t nr_lmbs;
3848     uint64_t size, addr_start, addr;
3849     int i;
3850     SpaprDrc *drc;
3851 
3852     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3853         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3854         return;
3855     }
3856 
3857     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3858     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3859 
3860     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3861                                           &error_abort);
3862 
3863     /*
3864      * An existing pending dimm state for this DIMM means that there is an
3865      * unplug operation in progress, waiting for the spapr_lmb_release
3866      * callback to complete the job (BQL can't cover that far). In this case,
3867      * bail out to avoid detaching DRCs that were already released.
3868      */
3869     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3870         error_setg(errp, "Memory unplug already in progress for device %s",
3871                    dev->id);
3872         return;
3873     }
3874 
3875     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3876 
3877     addr = addr_start;
3878     for (i = 0; i < nr_lmbs; i++) {
3879         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3880                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3881         g_assert(drc);
3882 
3883         spapr_drc_unplug_request(drc);
3884         addr += SPAPR_MEMORY_BLOCK_SIZE;
3885     }
3886 
3887     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3888                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3889     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3890                                               nr_lmbs, spapr_drc_index(drc));
3891 }
3892 
3893 /* Callback to be called during DRC release. */
3894 void spapr_core_release(DeviceState *dev)
3895 {
3896     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3897 
3898     /* Call the unplug handler chain. This can never fail. */
3899     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3900     object_unparent(OBJECT(dev));
3901 }
3902 
3903 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3904 {
3905     MachineState *ms = MACHINE(hotplug_dev);
3906     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3907     CPUCore *cc = CPU_CORE(dev);
3908     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3909 
3910     if (smc->pre_2_10_has_unused_icps) {
3911         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3912         int i;
3913 
3914         for (i = 0; i < cc->nr_threads; i++) {
3915             CPUState *cs = CPU(sc->threads[i]);
3916 
3917             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3918         }
3919     }
3920 
3921     assert(core_slot);
3922     core_slot->cpu = NULL;
3923     qdev_unrealize(dev);
3924 }
3925 
3926 static
3927 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3928                                Error **errp)
3929 {
3930     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3931     int index;
3932     SpaprDrc *drc;
3933     CPUCore *cc = CPU_CORE(dev);
3934 
3935     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3936         error_setg(errp, "Unable to find CPU core with core-id: %d",
3937                    cc->core_id);
3938         return;
3939     }
3940     if (index == 0) {
3941         error_setg(errp, "Boot CPU core may not be unplugged");
3942         return;
3943     }
3944 
3945     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3946                           spapr_vcpu_id(spapr, cc->core_id));
3947     g_assert(drc);
3948 
3949     if (!spapr_drc_unplug_requested(drc)) {
3950         spapr_drc_unplug_request(drc);
3951     }
3952 
3953     /*
3954      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3955      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3956      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3957      * attempt (e.g. the kernel will refuse to remove the last online
3958      * CPU), we will never attempt it again because unplug_requested
3959      * will still be 'true' in that case.
3960      */
3961     spapr_hotplug_req_remove_by_index(drc);
3962 }
3963 
3964 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3965                            void *fdt, int *fdt_start_offset, Error **errp)
3966 {
3967     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3968     CPUState *cs = CPU(core->threads[0]);
3969     PowerPCCPU *cpu = POWERPC_CPU(cs);
3970     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3971     int id = spapr_get_vcpu_id(cpu);
3972     g_autofree char *nodename = NULL;
3973     int offset;
3974 
3975     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3976     offset = fdt_add_subnode(fdt, 0, nodename);
3977 
3978     spapr_dt_cpu(cs, fdt, offset, spapr);
3979 
3980     /*
3981      * spapr_dt_cpu() does not fill the 'name' property in the
3982      * CPU node. The function is called during boot process, before
3983      * and after CAS, and overwriting the 'name' property written
3984      * by SLOF is not allowed.
3985      *
3986      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3987      * CPUs more compatible with the coldplugged ones, which have
3988      * the 'name' property. Linux Kernel also relies on this
3989      * property to identify CPU nodes.
3990      */
3991     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3992 
3993     *fdt_start_offset = offset;
3994     return 0;
3995 }
3996 
3997 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3998 {
3999     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4000     MachineClass *mc = MACHINE_GET_CLASS(spapr);
4001     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4002     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
4003     CPUCore *cc = CPU_CORE(dev);
4004     CPUState *cs;
4005     SpaprDrc *drc;
4006     CPUArchId *core_slot;
4007     int index;
4008     bool hotplugged = spapr_drc_hotplugged(dev);
4009     int i;
4010 
4011     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4012     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
4013 
4014     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
4015                           spapr_vcpu_id(spapr, cc->core_id));
4016 
4017     g_assert(drc || !mc->has_hotpluggable_cpus);
4018 
4019     if (drc) {
4020         /*
4021          * spapr_core_pre_plug() already buys us this is a brand new
4022          * core being plugged into a free slot. Nothing should already
4023          * be attached to the corresponding DRC.
4024          */
4025         spapr_drc_attach(drc, dev);
4026 
4027         if (hotplugged) {
4028             /*
4029              * Send hotplug notification interrupt to the guest only
4030              * in case of hotplugged CPUs.
4031              */
4032             spapr_hotplug_req_add_by_index(drc);
4033         } else {
4034             spapr_drc_reset(drc);
4035         }
4036     }
4037 
4038     core_slot->cpu = OBJECT(dev);
4039 
4040     /*
4041      * Set compatibility mode to match the boot CPU, which was either set
4042      * by the machine reset code or by CAS. This really shouldn't fail at
4043      * this point.
4044      */
4045     if (hotplugged) {
4046         for (i = 0; i < cc->nr_threads; i++) {
4047             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4048                            &error_abort);
4049         }
4050     }
4051 
4052     if (smc->pre_2_10_has_unused_icps) {
4053         for (i = 0; i < cc->nr_threads; i++) {
4054             cs = CPU(core->threads[i]);
4055             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4056         }
4057     }
4058 }
4059 
4060 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4061                                 Error **errp)
4062 {
4063     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4064     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4065     CPUCore *cc = CPU_CORE(dev);
4066     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4067     const char *type = object_get_typename(OBJECT(dev));
4068     CPUArchId *core_slot;
4069     int index;
4070     unsigned int smp_threads = machine->smp.threads;
4071 
4072     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4073         error_setg(errp, "CPU hotplug not supported for this machine");
4074         return;
4075     }
4076 
4077     if (strcmp(base_core_type, type)) {
4078         error_setg(errp, "CPU core type should be %s", base_core_type);
4079         return;
4080     }
4081 
4082     if (cc->core_id % smp_threads) {
4083         error_setg(errp, "invalid core id %d", cc->core_id);
4084         return;
4085     }
4086 
4087     /*
4088      * In general we should have homogeneous threads-per-core, but old
4089      * (pre hotplug support) machine types allow the last core to have
4090      * reduced threads as a compatibility hack for when we allowed
4091      * total vcpus not a multiple of threads-per-core.
4092      */
4093     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4094         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4095                    smp_threads);
4096         return;
4097     }
4098 
4099     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4100     if (!core_slot) {
4101         error_setg(errp, "core id %d out of range", cc->core_id);
4102         return;
4103     }
4104 
4105     if (core_slot->cpu) {
4106         error_setg(errp, "core %d already populated", cc->core_id);
4107         return;
4108     }
4109 
4110     numa_cpu_pre_plug(core_slot, dev, errp);
4111 }
4112 
4113 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4114                           void *fdt, int *fdt_start_offset, Error **errp)
4115 {
4116     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4117     int intc_phandle;
4118 
4119     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4120     if (intc_phandle <= 0) {
4121         return -1;
4122     }
4123 
4124     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4125         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4126         return -1;
4127     }
4128 
4129     /* generally SLOF creates these, for hotplug it's up to QEMU */
4130     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4131 
4132     return 0;
4133 }
4134 
4135 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4136                                Error **errp)
4137 {
4138     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4139     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4140     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4141     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4142     SpaprDrc *drc;
4143 
4144     if (dev->hotplugged && !smc->dr_phb_enabled) {
4145         error_setg(errp, "PHB hotplug not supported for this machine");
4146         return false;
4147     }
4148 
4149     if (sphb->index == (uint32_t)-1) {
4150         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4151         return false;
4152     }
4153 
4154     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4155     if (drc && drc->dev) {
4156         error_setg(errp, "PHB %d already attached", sphb->index);
4157         return false;
4158     }
4159 
4160     /*
4161      * This will check that sphb->index doesn't exceed the maximum number of
4162      * PHBs for the current machine type.
4163      */
4164     return
4165         smc->phb_placement(spapr, sphb->index,
4166                            &sphb->buid, &sphb->io_win_addr,
4167                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4168                            windows_supported, sphb->dma_liobn,
4169                            errp);
4170 }
4171 
4172 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4173 {
4174     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4175     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4176     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4177     SpaprDrc *drc;
4178     bool hotplugged = spapr_drc_hotplugged(dev);
4179 
4180     if (!smc->dr_phb_enabled) {
4181         return;
4182     }
4183 
4184     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4185     /* hotplug hooks should check it's enabled before getting this far */
4186     assert(drc);
4187 
4188     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4189     spapr_drc_attach(drc, dev);
4190 
4191     if (hotplugged) {
4192         spapr_hotplug_req_add_by_index(drc);
4193     } else {
4194         spapr_drc_reset(drc);
4195     }
4196 }
4197 
4198 void spapr_phb_release(DeviceState *dev)
4199 {
4200     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4201 
4202     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4203     object_unparent(OBJECT(dev));
4204 }
4205 
4206 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4207 {
4208     qdev_unrealize(dev);
4209 }
4210 
4211 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4212                                      DeviceState *dev, Error **errp)
4213 {
4214     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4215     SpaprDrc *drc;
4216 
4217     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4218     assert(drc);
4219 
4220     if (!spapr_drc_unplug_requested(drc)) {
4221         spapr_drc_unplug_request(drc);
4222         spapr_hotplug_req_remove_by_index(drc);
4223     } else {
4224         error_setg(errp,
4225                    "PCI Host Bridge unplug already in progress for device %s",
4226                    dev->id);
4227     }
4228 }
4229 
4230 static
4231 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4232                               Error **errp)
4233 {
4234     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4235 
4236     if (spapr->tpm_proxy != NULL) {
4237         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4238         return false;
4239     }
4240 
4241     return true;
4242 }
4243 
4244 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4245 {
4246     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4247     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4248 
4249     /* Already checked in spapr_tpm_proxy_pre_plug() */
4250     g_assert(spapr->tpm_proxy == NULL);
4251 
4252     spapr->tpm_proxy = tpm_proxy;
4253 }
4254 
4255 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4256 {
4257     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4258 
4259     qdev_unrealize(dev);
4260     object_unparent(OBJECT(dev));
4261     spapr->tpm_proxy = NULL;
4262 }
4263 
4264 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4265                                       DeviceState *dev, Error **errp)
4266 {
4267     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4268         spapr_memory_plug(hotplug_dev, dev);
4269     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4270         spapr_core_plug(hotplug_dev, dev);
4271     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4272         spapr_phb_plug(hotplug_dev, dev);
4273     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4274         spapr_tpm_proxy_plug(hotplug_dev, dev);
4275     }
4276 }
4277 
4278 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4279                                         DeviceState *dev, Error **errp)
4280 {
4281     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4282         spapr_memory_unplug(hotplug_dev, dev);
4283     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4284         spapr_core_unplug(hotplug_dev, dev);
4285     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4286         spapr_phb_unplug(hotplug_dev, dev);
4287     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4288         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4289     }
4290 }
4291 
4292 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4293 {
4294     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4295         /*
4296          * CAS will process all pending unplug requests.
4297          *
4298          * HACK: a guest could theoretically have cleared all bits in OV5,
4299          * but none of the guests we care for do.
4300          */
4301         spapr_ovec_empty(spapr->ov5_cas);
4302 }
4303 
4304 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4305                                                 DeviceState *dev, Error **errp)
4306 {
4307     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4308     MachineClass *mc = MACHINE_GET_CLASS(sms);
4309     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4310 
4311     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4312         if (spapr_memory_hot_unplug_supported(sms)) {
4313             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4314         } else {
4315             error_setg(errp, "Memory hot unplug not supported for this guest");
4316         }
4317     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4318         if (!mc->has_hotpluggable_cpus) {
4319             error_setg(errp, "CPU hot unplug not supported on this machine");
4320             return;
4321         }
4322         spapr_core_unplug_request(hotplug_dev, dev, errp);
4323     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4324         if (!smc->dr_phb_enabled) {
4325             error_setg(errp, "PHB hot unplug not supported on this machine");
4326             return;
4327         }
4328         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4329     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4330         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4331     }
4332 }
4333 
4334 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4335                                           DeviceState *dev, Error **errp)
4336 {
4337     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4338         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4339     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4340         spapr_core_pre_plug(hotplug_dev, dev, errp);
4341     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4342         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4343     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4344         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4345     }
4346 }
4347 
4348 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4349                                                  DeviceState *dev)
4350 {
4351     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4352         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4353         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4354         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4355         return HOTPLUG_HANDLER(machine);
4356     }
4357     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4358         PCIDevice *pcidev = PCI_DEVICE(dev);
4359         PCIBus *root = pci_device_root_bus(pcidev);
4360         SpaprPhbState *phb =
4361             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4362                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4363 
4364         if (phb) {
4365             return HOTPLUG_HANDLER(phb);
4366         }
4367     }
4368     return NULL;
4369 }
4370 
4371 static CpuInstanceProperties
4372 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4373 {
4374     CPUArchId *core_slot;
4375     MachineClass *mc = MACHINE_GET_CLASS(machine);
4376 
4377     /* make sure possible_cpu are initialized */
4378     mc->possible_cpu_arch_ids(machine);
4379     /* get CPU core slot containing thread that matches cpu_index */
4380     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4381     assert(core_slot);
4382     return core_slot->props;
4383 }
4384 
4385 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4386 {
4387     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4388 }
4389 
4390 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4391 {
4392     int i;
4393     unsigned int smp_threads = machine->smp.threads;
4394     unsigned int smp_cpus = machine->smp.cpus;
4395     const char *core_type;
4396     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4397     MachineClass *mc = MACHINE_GET_CLASS(machine);
4398 
4399     if (!mc->has_hotpluggable_cpus) {
4400         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4401     }
4402     if (machine->possible_cpus) {
4403         assert(machine->possible_cpus->len == spapr_max_cores);
4404         return machine->possible_cpus;
4405     }
4406 
4407     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4408     if (!core_type) {
4409         error_report("Unable to find sPAPR CPU Core definition");
4410         exit(1);
4411     }
4412 
4413     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4414                              sizeof(CPUArchId) * spapr_max_cores);
4415     machine->possible_cpus->len = spapr_max_cores;
4416     for (i = 0; i < machine->possible_cpus->len; i++) {
4417         int core_id = i * smp_threads;
4418 
4419         machine->possible_cpus->cpus[i].type = core_type;
4420         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4421         machine->possible_cpus->cpus[i].arch_id = core_id;
4422         machine->possible_cpus->cpus[i].props.has_core_id = true;
4423         machine->possible_cpus->cpus[i].props.core_id = core_id;
4424     }
4425     return machine->possible_cpus;
4426 }
4427 
4428 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4429                                 uint64_t *buid, hwaddr *pio,
4430                                 hwaddr *mmio32, hwaddr *mmio64,
4431                                 unsigned n_dma, uint32_t *liobns, Error **errp)
4432 {
4433     /*
4434      * New-style PHB window placement.
4435      *
4436      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4437      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4438      * windows.
4439      *
4440      * Some guest kernels can't work with MMIO windows above 1<<46
4441      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4442      *
4443      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4444      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4445      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4446      * 1TiB 64-bit MMIO windows for each PHB.
4447      */
4448     const uint64_t base_buid = 0x800000020000000ULL;
4449     int i;
4450 
4451     /* Sanity check natural alignments */
4452     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4453     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4454     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4455     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4456     /* Sanity check bounds */
4457     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4458                       SPAPR_PCI_MEM32_WIN_SIZE);
4459     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4460                       SPAPR_PCI_MEM64_WIN_SIZE);
4461 
4462     if (index >= SPAPR_MAX_PHBS) {
4463         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4464                    SPAPR_MAX_PHBS - 1);
4465         return false;
4466     }
4467 
4468     *buid = base_buid + index;
4469     for (i = 0; i < n_dma; ++i) {
4470         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4471     }
4472 
4473     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4474     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4475     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4476     return true;
4477 }
4478 
4479 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4480 {
4481     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4482 
4483     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4484 }
4485 
4486 static void spapr_ics_resend(XICSFabric *dev)
4487 {
4488     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4489 
4490     ics_resend(spapr->ics);
4491 }
4492 
4493 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4494 {
4495     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4496 
4497     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4498 }
4499 
4500 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4501                                  Monitor *mon)
4502 {
4503     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4504 
4505     spapr_irq_print_info(spapr, mon);
4506     monitor_printf(mon, "irqchip: %s\n",
4507                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4508 }
4509 
4510 /*
4511  * This is a XIVE only operation
4512  */
4513 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4514                            uint8_t nvt_blk, uint32_t nvt_idx,
4515                            bool cam_ignore, uint8_t priority,
4516                            uint32_t logic_serv, XiveTCTXMatch *match)
4517 {
4518     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4519     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4520     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4521     int count;
4522 
4523     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4524                            priority, logic_serv, match);
4525     if (count < 0) {
4526         return count;
4527     }
4528 
4529     /*
4530      * When we implement the save and restore of the thread interrupt
4531      * contexts in the enter/exit CPU handlers of the machine and the
4532      * escalations in QEMU, we should be able to handle non dispatched
4533      * vCPUs.
4534      *
4535      * Until this is done, the sPAPR machine should find at least one
4536      * matching context always.
4537      */
4538     if (count == 0) {
4539         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4540                       nvt_blk, nvt_idx);
4541     }
4542 
4543     return count;
4544 }
4545 
4546 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4547 {
4548     return cpu->vcpu_id;
4549 }
4550 
4551 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4552 {
4553     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4554     MachineState *ms = MACHINE(spapr);
4555     int vcpu_id;
4556 
4557     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4558 
4559     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4560         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4561         error_append_hint(errp, "Adjust the number of cpus to %d "
4562                           "or try to raise the number of threads per core\n",
4563                           vcpu_id * ms->smp.threads / spapr->vsmt);
4564         return false;
4565     }
4566 
4567     cpu->vcpu_id = vcpu_id;
4568     return true;
4569 }
4570 
4571 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4572 {
4573     CPUState *cs;
4574 
4575     CPU_FOREACH(cs) {
4576         PowerPCCPU *cpu = POWERPC_CPU(cs);
4577 
4578         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4579             return cpu;
4580         }
4581     }
4582 
4583     return NULL;
4584 }
4585 
4586 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4587 {
4588     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4589 
4590     return spapr_cpu->in_nested;
4591 }
4592 
4593 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4594 {
4595     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4596 
4597     /* These are only called by TCG, KVM maintains dispatch state */
4598 
4599     spapr_cpu->prod = false;
4600     if (spapr_cpu->vpa_addr) {
4601         CPUState *cs = CPU(cpu);
4602         uint32_t dispatch;
4603 
4604         dispatch = ldl_be_phys(cs->as,
4605                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4606         dispatch++;
4607         if ((dispatch & 1) != 0) {
4608             qemu_log_mask(LOG_GUEST_ERROR,
4609                           "VPA: incorrect dispatch counter value for "
4610                           "dispatched partition %u, correcting.\n", dispatch);
4611             dispatch++;
4612         }
4613         stl_be_phys(cs->as,
4614                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4615     }
4616 }
4617 
4618 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4619 {
4620     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4621 
4622     if (spapr_cpu->vpa_addr) {
4623         CPUState *cs = CPU(cpu);
4624         uint32_t dispatch;
4625 
4626         dispatch = ldl_be_phys(cs->as,
4627                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4628         dispatch++;
4629         if ((dispatch & 1) != 1) {
4630             qemu_log_mask(LOG_GUEST_ERROR,
4631                           "VPA: incorrect dispatch counter value for "
4632                           "preempted partition %u, correcting.\n", dispatch);
4633             dispatch++;
4634         }
4635         stl_be_phys(cs->as,
4636                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4637     }
4638 }
4639 
4640 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4641 {
4642     MachineClass *mc = MACHINE_CLASS(oc);
4643     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4644     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4645     NMIClass *nc = NMI_CLASS(oc);
4646     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4647     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4648     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4649     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4650     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4651     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4652 
4653     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4654     mc->ignore_boot_device_suffixes = true;
4655 
4656     /*
4657      * We set up the default / latest behaviour here.  The class_init
4658      * functions for the specific versioned machine types can override
4659      * these details for backwards compatibility
4660      */
4661     mc->init = spapr_machine_init;
4662     mc->reset = spapr_machine_reset;
4663     mc->block_default_type = IF_SCSI;
4664 
4665     /*
4666      * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(),
4667      * In TCG the limit is restricted by the range of CPU IPIs available.
4668      */
4669     mc->max_cpus = SPAPR_IRQ_NR_IPIS;
4670 
4671     mc->no_parallel = 1;
4672     mc->default_boot_order = "";
4673     mc->default_ram_size = 512 * MiB;
4674     mc->default_ram_id = "ppc_spapr.ram";
4675     mc->default_display = "std";
4676     mc->kvm_type = spapr_kvm_type;
4677     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4678     mc->pci_allow_0_address = true;
4679     assert(!mc->get_hotplug_handler);
4680     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4681     hc->pre_plug = spapr_machine_device_pre_plug;
4682     hc->plug = spapr_machine_device_plug;
4683     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4684     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4685     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4686     hc->unplug_request = spapr_machine_device_unplug_request;
4687     hc->unplug = spapr_machine_device_unplug;
4688 
4689     smc->dr_lmb_enabled = true;
4690     smc->update_dt_enabled = true;
4691     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
4692     mc->has_hotpluggable_cpus = true;
4693     mc->nvdimm_supported = true;
4694     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4695     fwc->get_dev_path = spapr_get_fw_dev_path;
4696     nc->nmi_monitor_handler = spapr_nmi;
4697     smc->phb_placement = spapr_phb_placement;
4698     vhc->cpu_in_nested = spapr_cpu_in_nested;
4699     vhc->deliver_hv_excp = spapr_exit_nested;
4700     vhc->hypercall = emulate_spapr_hypercall;
4701     vhc->hpt_mask = spapr_hpt_mask;
4702     vhc->map_hptes = spapr_map_hptes;
4703     vhc->unmap_hptes = spapr_unmap_hptes;
4704     vhc->hpte_set_c = spapr_hpte_set_c;
4705     vhc->hpte_set_r = spapr_hpte_set_r;
4706     vhc->get_pate = spapr_get_pate;
4707     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4708     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4709     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4710     xic->ics_get = spapr_ics_get;
4711     xic->ics_resend = spapr_ics_resend;
4712     xic->icp_get = spapr_icp_get;
4713     ispc->print_info = spapr_pic_print_info;
4714     /* Force NUMA node memory size to be a multiple of
4715      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4716      * in which LMBs are represented and hot-added
4717      */
4718     mc->numa_mem_align_shift = 28;
4719     mc->auto_enable_numa = true;
4720 
4721     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4722     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4723     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4724     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4725     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4726     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4727     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4728     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4729     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4730     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4731     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4732     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4733 
4734     /*
4735      * This cap specifies whether the AIL 3 mode for
4736      * H_SET_RESOURCE is supported. The default is modified
4737      * by default_caps_with_cpu().
4738      */
4739     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4740     spapr_caps_add_properties(smc);
4741     smc->irq = &spapr_irq_dual;
4742     smc->dr_phb_enabled = true;
4743     smc->linux_pci_probe = true;
4744     smc->smp_threads_vsmt = true;
4745     smc->nr_xirqs = SPAPR_NR_XIRQS;
4746     xfc->match_nvt = spapr_match_nvt;
4747     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4748     vmc->quiesce = spapr_vof_quiesce;
4749     vmc->setprop = spapr_vof_setprop;
4750 }
4751 
4752 static const TypeInfo spapr_machine_info = {
4753     .name          = TYPE_SPAPR_MACHINE,
4754     .parent        = TYPE_MACHINE,
4755     .abstract      = true,
4756     .instance_size = sizeof(SpaprMachineState),
4757     .instance_init = spapr_instance_init,
4758     .instance_finalize = spapr_machine_finalizefn,
4759     .class_size    = sizeof(SpaprMachineClass),
4760     .class_init    = spapr_machine_class_init,
4761     .interfaces = (InterfaceInfo[]) {
4762         { TYPE_FW_PATH_PROVIDER },
4763         { TYPE_NMI },
4764         { TYPE_HOTPLUG_HANDLER },
4765         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4766         { TYPE_XICS_FABRIC },
4767         { TYPE_INTERRUPT_STATS_PROVIDER },
4768         { TYPE_XIVE_FABRIC },
4769         { TYPE_VOF_MACHINE_IF },
4770         { }
4771     },
4772 };
4773 
4774 static void spapr_machine_latest_class_options(MachineClass *mc)
4775 {
4776     mc->alias = "pseries";
4777     mc->is_default = true;
4778 }
4779 
4780 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4781     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4782                                                     void *data)      \
4783     {                                                                \
4784         MachineClass *mc = MACHINE_CLASS(oc);                        \
4785         spapr_machine_##suffix##_class_options(mc);                  \
4786         if (latest) {                                                \
4787             spapr_machine_latest_class_options(mc);                  \
4788         }                                                            \
4789     }                                                                \
4790     static const TypeInfo spapr_machine_##suffix##_info = {          \
4791         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4792         .parent = TYPE_SPAPR_MACHINE,                                \
4793         .class_init = spapr_machine_##suffix##_class_init,           \
4794     };                                                               \
4795     static void spapr_machine_register_##suffix(void)                \
4796     {                                                                \
4797         type_register(&spapr_machine_##suffix##_info);               \
4798     }                                                                \
4799     type_init(spapr_machine_register_##suffix)
4800 
4801 /*
4802  * pseries-9.0
4803  */
4804 static void spapr_machine_9_0_class_options(MachineClass *mc)
4805 {
4806     /* Defaults for the latest behaviour inherited from the base class */
4807 }
4808 
4809 DEFINE_SPAPR_MACHINE(9_0, "9.0", true);
4810 
4811 /*
4812  * pseries-8.2
4813  */
4814 static void spapr_machine_8_2_class_options(MachineClass *mc)
4815 {
4816     spapr_machine_9_0_class_options(mc);
4817     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
4818 }
4819 
4820 DEFINE_SPAPR_MACHINE(8_2, "8.2", false);
4821 
4822 /*
4823  * pseries-8.1
4824  */
4825 static void spapr_machine_8_1_class_options(MachineClass *mc)
4826 {
4827     spapr_machine_8_2_class_options(mc);
4828     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4829 }
4830 
4831 DEFINE_SPAPR_MACHINE(8_1, "8.1", false);
4832 
4833 /*
4834  * pseries-8.0
4835  */
4836 static void spapr_machine_8_0_class_options(MachineClass *mc)
4837 {
4838     spapr_machine_8_1_class_options(mc);
4839     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4840 }
4841 
4842 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4843 
4844 /*
4845  * pseries-7.2
4846  */
4847 static void spapr_machine_7_2_class_options(MachineClass *mc)
4848 {
4849     spapr_machine_8_0_class_options(mc);
4850     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4851 }
4852 
4853 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4854 
4855 /*
4856  * pseries-7.1
4857  */
4858 static void spapr_machine_7_1_class_options(MachineClass *mc)
4859 {
4860     spapr_machine_7_2_class_options(mc);
4861     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4862 }
4863 
4864 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4865 
4866 /*
4867  * pseries-7.0
4868  */
4869 static void spapr_machine_7_0_class_options(MachineClass *mc)
4870 {
4871     spapr_machine_7_1_class_options(mc);
4872     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4873 }
4874 
4875 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4876 
4877 /*
4878  * pseries-6.2
4879  */
4880 static void spapr_machine_6_2_class_options(MachineClass *mc)
4881 {
4882     spapr_machine_7_0_class_options(mc);
4883     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4884 }
4885 
4886 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4887 
4888 /*
4889  * pseries-6.1
4890  */
4891 static void spapr_machine_6_1_class_options(MachineClass *mc)
4892 {
4893     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4894 
4895     spapr_machine_6_2_class_options(mc);
4896     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4897     smc->pre_6_2_numa_affinity = true;
4898     mc->smp_props.prefer_sockets = true;
4899 }
4900 
4901 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4902 
4903 /*
4904  * pseries-6.0
4905  */
4906 static void spapr_machine_6_0_class_options(MachineClass *mc)
4907 {
4908     spapr_machine_6_1_class_options(mc);
4909     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4910 }
4911 
4912 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4913 
4914 /*
4915  * pseries-5.2
4916  */
4917 static void spapr_machine_5_2_class_options(MachineClass *mc)
4918 {
4919     spapr_machine_6_0_class_options(mc);
4920     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4921 }
4922 
4923 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4924 
4925 /*
4926  * pseries-5.1
4927  */
4928 static void spapr_machine_5_1_class_options(MachineClass *mc)
4929 {
4930     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4931 
4932     spapr_machine_5_2_class_options(mc);
4933     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4934     smc->pre_5_2_numa_associativity = true;
4935 }
4936 
4937 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4938 
4939 /*
4940  * pseries-5.0
4941  */
4942 static void spapr_machine_5_0_class_options(MachineClass *mc)
4943 {
4944     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4945     static GlobalProperty compat[] = {
4946         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4947     };
4948 
4949     spapr_machine_5_1_class_options(mc);
4950     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4951     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4952     mc->numa_mem_supported = true;
4953     smc->pre_5_1_assoc_refpoints = true;
4954 }
4955 
4956 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4957 
4958 /*
4959  * pseries-4.2
4960  */
4961 static void spapr_machine_4_2_class_options(MachineClass *mc)
4962 {
4963     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4964 
4965     spapr_machine_5_0_class_options(mc);
4966     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4967     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4968     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4969     smc->rma_limit = 16 * GiB;
4970     mc->nvdimm_supported = false;
4971 }
4972 
4973 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4974 
4975 /*
4976  * pseries-4.1
4977  */
4978 static void spapr_machine_4_1_class_options(MachineClass *mc)
4979 {
4980     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4981     static GlobalProperty compat[] = {
4982         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4983         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4984     };
4985 
4986     spapr_machine_4_2_class_options(mc);
4987     smc->linux_pci_probe = false;
4988     smc->smp_threads_vsmt = false;
4989     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4990     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4991 }
4992 
4993 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4994 
4995 /*
4996  * pseries-4.0
4997  */
4998 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4999                               uint64_t *buid, hwaddr *pio,
5000                               hwaddr *mmio32, hwaddr *mmio64,
5001                               unsigned n_dma, uint32_t *liobns, Error **errp)
5002 {
5003     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
5004                              liobns, errp)) {
5005         return false;
5006     }
5007     return true;
5008 }
5009 static void spapr_machine_4_0_class_options(MachineClass *mc)
5010 {
5011     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5012 
5013     spapr_machine_4_1_class_options(mc);
5014     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
5015     smc->phb_placement = phb_placement_4_0;
5016     smc->irq = &spapr_irq_xics;
5017     smc->pre_4_1_migration = true;
5018 }
5019 
5020 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
5021 
5022 /*
5023  * pseries-3.1
5024  */
5025 static void spapr_machine_3_1_class_options(MachineClass *mc)
5026 {
5027     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5028 
5029     spapr_machine_4_0_class_options(mc);
5030     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
5031 
5032     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
5033     smc->update_dt_enabled = false;
5034     smc->dr_phb_enabled = false;
5035     smc->broken_host_serial_model = true;
5036     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
5037     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
5038     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
5039     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
5040 }
5041 
5042 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
5043 
5044 /*
5045  * pseries-3.0
5046  */
5047 
5048 static void spapr_machine_3_0_class_options(MachineClass *mc)
5049 {
5050     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5051 
5052     spapr_machine_3_1_class_options(mc);
5053     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5054 
5055     smc->legacy_irq_allocation = true;
5056     smc->nr_xirqs = 0x400;
5057     smc->irq = &spapr_irq_xics_legacy;
5058 }
5059 
5060 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
5061 
5062 /*
5063  * pseries-2.12
5064  */
5065 static void spapr_machine_2_12_class_options(MachineClass *mc)
5066 {
5067     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5068     static GlobalProperty compat[] = {
5069         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5070         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5071     };
5072 
5073     spapr_machine_3_0_class_options(mc);
5074     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5075     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5076 
5077     /* We depend on kvm_enabled() to choose a default value for the
5078      * hpt-max-page-size capability. Of course we can't do it here
5079      * because this is too early and the HW accelerator isn't initialized
5080      * yet. Postpone this to machine init (see default_caps_with_cpu()).
5081      */
5082     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5083 }
5084 
5085 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5086 
5087 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5088 {
5089     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5090 
5091     spapr_machine_2_12_class_options(mc);
5092     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5093     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5094     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5095 }
5096 
5097 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5098 
5099 /*
5100  * pseries-2.11
5101  */
5102 
5103 static void spapr_machine_2_11_class_options(MachineClass *mc)
5104 {
5105     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5106 
5107     spapr_machine_2_12_class_options(mc);
5108     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5109     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5110     mc->deprecation_reason = "old and not maintained - use a 2.12+ version";
5111 }
5112 
5113 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5114 
5115 /*
5116  * pseries-2.10
5117  */
5118 
5119 static void spapr_machine_2_10_class_options(MachineClass *mc)
5120 {
5121     spapr_machine_2_11_class_options(mc);
5122     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5123 }
5124 
5125 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5126 
5127 /*
5128  * pseries-2.9
5129  */
5130 
5131 static void spapr_machine_2_9_class_options(MachineClass *mc)
5132 {
5133     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5134     static GlobalProperty compat[] = {
5135         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5136     };
5137 
5138     spapr_machine_2_10_class_options(mc);
5139     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5140     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5141     smc->pre_2_10_has_unused_icps = true;
5142     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5143 }
5144 
5145 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5146 
5147 /*
5148  * pseries-2.8
5149  */
5150 
5151 static void spapr_machine_2_8_class_options(MachineClass *mc)
5152 {
5153     static GlobalProperty compat[] = {
5154         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5155     };
5156 
5157     spapr_machine_2_9_class_options(mc);
5158     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5159     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5160     mc->numa_mem_align_shift = 23;
5161 }
5162 
5163 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5164 
5165 /*
5166  * pseries-2.7
5167  */
5168 
5169 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5170                               uint64_t *buid, hwaddr *pio,
5171                               hwaddr *mmio32, hwaddr *mmio64,
5172                               unsigned n_dma, uint32_t *liobns, Error **errp)
5173 {
5174     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5175     const uint64_t base_buid = 0x800000020000000ULL;
5176     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5177     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5178     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5179     const uint32_t max_index = 255;
5180     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5181 
5182     uint64_t ram_top = MACHINE(spapr)->ram_size;
5183     hwaddr phb0_base, phb_base;
5184     int i;
5185 
5186     /* Do we have device memory? */
5187     if (MACHINE(spapr)->device_memory) {
5188         /* Can't just use maxram_size, because there may be an
5189          * alignment gap between normal and device memory regions
5190          */
5191         ram_top = MACHINE(spapr)->device_memory->base +
5192             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5193     }
5194 
5195     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5196 
5197     if (index > max_index) {
5198         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5199                    max_index);
5200         return false;
5201     }
5202 
5203     *buid = base_buid + index;
5204     for (i = 0; i < n_dma; ++i) {
5205         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5206     }
5207 
5208     phb_base = phb0_base + index * phb_spacing;
5209     *pio = phb_base + pio_offset;
5210     *mmio32 = phb_base + mmio_offset;
5211     /*
5212      * We don't set the 64-bit MMIO window, relying on the PHB's
5213      * fallback behaviour of automatically splitting a large "32-bit"
5214      * window into contiguous 32-bit and 64-bit windows
5215      */
5216 
5217     return true;
5218 }
5219 
5220 static void spapr_machine_2_7_class_options(MachineClass *mc)
5221 {
5222     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5223     static GlobalProperty compat[] = {
5224         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5225         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5226         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5227         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5228     };
5229 
5230     spapr_machine_2_8_class_options(mc);
5231     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5232     mc->default_machine_opts = "modern-hotplug-events=off";
5233     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5234     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5235     smc->phb_placement = phb_placement_2_7;
5236 }
5237 
5238 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5239 
5240 /*
5241  * pseries-2.6
5242  */
5243 
5244 static void spapr_machine_2_6_class_options(MachineClass *mc)
5245 {
5246     static GlobalProperty compat[] = {
5247         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5248     };
5249 
5250     spapr_machine_2_7_class_options(mc);
5251     mc->has_hotpluggable_cpus = false;
5252     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5253     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5254 }
5255 
5256 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5257 
5258 /*
5259  * pseries-2.5
5260  */
5261 
5262 static void spapr_machine_2_5_class_options(MachineClass *mc)
5263 {
5264     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5265     static GlobalProperty compat[] = {
5266         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5267     };
5268 
5269     spapr_machine_2_6_class_options(mc);
5270     smc->use_ohci_by_default = true;
5271     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5272     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5273 }
5274 
5275 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5276 
5277 /*
5278  * pseries-2.4
5279  */
5280 
5281 static void spapr_machine_2_4_class_options(MachineClass *mc)
5282 {
5283     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5284 
5285     spapr_machine_2_5_class_options(mc);
5286     smc->dr_lmb_enabled = false;
5287     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5288 }
5289 
5290 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5291 
5292 /*
5293  * pseries-2.3
5294  */
5295 
5296 static void spapr_machine_2_3_class_options(MachineClass *mc)
5297 {
5298     static GlobalProperty compat[] = {
5299         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5300     };
5301     spapr_machine_2_4_class_options(mc);
5302     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5303     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5304 }
5305 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5306 
5307 /*
5308  * pseries-2.2
5309  */
5310 
5311 static void spapr_machine_2_2_class_options(MachineClass *mc)
5312 {
5313     static GlobalProperty compat[] = {
5314         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5315     };
5316 
5317     spapr_machine_2_3_class_options(mc);
5318     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5319     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5320     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5321 }
5322 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5323 
5324 /*
5325  * pseries-2.1
5326  */
5327 
5328 static void spapr_machine_2_1_class_options(MachineClass *mc)
5329 {
5330     spapr_machine_2_2_class_options(mc);
5331     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5332 }
5333 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5334 
5335 static void spapr_machine_register_types(void)
5336 {
5337     type_register_static(&spapr_machine_info);
5338 }
5339 
5340 type_init(spapr_machine_register_types)
5341