1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_nested.h" 65 #include "hw/ppc/spapr_vio.h" 66 #include "hw/ppc/vof.h" 67 #include "hw/qdev-properties.h" 68 #include "hw/pci-host/spapr.h" 69 #include "hw/pci/msi.h" 70 71 #include "hw/pci/pci.h" 72 #include "hw/scsi/scsi.h" 73 #include "hw/virtio/virtio-scsi.h" 74 #include "hw/virtio/vhost-scsi-common.h" 75 76 #include "exec/ram_addr.h" 77 #include "hw/usb.h" 78 #include "qemu/config-file.h" 79 #include "qemu/error-report.h" 80 #include "trace.h" 81 #include "hw/nmi.h" 82 #include "hw/intc/intc.h" 83 84 #include "hw/ppc/spapr_cpu_core.h" 85 #include "hw/mem/memory-device.h" 86 #include "hw/ppc/spapr_tpm_proxy.h" 87 #include "hw/ppc/spapr_nvdimm.h" 88 #include "hw/ppc/spapr_numa.h" 89 #include "hw/ppc/pef.h" 90 91 #include "monitor/monitor.h" 92 93 #include <libfdt.h> 94 95 /* SLOF memory layout: 96 * 97 * SLOF raw image loaded at 0, copies its romfs right below the flat 98 * device-tree, then position SLOF itself 31M below that 99 * 100 * So we set FW_OVERHEAD to 40MB which should account for all of that 101 * and more 102 * 103 * We load our kernel at 4M, leaving space for SLOF initial image 104 */ 105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 106 #define FW_MAX_SIZE 0x400000 107 #define FW_FILE_NAME "slof.bin" 108 #define FW_FILE_NAME_VOF "vof.bin" 109 #define FW_OVERHEAD 0x2800000 110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 111 112 #define MIN_RMA_SLOF (128 * MiB) 113 114 #define PHANDLE_INTC 0x00001111 115 116 /* These two functions implement the VCPU id numbering: one to compute them 117 * all and one to identify thread 0 of a VCORE. Any change to the first one 118 * is likely to have an impact on the second one, so let's keep them close. 119 */ 120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 121 { 122 MachineState *ms = MACHINE(spapr); 123 unsigned int smp_threads = ms->smp.threads; 124 125 assert(spapr->vsmt); 126 return 127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 128 } 129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 130 PowerPCCPU *cpu) 131 { 132 assert(spapr->vsmt); 133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 134 } 135 136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 137 { 138 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 139 * and newer QEMUs don't even have them. In both cases, we don't want 140 * to send anything on the wire. 141 */ 142 return false; 143 } 144 145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 146 /* 147 * Hack ahead. We can't have two devices with the same name and 148 * instance id. So I rename this to pass make check. 149 * Real help from people who knows the hardware is needed. 150 */ 151 .name = "icp/server", 152 .version_id = 1, 153 .minimum_version_id = 1, 154 .needed = pre_2_10_vmstate_dummy_icp_needed, 155 .fields = (const VMStateField[]) { 156 VMSTATE_UNUSED(4), /* uint32_t xirr */ 157 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 158 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 159 VMSTATE_END_OF_LIST() 160 }, 161 }; 162 163 /* 164 * See comment in hw/intc/xics.c:icp_realize() 165 * 166 * You have to remove vmstate_replace_hack_for_ppc() when you remove 167 * the machine types that need the following function. 168 */ 169 static void pre_2_10_vmstate_register_dummy_icp(int i) 170 { 171 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 172 (void *)(uintptr_t) i); 173 } 174 175 /* 176 * See comment in hw/intc/xics.c:icp_realize() 177 * 178 * You have to remove vmstate_replace_hack_for_ppc() when you remove 179 * the machine types that need the following function. 180 */ 181 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 182 { 183 /* 184 * This used to be: 185 * 186 * vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 187 * (void *)(uintptr_t) i); 188 */ 189 } 190 191 int spapr_max_server_number(SpaprMachineState *spapr) 192 { 193 MachineState *ms = MACHINE(spapr); 194 195 assert(spapr->vsmt); 196 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 197 } 198 199 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 200 int smt_threads) 201 { 202 int i, ret = 0; 203 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 204 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 205 int index = spapr_get_vcpu_id(cpu); 206 207 if (cpu->compat_pvr) { 208 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 209 if (ret < 0) { 210 return ret; 211 } 212 } 213 214 /* Build interrupt servers and gservers properties */ 215 for (i = 0; i < smt_threads; i++) { 216 servers_prop[i] = cpu_to_be32(index + i); 217 /* Hack, direct the group queues back to cpu 0 */ 218 gservers_prop[i*2] = cpu_to_be32(index + i); 219 gservers_prop[i*2 + 1] = 0; 220 } 221 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 222 servers_prop, sizeof(*servers_prop) * smt_threads); 223 if (ret < 0) { 224 return ret; 225 } 226 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 227 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 228 229 return ret; 230 } 231 232 static void spapr_dt_pa_features(SpaprMachineState *spapr, 233 PowerPCCPU *cpu, 234 void *fdt, int offset) 235 { 236 /* 237 * SSO (SAO) ordering is supported on KVM and thread=single hosts, 238 * but not MTTCG, so disable it. To advertise it, a cap would have 239 * to be added, or support implemented for MTTCG. 240 * 241 * Copy/paste is not supported by TCG, so it is not advertised. KVM 242 * can execute them but it has no accelerator drivers which are usable, 243 * so there isn't much need for it anyway. 244 */ 245 246 /* These should be kept in sync with pnv */ 247 uint8_t pa_features_206[] = { 6, 0, 248 0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 }; 249 uint8_t pa_features_207[] = { 24, 0, 250 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, 251 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 252 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 254 uint8_t pa_features_300[] = { 66, 0, 255 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 256 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 257 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 258 /* 6: DS207 */ 259 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 260 /* 16: Vector */ 261 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 262 /* 18: Vec. Scalar, 20: Vec. XOR */ 263 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 264 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 265 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 266 /* 32: LE atomic, 34: EBB + ext EBB */ 267 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 268 /* 40: Radix MMU */ 269 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 270 /* 42: PM, 44: PC RA, 46: SC vec'd */ 271 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 272 /* 48: SIMD, 50: QP BFP, 52: String */ 273 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 274 /* 54: DecFP, 56: DecI, 58: SHA */ 275 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 276 /* 60: NM atomic, 62: RNG */ 277 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 278 }; 279 /* 3.1 removes SAO, HTM support */ 280 uint8_t pa_features_31[] = { 74, 0, 281 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 282 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 283 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 284 /* 6: DS207 */ 285 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 286 /* 16: Vector */ 287 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 288 /* 18: Vec. Scalar, 20: Vec. XOR */ 289 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 290 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 291 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 292 /* 32: LE atomic, 34: EBB + ext EBB */ 293 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 294 /* 40: Radix MMU */ 295 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 296 /* 42: PM, 44: PC RA, 46: SC vec'd */ 297 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 298 /* 48: SIMD, 50: QP BFP, 52: String */ 299 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 300 /* 54: DecFP, 56: DecI, 58: SHA */ 301 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 302 /* 60: NM atomic, 62: RNG */ 303 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 304 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */ 305 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */ 306 /* 72: [P]HASHST/[P]HASHCHK */ 307 0x80, 0x00, /* 72 - 73 */ 308 }; 309 uint8_t *pa_features = NULL; 310 size_t pa_size; 311 312 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 313 pa_features = pa_features_206; 314 pa_size = sizeof(pa_features_206); 315 } 316 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 317 pa_features = pa_features_207; 318 pa_size = sizeof(pa_features_207); 319 } 320 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 321 pa_features = pa_features_300; 322 pa_size = sizeof(pa_features_300); 323 } 324 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) { 325 pa_features = pa_features_31; 326 pa_size = sizeof(pa_features_31); 327 } 328 if (!pa_features) { 329 return; 330 } 331 332 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 333 /* 334 * Note: we keep CI large pages off by default because a 64K capable 335 * guest provisioned with large pages might otherwise try to map a qemu 336 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 337 * even if that qemu runs on a 4k host. 338 * We dd this bit back here if we are confident this is not an issue 339 */ 340 pa_features[3] |= 0x20; 341 } 342 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 343 pa_features[24] |= 0x80; /* Transactional memory support */ 344 } 345 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 346 /* Workaround for broken kernels that attempt (guest) radix 347 * mode when they can't handle it, if they see the radix bit set 348 * in pa-features. So hide it from them. */ 349 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 350 } 351 352 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 353 } 354 355 static hwaddr spapr_node0_size(MachineState *machine) 356 { 357 if (machine->numa_state->num_nodes) { 358 int i; 359 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 360 if (machine->numa_state->nodes[i].node_mem) { 361 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 362 machine->ram_size); 363 } 364 } 365 } 366 return machine->ram_size; 367 } 368 369 static void add_str(GString *s, const gchar *s1) 370 { 371 g_string_append_len(s, s1, strlen(s1) + 1); 372 } 373 374 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 375 hwaddr start, hwaddr size) 376 { 377 char mem_name[32]; 378 uint64_t mem_reg_property[2]; 379 int off; 380 381 mem_reg_property[0] = cpu_to_be64(start); 382 mem_reg_property[1] = cpu_to_be64(size); 383 384 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 385 off = fdt_add_subnode(fdt, 0, mem_name); 386 _FDT(off); 387 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 388 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 389 sizeof(mem_reg_property)))); 390 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 391 return off; 392 } 393 394 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 395 { 396 MemoryDeviceInfoList *info; 397 398 for (info = list; info; info = info->next) { 399 MemoryDeviceInfo *value = info->value; 400 401 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 402 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 403 404 if (addr >= pcdimm_info->addr && 405 addr < (pcdimm_info->addr + pcdimm_info->size)) { 406 return pcdimm_info->node; 407 } 408 } 409 } 410 411 return -1; 412 } 413 414 struct sPAPRDrconfCellV2 { 415 uint32_t seq_lmbs; 416 uint64_t base_addr; 417 uint32_t drc_index; 418 uint32_t aa_index; 419 uint32_t flags; 420 } QEMU_PACKED; 421 422 typedef struct DrconfCellQueue { 423 struct sPAPRDrconfCellV2 cell; 424 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 425 } DrconfCellQueue; 426 427 static DrconfCellQueue * 428 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 429 uint32_t drc_index, uint32_t aa_index, 430 uint32_t flags) 431 { 432 DrconfCellQueue *elem; 433 434 elem = g_malloc0(sizeof(*elem)); 435 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 436 elem->cell.base_addr = cpu_to_be64(base_addr); 437 elem->cell.drc_index = cpu_to_be32(drc_index); 438 elem->cell.aa_index = cpu_to_be32(aa_index); 439 elem->cell.flags = cpu_to_be32(flags); 440 441 return elem; 442 } 443 444 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 445 int offset, MemoryDeviceInfoList *dimms) 446 { 447 MachineState *machine = MACHINE(spapr); 448 uint8_t *int_buf, *cur_index; 449 int ret; 450 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 451 uint64_t addr, cur_addr, size; 452 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 453 uint64_t mem_end = machine->device_memory->base + 454 memory_region_size(&machine->device_memory->mr); 455 uint32_t node, buf_len, nr_entries = 0; 456 SpaprDrc *drc; 457 DrconfCellQueue *elem, *next; 458 MemoryDeviceInfoList *info; 459 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 460 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 461 462 /* Entry to cover RAM and the gap area */ 463 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 464 SPAPR_LMB_FLAGS_RESERVED | 465 SPAPR_LMB_FLAGS_DRC_INVALID); 466 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 467 nr_entries++; 468 469 cur_addr = machine->device_memory->base; 470 for (info = dimms; info; info = info->next) { 471 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 472 473 addr = di->addr; 474 size = di->size; 475 node = di->node; 476 477 /* 478 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 479 * area is marked hotpluggable in the next iteration for the bigger 480 * chunk including the NVDIMM occupied area. 481 */ 482 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 483 continue; 484 485 /* Entry for hot-pluggable area */ 486 if (cur_addr < addr) { 487 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 488 g_assert(drc); 489 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 490 cur_addr, spapr_drc_index(drc), -1, 0); 491 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 492 nr_entries++; 493 } 494 495 /* Entry for DIMM */ 496 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 497 g_assert(drc); 498 elem = spapr_get_drconf_cell(size / lmb_size, addr, 499 spapr_drc_index(drc), node, 500 (SPAPR_LMB_FLAGS_ASSIGNED | 501 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 502 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 503 nr_entries++; 504 cur_addr = addr + size; 505 } 506 507 /* Entry for remaining hotpluggable area */ 508 if (cur_addr < mem_end) { 509 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 510 g_assert(drc); 511 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 512 cur_addr, spapr_drc_index(drc), -1, 0); 513 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 514 nr_entries++; 515 } 516 517 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 518 int_buf = cur_index = g_malloc0(buf_len); 519 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 520 cur_index += sizeof(nr_entries); 521 522 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 523 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 524 cur_index += sizeof(elem->cell); 525 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 526 g_free(elem); 527 } 528 529 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 530 g_free(int_buf); 531 if (ret < 0) { 532 return -1; 533 } 534 return 0; 535 } 536 537 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 538 int offset, MemoryDeviceInfoList *dimms) 539 { 540 MachineState *machine = MACHINE(spapr); 541 int i, ret; 542 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 543 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 544 uint32_t nr_lmbs = (machine->device_memory->base + 545 memory_region_size(&machine->device_memory->mr)) / 546 lmb_size; 547 uint32_t *int_buf, *cur_index, buf_len; 548 549 /* 550 * Allocate enough buffer size to fit in ibm,dynamic-memory 551 */ 552 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 553 cur_index = int_buf = g_malloc0(buf_len); 554 int_buf[0] = cpu_to_be32(nr_lmbs); 555 cur_index++; 556 for (i = 0; i < nr_lmbs; i++) { 557 uint64_t addr = i * lmb_size; 558 uint32_t *dynamic_memory = cur_index; 559 560 if (i >= device_lmb_start) { 561 SpaprDrc *drc; 562 563 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 564 g_assert(drc); 565 566 dynamic_memory[0] = cpu_to_be32(addr >> 32); 567 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 568 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 569 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 570 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 571 if (memory_region_present(get_system_memory(), addr)) { 572 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 573 } else { 574 dynamic_memory[5] = cpu_to_be32(0); 575 } 576 } else { 577 /* 578 * LMB information for RMA, boot time RAM and gap b/n RAM and 579 * device memory region -- all these are marked as reserved 580 * and as having no valid DRC. 581 */ 582 dynamic_memory[0] = cpu_to_be32(addr >> 32); 583 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 584 dynamic_memory[2] = cpu_to_be32(0); 585 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 586 dynamic_memory[4] = cpu_to_be32(-1); 587 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 588 SPAPR_LMB_FLAGS_DRC_INVALID); 589 } 590 591 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 592 } 593 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 594 g_free(int_buf); 595 if (ret < 0) { 596 return -1; 597 } 598 return 0; 599 } 600 601 /* 602 * Adds ibm,dynamic-reconfiguration-memory node. 603 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 604 * of this device tree node. 605 */ 606 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 607 void *fdt) 608 { 609 MachineState *machine = MACHINE(spapr); 610 int ret, offset; 611 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 612 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 613 cpu_to_be32(lmb_size & 0xffffffff)}; 614 MemoryDeviceInfoList *dimms = NULL; 615 616 /* Don't create the node if there is no device memory. */ 617 if (!machine->device_memory) { 618 return 0; 619 } 620 621 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 622 623 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 624 sizeof(prop_lmb_size)); 625 if (ret < 0) { 626 return ret; 627 } 628 629 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 630 if (ret < 0) { 631 return ret; 632 } 633 634 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 635 if (ret < 0) { 636 return ret; 637 } 638 639 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 640 dimms = qmp_memory_device_list(); 641 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 642 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 643 } else { 644 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 645 } 646 qapi_free_MemoryDeviceInfoList(dimms); 647 648 if (ret < 0) { 649 return ret; 650 } 651 652 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 653 654 return ret; 655 } 656 657 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 658 { 659 MachineState *machine = MACHINE(spapr); 660 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 661 hwaddr mem_start, node_size; 662 int i, nb_nodes = machine->numa_state->num_nodes; 663 NodeInfo *nodes = machine->numa_state->nodes; 664 665 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 666 if (!nodes[i].node_mem) { 667 continue; 668 } 669 if (mem_start >= machine->ram_size) { 670 node_size = 0; 671 } else { 672 node_size = nodes[i].node_mem; 673 if (node_size > machine->ram_size - mem_start) { 674 node_size = machine->ram_size - mem_start; 675 } 676 } 677 if (!mem_start) { 678 /* spapr_machine_init() checks for rma_size <= node0_size 679 * already */ 680 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 681 mem_start += spapr->rma_size; 682 node_size -= spapr->rma_size; 683 } 684 for ( ; node_size; ) { 685 hwaddr sizetmp = pow2floor(node_size); 686 687 /* mem_start != 0 here */ 688 if (ctzl(mem_start) < ctzl(sizetmp)) { 689 sizetmp = 1ULL << ctzl(mem_start); 690 } 691 692 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 693 node_size -= sizetmp; 694 mem_start += sizetmp; 695 } 696 } 697 698 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 699 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 700 int ret; 701 702 g_assert(smc->dr_lmb_enabled); 703 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 704 if (ret) { 705 return ret; 706 } 707 } 708 709 return 0; 710 } 711 712 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 713 SpaprMachineState *spapr) 714 { 715 MachineState *ms = MACHINE(spapr); 716 PowerPCCPU *cpu = POWERPC_CPU(cs); 717 CPUPPCState *env = &cpu->env; 718 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 719 int index = spapr_get_vcpu_id(cpu); 720 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 721 0xffffffff, 0xffffffff}; 722 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 723 : SPAPR_TIMEBASE_FREQ; 724 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 725 uint32_t page_sizes_prop[64]; 726 size_t page_sizes_prop_size; 727 unsigned int smp_threads = ms->smp.threads; 728 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 729 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 730 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 731 SpaprDrc *drc; 732 int drc_index; 733 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 734 int i; 735 736 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 737 if (drc) { 738 drc_index = spapr_drc_index(drc); 739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 740 } 741 742 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 743 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 744 745 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 746 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 747 env->dcache_line_size))); 748 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 749 env->dcache_line_size))); 750 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 751 env->icache_line_size))); 752 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 753 env->icache_line_size))); 754 755 if (pcc->l1_dcache_size) { 756 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 757 pcc->l1_dcache_size))); 758 } else { 759 warn_report("Unknown L1 dcache size for cpu"); 760 } 761 if (pcc->l1_icache_size) { 762 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 763 pcc->l1_icache_size))); 764 } else { 765 warn_report("Unknown L1 icache size for cpu"); 766 } 767 768 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 769 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 770 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 771 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 772 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 773 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 774 775 if (ppc_has_spr(cpu, SPR_PURR)) { 776 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 777 } 778 if (ppc_has_spr(cpu, SPR_PURR)) { 779 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 780 } 781 782 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 783 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 784 segs, sizeof(segs)))); 785 } 786 787 /* Advertise VSX (vector extensions) if available 788 * 1 == VMX / Altivec available 789 * 2 == VSX available 790 * 791 * Only CPUs for which we create core types in spapr_cpu_core.c 792 * are possible, and all of those have VMX */ 793 if (env->insns_flags & PPC_ALTIVEC) { 794 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 795 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 796 } else { 797 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 798 } 799 } 800 801 /* Advertise DFP (Decimal Floating Point) if available 802 * 0 / no property == no DFP 803 * 1 == DFP available */ 804 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 805 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 806 } 807 808 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 809 sizeof(page_sizes_prop)); 810 if (page_sizes_prop_size) { 811 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 812 page_sizes_prop, page_sizes_prop_size))); 813 } 814 815 spapr_dt_pa_features(spapr, cpu, fdt, offset); 816 817 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 818 cs->cpu_index / vcpus_per_socket))); 819 820 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 821 pft_size_prop, sizeof(pft_size_prop)))); 822 823 if (ms->numa_state->num_nodes > 1) { 824 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 825 } 826 827 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 828 829 if (pcc->radix_page_info) { 830 for (i = 0; i < pcc->radix_page_info->count; i++) { 831 radix_AP_encodings[i] = 832 cpu_to_be32(pcc->radix_page_info->entries[i]); 833 } 834 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 835 radix_AP_encodings, 836 pcc->radix_page_info->count * 837 sizeof(radix_AP_encodings[0])))); 838 } 839 840 /* 841 * We set this property to let the guest know that it can use the large 842 * decrementer and its width in bits. 843 */ 844 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 845 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 846 pcc->lrg_decr_bits))); 847 } 848 849 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs, 850 int cpus_offset) 851 { 852 PowerPCCPU *cpu = POWERPC_CPU(cs); 853 int index = spapr_get_vcpu_id(cpu); 854 DeviceClass *dc = DEVICE_GET_CLASS(cs); 855 g_autofree char *nodename = NULL; 856 int offset; 857 858 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 859 return; 860 } 861 862 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 863 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 864 _FDT(offset); 865 spapr_dt_cpu(cs, fdt, offset, spapr); 866 } 867 868 869 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 870 { 871 CPUState **rev; 872 CPUState *cs; 873 int n_cpus; 874 int cpus_offset; 875 int i; 876 877 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 878 _FDT(cpus_offset); 879 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 880 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 881 882 /* 883 * We walk the CPUs in reverse order to ensure that CPU DT nodes 884 * created by fdt_add_subnode() end up in the right order in FDT 885 * for the guest kernel the enumerate the CPUs correctly. 886 * 887 * The CPU list cannot be traversed in reverse order, so we need 888 * to do extra work. 889 */ 890 n_cpus = 0; 891 rev = NULL; 892 CPU_FOREACH(cs) { 893 rev = g_renew(CPUState *, rev, n_cpus + 1); 894 rev[n_cpus++] = cs; 895 } 896 897 for (i = n_cpus - 1; i >= 0; i--) { 898 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset); 899 } 900 901 g_free(rev); 902 } 903 904 static int spapr_dt_rng(void *fdt) 905 { 906 int node; 907 int ret; 908 909 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 910 if (node <= 0) { 911 return -1; 912 } 913 ret = fdt_setprop_string(fdt, node, "device_type", 914 "ibm,platform-facilities"); 915 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 916 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 917 918 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 919 if (node <= 0) { 920 return -1; 921 } 922 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 923 924 return ret ? -1 : 0; 925 } 926 927 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 928 { 929 MachineState *ms = MACHINE(spapr); 930 int rtas; 931 GString *hypertas = g_string_sized_new(256); 932 GString *qemu_hypertas = g_string_sized_new(256); 933 uint32_t lrdr_capacity[] = { 934 0, 935 0, 936 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 937 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 938 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 939 }; 940 941 /* Do we have device memory? */ 942 if (MACHINE(spapr)->device_memory) { 943 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 944 memory_region_size(&MACHINE(spapr)->device_memory->mr); 945 946 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 947 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 948 } 949 950 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 951 952 /* hypertas */ 953 add_str(hypertas, "hcall-pft"); 954 add_str(hypertas, "hcall-term"); 955 add_str(hypertas, "hcall-dabr"); 956 add_str(hypertas, "hcall-interrupt"); 957 add_str(hypertas, "hcall-tce"); 958 add_str(hypertas, "hcall-vio"); 959 add_str(hypertas, "hcall-splpar"); 960 add_str(hypertas, "hcall-join"); 961 add_str(hypertas, "hcall-bulk"); 962 add_str(hypertas, "hcall-set-mode"); 963 add_str(hypertas, "hcall-sprg0"); 964 add_str(hypertas, "hcall-copy"); 965 add_str(hypertas, "hcall-debug"); 966 add_str(hypertas, "hcall-vphn"); 967 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 968 add_str(hypertas, "hcall-rpt-invalidate"); 969 } 970 971 add_str(qemu_hypertas, "hcall-memop1"); 972 973 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 974 add_str(hypertas, "hcall-multi-tce"); 975 } 976 977 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 978 add_str(hypertas, "hcall-hpt-resize"); 979 } 980 981 add_str(hypertas, "hcall-watchdog"); 982 983 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 984 hypertas->str, hypertas->len)); 985 g_string_free(hypertas, TRUE); 986 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 987 qemu_hypertas->str, qemu_hypertas->len)); 988 g_string_free(qemu_hypertas, TRUE); 989 990 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 991 992 /* 993 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 994 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 995 * 996 * The system reset requirements are driven by existing Linux and PowerVM 997 * implementation which (contrary to PAPR) saves r3 in the error log 998 * structure like machine check, so Linux expects to find the saved r3 999 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 1000 * does not look at the error value). 1001 * 1002 * System reset interrupts are not subject to interlock like machine 1003 * check, so this memory area could be corrupted if the sreset is 1004 * interrupted by a machine check (or vice versa) if it was shared. To 1005 * prevent this, system reset uses per-CPU areas for the sreset save 1006 * area. A system reset that interrupts a system reset handler could 1007 * still overwrite this area, but Linux doesn't try to recover in that 1008 * case anyway. 1009 * 1010 * The extra 8 bytes is required because Linux's FWNMI error log check 1011 * is off-by-one. 1012 * 1013 * RTAS_MIN_SIZE is required for the RTAS blob itself. 1014 */ 1015 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 1016 RTAS_ERROR_LOG_MAX + 1017 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 1018 sizeof(uint64_t))); 1019 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1020 RTAS_ERROR_LOG_MAX)); 1021 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1022 RTAS_EVENT_SCAN_RATE)); 1023 1024 g_assert(msi_nonbroken); 1025 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1026 1027 /* 1028 * According to PAPR, rtas ibm,os-term does not guarantee a return 1029 * back to the guest cpu. 1030 * 1031 * While an additional ibm,extended-os-term property indicates 1032 * that rtas call return will always occur. Set this property. 1033 */ 1034 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1035 1036 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1037 lrdr_capacity, sizeof(lrdr_capacity))); 1038 1039 spapr_dt_rtas_tokens(fdt, rtas); 1040 } 1041 1042 /* 1043 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1044 * and the XIVE features that the guest may request and thus the valid 1045 * values for bytes 23..26 of option vector 5: 1046 */ 1047 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1048 int chosen) 1049 { 1050 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1051 1052 char val[2 * 4] = { 1053 23, 0x00, /* XICS / XIVE mode */ 1054 24, 0x00, /* Hash/Radix, filled in below. */ 1055 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1056 26, 0x40, /* Radix options: GTSE == yes. */ 1057 }; 1058 1059 if (spapr->irq->xics && spapr->irq->xive) { 1060 val[1] = SPAPR_OV5_XIVE_BOTH; 1061 } else if (spapr->irq->xive) { 1062 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1063 } else { 1064 assert(spapr->irq->xics); 1065 val[1] = SPAPR_OV5_XIVE_LEGACY; 1066 } 1067 1068 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1069 first_ppc_cpu->compat_pvr)) { 1070 /* 1071 * If we're in a pre POWER9 compat mode then the guest should 1072 * do hash and use the legacy interrupt mode 1073 */ 1074 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1075 val[3] = 0x00; /* Hash */ 1076 spapr_check_mmu_mode(false); 1077 } else if (kvm_enabled()) { 1078 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1079 val[3] = 0x80; /* OV5_MMU_BOTH */ 1080 } else if (kvmppc_has_cap_mmu_radix()) { 1081 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1082 } else { 1083 val[3] = 0x00; /* Hash */ 1084 } 1085 } else { 1086 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1087 val[3] = 0xC0; 1088 } 1089 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1090 val, sizeof(val))); 1091 } 1092 1093 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1094 { 1095 MachineState *machine = MACHINE(spapr); 1096 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1097 int chosen; 1098 1099 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1100 1101 if (reset) { 1102 const char *boot_device = spapr->boot_device; 1103 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1104 size_t cb = 0; 1105 g_autofree char *bootlist = get_boot_devices_list(&cb); 1106 1107 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1108 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1109 machine->kernel_cmdline)); 1110 } 1111 1112 if (spapr->initrd_size) { 1113 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1114 spapr->initrd_base)); 1115 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1116 spapr->initrd_base + spapr->initrd_size)); 1117 } 1118 1119 if (spapr->kernel_size) { 1120 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1121 cpu_to_be64(spapr->kernel_size) }; 1122 1123 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1124 &kprop, sizeof(kprop))); 1125 if (spapr->kernel_le) { 1126 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1127 } 1128 } 1129 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1130 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1131 } 1132 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1133 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1134 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1135 1136 if (cb && bootlist) { 1137 int i; 1138 1139 for (i = 0; i < cb; i++) { 1140 if (bootlist[i] == '\n') { 1141 bootlist[i] = ' '; 1142 } 1143 } 1144 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1145 } 1146 1147 if (boot_device && strlen(boot_device)) { 1148 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1149 } 1150 1151 if (spapr->want_stdout_path && stdout_path) { 1152 /* 1153 * "linux,stdout-path" and "stdout" properties are 1154 * deprecated by linux kernel. New platforms should only 1155 * use the "stdout-path" property. Set the new property 1156 * and continue using older property to remain compatible 1157 * with the existing firmware. 1158 */ 1159 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1160 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1161 } 1162 1163 /* 1164 * We can deal with BAR reallocation just fine, advertise it 1165 * to the guest 1166 */ 1167 if (smc->linux_pci_probe) { 1168 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1169 } 1170 1171 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1172 } 1173 1174 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); 1175 1176 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1177 } 1178 1179 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1180 { 1181 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1182 * KVM to work under pHyp with some guest co-operation */ 1183 int hypervisor; 1184 uint8_t hypercall[16]; 1185 1186 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1187 /* indicate KVM hypercall interface */ 1188 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1189 if (kvmppc_has_cap_fixup_hcalls()) { 1190 /* 1191 * Older KVM versions with older guest kernels were broken 1192 * with the magic page, don't allow the guest to map it. 1193 */ 1194 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall, 1195 sizeof(hypercall))) { 1196 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1197 hypercall, sizeof(hypercall))); 1198 } 1199 } 1200 } 1201 1202 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1203 { 1204 MachineState *machine = MACHINE(spapr); 1205 MachineClass *mc = MACHINE_GET_CLASS(machine); 1206 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1207 uint32_t root_drc_type_mask = 0; 1208 int ret; 1209 void *fdt; 1210 SpaprPhbState *phb; 1211 char *buf; 1212 1213 fdt = g_malloc0(space); 1214 _FDT((fdt_create_empty_tree(fdt, space))); 1215 1216 /* Root node */ 1217 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1218 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1219 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1220 1221 /* Guest UUID & Name*/ 1222 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1223 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1224 if (qemu_uuid_set) { 1225 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1226 } 1227 g_free(buf); 1228 1229 if (qemu_get_vm_name()) { 1230 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1231 qemu_get_vm_name())); 1232 } 1233 1234 /* Host Model & Serial Number */ 1235 if (spapr->host_model) { 1236 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1237 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1238 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1239 g_free(buf); 1240 } 1241 1242 if (spapr->host_serial) { 1243 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1244 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1245 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1246 g_free(buf); 1247 } 1248 1249 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1250 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1251 1252 /* /interrupt controller */ 1253 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1254 1255 ret = spapr_dt_memory(spapr, fdt); 1256 if (ret < 0) { 1257 error_report("couldn't setup memory nodes in fdt"); 1258 exit(1); 1259 } 1260 1261 /* /vdevice */ 1262 spapr_dt_vdevice(spapr->vio_bus, fdt); 1263 1264 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1265 ret = spapr_dt_rng(fdt); 1266 if (ret < 0) { 1267 error_report("could not set up rng device in the fdt"); 1268 exit(1); 1269 } 1270 } 1271 1272 QLIST_FOREACH(phb, &spapr->phbs, list) { 1273 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1274 if (ret < 0) { 1275 error_report("couldn't setup PCI devices in fdt"); 1276 exit(1); 1277 } 1278 } 1279 1280 spapr_dt_cpus(fdt, spapr); 1281 1282 /* ibm,drc-indexes and friends */ 1283 if (smc->dr_lmb_enabled) { 1284 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1285 } 1286 if (smc->dr_phb_enabled) { 1287 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1288 } 1289 if (mc->nvdimm_supported) { 1290 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1291 } 1292 if (root_drc_type_mask) { 1293 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1294 } 1295 1296 if (mc->has_hotpluggable_cpus) { 1297 int offset = fdt_path_offset(fdt, "/cpus"); 1298 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1299 if (ret < 0) { 1300 error_report("Couldn't set up CPU DR device tree properties"); 1301 exit(1); 1302 } 1303 } 1304 1305 /* /event-sources */ 1306 spapr_dt_events(spapr, fdt); 1307 1308 /* /rtas */ 1309 spapr_dt_rtas(spapr, fdt); 1310 1311 /* /chosen */ 1312 spapr_dt_chosen(spapr, fdt, reset); 1313 1314 /* /hypervisor */ 1315 if (kvm_enabled()) { 1316 spapr_dt_hypervisor(spapr, fdt); 1317 } 1318 1319 /* Build memory reserve map */ 1320 if (reset) { 1321 if (spapr->kernel_size) { 1322 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1323 spapr->kernel_size))); 1324 } 1325 if (spapr->initrd_size) { 1326 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1327 spapr->initrd_size))); 1328 } 1329 } 1330 1331 /* NVDIMM devices */ 1332 if (mc->nvdimm_supported) { 1333 spapr_dt_persistent_memory(spapr, fdt); 1334 } 1335 1336 return fdt; 1337 } 1338 1339 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1340 { 1341 SpaprMachineState *spapr = opaque; 1342 1343 return (addr & 0x0fffffff) + spapr->kernel_addr; 1344 } 1345 1346 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1347 PowerPCCPU *cpu) 1348 { 1349 CPUPPCState *env = &cpu->env; 1350 1351 /* The TCG path should also be holding the BQL at this point */ 1352 g_assert(bql_locked()); 1353 1354 g_assert(!vhyp_cpu_in_nested(cpu)); 1355 1356 if (FIELD_EX64(env->msr, MSR, PR)) { 1357 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1358 env->gpr[3] = H_PRIVILEGE; 1359 } else { 1360 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1361 } 1362 } 1363 1364 struct LPCRSyncState { 1365 target_ulong value; 1366 target_ulong mask; 1367 }; 1368 1369 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1370 { 1371 struct LPCRSyncState *s = arg.host_ptr; 1372 PowerPCCPU *cpu = POWERPC_CPU(cs); 1373 CPUPPCState *env = &cpu->env; 1374 target_ulong lpcr; 1375 1376 cpu_synchronize_state(cs); 1377 lpcr = env->spr[SPR_LPCR]; 1378 lpcr &= ~s->mask; 1379 lpcr |= s->value; 1380 ppc_store_lpcr(cpu, lpcr); 1381 } 1382 1383 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1384 { 1385 CPUState *cs; 1386 struct LPCRSyncState s = { 1387 .value = value, 1388 .mask = mask 1389 }; 1390 CPU_FOREACH(cs) { 1391 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1392 } 1393 } 1394 1395 /* May be used when the machine is not running */ 1396 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1397 { 1398 CPUState *cs; 1399 CPU_FOREACH(cs) { 1400 PowerPCCPU *cpu = POWERPC_CPU(cs); 1401 CPUPPCState *env = &cpu->env; 1402 target_ulong lpcr; 1403 1404 lpcr = env->spr[SPR_LPCR]; 1405 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1406 ppc_store_lpcr(cpu, lpcr); 1407 } 1408 } 1409 1410 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1411 target_ulong lpid, ppc_v3_pate_t *entry) 1412 { 1413 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1414 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1415 1416 if (!spapr_cpu->in_nested) { 1417 assert(lpid == 0); 1418 1419 /* Copy PATE1:GR into PATE0:HR */ 1420 entry->dw0 = spapr->patb_entry & PATE0_HR; 1421 entry->dw1 = spapr->patb_entry; 1422 return true; 1423 } else { 1424 return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry); 1425 } 1426 } 1427 1428 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1429 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1430 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1431 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1432 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1433 1434 /* 1435 * Get the fd to access the kernel htab, re-opening it if necessary 1436 */ 1437 static int get_htab_fd(SpaprMachineState *spapr) 1438 { 1439 Error *local_err = NULL; 1440 1441 if (spapr->htab_fd >= 0) { 1442 return spapr->htab_fd; 1443 } 1444 1445 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1446 if (spapr->htab_fd < 0) { 1447 error_report_err(local_err); 1448 } 1449 1450 return spapr->htab_fd; 1451 } 1452 1453 void close_htab_fd(SpaprMachineState *spapr) 1454 { 1455 if (spapr->htab_fd >= 0) { 1456 close(spapr->htab_fd); 1457 } 1458 spapr->htab_fd = -1; 1459 } 1460 1461 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1462 { 1463 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1464 1465 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1466 } 1467 1468 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1469 { 1470 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1471 1472 assert(kvm_enabled()); 1473 1474 if (!spapr->htab) { 1475 return 0; 1476 } 1477 1478 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1479 } 1480 1481 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1482 hwaddr ptex, int n) 1483 { 1484 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1485 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1486 1487 if (!spapr->htab) { 1488 /* 1489 * HTAB is controlled by KVM. Fetch into temporary buffer 1490 */ 1491 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1492 kvmppc_read_hptes(hptes, ptex, n); 1493 return hptes; 1494 } 1495 1496 /* 1497 * HTAB is controlled by QEMU. Just point to the internally 1498 * accessible PTEG. 1499 */ 1500 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1501 } 1502 1503 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1504 const ppc_hash_pte64_t *hptes, 1505 hwaddr ptex, int n) 1506 { 1507 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1508 1509 if (!spapr->htab) { 1510 g_free((void *)hptes); 1511 } 1512 1513 /* Nothing to do for qemu managed HPT */ 1514 } 1515 1516 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1517 uint64_t pte0, uint64_t pte1) 1518 { 1519 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1520 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1521 1522 if (!spapr->htab) { 1523 kvmppc_write_hpte(ptex, pte0, pte1); 1524 } else { 1525 if (pte0 & HPTE64_V_VALID) { 1526 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1527 /* 1528 * When setting valid, we write PTE1 first. This ensures 1529 * proper synchronization with the reading code in 1530 * ppc_hash64_pteg_search() 1531 */ 1532 smp_wmb(); 1533 stq_p(spapr->htab + offset, pte0); 1534 } else { 1535 stq_p(spapr->htab + offset, pte0); 1536 /* 1537 * When clearing it we set PTE0 first. This ensures proper 1538 * synchronization with the reading code in 1539 * ppc_hash64_pteg_search() 1540 */ 1541 smp_wmb(); 1542 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1543 } 1544 } 1545 } 1546 1547 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1548 uint64_t pte1) 1549 { 1550 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1551 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1552 1553 if (!spapr->htab) { 1554 /* There should always be a hash table when this is called */ 1555 error_report("spapr_hpte_set_c called with no hash table !"); 1556 return; 1557 } 1558 1559 /* The HW performs a non-atomic byte update */ 1560 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1561 } 1562 1563 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1564 uint64_t pte1) 1565 { 1566 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1567 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1568 1569 if (!spapr->htab) { 1570 /* There should always be a hash table when this is called */ 1571 error_report("spapr_hpte_set_r called with no hash table !"); 1572 return; 1573 } 1574 1575 /* The HW performs a non-atomic byte update */ 1576 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1577 } 1578 1579 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1580 { 1581 int shift; 1582 1583 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1584 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1585 * that's much more than is needed for Linux guests */ 1586 shift = ctz64(pow2ceil(ramsize)) - 7; 1587 shift = MAX(shift, 18); /* Minimum architected size */ 1588 shift = MIN(shift, 46); /* Maximum architected size */ 1589 return shift; 1590 } 1591 1592 void spapr_free_hpt(SpaprMachineState *spapr) 1593 { 1594 qemu_vfree(spapr->htab); 1595 spapr->htab = NULL; 1596 spapr->htab_shift = 0; 1597 close_htab_fd(spapr); 1598 } 1599 1600 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1601 { 1602 ERRP_GUARD(); 1603 long rc; 1604 1605 /* Clean up any HPT info from a previous boot */ 1606 spapr_free_hpt(spapr); 1607 1608 rc = kvmppc_reset_htab(shift); 1609 1610 if (rc == -EOPNOTSUPP) { 1611 error_setg(errp, "HPT not supported in nested guests"); 1612 return -EOPNOTSUPP; 1613 } 1614 1615 if (rc < 0) { 1616 /* kernel-side HPT needed, but couldn't allocate one */ 1617 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1618 shift); 1619 error_append_hint(errp, "Try smaller maxmem?\n"); 1620 return -errno; 1621 } else if (rc > 0) { 1622 /* kernel-side HPT allocated */ 1623 if (rc != shift) { 1624 error_setg(errp, 1625 "Requested order %d HPT, but kernel allocated order %ld", 1626 shift, rc); 1627 error_append_hint(errp, "Try smaller maxmem?\n"); 1628 return -ENOSPC; 1629 } 1630 1631 spapr->htab_shift = shift; 1632 spapr->htab = NULL; 1633 } else { 1634 /* kernel-side HPT not needed, allocate in userspace instead */ 1635 size_t size = 1ULL << shift; 1636 int i; 1637 1638 spapr->htab = qemu_memalign(size, size); 1639 memset(spapr->htab, 0, size); 1640 spapr->htab_shift = shift; 1641 1642 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1643 DIRTY_HPTE(HPTE(spapr->htab, i)); 1644 } 1645 } 1646 /* We're setting up a hash table, so that means we're not radix */ 1647 spapr->patb_entry = 0; 1648 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1649 return 0; 1650 } 1651 1652 void spapr_setup_hpt(SpaprMachineState *spapr) 1653 { 1654 int hpt_shift; 1655 1656 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1657 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1658 } else { 1659 uint64_t current_ram_size; 1660 1661 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1662 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1663 } 1664 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1665 1666 if (kvm_enabled()) { 1667 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1668 1669 /* Check our RMA fits in the possible VRMA */ 1670 if (vrma_limit < spapr->rma_size) { 1671 error_report("Unable to create %" HWADDR_PRIu 1672 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1673 spapr->rma_size / MiB, vrma_limit / MiB); 1674 exit(EXIT_FAILURE); 1675 } 1676 } 1677 } 1678 1679 void spapr_check_mmu_mode(bool guest_radix) 1680 { 1681 if (guest_radix) { 1682 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1683 error_report("Guest requested unavailable MMU mode (radix)."); 1684 exit(EXIT_FAILURE); 1685 } 1686 } else { 1687 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1688 && !kvmppc_has_cap_mmu_hash_v3()) { 1689 error_report("Guest requested unavailable MMU mode (hash)."); 1690 exit(EXIT_FAILURE); 1691 } 1692 } 1693 } 1694 1695 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1696 { 1697 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1698 PowerPCCPU *first_ppc_cpu; 1699 hwaddr fdt_addr; 1700 void *fdt; 1701 int rc; 1702 1703 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) { 1704 /* 1705 * Record-replay snapshot load must not consume random, this was 1706 * already replayed from initial machine reset. 1707 */ 1708 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); 1709 } 1710 1711 pef_kvm_reset(machine->cgs, &error_fatal); 1712 spapr_caps_apply(spapr); 1713 spapr_nested_reset(spapr); 1714 1715 first_ppc_cpu = POWERPC_CPU(first_cpu); 1716 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1717 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1718 spapr->max_compat_pvr)) { 1719 /* 1720 * If using KVM with radix mode available, VCPUs can be started 1721 * without a HPT because KVM will start them in radix mode. 1722 * Set the GR bit in PATE so that we know there is no HPT. 1723 */ 1724 spapr->patb_entry = PATE1_GR; 1725 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1726 } else { 1727 spapr_setup_hpt(spapr); 1728 } 1729 1730 qemu_devices_reset(reason); 1731 1732 spapr_ovec_cleanup(spapr->ov5_cas); 1733 spapr->ov5_cas = spapr_ovec_new(); 1734 1735 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1736 1737 /* 1738 * This is fixing some of the default configuration of the XIVE 1739 * devices. To be called after the reset of the machine devices. 1740 */ 1741 spapr_irq_reset(spapr, &error_fatal); 1742 1743 /* 1744 * There is no CAS under qtest. Simulate one to please the code that 1745 * depends on spapr->ov5_cas. This is especially needed to test device 1746 * unplug, so we do that before resetting the DRCs. 1747 */ 1748 if (qtest_enabled()) { 1749 spapr_ovec_cleanup(spapr->ov5_cas); 1750 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1751 } 1752 1753 spapr_nvdimm_finish_flushes(); 1754 1755 /* DRC reset may cause a device to be unplugged. This will cause troubles 1756 * if this device is used by another device (eg, a running vhost backend 1757 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1758 * situations, we reset DRCs after all devices have been reset. 1759 */ 1760 spapr_drc_reset_all(spapr); 1761 1762 spapr_clear_pending_events(spapr); 1763 1764 /* 1765 * We place the device tree just below either the top of the RMA, 1766 * or just below 2GB, whichever is lower, so that it can be 1767 * processed with 32-bit real mode code if necessary 1768 */ 1769 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1770 1771 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1772 if (spapr->vof) { 1773 spapr_vof_reset(spapr, fdt, &error_fatal); 1774 /* 1775 * Do not pack the FDT as the client may change properties. 1776 * VOF client does not expect the FDT so we do not load it to the VM. 1777 */ 1778 } else { 1779 rc = fdt_pack(fdt); 1780 /* Should only fail if we've built a corrupted tree */ 1781 assert(rc == 0); 1782 1783 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1784 0, fdt_addr, 0); 1785 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1786 } 1787 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1788 1789 g_free(spapr->fdt_blob); 1790 spapr->fdt_size = fdt_totalsize(fdt); 1791 spapr->fdt_initial_size = spapr->fdt_size; 1792 spapr->fdt_blob = fdt; 1793 1794 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1795 machine->fdt = fdt; 1796 1797 /* Set up the entry state */ 1798 first_ppc_cpu->env.gpr[5] = 0; 1799 1800 spapr->fwnmi_system_reset_addr = -1; 1801 spapr->fwnmi_machine_check_addr = -1; 1802 spapr->fwnmi_machine_check_interlock = -1; 1803 1804 /* Signal all vCPUs waiting on this condition */ 1805 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1806 1807 migrate_del_blocker(&spapr->fwnmi_migration_blocker); 1808 } 1809 1810 static void spapr_create_nvram(SpaprMachineState *spapr) 1811 { 1812 DeviceState *dev = qdev_new("spapr-nvram"); 1813 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1814 1815 if (dinfo) { 1816 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1817 &error_fatal); 1818 } 1819 1820 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1821 1822 spapr->nvram = (struct SpaprNvram *)dev; 1823 } 1824 1825 static void spapr_rtc_create(SpaprMachineState *spapr) 1826 { 1827 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1828 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1829 &error_fatal, NULL); 1830 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1831 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1832 "date"); 1833 } 1834 1835 /* Returns whether we want to use VGA or not */ 1836 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1837 { 1838 vga_interface_created = true; 1839 switch (vga_interface_type) { 1840 case VGA_NONE: 1841 return false; 1842 case VGA_DEVICE: 1843 return true; 1844 case VGA_STD: 1845 case VGA_VIRTIO: 1846 case VGA_CIRRUS: 1847 return pci_vga_init(pci_bus) != NULL; 1848 default: 1849 error_setg(errp, 1850 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1851 return false; 1852 } 1853 } 1854 1855 static int spapr_pre_load(void *opaque) 1856 { 1857 int rc; 1858 1859 rc = spapr_caps_pre_load(opaque); 1860 if (rc) { 1861 return rc; 1862 } 1863 1864 return 0; 1865 } 1866 1867 static int spapr_post_load(void *opaque, int version_id) 1868 { 1869 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1870 int err = 0; 1871 1872 err = spapr_caps_post_migration(spapr); 1873 if (err) { 1874 return err; 1875 } 1876 1877 /* 1878 * In earlier versions, there was no separate qdev for the PAPR 1879 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1880 * So when migrating from those versions, poke the incoming offset 1881 * value into the RTC device 1882 */ 1883 if (version_id < 3) { 1884 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1885 if (err) { 1886 return err; 1887 } 1888 } 1889 1890 if (kvm_enabled() && spapr->patb_entry) { 1891 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1892 bool radix = !!(spapr->patb_entry & PATE1_GR); 1893 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1894 1895 /* 1896 * Update LPCR:HR and UPRT as they may not be set properly in 1897 * the stream 1898 */ 1899 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1900 LPCR_HR | LPCR_UPRT); 1901 1902 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1903 if (err) { 1904 error_report("Process table config unsupported by the host"); 1905 return -EINVAL; 1906 } 1907 } 1908 1909 err = spapr_irq_post_load(spapr, version_id); 1910 if (err) { 1911 return err; 1912 } 1913 1914 return err; 1915 } 1916 1917 static int spapr_pre_save(void *opaque) 1918 { 1919 int rc; 1920 1921 rc = spapr_caps_pre_save(opaque); 1922 if (rc) { 1923 return rc; 1924 } 1925 1926 return 0; 1927 } 1928 1929 static bool version_before_3(void *opaque, int version_id) 1930 { 1931 return version_id < 3; 1932 } 1933 1934 static bool spapr_pending_events_needed(void *opaque) 1935 { 1936 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1937 return !QTAILQ_EMPTY(&spapr->pending_events); 1938 } 1939 1940 static const VMStateDescription vmstate_spapr_event_entry = { 1941 .name = "spapr_event_log_entry", 1942 .version_id = 1, 1943 .minimum_version_id = 1, 1944 .fields = (const VMStateField[]) { 1945 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1946 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1947 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1948 NULL, extended_length), 1949 VMSTATE_END_OF_LIST() 1950 }, 1951 }; 1952 1953 static const VMStateDescription vmstate_spapr_pending_events = { 1954 .name = "spapr_pending_events", 1955 .version_id = 1, 1956 .minimum_version_id = 1, 1957 .needed = spapr_pending_events_needed, 1958 .fields = (const VMStateField[]) { 1959 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1960 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1961 VMSTATE_END_OF_LIST() 1962 }, 1963 }; 1964 1965 static bool spapr_ov5_cas_needed(void *opaque) 1966 { 1967 SpaprMachineState *spapr = opaque; 1968 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1969 bool cas_needed; 1970 1971 /* Prior to the introduction of SpaprOptionVector, we had two option 1972 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1973 * Both of these options encode machine topology into the device-tree 1974 * in such a way that the now-booted OS should still be able to interact 1975 * appropriately with QEMU regardless of what options were actually 1976 * negotiatied on the source side. 1977 * 1978 * As such, we can avoid migrating the CAS-negotiated options if these 1979 * are the only options available on the current machine/platform. 1980 * Since these are the only options available for pseries-2.7 and 1981 * earlier, this allows us to maintain old->new/new->old migration 1982 * compatibility. 1983 * 1984 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1985 * via default pseries-2.8 machines and explicit command-line parameters. 1986 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1987 * of the actual CAS-negotiated values to continue working properly. For 1988 * example, availability of memory unplug depends on knowing whether 1989 * OV5_HP_EVT was negotiated via CAS. 1990 * 1991 * Thus, for any cases where the set of available CAS-negotiatable 1992 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1993 * include the CAS-negotiated options in the migration stream, unless 1994 * if they affect boot time behaviour only. 1995 */ 1996 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1997 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1998 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1999 2000 /* We need extra information if we have any bits outside the mask 2001 * defined above */ 2002 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 2003 2004 spapr_ovec_cleanup(ov5_mask); 2005 2006 return cas_needed; 2007 } 2008 2009 static const VMStateDescription vmstate_spapr_ov5_cas = { 2010 .name = "spapr_option_vector_ov5_cas", 2011 .version_id = 1, 2012 .minimum_version_id = 1, 2013 .needed = spapr_ov5_cas_needed, 2014 .fields = (const VMStateField[]) { 2015 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2016 vmstate_spapr_ovec, SpaprOptionVector), 2017 VMSTATE_END_OF_LIST() 2018 }, 2019 }; 2020 2021 static bool spapr_patb_entry_needed(void *opaque) 2022 { 2023 SpaprMachineState *spapr = opaque; 2024 2025 return !!spapr->patb_entry; 2026 } 2027 2028 static const VMStateDescription vmstate_spapr_patb_entry = { 2029 .name = "spapr_patb_entry", 2030 .version_id = 1, 2031 .minimum_version_id = 1, 2032 .needed = spapr_patb_entry_needed, 2033 .fields = (const VMStateField[]) { 2034 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2035 VMSTATE_END_OF_LIST() 2036 }, 2037 }; 2038 2039 static bool spapr_irq_map_needed(void *opaque) 2040 { 2041 SpaprMachineState *spapr = opaque; 2042 2043 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2044 } 2045 2046 static const VMStateDescription vmstate_spapr_irq_map = { 2047 .name = "spapr_irq_map", 2048 .version_id = 1, 2049 .minimum_version_id = 1, 2050 .needed = spapr_irq_map_needed, 2051 .fields = (const VMStateField[]) { 2052 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2053 VMSTATE_END_OF_LIST() 2054 }, 2055 }; 2056 2057 static bool spapr_dtb_needed(void *opaque) 2058 { 2059 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2060 2061 return smc->update_dt_enabled; 2062 } 2063 2064 static int spapr_dtb_pre_load(void *opaque) 2065 { 2066 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2067 2068 g_free(spapr->fdt_blob); 2069 spapr->fdt_blob = NULL; 2070 spapr->fdt_size = 0; 2071 2072 return 0; 2073 } 2074 2075 static const VMStateDescription vmstate_spapr_dtb = { 2076 .name = "spapr_dtb", 2077 .version_id = 1, 2078 .minimum_version_id = 1, 2079 .needed = spapr_dtb_needed, 2080 .pre_load = spapr_dtb_pre_load, 2081 .fields = (const VMStateField[]) { 2082 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2083 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2084 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2085 fdt_size), 2086 VMSTATE_END_OF_LIST() 2087 }, 2088 }; 2089 2090 static bool spapr_fwnmi_needed(void *opaque) 2091 { 2092 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2093 2094 return spapr->fwnmi_machine_check_addr != -1; 2095 } 2096 2097 static int spapr_fwnmi_pre_save(void *opaque) 2098 { 2099 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2100 2101 /* 2102 * Check if machine check handling is in progress and print a 2103 * warning message. 2104 */ 2105 if (spapr->fwnmi_machine_check_interlock != -1) { 2106 warn_report("A machine check is being handled during migration. The" 2107 "handler may run and log hardware error on the destination"); 2108 } 2109 2110 return 0; 2111 } 2112 2113 static const VMStateDescription vmstate_spapr_fwnmi = { 2114 .name = "spapr_fwnmi", 2115 .version_id = 1, 2116 .minimum_version_id = 1, 2117 .needed = spapr_fwnmi_needed, 2118 .pre_save = spapr_fwnmi_pre_save, 2119 .fields = (const VMStateField[]) { 2120 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2121 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2122 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2123 VMSTATE_END_OF_LIST() 2124 }, 2125 }; 2126 2127 static const VMStateDescription vmstate_spapr = { 2128 .name = "spapr", 2129 .version_id = 3, 2130 .minimum_version_id = 1, 2131 .pre_load = spapr_pre_load, 2132 .post_load = spapr_post_load, 2133 .pre_save = spapr_pre_save, 2134 .fields = (const VMStateField[]) { 2135 /* used to be @next_irq */ 2136 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2137 2138 /* RTC offset */ 2139 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2140 2141 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2142 VMSTATE_END_OF_LIST() 2143 }, 2144 .subsections = (const VMStateDescription * const []) { 2145 &vmstate_spapr_ov5_cas, 2146 &vmstate_spapr_patb_entry, 2147 &vmstate_spapr_pending_events, 2148 &vmstate_spapr_cap_htm, 2149 &vmstate_spapr_cap_vsx, 2150 &vmstate_spapr_cap_dfp, 2151 &vmstate_spapr_cap_cfpc, 2152 &vmstate_spapr_cap_sbbc, 2153 &vmstate_spapr_cap_ibs, 2154 &vmstate_spapr_cap_hpt_maxpagesize, 2155 &vmstate_spapr_irq_map, 2156 &vmstate_spapr_cap_nested_kvm_hv, 2157 &vmstate_spapr_dtb, 2158 &vmstate_spapr_cap_large_decr, 2159 &vmstate_spapr_cap_ccf_assist, 2160 &vmstate_spapr_cap_fwnmi, 2161 &vmstate_spapr_fwnmi, 2162 &vmstate_spapr_cap_rpt_invalidate, 2163 NULL 2164 } 2165 }; 2166 2167 static int htab_save_setup(QEMUFile *f, void *opaque) 2168 { 2169 SpaprMachineState *spapr = opaque; 2170 2171 /* "Iteration" header */ 2172 if (!spapr->htab_shift) { 2173 qemu_put_be32(f, -1); 2174 } else { 2175 qemu_put_be32(f, spapr->htab_shift); 2176 } 2177 2178 if (spapr->htab) { 2179 spapr->htab_save_index = 0; 2180 spapr->htab_first_pass = true; 2181 } else { 2182 if (spapr->htab_shift) { 2183 assert(kvm_enabled()); 2184 } 2185 } 2186 2187 2188 return 0; 2189 } 2190 2191 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2192 int chunkstart, int n_valid, int n_invalid) 2193 { 2194 qemu_put_be32(f, chunkstart); 2195 qemu_put_be16(f, n_valid); 2196 qemu_put_be16(f, n_invalid); 2197 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2198 HASH_PTE_SIZE_64 * n_valid); 2199 } 2200 2201 static void htab_save_end_marker(QEMUFile *f) 2202 { 2203 qemu_put_be32(f, 0); 2204 qemu_put_be16(f, 0); 2205 qemu_put_be16(f, 0); 2206 } 2207 2208 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2209 int64_t max_ns) 2210 { 2211 bool has_timeout = max_ns != -1; 2212 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2213 int index = spapr->htab_save_index; 2214 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2215 2216 assert(spapr->htab_first_pass); 2217 2218 do { 2219 int chunkstart; 2220 2221 /* Consume invalid HPTEs */ 2222 while ((index < htabslots) 2223 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2224 CLEAN_HPTE(HPTE(spapr->htab, index)); 2225 index++; 2226 } 2227 2228 /* Consume valid HPTEs */ 2229 chunkstart = index; 2230 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2231 && HPTE_VALID(HPTE(spapr->htab, index))) { 2232 CLEAN_HPTE(HPTE(spapr->htab, index)); 2233 index++; 2234 } 2235 2236 if (index > chunkstart) { 2237 int n_valid = index - chunkstart; 2238 2239 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2240 2241 if (has_timeout && 2242 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2243 break; 2244 } 2245 } 2246 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2247 2248 if (index >= htabslots) { 2249 assert(index == htabslots); 2250 index = 0; 2251 spapr->htab_first_pass = false; 2252 } 2253 spapr->htab_save_index = index; 2254 } 2255 2256 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2257 int64_t max_ns) 2258 { 2259 bool final = max_ns < 0; 2260 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2261 int examined = 0, sent = 0; 2262 int index = spapr->htab_save_index; 2263 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2264 2265 assert(!spapr->htab_first_pass); 2266 2267 do { 2268 int chunkstart, invalidstart; 2269 2270 /* Consume non-dirty HPTEs */ 2271 while ((index < htabslots) 2272 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2273 index++; 2274 examined++; 2275 } 2276 2277 chunkstart = index; 2278 /* Consume valid dirty HPTEs */ 2279 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2280 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2281 && HPTE_VALID(HPTE(spapr->htab, index))) { 2282 CLEAN_HPTE(HPTE(spapr->htab, index)); 2283 index++; 2284 examined++; 2285 } 2286 2287 invalidstart = index; 2288 /* Consume invalid dirty HPTEs */ 2289 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2290 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2291 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2292 CLEAN_HPTE(HPTE(spapr->htab, index)); 2293 index++; 2294 examined++; 2295 } 2296 2297 if (index > chunkstart) { 2298 int n_valid = invalidstart - chunkstart; 2299 int n_invalid = index - invalidstart; 2300 2301 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2302 sent += index - chunkstart; 2303 2304 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2305 break; 2306 } 2307 } 2308 2309 if (examined >= htabslots) { 2310 break; 2311 } 2312 2313 if (index >= htabslots) { 2314 assert(index == htabslots); 2315 index = 0; 2316 } 2317 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2318 2319 if (index >= htabslots) { 2320 assert(index == htabslots); 2321 index = 0; 2322 } 2323 2324 spapr->htab_save_index = index; 2325 2326 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2327 } 2328 2329 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2330 #define MAX_KVM_BUF_SIZE 2048 2331 2332 static int htab_save_iterate(QEMUFile *f, void *opaque) 2333 { 2334 SpaprMachineState *spapr = opaque; 2335 int fd; 2336 int rc = 0; 2337 2338 /* Iteration header */ 2339 if (!spapr->htab_shift) { 2340 qemu_put_be32(f, -1); 2341 return 1; 2342 } else { 2343 qemu_put_be32(f, 0); 2344 } 2345 2346 if (!spapr->htab) { 2347 assert(kvm_enabled()); 2348 2349 fd = get_htab_fd(spapr); 2350 if (fd < 0) { 2351 return fd; 2352 } 2353 2354 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2355 if (rc < 0) { 2356 return rc; 2357 } 2358 } else if (spapr->htab_first_pass) { 2359 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2360 } else { 2361 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2362 } 2363 2364 htab_save_end_marker(f); 2365 2366 return rc; 2367 } 2368 2369 static int htab_save_complete(QEMUFile *f, void *opaque) 2370 { 2371 SpaprMachineState *spapr = opaque; 2372 int fd; 2373 2374 /* Iteration header */ 2375 if (!spapr->htab_shift) { 2376 qemu_put_be32(f, -1); 2377 return 0; 2378 } else { 2379 qemu_put_be32(f, 0); 2380 } 2381 2382 if (!spapr->htab) { 2383 int rc; 2384 2385 assert(kvm_enabled()); 2386 2387 fd = get_htab_fd(spapr); 2388 if (fd < 0) { 2389 return fd; 2390 } 2391 2392 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2393 if (rc < 0) { 2394 return rc; 2395 } 2396 } else { 2397 if (spapr->htab_first_pass) { 2398 htab_save_first_pass(f, spapr, -1); 2399 } 2400 htab_save_later_pass(f, spapr, -1); 2401 } 2402 2403 /* End marker */ 2404 htab_save_end_marker(f); 2405 2406 return 0; 2407 } 2408 2409 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2410 { 2411 SpaprMachineState *spapr = opaque; 2412 uint32_t section_hdr; 2413 int fd = -1; 2414 Error *local_err = NULL; 2415 2416 if (version_id < 1 || version_id > 1) { 2417 error_report("htab_load() bad version"); 2418 return -EINVAL; 2419 } 2420 2421 section_hdr = qemu_get_be32(f); 2422 2423 if (section_hdr == -1) { 2424 spapr_free_hpt(spapr); 2425 return 0; 2426 } 2427 2428 if (section_hdr) { 2429 int ret; 2430 2431 /* First section gives the htab size */ 2432 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2433 if (ret < 0) { 2434 error_report_err(local_err); 2435 return ret; 2436 } 2437 return 0; 2438 } 2439 2440 if (!spapr->htab) { 2441 assert(kvm_enabled()); 2442 2443 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2444 if (fd < 0) { 2445 error_report_err(local_err); 2446 return fd; 2447 } 2448 } 2449 2450 while (true) { 2451 uint32_t index; 2452 uint16_t n_valid, n_invalid; 2453 2454 index = qemu_get_be32(f); 2455 n_valid = qemu_get_be16(f); 2456 n_invalid = qemu_get_be16(f); 2457 2458 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2459 /* End of Stream */ 2460 break; 2461 } 2462 2463 if ((index + n_valid + n_invalid) > 2464 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2465 /* Bad index in stream */ 2466 error_report( 2467 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2468 index, n_valid, n_invalid, spapr->htab_shift); 2469 return -EINVAL; 2470 } 2471 2472 if (spapr->htab) { 2473 if (n_valid) { 2474 qemu_get_buffer(f, HPTE(spapr->htab, index), 2475 HASH_PTE_SIZE_64 * n_valid); 2476 } 2477 if (n_invalid) { 2478 memset(HPTE(spapr->htab, index + n_valid), 0, 2479 HASH_PTE_SIZE_64 * n_invalid); 2480 } 2481 } else { 2482 int rc; 2483 2484 assert(fd >= 0); 2485 2486 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2487 &local_err); 2488 if (rc < 0) { 2489 error_report_err(local_err); 2490 return rc; 2491 } 2492 } 2493 } 2494 2495 if (!spapr->htab) { 2496 assert(fd >= 0); 2497 close(fd); 2498 } 2499 2500 return 0; 2501 } 2502 2503 static void htab_save_cleanup(void *opaque) 2504 { 2505 SpaprMachineState *spapr = opaque; 2506 2507 close_htab_fd(spapr); 2508 } 2509 2510 static SaveVMHandlers savevm_htab_handlers = { 2511 .save_setup = htab_save_setup, 2512 .save_live_iterate = htab_save_iterate, 2513 .save_live_complete_precopy = htab_save_complete, 2514 .save_cleanup = htab_save_cleanup, 2515 .load_state = htab_load, 2516 }; 2517 2518 static void spapr_boot_set(void *opaque, const char *boot_device, 2519 Error **errp) 2520 { 2521 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2522 2523 g_free(spapr->boot_device); 2524 spapr->boot_device = g_strdup(boot_device); 2525 } 2526 2527 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2528 { 2529 MachineState *machine = MACHINE(spapr); 2530 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2531 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2532 int i; 2533 2534 g_assert(!nr_lmbs || machine->device_memory); 2535 for (i = 0; i < nr_lmbs; i++) { 2536 uint64_t addr; 2537 2538 addr = i * lmb_size + machine->device_memory->base; 2539 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2540 addr / lmb_size); 2541 } 2542 } 2543 2544 /* 2545 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2546 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2547 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2548 */ 2549 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2550 { 2551 int i; 2552 2553 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2554 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2555 " is not aligned to %" PRIu64 " MiB", 2556 machine->ram_size, 2557 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2558 return; 2559 } 2560 2561 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2562 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2563 " is not aligned to %" PRIu64 " MiB", 2564 machine->ram_size, 2565 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2566 return; 2567 } 2568 2569 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2570 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2571 error_setg(errp, 2572 "Node %d memory size 0x%" PRIx64 2573 " is not aligned to %" PRIu64 " MiB", 2574 i, machine->numa_state->nodes[i].node_mem, 2575 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2576 return; 2577 } 2578 } 2579 } 2580 2581 /* find cpu slot in machine->possible_cpus by core_id */ 2582 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2583 { 2584 int index = id / ms->smp.threads; 2585 2586 if (index >= ms->possible_cpus->len) { 2587 return NULL; 2588 } 2589 if (idx) { 2590 *idx = index; 2591 } 2592 return &ms->possible_cpus->cpus[index]; 2593 } 2594 2595 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2596 { 2597 MachineState *ms = MACHINE(spapr); 2598 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2599 Error *local_err = NULL; 2600 bool vsmt_user = !!spapr->vsmt; 2601 int kvm_smt = kvmppc_smt_threads(); 2602 int ret; 2603 unsigned int smp_threads = ms->smp.threads; 2604 2605 if (tcg_enabled()) { 2606 if (smp_threads > 1 && 2607 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2608 spapr->max_compat_pvr)) { 2609 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2610 return; 2611 } 2612 2613 if (smp_threads > 8) { 2614 error_setg(errp, "TCG cannot support more than 8 threads/core " 2615 "on a pseries machine"); 2616 return; 2617 } 2618 } 2619 if (!is_power_of_2(smp_threads)) { 2620 error_setg(errp, "Cannot support %d threads/core on a pseries " 2621 "machine because it must be a power of 2", smp_threads); 2622 return; 2623 } 2624 2625 /* Determine the VSMT mode to use: */ 2626 if (vsmt_user) { 2627 if (spapr->vsmt < smp_threads) { 2628 error_setg(errp, "Cannot support VSMT mode %d" 2629 " because it must be >= threads/core (%d)", 2630 spapr->vsmt, smp_threads); 2631 return; 2632 } 2633 /* In this case, spapr->vsmt has been set by the command line */ 2634 } else if (!smc->smp_threads_vsmt) { 2635 /* 2636 * Default VSMT value is tricky, because we need it to be as 2637 * consistent as possible (for migration), but this requires 2638 * changing it for at least some existing cases. We pick 8 as 2639 * the value that we'd get with KVM on POWER8, the 2640 * overwhelmingly common case in production systems. 2641 */ 2642 spapr->vsmt = MAX(8, smp_threads); 2643 } else { 2644 spapr->vsmt = smp_threads; 2645 } 2646 2647 /* KVM: If necessary, set the SMT mode: */ 2648 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2649 ret = kvmppc_set_smt_threads(spapr->vsmt); 2650 if (ret) { 2651 /* Looks like KVM isn't able to change VSMT mode */ 2652 error_setg(&local_err, 2653 "Failed to set KVM's VSMT mode to %d (errno %d)", 2654 spapr->vsmt, ret); 2655 /* We can live with that if the default one is big enough 2656 * for the number of threads, and a submultiple of the one 2657 * we want. In this case we'll waste some vcpu ids, but 2658 * behaviour will be correct */ 2659 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2660 warn_report_err(local_err); 2661 } else { 2662 if (!vsmt_user) { 2663 error_append_hint(&local_err, 2664 "On PPC, a VM with %d threads/core" 2665 " on a host with %d threads/core" 2666 " requires the use of VSMT mode %d.\n", 2667 smp_threads, kvm_smt, spapr->vsmt); 2668 } 2669 kvmppc_error_append_smt_possible_hint(&local_err); 2670 error_propagate(errp, local_err); 2671 } 2672 } 2673 } 2674 /* else TCG: nothing to do currently */ 2675 } 2676 2677 static void spapr_init_cpus(SpaprMachineState *spapr) 2678 { 2679 MachineState *machine = MACHINE(spapr); 2680 MachineClass *mc = MACHINE_GET_CLASS(machine); 2681 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2682 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2683 const CPUArchIdList *possible_cpus; 2684 unsigned int smp_cpus = machine->smp.cpus; 2685 unsigned int smp_threads = machine->smp.threads; 2686 unsigned int max_cpus = machine->smp.max_cpus; 2687 int boot_cores_nr = smp_cpus / smp_threads; 2688 int i; 2689 2690 possible_cpus = mc->possible_cpu_arch_ids(machine); 2691 if (mc->has_hotpluggable_cpus) { 2692 if (smp_cpus % smp_threads) { 2693 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2694 smp_cpus, smp_threads); 2695 exit(1); 2696 } 2697 if (max_cpus % smp_threads) { 2698 error_report("max_cpus (%u) must be multiple of threads (%u)", 2699 max_cpus, smp_threads); 2700 exit(1); 2701 } 2702 } else { 2703 if (max_cpus != smp_cpus) { 2704 error_report("This machine version does not support CPU hotplug"); 2705 exit(1); 2706 } 2707 boot_cores_nr = possible_cpus->len; 2708 } 2709 2710 if (smc->pre_2_10_has_unused_icps) { 2711 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2712 /* Dummy entries get deregistered when real ICPState objects 2713 * are registered during CPU core hotplug. 2714 */ 2715 pre_2_10_vmstate_register_dummy_icp(i); 2716 } 2717 } 2718 2719 for (i = 0; i < possible_cpus->len; i++) { 2720 int core_id = i * smp_threads; 2721 2722 if (mc->has_hotpluggable_cpus) { 2723 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2724 spapr_vcpu_id(spapr, core_id)); 2725 } 2726 2727 if (i < boot_cores_nr) { 2728 Object *core = object_new(type); 2729 int nr_threads = smp_threads; 2730 2731 /* Handle the partially filled core for older machine types */ 2732 if ((i + 1) * smp_threads >= smp_cpus) { 2733 nr_threads = smp_cpus - i * smp_threads; 2734 } 2735 2736 object_property_set_int(core, "nr-threads", nr_threads, 2737 &error_fatal); 2738 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2739 &error_fatal); 2740 qdev_realize(DEVICE(core), NULL, &error_fatal); 2741 2742 object_unref(core); 2743 } 2744 } 2745 } 2746 2747 static PCIHostState *spapr_create_default_phb(void) 2748 { 2749 DeviceState *dev; 2750 2751 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2752 qdev_prop_set_uint32(dev, "index", 0); 2753 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2754 2755 return PCI_HOST_BRIDGE(dev); 2756 } 2757 2758 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2759 { 2760 MachineState *machine = MACHINE(spapr); 2761 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2762 hwaddr rma_size = machine->ram_size; 2763 hwaddr node0_size = spapr_node0_size(machine); 2764 2765 /* RMA has to fit in the first NUMA node */ 2766 rma_size = MIN(rma_size, node0_size); 2767 2768 /* 2769 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2770 * never exceed that 2771 */ 2772 rma_size = MIN(rma_size, 1 * TiB); 2773 2774 /* 2775 * Clamp the RMA size based on machine type. This is for 2776 * migration compatibility with older qemu versions, which limited 2777 * the RMA size for complicated and mostly bad reasons. 2778 */ 2779 if (smc->rma_limit) { 2780 rma_size = MIN(rma_size, smc->rma_limit); 2781 } 2782 2783 if (rma_size < MIN_RMA_SLOF) { 2784 error_setg(errp, 2785 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2786 "ldMiB guest RMA (Real Mode Area memory)", 2787 MIN_RMA_SLOF / MiB); 2788 return 0; 2789 } 2790 2791 return rma_size; 2792 } 2793 2794 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2795 { 2796 MachineState *machine = MACHINE(spapr); 2797 int i; 2798 2799 for (i = 0; i < machine->ram_slots; i++) { 2800 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2801 } 2802 } 2803 2804 /* pSeries LPAR / sPAPR hardware init */ 2805 static void spapr_machine_init(MachineState *machine) 2806 { 2807 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2808 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2809 MachineClass *mc = MACHINE_GET_CLASS(machine); 2810 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2811 const char *bios_name = machine->firmware ?: bios_default; 2812 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2813 const char *kernel_filename = machine->kernel_filename; 2814 const char *initrd_filename = machine->initrd_filename; 2815 PCIHostState *phb; 2816 bool has_vga; 2817 int i; 2818 MemoryRegion *sysmem = get_system_memory(); 2819 long load_limit, fw_size; 2820 Error *resize_hpt_err = NULL; 2821 NICInfo *nd; 2822 2823 if (!filename) { 2824 error_report("Could not find LPAR firmware '%s'", bios_name); 2825 exit(1); 2826 } 2827 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2828 if (fw_size <= 0) { 2829 error_report("Could not load LPAR firmware '%s'", filename); 2830 exit(1); 2831 } 2832 2833 /* 2834 * if Secure VM (PEF) support is configured, then initialize it 2835 */ 2836 pef_kvm_init(machine->cgs, &error_fatal); 2837 2838 msi_nonbroken = true; 2839 2840 QLIST_INIT(&spapr->phbs); 2841 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2842 2843 /* Determine capabilities to run with */ 2844 spapr_caps_init(spapr); 2845 2846 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2847 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2848 /* 2849 * If the user explicitly requested a mode we should either 2850 * supply it, or fail completely (which we do below). But if 2851 * it's not set explicitly, we reset our mode to something 2852 * that works 2853 */ 2854 if (resize_hpt_err) { 2855 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2856 error_free(resize_hpt_err); 2857 resize_hpt_err = NULL; 2858 } else { 2859 spapr->resize_hpt = smc->resize_hpt_default; 2860 } 2861 } 2862 2863 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2864 2865 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2866 /* 2867 * User requested HPT resize, but this host can't supply it. Bail out 2868 */ 2869 error_report_err(resize_hpt_err); 2870 exit(1); 2871 } 2872 error_free(resize_hpt_err); 2873 2874 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2875 2876 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2877 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2878 2879 /* 2880 * VSMT must be set in order to be able to compute VCPU ids, ie to 2881 * call spapr_max_server_number() or spapr_vcpu_id(). 2882 */ 2883 spapr_set_vsmt_mode(spapr, &error_fatal); 2884 2885 /* Set up Interrupt Controller before we create the VCPUs */ 2886 spapr_irq_init(spapr, &error_fatal); 2887 2888 /* Set up containers for ibm,client-architecture-support negotiated options 2889 */ 2890 spapr->ov5 = spapr_ovec_new(); 2891 spapr->ov5_cas = spapr_ovec_new(); 2892 2893 if (smc->dr_lmb_enabled) { 2894 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2895 spapr_validate_node_memory(machine, &error_fatal); 2896 } 2897 2898 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2899 2900 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2901 if (!smc->pre_6_2_numa_affinity) { 2902 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2903 } 2904 2905 /* advertise support for dedicated HP event source to guests */ 2906 if (spapr->use_hotplug_event_source) { 2907 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2908 } 2909 2910 /* advertise support for HPT resizing */ 2911 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2912 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2913 } 2914 2915 /* advertise support for ibm,dyamic-memory-v2 */ 2916 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2917 2918 /* advertise XIVE on POWER9 machines */ 2919 if (spapr->irq->xive) { 2920 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2921 } 2922 2923 /* init CPUs */ 2924 spapr_init_cpus(spapr); 2925 2926 /* Init numa_assoc_array */ 2927 spapr_numa_associativity_init(spapr, machine); 2928 2929 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2930 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2931 spapr->max_compat_pvr)) { 2932 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2933 /* KVM and TCG always allow GTSE with radix... */ 2934 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2935 } 2936 /* ... but not with hash (currently). */ 2937 2938 if (kvm_enabled()) { 2939 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2940 kvmppc_enable_logical_ci_hcalls(); 2941 kvmppc_enable_set_mode_hcall(); 2942 2943 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2944 kvmppc_enable_clear_ref_mod_hcalls(); 2945 2946 /* Enable H_PAGE_INIT */ 2947 kvmppc_enable_h_page_init(); 2948 } 2949 2950 /* map RAM */ 2951 memory_region_add_subregion(sysmem, 0, machine->ram); 2952 2953 /* initialize hotplug memory address space */ 2954 if (machine->ram_size < machine->maxram_size) { 2955 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2956 hwaddr device_mem_base; 2957 2958 /* 2959 * Limit the number of hotpluggable memory slots to half the number 2960 * slots that KVM supports, leaving the other half for PCI and other 2961 * devices. However ensure that number of slots doesn't drop below 32. 2962 */ 2963 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2964 SPAPR_MAX_RAM_SLOTS; 2965 2966 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2967 max_memslots = SPAPR_MAX_RAM_SLOTS; 2968 } 2969 if (machine->ram_slots > max_memslots) { 2970 error_report("Specified number of memory slots %" 2971 PRIu64" exceeds max supported %d", 2972 machine->ram_slots, max_memslots); 2973 exit(1); 2974 } 2975 2976 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2977 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2978 } 2979 2980 if (smc->dr_lmb_enabled) { 2981 spapr_create_lmb_dr_connectors(spapr); 2982 } 2983 2984 if (mc->nvdimm_supported) { 2985 spapr_create_nvdimm_dr_connectors(spapr); 2986 } 2987 2988 /* Set up RTAS event infrastructure */ 2989 spapr_events_init(spapr); 2990 2991 /* Set up the RTC RTAS interfaces */ 2992 spapr_rtc_create(spapr); 2993 2994 /* Set up VIO bus */ 2995 spapr->vio_bus = spapr_vio_bus_init(); 2996 2997 for (i = 0; serial_hd(i); i++) { 2998 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2999 } 3000 3001 /* We always have at least the nvram device on VIO */ 3002 spapr_create_nvram(spapr); 3003 3004 /* 3005 * Setup hotplug / dynamic-reconfiguration connectors. top-level 3006 * connectors (described in root DT node's "ibm,drc-types" property) 3007 * are pre-initialized here. additional child connectors (such as 3008 * connectors for a PHBs PCI slots) are added as needed during their 3009 * parent's realization. 3010 */ 3011 if (smc->dr_phb_enabled) { 3012 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 3013 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 3014 } 3015 } 3016 3017 /* Set up PCI */ 3018 spapr_pci_rtas_init(); 3019 3020 phb = spapr_create_default_phb(); 3021 3022 while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) { 3023 spapr_vlan_create(spapr->vio_bus, nd); 3024 } 3025 3026 pci_init_nic_devices(phb->bus, NULL); 3027 3028 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 3029 spapr_vscsi_create(spapr->vio_bus); 3030 } 3031 3032 /* Graphics */ 3033 has_vga = spapr_vga_init(phb->bus, &error_fatal); 3034 if (has_vga) { 3035 spapr->want_stdout_path = !machine->enable_graphics; 3036 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3037 } else { 3038 spapr->want_stdout_path = true; 3039 } 3040 3041 if (machine->usb) { 3042 if (smc->use_ohci_by_default) { 3043 pci_create_simple(phb->bus, -1, "pci-ohci"); 3044 } else { 3045 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3046 } 3047 3048 if (has_vga) { 3049 USBBus *usb_bus; 3050 3051 usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS, 3052 &error_abort)); 3053 usb_create_simple(usb_bus, "usb-kbd"); 3054 usb_create_simple(usb_bus, "usb-mouse"); 3055 } 3056 } 3057 3058 if (kernel_filename) { 3059 uint64_t loaded_addr = 0; 3060 3061 spapr->kernel_size = load_elf(kernel_filename, NULL, 3062 translate_kernel_address, spapr, 3063 NULL, &loaded_addr, NULL, NULL, 1, 3064 PPC_ELF_MACHINE, 0, 0); 3065 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3066 spapr->kernel_size = load_elf(kernel_filename, NULL, 3067 translate_kernel_address, spapr, 3068 NULL, &loaded_addr, NULL, NULL, 0, 3069 PPC_ELF_MACHINE, 0, 0); 3070 spapr->kernel_le = spapr->kernel_size > 0; 3071 } 3072 if (spapr->kernel_size < 0) { 3073 error_report("error loading %s: %s", kernel_filename, 3074 load_elf_strerror(spapr->kernel_size)); 3075 exit(1); 3076 } 3077 3078 if (spapr->kernel_addr != loaded_addr) { 3079 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3080 " to 0x%"PRIx64, 3081 spapr->kernel_addr, loaded_addr); 3082 spapr->kernel_addr = loaded_addr; 3083 } 3084 3085 /* load initrd */ 3086 if (initrd_filename) { 3087 /* Try to locate the initrd in the gap between the kernel 3088 * and the firmware. Add a bit of space just in case 3089 */ 3090 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3091 + 0x1ffff) & ~0xffff; 3092 spapr->initrd_size = load_image_targphys(initrd_filename, 3093 spapr->initrd_base, 3094 load_limit 3095 - spapr->initrd_base); 3096 if (spapr->initrd_size < 0) { 3097 error_report("could not load initial ram disk '%s'", 3098 initrd_filename); 3099 exit(1); 3100 } 3101 } 3102 } 3103 3104 /* FIXME: Should register things through the MachineState's qdev 3105 * interface, this is a legacy from the sPAPREnvironment structure 3106 * which predated MachineState but had a similar function */ 3107 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3108 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3109 &savevm_htab_handlers, spapr); 3110 3111 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3112 3113 qemu_register_boot_set(spapr_boot_set, spapr); 3114 3115 /* 3116 * Nothing needs to be done to resume a suspended guest because 3117 * suspending does not change the machine state, so no need for 3118 * a ->wakeup method. 3119 */ 3120 qemu_register_wakeup_support(); 3121 3122 if (kvm_enabled()) { 3123 /* to stop and start vmclock */ 3124 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3125 &spapr->tb); 3126 3127 kvmppc_spapr_enable_inkernel_multitce(); 3128 } 3129 3130 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3131 if (spapr->vof) { 3132 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3133 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3134 } 3135 3136 spapr_watchdog_init(spapr); 3137 } 3138 3139 #define DEFAULT_KVM_TYPE "auto" 3140 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3141 { 3142 /* 3143 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3144 * accommodate the 'HV' and 'PV' formats that exists in the 3145 * wild. The 'auto' mode is being introduced already as 3146 * lower-case, thus we don't need to bother checking for 3147 * "AUTO". 3148 */ 3149 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3150 return 0; 3151 } 3152 3153 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3154 return 1; 3155 } 3156 3157 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3158 return 2; 3159 } 3160 3161 error_report("Unknown kvm-type specified '%s'", vm_type); 3162 return -1; 3163 } 3164 3165 /* 3166 * Implementation of an interface to adjust firmware path 3167 * for the bootindex property handling. 3168 */ 3169 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3170 DeviceState *dev) 3171 { 3172 #define CAST(type, obj, name) \ 3173 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3174 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3175 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3176 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3177 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3178 3179 if (d && bus) { 3180 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3181 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3182 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3183 3184 if (spapr) { 3185 /* 3186 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3187 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3188 * 0x8000 | (target << 8) | (bus << 5) | lun 3189 * (see the "Logical unit addressing format" table in SAM5) 3190 */ 3191 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3192 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3193 (uint64_t)id << 48); 3194 } else if (virtio) { 3195 /* 3196 * We use SRP luns of the form 01000000 | (target << 8) | lun 3197 * in the top 32 bits of the 64-bit LUN 3198 * Note: the quote above is from SLOF and it is wrong, 3199 * the actual binding is: 3200 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3201 */ 3202 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3203 if (d->lun >= 256) { 3204 /* Use the LUN "flat space addressing method" */ 3205 id |= 0x4000; 3206 } 3207 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3208 (uint64_t)id << 32); 3209 } else if (usb) { 3210 /* 3211 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3212 * in the top 32 bits of the 64-bit LUN 3213 */ 3214 unsigned usb_port = atoi(usb->port->path); 3215 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3216 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3217 (uint64_t)id << 32); 3218 } 3219 } 3220 3221 /* 3222 * SLOF probes the USB devices, and if it recognizes that the device is a 3223 * storage device, it changes its name to "storage" instead of "usb-host", 3224 * and additionally adds a child node for the SCSI LUN, so the correct 3225 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3226 */ 3227 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3228 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3229 if (usb_device_is_scsi_storage(usbdev)) { 3230 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3231 } 3232 } 3233 3234 if (phb) { 3235 /* Replace "pci" with "pci@800000020000000" */ 3236 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3237 } 3238 3239 if (vsc) { 3240 /* Same logic as virtio above */ 3241 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3242 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3243 } 3244 3245 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3246 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3247 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3248 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn)); 3249 } 3250 3251 if (pcidev) { 3252 return spapr_pci_fw_dev_name(pcidev); 3253 } 3254 3255 return NULL; 3256 } 3257 3258 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3259 { 3260 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3261 3262 return g_strdup(spapr->kvm_type); 3263 } 3264 3265 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3266 { 3267 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3268 3269 g_free(spapr->kvm_type); 3270 spapr->kvm_type = g_strdup(value); 3271 } 3272 3273 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3274 { 3275 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3276 3277 return spapr->use_hotplug_event_source; 3278 } 3279 3280 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3281 Error **errp) 3282 { 3283 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3284 3285 spapr->use_hotplug_event_source = value; 3286 } 3287 3288 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3289 { 3290 return true; 3291 } 3292 3293 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3294 { 3295 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3296 3297 switch (spapr->resize_hpt) { 3298 case SPAPR_RESIZE_HPT_DEFAULT: 3299 return g_strdup("default"); 3300 case SPAPR_RESIZE_HPT_DISABLED: 3301 return g_strdup("disabled"); 3302 case SPAPR_RESIZE_HPT_ENABLED: 3303 return g_strdup("enabled"); 3304 case SPAPR_RESIZE_HPT_REQUIRED: 3305 return g_strdup("required"); 3306 } 3307 g_assert_not_reached(); 3308 } 3309 3310 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3311 { 3312 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3313 3314 if (strcmp(value, "default") == 0) { 3315 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3316 } else if (strcmp(value, "disabled") == 0) { 3317 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3318 } else if (strcmp(value, "enabled") == 0) { 3319 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3320 } else if (strcmp(value, "required") == 0) { 3321 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3322 } else { 3323 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3324 } 3325 } 3326 3327 static bool spapr_get_vof(Object *obj, Error **errp) 3328 { 3329 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3330 3331 return spapr->vof != NULL; 3332 } 3333 3334 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3335 { 3336 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3337 3338 if (spapr->vof) { 3339 vof_cleanup(spapr->vof); 3340 g_free(spapr->vof); 3341 spapr->vof = NULL; 3342 } 3343 if (!value) { 3344 return; 3345 } 3346 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3347 } 3348 3349 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3350 { 3351 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3352 3353 if (spapr->irq == &spapr_irq_xics_legacy) { 3354 return g_strdup("legacy"); 3355 } else if (spapr->irq == &spapr_irq_xics) { 3356 return g_strdup("xics"); 3357 } else if (spapr->irq == &spapr_irq_xive) { 3358 return g_strdup("xive"); 3359 } else if (spapr->irq == &spapr_irq_dual) { 3360 return g_strdup("dual"); 3361 } 3362 g_assert_not_reached(); 3363 } 3364 3365 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3366 { 3367 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3368 3369 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3370 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3371 return; 3372 } 3373 3374 /* The legacy IRQ backend can not be set */ 3375 if (strcmp(value, "xics") == 0) { 3376 spapr->irq = &spapr_irq_xics; 3377 } else if (strcmp(value, "xive") == 0) { 3378 spapr->irq = &spapr_irq_xive; 3379 } else if (strcmp(value, "dual") == 0) { 3380 spapr->irq = &spapr_irq_dual; 3381 } else { 3382 error_setg(errp, "Bad value for \"ic-mode\" property"); 3383 } 3384 } 3385 3386 static char *spapr_get_host_model(Object *obj, Error **errp) 3387 { 3388 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3389 3390 return g_strdup(spapr->host_model); 3391 } 3392 3393 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3394 { 3395 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3396 3397 g_free(spapr->host_model); 3398 spapr->host_model = g_strdup(value); 3399 } 3400 3401 static char *spapr_get_host_serial(Object *obj, Error **errp) 3402 { 3403 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3404 3405 return g_strdup(spapr->host_serial); 3406 } 3407 3408 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3409 { 3410 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3411 3412 g_free(spapr->host_serial); 3413 spapr->host_serial = g_strdup(value); 3414 } 3415 3416 static void spapr_instance_init(Object *obj) 3417 { 3418 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3419 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3420 MachineState *ms = MACHINE(spapr); 3421 MachineClass *mc = MACHINE_GET_CLASS(ms); 3422 3423 /* 3424 * NVDIMM support went live in 5.1 without considering that, in 3425 * other archs, the user needs to enable NVDIMM support with the 3426 * 'nvdimm' machine option and the default behavior is NVDIMM 3427 * support disabled. It is too late to roll back to the standard 3428 * behavior without breaking 5.1 guests. 3429 */ 3430 if (mc->nvdimm_supported) { 3431 ms->nvdimms_state->is_enabled = true; 3432 } 3433 3434 spapr->htab_fd = -1; 3435 spapr->use_hotplug_event_source = true; 3436 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3437 object_property_add_str(obj, "kvm-type", 3438 spapr_get_kvm_type, spapr_set_kvm_type); 3439 object_property_set_description(obj, "kvm-type", 3440 "Specifies the KVM virtualization mode (auto," 3441 " hv, pr). Defaults to 'auto'. This mode will use" 3442 " any available KVM module loaded in the host," 3443 " where kvm_hv takes precedence if both kvm_hv and" 3444 " kvm_pr are loaded."); 3445 object_property_add_bool(obj, "modern-hotplug-events", 3446 spapr_get_modern_hotplug_events, 3447 spapr_set_modern_hotplug_events); 3448 object_property_set_description(obj, "modern-hotplug-events", 3449 "Use dedicated hotplug event mechanism in" 3450 " place of standard EPOW events when possible" 3451 " (required for memory hot-unplug support)"); 3452 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3453 "Maximum permitted CPU compatibility mode"); 3454 3455 object_property_add_str(obj, "resize-hpt", 3456 spapr_get_resize_hpt, spapr_set_resize_hpt); 3457 object_property_set_description(obj, "resize-hpt", 3458 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3459 object_property_add_uint32_ptr(obj, "vsmt", 3460 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3461 object_property_set_description(obj, "vsmt", 3462 "Virtual SMT: KVM behaves as if this were" 3463 " the host's SMT mode"); 3464 3465 object_property_add_bool(obj, "vfio-no-msix-emulation", 3466 spapr_get_msix_emulation, NULL); 3467 3468 object_property_add_uint64_ptr(obj, "kernel-addr", 3469 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3470 object_property_set_description(obj, "kernel-addr", 3471 stringify(KERNEL_LOAD_ADDR) 3472 " for -kernel is the default"); 3473 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3474 3475 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3476 object_property_set_description(obj, "x-vof", 3477 "Enable Virtual Open Firmware (experimental)"); 3478 3479 /* The machine class defines the default interrupt controller mode */ 3480 spapr->irq = smc->irq; 3481 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3482 spapr_set_ic_mode); 3483 object_property_set_description(obj, "ic-mode", 3484 "Specifies the interrupt controller mode (xics, xive, dual)"); 3485 3486 object_property_add_str(obj, "host-model", 3487 spapr_get_host_model, spapr_set_host_model); 3488 object_property_set_description(obj, "host-model", 3489 "Host model to advertise in guest device tree"); 3490 object_property_add_str(obj, "host-serial", 3491 spapr_get_host_serial, spapr_set_host_serial); 3492 object_property_set_description(obj, "host-serial", 3493 "Host serial number to advertise in guest device tree"); 3494 } 3495 3496 static void spapr_machine_finalizefn(Object *obj) 3497 { 3498 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3499 3500 g_free(spapr->kvm_type); 3501 } 3502 3503 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3504 { 3505 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3506 PowerPCCPU *cpu = POWERPC_CPU(cs); 3507 CPUPPCState *env = &cpu->env; 3508 3509 cpu_synchronize_state(cs); 3510 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3511 if (spapr->fwnmi_system_reset_addr != -1) { 3512 uint64_t rtas_addr, addr; 3513 3514 /* get rtas addr from fdt */ 3515 rtas_addr = spapr_get_rtas_addr(); 3516 if (!rtas_addr) { 3517 qemu_system_guest_panicked(NULL); 3518 return; 3519 } 3520 3521 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3522 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3523 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3524 env->gpr[3] = addr; 3525 } 3526 ppc_cpu_do_system_reset(cs); 3527 if (spapr->fwnmi_system_reset_addr != -1) { 3528 env->nip = spapr->fwnmi_system_reset_addr; 3529 } 3530 } 3531 3532 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3533 { 3534 CPUState *cs; 3535 3536 CPU_FOREACH(cs) { 3537 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3538 } 3539 } 3540 3541 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3542 void *fdt, int *fdt_start_offset, Error **errp) 3543 { 3544 uint64_t addr; 3545 uint32_t node; 3546 3547 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3548 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3549 &error_abort); 3550 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3551 SPAPR_MEMORY_BLOCK_SIZE); 3552 return 0; 3553 } 3554 3555 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3556 bool dedicated_hp_event_source) 3557 { 3558 SpaprDrc *drc; 3559 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3560 int i; 3561 uint64_t addr = addr_start; 3562 bool hotplugged = spapr_drc_hotplugged(dev); 3563 3564 for (i = 0; i < nr_lmbs; i++) { 3565 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3566 addr / SPAPR_MEMORY_BLOCK_SIZE); 3567 g_assert(drc); 3568 3569 /* 3570 * memory_device_get_free_addr() provided a range of free addresses 3571 * that doesn't overlap with any existing mapping at pre-plug. The 3572 * corresponding LMB DRCs are thus assumed to be all attachable. 3573 */ 3574 spapr_drc_attach(drc, dev); 3575 if (!hotplugged) { 3576 spapr_drc_reset(drc); 3577 } 3578 addr += SPAPR_MEMORY_BLOCK_SIZE; 3579 } 3580 /* send hotplug notification to the 3581 * guest only in case of hotplugged memory 3582 */ 3583 if (hotplugged) { 3584 if (dedicated_hp_event_source) { 3585 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3586 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3587 g_assert(drc); 3588 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3589 nr_lmbs, 3590 spapr_drc_index(drc)); 3591 } else { 3592 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3593 nr_lmbs); 3594 } 3595 } 3596 } 3597 3598 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3599 { 3600 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3601 PCDIMMDevice *dimm = PC_DIMM(dev); 3602 uint64_t size, addr; 3603 int64_t slot; 3604 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3605 3606 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3607 3608 pc_dimm_plug(dimm, MACHINE(ms)); 3609 3610 if (!is_nvdimm) { 3611 addr = object_property_get_uint(OBJECT(dimm), 3612 PC_DIMM_ADDR_PROP, &error_abort); 3613 spapr_add_lmbs(dev, addr, size, 3614 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3615 } else { 3616 slot = object_property_get_int(OBJECT(dimm), 3617 PC_DIMM_SLOT_PROP, &error_abort); 3618 /* We should have valid slot number at this point */ 3619 g_assert(slot >= 0); 3620 spapr_add_nvdimm(dev, slot); 3621 } 3622 } 3623 3624 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3625 Error **errp) 3626 { 3627 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3628 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3629 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3630 PCDIMMDevice *dimm = PC_DIMM(dev); 3631 Error *local_err = NULL; 3632 uint64_t size; 3633 Object *memdev; 3634 hwaddr pagesize; 3635 3636 if (!smc->dr_lmb_enabled) { 3637 error_setg(errp, "Memory hotplug not supported for this machine"); 3638 return; 3639 } 3640 3641 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3642 if (local_err) { 3643 error_propagate(errp, local_err); 3644 return; 3645 } 3646 3647 if (is_nvdimm) { 3648 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3649 return; 3650 } 3651 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3652 error_setg(errp, "Hotplugged memory size must be a multiple of " 3653 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3654 return; 3655 } 3656 3657 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3658 &error_abort); 3659 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3660 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3661 return; 3662 } 3663 3664 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3665 } 3666 3667 struct SpaprDimmState { 3668 PCDIMMDevice *dimm; 3669 uint32_t nr_lmbs; 3670 QTAILQ_ENTRY(SpaprDimmState) next; 3671 }; 3672 3673 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3674 PCDIMMDevice *dimm) 3675 { 3676 SpaprDimmState *dimm_state = NULL; 3677 3678 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3679 if (dimm_state->dimm == dimm) { 3680 break; 3681 } 3682 } 3683 return dimm_state; 3684 } 3685 3686 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3687 uint32_t nr_lmbs, 3688 PCDIMMDevice *dimm) 3689 { 3690 SpaprDimmState *ds = NULL; 3691 3692 /* 3693 * If this request is for a DIMM whose removal had failed earlier 3694 * (due to guest's refusal to remove the LMBs), we would have this 3695 * dimm already in the pending_dimm_unplugs list. In that 3696 * case don't add again. 3697 */ 3698 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3699 if (!ds) { 3700 ds = g_new0(SpaprDimmState, 1); 3701 ds->nr_lmbs = nr_lmbs; 3702 ds->dimm = dimm; 3703 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3704 } 3705 return ds; 3706 } 3707 3708 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3709 SpaprDimmState *dimm_state) 3710 { 3711 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3712 g_free(dimm_state); 3713 } 3714 3715 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3716 PCDIMMDevice *dimm) 3717 { 3718 SpaprDrc *drc; 3719 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3720 &error_abort); 3721 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3722 uint32_t avail_lmbs = 0; 3723 uint64_t addr_start, addr; 3724 int i; 3725 3726 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3727 &error_abort); 3728 3729 addr = addr_start; 3730 for (i = 0; i < nr_lmbs; i++) { 3731 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3732 addr / SPAPR_MEMORY_BLOCK_SIZE); 3733 g_assert(drc); 3734 if (drc->dev) { 3735 avail_lmbs++; 3736 } 3737 addr += SPAPR_MEMORY_BLOCK_SIZE; 3738 } 3739 3740 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3741 } 3742 3743 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3744 { 3745 SpaprDimmState *ds; 3746 PCDIMMDevice *dimm; 3747 SpaprDrc *drc; 3748 uint32_t nr_lmbs; 3749 uint64_t size, addr_start, addr; 3750 g_autofree char *qapi_error = NULL; 3751 int i; 3752 3753 if (!dev) { 3754 return; 3755 } 3756 3757 dimm = PC_DIMM(dev); 3758 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3759 3760 /* 3761 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3762 * unplug state, but one of its DRC is marked as unplug_requested. 3763 * This is bad and weird enough to g_assert() out. 3764 */ 3765 g_assert(ds); 3766 3767 spapr_pending_dimm_unplugs_remove(spapr, ds); 3768 3769 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3770 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3771 3772 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3773 &error_abort); 3774 3775 addr = addr_start; 3776 for (i = 0; i < nr_lmbs; i++) { 3777 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3778 addr / SPAPR_MEMORY_BLOCK_SIZE); 3779 g_assert(drc); 3780 3781 drc->unplug_requested = false; 3782 addr += SPAPR_MEMORY_BLOCK_SIZE; 3783 } 3784 3785 /* 3786 * Tell QAPI that something happened and the memory 3787 * hotunplug wasn't successful. Keep sending 3788 * MEM_UNPLUG_ERROR even while sending 3789 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3790 * MEM_UNPLUG_ERROR is due. 3791 */ 3792 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3793 "for device %s", dev->id); 3794 3795 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3796 3797 qapi_event_send_device_unplug_guest_error(dev->id, 3798 dev->canonical_path); 3799 } 3800 3801 /* Callback to be called during DRC release. */ 3802 void spapr_lmb_release(DeviceState *dev) 3803 { 3804 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3805 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3806 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3807 3808 /* This information will get lost if a migration occurs 3809 * during the unplug process. In this case recover it. */ 3810 if (ds == NULL) { 3811 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3812 g_assert(ds); 3813 /* The DRC being examined by the caller at least must be counted */ 3814 g_assert(ds->nr_lmbs); 3815 } 3816 3817 if (--ds->nr_lmbs) { 3818 return; 3819 } 3820 3821 /* 3822 * Now that all the LMBs have been removed by the guest, call the 3823 * unplug handler chain. This can never fail. 3824 */ 3825 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3826 object_unparent(OBJECT(dev)); 3827 } 3828 3829 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3830 { 3831 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3832 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3833 3834 /* We really shouldn't get this far without anything to unplug */ 3835 g_assert(ds); 3836 3837 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3838 qdev_unrealize(dev); 3839 spapr_pending_dimm_unplugs_remove(spapr, ds); 3840 } 3841 3842 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3843 DeviceState *dev, Error **errp) 3844 { 3845 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3846 PCDIMMDevice *dimm = PC_DIMM(dev); 3847 uint32_t nr_lmbs; 3848 uint64_t size, addr_start, addr; 3849 int i; 3850 SpaprDrc *drc; 3851 3852 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3853 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3854 return; 3855 } 3856 3857 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3858 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3859 3860 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3861 &error_abort); 3862 3863 /* 3864 * An existing pending dimm state for this DIMM means that there is an 3865 * unplug operation in progress, waiting for the spapr_lmb_release 3866 * callback to complete the job (BQL can't cover that far). In this case, 3867 * bail out to avoid detaching DRCs that were already released. 3868 */ 3869 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3870 error_setg(errp, "Memory unplug already in progress for device %s", 3871 dev->id); 3872 return; 3873 } 3874 3875 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3876 3877 addr = addr_start; 3878 for (i = 0; i < nr_lmbs; i++) { 3879 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3880 addr / SPAPR_MEMORY_BLOCK_SIZE); 3881 g_assert(drc); 3882 3883 spapr_drc_unplug_request(drc); 3884 addr += SPAPR_MEMORY_BLOCK_SIZE; 3885 } 3886 3887 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3888 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3889 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3890 nr_lmbs, spapr_drc_index(drc)); 3891 } 3892 3893 /* Callback to be called during DRC release. */ 3894 void spapr_core_release(DeviceState *dev) 3895 { 3896 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3897 3898 /* Call the unplug handler chain. This can never fail. */ 3899 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3900 object_unparent(OBJECT(dev)); 3901 } 3902 3903 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3904 { 3905 MachineState *ms = MACHINE(hotplug_dev); 3906 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3907 CPUCore *cc = CPU_CORE(dev); 3908 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3909 3910 if (smc->pre_2_10_has_unused_icps) { 3911 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3912 int i; 3913 3914 for (i = 0; i < cc->nr_threads; i++) { 3915 CPUState *cs = CPU(sc->threads[i]); 3916 3917 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3918 } 3919 } 3920 3921 assert(core_slot); 3922 core_slot->cpu = NULL; 3923 qdev_unrealize(dev); 3924 } 3925 3926 static 3927 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3928 Error **errp) 3929 { 3930 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3931 int index; 3932 SpaprDrc *drc; 3933 CPUCore *cc = CPU_CORE(dev); 3934 3935 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3936 error_setg(errp, "Unable to find CPU core with core-id: %d", 3937 cc->core_id); 3938 return; 3939 } 3940 if (index == 0) { 3941 error_setg(errp, "Boot CPU core may not be unplugged"); 3942 return; 3943 } 3944 3945 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3946 spapr_vcpu_id(spapr, cc->core_id)); 3947 g_assert(drc); 3948 3949 if (!spapr_drc_unplug_requested(drc)) { 3950 spapr_drc_unplug_request(drc); 3951 } 3952 3953 /* 3954 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3955 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3956 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3957 * attempt (e.g. the kernel will refuse to remove the last online 3958 * CPU), we will never attempt it again because unplug_requested 3959 * will still be 'true' in that case. 3960 */ 3961 spapr_hotplug_req_remove_by_index(drc); 3962 } 3963 3964 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3965 void *fdt, int *fdt_start_offset, Error **errp) 3966 { 3967 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3968 CPUState *cs = CPU(core->threads[0]); 3969 PowerPCCPU *cpu = POWERPC_CPU(cs); 3970 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3971 int id = spapr_get_vcpu_id(cpu); 3972 g_autofree char *nodename = NULL; 3973 int offset; 3974 3975 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3976 offset = fdt_add_subnode(fdt, 0, nodename); 3977 3978 spapr_dt_cpu(cs, fdt, offset, spapr); 3979 3980 /* 3981 * spapr_dt_cpu() does not fill the 'name' property in the 3982 * CPU node. The function is called during boot process, before 3983 * and after CAS, and overwriting the 'name' property written 3984 * by SLOF is not allowed. 3985 * 3986 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3987 * CPUs more compatible with the coldplugged ones, which have 3988 * the 'name' property. Linux Kernel also relies on this 3989 * property to identify CPU nodes. 3990 */ 3991 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3992 3993 *fdt_start_offset = offset; 3994 return 0; 3995 } 3996 3997 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3998 { 3999 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4000 MachineClass *mc = MACHINE_GET_CLASS(spapr); 4001 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4002 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 4003 CPUCore *cc = CPU_CORE(dev); 4004 CPUState *cs; 4005 SpaprDrc *drc; 4006 CPUArchId *core_slot; 4007 int index; 4008 bool hotplugged = spapr_drc_hotplugged(dev); 4009 int i; 4010 4011 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4012 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 4013 4014 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 4015 spapr_vcpu_id(spapr, cc->core_id)); 4016 4017 g_assert(drc || !mc->has_hotpluggable_cpus); 4018 4019 if (drc) { 4020 /* 4021 * spapr_core_pre_plug() already buys us this is a brand new 4022 * core being plugged into a free slot. Nothing should already 4023 * be attached to the corresponding DRC. 4024 */ 4025 spapr_drc_attach(drc, dev); 4026 4027 if (hotplugged) { 4028 /* 4029 * Send hotplug notification interrupt to the guest only 4030 * in case of hotplugged CPUs. 4031 */ 4032 spapr_hotplug_req_add_by_index(drc); 4033 } else { 4034 spapr_drc_reset(drc); 4035 } 4036 } 4037 4038 core_slot->cpu = OBJECT(dev); 4039 4040 /* 4041 * Set compatibility mode to match the boot CPU, which was either set 4042 * by the machine reset code or by CAS. This really shouldn't fail at 4043 * this point. 4044 */ 4045 if (hotplugged) { 4046 for (i = 0; i < cc->nr_threads; i++) { 4047 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 4048 &error_abort); 4049 } 4050 } 4051 4052 if (smc->pre_2_10_has_unused_icps) { 4053 for (i = 0; i < cc->nr_threads; i++) { 4054 cs = CPU(core->threads[i]); 4055 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4056 } 4057 } 4058 } 4059 4060 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4061 Error **errp) 4062 { 4063 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4064 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4065 CPUCore *cc = CPU_CORE(dev); 4066 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4067 const char *type = object_get_typename(OBJECT(dev)); 4068 CPUArchId *core_slot; 4069 int index; 4070 unsigned int smp_threads = machine->smp.threads; 4071 4072 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4073 error_setg(errp, "CPU hotplug not supported for this machine"); 4074 return; 4075 } 4076 4077 if (strcmp(base_core_type, type)) { 4078 error_setg(errp, "CPU core type should be %s", base_core_type); 4079 return; 4080 } 4081 4082 if (cc->core_id % smp_threads) { 4083 error_setg(errp, "invalid core id %d", cc->core_id); 4084 return; 4085 } 4086 4087 /* 4088 * In general we should have homogeneous threads-per-core, but old 4089 * (pre hotplug support) machine types allow the last core to have 4090 * reduced threads as a compatibility hack for when we allowed 4091 * total vcpus not a multiple of threads-per-core. 4092 */ 4093 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4094 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4095 smp_threads); 4096 return; 4097 } 4098 4099 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4100 if (!core_slot) { 4101 error_setg(errp, "core id %d out of range", cc->core_id); 4102 return; 4103 } 4104 4105 if (core_slot->cpu) { 4106 error_setg(errp, "core %d already populated", cc->core_id); 4107 return; 4108 } 4109 4110 numa_cpu_pre_plug(core_slot, dev, errp); 4111 } 4112 4113 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4114 void *fdt, int *fdt_start_offset, Error **errp) 4115 { 4116 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4117 int intc_phandle; 4118 4119 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4120 if (intc_phandle <= 0) { 4121 return -1; 4122 } 4123 4124 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4125 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4126 return -1; 4127 } 4128 4129 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4130 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4131 4132 return 0; 4133 } 4134 4135 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4136 Error **errp) 4137 { 4138 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4139 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4140 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4141 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4142 SpaprDrc *drc; 4143 4144 if (dev->hotplugged && !smc->dr_phb_enabled) { 4145 error_setg(errp, "PHB hotplug not supported for this machine"); 4146 return false; 4147 } 4148 4149 if (sphb->index == (uint32_t)-1) { 4150 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4151 return false; 4152 } 4153 4154 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4155 if (drc && drc->dev) { 4156 error_setg(errp, "PHB %d already attached", sphb->index); 4157 return false; 4158 } 4159 4160 /* 4161 * This will check that sphb->index doesn't exceed the maximum number of 4162 * PHBs for the current machine type. 4163 */ 4164 return 4165 smc->phb_placement(spapr, sphb->index, 4166 &sphb->buid, &sphb->io_win_addr, 4167 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4168 windows_supported, sphb->dma_liobn, 4169 errp); 4170 } 4171 4172 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4173 { 4174 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4175 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4176 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4177 SpaprDrc *drc; 4178 bool hotplugged = spapr_drc_hotplugged(dev); 4179 4180 if (!smc->dr_phb_enabled) { 4181 return; 4182 } 4183 4184 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4185 /* hotplug hooks should check it's enabled before getting this far */ 4186 assert(drc); 4187 4188 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4189 spapr_drc_attach(drc, dev); 4190 4191 if (hotplugged) { 4192 spapr_hotplug_req_add_by_index(drc); 4193 } else { 4194 spapr_drc_reset(drc); 4195 } 4196 } 4197 4198 void spapr_phb_release(DeviceState *dev) 4199 { 4200 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4201 4202 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4203 object_unparent(OBJECT(dev)); 4204 } 4205 4206 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4207 { 4208 qdev_unrealize(dev); 4209 } 4210 4211 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4212 DeviceState *dev, Error **errp) 4213 { 4214 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4215 SpaprDrc *drc; 4216 4217 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4218 assert(drc); 4219 4220 if (!spapr_drc_unplug_requested(drc)) { 4221 spapr_drc_unplug_request(drc); 4222 spapr_hotplug_req_remove_by_index(drc); 4223 } else { 4224 error_setg(errp, 4225 "PCI Host Bridge unplug already in progress for device %s", 4226 dev->id); 4227 } 4228 } 4229 4230 static 4231 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4232 Error **errp) 4233 { 4234 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4235 4236 if (spapr->tpm_proxy != NULL) { 4237 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4238 return false; 4239 } 4240 4241 return true; 4242 } 4243 4244 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4245 { 4246 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4247 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4248 4249 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4250 g_assert(spapr->tpm_proxy == NULL); 4251 4252 spapr->tpm_proxy = tpm_proxy; 4253 } 4254 4255 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4256 { 4257 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4258 4259 qdev_unrealize(dev); 4260 object_unparent(OBJECT(dev)); 4261 spapr->tpm_proxy = NULL; 4262 } 4263 4264 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4265 DeviceState *dev, Error **errp) 4266 { 4267 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4268 spapr_memory_plug(hotplug_dev, dev); 4269 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4270 spapr_core_plug(hotplug_dev, dev); 4271 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4272 spapr_phb_plug(hotplug_dev, dev); 4273 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4274 spapr_tpm_proxy_plug(hotplug_dev, dev); 4275 } 4276 } 4277 4278 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4279 DeviceState *dev, Error **errp) 4280 { 4281 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4282 spapr_memory_unplug(hotplug_dev, dev); 4283 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4284 spapr_core_unplug(hotplug_dev, dev); 4285 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4286 spapr_phb_unplug(hotplug_dev, dev); 4287 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4288 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4289 } 4290 } 4291 4292 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4293 { 4294 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4295 /* 4296 * CAS will process all pending unplug requests. 4297 * 4298 * HACK: a guest could theoretically have cleared all bits in OV5, 4299 * but none of the guests we care for do. 4300 */ 4301 spapr_ovec_empty(spapr->ov5_cas); 4302 } 4303 4304 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4305 DeviceState *dev, Error **errp) 4306 { 4307 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4308 MachineClass *mc = MACHINE_GET_CLASS(sms); 4309 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4310 4311 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4312 if (spapr_memory_hot_unplug_supported(sms)) { 4313 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4314 } else { 4315 error_setg(errp, "Memory hot unplug not supported for this guest"); 4316 } 4317 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4318 if (!mc->has_hotpluggable_cpus) { 4319 error_setg(errp, "CPU hot unplug not supported on this machine"); 4320 return; 4321 } 4322 spapr_core_unplug_request(hotplug_dev, dev, errp); 4323 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4324 if (!smc->dr_phb_enabled) { 4325 error_setg(errp, "PHB hot unplug not supported on this machine"); 4326 return; 4327 } 4328 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4329 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4330 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4331 } 4332 } 4333 4334 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4335 DeviceState *dev, Error **errp) 4336 { 4337 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4338 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4339 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4340 spapr_core_pre_plug(hotplug_dev, dev, errp); 4341 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4342 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4343 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4344 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4345 } 4346 } 4347 4348 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4349 DeviceState *dev) 4350 { 4351 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4352 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4353 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4354 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4355 return HOTPLUG_HANDLER(machine); 4356 } 4357 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4358 PCIDevice *pcidev = PCI_DEVICE(dev); 4359 PCIBus *root = pci_device_root_bus(pcidev); 4360 SpaprPhbState *phb = 4361 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4362 TYPE_SPAPR_PCI_HOST_BRIDGE); 4363 4364 if (phb) { 4365 return HOTPLUG_HANDLER(phb); 4366 } 4367 } 4368 return NULL; 4369 } 4370 4371 static CpuInstanceProperties 4372 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4373 { 4374 CPUArchId *core_slot; 4375 MachineClass *mc = MACHINE_GET_CLASS(machine); 4376 4377 /* make sure possible_cpu are initialized */ 4378 mc->possible_cpu_arch_ids(machine); 4379 /* get CPU core slot containing thread that matches cpu_index */ 4380 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4381 assert(core_slot); 4382 return core_slot->props; 4383 } 4384 4385 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4386 { 4387 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4388 } 4389 4390 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4391 { 4392 int i; 4393 unsigned int smp_threads = machine->smp.threads; 4394 unsigned int smp_cpus = machine->smp.cpus; 4395 const char *core_type; 4396 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4397 MachineClass *mc = MACHINE_GET_CLASS(machine); 4398 4399 if (!mc->has_hotpluggable_cpus) { 4400 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4401 } 4402 if (machine->possible_cpus) { 4403 assert(machine->possible_cpus->len == spapr_max_cores); 4404 return machine->possible_cpus; 4405 } 4406 4407 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4408 if (!core_type) { 4409 error_report("Unable to find sPAPR CPU Core definition"); 4410 exit(1); 4411 } 4412 4413 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4414 sizeof(CPUArchId) * spapr_max_cores); 4415 machine->possible_cpus->len = spapr_max_cores; 4416 for (i = 0; i < machine->possible_cpus->len; i++) { 4417 int core_id = i * smp_threads; 4418 4419 machine->possible_cpus->cpus[i].type = core_type; 4420 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4421 machine->possible_cpus->cpus[i].arch_id = core_id; 4422 machine->possible_cpus->cpus[i].props.has_core_id = true; 4423 machine->possible_cpus->cpus[i].props.core_id = core_id; 4424 } 4425 return machine->possible_cpus; 4426 } 4427 4428 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4429 uint64_t *buid, hwaddr *pio, 4430 hwaddr *mmio32, hwaddr *mmio64, 4431 unsigned n_dma, uint32_t *liobns, Error **errp) 4432 { 4433 /* 4434 * New-style PHB window placement. 4435 * 4436 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4437 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4438 * windows. 4439 * 4440 * Some guest kernels can't work with MMIO windows above 1<<46 4441 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4442 * 4443 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4444 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4445 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4446 * 1TiB 64-bit MMIO windows for each PHB. 4447 */ 4448 const uint64_t base_buid = 0x800000020000000ULL; 4449 int i; 4450 4451 /* Sanity check natural alignments */ 4452 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4453 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4454 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4455 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4456 /* Sanity check bounds */ 4457 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4458 SPAPR_PCI_MEM32_WIN_SIZE); 4459 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4460 SPAPR_PCI_MEM64_WIN_SIZE); 4461 4462 if (index >= SPAPR_MAX_PHBS) { 4463 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4464 SPAPR_MAX_PHBS - 1); 4465 return false; 4466 } 4467 4468 *buid = base_buid + index; 4469 for (i = 0; i < n_dma; ++i) { 4470 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4471 } 4472 4473 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4474 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4475 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4476 return true; 4477 } 4478 4479 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4480 { 4481 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4482 4483 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4484 } 4485 4486 static void spapr_ics_resend(XICSFabric *dev) 4487 { 4488 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4489 4490 ics_resend(spapr->ics); 4491 } 4492 4493 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4494 { 4495 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4496 4497 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4498 } 4499 4500 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4501 Monitor *mon) 4502 { 4503 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4504 4505 spapr_irq_print_info(spapr, mon); 4506 monitor_printf(mon, "irqchip: %s\n", 4507 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4508 } 4509 4510 /* 4511 * This is a XIVE only operation 4512 */ 4513 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4514 uint8_t nvt_blk, uint32_t nvt_idx, 4515 bool cam_ignore, uint8_t priority, 4516 uint32_t logic_serv, XiveTCTXMatch *match) 4517 { 4518 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4519 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4520 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4521 int count; 4522 4523 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4524 priority, logic_serv, match); 4525 if (count < 0) { 4526 return count; 4527 } 4528 4529 /* 4530 * When we implement the save and restore of the thread interrupt 4531 * contexts in the enter/exit CPU handlers of the machine and the 4532 * escalations in QEMU, we should be able to handle non dispatched 4533 * vCPUs. 4534 * 4535 * Until this is done, the sPAPR machine should find at least one 4536 * matching context always. 4537 */ 4538 if (count == 0) { 4539 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4540 nvt_blk, nvt_idx); 4541 } 4542 4543 return count; 4544 } 4545 4546 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4547 { 4548 return cpu->vcpu_id; 4549 } 4550 4551 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4552 { 4553 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4554 MachineState *ms = MACHINE(spapr); 4555 int vcpu_id; 4556 4557 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4558 4559 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4560 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4561 error_append_hint(errp, "Adjust the number of cpus to %d " 4562 "or try to raise the number of threads per core\n", 4563 vcpu_id * ms->smp.threads / spapr->vsmt); 4564 return false; 4565 } 4566 4567 cpu->vcpu_id = vcpu_id; 4568 return true; 4569 } 4570 4571 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4572 { 4573 CPUState *cs; 4574 4575 CPU_FOREACH(cs) { 4576 PowerPCCPU *cpu = POWERPC_CPU(cs); 4577 4578 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4579 return cpu; 4580 } 4581 } 4582 4583 return NULL; 4584 } 4585 4586 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4587 { 4588 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4589 4590 return spapr_cpu->in_nested; 4591 } 4592 4593 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4594 { 4595 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4596 4597 /* These are only called by TCG, KVM maintains dispatch state */ 4598 4599 spapr_cpu->prod = false; 4600 if (spapr_cpu->vpa_addr) { 4601 CPUState *cs = CPU(cpu); 4602 uint32_t dispatch; 4603 4604 dispatch = ldl_be_phys(cs->as, 4605 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4606 dispatch++; 4607 if ((dispatch & 1) != 0) { 4608 qemu_log_mask(LOG_GUEST_ERROR, 4609 "VPA: incorrect dispatch counter value for " 4610 "dispatched partition %u, correcting.\n", dispatch); 4611 dispatch++; 4612 } 4613 stl_be_phys(cs->as, 4614 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4615 } 4616 } 4617 4618 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4619 { 4620 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4621 4622 if (spapr_cpu->vpa_addr) { 4623 CPUState *cs = CPU(cpu); 4624 uint32_t dispatch; 4625 4626 dispatch = ldl_be_phys(cs->as, 4627 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4628 dispatch++; 4629 if ((dispatch & 1) != 1) { 4630 qemu_log_mask(LOG_GUEST_ERROR, 4631 "VPA: incorrect dispatch counter value for " 4632 "preempted partition %u, correcting.\n", dispatch); 4633 dispatch++; 4634 } 4635 stl_be_phys(cs->as, 4636 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4637 } 4638 } 4639 4640 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4641 { 4642 MachineClass *mc = MACHINE_CLASS(oc); 4643 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4644 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4645 NMIClass *nc = NMI_CLASS(oc); 4646 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4647 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4648 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4649 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4650 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4651 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4652 4653 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4654 mc->ignore_boot_device_suffixes = true; 4655 4656 /* 4657 * We set up the default / latest behaviour here. The class_init 4658 * functions for the specific versioned machine types can override 4659 * these details for backwards compatibility 4660 */ 4661 mc->init = spapr_machine_init; 4662 mc->reset = spapr_machine_reset; 4663 mc->block_default_type = IF_SCSI; 4664 4665 /* 4666 * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(), 4667 * In TCG the limit is restricted by the range of CPU IPIs available. 4668 */ 4669 mc->max_cpus = SPAPR_IRQ_NR_IPIS; 4670 4671 mc->no_parallel = 1; 4672 mc->default_boot_order = ""; 4673 mc->default_ram_size = 512 * MiB; 4674 mc->default_ram_id = "ppc_spapr.ram"; 4675 mc->default_display = "std"; 4676 mc->kvm_type = spapr_kvm_type; 4677 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4678 mc->pci_allow_0_address = true; 4679 assert(!mc->get_hotplug_handler); 4680 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4681 hc->pre_plug = spapr_machine_device_pre_plug; 4682 hc->plug = spapr_machine_device_plug; 4683 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4684 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4685 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4686 hc->unplug_request = spapr_machine_device_unplug_request; 4687 hc->unplug = spapr_machine_device_unplug; 4688 4689 smc->dr_lmb_enabled = true; 4690 smc->update_dt_enabled = true; 4691 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 4692 mc->has_hotpluggable_cpus = true; 4693 mc->nvdimm_supported = true; 4694 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4695 fwc->get_dev_path = spapr_get_fw_dev_path; 4696 nc->nmi_monitor_handler = spapr_nmi; 4697 smc->phb_placement = spapr_phb_placement; 4698 vhc->cpu_in_nested = spapr_cpu_in_nested; 4699 vhc->deliver_hv_excp = spapr_exit_nested; 4700 vhc->hypercall = emulate_spapr_hypercall; 4701 vhc->hpt_mask = spapr_hpt_mask; 4702 vhc->map_hptes = spapr_map_hptes; 4703 vhc->unmap_hptes = spapr_unmap_hptes; 4704 vhc->hpte_set_c = spapr_hpte_set_c; 4705 vhc->hpte_set_r = spapr_hpte_set_r; 4706 vhc->get_pate = spapr_get_pate; 4707 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4708 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4709 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4710 xic->ics_get = spapr_ics_get; 4711 xic->ics_resend = spapr_ics_resend; 4712 xic->icp_get = spapr_icp_get; 4713 ispc->print_info = spapr_pic_print_info; 4714 /* Force NUMA node memory size to be a multiple of 4715 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4716 * in which LMBs are represented and hot-added 4717 */ 4718 mc->numa_mem_align_shift = 28; 4719 mc->auto_enable_numa = true; 4720 4721 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4722 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4723 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4724 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4725 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4726 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4727 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4728 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4729 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4730 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4731 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4732 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4733 4734 /* 4735 * This cap specifies whether the AIL 3 mode for 4736 * H_SET_RESOURCE is supported. The default is modified 4737 * by default_caps_with_cpu(). 4738 */ 4739 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4740 spapr_caps_add_properties(smc); 4741 smc->irq = &spapr_irq_dual; 4742 smc->dr_phb_enabled = true; 4743 smc->linux_pci_probe = true; 4744 smc->smp_threads_vsmt = true; 4745 smc->nr_xirqs = SPAPR_NR_XIRQS; 4746 xfc->match_nvt = spapr_match_nvt; 4747 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4748 vmc->quiesce = spapr_vof_quiesce; 4749 vmc->setprop = spapr_vof_setprop; 4750 } 4751 4752 static const TypeInfo spapr_machine_info = { 4753 .name = TYPE_SPAPR_MACHINE, 4754 .parent = TYPE_MACHINE, 4755 .abstract = true, 4756 .instance_size = sizeof(SpaprMachineState), 4757 .instance_init = spapr_instance_init, 4758 .instance_finalize = spapr_machine_finalizefn, 4759 .class_size = sizeof(SpaprMachineClass), 4760 .class_init = spapr_machine_class_init, 4761 .interfaces = (InterfaceInfo[]) { 4762 { TYPE_FW_PATH_PROVIDER }, 4763 { TYPE_NMI }, 4764 { TYPE_HOTPLUG_HANDLER }, 4765 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4766 { TYPE_XICS_FABRIC }, 4767 { TYPE_INTERRUPT_STATS_PROVIDER }, 4768 { TYPE_XIVE_FABRIC }, 4769 { TYPE_VOF_MACHINE_IF }, 4770 { } 4771 }, 4772 }; 4773 4774 static void spapr_machine_latest_class_options(MachineClass *mc) 4775 { 4776 mc->alias = "pseries"; 4777 mc->is_default = true; 4778 } 4779 4780 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4781 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4782 void *data) \ 4783 { \ 4784 MachineClass *mc = MACHINE_CLASS(oc); \ 4785 spapr_machine_##suffix##_class_options(mc); \ 4786 if (latest) { \ 4787 spapr_machine_latest_class_options(mc); \ 4788 } \ 4789 } \ 4790 static const TypeInfo spapr_machine_##suffix##_info = { \ 4791 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4792 .parent = TYPE_SPAPR_MACHINE, \ 4793 .class_init = spapr_machine_##suffix##_class_init, \ 4794 }; \ 4795 static void spapr_machine_register_##suffix(void) \ 4796 { \ 4797 type_register(&spapr_machine_##suffix##_info); \ 4798 } \ 4799 type_init(spapr_machine_register_##suffix) 4800 4801 /* 4802 * pseries-9.0 4803 */ 4804 static void spapr_machine_9_0_class_options(MachineClass *mc) 4805 { 4806 /* Defaults for the latest behaviour inherited from the base class */ 4807 } 4808 4809 DEFINE_SPAPR_MACHINE(9_0, "9.0", true); 4810 4811 /* 4812 * pseries-8.2 4813 */ 4814 static void spapr_machine_8_2_class_options(MachineClass *mc) 4815 { 4816 spapr_machine_9_0_class_options(mc); 4817 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 4818 } 4819 4820 DEFINE_SPAPR_MACHINE(8_2, "8.2", false); 4821 4822 /* 4823 * pseries-8.1 4824 */ 4825 static void spapr_machine_8_1_class_options(MachineClass *mc) 4826 { 4827 spapr_machine_8_2_class_options(mc); 4828 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4829 } 4830 4831 DEFINE_SPAPR_MACHINE(8_1, "8.1", false); 4832 4833 /* 4834 * pseries-8.0 4835 */ 4836 static void spapr_machine_8_0_class_options(MachineClass *mc) 4837 { 4838 spapr_machine_8_1_class_options(mc); 4839 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4840 } 4841 4842 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4843 4844 /* 4845 * pseries-7.2 4846 */ 4847 static void spapr_machine_7_2_class_options(MachineClass *mc) 4848 { 4849 spapr_machine_8_0_class_options(mc); 4850 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4851 } 4852 4853 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4854 4855 /* 4856 * pseries-7.1 4857 */ 4858 static void spapr_machine_7_1_class_options(MachineClass *mc) 4859 { 4860 spapr_machine_7_2_class_options(mc); 4861 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4862 } 4863 4864 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4865 4866 /* 4867 * pseries-7.0 4868 */ 4869 static void spapr_machine_7_0_class_options(MachineClass *mc) 4870 { 4871 spapr_machine_7_1_class_options(mc); 4872 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4873 } 4874 4875 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4876 4877 /* 4878 * pseries-6.2 4879 */ 4880 static void spapr_machine_6_2_class_options(MachineClass *mc) 4881 { 4882 spapr_machine_7_0_class_options(mc); 4883 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4884 } 4885 4886 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4887 4888 /* 4889 * pseries-6.1 4890 */ 4891 static void spapr_machine_6_1_class_options(MachineClass *mc) 4892 { 4893 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4894 4895 spapr_machine_6_2_class_options(mc); 4896 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4897 smc->pre_6_2_numa_affinity = true; 4898 mc->smp_props.prefer_sockets = true; 4899 } 4900 4901 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4902 4903 /* 4904 * pseries-6.0 4905 */ 4906 static void spapr_machine_6_0_class_options(MachineClass *mc) 4907 { 4908 spapr_machine_6_1_class_options(mc); 4909 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4910 } 4911 4912 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4913 4914 /* 4915 * pseries-5.2 4916 */ 4917 static void spapr_machine_5_2_class_options(MachineClass *mc) 4918 { 4919 spapr_machine_6_0_class_options(mc); 4920 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4921 } 4922 4923 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4924 4925 /* 4926 * pseries-5.1 4927 */ 4928 static void spapr_machine_5_1_class_options(MachineClass *mc) 4929 { 4930 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4931 4932 spapr_machine_5_2_class_options(mc); 4933 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4934 smc->pre_5_2_numa_associativity = true; 4935 } 4936 4937 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4938 4939 /* 4940 * pseries-5.0 4941 */ 4942 static void spapr_machine_5_0_class_options(MachineClass *mc) 4943 { 4944 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4945 static GlobalProperty compat[] = { 4946 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4947 }; 4948 4949 spapr_machine_5_1_class_options(mc); 4950 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4951 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4952 mc->numa_mem_supported = true; 4953 smc->pre_5_1_assoc_refpoints = true; 4954 } 4955 4956 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4957 4958 /* 4959 * pseries-4.2 4960 */ 4961 static void spapr_machine_4_2_class_options(MachineClass *mc) 4962 { 4963 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4964 4965 spapr_machine_5_0_class_options(mc); 4966 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4967 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4968 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4969 smc->rma_limit = 16 * GiB; 4970 mc->nvdimm_supported = false; 4971 } 4972 4973 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4974 4975 /* 4976 * pseries-4.1 4977 */ 4978 static void spapr_machine_4_1_class_options(MachineClass *mc) 4979 { 4980 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4981 static GlobalProperty compat[] = { 4982 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4983 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4984 }; 4985 4986 spapr_machine_4_2_class_options(mc); 4987 smc->linux_pci_probe = false; 4988 smc->smp_threads_vsmt = false; 4989 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4990 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4991 } 4992 4993 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4994 4995 /* 4996 * pseries-4.0 4997 */ 4998 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4999 uint64_t *buid, hwaddr *pio, 5000 hwaddr *mmio32, hwaddr *mmio64, 5001 unsigned n_dma, uint32_t *liobns, Error **errp) 5002 { 5003 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 5004 liobns, errp)) { 5005 return false; 5006 } 5007 return true; 5008 } 5009 static void spapr_machine_4_0_class_options(MachineClass *mc) 5010 { 5011 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5012 5013 spapr_machine_4_1_class_options(mc); 5014 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 5015 smc->phb_placement = phb_placement_4_0; 5016 smc->irq = &spapr_irq_xics; 5017 smc->pre_4_1_migration = true; 5018 } 5019 5020 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 5021 5022 /* 5023 * pseries-3.1 5024 */ 5025 static void spapr_machine_3_1_class_options(MachineClass *mc) 5026 { 5027 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5028 5029 spapr_machine_4_0_class_options(mc); 5030 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 5031 5032 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 5033 smc->update_dt_enabled = false; 5034 smc->dr_phb_enabled = false; 5035 smc->broken_host_serial_model = true; 5036 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 5037 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 5038 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 5039 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 5040 } 5041 5042 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 5043 5044 /* 5045 * pseries-3.0 5046 */ 5047 5048 static void spapr_machine_3_0_class_options(MachineClass *mc) 5049 { 5050 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5051 5052 spapr_machine_3_1_class_options(mc); 5053 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5054 5055 smc->legacy_irq_allocation = true; 5056 smc->nr_xirqs = 0x400; 5057 smc->irq = &spapr_irq_xics_legacy; 5058 } 5059 5060 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 5061 5062 /* 5063 * pseries-2.12 5064 */ 5065 static void spapr_machine_2_12_class_options(MachineClass *mc) 5066 { 5067 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5068 static GlobalProperty compat[] = { 5069 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5070 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5071 }; 5072 5073 spapr_machine_3_0_class_options(mc); 5074 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5075 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5076 5077 /* We depend on kvm_enabled() to choose a default value for the 5078 * hpt-max-page-size capability. Of course we can't do it here 5079 * because this is too early and the HW accelerator isn't initialized 5080 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5081 */ 5082 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5083 } 5084 5085 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5086 5087 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5088 { 5089 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5090 5091 spapr_machine_2_12_class_options(mc); 5092 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5093 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5094 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5095 } 5096 5097 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5098 5099 /* 5100 * pseries-2.11 5101 */ 5102 5103 static void spapr_machine_2_11_class_options(MachineClass *mc) 5104 { 5105 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5106 5107 spapr_machine_2_12_class_options(mc); 5108 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5109 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5110 mc->deprecation_reason = "old and not maintained - use a 2.12+ version"; 5111 } 5112 5113 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5114 5115 /* 5116 * pseries-2.10 5117 */ 5118 5119 static void spapr_machine_2_10_class_options(MachineClass *mc) 5120 { 5121 spapr_machine_2_11_class_options(mc); 5122 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5123 } 5124 5125 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5126 5127 /* 5128 * pseries-2.9 5129 */ 5130 5131 static void spapr_machine_2_9_class_options(MachineClass *mc) 5132 { 5133 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5134 static GlobalProperty compat[] = { 5135 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5136 }; 5137 5138 spapr_machine_2_10_class_options(mc); 5139 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5140 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5141 smc->pre_2_10_has_unused_icps = true; 5142 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5143 } 5144 5145 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5146 5147 /* 5148 * pseries-2.8 5149 */ 5150 5151 static void spapr_machine_2_8_class_options(MachineClass *mc) 5152 { 5153 static GlobalProperty compat[] = { 5154 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5155 }; 5156 5157 spapr_machine_2_9_class_options(mc); 5158 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5159 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5160 mc->numa_mem_align_shift = 23; 5161 } 5162 5163 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5164 5165 /* 5166 * pseries-2.7 5167 */ 5168 5169 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5170 uint64_t *buid, hwaddr *pio, 5171 hwaddr *mmio32, hwaddr *mmio64, 5172 unsigned n_dma, uint32_t *liobns, Error **errp) 5173 { 5174 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5175 const uint64_t base_buid = 0x800000020000000ULL; 5176 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5177 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5178 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5179 const uint32_t max_index = 255; 5180 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5181 5182 uint64_t ram_top = MACHINE(spapr)->ram_size; 5183 hwaddr phb0_base, phb_base; 5184 int i; 5185 5186 /* Do we have device memory? */ 5187 if (MACHINE(spapr)->device_memory) { 5188 /* Can't just use maxram_size, because there may be an 5189 * alignment gap between normal and device memory regions 5190 */ 5191 ram_top = MACHINE(spapr)->device_memory->base + 5192 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5193 } 5194 5195 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5196 5197 if (index > max_index) { 5198 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5199 max_index); 5200 return false; 5201 } 5202 5203 *buid = base_buid + index; 5204 for (i = 0; i < n_dma; ++i) { 5205 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5206 } 5207 5208 phb_base = phb0_base + index * phb_spacing; 5209 *pio = phb_base + pio_offset; 5210 *mmio32 = phb_base + mmio_offset; 5211 /* 5212 * We don't set the 64-bit MMIO window, relying on the PHB's 5213 * fallback behaviour of automatically splitting a large "32-bit" 5214 * window into contiguous 32-bit and 64-bit windows 5215 */ 5216 5217 return true; 5218 } 5219 5220 static void spapr_machine_2_7_class_options(MachineClass *mc) 5221 { 5222 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5223 static GlobalProperty compat[] = { 5224 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5225 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5226 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5227 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5228 }; 5229 5230 spapr_machine_2_8_class_options(mc); 5231 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5232 mc->default_machine_opts = "modern-hotplug-events=off"; 5233 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5234 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5235 smc->phb_placement = phb_placement_2_7; 5236 } 5237 5238 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5239 5240 /* 5241 * pseries-2.6 5242 */ 5243 5244 static void spapr_machine_2_6_class_options(MachineClass *mc) 5245 { 5246 static GlobalProperty compat[] = { 5247 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5248 }; 5249 5250 spapr_machine_2_7_class_options(mc); 5251 mc->has_hotpluggable_cpus = false; 5252 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5253 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5254 } 5255 5256 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5257 5258 /* 5259 * pseries-2.5 5260 */ 5261 5262 static void spapr_machine_2_5_class_options(MachineClass *mc) 5263 { 5264 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5265 static GlobalProperty compat[] = { 5266 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5267 }; 5268 5269 spapr_machine_2_6_class_options(mc); 5270 smc->use_ohci_by_default = true; 5271 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5272 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5273 } 5274 5275 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5276 5277 /* 5278 * pseries-2.4 5279 */ 5280 5281 static void spapr_machine_2_4_class_options(MachineClass *mc) 5282 { 5283 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5284 5285 spapr_machine_2_5_class_options(mc); 5286 smc->dr_lmb_enabled = false; 5287 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5288 } 5289 5290 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5291 5292 /* 5293 * pseries-2.3 5294 */ 5295 5296 static void spapr_machine_2_3_class_options(MachineClass *mc) 5297 { 5298 static GlobalProperty compat[] = { 5299 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5300 }; 5301 spapr_machine_2_4_class_options(mc); 5302 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5303 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5304 } 5305 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5306 5307 /* 5308 * pseries-2.2 5309 */ 5310 5311 static void spapr_machine_2_2_class_options(MachineClass *mc) 5312 { 5313 static GlobalProperty compat[] = { 5314 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5315 }; 5316 5317 spapr_machine_2_3_class_options(mc); 5318 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5319 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5320 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5321 } 5322 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5323 5324 /* 5325 * pseries-2.1 5326 */ 5327 5328 static void spapr_machine_2_1_class_options(MachineClass *mc) 5329 { 5330 spapr_machine_2_2_class_options(mc); 5331 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5332 } 5333 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5334 5335 static void spapr_machine_register_types(void) 5336 { 5337 type_register_static(&spapr_machine_info); 5338 } 5339 5340 type_init(spapr_machine_register_types) 5341