1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "hw/core/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "qemu/cutils.h" 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 #include "hw/ppc/spapr_tpm_proxy.h" 83 84 #include <libfdt.h> 85 86 /* SLOF memory layout: 87 * 88 * SLOF raw image loaded at 0, copies its romfs right below the flat 89 * device-tree, then position SLOF itself 31M below that 90 * 91 * So we set FW_OVERHEAD to 40MB which should account for all of that 92 * and more 93 * 94 * We load our kernel at 4M, leaving space for SLOF initial image 95 */ 96 #define FDT_MAX_SIZE 0x100000 97 #define RTAS_MAX_SIZE 0x10000 98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 99 #define FW_MAX_SIZE 0x400000 100 #define FW_FILE_NAME "slof.bin" 101 #define FW_OVERHEAD 0x2800000 102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 103 104 #define MIN_RMA_SLOF 128UL 105 106 #define PHANDLE_INTC 0x00001111 107 108 /* These two functions implement the VCPU id numbering: one to compute them 109 * all and one to identify thread 0 of a VCORE. Any change to the first one 110 * is likely to have an impact on the second one, so let's keep them close. 111 */ 112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 113 { 114 MachineState *ms = MACHINE(spapr); 115 unsigned int smp_threads = ms->smp.threads; 116 117 assert(spapr->vsmt); 118 return 119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 120 } 121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 122 PowerPCCPU *cpu) 123 { 124 assert(spapr->vsmt); 125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 126 } 127 128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 129 { 130 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 131 * and newer QEMUs don't even have them. In both cases, we don't want 132 * to send anything on the wire. 133 */ 134 return false; 135 } 136 137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 138 .name = "icp/server", 139 .version_id = 1, 140 .minimum_version_id = 1, 141 .needed = pre_2_10_vmstate_dummy_icp_needed, 142 .fields = (VMStateField[]) { 143 VMSTATE_UNUSED(4), /* uint32_t xirr */ 144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 145 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 146 VMSTATE_END_OF_LIST() 147 }, 148 }; 149 150 static void pre_2_10_vmstate_register_dummy_icp(int i) 151 { 152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 153 (void *)(uintptr_t) i); 154 } 155 156 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 157 { 158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 159 (void *)(uintptr_t) i); 160 } 161 162 int spapr_max_server_number(SpaprMachineState *spapr) 163 { 164 MachineState *ms = MACHINE(spapr); 165 166 assert(spapr->vsmt); 167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 168 } 169 170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 171 int smt_threads) 172 { 173 int i, ret = 0; 174 uint32_t servers_prop[smt_threads]; 175 uint32_t gservers_prop[smt_threads * 2]; 176 int index = spapr_get_vcpu_id(cpu); 177 178 if (cpu->compat_pvr) { 179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 180 if (ret < 0) { 181 return ret; 182 } 183 } 184 185 /* Build interrupt servers and gservers properties */ 186 for (i = 0; i < smt_threads; i++) { 187 servers_prop[i] = cpu_to_be32(index + i); 188 /* Hack, direct the group queues back to cpu 0 */ 189 gservers_prop[i*2] = cpu_to_be32(index + i); 190 gservers_prop[i*2 + 1] = 0; 191 } 192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 193 servers_prop, sizeof(servers_prop)); 194 if (ret < 0) { 195 return ret; 196 } 197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 198 gservers_prop, sizeof(gservers_prop)); 199 200 return ret; 201 } 202 203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 204 { 205 int index = spapr_get_vcpu_id(cpu); 206 uint32_t associativity[] = {cpu_to_be32(0x5), 207 cpu_to_be32(0x0), 208 cpu_to_be32(0x0), 209 cpu_to_be32(0x0), 210 cpu_to_be32(cpu->node_id), 211 cpu_to_be32(index)}; 212 213 /* Advertise NUMA via ibm,associativity */ 214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 215 sizeof(associativity)); 216 } 217 218 /* Populate the "ibm,pa-features" property */ 219 static void spapr_populate_pa_features(SpaprMachineState *spapr, 220 PowerPCCPU *cpu, 221 void *fdt, int offset, 222 bool legacy_guest) 223 { 224 uint8_t pa_features_206[] = { 6, 0, 225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 226 uint8_t pa_features_207[] = { 24, 0, 227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 231 uint8_t pa_features_300[] = { 66, 0, 232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 235 /* 6: DS207 */ 236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 237 /* 16: Vector */ 238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 247 /* 42: PM, 44: PC RA, 46: SC vec'd */ 248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 249 /* 48: SIMD, 50: QP BFP, 52: String */ 250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 251 /* 54: DecFP, 56: DecI, 58: SHA */ 252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 253 /* 60: NM atomic, 62: RNG */ 254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 255 }; 256 uint8_t *pa_features = NULL; 257 size_t pa_size; 258 259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 260 pa_features = pa_features_206; 261 pa_size = sizeof(pa_features_206); 262 } 263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 264 pa_features = pa_features_207; 265 pa_size = sizeof(pa_features_207); 266 } 267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 268 pa_features = pa_features_300; 269 pa_size = sizeof(pa_features_300); 270 } 271 if (!pa_features) { 272 return; 273 } 274 275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 276 /* 277 * Note: we keep CI large pages off by default because a 64K capable 278 * guest provisioned with large pages might otherwise try to map a qemu 279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 280 * even if that qemu runs on a 4k host. 281 * We dd this bit back here if we are confident this is not an issue 282 */ 283 pa_features[3] |= 0x20; 284 } 285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 286 pa_features[24] |= 0x80; /* Transactional memory support */ 287 } 288 if (legacy_guest && pa_size > 40) { 289 /* Workaround for broken kernels that attempt (guest) radix 290 * mode when they can't handle it, if they see the radix bit set 291 * in pa-features. So hide it from them. */ 292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 293 } 294 295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 296 } 297 298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 299 { 300 MachineState *ms = MACHINE(spapr); 301 int ret = 0, offset, cpus_offset; 302 CPUState *cs; 303 char cpu_model[32]; 304 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 305 306 CPU_FOREACH(cs) { 307 PowerPCCPU *cpu = POWERPC_CPU(cs); 308 DeviceClass *dc = DEVICE_GET_CLASS(cs); 309 int index = spapr_get_vcpu_id(cpu); 310 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu)); 311 312 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 313 continue; 314 } 315 316 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 317 318 cpus_offset = fdt_path_offset(fdt, "/cpus"); 319 if (cpus_offset < 0) { 320 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 321 if (cpus_offset < 0) { 322 return cpus_offset; 323 } 324 } 325 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 326 if (offset < 0) { 327 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 328 if (offset < 0) { 329 return offset; 330 } 331 } 332 333 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 334 pft_size_prop, sizeof(pft_size_prop)); 335 if (ret < 0) { 336 return ret; 337 } 338 339 if (ms->numa_state->num_nodes > 1) { 340 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 341 if (ret < 0) { 342 return ret; 343 } 344 } 345 346 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 347 if (ret < 0) { 348 return ret; 349 } 350 351 spapr_populate_pa_features(spapr, cpu, fdt, offset, 352 spapr->cas_legacy_guest_workaround); 353 } 354 return ret; 355 } 356 357 static hwaddr spapr_node0_size(MachineState *machine) 358 { 359 if (machine->numa_state->num_nodes) { 360 int i; 361 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 362 if (numa_info[i].node_mem) { 363 return MIN(pow2floor(numa_info[i].node_mem), 364 machine->ram_size); 365 } 366 } 367 } 368 return machine->ram_size; 369 } 370 371 static void add_str(GString *s, const gchar *s1) 372 { 373 g_string_append_len(s, s1, strlen(s1) + 1); 374 } 375 376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 377 hwaddr size) 378 { 379 uint32_t associativity[] = { 380 cpu_to_be32(0x4), /* length */ 381 cpu_to_be32(0x0), cpu_to_be32(0x0), 382 cpu_to_be32(0x0), cpu_to_be32(nodeid) 383 }; 384 char mem_name[32]; 385 uint64_t mem_reg_property[2]; 386 int off; 387 388 mem_reg_property[0] = cpu_to_be64(start); 389 mem_reg_property[1] = cpu_to_be64(size); 390 391 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 392 off = fdt_add_subnode(fdt, 0, mem_name); 393 _FDT(off); 394 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 395 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 396 sizeof(mem_reg_property)))); 397 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 398 sizeof(associativity)))); 399 return off; 400 } 401 402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 403 { 404 MachineState *machine = MACHINE(spapr); 405 hwaddr mem_start, node_size; 406 int i, nb_nodes = machine->numa_state->num_nodes; 407 NodeInfo *nodes = numa_info; 408 NodeInfo ramnode; 409 410 /* No NUMA nodes, assume there is just one node with whole RAM */ 411 if (!nb_nodes) { 412 nb_nodes = 1; 413 ramnode.node_mem = machine->ram_size; 414 nodes = &ramnode; 415 } 416 417 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 418 if (!nodes[i].node_mem) { 419 continue; 420 } 421 if (mem_start >= machine->ram_size) { 422 node_size = 0; 423 } else { 424 node_size = nodes[i].node_mem; 425 if (node_size > machine->ram_size - mem_start) { 426 node_size = machine->ram_size - mem_start; 427 } 428 } 429 if (!mem_start) { 430 /* spapr_machine_init() checks for rma_size <= node0_size 431 * already */ 432 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 433 mem_start += spapr->rma_size; 434 node_size -= spapr->rma_size; 435 } 436 for ( ; node_size; ) { 437 hwaddr sizetmp = pow2floor(node_size); 438 439 /* mem_start != 0 here */ 440 if (ctzl(mem_start) < ctzl(sizetmp)) { 441 sizetmp = 1ULL << ctzl(mem_start); 442 } 443 444 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 445 node_size -= sizetmp; 446 mem_start += sizetmp; 447 } 448 } 449 450 return 0; 451 } 452 453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 454 SpaprMachineState *spapr) 455 { 456 MachineState *ms = MACHINE(spapr); 457 PowerPCCPU *cpu = POWERPC_CPU(cs); 458 CPUPPCState *env = &cpu->env; 459 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 460 int index = spapr_get_vcpu_id(cpu); 461 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 462 0xffffffff, 0xffffffff}; 463 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 464 : SPAPR_TIMEBASE_FREQ; 465 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 466 uint32_t page_sizes_prop[64]; 467 size_t page_sizes_prop_size; 468 unsigned int smp_threads = ms->smp.threads; 469 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 470 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 471 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 472 SpaprDrc *drc; 473 int drc_index; 474 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 475 int i; 476 477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 478 if (drc) { 479 drc_index = spapr_drc_index(drc); 480 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 481 } 482 483 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 484 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 485 486 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 488 env->dcache_line_size))); 489 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 490 env->dcache_line_size))); 491 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 492 env->icache_line_size))); 493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 494 env->icache_line_size))); 495 496 if (pcc->l1_dcache_size) { 497 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 498 pcc->l1_dcache_size))); 499 } else { 500 warn_report("Unknown L1 dcache size for cpu"); 501 } 502 if (pcc->l1_icache_size) { 503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 504 pcc->l1_icache_size))); 505 } else { 506 warn_report("Unknown L1 icache size for cpu"); 507 } 508 509 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 510 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 511 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 513 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 514 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 515 516 if (env->spr_cb[SPR_PURR].oea_read) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 518 } 519 if (env->spr_cb[SPR_SPURR].oea_read) { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 521 } 522 523 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 524 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 525 segs, sizeof(segs)))); 526 } 527 528 /* Advertise VSX (vector extensions) if available 529 * 1 == VMX / Altivec available 530 * 2 == VSX available 531 * 532 * Only CPUs for which we create core types in spapr_cpu_core.c 533 * are possible, and all of those have VMX */ 534 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 536 } else { 537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 538 } 539 540 /* Advertise DFP (Decimal Floating Point) if available 541 * 0 / no property == no DFP 542 * 1 == DFP available */ 543 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 545 } 546 547 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 548 sizeof(page_sizes_prop)); 549 if (page_sizes_prop_size) { 550 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 551 page_sizes_prop, page_sizes_prop_size))); 552 } 553 554 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 555 556 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 557 cs->cpu_index / vcpus_per_socket))); 558 559 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 560 pft_size_prop, sizeof(pft_size_prop)))); 561 562 if (ms->numa_state->num_nodes > 1) { 563 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 564 } 565 566 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 567 568 if (pcc->radix_page_info) { 569 for (i = 0; i < pcc->radix_page_info->count; i++) { 570 radix_AP_encodings[i] = 571 cpu_to_be32(pcc->radix_page_info->entries[i]); 572 } 573 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 574 radix_AP_encodings, 575 pcc->radix_page_info->count * 576 sizeof(radix_AP_encodings[0])))); 577 } 578 579 /* 580 * We set this property to let the guest know that it can use the large 581 * decrementer and its width in bits. 582 */ 583 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 584 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 585 pcc->lrg_decr_bits))); 586 } 587 588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 589 { 590 CPUState **rev; 591 CPUState *cs; 592 int n_cpus; 593 int cpus_offset; 594 char *nodename; 595 int i; 596 597 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 598 _FDT(cpus_offset); 599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 600 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 601 602 /* 603 * We walk the CPUs in reverse order to ensure that CPU DT nodes 604 * created by fdt_add_subnode() end up in the right order in FDT 605 * for the guest kernel the enumerate the CPUs correctly. 606 * 607 * The CPU list cannot be traversed in reverse order, so we need 608 * to do extra work. 609 */ 610 n_cpus = 0; 611 rev = NULL; 612 CPU_FOREACH(cs) { 613 rev = g_renew(CPUState *, rev, n_cpus + 1); 614 rev[n_cpus++] = cs; 615 } 616 617 for (i = n_cpus - 1; i >= 0; i--) { 618 CPUState *cs = rev[i]; 619 PowerPCCPU *cpu = POWERPC_CPU(cs); 620 int index = spapr_get_vcpu_id(cpu); 621 DeviceClass *dc = DEVICE_GET_CLASS(cs); 622 int offset; 623 624 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 625 continue; 626 } 627 628 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 629 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 630 g_free(nodename); 631 _FDT(offset); 632 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 633 } 634 635 g_free(rev); 636 } 637 638 static int spapr_rng_populate_dt(void *fdt) 639 { 640 int node; 641 int ret; 642 643 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 644 if (node <= 0) { 645 return -1; 646 } 647 ret = fdt_setprop_string(fdt, node, "device_type", 648 "ibm,platform-facilities"); 649 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 650 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 651 652 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 653 if (node <= 0) { 654 return -1; 655 } 656 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 657 658 return ret ? -1 : 0; 659 } 660 661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 662 { 663 MemoryDeviceInfoList *info; 664 665 for (info = list; info; info = info->next) { 666 MemoryDeviceInfo *value = info->value; 667 668 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 669 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 670 671 if (addr >= pcdimm_info->addr && 672 addr < (pcdimm_info->addr + pcdimm_info->size)) { 673 return pcdimm_info->node; 674 } 675 } 676 } 677 678 return -1; 679 } 680 681 struct sPAPRDrconfCellV2 { 682 uint32_t seq_lmbs; 683 uint64_t base_addr; 684 uint32_t drc_index; 685 uint32_t aa_index; 686 uint32_t flags; 687 } QEMU_PACKED; 688 689 typedef struct DrconfCellQueue { 690 struct sPAPRDrconfCellV2 cell; 691 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 692 } DrconfCellQueue; 693 694 static DrconfCellQueue * 695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 696 uint32_t drc_index, uint32_t aa_index, 697 uint32_t flags) 698 { 699 DrconfCellQueue *elem; 700 701 elem = g_malloc0(sizeof(*elem)); 702 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 703 elem->cell.base_addr = cpu_to_be64(base_addr); 704 elem->cell.drc_index = cpu_to_be32(drc_index); 705 elem->cell.aa_index = cpu_to_be32(aa_index); 706 elem->cell.flags = cpu_to_be32(flags); 707 708 return elem; 709 } 710 711 /* ibm,dynamic-memory-v2 */ 712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 713 int offset, MemoryDeviceInfoList *dimms) 714 { 715 MachineState *machine = MACHINE(spapr); 716 uint8_t *int_buf, *cur_index; 717 int ret; 718 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 719 uint64_t addr, cur_addr, size; 720 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 721 uint64_t mem_end = machine->device_memory->base + 722 memory_region_size(&machine->device_memory->mr); 723 uint32_t node, buf_len, nr_entries = 0; 724 SpaprDrc *drc; 725 DrconfCellQueue *elem, *next; 726 MemoryDeviceInfoList *info; 727 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 728 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 729 730 /* Entry to cover RAM and the gap area */ 731 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 732 SPAPR_LMB_FLAGS_RESERVED | 733 SPAPR_LMB_FLAGS_DRC_INVALID); 734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 735 nr_entries++; 736 737 cur_addr = machine->device_memory->base; 738 for (info = dimms; info; info = info->next) { 739 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 740 741 addr = di->addr; 742 size = di->size; 743 node = di->node; 744 745 /* Entry for hot-pluggable area */ 746 if (cur_addr < addr) { 747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 748 g_assert(drc); 749 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 750 cur_addr, spapr_drc_index(drc), -1, 0); 751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 752 nr_entries++; 753 } 754 755 /* Entry for DIMM */ 756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 757 g_assert(drc); 758 elem = spapr_get_drconf_cell(size / lmb_size, addr, 759 spapr_drc_index(drc), node, 760 SPAPR_LMB_FLAGS_ASSIGNED); 761 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 762 nr_entries++; 763 cur_addr = addr + size; 764 } 765 766 /* Entry for remaining hotpluggable area */ 767 if (cur_addr < mem_end) { 768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 769 g_assert(drc); 770 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 771 cur_addr, spapr_drc_index(drc), -1, 0); 772 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 773 nr_entries++; 774 } 775 776 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 777 int_buf = cur_index = g_malloc0(buf_len); 778 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 779 cur_index += sizeof(nr_entries); 780 781 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 782 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 783 cur_index += sizeof(elem->cell); 784 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 785 g_free(elem); 786 } 787 788 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 789 g_free(int_buf); 790 if (ret < 0) { 791 return -1; 792 } 793 return 0; 794 } 795 796 /* ibm,dynamic-memory */ 797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 798 int offset, MemoryDeviceInfoList *dimms) 799 { 800 MachineState *machine = MACHINE(spapr); 801 int i, ret; 802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 803 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 804 uint32_t nr_lmbs = (machine->device_memory->base + 805 memory_region_size(&machine->device_memory->mr)) / 806 lmb_size; 807 uint32_t *int_buf, *cur_index, buf_len; 808 809 /* 810 * Allocate enough buffer size to fit in ibm,dynamic-memory 811 */ 812 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 813 cur_index = int_buf = g_malloc0(buf_len); 814 int_buf[0] = cpu_to_be32(nr_lmbs); 815 cur_index++; 816 for (i = 0; i < nr_lmbs; i++) { 817 uint64_t addr = i * lmb_size; 818 uint32_t *dynamic_memory = cur_index; 819 820 if (i >= device_lmb_start) { 821 SpaprDrc *drc; 822 823 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 824 g_assert(drc); 825 826 dynamic_memory[0] = cpu_to_be32(addr >> 32); 827 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 828 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 829 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 830 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 831 if (memory_region_present(get_system_memory(), addr)) { 832 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 833 } else { 834 dynamic_memory[5] = cpu_to_be32(0); 835 } 836 } else { 837 /* 838 * LMB information for RMA, boot time RAM and gap b/n RAM and 839 * device memory region -- all these are marked as reserved 840 * and as having no valid DRC. 841 */ 842 dynamic_memory[0] = cpu_to_be32(addr >> 32); 843 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 844 dynamic_memory[2] = cpu_to_be32(0); 845 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 846 dynamic_memory[4] = cpu_to_be32(-1); 847 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 848 SPAPR_LMB_FLAGS_DRC_INVALID); 849 } 850 851 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 852 } 853 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 854 g_free(int_buf); 855 if (ret < 0) { 856 return -1; 857 } 858 return 0; 859 } 860 861 /* 862 * Adds ibm,dynamic-reconfiguration-memory node. 863 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 864 * of this device tree node. 865 */ 866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 867 { 868 MachineState *machine = MACHINE(spapr); 869 int nb_numa_nodes = machine->numa_state->num_nodes; 870 int ret, i, offset; 871 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 872 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 873 uint32_t *int_buf, *cur_index, buf_len; 874 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 875 MemoryDeviceInfoList *dimms = NULL; 876 877 /* 878 * Don't create the node if there is no device memory 879 */ 880 if (machine->ram_size == machine->maxram_size) { 881 return 0; 882 } 883 884 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 885 886 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 887 sizeof(prop_lmb_size)); 888 if (ret < 0) { 889 return ret; 890 } 891 892 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 893 if (ret < 0) { 894 return ret; 895 } 896 897 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 898 if (ret < 0) { 899 return ret; 900 } 901 902 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 903 dimms = qmp_memory_device_list(); 904 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 905 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 906 } else { 907 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 908 } 909 qapi_free_MemoryDeviceInfoList(dimms); 910 911 if (ret < 0) { 912 return ret; 913 } 914 915 /* ibm,associativity-lookup-arrays */ 916 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 917 cur_index = int_buf = g_malloc0(buf_len); 918 int_buf[0] = cpu_to_be32(nr_nodes); 919 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 920 cur_index += 2; 921 for (i = 0; i < nr_nodes; i++) { 922 uint32_t associativity[] = { 923 cpu_to_be32(0x0), 924 cpu_to_be32(0x0), 925 cpu_to_be32(0x0), 926 cpu_to_be32(i) 927 }; 928 memcpy(cur_index, associativity, sizeof(associativity)); 929 cur_index += 4; 930 } 931 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 932 (cur_index - int_buf) * sizeof(uint32_t)); 933 g_free(int_buf); 934 935 return ret; 936 } 937 938 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 939 SpaprOptionVector *ov5_updates) 940 { 941 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 942 int ret = 0, offset; 943 944 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 945 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 946 g_assert(smc->dr_lmb_enabled); 947 ret = spapr_populate_drconf_memory(spapr, fdt); 948 if (ret) { 949 goto out; 950 } 951 } 952 953 offset = fdt_path_offset(fdt, "/chosen"); 954 if (offset < 0) { 955 offset = fdt_add_subnode(fdt, 0, "chosen"); 956 if (offset < 0) { 957 return offset; 958 } 959 } 960 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 961 "ibm,architecture-vec-5"); 962 963 out: 964 return ret; 965 } 966 967 static bool spapr_hotplugged_dev_before_cas(void) 968 { 969 Object *drc_container, *obj; 970 ObjectProperty *prop; 971 ObjectPropertyIterator iter; 972 973 drc_container = container_get(object_get_root(), "/dr-connector"); 974 object_property_iter_init(&iter, drc_container); 975 while ((prop = object_property_iter_next(&iter))) { 976 if (!strstart(prop->type, "link<", NULL)) { 977 continue; 978 } 979 obj = object_property_get_link(drc_container, prop->name, NULL); 980 if (spapr_drc_needed(obj)) { 981 return true; 982 } 983 } 984 return false; 985 } 986 987 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 988 target_ulong addr, target_ulong size, 989 SpaprOptionVector *ov5_updates) 990 { 991 void *fdt, *fdt_skel; 992 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 993 994 if (spapr_hotplugged_dev_before_cas()) { 995 return 1; 996 } 997 998 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 999 error_report("SLOF provided an unexpected CAS buffer size " 1000 TARGET_FMT_lu " (min: %zu, max: %u)", 1001 size, sizeof(hdr), FW_MAX_SIZE); 1002 exit(EXIT_FAILURE); 1003 } 1004 1005 size -= sizeof(hdr); 1006 1007 /* Create skeleton */ 1008 fdt_skel = g_malloc0(size); 1009 _FDT((fdt_create(fdt_skel, size))); 1010 _FDT((fdt_finish_reservemap(fdt_skel))); 1011 _FDT((fdt_begin_node(fdt_skel, ""))); 1012 _FDT((fdt_end_node(fdt_skel))); 1013 _FDT((fdt_finish(fdt_skel))); 1014 fdt = g_malloc0(size); 1015 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1016 g_free(fdt_skel); 1017 1018 /* Fixup cpu nodes */ 1019 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1020 1021 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1022 return -1; 1023 } 1024 1025 /* Pack resulting tree */ 1026 _FDT((fdt_pack(fdt))); 1027 1028 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1029 trace_spapr_cas_failed(size); 1030 return -1; 1031 } 1032 1033 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1034 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1035 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1036 g_free(fdt); 1037 1038 return 0; 1039 } 1040 1041 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1042 { 1043 MachineState *ms = MACHINE(spapr); 1044 int rtas; 1045 GString *hypertas = g_string_sized_new(256); 1046 GString *qemu_hypertas = g_string_sized_new(256); 1047 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1048 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1049 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1050 uint32_t lrdr_capacity[] = { 1051 cpu_to_be32(max_device_addr >> 32), 1052 cpu_to_be32(max_device_addr & 0xffffffff), 1053 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1054 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 1055 }; 1056 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1057 uint32_t maxdomains[] = { 1058 cpu_to_be32(4), 1059 maxdomain, 1060 maxdomain, 1061 maxdomain, 1062 cpu_to_be32(spapr->gpu_numa_id), 1063 }; 1064 1065 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1066 1067 /* hypertas */ 1068 add_str(hypertas, "hcall-pft"); 1069 add_str(hypertas, "hcall-term"); 1070 add_str(hypertas, "hcall-dabr"); 1071 add_str(hypertas, "hcall-interrupt"); 1072 add_str(hypertas, "hcall-tce"); 1073 add_str(hypertas, "hcall-vio"); 1074 add_str(hypertas, "hcall-splpar"); 1075 add_str(hypertas, "hcall-join"); 1076 add_str(hypertas, "hcall-bulk"); 1077 add_str(hypertas, "hcall-set-mode"); 1078 add_str(hypertas, "hcall-sprg0"); 1079 add_str(hypertas, "hcall-copy"); 1080 add_str(hypertas, "hcall-debug"); 1081 add_str(hypertas, "hcall-vphn"); 1082 add_str(qemu_hypertas, "hcall-memop1"); 1083 1084 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1085 add_str(hypertas, "hcall-multi-tce"); 1086 } 1087 1088 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1089 add_str(hypertas, "hcall-hpt-resize"); 1090 } 1091 1092 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1093 hypertas->str, hypertas->len)); 1094 g_string_free(hypertas, TRUE); 1095 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1096 qemu_hypertas->str, qemu_hypertas->len)); 1097 g_string_free(qemu_hypertas, TRUE); 1098 1099 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1100 refpoints, sizeof(refpoints))); 1101 1102 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1103 maxdomains, sizeof(maxdomains))); 1104 1105 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1106 RTAS_ERROR_LOG_MAX)); 1107 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1108 RTAS_EVENT_SCAN_RATE)); 1109 1110 g_assert(msi_nonbroken); 1111 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1112 1113 /* 1114 * According to PAPR, rtas ibm,os-term does not guarantee a return 1115 * back to the guest cpu. 1116 * 1117 * While an additional ibm,extended-os-term property indicates 1118 * that rtas call return will always occur. Set this property. 1119 */ 1120 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1121 1122 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1123 lrdr_capacity, sizeof(lrdr_capacity))); 1124 1125 spapr_dt_rtas_tokens(fdt, rtas); 1126 } 1127 1128 /* 1129 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1130 * and the XIVE features that the guest may request and thus the valid 1131 * values for bytes 23..26 of option vector 5: 1132 */ 1133 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1134 int chosen) 1135 { 1136 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1137 1138 char val[2 * 4] = { 1139 23, spapr->irq->ov5, /* Xive mode. */ 1140 24, 0x00, /* Hash/Radix, filled in below. */ 1141 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1142 26, 0x40, /* Radix options: GTSE == yes. */ 1143 }; 1144 1145 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1146 first_ppc_cpu->compat_pvr)) { 1147 /* 1148 * If we're in a pre POWER9 compat mode then the guest should 1149 * do hash and use the legacy interrupt mode 1150 */ 1151 val[1] = 0x00; /* XICS */ 1152 val[3] = 0x00; /* Hash */ 1153 } else if (kvm_enabled()) { 1154 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1155 val[3] = 0x80; /* OV5_MMU_BOTH */ 1156 } else if (kvmppc_has_cap_mmu_radix()) { 1157 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1158 } else { 1159 val[3] = 0x00; /* Hash */ 1160 } 1161 } else { 1162 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1163 val[3] = 0xC0; 1164 } 1165 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1166 val, sizeof(val))); 1167 } 1168 1169 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1170 { 1171 MachineState *machine = MACHINE(spapr); 1172 int chosen; 1173 const char *boot_device = machine->boot_order; 1174 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1175 size_t cb = 0; 1176 char *bootlist = get_boot_devices_list(&cb); 1177 1178 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1179 1180 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1181 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1182 spapr->initrd_base)); 1183 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1184 spapr->initrd_base + spapr->initrd_size)); 1185 1186 if (spapr->kernel_size) { 1187 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1188 cpu_to_be64(spapr->kernel_size) }; 1189 1190 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1191 &kprop, sizeof(kprop))); 1192 if (spapr->kernel_le) { 1193 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1194 } 1195 } 1196 if (boot_menu) { 1197 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1198 } 1199 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1200 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1201 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1202 1203 if (cb && bootlist) { 1204 int i; 1205 1206 for (i = 0; i < cb; i++) { 1207 if (bootlist[i] == '\n') { 1208 bootlist[i] = ' '; 1209 } 1210 } 1211 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1212 } 1213 1214 if (boot_device && strlen(boot_device)) { 1215 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1216 } 1217 1218 if (!spapr->has_graphics && stdout_path) { 1219 /* 1220 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1221 * kernel. New platforms should only use the "stdout-path" property. Set 1222 * the new property and continue using older property to remain 1223 * compatible with the existing firmware. 1224 */ 1225 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1226 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1227 } 1228 1229 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1230 1231 g_free(stdout_path); 1232 g_free(bootlist); 1233 } 1234 1235 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1236 { 1237 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1238 * KVM to work under pHyp with some guest co-operation */ 1239 int hypervisor; 1240 uint8_t hypercall[16]; 1241 1242 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1243 /* indicate KVM hypercall interface */ 1244 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1245 if (kvmppc_has_cap_fixup_hcalls()) { 1246 /* 1247 * Older KVM versions with older guest kernels were broken 1248 * with the magic page, don't allow the guest to map it. 1249 */ 1250 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1251 sizeof(hypercall))) { 1252 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1253 hypercall, sizeof(hypercall))); 1254 } 1255 } 1256 } 1257 1258 static void *spapr_build_fdt(SpaprMachineState *spapr) 1259 { 1260 MachineState *machine = MACHINE(spapr); 1261 MachineClass *mc = MACHINE_GET_CLASS(machine); 1262 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1263 int ret; 1264 void *fdt; 1265 SpaprPhbState *phb; 1266 char *buf; 1267 1268 fdt = g_malloc0(FDT_MAX_SIZE); 1269 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1270 1271 /* Root node */ 1272 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1273 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1274 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1275 1276 /* Guest UUID & Name*/ 1277 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1278 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1279 if (qemu_uuid_set) { 1280 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1281 } 1282 g_free(buf); 1283 1284 if (qemu_get_vm_name()) { 1285 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1286 qemu_get_vm_name())); 1287 } 1288 1289 /* Host Model & Serial Number */ 1290 if (spapr->host_model) { 1291 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1292 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1293 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1294 g_free(buf); 1295 } 1296 1297 if (spapr->host_serial) { 1298 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1299 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1300 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1301 g_free(buf); 1302 } 1303 1304 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1305 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1306 1307 /* /interrupt controller */ 1308 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1309 PHANDLE_INTC); 1310 1311 ret = spapr_populate_memory(spapr, fdt); 1312 if (ret < 0) { 1313 error_report("couldn't setup memory nodes in fdt"); 1314 exit(1); 1315 } 1316 1317 /* /vdevice */ 1318 spapr_dt_vdevice(spapr->vio_bus, fdt); 1319 1320 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1321 ret = spapr_rng_populate_dt(fdt); 1322 if (ret < 0) { 1323 error_report("could not set up rng device in the fdt"); 1324 exit(1); 1325 } 1326 } 1327 1328 QLIST_FOREACH(phb, &spapr->phbs, list) { 1329 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1330 if (ret < 0) { 1331 error_report("couldn't setup PCI devices in fdt"); 1332 exit(1); 1333 } 1334 } 1335 1336 /* cpus */ 1337 spapr_populate_cpus_dt_node(fdt, spapr); 1338 1339 if (smc->dr_lmb_enabled) { 1340 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1341 } 1342 1343 if (mc->has_hotpluggable_cpus) { 1344 int offset = fdt_path_offset(fdt, "/cpus"); 1345 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1346 if (ret < 0) { 1347 error_report("Couldn't set up CPU DR device tree properties"); 1348 exit(1); 1349 } 1350 } 1351 1352 /* /event-sources */ 1353 spapr_dt_events(spapr, fdt); 1354 1355 /* /rtas */ 1356 spapr_dt_rtas(spapr, fdt); 1357 1358 /* /chosen */ 1359 spapr_dt_chosen(spapr, fdt); 1360 1361 /* /hypervisor */ 1362 if (kvm_enabled()) { 1363 spapr_dt_hypervisor(spapr, fdt); 1364 } 1365 1366 /* Build memory reserve map */ 1367 if (spapr->kernel_size) { 1368 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1369 } 1370 if (spapr->initrd_size) { 1371 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1372 } 1373 1374 /* ibm,client-architecture-support updates */ 1375 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1376 if (ret < 0) { 1377 error_report("couldn't setup CAS properties fdt"); 1378 exit(1); 1379 } 1380 1381 if (smc->dr_phb_enabled) { 1382 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1383 if (ret < 0) { 1384 error_report("Couldn't set up PHB DR device tree properties"); 1385 exit(1); 1386 } 1387 } 1388 1389 return fdt; 1390 } 1391 1392 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1393 { 1394 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1395 } 1396 1397 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1398 PowerPCCPU *cpu) 1399 { 1400 CPUPPCState *env = &cpu->env; 1401 1402 /* The TCG path should also be holding the BQL at this point */ 1403 g_assert(qemu_mutex_iothread_locked()); 1404 1405 if (msr_pr) { 1406 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1407 env->gpr[3] = H_PRIVILEGE; 1408 } else { 1409 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1410 } 1411 } 1412 1413 struct LPCRSyncState { 1414 target_ulong value; 1415 target_ulong mask; 1416 }; 1417 1418 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1419 { 1420 struct LPCRSyncState *s = arg.host_ptr; 1421 PowerPCCPU *cpu = POWERPC_CPU(cs); 1422 CPUPPCState *env = &cpu->env; 1423 target_ulong lpcr; 1424 1425 cpu_synchronize_state(cs); 1426 lpcr = env->spr[SPR_LPCR]; 1427 lpcr &= ~s->mask; 1428 lpcr |= s->value; 1429 ppc_store_lpcr(cpu, lpcr); 1430 } 1431 1432 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1433 { 1434 CPUState *cs; 1435 struct LPCRSyncState s = { 1436 .value = value, 1437 .mask = mask 1438 }; 1439 CPU_FOREACH(cs) { 1440 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1441 } 1442 } 1443 1444 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1445 { 1446 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1447 1448 /* Copy PATE1:GR into PATE0:HR */ 1449 entry->dw0 = spapr->patb_entry & PATE0_HR; 1450 entry->dw1 = spapr->patb_entry; 1451 } 1452 1453 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1454 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1455 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1456 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1457 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1458 1459 /* 1460 * Get the fd to access the kernel htab, re-opening it if necessary 1461 */ 1462 static int get_htab_fd(SpaprMachineState *spapr) 1463 { 1464 Error *local_err = NULL; 1465 1466 if (spapr->htab_fd >= 0) { 1467 return spapr->htab_fd; 1468 } 1469 1470 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1471 if (spapr->htab_fd < 0) { 1472 error_report_err(local_err); 1473 } 1474 1475 return spapr->htab_fd; 1476 } 1477 1478 void close_htab_fd(SpaprMachineState *spapr) 1479 { 1480 if (spapr->htab_fd >= 0) { 1481 close(spapr->htab_fd); 1482 } 1483 spapr->htab_fd = -1; 1484 } 1485 1486 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1487 { 1488 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1489 1490 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1491 } 1492 1493 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1494 { 1495 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1496 1497 assert(kvm_enabled()); 1498 1499 if (!spapr->htab) { 1500 return 0; 1501 } 1502 1503 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1504 } 1505 1506 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1507 hwaddr ptex, int n) 1508 { 1509 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1510 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1511 1512 if (!spapr->htab) { 1513 /* 1514 * HTAB is controlled by KVM. Fetch into temporary buffer 1515 */ 1516 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1517 kvmppc_read_hptes(hptes, ptex, n); 1518 return hptes; 1519 } 1520 1521 /* 1522 * HTAB is controlled by QEMU. Just point to the internally 1523 * accessible PTEG. 1524 */ 1525 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1526 } 1527 1528 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1529 const ppc_hash_pte64_t *hptes, 1530 hwaddr ptex, int n) 1531 { 1532 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1533 1534 if (!spapr->htab) { 1535 g_free((void *)hptes); 1536 } 1537 1538 /* Nothing to do for qemu managed HPT */ 1539 } 1540 1541 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1542 uint64_t pte0, uint64_t pte1) 1543 { 1544 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1545 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1546 1547 if (!spapr->htab) { 1548 kvmppc_write_hpte(ptex, pte0, pte1); 1549 } else { 1550 if (pte0 & HPTE64_V_VALID) { 1551 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1552 /* 1553 * When setting valid, we write PTE1 first. This ensures 1554 * proper synchronization with the reading code in 1555 * ppc_hash64_pteg_search() 1556 */ 1557 smp_wmb(); 1558 stq_p(spapr->htab + offset, pte0); 1559 } else { 1560 stq_p(spapr->htab + offset, pte0); 1561 /* 1562 * When clearing it we set PTE0 first. This ensures proper 1563 * synchronization with the reading code in 1564 * ppc_hash64_pteg_search() 1565 */ 1566 smp_wmb(); 1567 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1568 } 1569 } 1570 } 1571 1572 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1573 uint64_t pte1) 1574 { 1575 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1576 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1577 1578 if (!spapr->htab) { 1579 /* There should always be a hash table when this is called */ 1580 error_report("spapr_hpte_set_c called with no hash table !"); 1581 return; 1582 } 1583 1584 /* The HW performs a non-atomic byte update */ 1585 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1586 } 1587 1588 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1589 uint64_t pte1) 1590 { 1591 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1592 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1593 1594 if (!spapr->htab) { 1595 /* There should always be a hash table when this is called */ 1596 error_report("spapr_hpte_set_r called with no hash table !"); 1597 return; 1598 } 1599 1600 /* The HW performs a non-atomic byte update */ 1601 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1602 } 1603 1604 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1605 { 1606 int shift; 1607 1608 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1609 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1610 * that's much more than is needed for Linux guests */ 1611 shift = ctz64(pow2ceil(ramsize)) - 7; 1612 shift = MAX(shift, 18); /* Minimum architected size */ 1613 shift = MIN(shift, 46); /* Maximum architected size */ 1614 return shift; 1615 } 1616 1617 void spapr_free_hpt(SpaprMachineState *spapr) 1618 { 1619 g_free(spapr->htab); 1620 spapr->htab = NULL; 1621 spapr->htab_shift = 0; 1622 close_htab_fd(spapr); 1623 } 1624 1625 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1626 Error **errp) 1627 { 1628 long rc; 1629 1630 /* Clean up any HPT info from a previous boot */ 1631 spapr_free_hpt(spapr); 1632 1633 rc = kvmppc_reset_htab(shift); 1634 if (rc < 0) { 1635 /* kernel-side HPT needed, but couldn't allocate one */ 1636 error_setg_errno(errp, errno, 1637 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1638 shift); 1639 /* This is almost certainly fatal, but if the caller really 1640 * wants to carry on with shift == 0, it's welcome to try */ 1641 } else if (rc > 0) { 1642 /* kernel-side HPT allocated */ 1643 if (rc != shift) { 1644 error_setg(errp, 1645 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1646 shift, rc); 1647 } 1648 1649 spapr->htab_shift = shift; 1650 spapr->htab = NULL; 1651 } else { 1652 /* kernel-side HPT not needed, allocate in userspace instead */ 1653 size_t size = 1ULL << shift; 1654 int i; 1655 1656 spapr->htab = qemu_memalign(size, size); 1657 if (!spapr->htab) { 1658 error_setg_errno(errp, errno, 1659 "Could not allocate HPT of order %d", shift); 1660 return; 1661 } 1662 1663 memset(spapr->htab, 0, size); 1664 spapr->htab_shift = shift; 1665 1666 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1667 DIRTY_HPTE(HPTE(spapr->htab, i)); 1668 } 1669 } 1670 /* We're setting up a hash table, so that means we're not radix */ 1671 spapr->patb_entry = 0; 1672 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1673 } 1674 1675 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1676 { 1677 int hpt_shift; 1678 1679 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1680 || (spapr->cas_reboot 1681 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1682 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1683 } else { 1684 uint64_t current_ram_size; 1685 1686 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1687 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1688 } 1689 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1690 1691 if (spapr->vrma_adjust) { 1692 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1693 spapr->htab_shift); 1694 } 1695 } 1696 1697 static int spapr_reset_drcs(Object *child, void *opaque) 1698 { 1699 SpaprDrc *drc = 1700 (SpaprDrc *) object_dynamic_cast(child, 1701 TYPE_SPAPR_DR_CONNECTOR); 1702 1703 if (drc) { 1704 spapr_drc_reset(drc); 1705 } 1706 1707 return 0; 1708 } 1709 1710 static void spapr_machine_reset(MachineState *machine) 1711 { 1712 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1713 PowerPCCPU *first_ppc_cpu; 1714 uint32_t rtas_limit; 1715 hwaddr rtas_addr, fdt_addr; 1716 void *fdt; 1717 int rc; 1718 1719 spapr_caps_apply(spapr); 1720 1721 first_ppc_cpu = POWERPC_CPU(first_cpu); 1722 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1723 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1724 spapr->max_compat_pvr)) { 1725 /* 1726 * If using KVM with radix mode available, VCPUs can be started 1727 * without a HPT because KVM will start them in radix mode. 1728 * Set the GR bit in PATE so that we know there is no HPT. 1729 */ 1730 spapr->patb_entry = PATE1_GR; 1731 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1732 } else { 1733 spapr_setup_hpt_and_vrma(spapr); 1734 } 1735 1736 /* 1737 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1738 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1739 * called from vPHB reset handler so we initialize the counter here. 1740 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1741 * must be equally distant from any other node. 1742 * The final value of spapr->gpu_numa_id is going to be written to 1743 * max-associativity-domains in spapr_build_fdt(). 1744 */ 1745 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes); 1746 qemu_devices_reset(); 1747 1748 /* 1749 * If this reset wasn't generated by CAS, we should reset our 1750 * negotiated options and start from scratch 1751 */ 1752 if (!spapr->cas_reboot) { 1753 spapr_ovec_cleanup(spapr->ov5_cas); 1754 spapr->ov5_cas = spapr_ovec_new(); 1755 1756 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1757 } 1758 1759 /* 1760 * This is fixing some of the default configuration of the XIVE 1761 * devices. To be called after the reset of the machine devices. 1762 */ 1763 spapr_irq_reset(spapr, &error_fatal); 1764 1765 /* 1766 * There is no CAS under qtest. Simulate one to please the code that 1767 * depends on spapr->ov5_cas. This is especially needed to test device 1768 * unplug, so we do that before resetting the DRCs. 1769 */ 1770 if (qtest_enabled()) { 1771 spapr_ovec_cleanup(spapr->ov5_cas); 1772 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1773 } 1774 1775 /* DRC reset may cause a device to be unplugged. This will cause troubles 1776 * if this device is used by another device (eg, a running vhost backend 1777 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1778 * situations, we reset DRCs after all devices have been reset. 1779 */ 1780 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1781 1782 spapr_clear_pending_events(spapr); 1783 1784 /* 1785 * We place the device tree and RTAS just below either the top of the RMA, 1786 * or just below 2GB, whichever is lower, so that it can be 1787 * processed with 32-bit real mode code if necessary 1788 */ 1789 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1790 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1791 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1792 1793 fdt = spapr_build_fdt(spapr); 1794 1795 spapr_load_rtas(spapr, fdt, rtas_addr); 1796 1797 rc = fdt_pack(fdt); 1798 1799 /* Should only fail if we've built a corrupted tree */ 1800 assert(rc == 0); 1801 1802 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1803 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1804 fdt_totalsize(fdt), FDT_MAX_SIZE); 1805 exit(1); 1806 } 1807 1808 /* Load the fdt */ 1809 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1810 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1811 g_free(spapr->fdt_blob); 1812 spapr->fdt_size = fdt_totalsize(fdt); 1813 spapr->fdt_initial_size = spapr->fdt_size; 1814 spapr->fdt_blob = fdt; 1815 1816 /* Set up the entry state */ 1817 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1818 first_ppc_cpu->env.gpr[5] = 0; 1819 1820 spapr->cas_reboot = false; 1821 } 1822 1823 static void spapr_create_nvram(SpaprMachineState *spapr) 1824 { 1825 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1826 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1827 1828 if (dinfo) { 1829 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1830 &error_fatal); 1831 } 1832 1833 qdev_init_nofail(dev); 1834 1835 spapr->nvram = (struct SpaprNvram *)dev; 1836 } 1837 1838 static void spapr_rtc_create(SpaprMachineState *spapr) 1839 { 1840 object_initialize_child(OBJECT(spapr), "rtc", 1841 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1842 &error_fatal, NULL); 1843 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1844 &error_fatal); 1845 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1846 "date", &error_fatal); 1847 } 1848 1849 /* Returns whether we want to use VGA or not */ 1850 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1851 { 1852 switch (vga_interface_type) { 1853 case VGA_NONE: 1854 return false; 1855 case VGA_DEVICE: 1856 return true; 1857 case VGA_STD: 1858 case VGA_VIRTIO: 1859 case VGA_CIRRUS: 1860 return pci_vga_init(pci_bus) != NULL; 1861 default: 1862 error_setg(errp, 1863 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1864 return false; 1865 } 1866 } 1867 1868 static int spapr_pre_load(void *opaque) 1869 { 1870 int rc; 1871 1872 rc = spapr_caps_pre_load(opaque); 1873 if (rc) { 1874 return rc; 1875 } 1876 1877 return 0; 1878 } 1879 1880 static int spapr_post_load(void *opaque, int version_id) 1881 { 1882 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1883 int err = 0; 1884 1885 err = spapr_caps_post_migration(spapr); 1886 if (err) { 1887 return err; 1888 } 1889 1890 /* 1891 * In earlier versions, there was no separate qdev for the PAPR 1892 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1893 * So when migrating from those versions, poke the incoming offset 1894 * value into the RTC device 1895 */ 1896 if (version_id < 3) { 1897 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1898 if (err) { 1899 return err; 1900 } 1901 } 1902 1903 if (kvm_enabled() && spapr->patb_entry) { 1904 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1905 bool radix = !!(spapr->patb_entry & PATE1_GR); 1906 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1907 1908 /* 1909 * Update LPCR:HR and UPRT as they may not be set properly in 1910 * the stream 1911 */ 1912 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1913 LPCR_HR | LPCR_UPRT); 1914 1915 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1916 if (err) { 1917 error_report("Process table config unsupported by the host"); 1918 return -EINVAL; 1919 } 1920 } 1921 1922 err = spapr_irq_post_load(spapr, version_id); 1923 if (err) { 1924 return err; 1925 } 1926 1927 return err; 1928 } 1929 1930 static int spapr_pre_save(void *opaque) 1931 { 1932 int rc; 1933 1934 rc = spapr_caps_pre_save(opaque); 1935 if (rc) { 1936 return rc; 1937 } 1938 1939 return 0; 1940 } 1941 1942 static bool version_before_3(void *opaque, int version_id) 1943 { 1944 return version_id < 3; 1945 } 1946 1947 static bool spapr_pending_events_needed(void *opaque) 1948 { 1949 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1950 return !QTAILQ_EMPTY(&spapr->pending_events); 1951 } 1952 1953 static const VMStateDescription vmstate_spapr_event_entry = { 1954 .name = "spapr_event_log_entry", 1955 .version_id = 1, 1956 .minimum_version_id = 1, 1957 .fields = (VMStateField[]) { 1958 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1959 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1960 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1961 NULL, extended_length), 1962 VMSTATE_END_OF_LIST() 1963 }, 1964 }; 1965 1966 static const VMStateDescription vmstate_spapr_pending_events = { 1967 .name = "spapr_pending_events", 1968 .version_id = 1, 1969 .minimum_version_id = 1, 1970 .needed = spapr_pending_events_needed, 1971 .fields = (VMStateField[]) { 1972 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1973 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1974 VMSTATE_END_OF_LIST() 1975 }, 1976 }; 1977 1978 static bool spapr_ov5_cas_needed(void *opaque) 1979 { 1980 SpaprMachineState *spapr = opaque; 1981 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1982 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1983 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1984 bool cas_needed; 1985 1986 /* Prior to the introduction of SpaprOptionVector, we had two option 1987 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1988 * Both of these options encode machine topology into the device-tree 1989 * in such a way that the now-booted OS should still be able to interact 1990 * appropriately with QEMU regardless of what options were actually 1991 * negotiatied on the source side. 1992 * 1993 * As such, we can avoid migrating the CAS-negotiated options if these 1994 * are the only options available on the current machine/platform. 1995 * Since these are the only options available for pseries-2.7 and 1996 * earlier, this allows us to maintain old->new/new->old migration 1997 * compatibility. 1998 * 1999 * For QEMU 2.8+, there are additional CAS-negotiatable options available 2000 * via default pseries-2.8 machines and explicit command-line parameters. 2001 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 2002 * of the actual CAS-negotiated values to continue working properly. For 2003 * example, availability of memory unplug depends on knowing whether 2004 * OV5_HP_EVT was negotiated via CAS. 2005 * 2006 * Thus, for any cases where the set of available CAS-negotiatable 2007 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2008 * include the CAS-negotiated options in the migration stream, unless 2009 * if they affect boot time behaviour only. 2010 */ 2011 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2012 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2013 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2014 2015 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2016 * the mask itself since in the future it's possible "legacy" bits may be 2017 * removed via machine options, which could generate a false positive 2018 * that breaks migration. 2019 */ 2020 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2021 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2022 2023 spapr_ovec_cleanup(ov5_mask); 2024 spapr_ovec_cleanup(ov5_legacy); 2025 spapr_ovec_cleanup(ov5_removed); 2026 2027 return cas_needed; 2028 } 2029 2030 static const VMStateDescription vmstate_spapr_ov5_cas = { 2031 .name = "spapr_option_vector_ov5_cas", 2032 .version_id = 1, 2033 .minimum_version_id = 1, 2034 .needed = spapr_ov5_cas_needed, 2035 .fields = (VMStateField[]) { 2036 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2037 vmstate_spapr_ovec, SpaprOptionVector), 2038 VMSTATE_END_OF_LIST() 2039 }, 2040 }; 2041 2042 static bool spapr_patb_entry_needed(void *opaque) 2043 { 2044 SpaprMachineState *spapr = opaque; 2045 2046 return !!spapr->patb_entry; 2047 } 2048 2049 static const VMStateDescription vmstate_spapr_patb_entry = { 2050 .name = "spapr_patb_entry", 2051 .version_id = 1, 2052 .minimum_version_id = 1, 2053 .needed = spapr_patb_entry_needed, 2054 .fields = (VMStateField[]) { 2055 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2056 VMSTATE_END_OF_LIST() 2057 }, 2058 }; 2059 2060 static bool spapr_irq_map_needed(void *opaque) 2061 { 2062 SpaprMachineState *spapr = opaque; 2063 2064 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2065 } 2066 2067 static const VMStateDescription vmstate_spapr_irq_map = { 2068 .name = "spapr_irq_map", 2069 .version_id = 1, 2070 .minimum_version_id = 1, 2071 .needed = spapr_irq_map_needed, 2072 .fields = (VMStateField[]) { 2073 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2074 VMSTATE_END_OF_LIST() 2075 }, 2076 }; 2077 2078 static bool spapr_dtb_needed(void *opaque) 2079 { 2080 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2081 2082 return smc->update_dt_enabled; 2083 } 2084 2085 static int spapr_dtb_pre_load(void *opaque) 2086 { 2087 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2088 2089 g_free(spapr->fdt_blob); 2090 spapr->fdt_blob = NULL; 2091 spapr->fdt_size = 0; 2092 2093 return 0; 2094 } 2095 2096 static const VMStateDescription vmstate_spapr_dtb = { 2097 .name = "spapr_dtb", 2098 .version_id = 1, 2099 .minimum_version_id = 1, 2100 .needed = spapr_dtb_needed, 2101 .pre_load = spapr_dtb_pre_load, 2102 .fields = (VMStateField[]) { 2103 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2104 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2105 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2106 fdt_size), 2107 VMSTATE_END_OF_LIST() 2108 }, 2109 }; 2110 2111 static const VMStateDescription vmstate_spapr = { 2112 .name = "spapr", 2113 .version_id = 3, 2114 .minimum_version_id = 1, 2115 .pre_load = spapr_pre_load, 2116 .post_load = spapr_post_load, 2117 .pre_save = spapr_pre_save, 2118 .fields = (VMStateField[]) { 2119 /* used to be @next_irq */ 2120 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2121 2122 /* RTC offset */ 2123 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2124 2125 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2126 VMSTATE_END_OF_LIST() 2127 }, 2128 .subsections = (const VMStateDescription*[]) { 2129 &vmstate_spapr_ov5_cas, 2130 &vmstate_spapr_patb_entry, 2131 &vmstate_spapr_pending_events, 2132 &vmstate_spapr_cap_htm, 2133 &vmstate_spapr_cap_vsx, 2134 &vmstate_spapr_cap_dfp, 2135 &vmstate_spapr_cap_cfpc, 2136 &vmstate_spapr_cap_sbbc, 2137 &vmstate_spapr_cap_ibs, 2138 &vmstate_spapr_cap_hpt_maxpagesize, 2139 &vmstate_spapr_irq_map, 2140 &vmstate_spapr_cap_nested_kvm_hv, 2141 &vmstate_spapr_dtb, 2142 &vmstate_spapr_cap_large_decr, 2143 &vmstate_spapr_cap_ccf_assist, 2144 NULL 2145 } 2146 }; 2147 2148 static int htab_save_setup(QEMUFile *f, void *opaque) 2149 { 2150 SpaprMachineState *spapr = opaque; 2151 2152 /* "Iteration" header */ 2153 if (!spapr->htab_shift) { 2154 qemu_put_be32(f, -1); 2155 } else { 2156 qemu_put_be32(f, spapr->htab_shift); 2157 } 2158 2159 if (spapr->htab) { 2160 spapr->htab_save_index = 0; 2161 spapr->htab_first_pass = true; 2162 } else { 2163 if (spapr->htab_shift) { 2164 assert(kvm_enabled()); 2165 } 2166 } 2167 2168 2169 return 0; 2170 } 2171 2172 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2173 int chunkstart, int n_valid, int n_invalid) 2174 { 2175 qemu_put_be32(f, chunkstart); 2176 qemu_put_be16(f, n_valid); 2177 qemu_put_be16(f, n_invalid); 2178 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2179 HASH_PTE_SIZE_64 * n_valid); 2180 } 2181 2182 static void htab_save_end_marker(QEMUFile *f) 2183 { 2184 qemu_put_be32(f, 0); 2185 qemu_put_be16(f, 0); 2186 qemu_put_be16(f, 0); 2187 } 2188 2189 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2190 int64_t max_ns) 2191 { 2192 bool has_timeout = max_ns != -1; 2193 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2194 int index = spapr->htab_save_index; 2195 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2196 2197 assert(spapr->htab_first_pass); 2198 2199 do { 2200 int chunkstart; 2201 2202 /* Consume invalid HPTEs */ 2203 while ((index < htabslots) 2204 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2205 CLEAN_HPTE(HPTE(spapr->htab, index)); 2206 index++; 2207 } 2208 2209 /* Consume valid HPTEs */ 2210 chunkstart = index; 2211 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2212 && HPTE_VALID(HPTE(spapr->htab, index))) { 2213 CLEAN_HPTE(HPTE(spapr->htab, index)); 2214 index++; 2215 } 2216 2217 if (index > chunkstart) { 2218 int n_valid = index - chunkstart; 2219 2220 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2221 2222 if (has_timeout && 2223 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2224 break; 2225 } 2226 } 2227 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2228 2229 if (index >= htabslots) { 2230 assert(index == htabslots); 2231 index = 0; 2232 spapr->htab_first_pass = false; 2233 } 2234 spapr->htab_save_index = index; 2235 } 2236 2237 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2238 int64_t max_ns) 2239 { 2240 bool final = max_ns < 0; 2241 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2242 int examined = 0, sent = 0; 2243 int index = spapr->htab_save_index; 2244 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2245 2246 assert(!spapr->htab_first_pass); 2247 2248 do { 2249 int chunkstart, invalidstart; 2250 2251 /* Consume non-dirty HPTEs */ 2252 while ((index < htabslots) 2253 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2254 index++; 2255 examined++; 2256 } 2257 2258 chunkstart = index; 2259 /* Consume valid dirty HPTEs */ 2260 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2261 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2262 && HPTE_VALID(HPTE(spapr->htab, index))) { 2263 CLEAN_HPTE(HPTE(spapr->htab, index)); 2264 index++; 2265 examined++; 2266 } 2267 2268 invalidstart = index; 2269 /* Consume invalid dirty HPTEs */ 2270 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2271 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2272 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2273 CLEAN_HPTE(HPTE(spapr->htab, index)); 2274 index++; 2275 examined++; 2276 } 2277 2278 if (index > chunkstart) { 2279 int n_valid = invalidstart - chunkstart; 2280 int n_invalid = index - invalidstart; 2281 2282 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2283 sent += index - chunkstart; 2284 2285 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2286 break; 2287 } 2288 } 2289 2290 if (examined >= htabslots) { 2291 break; 2292 } 2293 2294 if (index >= htabslots) { 2295 assert(index == htabslots); 2296 index = 0; 2297 } 2298 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2299 2300 if (index >= htabslots) { 2301 assert(index == htabslots); 2302 index = 0; 2303 } 2304 2305 spapr->htab_save_index = index; 2306 2307 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2308 } 2309 2310 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2311 #define MAX_KVM_BUF_SIZE 2048 2312 2313 static int htab_save_iterate(QEMUFile *f, void *opaque) 2314 { 2315 SpaprMachineState *spapr = opaque; 2316 int fd; 2317 int rc = 0; 2318 2319 /* Iteration header */ 2320 if (!spapr->htab_shift) { 2321 qemu_put_be32(f, -1); 2322 return 1; 2323 } else { 2324 qemu_put_be32(f, 0); 2325 } 2326 2327 if (!spapr->htab) { 2328 assert(kvm_enabled()); 2329 2330 fd = get_htab_fd(spapr); 2331 if (fd < 0) { 2332 return fd; 2333 } 2334 2335 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2336 if (rc < 0) { 2337 return rc; 2338 } 2339 } else if (spapr->htab_first_pass) { 2340 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2341 } else { 2342 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2343 } 2344 2345 htab_save_end_marker(f); 2346 2347 return rc; 2348 } 2349 2350 static int htab_save_complete(QEMUFile *f, void *opaque) 2351 { 2352 SpaprMachineState *spapr = opaque; 2353 int fd; 2354 2355 /* Iteration header */ 2356 if (!spapr->htab_shift) { 2357 qemu_put_be32(f, -1); 2358 return 0; 2359 } else { 2360 qemu_put_be32(f, 0); 2361 } 2362 2363 if (!spapr->htab) { 2364 int rc; 2365 2366 assert(kvm_enabled()); 2367 2368 fd = get_htab_fd(spapr); 2369 if (fd < 0) { 2370 return fd; 2371 } 2372 2373 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2374 if (rc < 0) { 2375 return rc; 2376 } 2377 } else { 2378 if (spapr->htab_first_pass) { 2379 htab_save_first_pass(f, spapr, -1); 2380 } 2381 htab_save_later_pass(f, spapr, -1); 2382 } 2383 2384 /* End marker */ 2385 htab_save_end_marker(f); 2386 2387 return 0; 2388 } 2389 2390 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2391 { 2392 SpaprMachineState *spapr = opaque; 2393 uint32_t section_hdr; 2394 int fd = -1; 2395 Error *local_err = NULL; 2396 2397 if (version_id < 1 || version_id > 1) { 2398 error_report("htab_load() bad version"); 2399 return -EINVAL; 2400 } 2401 2402 section_hdr = qemu_get_be32(f); 2403 2404 if (section_hdr == -1) { 2405 spapr_free_hpt(spapr); 2406 return 0; 2407 } 2408 2409 if (section_hdr) { 2410 /* First section gives the htab size */ 2411 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2412 if (local_err) { 2413 error_report_err(local_err); 2414 return -EINVAL; 2415 } 2416 return 0; 2417 } 2418 2419 if (!spapr->htab) { 2420 assert(kvm_enabled()); 2421 2422 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2423 if (fd < 0) { 2424 error_report_err(local_err); 2425 return fd; 2426 } 2427 } 2428 2429 while (true) { 2430 uint32_t index; 2431 uint16_t n_valid, n_invalid; 2432 2433 index = qemu_get_be32(f); 2434 n_valid = qemu_get_be16(f); 2435 n_invalid = qemu_get_be16(f); 2436 2437 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2438 /* End of Stream */ 2439 break; 2440 } 2441 2442 if ((index + n_valid + n_invalid) > 2443 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2444 /* Bad index in stream */ 2445 error_report( 2446 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2447 index, n_valid, n_invalid, spapr->htab_shift); 2448 return -EINVAL; 2449 } 2450 2451 if (spapr->htab) { 2452 if (n_valid) { 2453 qemu_get_buffer(f, HPTE(spapr->htab, index), 2454 HASH_PTE_SIZE_64 * n_valid); 2455 } 2456 if (n_invalid) { 2457 memset(HPTE(spapr->htab, index + n_valid), 0, 2458 HASH_PTE_SIZE_64 * n_invalid); 2459 } 2460 } else { 2461 int rc; 2462 2463 assert(fd >= 0); 2464 2465 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2466 if (rc < 0) { 2467 return rc; 2468 } 2469 } 2470 } 2471 2472 if (!spapr->htab) { 2473 assert(fd >= 0); 2474 close(fd); 2475 } 2476 2477 return 0; 2478 } 2479 2480 static void htab_save_cleanup(void *opaque) 2481 { 2482 SpaprMachineState *spapr = opaque; 2483 2484 close_htab_fd(spapr); 2485 } 2486 2487 static SaveVMHandlers savevm_htab_handlers = { 2488 .save_setup = htab_save_setup, 2489 .save_live_iterate = htab_save_iterate, 2490 .save_live_complete_precopy = htab_save_complete, 2491 .save_cleanup = htab_save_cleanup, 2492 .load_state = htab_load, 2493 }; 2494 2495 static void spapr_boot_set(void *opaque, const char *boot_device, 2496 Error **errp) 2497 { 2498 MachineState *machine = MACHINE(opaque); 2499 machine->boot_order = g_strdup(boot_device); 2500 } 2501 2502 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2503 { 2504 MachineState *machine = MACHINE(spapr); 2505 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2506 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2507 int i; 2508 2509 for (i = 0; i < nr_lmbs; i++) { 2510 uint64_t addr; 2511 2512 addr = i * lmb_size + machine->device_memory->base; 2513 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2514 addr / lmb_size); 2515 } 2516 } 2517 2518 /* 2519 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2520 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2521 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2522 */ 2523 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2524 { 2525 int i; 2526 2527 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2528 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2529 " is not aligned to %" PRIu64 " MiB", 2530 machine->ram_size, 2531 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2532 return; 2533 } 2534 2535 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2536 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2537 " is not aligned to %" PRIu64 " MiB", 2538 machine->ram_size, 2539 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2540 return; 2541 } 2542 2543 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2544 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2545 error_setg(errp, 2546 "Node %d memory size 0x%" PRIx64 2547 " is not aligned to %" PRIu64 " MiB", 2548 i, numa_info[i].node_mem, 2549 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2550 return; 2551 } 2552 } 2553 } 2554 2555 /* find cpu slot in machine->possible_cpus by core_id */ 2556 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2557 { 2558 int index = id / ms->smp.threads; 2559 2560 if (index >= ms->possible_cpus->len) { 2561 return NULL; 2562 } 2563 if (idx) { 2564 *idx = index; 2565 } 2566 return &ms->possible_cpus->cpus[index]; 2567 } 2568 2569 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2570 { 2571 MachineState *ms = MACHINE(spapr); 2572 Error *local_err = NULL; 2573 bool vsmt_user = !!spapr->vsmt; 2574 int kvm_smt = kvmppc_smt_threads(); 2575 int ret; 2576 unsigned int smp_threads = ms->smp.threads; 2577 2578 if (!kvm_enabled() && (smp_threads > 1)) { 2579 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2580 "on a pseries machine"); 2581 goto out; 2582 } 2583 if (!is_power_of_2(smp_threads)) { 2584 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2585 "machine because it must be a power of 2", smp_threads); 2586 goto out; 2587 } 2588 2589 /* Detemine the VSMT mode to use: */ 2590 if (vsmt_user) { 2591 if (spapr->vsmt < smp_threads) { 2592 error_setg(&local_err, "Cannot support VSMT mode %d" 2593 " because it must be >= threads/core (%d)", 2594 spapr->vsmt, smp_threads); 2595 goto out; 2596 } 2597 /* In this case, spapr->vsmt has been set by the command line */ 2598 } else { 2599 /* 2600 * Default VSMT value is tricky, because we need it to be as 2601 * consistent as possible (for migration), but this requires 2602 * changing it for at least some existing cases. We pick 8 as 2603 * the value that we'd get with KVM on POWER8, the 2604 * overwhelmingly common case in production systems. 2605 */ 2606 spapr->vsmt = MAX(8, smp_threads); 2607 } 2608 2609 /* KVM: If necessary, set the SMT mode: */ 2610 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2611 ret = kvmppc_set_smt_threads(spapr->vsmt); 2612 if (ret) { 2613 /* Looks like KVM isn't able to change VSMT mode */ 2614 error_setg(&local_err, 2615 "Failed to set KVM's VSMT mode to %d (errno %d)", 2616 spapr->vsmt, ret); 2617 /* We can live with that if the default one is big enough 2618 * for the number of threads, and a submultiple of the one 2619 * we want. In this case we'll waste some vcpu ids, but 2620 * behaviour will be correct */ 2621 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2622 warn_report_err(local_err); 2623 local_err = NULL; 2624 goto out; 2625 } else { 2626 if (!vsmt_user) { 2627 error_append_hint(&local_err, 2628 "On PPC, a VM with %d threads/core" 2629 " on a host with %d threads/core" 2630 " requires the use of VSMT mode %d.\n", 2631 smp_threads, kvm_smt, spapr->vsmt); 2632 } 2633 kvmppc_hint_smt_possible(&local_err); 2634 goto out; 2635 } 2636 } 2637 } 2638 /* else TCG: nothing to do currently */ 2639 out: 2640 error_propagate(errp, local_err); 2641 } 2642 2643 static void spapr_init_cpus(SpaprMachineState *spapr) 2644 { 2645 MachineState *machine = MACHINE(spapr); 2646 MachineClass *mc = MACHINE_GET_CLASS(machine); 2647 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2648 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2649 const CPUArchIdList *possible_cpus; 2650 unsigned int smp_cpus = machine->smp.cpus; 2651 unsigned int smp_threads = machine->smp.threads; 2652 unsigned int max_cpus = machine->smp.max_cpus; 2653 int boot_cores_nr = smp_cpus / smp_threads; 2654 int i; 2655 2656 possible_cpus = mc->possible_cpu_arch_ids(machine); 2657 if (mc->has_hotpluggable_cpus) { 2658 if (smp_cpus % smp_threads) { 2659 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2660 smp_cpus, smp_threads); 2661 exit(1); 2662 } 2663 if (max_cpus % smp_threads) { 2664 error_report("max_cpus (%u) must be multiple of threads (%u)", 2665 max_cpus, smp_threads); 2666 exit(1); 2667 } 2668 } else { 2669 if (max_cpus != smp_cpus) { 2670 error_report("This machine version does not support CPU hotplug"); 2671 exit(1); 2672 } 2673 boot_cores_nr = possible_cpus->len; 2674 } 2675 2676 if (smc->pre_2_10_has_unused_icps) { 2677 int i; 2678 2679 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2680 /* Dummy entries get deregistered when real ICPState objects 2681 * are registered during CPU core hotplug. 2682 */ 2683 pre_2_10_vmstate_register_dummy_icp(i); 2684 } 2685 } 2686 2687 for (i = 0; i < possible_cpus->len; i++) { 2688 int core_id = i * smp_threads; 2689 2690 if (mc->has_hotpluggable_cpus) { 2691 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2692 spapr_vcpu_id(spapr, core_id)); 2693 } 2694 2695 if (i < boot_cores_nr) { 2696 Object *core = object_new(type); 2697 int nr_threads = smp_threads; 2698 2699 /* Handle the partially filled core for older machine types */ 2700 if ((i + 1) * smp_threads >= smp_cpus) { 2701 nr_threads = smp_cpus - i * smp_threads; 2702 } 2703 2704 object_property_set_int(core, nr_threads, "nr-threads", 2705 &error_fatal); 2706 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2707 &error_fatal); 2708 object_property_set_bool(core, true, "realized", &error_fatal); 2709 2710 object_unref(core); 2711 } 2712 } 2713 } 2714 2715 static PCIHostState *spapr_create_default_phb(void) 2716 { 2717 DeviceState *dev; 2718 2719 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2720 qdev_prop_set_uint32(dev, "index", 0); 2721 qdev_init_nofail(dev); 2722 2723 return PCI_HOST_BRIDGE(dev); 2724 } 2725 2726 /* pSeries LPAR / sPAPR hardware init */ 2727 static void spapr_machine_init(MachineState *machine) 2728 { 2729 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2730 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2731 const char *kernel_filename = machine->kernel_filename; 2732 const char *initrd_filename = machine->initrd_filename; 2733 PCIHostState *phb; 2734 int i; 2735 MemoryRegion *sysmem = get_system_memory(); 2736 MemoryRegion *ram = g_new(MemoryRegion, 1); 2737 hwaddr node0_size = spapr_node0_size(machine); 2738 long load_limit, fw_size; 2739 char *filename; 2740 Error *resize_hpt_err = NULL; 2741 2742 msi_nonbroken = true; 2743 2744 QLIST_INIT(&spapr->phbs); 2745 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2746 2747 /* Determine capabilities to run with */ 2748 spapr_caps_init(spapr); 2749 2750 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2751 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2752 /* 2753 * If the user explicitly requested a mode we should either 2754 * supply it, or fail completely (which we do below). But if 2755 * it's not set explicitly, we reset our mode to something 2756 * that works 2757 */ 2758 if (resize_hpt_err) { 2759 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2760 error_free(resize_hpt_err); 2761 resize_hpt_err = NULL; 2762 } else { 2763 spapr->resize_hpt = smc->resize_hpt_default; 2764 } 2765 } 2766 2767 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2768 2769 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2770 /* 2771 * User requested HPT resize, but this host can't supply it. Bail out 2772 */ 2773 error_report_err(resize_hpt_err); 2774 exit(1); 2775 } 2776 2777 spapr->rma_size = node0_size; 2778 2779 /* With KVM, we don't actually know whether KVM supports an 2780 * unbounded RMA (PR KVM) or is limited by the hash table size 2781 * (HV KVM using VRMA), so we always assume the latter 2782 * 2783 * In that case, we also limit the initial allocations for RTAS 2784 * etc... to 256M since we have no way to know what the VRMA size 2785 * is going to be as it depends on the size of the hash table 2786 * which isn't determined yet. 2787 */ 2788 if (kvm_enabled()) { 2789 spapr->vrma_adjust = 1; 2790 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2791 } 2792 2793 /* Actually we don't support unbounded RMA anymore since we added 2794 * proper emulation of HV mode. The max we can get is 16G which 2795 * also happens to be what we configure for PAPR mode so make sure 2796 * we don't do anything bigger than that 2797 */ 2798 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2799 2800 if (spapr->rma_size > node0_size) { 2801 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2802 spapr->rma_size); 2803 exit(1); 2804 } 2805 2806 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2807 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2808 2809 /* 2810 * VSMT must be set in order to be able to compute VCPU ids, ie to 2811 * call spapr_max_server_number() or spapr_vcpu_id(). 2812 */ 2813 spapr_set_vsmt_mode(spapr, &error_fatal); 2814 2815 /* Set up Interrupt Controller before we create the VCPUs */ 2816 spapr_irq_init(spapr, &error_fatal); 2817 2818 /* Set up containers for ibm,client-architecture-support negotiated options 2819 */ 2820 spapr->ov5 = spapr_ovec_new(); 2821 spapr->ov5_cas = spapr_ovec_new(); 2822 2823 if (smc->dr_lmb_enabled) { 2824 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2825 spapr_validate_node_memory(machine, &error_fatal); 2826 } 2827 2828 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2829 2830 /* advertise support for dedicated HP event source to guests */ 2831 if (spapr->use_hotplug_event_source) { 2832 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2833 } 2834 2835 /* advertise support for HPT resizing */ 2836 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2837 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2838 } 2839 2840 /* advertise support for ibm,dyamic-memory-v2 */ 2841 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2842 2843 /* advertise XIVE on POWER9 machines */ 2844 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2845 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2846 } 2847 2848 /* init CPUs */ 2849 spapr_init_cpus(spapr); 2850 2851 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2852 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2853 spapr->max_compat_pvr)) { 2854 /* KVM and TCG always allow GTSE with radix... */ 2855 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2856 } 2857 /* ... but not with hash (currently). */ 2858 2859 if (kvm_enabled()) { 2860 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2861 kvmppc_enable_logical_ci_hcalls(); 2862 kvmppc_enable_set_mode_hcall(); 2863 2864 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2865 kvmppc_enable_clear_ref_mod_hcalls(); 2866 2867 /* Enable H_PAGE_INIT */ 2868 kvmppc_enable_h_page_init(); 2869 } 2870 2871 /* allocate RAM */ 2872 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2873 machine->ram_size); 2874 memory_region_add_subregion(sysmem, 0, ram); 2875 2876 /* always allocate the device memory information */ 2877 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2878 2879 /* initialize hotplug memory address space */ 2880 if (machine->ram_size < machine->maxram_size) { 2881 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2882 /* 2883 * Limit the number of hotpluggable memory slots to half the number 2884 * slots that KVM supports, leaving the other half for PCI and other 2885 * devices. However ensure that number of slots doesn't drop below 32. 2886 */ 2887 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2888 SPAPR_MAX_RAM_SLOTS; 2889 2890 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2891 max_memslots = SPAPR_MAX_RAM_SLOTS; 2892 } 2893 if (machine->ram_slots > max_memslots) { 2894 error_report("Specified number of memory slots %" 2895 PRIu64" exceeds max supported %d", 2896 machine->ram_slots, max_memslots); 2897 exit(1); 2898 } 2899 2900 machine->device_memory->base = ROUND_UP(machine->ram_size, 2901 SPAPR_DEVICE_MEM_ALIGN); 2902 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2903 "device-memory", device_mem_size); 2904 memory_region_add_subregion(sysmem, machine->device_memory->base, 2905 &machine->device_memory->mr); 2906 } 2907 2908 if (smc->dr_lmb_enabled) { 2909 spapr_create_lmb_dr_connectors(spapr); 2910 } 2911 2912 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2913 if (!filename) { 2914 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2915 exit(1); 2916 } 2917 spapr->rtas_size = get_image_size(filename); 2918 if (spapr->rtas_size < 0) { 2919 error_report("Could not get size of LPAR rtas '%s'", filename); 2920 exit(1); 2921 } 2922 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2923 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2924 error_report("Could not load LPAR rtas '%s'", filename); 2925 exit(1); 2926 } 2927 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2928 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2929 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2930 exit(1); 2931 } 2932 g_free(filename); 2933 2934 /* Set up RTAS event infrastructure */ 2935 spapr_events_init(spapr); 2936 2937 /* Set up the RTC RTAS interfaces */ 2938 spapr_rtc_create(spapr); 2939 2940 /* Set up VIO bus */ 2941 spapr->vio_bus = spapr_vio_bus_init(); 2942 2943 for (i = 0; i < serial_max_hds(); i++) { 2944 if (serial_hd(i)) { 2945 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2946 } 2947 } 2948 2949 /* We always have at least the nvram device on VIO */ 2950 spapr_create_nvram(spapr); 2951 2952 /* 2953 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2954 * connectors (described in root DT node's "ibm,drc-types" property) 2955 * are pre-initialized here. additional child connectors (such as 2956 * connectors for a PHBs PCI slots) are added as needed during their 2957 * parent's realization. 2958 */ 2959 if (smc->dr_phb_enabled) { 2960 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2961 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2962 } 2963 } 2964 2965 /* Set up PCI */ 2966 spapr_pci_rtas_init(); 2967 2968 phb = spapr_create_default_phb(); 2969 2970 for (i = 0; i < nb_nics; i++) { 2971 NICInfo *nd = &nd_table[i]; 2972 2973 if (!nd->model) { 2974 nd->model = g_strdup("spapr-vlan"); 2975 } 2976 2977 if (g_str_equal(nd->model, "spapr-vlan") || 2978 g_str_equal(nd->model, "ibmveth")) { 2979 spapr_vlan_create(spapr->vio_bus, nd); 2980 } else { 2981 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2982 } 2983 } 2984 2985 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2986 spapr_vscsi_create(spapr->vio_bus); 2987 } 2988 2989 /* Graphics */ 2990 if (spapr_vga_init(phb->bus, &error_fatal)) { 2991 spapr->has_graphics = true; 2992 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2993 } 2994 2995 if (machine->usb) { 2996 if (smc->use_ohci_by_default) { 2997 pci_create_simple(phb->bus, -1, "pci-ohci"); 2998 } else { 2999 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3000 } 3001 3002 if (spapr->has_graphics) { 3003 USBBus *usb_bus = usb_bus_find(-1); 3004 3005 usb_create_simple(usb_bus, "usb-kbd"); 3006 usb_create_simple(usb_bus, "usb-mouse"); 3007 } 3008 } 3009 3010 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 3011 error_report( 3012 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 3013 MIN_RMA_SLOF); 3014 exit(1); 3015 } 3016 3017 if (kernel_filename) { 3018 uint64_t lowaddr = 0; 3019 3020 spapr->kernel_size = load_elf(kernel_filename, NULL, 3021 translate_kernel_address, NULL, 3022 NULL, &lowaddr, NULL, 1, 3023 PPC_ELF_MACHINE, 0, 0); 3024 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3025 spapr->kernel_size = load_elf(kernel_filename, NULL, 3026 translate_kernel_address, NULL, NULL, 3027 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3028 0, 0); 3029 spapr->kernel_le = spapr->kernel_size > 0; 3030 } 3031 if (spapr->kernel_size < 0) { 3032 error_report("error loading %s: %s", kernel_filename, 3033 load_elf_strerror(spapr->kernel_size)); 3034 exit(1); 3035 } 3036 3037 /* load initrd */ 3038 if (initrd_filename) { 3039 /* Try to locate the initrd in the gap between the kernel 3040 * and the firmware. Add a bit of space just in case 3041 */ 3042 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3043 + 0x1ffff) & ~0xffff; 3044 spapr->initrd_size = load_image_targphys(initrd_filename, 3045 spapr->initrd_base, 3046 load_limit 3047 - spapr->initrd_base); 3048 if (spapr->initrd_size < 0) { 3049 error_report("could not load initial ram disk '%s'", 3050 initrd_filename); 3051 exit(1); 3052 } 3053 } 3054 } 3055 3056 if (bios_name == NULL) { 3057 bios_name = FW_FILE_NAME; 3058 } 3059 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3060 if (!filename) { 3061 error_report("Could not find LPAR firmware '%s'", bios_name); 3062 exit(1); 3063 } 3064 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3065 if (fw_size <= 0) { 3066 error_report("Could not load LPAR firmware '%s'", filename); 3067 exit(1); 3068 } 3069 g_free(filename); 3070 3071 /* FIXME: Should register things through the MachineState's qdev 3072 * interface, this is a legacy from the sPAPREnvironment structure 3073 * which predated MachineState but had a similar function */ 3074 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3075 register_savevm_live(NULL, "spapr/htab", -1, 1, 3076 &savevm_htab_handlers, spapr); 3077 3078 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3079 &error_fatal); 3080 3081 qemu_register_boot_set(spapr_boot_set, spapr); 3082 3083 /* 3084 * Nothing needs to be done to resume a suspended guest because 3085 * suspending does not change the machine state, so no need for 3086 * a ->wakeup method. 3087 */ 3088 qemu_register_wakeup_support(); 3089 3090 if (kvm_enabled()) { 3091 /* to stop and start vmclock */ 3092 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3093 &spapr->tb); 3094 3095 kvmppc_spapr_enable_inkernel_multitce(); 3096 } 3097 } 3098 3099 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3100 { 3101 if (!vm_type) { 3102 return 0; 3103 } 3104 3105 if (!strcmp(vm_type, "HV")) { 3106 return 1; 3107 } 3108 3109 if (!strcmp(vm_type, "PR")) { 3110 return 2; 3111 } 3112 3113 error_report("Unknown kvm-type specified '%s'", vm_type); 3114 exit(1); 3115 } 3116 3117 /* 3118 * Implementation of an interface to adjust firmware path 3119 * for the bootindex property handling. 3120 */ 3121 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3122 DeviceState *dev) 3123 { 3124 #define CAST(type, obj, name) \ 3125 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3126 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3127 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3128 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3129 3130 if (d) { 3131 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3132 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3133 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3134 3135 if (spapr) { 3136 /* 3137 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3138 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3139 * 0x8000 | (target << 8) | (bus << 5) | lun 3140 * (see the "Logical unit addressing format" table in SAM5) 3141 */ 3142 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3143 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3144 (uint64_t)id << 48); 3145 } else if (virtio) { 3146 /* 3147 * We use SRP luns of the form 01000000 | (target << 8) | lun 3148 * in the top 32 bits of the 64-bit LUN 3149 * Note: the quote above is from SLOF and it is wrong, 3150 * the actual binding is: 3151 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3152 */ 3153 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3154 if (d->lun >= 256) { 3155 /* Use the LUN "flat space addressing method" */ 3156 id |= 0x4000; 3157 } 3158 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3159 (uint64_t)id << 32); 3160 } else if (usb) { 3161 /* 3162 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3163 * in the top 32 bits of the 64-bit LUN 3164 */ 3165 unsigned usb_port = atoi(usb->port->path); 3166 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3167 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3168 (uint64_t)id << 32); 3169 } 3170 } 3171 3172 /* 3173 * SLOF probes the USB devices, and if it recognizes that the device is a 3174 * storage device, it changes its name to "storage" instead of "usb-host", 3175 * and additionally adds a child node for the SCSI LUN, so the correct 3176 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3177 */ 3178 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3179 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3180 if (usb_host_dev_is_scsi_storage(usbdev)) { 3181 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3182 } 3183 } 3184 3185 if (phb) { 3186 /* Replace "pci" with "pci@800000020000000" */ 3187 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3188 } 3189 3190 if (vsc) { 3191 /* Same logic as virtio above */ 3192 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3193 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3194 } 3195 3196 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3197 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3198 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3199 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3200 } 3201 3202 return NULL; 3203 } 3204 3205 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3206 { 3207 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3208 3209 return g_strdup(spapr->kvm_type); 3210 } 3211 3212 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3213 { 3214 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3215 3216 g_free(spapr->kvm_type); 3217 spapr->kvm_type = g_strdup(value); 3218 } 3219 3220 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3221 { 3222 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3223 3224 return spapr->use_hotplug_event_source; 3225 } 3226 3227 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3228 Error **errp) 3229 { 3230 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3231 3232 spapr->use_hotplug_event_source = value; 3233 } 3234 3235 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3236 { 3237 return true; 3238 } 3239 3240 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3241 { 3242 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3243 3244 switch (spapr->resize_hpt) { 3245 case SPAPR_RESIZE_HPT_DEFAULT: 3246 return g_strdup("default"); 3247 case SPAPR_RESIZE_HPT_DISABLED: 3248 return g_strdup("disabled"); 3249 case SPAPR_RESIZE_HPT_ENABLED: 3250 return g_strdup("enabled"); 3251 case SPAPR_RESIZE_HPT_REQUIRED: 3252 return g_strdup("required"); 3253 } 3254 g_assert_not_reached(); 3255 } 3256 3257 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3258 { 3259 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3260 3261 if (strcmp(value, "default") == 0) { 3262 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3263 } else if (strcmp(value, "disabled") == 0) { 3264 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3265 } else if (strcmp(value, "enabled") == 0) { 3266 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3267 } else if (strcmp(value, "required") == 0) { 3268 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3269 } else { 3270 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3271 } 3272 } 3273 3274 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3275 void *opaque, Error **errp) 3276 { 3277 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3278 } 3279 3280 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3281 void *opaque, Error **errp) 3282 { 3283 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3284 } 3285 3286 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3287 { 3288 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3289 3290 if (spapr->irq == &spapr_irq_xics_legacy) { 3291 return g_strdup("legacy"); 3292 } else if (spapr->irq == &spapr_irq_xics) { 3293 return g_strdup("xics"); 3294 } else if (spapr->irq == &spapr_irq_xive) { 3295 return g_strdup("xive"); 3296 } else if (spapr->irq == &spapr_irq_dual) { 3297 return g_strdup("dual"); 3298 } 3299 g_assert_not_reached(); 3300 } 3301 3302 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3303 { 3304 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3305 3306 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3307 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3308 return; 3309 } 3310 3311 /* The legacy IRQ backend can not be set */ 3312 if (strcmp(value, "xics") == 0) { 3313 spapr->irq = &spapr_irq_xics; 3314 } else if (strcmp(value, "xive") == 0) { 3315 spapr->irq = &spapr_irq_xive; 3316 } else if (strcmp(value, "dual") == 0) { 3317 spapr->irq = &spapr_irq_dual; 3318 } else { 3319 error_setg(errp, "Bad value for \"ic-mode\" property"); 3320 } 3321 } 3322 3323 static char *spapr_get_host_model(Object *obj, Error **errp) 3324 { 3325 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3326 3327 return g_strdup(spapr->host_model); 3328 } 3329 3330 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3331 { 3332 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3333 3334 g_free(spapr->host_model); 3335 spapr->host_model = g_strdup(value); 3336 } 3337 3338 static char *spapr_get_host_serial(Object *obj, Error **errp) 3339 { 3340 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3341 3342 return g_strdup(spapr->host_serial); 3343 } 3344 3345 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3346 { 3347 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3348 3349 g_free(spapr->host_serial); 3350 spapr->host_serial = g_strdup(value); 3351 } 3352 3353 static void spapr_instance_init(Object *obj) 3354 { 3355 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3356 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3357 3358 spapr->htab_fd = -1; 3359 spapr->use_hotplug_event_source = true; 3360 object_property_add_str(obj, "kvm-type", 3361 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3362 object_property_set_description(obj, "kvm-type", 3363 "Specifies the KVM virtualization mode (HV, PR)", 3364 NULL); 3365 object_property_add_bool(obj, "modern-hotplug-events", 3366 spapr_get_modern_hotplug_events, 3367 spapr_set_modern_hotplug_events, 3368 NULL); 3369 object_property_set_description(obj, "modern-hotplug-events", 3370 "Use dedicated hotplug event mechanism in" 3371 " place of standard EPOW events when possible" 3372 " (required for memory hot-unplug support)", 3373 NULL); 3374 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3375 "Maximum permitted CPU compatibility mode", 3376 &error_fatal); 3377 3378 object_property_add_str(obj, "resize-hpt", 3379 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3380 object_property_set_description(obj, "resize-hpt", 3381 "Resizing of the Hash Page Table (enabled, disabled, required)", 3382 NULL); 3383 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3384 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3385 object_property_set_description(obj, "vsmt", 3386 "Virtual SMT: KVM behaves as if this were" 3387 " the host's SMT mode", &error_abort); 3388 object_property_add_bool(obj, "vfio-no-msix-emulation", 3389 spapr_get_msix_emulation, NULL, NULL); 3390 3391 /* The machine class defines the default interrupt controller mode */ 3392 spapr->irq = smc->irq; 3393 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3394 spapr_set_ic_mode, NULL); 3395 object_property_set_description(obj, "ic-mode", 3396 "Specifies the interrupt controller mode (xics, xive, dual)", 3397 NULL); 3398 3399 object_property_add_str(obj, "host-model", 3400 spapr_get_host_model, spapr_set_host_model, 3401 &error_abort); 3402 object_property_set_description(obj, "host-model", 3403 "Host model to advertise in guest device tree", &error_abort); 3404 object_property_add_str(obj, "host-serial", 3405 spapr_get_host_serial, spapr_set_host_serial, 3406 &error_abort); 3407 object_property_set_description(obj, "host-serial", 3408 "Host serial number to advertise in guest device tree", &error_abort); 3409 } 3410 3411 static void spapr_machine_finalizefn(Object *obj) 3412 { 3413 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3414 3415 g_free(spapr->kvm_type); 3416 } 3417 3418 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3419 { 3420 cpu_synchronize_state(cs); 3421 ppc_cpu_do_system_reset(cs); 3422 } 3423 3424 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3425 { 3426 CPUState *cs; 3427 3428 CPU_FOREACH(cs) { 3429 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3430 } 3431 } 3432 3433 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3434 void *fdt, int *fdt_start_offset, Error **errp) 3435 { 3436 uint64_t addr; 3437 uint32_t node; 3438 3439 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3440 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3441 &error_abort); 3442 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3443 SPAPR_MEMORY_BLOCK_SIZE); 3444 return 0; 3445 } 3446 3447 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3448 bool dedicated_hp_event_source, Error **errp) 3449 { 3450 SpaprDrc *drc; 3451 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3452 int i; 3453 uint64_t addr = addr_start; 3454 bool hotplugged = spapr_drc_hotplugged(dev); 3455 Error *local_err = NULL; 3456 3457 for (i = 0; i < nr_lmbs; i++) { 3458 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3459 addr / SPAPR_MEMORY_BLOCK_SIZE); 3460 g_assert(drc); 3461 3462 spapr_drc_attach(drc, dev, &local_err); 3463 if (local_err) { 3464 while (addr > addr_start) { 3465 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3466 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3467 addr / SPAPR_MEMORY_BLOCK_SIZE); 3468 spapr_drc_detach(drc); 3469 } 3470 error_propagate(errp, local_err); 3471 return; 3472 } 3473 if (!hotplugged) { 3474 spapr_drc_reset(drc); 3475 } 3476 addr += SPAPR_MEMORY_BLOCK_SIZE; 3477 } 3478 /* send hotplug notification to the 3479 * guest only in case of hotplugged memory 3480 */ 3481 if (hotplugged) { 3482 if (dedicated_hp_event_source) { 3483 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3484 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3485 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3486 nr_lmbs, 3487 spapr_drc_index(drc)); 3488 } else { 3489 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3490 nr_lmbs); 3491 } 3492 } 3493 } 3494 3495 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3496 Error **errp) 3497 { 3498 Error *local_err = NULL; 3499 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3500 PCDIMMDevice *dimm = PC_DIMM(dev); 3501 uint64_t size, addr; 3502 3503 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3504 3505 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3506 if (local_err) { 3507 goto out; 3508 } 3509 3510 addr = object_property_get_uint(OBJECT(dimm), 3511 PC_DIMM_ADDR_PROP, &local_err); 3512 if (local_err) { 3513 goto out_unplug; 3514 } 3515 3516 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3517 &local_err); 3518 if (local_err) { 3519 goto out_unplug; 3520 } 3521 3522 return; 3523 3524 out_unplug: 3525 pc_dimm_unplug(dimm, MACHINE(ms)); 3526 out: 3527 error_propagate(errp, local_err); 3528 } 3529 3530 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3531 Error **errp) 3532 { 3533 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3534 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3535 PCDIMMDevice *dimm = PC_DIMM(dev); 3536 Error *local_err = NULL; 3537 uint64_t size; 3538 Object *memdev; 3539 hwaddr pagesize; 3540 3541 if (!smc->dr_lmb_enabled) { 3542 error_setg(errp, "Memory hotplug not supported for this machine"); 3543 return; 3544 } 3545 3546 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3547 if (local_err) { 3548 error_propagate(errp, local_err); 3549 return; 3550 } 3551 3552 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3553 error_setg(errp, "Hotplugged memory size must be a multiple of " 3554 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3555 return; 3556 } 3557 3558 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3559 &error_abort); 3560 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3561 spapr_check_pagesize(spapr, pagesize, &local_err); 3562 if (local_err) { 3563 error_propagate(errp, local_err); 3564 return; 3565 } 3566 3567 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3568 } 3569 3570 struct SpaprDimmState { 3571 PCDIMMDevice *dimm; 3572 uint32_t nr_lmbs; 3573 QTAILQ_ENTRY(SpaprDimmState) next; 3574 }; 3575 3576 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3577 PCDIMMDevice *dimm) 3578 { 3579 SpaprDimmState *dimm_state = NULL; 3580 3581 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3582 if (dimm_state->dimm == dimm) { 3583 break; 3584 } 3585 } 3586 return dimm_state; 3587 } 3588 3589 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3590 uint32_t nr_lmbs, 3591 PCDIMMDevice *dimm) 3592 { 3593 SpaprDimmState *ds = NULL; 3594 3595 /* 3596 * If this request is for a DIMM whose removal had failed earlier 3597 * (due to guest's refusal to remove the LMBs), we would have this 3598 * dimm already in the pending_dimm_unplugs list. In that 3599 * case don't add again. 3600 */ 3601 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3602 if (!ds) { 3603 ds = g_malloc0(sizeof(SpaprDimmState)); 3604 ds->nr_lmbs = nr_lmbs; 3605 ds->dimm = dimm; 3606 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3607 } 3608 return ds; 3609 } 3610 3611 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3612 SpaprDimmState *dimm_state) 3613 { 3614 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3615 g_free(dimm_state); 3616 } 3617 3618 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3619 PCDIMMDevice *dimm) 3620 { 3621 SpaprDrc *drc; 3622 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3623 &error_abort); 3624 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3625 uint32_t avail_lmbs = 0; 3626 uint64_t addr_start, addr; 3627 int i; 3628 3629 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3630 &error_abort); 3631 3632 addr = addr_start; 3633 for (i = 0; i < nr_lmbs; i++) { 3634 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3635 addr / SPAPR_MEMORY_BLOCK_SIZE); 3636 g_assert(drc); 3637 if (drc->dev) { 3638 avail_lmbs++; 3639 } 3640 addr += SPAPR_MEMORY_BLOCK_SIZE; 3641 } 3642 3643 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3644 } 3645 3646 /* Callback to be called during DRC release. */ 3647 void spapr_lmb_release(DeviceState *dev) 3648 { 3649 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3650 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3651 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3652 3653 /* This information will get lost if a migration occurs 3654 * during the unplug process. In this case recover it. */ 3655 if (ds == NULL) { 3656 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3657 g_assert(ds); 3658 /* The DRC being examined by the caller at least must be counted */ 3659 g_assert(ds->nr_lmbs); 3660 } 3661 3662 if (--ds->nr_lmbs) { 3663 return; 3664 } 3665 3666 /* 3667 * Now that all the LMBs have been removed by the guest, call the 3668 * unplug handler chain. This can never fail. 3669 */ 3670 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3671 object_unparent(OBJECT(dev)); 3672 } 3673 3674 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3675 { 3676 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3677 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3678 3679 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3680 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3681 spapr_pending_dimm_unplugs_remove(spapr, ds); 3682 } 3683 3684 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3685 DeviceState *dev, Error **errp) 3686 { 3687 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3688 Error *local_err = NULL; 3689 PCDIMMDevice *dimm = PC_DIMM(dev); 3690 uint32_t nr_lmbs; 3691 uint64_t size, addr_start, addr; 3692 int i; 3693 SpaprDrc *drc; 3694 3695 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3696 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3697 3698 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3699 &local_err); 3700 if (local_err) { 3701 goto out; 3702 } 3703 3704 /* 3705 * An existing pending dimm state for this DIMM means that there is an 3706 * unplug operation in progress, waiting for the spapr_lmb_release 3707 * callback to complete the job (BQL can't cover that far). In this case, 3708 * bail out to avoid detaching DRCs that were already released. 3709 */ 3710 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3711 error_setg(&local_err, 3712 "Memory unplug already in progress for device %s", 3713 dev->id); 3714 goto out; 3715 } 3716 3717 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3718 3719 addr = addr_start; 3720 for (i = 0; i < nr_lmbs; i++) { 3721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3722 addr / SPAPR_MEMORY_BLOCK_SIZE); 3723 g_assert(drc); 3724 3725 spapr_drc_detach(drc); 3726 addr += SPAPR_MEMORY_BLOCK_SIZE; 3727 } 3728 3729 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3730 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3731 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3732 nr_lmbs, spapr_drc_index(drc)); 3733 out: 3734 error_propagate(errp, local_err); 3735 } 3736 3737 /* Callback to be called during DRC release. */ 3738 void spapr_core_release(DeviceState *dev) 3739 { 3740 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3741 3742 /* Call the unplug handler chain. This can never fail. */ 3743 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3744 object_unparent(OBJECT(dev)); 3745 } 3746 3747 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3748 { 3749 MachineState *ms = MACHINE(hotplug_dev); 3750 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3751 CPUCore *cc = CPU_CORE(dev); 3752 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3753 3754 if (smc->pre_2_10_has_unused_icps) { 3755 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3756 int i; 3757 3758 for (i = 0; i < cc->nr_threads; i++) { 3759 CPUState *cs = CPU(sc->threads[i]); 3760 3761 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3762 } 3763 } 3764 3765 assert(core_slot); 3766 core_slot->cpu = NULL; 3767 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3768 } 3769 3770 static 3771 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3772 Error **errp) 3773 { 3774 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3775 int index; 3776 SpaprDrc *drc; 3777 CPUCore *cc = CPU_CORE(dev); 3778 3779 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3780 error_setg(errp, "Unable to find CPU core with core-id: %d", 3781 cc->core_id); 3782 return; 3783 } 3784 if (index == 0) { 3785 error_setg(errp, "Boot CPU core may not be unplugged"); 3786 return; 3787 } 3788 3789 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3790 spapr_vcpu_id(spapr, cc->core_id)); 3791 g_assert(drc); 3792 3793 spapr_drc_detach(drc); 3794 3795 spapr_hotplug_req_remove_by_index(drc); 3796 } 3797 3798 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3799 void *fdt, int *fdt_start_offset, Error **errp) 3800 { 3801 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3802 CPUState *cs = CPU(core->threads[0]); 3803 PowerPCCPU *cpu = POWERPC_CPU(cs); 3804 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3805 int id = spapr_get_vcpu_id(cpu); 3806 char *nodename; 3807 int offset; 3808 3809 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3810 offset = fdt_add_subnode(fdt, 0, nodename); 3811 g_free(nodename); 3812 3813 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3814 3815 *fdt_start_offset = offset; 3816 return 0; 3817 } 3818 3819 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3820 Error **errp) 3821 { 3822 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3823 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3824 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3825 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3826 CPUCore *cc = CPU_CORE(dev); 3827 CPUState *cs; 3828 SpaprDrc *drc; 3829 Error *local_err = NULL; 3830 CPUArchId *core_slot; 3831 int index; 3832 bool hotplugged = spapr_drc_hotplugged(dev); 3833 3834 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3835 if (!core_slot) { 3836 error_setg(errp, "Unable to find CPU core with core-id: %d", 3837 cc->core_id); 3838 return; 3839 } 3840 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3841 spapr_vcpu_id(spapr, cc->core_id)); 3842 3843 g_assert(drc || !mc->has_hotpluggable_cpus); 3844 3845 if (drc) { 3846 spapr_drc_attach(drc, dev, &local_err); 3847 if (local_err) { 3848 error_propagate(errp, local_err); 3849 return; 3850 } 3851 3852 if (hotplugged) { 3853 /* 3854 * Send hotplug notification interrupt to the guest only 3855 * in case of hotplugged CPUs. 3856 */ 3857 spapr_hotplug_req_add_by_index(drc); 3858 } else { 3859 spapr_drc_reset(drc); 3860 } 3861 } 3862 3863 core_slot->cpu = OBJECT(dev); 3864 3865 if (smc->pre_2_10_has_unused_icps) { 3866 int i; 3867 3868 for (i = 0; i < cc->nr_threads; i++) { 3869 cs = CPU(core->threads[i]); 3870 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3871 } 3872 } 3873 } 3874 3875 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3876 Error **errp) 3877 { 3878 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3879 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3880 Error *local_err = NULL; 3881 CPUCore *cc = CPU_CORE(dev); 3882 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3883 const char *type = object_get_typename(OBJECT(dev)); 3884 CPUArchId *core_slot; 3885 int index; 3886 unsigned int smp_threads = machine->smp.threads; 3887 3888 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3889 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3890 goto out; 3891 } 3892 3893 if (strcmp(base_core_type, type)) { 3894 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3895 goto out; 3896 } 3897 3898 if (cc->core_id % smp_threads) { 3899 error_setg(&local_err, "invalid core id %d", cc->core_id); 3900 goto out; 3901 } 3902 3903 /* 3904 * In general we should have homogeneous threads-per-core, but old 3905 * (pre hotplug support) machine types allow the last core to have 3906 * reduced threads as a compatibility hack for when we allowed 3907 * total vcpus not a multiple of threads-per-core. 3908 */ 3909 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3910 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3911 cc->nr_threads, smp_threads); 3912 goto out; 3913 } 3914 3915 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3916 if (!core_slot) { 3917 error_setg(&local_err, "core id %d out of range", cc->core_id); 3918 goto out; 3919 } 3920 3921 if (core_slot->cpu) { 3922 error_setg(&local_err, "core %d already populated", cc->core_id); 3923 goto out; 3924 } 3925 3926 numa_cpu_pre_plug(core_slot, dev, &local_err); 3927 3928 out: 3929 error_propagate(errp, local_err); 3930 } 3931 3932 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3933 void *fdt, int *fdt_start_offset, Error **errp) 3934 { 3935 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3936 int intc_phandle; 3937 3938 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3939 if (intc_phandle <= 0) { 3940 return -1; 3941 } 3942 3943 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3944 fdt_start_offset)) { 3945 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3946 return -1; 3947 } 3948 3949 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3950 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3951 3952 return 0; 3953 } 3954 3955 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3956 Error **errp) 3957 { 3958 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3959 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3960 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3961 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3962 3963 if (dev->hotplugged && !smc->dr_phb_enabled) { 3964 error_setg(errp, "PHB hotplug not supported for this machine"); 3965 return; 3966 } 3967 3968 if (sphb->index == (uint32_t)-1) { 3969 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3970 return; 3971 } 3972 3973 /* 3974 * This will check that sphb->index doesn't exceed the maximum number of 3975 * PHBs for the current machine type. 3976 */ 3977 smc->phb_placement(spapr, sphb->index, 3978 &sphb->buid, &sphb->io_win_addr, 3979 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3980 windows_supported, sphb->dma_liobn, 3981 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3982 errp); 3983 } 3984 3985 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3986 Error **errp) 3987 { 3988 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3989 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3990 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3991 SpaprDrc *drc; 3992 bool hotplugged = spapr_drc_hotplugged(dev); 3993 Error *local_err = NULL; 3994 3995 if (!smc->dr_phb_enabled) { 3996 return; 3997 } 3998 3999 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4000 /* hotplug hooks should check it's enabled before getting this far */ 4001 assert(drc); 4002 4003 spapr_drc_attach(drc, DEVICE(dev), &local_err); 4004 if (local_err) { 4005 error_propagate(errp, local_err); 4006 return; 4007 } 4008 4009 if (hotplugged) { 4010 spapr_hotplug_req_add_by_index(drc); 4011 } else { 4012 spapr_drc_reset(drc); 4013 } 4014 } 4015 4016 void spapr_phb_release(DeviceState *dev) 4017 { 4018 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4019 4020 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4021 object_unparent(OBJECT(dev)); 4022 } 4023 4024 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4025 { 4026 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4027 } 4028 4029 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4030 DeviceState *dev, Error **errp) 4031 { 4032 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4033 SpaprDrc *drc; 4034 4035 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4036 assert(drc); 4037 4038 if (!spapr_drc_unplug_requested(drc)) { 4039 spapr_drc_detach(drc); 4040 spapr_hotplug_req_remove_by_index(drc); 4041 } 4042 } 4043 4044 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4045 Error **errp) 4046 { 4047 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4048 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4049 4050 if (spapr->tpm_proxy != NULL) { 4051 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4052 return; 4053 } 4054 4055 spapr->tpm_proxy = tpm_proxy; 4056 } 4057 4058 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4059 { 4060 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4061 4062 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4063 object_unparent(OBJECT(dev)); 4064 spapr->tpm_proxy = NULL; 4065 } 4066 4067 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4068 DeviceState *dev, Error **errp) 4069 { 4070 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4071 spapr_memory_plug(hotplug_dev, dev, errp); 4072 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4073 spapr_core_plug(hotplug_dev, dev, errp); 4074 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4075 spapr_phb_plug(hotplug_dev, dev, errp); 4076 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4077 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 4078 } 4079 } 4080 4081 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4082 DeviceState *dev, Error **errp) 4083 { 4084 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4085 spapr_memory_unplug(hotplug_dev, dev); 4086 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4087 spapr_core_unplug(hotplug_dev, dev); 4088 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4089 spapr_phb_unplug(hotplug_dev, dev); 4090 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4091 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4092 } 4093 } 4094 4095 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4096 DeviceState *dev, Error **errp) 4097 { 4098 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4099 MachineClass *mc = MACHINE_GET_CLASS(sms); 4100 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4101 4102 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4103 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4104 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4105 } else { 4106 /* NOTE: this means there is a window after guest reset, prior to 4107 * CAS negotiation, where unplug requests will fail due to the 4108 * capability not being detected yet. This is a bit different than 4109 * the case with PCI unplug, where the events will be queued and 4110 * eventually handled by the guest after boot 4111 */ 4112 error_setg(errp, "Memory hot unplug not supported for this guest"); 4113 } 4114 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4115 if (!mc->has_hotpluggable_cpus) { 4116 error_setg(errp, "CPU hot unplug not supported on this machine"); 4117 return; 4118 } 4119 spapr_core_unplug_request(hotplug_dev, dev, errp); 4120 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4121 if (!smc->dr_phb_enabled) { 4122 error_setg(errp, "PHB hot unplug not supported on this machine"); 4123 return; 4124 } 4125 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4126 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4127 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4128 } 4129 } 4130 4131 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4132 DeviceState *dev, Error **errp) 4133 { 4134 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4135 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4136 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4137 spapr_core_pre_plug(hotplug_dev, dev, errp); 4138 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4139 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4140 } 4141 } 4142 4143 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4144 DeviceState *dev) 4145 { 4146 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4147 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4148 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4149 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4150 return HOTPLUG_HANDLER(machine); 4151 } 4152 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4153 PCIDevice *pcidev = PCI_DEVICE(dev); 4154 PCIBus *root = pci_device_root_bus(pcidev); 4155 SpaprPhbState *phb = 4156 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4157 TYPE_SPAPR_PCI_HOST_BRIDGE); 4158 4159 if (phb) { 4160 return HOTPLUG_HANDLER(phb); 4161 } 4162 } 4163 return NULL; 4164 } 4165 4166 static CpuInstanceProperties 4167 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4168 { 4169 CPUArchId *core_slot; 4170 MachineClass *mc = MACHINE_GET_CLASS(machine); 4171 4172 /* make sure possible_cpu are intialized */ 4173 mc->possible_cpu_arch_ids(machine); 4174 /* get CPU core slot containing thread that matches cpu_index */ 4175 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4176 assert(core_slot); 4177 return core_slot->props; 4178 } 4179 4180 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4181 { 4182 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4183 } 4184 4185 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4186 { 4187 int i; 4188 unsigned int smp_threads = machine->smp.threads; 4189 unsigned int smp_cpus = machine->smp.cpus; 4190 const char *core_type; 4191 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4192 MachineClass *mc = MACHINE_GET_CLASS(machine); 4193 4194 if (!mc->has_hotpluggable_cpus) { 4195 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4196 } 4197 if (machine->possible_cpus) { 4198 assert(machine->possible_cpus->len == spapr_max_cores); 4199 return machine->possible_cpus; 4200 } 4201 4202 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4203 if (!core_type) { 4204 error_report("Unable to find sPAPR CPU Core definition"); 4205 exit(1); 4206 } 4207 4208 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4209 sizeof(CPUArchId) * spapr_max_cores); 4210 machine->possible_cpus->len = spapr_max_cores; 4211 for (i = 0; i < machine->possible_cpus->len; i++) { 4212 int core_id = i * smp_threads; 4213 4214 machine->possible_cpus->cpus[i].type = core_type; 4215 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4216 machine->possible_cpus->cpus[i].arch_id = core_id; 4217 machine->possible_cpus->cpus[i].props.has_core_id = true; 4218 machine->possible_cpus->cpus[i].props.core_id = core_id; 4219 } 4220 return machine->possible_cpus; 4221 } 4222 4223 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4224 uint64_t *buid, hwaddr *pio, 4225 hwaddr *mmio32, hwaddr *mmio64, 4226 unsigned n_dma, uint32_t *liobns, 4227 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4228 { 4229 /* 4230 * New-style PHB window placement. 4231 * 4232 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4233 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4234 * windows. 4235 * 4236 * Some guest kernels can't work with MMIO windows above 1<<46 4237 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4238 * 4239 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4240 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4241 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4242 * 1TiB 64-bit MMIO windows for each PHB. 4243 */ 4244 const uint64_t base_buid = 0x800000020000000ULL; 4245 int i; 4246 4247 /* Sanity check natural alignments */ 4248 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4249 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4250 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4251 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4252 /* Sanity check bounds */ 4253 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4254 SPAPR_PCI_MEM32_WIN_SIZE); 4255 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4256 SPAPR_PCI_MEM64_WIN_SIZE); 4257 4258 if (index >= SPAPR_MAX_PHBS) { 4259 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4260 SPAPR_MAX_PHBS - 1); 4261 return; 4262 } 4263 4264 *buid = base_buid + index; 4265 for (i = 0; i < n_dma; ++i) { 4266 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4267 } 4268 4269 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4270 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4271 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4272 4273 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4274 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4275 } 4276 4277 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4278 { 4279 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4280 4281 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4282 } 4283 4284 static void spapr_ics_resend(XICSFabric *dev) 4285 { 4286 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4287 4288 ics_resend(spapr->ics); 4289 } 4290 4291 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4292 { 4293 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4294 4295 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4296 } 4297 4298 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4299 Monitor *mon) 4300 { 4301 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4302 4303 spapr->irq->print_info(spapr, mon); 4304 } 4305 4306 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4307 { 4308 return cpu->vcpu_id; 4309 } 4310 4311 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4312 { 4313 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4314 MachineState *ms = MACHINE(spapr); 4315 int vcpu_id; 4316 4317 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4318 4319 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4320 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4321 error_append_hint(errp, "Adjust the number of cpus to %d " 4322 "or try to raise the number of threads per core\n", 4323 vcpu_id * ms->smp.threads / spapr->vsmt); 4324 return; 4325 } 4326 4327 cpu->vcpu_id = vcpu_id; 4328 } 4329 4330 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4331 { 4332 CPUState *cs; 4333 4334 CPU_FOREACH(cs) { 4335 PowerPCCPU *cpu = POWERPC_CPU(cs); 4336 4337 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4338 return cpu; 4339 } 4340 } 4341 4342 return NULL; 4343 } 4344 4345 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4346 { 4347 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4348 4349 /* These are only called by TCG, KVM maintains dispatch state */ 4350 4351 spapr_cpu->prod = false; 4352 if (spapr_cpu->vpa_addr) { 4353 CPUState *cs = CPU(cpu); 4354 uint32_t dispatch; 4355 4356 dispatch = ldl_be_phys(cs->as, 4357 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4358 dispatch++; 4359 if ((dispatch & 1) != 0) { 4360 qemu_log_mask(LOG_GUEST_ERROR, 4361 "VPA: incorrect dispatch counter value for " 4362 "dispatched partition %u, correcting.\n", dispatch); 4363 dispatch++; 4364 } 4365 stl_be_phys(cs->as, 4366 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4367 } 4368 } 4369 4370 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4371 { 4372 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4373 4374 if (spapr_cpu->vpa_addr) { 4375 CPUState *cs = CPU(cpu); 4376 uint32_t dispatch; 4377 4378 dispatch = ldl_be_phys(cs->as, 4379 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4380 dispatch++; 4381 if ((dispatch & 1) != 1) { 4382 qemu_log_mask(LOG_GUEST_ERROR, 4383 "VPA: incorrect dispatch counter value for " 4384 "preempted partition %u, correcting.\n", dispatch); 4385 dispatch++; 4386 } 4387 stl_be_phys(cs->as, 4388 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4389 } 4390 } 4391 4392 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4393 { 4394 MachineClass *mc = MACHINE_CLASS(oc); 4395 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4396 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4397 NMIClass *nc = NMI_CLASS(oc); 4398 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4399 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4400 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4401 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4402 4403 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4404 mc->ignore_boot_device_suffixes = true; 4405 4406 /* 4407 * We set up the default / latest behaviour here. The class_init 4408 * functions for the specific versioned machine types can override 4409 * these details for backwards compatibility 4410 */ 4411 mc->init = spapr_machine_init; 4412 mc->reset = spapr_machine_reset; 4413 mc->block_default_type = IF_SCSI; 4414 mc->max_cpus = 1024; 4415 mc->no_parallel = 1; 4416 mc->default_boot_order = ""; 4417 mc->default_ram_size = 512 * MiB; 4418 mc->default_display = "std"; 4419 mc->kvm_type = spapr_kvm_type; 4420 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4421 mc->pci_allow_0_address = true; 4422 assert(!mc->get_hotplug_handler); 4423 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4424 hc->pre_plug = spapr_machine_device_pre_plug; 4425 hc->plug = spapr_machine_device_plug; 4426 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4427 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4428 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4429 hc->unplug_request = spapr_machine_device_unplug_request; 4430 hc->unplug = spapr_machine_device_unplug; 4431 4432 smc->dr_lmb_enabled = true; 4433 smc->update_dt_enabled = true; 4434 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4435 mc->has_hotpluggable_cpus = true; 4436 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4437 fwc->get_dev_path = spapr_get_fw_dev_path; 4438 nc->nmi_monitor_handler = spapr_nmi; 4439 smc->phb_placement = spapr_phb_placement; 4440 vhc->hypercall = emulate_spapr_hypercall; 4441 vhc->hpt_mask = spapr_hpt_mask; 4442 vhc->map_hptes = spapr_map_hptes; 4443 vhc->unmap_hptes = spapr_unmap_hptes; 4444 vhc->hpte_set_c = spapr_hpte_set_c; 4445 vhc->hpte_set_r = spapr_hpte_set_r; 4446 vhc->get_pate = spapr_get_pate; 4447 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4448 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4449 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4450 xic->ics_get = spapr_ics_get; 4451 xic->ics_resend = spapr_ics_resend; 4452 xic->icp_get = spapr_icp_get; 4453 ispc->print_info = spapr_pic_print_info; 4454 /* Force NUMA node memory size to be a multiple of 4455 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4456 * in which LMBs are represented and hot-added 4457 */ 4458 mc->numa_mem_align_shift = 28; 4459 mc->numa_mem_supported = true; 4460 4461 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4462 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4463 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4464 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4465 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4466 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4467 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4468 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4469 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4470 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4471 spapr_caps_add_properties(smc, &error_abort); 4472 smc->irq = &spapr_irq_dual; 4473 smc->dr_phb_enabled = true; 4474 } 4475 4476 static const TypeInfo spapr_machine_info = { 4477 .name = TYPE_SPAPR_MACHINE, 4478 .parent = TYPE_MACHINE, 4479 .abstract = true, 4480 .instance_size = sizeof(SpaprMachineState), 4481 .instance_init = spapr_instance_init, 4482 .instance_finalize = spapr_machine_finalizefn, 4483 .class_size = sizeof(SpaprMachineClass), 4484 .class_init = spapr_machine_class_init, 4485 .interfaces = (InterfaceInfo[]) { 4486 { TYPE_FW_PATH_PROVIDER }, 4487 { TYPE_NMI }, 4488 { TYPE_HOTPLUG_HANDLER }, 4489 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4490 { TYPE_XICS_FABRIC }, 4491 { TYPE_INTERRUPT_STATS_PROVIDER }, 4492 { } 4493 }, 4494 }; 4495 4496 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4497 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4498 void *data) \ 4499 { \ 4500 MachineClass *mc = MACHINE_CLASS(oc); \ 4501 spapr_machine_##suffix##_class_options(mc); \ 4502 if (latest) { \ 4503 mc->alias = "pseries"; \ 4504 mc->is_default = 1; \ 4505 } \ 4506 } \ 4507 static const TypeInfo spapr_machine_##suffix##_info = { \ 4508 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4509 .parent = TYPE_SPAPR_MACHINE, \ 4510 .class_init = spapr_machine_##suffix##_class_init, \ 4511 }; \ 4512 static void spapr_machine_register_##suffix(void) \ 4513 { \ 4514 type_register(&spapr_machine_##suffix##_info); \ 4515 } \ 4516 type_init(spapr_machine_register_##suffix) 4517 4518 /* 4519 * pseries-4.2 4520 */ 4521 static void spapr_machine_4_2_class_options(MachineClass *mc) 4522 { 4523 /* Defaults for the latest behaviour inherited from the base class */ 4524 } 4525 4526 DEFINE_SPAPR_MACHINE(4_2, "4.2", true); 4527 4528 /* 4529 * pseries-4.1 4530 */ 4531 static void spapr_machine_4_1_class_options(MachineClass *mc) 4532 { 4533 static GlobalProperty compat[] = { 4534 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4535 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4536 }; 4537 4538 spapr_machine_4_2_class_options(mc); 4539 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4540 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4541 } 4542 4543 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4544 4545 /* 4546 * pseries-4.0 4547 */ 4548 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4549 uint64_t *buid, hwaddr *pio, 4550 hwaddr *mmio32, hwaddr *mmio64, 4551 unsigned n_dma, uint32_t *liobns, 4552 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4553 { 4554 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4555 nv2gpa, nv2atsd, errp); 4556 *nv2gpa = 0; 4557 *nv2atsd = 0; 4558 } 4559 4560 static void spapr_machine_4_0_class_options(MachineClass *mc) 4561 { 4562 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4563 4564 spapr_machine_4_1_class_options(mc); 4565 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4566 smc->phb_placement = phb_placement_4_0; 4567 smc->irq = &spapr_irq_xics; 4568 smc->pre_4_1_migration = true; 4569 } 4570 4571 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4572 4573 /* 4574 * pseries-3.1 4575 */ 4576 static void spapr_machine_3_1_class_options(MachineClass *mc) 4577 { 4578 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4579 4580 spapr_machine_4_0_class_options(mc); 4581 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4582 4583 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4584 smc->update_dt_enabled = false; 4585 smc->dr_phb_enabled = false; 4586 smc->broken_host_serial_model = true; 4587 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4588 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4589 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4590 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4591 } 4592 4593 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4594 4595 /* 4596 * pseries-3.0 4597 */ 4598 4599 static void spapr_machine_3_0_class_options(MachineClass *mc) 4600 { 4601 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4602 4603 spapr_machine_3_1_class_options(mc); 4604 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4605 4606 smc->legacy_irq_allocation = true; 4607 smc->irq = &spapr_irq_xics_legacy; 4608 } 4609 4610 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4611 4612 /* 4613 * pseries-2.12 4614 */ 4615 static void spapr_machine_2_12_class_options(MachineClass *mc) 4616 { 4617 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4618 static GlobalProperty compat[] = { 4619 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4620 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4621 }; 4622 4623 spapr_machine_3_0_class_options(mc); 4624 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4625 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4626 4627 /* We depend on kvm_enabled() to choose a default value for the 4628 * hpt-max-page-size capability. Of course we can't do it here 4629 * because this is too early and the HW accelerator isn't initialzed 4630 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4631 */ 4632 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4633 } 4634 4635 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4636 4637 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4638 { 4639 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4640 4641 spapr_machine_2_12_class_options(mc); 4642 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4643 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4644 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4645 } 4646 4647 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4648 4649 /* 4650 * pseries-2.11 4651 */ 4652 4653 static void spapr_machine_2_11_class_options(MachineClass *mc) 4654 { 4655 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4656 4657 spapr_machine_2_12_class_options(mc); 4658 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4659 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4660 } 4661 4662 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4663 4664 /* 4665 * pseries-2.10 4666 */ 4667 4668 static void spapr_machine_2_10_class_options(MachineClass *mc) 4669 { 4670 spapr_machine_2_11_class_options(mc); 4671 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4672 } 4673 4674 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4675 4676 /* 4677 * pseries-2.9 4678 */ 4679 4680 static void spapr_machine_2_9_class_options(MachineClass *mc) 4681 { 4682 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4683 static GlobalProperty compat[] = { 4684 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4685 }; 4686 4687 spapr_machine_2_10_class_options(mc); 4688 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4689 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4690 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4691 smc->pre_2_10_has_unused_icps = true; 4692 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4693 } 4694 4695 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4696 4697 /* 4698 * pseries-2.8 4699 */ 4700 4701 static void spapr_machine_2_8_class_options(MachineClass *mc) 4702 { 4703 static GlobalProperty compat[] = { 4704 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4705 }; 4706 4707 spapr_machine_2_9_class_options(mc); 4708 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4709 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4710 mc->numa_mem_align_shift = 23; 4711 } 4712 4713 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4714 4715 /* 4716 * pseries-2.7 4717 */ 4718 4719 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4720 uint64_t *buid, hwaddr *pio, 4721 hwaddr *mmio32, hwaddr *mmio64, 4722 unsigned n_dma, uint32_t *liobns, 4723 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4724 { 4725 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4726 const uint64_t base_buid = 0x800000020000000ULL; 4727 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4728 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4729 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4730 const uint32_t max_index = 255; 4731 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4732 4733 uint64_t ram_top = MACHINE(spapr)->ram_size; 4734 hwaddr phb0_base, phb_base; 4735 int i; 4736 4737 /* Do we have device memory? */ 4738 if (MACHINE(spapr)->maxram_size > ram_top) { 4739 /* Can't just use maxram_size, because there may be an 4740 * alignment gap between normal and device memory regions 4741 */ 4742 ram_top = MACHINE(spapr)->device_memory->base + 4743 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4744 } 4745 4746 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4747 4748 if (index > max_index) { 4749 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4750 max_index); 4751 return; 4752 } 4753 4754 *buid = base_buid + index; 4755 for (i = 0; i < n_dma; ++i) { 4756 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4757 } 4758 4759 phb_base = phb0_base + index * phb_spacing; 4760 *pio = phb_base + pio_offset; 4761 *mmio32 = phb_base + mmio_offset; 4762 /* 4763 * We don't set the 64-bit MMIO window, relying on the PHB's 4764 * fallback behaviour of automatically splitting a large "32-bit" 4765 * window into contiguous 32-bit and 64-bit windows 4766 */ 4767 4768 *nv2gpa = 0; 4769 *nv2atsd = 0; 4770 } 4771 4772 static void spapr_machine_2_7_class_options(MachineClass *mc) 4773 { 4774 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4775 static GlobalProperty compat[] = { 4776 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4777 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4778 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4779 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4780 }; 4781 4782 spapr_machine_2_8_class_options(mc); 4783 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4784 mc->default_machine_opts = "modern-hotplug-events=off"; 4785 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4786 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4787 smc->phb_placement = phb_placement_2_7; 4788 } 4789 4790 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4791 4792 /* 4793 * pseries-2.6 4794 */ 4795 4796 static void spapr_machine_2_6_class_options(MachineClass *mc) 4797 { 4798 static GlobalProperty compat[] = { 4799 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4800 }; 4801 4802 spapr_machine_2_7_class_options(mc); 4803 mc->has_hotpluggable_cpus = false; 4804 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4805 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4806 } 4807 4808 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4809 4810 /* 4811 * pseries-2.5 4812 */ 4813 4814 static void spapr_machine_2_5_class_options(MachineClass *mc) 4815 { 4816 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4817 static GlobalProperty compat[] = { 4818 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4819 }; 4820 4821 spapr_machine_2_6_class_options(mc); 4822 smc->use_ohci_by_default = true; 4823 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4824 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4825 } 4826 4827 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4828 4829 /* 4830 * pseries-2.4 4831 */ 4832 4833 static void spapr_machine_2_4_class_options(MachineClass *mc) 4834 { 4835 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4836 4837 spapr_machine_2_5_class_options(mc); 4838 smc->dr_lmb_enabled = false; 4839 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4840 } 4841 4842 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4843 4844 /* 4845 * pseries-2.3 4846 */ 4847 4848 static void spapr_machine_2_3_class_options(MachineClass *mc) 4849 { 4850 static GlobalProperty compat[] = { 4851 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4852 }; 4853 spapr_machine_2_4_class_options(mc); 4854 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4855 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4856 } 4857 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4858 4859 /* 4860 * pseries-2.2 4861 */ 4862 4863 static void spapr_machine_2_2_class_options(MachineClass *mc) 4864 { 4865 static GlobalProperty compat[] = { 4866 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4867 }; 4868 4869 spapr_machine_2_3_class_options(mc); 4870 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4871 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4872 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4873 } 4874 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4875 4876 /* 4877 * pseries-2.1 4878 */ 4879 4880 static void spapr_machine_2_1_class_options(MachineClass *mc) 4881 { 4882 spapr_machine_2_2_class_options(mc); 4883 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4884 } 4885 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4886 4887 static void spapr_machine_register_types(void) 4888 { 4889 type_register_static(&spapr_machine_info); 4890 } 4891 4892 type_init(spapr_machine_register_types) 4893