1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_nested.h" 65 #include "hw/ppc/spapr_vio.h" 66 #include "hw/ppc/vof.h" 67 #include "hw/qdev-properties.h" 68 #include "hw/pci-host/spapr.h" 69 #include "hw/pci/msi.h" 70 71 #include "hw/pci/pci.h" 72 #include "hw/scsi/scsi.h" 73 #include "hw/virtio/virtio-scsi.h" 74 #include "hw/virtio/vhost-scsi-common.h" 75 76 #include "exec/ram_addr.h" 77 #include "hw/usb.h" 78 #include "qemu/config-file.h" 79 #include "qemu/error-report.h" 80 #include "trace.h" 81 #include "hw/nmi.h" 82 #include "hw/intc/intc.h" 83 84 #include "hw/ppc/spapr_cpu_core.h" 85 #include "hw/mem/memory-device.h" 86 #include "hw/ppc/spapr_tpm_proxy.h" 87 #include "hw/ppc/spapr_nvdimm.h" 88 #include "hw/ppc/spapr_numa.h" 89 #include "hw/ppc/pef.h" 90 91 #include "monitor/monitor.h" 92 93 #include <libfdt.h> 94 95 /* SLOF memory layout: 96 * 97 * SLOF raw image loaded at 0, copies its romfs right below the flat 98 * device-tree, then position SLOF itself 31M below that 99 * 100 * So we set FW_OVERHEAD to 40MB which should account for all of that 101 * and more 102 * 103 * We load our kernel at 4M, leaving space for SLOF initial image 104 */ 105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 106 #define FW_MAX_SIZE 0x400000 107 #define FW_FILE_NAME "slof.bin" 108 #define FW_FILE_NAME_VOF "vof.bin" 109 #define FW_OVERHEAD 0x2800000 110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 111 112 #define MIN_RMA_SLOF (128 * MiB) 113 114 #define PHANDLE_INTC 0x00001111 115 116 /* These two functions implement the VCPU id numbering: one to compute them 117 * all and one to identify thread 0 of a VCORE. Any change to the first one 118 * is likely to have an impact on the second one, so let's keep them close. 119 */ 120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 121 { 122 MachineState *ms = MACHINE(spapr); 123 unsigned int smp_threads = ms->smp.threads; 124 125 assert(spapr->vsmt); 126 return 127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 128 } 129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 130 PowerPCCPU *cpu) 131 { 132 assert(spapr->vsmt); 133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 134 } 135 136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 137 { 138 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 139 * and newer QEMUs don't even have them. In both cases, we don't want 140 * to send anything on the wire. 141 */ 142 return false; 143 } 144 145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 146 .name = "icp/server", 147 .version_id = 1, 148 .minimum_version_id = 1, 149 .needed = pre_2_10_vmstate_dummy_icp_needed, 150 .fields = (VMStateField[]) { 151 VMSTATE_UNUSED(4), /* uint32_t xirr */ 152 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 153 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 154 VMSTATE_END_OF_LIST() 155 }, 156 }; 157 158 static void pre_2_10_vmstate_register_dummy_icp(int i) 159 { 160 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 161 (void *)(uintptr_t) i); 162 } 163 164 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 165 { 166 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 167 (void *)(uintptr_t) i); 168 } 169 170 int spapr_max_server_number(SpaprMachineState *spapr) 171 { 172 MachineState *ms = MACHINE(spapr); 173 174 assert(spapr->vsmt); 175 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 176 } 177 178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 179 int smt_threads) 180 { 181 int i, ret = 0; 182 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 183 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 184 int index = spapr_get_vcpu_id(cpu); 185 186 if (cpu->compat_pvr) { 187 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 188 if (ret < 0) { 189 return ret; 190 } 191 } 192 193 /* Build interrupt servers and gservers properties */ 194 for (i = 0; i < smt_threads; i++) { 195 servers_prop[i] = cpu_to_be32(index + i); 196 /* Hack, direct the group queues back to cpu 0 */ 197 gservers_prop[i*2] = cpu_to_be32(index + i); 198 gservers_prop[i*2 + 1] = 0; 199 } 200 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 201 servers_prop, sizeof(*servers_prop) * smt_threads); 202 if (ret < 0) { 203 return ret; 204 } 205 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 206 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 207 208 return ret; 209 } 210 211 static void spapr_dt_pa_features(SpaprMachineState *spapr, 212 PowerPCCPU *cpu, 213 void *fdt, int offset) 214 { 215 uint8_t pa_features_206[] = { 6, 0, 216 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 217 uint8_t pa_features_207[] = { 24, 0, 218 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 219 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 220 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 221 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 222 uint8_t pa_features_300[] = { 66, 0, 223 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 224 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 225 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 226 /* 6: DS207 */ 227 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 228 /* 16: Vector */ 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 230 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 232 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 233 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 234 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 235 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 236 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 238 /* 42: PM, 44: PC RA, 46: SC vec'd */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 240 /* 48: SIMD, 50: QP BFP, 52: String */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 242 /* 54: DecFP, 56: DecI, 58: SHA */ 243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 244 /* 60: NM atomic, 62: RNG */ 245 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 246 }; 247 uint8_t *pa_features = NULL; 248 size_t pa_size; 249 250 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 251 pa_features = pa_features_206; 252 pa_size = sizeof(pa_features_206); 253 } 254 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 255 pa_features = pa_features_207; 256 pa_size = sizeof(pa_features_207); 257 } 258 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 259 pa_features = pa_features_300; 260 pa_size = sizeof(pa_features_300); 261 } 262 if (!pa_features) { 263 return; 264 } 265 266 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 267 /* 268 * Note: we keep CI large pages off by default because a 64K capable 269 * guest provisioned with large pages might otherwise try to map a qemu 270 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 271 * even if that qemu runs on a 4k host. 272 * We dd this bit back here if we are confident this is not an issue 273 */ 274 pa_features[3] |= 0x20; 275 } 276 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 277 pa_features[24] |= 0x80; /* Transactional memory support */ 278 } 279 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 280 /* Workaround for broken kernels that attempt (guest) radix 281 * mode when they can't handle it, if they see the radix bit set 282 * in pa-features. So hide it from them. */ 283 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 284 } 285 286 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 287 } 288 289 static hwaddr spapr_node0_size(MachineState *machine) 290 { 291 if (machine->numa_state->num_nodes) { 292 int i; 293 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 294 if (machine->numa_state->nodes[i].node_mem) { 295 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 296 machine->ram_size); 297 } 298 } 299 } 300 return machine->ram_size; 301 } 302 303 static void add_str(GString *s, const gchar *s1) 304 { 305 g_string_append_len(s, s1, strlen(s1) + 1); 306 } 307 308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 309 hwaddr start, hwaddr size) 310 { 311 char mem_name[32]; 312 uint64_t mem_reg_property[2]; 313 int off; 314 315 mem_reg_property[0] = cpu_to_be64(start); 316 mem_reg_property[1] = cpu_to_be64(size); 317 318 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 319 off = fdt_add_subnode(fdt, 0, mem_name); 320 _FDT(off); 321 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 322 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 323 sizeof(mem_reg_property)))); 324 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 325 return off; 326 } 327 328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 329 { 330 MemoryDeviceInfoList *info; 331 332 for (info = list; info; info = info->next) { 333 MemoryDeviceInfo *value = info->value; 334 335 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 336 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 337 338 if (addr >= pcdimm_info->addr && 339 addr < (pcdimm_info->addr + pcdimm_info->size)) { 340 return pcdimm_info->node; 341 } 342 } 343 } 344 345 return -1; 346 } 347 348 struct sPAPRDrconfCellV2 { 349 uint32_t seq_lmbs; 350 uint64_t base_addr; 351 uint32_t drc_index; 352 uint32_t aa_index; 353 uint32_t flags; 354 } QEMU_PACKED; 355 356 typedef struct DrconfCellQueue { 357 struct sPAPRDrconfCellV2 cell; 358 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 359 } DrconfCellQueue; 360 361 static DrconfCellQueue * 362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 363 uint32_t drc_index, uint32_t aa_index, 364 uint32_t flags) 365 { 366 DrconfCellQueue *elem; 367 368 elem = g_malloc0(sizeof(*elem)); 369 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 370 elem->cell.base_addr = cpu_to_be64(base_addr); 371 elem->cell.drc_index = cpu_to_be32(drc_index); 372 elem->cell.aa_index = cpu_to_be32(aa_index); 373 elem->cell.flags = cpu_to_be32(flags); 374 375 return elem; 376 } 377 378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 379 int offset, MemoryDeviceInfoList *dimms) 380 { 381 MachineState *machine = MACHINE(spapr); 382 uint8_t *int_buf, *cur_index; 383 int ret; 384 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 385 uint64_t addr, cur_addr, size; 386 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 387 uint64_t mem_end = machine->device_memory->base + 388 memory_region_size(&machine->device_memory->mr); 389 uint32_t node, buf_len, nr_entries = 0; 390 SpaprDrc *drc; 391 DrconfCellQueue *elem, *next; 392 MemoryDeviceInfoList *info; 393 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 394 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 395 396 /* Entry to cover RAM and the gap area */ 397 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 398 SPAPR_LMB_FLAGS_RESERVED | 399 SPAPR_LMB_FLAGS_DRC_INVALID); 400 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 401 nr_entries++; 402 403 cur_addr = machine->device_memory->base; 404 for (info = dimms; info; info = info->next) { 405 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 406 407 addr = di->addr; 408 size = di->size; 409 node = di->node; 410 411 /* 412 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 413 * area is marked hotpluggable in the next iteration for the bigger 414 * chunk including the NVDIMM occupied area. 415 */ 416 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 417 continue; 418 419 /* Entry for hot-pluggable area */ 420 if (cur_addr < addr) { 421 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 422 g_assert(drc); 423 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 424 cur_addr, spapr_drc_index(drc), -1, 0); 425 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 426 nr_entries++; 427 } 428 429 /* Entry for DIMM */ 430 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 431 g_assert(drc); 432 elem = spapr_get_drconf_cell(size / lmb_size, addr, 433 spapr_drc_index(drc), node, 434 (SPAPR_LMB_FLAGS_ASSIGNED | 435 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 436 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 437 nr_entries++; 438 cur_addr = addr + size; 439 } 440 441 /* Entry for remaining hotpluggable area */ 442 if (cur_addr < mem_end) { 443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 444 g_assert(drc); 445 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 446 cur_addr, spapr_drc_index(drc), -1, 0); 447 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 448 nr_entries++; 449 } 450 451 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 452 int_buf = cur_index = g_malloc0(buf_len); 453 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 454 cur_index += sizeof(nr_entries); 455 456 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 457 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 458 cur_index += sizeof(elem->cell); 459 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 460 g_free(elem); 461 } 462 463 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 464 g_free(int_buf); 465 if (ret < 0) { 466 return -1; 467 } 468 return 0; 469 } 470 471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 472 int offset, MemoryDeviceInfoList *dimms) 473 { 474 MachineState *machine = MACHINE(spapr); 475 int i, ret; 476 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 477 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 478 uint32_t nr_lmbs = (machine->device_memory->base + 479 memory_region_size(&machine->device_memory->mr)) / 480 lmb_size; 481 uint32_t *int_buf, *cur_index, buf_len; 482 483 /* 484 * Allocate enough buffer size to fit in ibm,dynamic-memory 485 */ 486 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 487 cur_index = int_buf = g_malloc0(buf_len); 488 int_buf[0] = cpu_to_be32(nr_lmbs); 489 cur_index++; 490 for (i = 0; i < nr_lmbs; i++) { 491 uint64_t addr = i * lmb_size; 492 uint32_t *dynamic_memory = cur_index; 493 494 if (i >= device_lmb_start) { 495 SpaprDrc *drc; 496 497 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 498 g_assert(drc); 499 500 dynamic_memory[0] = cpu_to_be32(addr >> 32); 501 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 502 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 503 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 504 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 505 if (memory_region_present(get_system_memory(), addr)) { 506 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 507 } else { 508 dynamic_memory[5] = cpu_to_be32(0); 509 } 510 } else { 511 /* 512 * LMB information for RMA, boot time RAM and gap b/n RAM and 513 * device memory region -- all these are marked as reserved 514 * and as having no valid DRC. 515 */ 516 dynamic_memory[0] = cpu_to_be32(addr >> 32); 517 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 518 dynamic_memory[2] = cpu_to_be32(0); 519 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 520 dynamic_memory[4] = cpu_to_be32(-1); 521 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 522 SPAPR_LMB_FLAGS_DRC_INVALID); 523 } 524 525 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 526 } 527 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 528 g_free(int_buf); 529 if (ret < 0) { 530 return -1; 531 } 532 return 0; 533 } 534 535 /* 536 * Adds ibm,dynamic-reconfiguration-memory node. 537 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 538 * of this device tree node. 539 */ 540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 541 void *fdt) 542 { 543 MachineState *machine = MACHINE(spapr); 544 int ret, offset; 545 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 546 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 547 cpu_to_be32(lmb_size & 0xffffffff)}; 548 MemoryDeviceInfoList *dimms = NULL; 549 550 /* Don't create the node if there is no device memory. */ 551 if (!machine->device_memory) { 552 return 0; 553 } 554 555 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 556 557 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 558 sizeof(prop_lmb_size)); 559 if (ret < 0) { 560 return ret; 561 } 562 563 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 564 if (ret < 0) { 565 return ret; 566 } 567 568 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 569 if (ret < 0) { 570 return ret; 571 } 572 573 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 574 dimms = qmp_memory_device_list(); 575 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 576 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 577 } else { 578 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 579 } 580 qapi_free_MemoryDeviceInfoList(dimms); 581 582 if (ret < 0) { 583 return ret; 584 } 585 586 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 587 588 return ret; 589 } 590 591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 592 { 593 MachineState *machine = MACHINE(spapr); 594 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 595 hwaddr mem_start, node_size; 596 int i, nb_nodes = machine->numa_state->num_nodes; 597 NodeInfo *nodes = machine->numa_state->nodes; 598 599 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 600 if (!nodes[i].node_mem) { 601 continue; 602 } 603 if (mem_start >= machine->ram_size) { 604 node_size = 0; 605 } else { 606 node_size = nodes[i].node_mem; 607 if (node_size > machine->ram_size - mem_start) { 608 node_size = machine->ram_size - mem_start; 609 } 610 } 611 if (!mem_start) { 612 /* spapr_machine_init() checks for rma_size <= node0_size 613 * already */ 614 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 615 mem_start += spapr->rma_size; 616 node_size -= spapr->rma_size; 617 } 618 for ( ; node_size; ) { 619 hwaddr sizetmp = pow2floor(node_size); 620 621 /* mem_start != 0 here */ 622 if (ctzl(mem_start) < ctzl(sizetmp)) { 623 sizetmp = 1ULL << ctzl(mem_start); 624 } 625 626 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 627 node_size -= sizetmp; 628 mem_start += sizetmp; 629 } 630 } 631 632 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 633 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 634 int ret; 635 636 g_assert(smc->dr_lmb_enabled); 637 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 638 if (ret) { 639 return ret; 640 } 641 } 642 643 return 0; 644 } 645 646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 647 SpaprMachineState *spapr) 648 { 649 MachineState *ms = MACHINE(spapr); 650 PowerPCCPU *cpu = POWERPC_CPU(cs); 651 CPUPPCState *env = &cpu->env; 652 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 653 int index = spapr_get_vcpu_id(cpu); 654 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 655 0xffffffff, 0xffffffff}; 656 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 657 : SPAPR_TIMEBASE_FREQ; 658 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 659 uint32_t page_sizes_prop[64]; 660 size_t page_sizes_prop_size; 661 unsigned int smp_threads = ms->smp.threads; 662 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 663 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 664 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 665 SpaprDrc *drc; 666 int drc_index; 667 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 668 int i; 669 670 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 671 if (drc) { 672 drc_index = spapr_drc_index(drc); 673 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 674 } 675 676 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 677 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 678 679 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 680 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 681 env->dcache_line_size))); 682 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 683 env->dcache_line_size))); 684 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 685 env->icache_line_size))); 686 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 687 env->icache_line_size))); 688 689 if (pcc->l1_dcache_size) { 690 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 691 pcc->l1_dcache_size))); 692 } else { 693 warn_report("Unknown L1 dcache size for cpu"); 694 } 695 if (pcc->l1_icache_size) { 696 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 697 pcc->l1_icache_size))); 698 } else { 699 warn_report("Unknown L1 icache size for cpu"); 700 } 701 702 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 703 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 704 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 705 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 706 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 707 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 708 709 if (ppc_has_spr(cpu, SPR_PURR)) { 710 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 711 } 712 if (ppc_has_spr(cpu, SPR_PURR)) { 713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 714 } 715 716 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 717 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 718 segs, sizeof(segs)))); 719 } 720 721 /* Advertise VSX (vector extensions) if available 722 * 1 == VMX / Altivec available 723 * 2 == VSX available 724 * 725 * Only CPUs for which we create core types in spapr_cpu_core.c 726 * are possible, and all of those have VMX */ 727 if (env->insns_flags & PPC_ALTIVEC) { 728 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 729 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 730 } else { 731 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 732 } 733 } 734 735 /* Advertise DFP (Decimal Floating Point) if available 736 * 0 / no property == no DFP 737 * 1 == DFP available */ 738 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 740 } 741 742 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 743 sizeof(page_sizes_prop)); 744 if (page_sizes_prop_size) { 745 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 746 page_sizes_prop, page_sizes_prop_size))); 747 } 748 749 spapr_dt_pa_features(spapr, cpu, fdt, offset); 750 751 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 752 cs->cpu_index / vcpus_per_socket))); 753 754 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 755 pft_size_prop, sizeof(pft_size_prop)))); 756 757 if (ms->numa_state->num_nodes > 1) { 758 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 759 } 760 761 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 762 763 if (pcc->radix_page_info) { 764 for (i = 0; i < pcc->radix_page_info->count; i++) { 765 radix_AP_encodings[i] = 766 cpu_to_be32(pcc->radix_page_info->entries[i]); 767 } 768 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 769 radix_AP_encodings, 770 pcc->radix_page_info->count * 771 sizeof(radix_AP_encodings[0])))); 772 } 773 774 /* 775 * We set this property to let the guest know that it can use the large 776 * decrementer and its width in bits. 777 */ 778 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 779 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 780 pcc->lrg_decr_bits))); 781 } 782 783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 784 { 785 CPUState **rev; 786 CPUState *cs; 787 int n_cpus; 788 int cpus_offset; 789 int i; 790 791 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 792 _FDT(cpus_offset); 793 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 794 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 795 796 /* 797 * We walk the CPUs in reverse order to ensure that CPU DT nodes 798 * created by fdt_add_subnode() end up in the right order in FDT 799 * for the guest kernel the enumerate the CPUs correctly. 800 * 801 * The CPU list cannot be traversed in reverse order, so we need 802 * to do extra work. 803 */ 804 n_cpus = 0; 805 rev = NULL; 806 CPU_FOREACH(cs) { 807 rev = g_renew(CPUState *, rev, n_cpus + 1); 808 rev[n_cpus++] = cs; 809 } 810 811 for (i = n_cpus - 1; i >= 0; i--) { 812 CPUState *cs = rev[i]; 813 PowerPCCPU *cpu = POWERPC_CPU(cs); 814 int index = spapr_get_vcpu_id(cpu); 815 DeviceClass *dc = DEVICE_GET_CLASS(cs); 816 g_autofree char *nodename = NULL; 817 int offset; 818 819 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 820 continue; 821 } 822 823 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 824 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 825 _FDT(offset); 826 spapr_dt_cpu(cs, fdt, offset, spapr); 827 } 828 829 g_free(rev); 830 } 831 832 static int spapr_dt_rng(void *fdt) 833 { 834 int node; 835 int ret; 836 837 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 838 if (node <= 0) { 839 return -1; 840 } 841 ret = fdt_setprop_string(fdt, node, "device_type", 842 "ibm,platform-facilities"); 843 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 844 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 845 846 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 847 if (node <= 0) { 848 return -1; 849 } 850 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 851 852 return ret ? -1 : 0; 853 } 854 855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 856 { 857 MachineState *ms = MACHINE(spapr); 858 int rtas; 859 GString *hypertas = g_string_sized_new(256); 860 GString *qemu_hypertas = g_string_sized_new(256); 861 uint32_t lrdr_capacity[] = { 862 0, 863 0, 864 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 865 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 866 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 867 }; 868 869 /* Do we have device memory? */ 870 if (MACHINE(spapr)->device_memory) { 871 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 872 memory_region_size(&MACHINE(spapr)->device_memory->mr); 873 874 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 875 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 876 } 877 878 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 879 880 /* hypertas */ 881 add_str(hypertas, "hcall-pft"); 882 add_str(hypertas, "hcall-term"); 883 add_str(hypertas, "hcall-dabr"); 884 add_str(hypertas, "hcall-interrupt"); 885 add_str(hypertas, "hcall-tce"); 886 add_str(hypertas, "hcall-vio"); 887 add_str(hypertas, "hcall-splpar"); 888 add_str(hypertas, "hcall-join"); 889 add_str(hypertas, "hcall-bulk"); 890 add_str(hypertas, "hcall-set-mode"); 891 add_str(hypertas, "hcall-sprg0"); 892 add_str(hypertas, "hcall-copy"); 893 add_str(hypertas, "hcall-debug"); 894 add_str(hypertas, "hcall-vphn"); 895 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 896 add_str(hypertas, "hcall-rpt-invalidate"); 897 } 898 899 add_str(qemu_hypertas, "hcall-memop1"); 900 901 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 902 add_str(hypertas, "hcall-multi-tce"); 903 } 904 905 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 906 add_str(hypertas, "hcall-hpt-resize"); 907 } 908 909 add_str(hypertas, "hcall-watchdog"); 910 911 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 912 hypertas->str, hypertas->len)); 913 g_string_free(hypertas, TRUE); 914 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 915 qemu_hypertas->str, qemu_hypertas->len)); 916 g_string_free(qemu_hypertas, TRUE); 917 918 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 919 920 /* 921 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 922 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 923 * 924 * The system reset requirements are driven by existing Linux and PowerVM 925 * implementation which (contrary to PAPR) saves r3 in the error log 926 * structure like machine check, so Linux expects to find the saved r3 927 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 928 * does not look at the error value). 929 * 930 * System reset interrupts are not subject to interlock like machine 931 * check, so this memory area could be corrupted if the sreset is 932 * interrupted by a machine check (or vice versa) if it was shared. To 933 * prevent this, system reset uses per-CPU areas for the sreset save 934 * area. A system reset that interrupts a system reset handler could 935 * still overwrite this area, but Linux doesn't try to recover in that 936 * case anyway. 937 * 938 * The extra 8 bytes is required because Linux's FWNMI error log check 939 * is off-by-one. 940 * 941 * RTAS_MIN_SIZE is required for the RTAS blob itself. 942 */ 943 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 944 RTAS_ERROR_LOG_MAX + 945 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 946 sizeof(uint64_t))); 947 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 948 RTAS_ERROR_LOG_MAX)); 949 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 950 RTAS_EVENT_SCAN_RATE)); 951 952 g_assert(msi_nonbroken); 953 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 954 955 /* 956 * According to PAPR, rtas ibm,os-term does not guarantee a return 957 * back to the guest cpu. 958 * 959 * While an additional ibm,extended-os-term property indicates 960 * that rtas call return will always occur. Set this property. 961 */ 962 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 963 964 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 965 lrdr_capacity, sizeof(lrdr_capacity))); 966 967 spapr_dt_rtas_tokens(fdt, rtas); 968 } 969 970 /* 971 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 972 * and the XIVE features that the guest may request and thus the valid 973 * values for bytes 23..26 of option vector 5: 974 */ 975 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 976 int chosen) 977 { 978 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 979 980 char val[2 * 4] = { 981 23, 0x00, /* XICS / XIVE mode */ 982 24, 0x00, /* Hash/Radix, filled in below. */ 983 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 984 26, 0x40, /* Radix options: GTSE == yes. */ 985 }; 986 987 if (spapr->irq->xics && spapr->irq->xive) { 988 val[1] = SPAPR_OV5_XIVE_BOTH; 989 } else if (spapr->irq->xive) { 990 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 991 } else { 992 assert(spapr->irq->xics); 993 val[1] = SPAPR_OV5_XIVE_LEGACY; 994 } 995 996 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 997 first_ppc_cpu->compat_pvr)) { 998 /* 999 * If we're in a pre POWER9 compat mode then the guest should 1000 * do hash and use the legacy interrupt mode 1001 */ 1002 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1003 val[3] = 0x00; /* Hash */ 1004 spapr_check_mmu_mode(false); 1005 } else if (kvm_enabled()) { 1006 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1007 val[3] = 0x80; /* OV5_MMU_BOTH */ 1008 } else if (kvmppc_has_cap_mmu_radix()) { 1009 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1010 } else { 1011 val[3] = 0x00; /* Hash */ 1012 } 1013 } else { 1014 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1015 val[3] = 0xC0; 1016 } 1017 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1018 val, sizeof(val))); 1019 } 1020 1021 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1022 { 1023 MachineState *machine = MACHINE(spapr); 1024 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1025 uint8_t rng_seed[32]; 1026 int chosen; 1027 1028 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1029 1030 if (reset) { 1031 const char *boot_device = spapr->boot_device; 1032 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1033 size_t cb = 0; 1034 g_autofree char *bootlist = get_boot_devices_list(&cb); 1035 1036 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1037 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1038 machine->kernel_cmdline)); 1039 } 1040 1041 if (spapr->initrd_size) { 1042 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1043 spapr->initrd_base)); 1044 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1045 spapr->initrd_base + spapr->initrd_size)); 1046 } 1047 1048 if (spapr->kernel_size) { 1049 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1050 cpu_to_be64(spapr->kernel_size) }; 1051 1052 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1053 &kprop, sizeof(kprop))); 1054 if (spapr->kernel_le) { 1055 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1056 } 1057 } 1058 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1059 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1060 } 1061 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1062 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1063 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1064 1065 if (cb && bootlist) { 1066 int i; 1067 1068 for (i = 0; i < cb; i++) { 1069 if (bootlist[i] == '\n') { 1070 bootlist[i] = ' '; 1071 } 1072 } 1073 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1074 } 1075 1076 if (boot_device && strlen(boot_device)) { 1077 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1078 } 1079 1080 if (spapr->want_stdout_path && stdout_path) { 1081 /* 1082 * "linux,stdout-path" and "stdout" properties are 1083 * deprecated by linux kernel. New platforms should only 1084 * use the "stdout-path" property. Set the new property 1085 * and continue using older property to remain compatible 1086 * with the existing firmware. 1087 */ 1088 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1089 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1090 } 1091 1092 /* 1093 * We can deal with BAR reallocation just fine, advertise it 1094 * to the guest 1095 */ 1096 if (smc->linux_pci_probe) { 1097 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1098 } 1099 1100 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1101 } 1102 1103 qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed)); 1104 _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed))); 1105 1106 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1107 } 1108 1109 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1110 { 1111 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1112 * KVM to work under pHyp with some guest co-operation */ 1113 int hypervisor; 1114 uint8_t hypercall[16]; 1115 1116 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1117 /* indicate KVM hypercall interface */ 1118 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1119 if (kvmppc_has_cap_fixup_hcalls()) { 1120 /* 1121 * Older KVM versions with older guest kernels were broken 1122 * with the magic page, don't allow the guest to map it. 1123 */ 1124 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1125 sizeof(hypercall))) { 1126 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1127 hypercall, sizeof(hypercall))); 1128 } 1129 } 1130 } 1131 1132 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1133 { 1134 MachineState *machine = MACHINE(spapr); 1135 MachineClass *mc = MACHINE_GET_CLASS(machine); 1136 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1137 uint32_t root_drc_type_mask = 0; 1138 int ret; 1139 void *fdt; 1140 SpaprPhbState *phb; 1141 char *buf; 1142 1143 fdt = g_malloc0(space); 1144 _FDT((fdt_create_empty_tree(fdt, space))); 1145 1146 /* Root node */ 1147 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1148 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1149 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1150 1151 /* Guest UUID & Name*/ 1152 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1153 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1154 if (qemu_uuid_set) { 1155 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1156 } 1157 g_free(buf); 1158 1159 if (qemu_get_vm_name()) { 1160 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1161 qemu_get_vm_name())); 1162 } 1163 1164 /* Host Model & Serial Number */ 1165 if (spapr->host_model) { 1166 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1167 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1168 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1169 g_free(buf); 1170 } 1171 1172 if (spapr->host_serial) { 1173 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1174 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1175 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1176 g_free(buf); 1177 } 1178 1179 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1180 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1181 1182 /* /interrupt controller */ 1183 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1184 1185 ret = spapr_dt_memory(spapr, fdt); 1186 if (ret < 0) { 1187 error_report("couldn't setup memory nodes in fdt"); 1188 exit(1); 1189 } 1190 1191 /* /vdevice */ 1192 spapr_dt_vdevice(spapr->vio_bus, fdt); 1193 1194 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1195 ret = spapr_dt_rng(fdt); 1196 if (ret < 0) { 1197 error_report("could not set up rng device in the fdt"); 1198 exit(1); 1199 } 1200 } 1201 1202 QLIST_FOREACH(phb, &spapr->phbs, list) { 1203 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1204 if (ret < 0) { 1205 error_report("couldn't setup PCI devices in fdt"); 1206 exit(1); 1207 } 1208 } 1209 1210 spapr_dt_cpus(fdt, spapr); 1211 1212 /* ibm,drc-indexes and friends */ 1213 if (smc->dr_lmb_enabled) { 1214 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1215 } 1216 if (smc->dr_phb_enabled) { 1217 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1218 } 1219 if (mc->nvdimm_supported) { 1220 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1221 } 1222 if (root_drc_type_mask) { 1223 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1224 } 1225 1226 if (mc->has_hotpluggable_cpus) { 1227 int offset = fdt_path_offset(fdt, "/cpus"); 1228 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1229 if (ret < 0) { 1230 error_report("Couldn't set up CPU DR device tree properties"); 1231 exit(1); 1232 } 1233 } 1234 1235 /* /event-sources */ 1236 spapr_dt_events(spapr, fdt); 1237 1238 /* /rtas */ 1239 spapr_dt_rtas(spapr, fdt); 1240 1241 /* /chosen */ 1242 spapr_dt_chosen(spapr, fdt, reset); 1243 1244 /* /hypervisor */ 1245 if (kvm_enabled()) { 1246 spapr_dt_hypervisor(spapr, fdt); 1247 } 1248 1249 /* Build memory reserve map */ 1250 if (reset) { 1251 if (spapr->kernel_size) { 1252 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1253 spapr->kernel_size))); 1254 } 1255 if (spapr->initrd_size) { 1256 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1257 spapr->initrd_size))); 1258 } 1259 } 1260 1261 /* NVDIMM devices */ 1262 if (mc->nvdimm_supported) { 1263 spapr_dt_persistent_memory(spapr, fdt); 1264 } 1265 1266 return fdt; 1267 } 1268 1269 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1270 { 1271 SpaprMachineState *spapr = opaque; 1272 1273 return (addr & 0x0fffffff) + spapr->kernel_addr; 1274 } 1275 1276 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1277 PowerPCCPU *cpu) 1278 { 1279 CPUPPCState *env = &cpu->env; 1280 1281 /* The TCG path should also be holding the BQL at this point */ 1282 g_assert(qemu_mutex_iothread_locked()); 1283 1284 g_assert(!vhyp_cpu_in_nested(cpu)); 1285 1286 if (FIELD_EX64(env->msr, MSR, PR)) { 1287 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1288 env->gpr[3] = H_PRIVILEGE; 1289 } else { 1290 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1291 } 1292 } 1293 1294 struct LPCRSyncState { 1295 target_ulong value; 1296 target_ulong mask; 1297 }; 1298 1299 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1300 { 1301 struct LPCRSyncState *s = arg.host_ptr; 1302 PowerPCCPU *cpu = POWERPC_CPU(cs); 1303 CPUPPCState *env = &cpu->env; 1304 target_ulong lpcr; 1305 1306 cpu_synchronize_state(cs); 1307 lpcr = env->spr[SPR_LPCR]; 1308 lpcr &= ~s->mask; 1309 lpcr |= s->value; 1310 ppc_store_lpcr(cpu, lpcr); 1311 } 1312 1313 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1314 { 1315 CPUState *cs; 1316 struct LPCRSyncState s = { 1317 .value = value, 1318 .mask = mask 1319 }; 1320 CPU_FOREACH(cs) { 1321 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1322 } 1323 } 1324 1325 /* May be used when the machine is not running */ 1326 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1327 { 1328 CPUState *cs; 1329 CPU_FOREACH(cs) { 1330 PowerPCCPU *cpu = POWERPC_CPU(cs); 1331 CPUPPCState *env = &cpu->env; 1332 target_ulong lpcr; 1333 1334 lpcr = env->spr[SPR_LPCR]; 1335 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1336 ppc_store_lpcr(cpu, lpcr); 1337 } 1338 } 1339 1340 1341 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1342 target_ulong lpid, ppc_v3_pate_t *entry) 1343 { 1344 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1345 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1346 1347 if (!spapr_cpu->in_nested) { 1348 assert(lpid == 0); 1349 1350 /* Copy PATE1:GR into PATE0:HR */ 1351 entry->dw0 = spapr->patb_entry & PATE0_HR; 1352 entry->dw1 = spapr->patb_entry; 1353 1354 } else { 1355 uint64_t patb, pats; 1356 1357 assert(lpid != 0); 1358 1359 patb = spapr->nested_ptcr & PTCR_PATB; 1360 pats = spapr->nested_ptcr & PTCR_PATS; 1361 1362 /* Check if partition table is properly aligned */ 1363 if (patb & MAKE_64BIT_MASK(0, pats + 12)) { 1364 return false; 1365 } 1366 1367 /* Calculate number of entries */ 1368 pats = 1ull << (pats + 12 - 4); 1369 if (pats <= lpid) { 1370 return false; 1371 } 1372 1373 /* Grab entry */ 1374 patb += 16 * lpid; 1375 entry->dw0 = ldq_phys(CPU(cpu)->as, patb); 1376 entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8); 1377 } 1378 1379 return true; 1380 } 1381 1382 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1383 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1384 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1385 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1386 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1387 1388 /* 1389 * Get the fd to access the kernel htab, re-opening it if necessary 1390 */ 1391 static int get_htab_fd(SpaprMachineState *spapr) 1392 { 1393 Error *local_err = NULL; 1394 1395 if (spapr->htab_fd >= 0) { 1396 return spapr->htab_fd; 1397 } 1398 1399 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1400 if (spapr->htab_fd < 0) { 1401 error_report_err(local_err); 1402 } 1403 1404 return spapr->htab_fd; 1405 } 1406 1407 void close_htab_fd(SpaprMachineState *spapr) 1408 { 1409 if (spapr->htab_fd >= 0) { 1410 close(spapr->htab_fd); 1411 } 1412 spapr->htab_fd = -1; 1413 } 1414 1415 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1416 { 1417 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1418 1419 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1420 } 1421 1422 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1423 { 1424 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1425 1426 assert(kvm_enabled()); 1427 1428 if (!spapr->htab) { 1429 return 0; 1430 } 1431 1432 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1433 } 1434 1435 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1436 hwaddr ptex, int n) 1437 { 1438 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1439 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1440 1441 if (!spapr->htab) { 1442 /* 1443 * HTAB is controlled by KVM. Fetch into temporary buffer 1444 */ 1445 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1446 kvmppc_read_hptes(hptes, ptex, n); 1447 return hptes; 1448 } 1449 1450 /* 1451 * HTAB is controlled by QEMU. Just point to the internally 1452 * accessible PTEG. 1453 */ 1454 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1455 } 1456 1457 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1458 const ppc_hash_pte64_t *hptes, 1459 hwaddr ptex, int n) 1460 { 1461 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1462 1463 if (!spapr->htab) { 1464 g_free((void *)hptes); 1465 } 1466 1467 /* Nothing to do for qemu managed HPT */ 1468 } 1469 1470 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1471 uint64_t pte0, uint64_t pte1) 1472 { 1473 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1474 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1475 1476 if (!spapr->htab) { 1477 kvmppc_write_hpte(ptex, pte0, pte1); 1478 } else { 1479 if (pte0 & HPTE64_V_VALID) { 1480 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1481 /* 1482 * When setting valid, we write PTE1 first. This ensures 1483 * proper synchronization with the reading code in 1484 * ppc_hash64_pteg_search() 1485 */ 1486 smp_wmb(); 1487 stq_p(spapr->htab + offset, pte0); 1488 } else { 1489 stq_p(spapr->htab + offset, pte0); 1490 /* 1491 * When clearing it we set PTE0 first. This ensures proper 1492 * synchronization with the reading code in 1493 * ppc_hash64_pteg_search() 1494 */ 1495 smp_wmb(); 1496 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1497 } 1498 } 1499 } 1500 1501 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1502 uint64_t pte1) 1503 { 1504 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1505 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1506 1507 if (!spapr->htab) { 1508 /* There should always be a hash table when this is called */ 1509 error_report("spapr_hpte_set_c called with no hash table !"); 1510 return; 1511 } 1512 1513 /* The HW performs a non-atomic byte update */ 1514 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1515 } 1516 1517 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1518 uint64_t pte1) 1519 { 1520 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1521 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1522 1523 if (!spapr->htab) { 1524 /* There should always be a hash table when this is called */ 1525 error_report("spapr_hpte_set_r called with no hash table !"); 1526 return; 1527 } 1528 1529 /* The HW performs a non-atomic byte update */ 1530 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1531 } 1532 1533 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1534 { 1535 int shift; 1536 1537 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1538 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1539 * that's much more than is needed for Linux guests */ 1540 shift = ctz64(pow2ceil(ramsize)) - 7; 1541 shift = MAX(shift, 18); /* Minimum architected size */ 1542 shift = MIN(shift, 46); /* Maximum architected size */ 1543 return shift; 1544 } 1545 1546 void spapr_free_hpt(SpaprMachineState *spapr) 1547 { 1548 qemu_vfree(spapr->htab); 1549 spapr->htab = NULL; 1550 spapr->htab_shift = 0; 1551 close_htab_fd(spapr); 1552 } 1553 1554 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1555 { 1556 ERRP_GUARD(); 1557 long rc; 1558 1559 /* Clean up any HPT info from a previous boot */ 1560 spapr_free_hpt(spapr); 1561 1562 rc = kvmppc_reset_htab(shift); 1563 1564 if (rc == -EOPNOTSUPP) { 1565 error_setg(errp, "HPT not supported in nested guests"); 1566 return -EOPNOTSUPP; 1567 } 1568 1569 if (rc < 0) { 1570 /* kernel-side HPT needed, but couldn't allocate one */ 1571 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1572 shift); 1573 error_append_hint(errp, "Try smaller maxmem?\n"); 1574 return -errno; 1575 } else if (rc > 0) { 1576 /* kernel-side HPT allocated */ 1577 if (rc != shift) { 1578 error_setg(errp, 1579 "Requested order %d HPT, but kernel allocated order %ld", 1580 shift, rc); 1581 error_append_hint(errp, "Try smaller maxmem?\n"); 1582 return -ENOSPC; 1583 } 1584 1585 spapr->htab_shift = shift; 1586 spapr->htab = NULL; 1587 } else { 1588 /* kernel-side HPT not needed, allocate in userspace instead */ 1589 size_t size = 1ULL << shift; 1590 int i; 1591 1592 spapr->htab = qemu_memalign(size, size); 1593 memset(spapr->htab, 0, size); 1594 spapr->htab_shift = shift; 1595 1596 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1597 DIRTY_HPTE(HPTE(spapr->htab, i)); 1598 } 1599 } 1600 /* We're setting up a hash table, so that means we're not radix */ 1601 spapr->patb_entry = 0; 1602 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1603 return 0; 1604 } 1605 1606 void spapr_setup_hpt(SpaprMachineState *spapr) 1607 { 1608 int hpt_shift; 1609 1610 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1611 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1612 } else { 1613 uint64_t current_ram_size; 1614 1615 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1616 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1617 } 1618 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1619 1620 if (kvm_enabled()) { 1621 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1622 1623 /* Check our RMA fits in the possible VRMA */ 1624 if (vrma_limit < spapr->rma_size) { 1625 error_report("Unable to create %" HWADDR_PRIu 1626 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1627 spapr->rma_size / MiB, vrma_limit / MiB); 1628 exit(EXIT_FAILURE); 1629 } 1630 } 1631 } 1632 1633 void spapr_check_mmu_mode(bool guest_radix) 1634 { 1635 if (guest_radix) { 1636 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1637 error_report("Guest requested unavailable MMU mode (radix)."); 1638 exit(EXIT_FAILURE); 1639 } 1640 } else { 1641 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1642 && !kvmppc_has_cap_mmu_hash_v3()) { 1643 error_report("Guest requested unavailable MMU mode (hash)."); 1644 exit(EXIT_FAILURE); 1645 } 1646 } 1647 } 1648 1649 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1650 { 1651 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1652 PowerPCCPU *first_ppc_cpu; 1653 hwaddr fdt_addr; 1654 void *fdt; 1655 int rc; 1656 1657 pef_kvm_reset(machine->cgs, &error_fatal); 1658 spapr_caps_apply(spapr); 1659 1660 first_ppc_cpu = POWERPC_CPU(first_cpu); 1661 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1662 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1663 spapr->max_compat_pvr)) { 1664 /* 1665 * If using KVM with radix mode available, VCPUs can be started 1666 * without a HPT because KVM will start them in radix mode. 1667 * Set the GR bit in PATE so that we know there is no HPT. 1668 */ 1669 spapr->patb_entry = PATE1_GR; 1670 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1671 } else { 1672 spapr_setup_hpt(spapr); 1673 } 1674 1675 qemu_devices_reset(reason); 1676 1677 spapr_ovec_cleanup(spapr->ov5_cas); 1678 spapr->ov5_cas = spapr_ovec_new(); 1679 1680 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1681 1682 /* 1683 * This is fixing some of the default configuration of the XIVE 1684 * devices. To be called after the reset of the machine devices. 1685 */ 1686 spapr_irq_reset(spapr, &error_fatal); 1687 1688 /* 1689 * There is no CAS under qtest. Simulate one to please the code that 1690 * depends on spapr->ov5_cas. This is especially needed to test device 1691 * unplug, so we do that before resetting the DRCs. 1692 */ 1693 if (qtest_enabled()) { 1694 spapr_ovec_cleanup(spapr->ov5_cas); 1695 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1696 } 1697 1698 spapr_nvdimm_finish_flushes(); 1699 1700 /* DRC reset may cause a device to be unplugged. This will cause troubles 1701 * if this device is used by another device (eg, a running vhost backend 1702 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1703 * situations, we reset DRCs after all devices have been reset. 1704 */ 1705 spapr_drc_reset_all(spapr); 1706 1707 spapr_clear_pending_events(spapr); 1708 1709 /* 1710 * We place the device tree just below either the top of the RMA, 1711 * or just below 2GB, whichever is lower, so that it can be 1712 * processed with 32-bit real mode code if necessary 1713 */ 1714 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1715 1716 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1717 if (spapr->vof) { 1718 spapr_vof_reset(spapr, fdt, &error_fatal); 1719 /* 1720 * Do not pack the FDT as the client may change properties. 1721 * VOF client does not expect the FDT so we do not load it to the VM. 1722 */ 1723 } else { 1724 rc = fdt_pack(fdt); 1725 /* Should only fail if we've built a corrupted tree */ 1726 assert(rc == 0); 1727 1728 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1729 0, fdt_addr, 0); 1730 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1731 } 1732 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1733 1734 g_free(spapr->fdt_blob); 1735 spapr->fdt_size = fdt_totalsize(fdt); 1736 spapr->fdt_initial_size = spapr->fdt_size; 1737 spapr->fdt_blob = fdt; 1738 1739 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1740 machine->fdt = fdt; 1741 1742 /* Set up the entry state */ 1743 first_ppc_cpu->env.gpr[5] = 0; 1744 1745 spapr->fwnmi_system_reset_addr = -1; 1746 spapr->fwnmi_machine_check_addr = -1; 1747 spapr->fwnmi_machine_check_interlock = -1; 1748 1749 /* Signal all vCPUs waiting on this condition */ 1750 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1751 1752 migrate_del_blocker(spapr->fwnmi_migration_blocker); 1753 } 1754 1755 static void spapr_create_nvram(SpaprMachineState *spapr) 1756 { 1757 DeviceState *dev = qdev_new("spapr-nvram"); 1758 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1759 1760 if (dinfo) { 1761 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1762 &error_fatal); 1763 } 1764 1765 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1766 1767 spapr->nvram = (struct SpaprNvram *)dev; 1768 } 1769 1770 static void spapr_rtc_create(SpaprMachineState *spapr) 1771 { 1772 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1773 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1774 &error_fatal, NULL); 1775 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1776 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1777 "date"); 1778 } 1779 1780 /* Returns whether we want to use VGA or not */ 1781 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1782 { 1783 vga_interface_created = true; 1784 switch (vga_interface_type) { 1785 case VGA_NONE: 1786 return false; 1787 case VGA_DEVICE: 1788 return true; 1789 case VGA_STD: 1790 case VGA_VIRTIO: 1791 case VGA_CIRRUS: 1792 return pci_vga_init(pci_bus) != NULL; 1793 default: 1794 error_setg(errp, 1795 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1796 return false; 1797 } 1798 } 1799 1800 static int spapr_pre_load(void *opaque) 1801 { 1802 int rc; 1803 1804 rc = spapr_caps_pre_load(opaque); 1805 if (rc) { 1806 return rc; 1807 } 1808 1809 return 0; 1810 } 1811 1812 static int spapr_post_load(void *opaque, int version_id) 1813 { 1814 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1815 int err = 0; 1816 1817 err = spapr_caps_post_migration(spapr); 1818 if (err) { 1819 return err; 1820 } 1821 1822 /* 1823 * In earlier versions, there was no separate qdev for the PAPR 1824 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1825 * So when migrating from those versions, poke the incoming offset 1826 * value into the RTC device 1827 */ 1828 if (version_id < 3) { 1829 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1830 if (err) { 1831 return err; 1832 } 1833 } 1834 1835 if (kvm_enabled() && spapr->patb_entry) { 1836 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1837 bool radix = !!(spapr->patb_entry & PATE1_GR); 1838 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1839 1840 /* 1841 * Update LPCR:HR and UPRT as they may not be set properly in 1842 * the stream 1843 */ 1844 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1845 LPCR_HR | LPCR_UPRT); 1846 1847 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1848 if (err) { 1849 error_report("Process table config unsupported by the host"); 1850 return -EINVAL; 1851 } 1852 } 1853 1854 err = spapr_irq_post_load(spapr, version_id); 1855 if (err) { 1856 return err; 1857 } 1858 1859 return err; 1860 } 1861 1862 static int spapr_pre_save(void *opaque) 1863 { 1864 int rc; 1865 1866 rc = spapr_caps_pre_save(opaque); 1867 if (rc) { 1868 return rc; 1869 } 1870 1871 return 0; 1872 } 1873 1874 static bool version_before_3(void *opaque, int version_id) 1875 { 1876 return version_id < 3; 1877 } 1878 1879 static bool spapr_pending_events_needed(void *opaque) 1880 { 1881 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1882 return !QTAILQ_EMPTY(&spapr->pending_events); 1883 } 1884 1885 static const VMStateDescription vmstate_spapr_event_entry = { 1886 .name = "spapr_event_log_entry", 1887 .version_id = 1, 1888 .minimum_version_id = 1, 1889 .fields = (VMStateField[]) { 1890 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1891 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1892 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1893 NULL, extended_length), 1894 VMSTATE_END_OF_LIST() 1895 }, 1896 }; 1897 1898 static const VMStateDescription vmstate_spapr_pending_events = { 1899 .name = "spapr_pending_events", 1900 .version_id = 1, 1901 .minimum_version_id = 1, 1902 .needed = spapr_pending_events_needed, 1903 .fields = (VMStateField[]) { 1904 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1905 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1906 VMSTATE_END_OF_LIST() 1907 }, 1908 }; 1909 1910 static bool spapr_ov5_cas_needed(void *opaque) 1911 { 1912 SpaprMachineState *spapr = opaque; 1913 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1914 bool cas_needed; 1915 1916 /* Prior to the introduction of SpaprOptionVector, we had two option 1917 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1918 * Both of these options encode machine topology into the device-tree 1919 * in such a way that the now-booted OS should still be able to interact 1920 * appropriately with QEMU regardless of what options were actually 1921 * negotiatied on the source side. 1922 * 1923 * As such, we can avoid migrating the CAS-negotiated options if these 1924 * are the only options available on the current machine/platform. 1925 * Since these are the only options available for pseries-2.7 and 1926 * earlier, this allows us to maintain old->new/new->old migration 1927 * compatibility. 1928 * 1929 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1930 * via default pseries-2.8 machines and explicit command-line parameters. 1931 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1932 * of the actual CAS-negotiated values to continue working properly. For 1933 * example, availability of memory unplug depends on knowing whether 1934 * OV5_HP_EVT was negotiated via CAS. 1935 * 1936 * Thus, for any cases where the set of available CAS-negotiatable 1937 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1938 * include the CAS-negotiated options in the migration stream, unless 1939 * if they affect boot time behaviour only. 1940 */ 1941 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1942 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1943 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1944 1945 /* We need extra information if we have any bits outside the mask 1946 * defined above */ 1947 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 1948 1949 spapr_ovec_cleanup(ov5_mask); 1950 1951 return cas_needed; 1952 } 1953 1954 static const VMStateDescription vmstate_spapr_ov5_cas = { 1955 .name = "spapr_option_vector_ov5_cas", 1956 .version_id = 1, 1957 .minimum_version_id = 1, 1958 .needed = spapr_ov5_cas_needed, 1959 .fields = (VMStateField[]) { 1960 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1961 vmstate_spapr_ovec, SpaprOptionVector), 1962 VMSTATE_END_OF_LIST() 1963 }, 1964 }; 1965 1966 static bool spapr_patb_entry_needed(void *opaque) 1967 { 1968 SpaprMachineState *spapr = opaque; 1969 1970 return !!spapr->patb_entry; 1971 } 1972 1973 static const VMStateDescription vmstate_spapr_patb_entry = { 1974 .name = "spapr_patb_entry", 1975 .version_id = 1, 1976 .minimum_version_id = 1, 1977 .needed = spapr_patb_entry_needed, 1978 .fields = (VMStateField[]) { 1979 VMSTATE_UINT64(patb_entry, SpaprMachineState), 1980 VMSTATE_END_OF_LIST() 1981 }, 1982 }; 1983 1984 static bool spapr_irq_map_needed(void *opaque) 1985 { 1986 SpaprMachineState *spapr = opaque; 1987 1988 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1989 } 1990 1991 static const VMStateDescription vmstate_spapr_irq_map = { 1992 .name = "spapr_irq_map", 1993 .version_id = 1, 1994 .minimum_version_id = 1, 1995 .needed = spapr_irq_map_needed, 1996 .fields = (VMStateField[]) { 1997 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 1998 VMSTATE_END_OF_LIST() 1999 }, 2000 }; 2001 2002 static bool spapr_dtb_needed(void *opaque) 2003 { 2004 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2005 2006 return smc->update_dt_enabled; 2007 } 2008 2009 static int spapr_dtb_pre_load(void *opaque) 2010 { 2011 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2012 2013 g_free(spapr->fdt_blob); 2014 spapr->fdt_blob = NULL; 2015 spapr->fdt_size = 0; 2016 2017 return 0; 2018 } 2019 2020 static const VMStateDescription vmstate_spapr_dtb = { 2021 .name = "spapr_dtb", 2022 .version_id = 1, 2023 .minimum_version_id = 1, 2024 .needed = spapr_dtb_needed, 2025 .pre_load = spapr_dtb_pre_load, 2026 .fields = (VMStateField[]) { 2027 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2028 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2029 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2030 fdt_size), 2031 VMSTATE_END_OF_LIST() 2032 }, 2033 }; 2034 2035 static bool spapr_fwnmi_needed(void *opaque) 2036 { 2037 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2038 2039 return spapr->fwnmi_machine_check_addr != -1; 2040 } 2041 2042 static int spapr_fwnmi_pre_save(void *opaque) 2043 { 2044 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2045 2046 /* 2047 * Check if machine check handling is in progress and print a 2048 * warning message. 2049 */ 2050 if (spapr->fwnmi_machine_check_interlock != -1) { 2051 warn_report("A machine check is being handled during migration. The" 2052 "handler may run and log hardware error on the destination"); 2053 } 2054 2055 return 0; 2056 } 2057 2058 static const VMStateDescription vmstate_spapr_fwnmi = { 2059 .name = "spapr_fwnmi", 2060 .version_id = 1, 2061 .minimum_version_id = 1, 2062 .needed = spapr_fwnmi_needed, 2063 .pre_save = spapr_fwnmi_pre_save, 2064 .fields = (VMStateField[]) { 2065 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2066 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2067 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2068 VMSTATE_END_OF_LIST() 2069 }, 2070 }; 2071 2072 static const VMStateDescription vmstate_spapr = { 2073 .name = "spapr", 2074 .version_id = 3, 2075 .minimum_version_id = 1, 2076 .pre_load = spapr_pre_load, 2077 .post_load = spapr_post_load, 2078 .pre_save = spapr_pre_save, 2079 .fields = (VMStateField[]) { 2080 /* used to be @next_irq */ 2081 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2082 2083 /* RTC offset */ 2084 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2085 2086 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2087 VMSTATE_END_OF_LIST() 2088 }, 2089 .subsections = (const VMStateDescription*[]) { 2090 &vmstate_spapr_ov5_cas, 2091 &vmstate_spapr_patb_entry, 2092 &vmstate_spapr_pending_events, 2093 &vmstate_spapr_cap_htm, 2094 &vmstate_spapr_cap_vsx, 2095 &vmstate_spapr_cap_dfp, 2096 &vmstate_spapr_cap_cfpc, 2097 &vmstate_spapr_cap_sbbc, 2098 &vmstate_spapr_cap_ibs, 2099 &vmstate_spapr_cap_hpt_maxpagesize, 2100 &vmstate_spapr_irq_map, 2101 &vmstate_spapr_cap_nested_kvm_hv, 2102 &vmstate_spapr_dtb, 2103 &vmstate_spapr_cap_large_decr, 2104 &vmstate_spapr_cap_ccf_assist, 2105 &vmstate_spapr_cap_fwnmi, 2106 &vmstate_spapr_fwnmi, 2107 &vmstate_spapr_cap_rpt_invalidate, 2108 NULL 2109 } 2110 }; 2111 2112 static int htab_save_setup(QEMUFile *f, void *opaque) 2113 { 2114 SpaprMachineState *spapr = opaque; 2115 2116 /* "Iteration" header */ 2117 if (!spapr->htab_shift) { 2118 qemu_put_be32(f, -1); 2119 } else { 2120 qemu_put_be32(f, spapr->htab_shift); 2121 } 2122 2123 if (spapr->htab) { 2124 spapr->htab_save_index = 0; 2125 spapr->htab_first_pass = true; 2126 } else { 2127 if (spapr->htab_shift) { 2128 assert(kvm_enabled()); 2129 } 2130 } 2131 2132 2133 return 0; 2134 } 2135 2136 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2137 int chunkstart, int n_valid, int n_invalid) 2138 { 2139 qemu_put_be32(f, chunkstart); 2140 qemu_put_be16(f, n_valid); 2141 qemu_put_be16(f, n_invalid); 2142 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2143 HASH_PTE_SIZE_64 * n_valid); 2144 } 2145 2146 static void htab_save_end_marker(QEMUFile *f) 2147 { 2148 qemu_put_be32(f, 0); 2149 qemu_put_be16(f, 0); 2150 qemu_put_be16(f, 0); 2151 } 2152 2153 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2154 int64_t max_ns) 2155 { 2156 bool has_timeout = max_ns != -1; 2157 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2158 int index = spapr->htab_save_index; 2159 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2160 2161 assert(spapr->htab_first_pass); 2162 2163 do { 2164 int chunkstart; 2165 2166 /* Consume invalid HPTEs */ 2167 while ((index < htabslots) 2168 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2169 CLEAN_HPTE(HPTE(spapr->htab, index)); 2170 index++; 2171 } 2172 2173 /* Consume valid HPTEs */ 2174 chunkstart = index; 2175 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2176 && HPTE_VALID(HPTE(spapr->htab, index))) { 2177 CLEAN_HPTE(HPTE(spapr->htab, index)); 2178 index++; 2179 } 2180 2181 if (index > chunkstart) { 2182 int n_valid = index - chunkstart; 2183 2184 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2185 2186 if (has_timeout && 2187 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2188 break; 2189 } 2190 } 2191 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2192 2193 if (index >= htabslots) { 2194 assert(index == htabslots); 2195 index = 0; 2196 spapr->htab_first_pass = false; 2197 } 2198 spapr->htab_save_index = index; 2199 } 2200 2201 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2202 int64_t max_ns) 2203 { 2204 bool final = max_ns < 0; 2205 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2206 int examined = 0, sent = 0; 2207 int index = spapr->htab_save_index; 2208 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2209 2210 assert(!spapr->htab_first_pass); 2211 2212 do { 2213 int chunkstart, invalidstart; 2214 2215 /* Consume non-dirty HPTEs */ 2216 while ((index < htabslots) 2217 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2218 index++; 2219 examined++; 2220 } 2221 2222 chunkstart = index; 2223 /* Consume valid dirty HPTEs */ 2224 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2225 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2226 && HPTE_VALID(HPTE(spapr->htab, index))) { 2227 CLEAN_HPTE(HPTE(spapr->htab, index)); 2228 index++; 2229 examined++; 2230 } 2231 2232 invalidstart = index; 2233 /* Consume invalid dirty HPTEs */ 2234 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2235 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2236 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2237 CLEAN_HPTE(HPTE(spapr->htab, index)); 2238 index++; 2239 examined++; 2240 } 2241 2242 if (index > chunkstart) { 2243 int n_valid = invalidstart - chunkstart; 2244 int n_invalid = index - invalidstart; 2245 2246 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2247 sent += index - chunkstart; 2248 2249 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2250 break; 2251 } 2252 } 2253 2254 if (examined >= htabslots) { 2255 break; 2256 } 2257 2258 if (index >= htabslots) { 2259 assert(index == htabslots); 2260 index = 0; 2261 } 2262 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2263 2264 if (index >= htabslots) { 2265 assert(index == htabslots); 2266 index = 0; 2267 } 2268 2269 spapr->htab_save_index = index; 2270 2271 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2272 } 2273 2274 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2275 #define MAX_KVM_BUF_SIZE 2048 2276 2277 static int htab_save_iterate(QEMUFile *f, void *opaque) 2278 { 2279 SpaprMachineState *spapr = opaque; 2280 int fd; 2281 int rc = 0; 2282 2283 /* Iteration header */ 2284 if (!spapr->htab_shift) { 2285 qemu_put_be32(f, -1); 2286 return 1; 2287 } else { 2288 qemu_put_be32(f, 0); 2289 } 2290 2291 if (!spapr->htab) { 2292 assert(kvm_enabled()); 2293 2294 fd = get_htab_fd(spapr); 2295 if (fd < 0) { 2296 return fd; 2297 } 2298 2299 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2300 if (rc < 0) { 2301 return rc; 2302 } 2303 } else if (spapr->htab_first_pass) { 2304 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2305 } else { 2306 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2307 } 2308 2309 htab_save_end_marker(f); 2310 2311 return rc; 2312 } 2313 2314 static int htab_save_complete(QEMUFile *f, void *opaque) 2315 { 2316 SpaprMachineState *spapr = opaque; 2317 int fd; 2318 2319 /* Iteration header */ 2320 if (!spapr->htab_shift) { 2321 qemu_put_be32(f, -1); 2322 return 0; 2323 } else { 2324 qemu_put_be32(f, 0); 2325 } 2326 2327 if (!spapr->htab) { 2328 int rc; 2329 2330 assert(kvm_enabled()); 2331 2332 fd = get_htab_fd(spapr); 2333 if (fd < 0) { 2334 return fd; 2335 } 2336 2337 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2338 if (rc < 0) { 2339 return rc; 2340 } 2341 } else { 2342 if (spapr->htab_first_pass) { 2343 htab_save_first_pass(f, spapr, -1); 2344 } 2345 htab_save_later_pass(f, spapr, -1); 2346 } 2347 2348 /* End marker */ 2349 htab_save_end_marker(f); 2350 2351 return 0; 2352 } 2353 2354 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2355 { 2356 SpaprMachineState *spapr = opaque; 2357 uint32_t section_hdr; 2358 int fd = -1; 2359 Error *local_err = NULL; 2360 2361 if (version_id < 1 || version_id > 1) { 2362 error_report("htab_load() bad version"); 2363 return -EINVAL; 2364 } 2365 2366 section_hdr = qemu_get_be32(f); 2367 2368 if (section_hdr == -1) { 2369 spapr_free_hpt(spapr); 2370 return 0; 2371 } 2372 2373 if (section_hdr) { 2374 int ret; 2375 2376 /* First section gives the htab size */ 2377 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2378 if (ret < 0) { 2379 error_report_err(local_err); 2380 return ret; 2381 } 2382 return 0; 2383 } 2384 2385 if (!spapr->htab) { 2386 assert(kvm_enabled()); 2387 2388 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2389 if (fd < 0) { 2390 error_report_err(local_err); 2391 return fd; 2392 } 2393 } 2394 2395 while (true) { 2396 uint32_t index; 2397 uint16_t n_valid, n_invalid; 2398 2399 index = qemu_get_be32(f); 2400 n_valid = qemu_get_be16(f); 2401 n_invalid = qemu_get_be16(f); 2402 2403 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2404 /* End of Stream */ 2405 break; 2406 } 2407 2408 if ((index + n_valid + n_invalid) > 2409 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2410 /* Bad index in stream */ 2411 error_report( 2412 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2413 index, n_valid, n_invalid, spapr->htab_shift); 2414 return -EINVAL; 2415 } 2416 2417 if (spapr->htab) { 2418 if (n_valid) { 2419 qemu_get_buffer(f, HPTE(spapr->htab, index), 2420 HASH_PTE_SIZE_64 * n_valid); 2421 } 2422 if (n_invalid) { 2423 memset(HPTE(spapr->htab, index + n_valid), 0, 2424 HASH_PTE_SIZE_64 * n_invalid); 2425 } 2426 } else { 2427 int rc; 2428 2429 assert(fd >= 0); 2430 2431 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2432 &local_err); 2433 if (rc < 0) { 2434 error_report_err(local_err); 2435 return rc; 2436 } 2437 } 2438 } 2439 2440 if (!spapr->htab) { 2441 assert(fd >= 0); 2442 close(fd); 2443 } 2444 2445 return 0; 2446 } 2447 2448 static void htab_save_cleanup(void *opaque) 2449 { 2450 SpaprMachineState *spapr = opaque; 2451 2452 close_htab_fd(spapr); 2453 } 2454 2455 static SaveVMHandlers savevm_htab_handlers = { 2456 .save_setup = htab_save_setup, 2457 .save_live_iterate = htab_save_iterate, 2458 .save_live_complete_precopy = htab_save_complete, 2459 .save_cleanup = htab_save_cleanup, 2460 .load_state = htab_load, 2461 }; 2462 2463 static void spapr_boot_set(void *opaque, const char *boot_device, 2464 Error **errp) 2465 { 2466 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2467 2468 g_free(spapr->boot_device); 2469 spapr->boot_device = g_strdup(boot_device); 2470 } 2471 2472 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2473 { 2474 MachineState *machine = MACHINE(spapr); 2475 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2476 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2477 int i; 2478 2479 g_assert(!nr_lmbs || machine->device_memory); 2480 for (i = 0; i < nr_lmbs; i++) { 2481 uint64_t addr; 2482 2483 addr = i * lmb_size + machine->device_memory->base; 2484 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2485 addr / lmb_size); 2486 } 2487 } 2488 2489 /* 2490 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2491 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2492 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2493 */ 2494 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2495 { 2496 int i; 2497 2498 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2499 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2500 " is not aligned to %" PRIu64 " MiB", 2501 machine->ram_size, 2502 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2503 return; 2504 } 2505 2506 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2507 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2508 " is not aligned to %" PRIu64 " MiB", 2509 machine->ram_size, 2510 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2511 return; 2512 } 2513 2514 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2515 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2516 error_setg(errp, 2517 "Node %d memory size 0x%" PRIx64 2518 " is not aligned to %" PRIu64 " MiB", 2519 i, machine->numa_state->nodes[i].node_mem, 2520 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2521 return; 2522 } 2523 } 2524 } 2525 2526 /* find cpu slot in machine->possible_cpus by core_id */ 2527 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2528 { 2529 int index = id / ms->smp.threads; 2530 2531 if (index >= ms->possible_cpus->len) { 2532 return NULL; 2533 } 2534 if (idx) { 2535 *idx = index; 2536 } 2537 return &ms->possible_cpus->cpus[index]; 2538 } 2539 2540 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2541 { 2542 MachineState *ms = MACHINE(spapr); 2543 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2544 Error *local_err = NULL; 2545 bool vsmt_user = !!spapr->vsmt; 2546 int kvm_smt = kvmppc_smt_threads(); 2547 int ret; 2548 unsigned int smp_threads = ms->smp.threads; 2549 2550 if (tcg_enabled()) { 2551 if (smp_threads > 1 && 2552 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2553 spapr->max_compat_pvr)) { 2554 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2555 return; 2556 } 2557 2558 if (smp_threads > 8) { 2559 error_setg(errp, "TCG cannot support more than 8 threads/core " 2560 "on a pseries machine"); 2561 return; 2562 } 2563 } 2564 if (!is_power_of_2(smp_threads)) { 2565 error_setg(errp, "Cannot support %d threads/core on a pseries " 2566 "machine because it must be a power of 2", smp_threads); 2567 return; 2568 } 2569 2570 /* Detemine the VSMT mode to use: */ 2571 if (vsmt_user) { 2572 if (spapr->vsmt < smp_threads) { 2573 error_setg(errp, "Cannot support VSMT mode %d" 2574 " because it must be >= threads/core (%d)", 2575 spapr->vsmt, smp_threads); 2576 return; 2577 } 2578 /* In this case, spapr->vsmt has been set by the command line */ 2579 } else if (!smc->smp_threads_vsmt) { 2580 /* 2581 * Default VSMT value is tricky, because we need it to be as 2582 * consistent as possible (for migration), but this requires 2583 * changing it for at least some existing cases. We pick 8 as 2584 * the value that we'd get with KVM on POWER8, the 2585 * overwhelmingly common case in production systems. 2586 */ 2587 spapr->vsmt = MAX(8, smp_threads); 2588 } else { 2589 spapr->vsmt = smp_threads; 2590 } 2591 2592 /* KVM: If necessary, set the SMT mode: */ 2593 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2594 ret = kvmppc_set_smt_threads(spapr->vsmt); 2595 if (ret) { 2596 /* Looks like KVM isn't able to change VSMT mode */ 2597 error_setg(&local_err, 2598 "Failed to set KVM's VSMT mode to %d (errno %d)", 2599 spapr->vsmt, ret); 2600 /* We can live with that if the default one is big enough 2601 * for the number of threads, and a submultiple of the one 2602 * we want. In this case we'll waste some vcpu ids, but 2603 * behaviour will be correct */ 2604 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2605 warn_report_err(local_err); 2606 } else { 2607 if (!vsmt_user) { 2608 error_append_hint(&local_err, 2609 "On PPC, a VM with %d threads/core" 2610 " on a host with %d threads/core" 2611 " requires the use of VSMT mode %d.\n", 2612 smp_threads, kvm_smt, spapr->vsmt); 2613 } 2614 kvmppc_error_append_smt_possible_hint(&local_err); 2615 error_propagate(errp, local_err); 2616 } 2617 } 2618 } 2619 /* else TCG: nothing to do currently */ 2620 } 2621 2622 static void spapr_init_cpus(SpaprMachineState *spapr) 2623 { 2624 MachineState *machine = MACHINE(spapr); 2625 MachineClass *mc = MACHINE_GET_CLASS(machine); 2626 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2627 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2628 const CPUArchIdList *possible_cpus; 2629 unsigned int smp_cpus = machine->smp.cpus; 2630 unsigned int smp_threads = machine->smp.threads; 2631 unsigned int max_cpus = machine->smp.max_cpus; 2632 int boot_cores_nr = smp_cpus / smp_threads; 2633 int i; 2634 2635 possible_cpus = mc->possible_cpu_arch_ids(machine); 2636 if (mc->has_hotpluggable_cpus) { 2637 if (smp_cpus % smp_threads) { 2638 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2639 smp_cpus, smp_threads); 2640 exit(1); 2641 } 2642 if (max_cpus % smp_threads) { 2643 error_report("max_cpus (%u) must be multiple of threads (%u)", 2644 max_cpus, smp_threads); 2645 exit(1); 2646 } 2647 } else { 2648 if (max_cpus != smp_cpus) { 2649 error_report("This machine version does not support CPU hotplug"); 2650 exit(1); 2651 } 2652 boot_cores_nr = possible_cpus->len; 2653 } 2654 2655 if (smc->pre_2_10_has_unused_icps) { 2656 int i; 2657 2658 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2659 /* Dummy entries get deregistered when real ICPState objects 2660 * are registered during CPU core hotplug. 2661 */ 2662 pre_2_10_vmstate_register_dummy_icp(i); 2663 } 2664 } 2665 2666 for (i = 0; i < possible_cpus->len; i++) { 2667 int core_id = i * smp_threads; 2668 2669 if (mc->has_hotpluggable_cpus) { 2670 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2671 spapr_vcpu_id(spapr, core_id)); 2672 } 2673 2674 if (i < boot_cores_nr) { 2675 Object *core = object_new(type); 2676 int nr_threads = smp_threads; 2677 2678 /* Handle the partially filled core for older machine types */ 2679 if ((i + 1) * smp_threads >= smp_cpus) { 2680 nr_threads = smp_cpus - i * smp_threads; 2681 } 2682 2683 object_property_set_int(core, "nr-threads", nr_threads, 2684 &error_fatal); 2685 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2686 &error_fatal); 2687 qdev_realize(DEVICE(core), NULL, &error_fatal); 2688 2689 object_unref(core); 2690 } 2691 } 2692 } 2693 2694 static PCIHostState *spapr_create_default_phb(void) 2695 { 2696 DeviceState *dev; 2697 2698 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2699 qdev_prop_set_uint32(dev, "index", 0); 2700 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2701 2702 return PCI_HOST_BRIDGE(dev); 2703 } 2704 2705 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2706 { 2707 MachineState *machine = MACHINE(spapr); 2708 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2709 hwaddr rma_size = machine->ram_size; 2710 hwaddr node0_size = spapr_node0_size(machine); 2711 2712 /* RMA has to fit in the first NUMA node */ 2713 rma_size = MIN(rma_size, node0_size); 2714 2715 /* 2716 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2717 * never exceed that 2718 */ 2719 rma_size = MIN(rma_size, 1 * TiB); 2720 2721 /* 2722 * Clamp the RMA size based on machine type. This is for 2723 * migration compatibility with older qemu versions, which limited 2724 * the RMA size for complicated and mostly bad reasons. 2725 */ 2726 if (smc->rma_limit) { 2727 rma_size = MIN(rma_size, smc->rma_limit); 2728 } 2729 2730 if (rma_size < MIN_RMA_SLOF) { 2731 error_setg(errp, 2732 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2733 "ldMiB guest RMA (Real Mode Area memory)", 2734 MIN_RMA_SLOF / MiB); 2735 return 0; 2736 } 2737 2738 return rma_size; 2739 } 2740 2741 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2742 { 2743 MachineState *machine = MACHINE(spapr); 2744 int i; 2745 2746 for (i = 0; i < machine->ram_slots; i++) { 2747 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2748 } 2749 } 2750 2751 /* pSeries LPAR / sPAPR hardware init */ 2752 static void spapr_machine_init(MachineState *machine) 2753 { 2754 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2755 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2756 MachineClass *mc = MACHINE_GET_CLASS(machine); 2757 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2758 const char *bios_name = machine->firmware ?: bios_default; 2759 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2760 const char *kernel_filename = machine->kernel_filename; 2761 const char *initrd_filename = machine->initrd_filename; 2762 PCIHostState *phb; 2763 bool has_vga; 2764 int i; 2765 MemoryRegion *sysmem = get_system_memory(); 2766 long load_limit, fw_size; 2767 Error *resize_hpt_err = NULL; 2768 2769 if (!filename) { 2770 error_report("Could not find LPAR firmware '%s'", bios_name); 2771 exit(1); 2772 } 2773 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2774 if (fw_size <= 0) { 2775 error_report("Could not load LPAR firmware '%s'", filename); 2776 exit(1); 2777 } 2778 2779 /* 2780 * if Secure VM (PEF) support is configured, then initialize it 2781 */ 2782 pef_kvm_init(machine->cgs, &error_fatal); 2783 2784 msi_nonbroken = true; 2785 2786 QLIST_INIT(&spapr->phbs); 2787 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2788 2789 /* Determine capabilities to run with */ 2790 spapr_caps_init(spapr); 2791 2792 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2793 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2794 /* 2795 * If the user explicitly requested a mode we should either 2796 * supply it, or fail completely (which we do below). But if 2797 * it's not set explicitly, we reset our mode to something 2798 * that works 2799 */ 2800 if (resize_hpt_err) { 2801 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2802 error_free(resize_hpt_err); 2803 resize_hpt_err = NULL; 2804 } else { 2805 spapr->resize_hpt = smc->resize_hpt_default; 2806 } 2807 } 2808 2809 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2810 2811 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2812 /* 2813 * User requested HPT resize, but this host can't supply it. Bail out 2814 */ 2815 error_report_err(resize_hpt_err); 2816 exit(1); 2817 } 2818 error_free(resize_hpt_err); 2819 2820 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2821 2822 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2823 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2824 2825 /* 2826 * VSMT must be set in order to be able to compute VCPU ids, ie to 2827 * call spapr_max_server_number() or spapr_vcpu_id(). 2828 */ 2829 spapr_set_vsmt_mode(spapr, &error_fatal); 2830 2831 /* Set up Interrupt Controller before we create the VCPUs */ 2832 spapr_irq_init(spapr, &error_fatal); 2833 2834 /* Set up containers for ibm,client-architecture-support negotiated options 2835 */ 2836 spapr->ov5 = spapr_ovec_new(); 2837 spapr->ov5_cas = spapr_ovec_new(); 2838 2839 if (smc->dr_lmb_enabled) { 2840 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2841 spapr_validate_node_memory(machine, &error_fatal); 2842 } 2843 2844 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2845 2846 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2847 if (!smc->pre_6_2_numa_affinity) { 2848 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2849 } 2850 2851 /* advertise support for dedicated HP event source to guests */ 2852 if (spapr->use_hotplug_event_source) { 2853 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2854 } 2855 2856 /* advertise support for HPT resizing */ 2857 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2858 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2859 } 2860 2861 /* advertise support for ibm,dyamic-memory-v2 */ 2862 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2863 2864 /* advertise XIVE on POWER9 machines */ 2865 if (spapr->irq->xive) { 2866 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2867 } 2868 2869 /* init CPUs */ 2870 spapr_init_cpus(spapr); 2871 2872 spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine); 2873 2874 /* Init numa_assoc_array */ 2875 spapr_numa_associativity_init(spapr, machine); 2876 2877 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2878 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2879 spapr->max_compat_pvr)) { 2880 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2881 /* KVM and TCG always allow GTSE with radix... */ 2882 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2883 } 2884 /* ... but not with hash (currently). */ 2885 2886 if (kvm_enabled()) { 2887 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2888 kvmppc_enable_logical_ci_hcalls(); 2889 kvmppc_enable_set_mode_hcall(); 2890 2891 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2892 kvmppc_enable_clear_ref_mod_hcalls(); 2893 2894 /* Enable H_PAGE_INIT */ 2895 kvmppc_enable_h_page_init(); 2896 } 2897 2898 /* map RAM */ 2899 memory_region_add_subregion(sysmem, 0, machine->ram); 2900 2901 /* initialize hotplug memory address space */ 2902 if (machine->ram_size < machine->maxram_size) { 2903 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2904 hwaddr device_mem_base; 2905 2906 /* 2907 * Limit the number of hotpluggable memory slots to half the number 2908 * slots that KVM supports, leaving the other half for PCI and other 2909 * devices. However ensure that number of slots doesn't drop below 32. 2910 */ 2911 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2912 SPAPR_MAX_RAM_SLOTS; 2913 2914 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2915 max_memslots = SPAPR_MAX_RAM_SLOTS; 2916 } 2917 if (machine->ram_slots > max_memslots) { 2918 error_report("Specified number of memory slots %" 2919 PRIu64" exceeds max supported %d", 2920 machine->ram_slots, max_memslots); 2921 exit(1); 2922 } 2923 2924 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2925 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2926 } 2927 2928 if (smc->dr_lmb_enabled) { 2929 spapr_create_lmb_dr_connectors(spapr); 2930 } 2931 2932 if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) { 2933 /* Create the error string for live migration blocker */ 2934 error_setg(&spapr->fwnmi_migration_blocker, 2935 "A machine check is being handled during migration. The handler" 2936 "may run and log hardware error on the destination"); 2937 } 2938 2939 if (mc->nvdimm_supported) { 2940 spapr_create_nvdimm_dr_connectors(spapr); 2941 } 2942 2943 /* Set up RTAS event infrastructure */ 2944 spapr_events_init(spapr); 2945 2946 /* Set up the RTC RTAS interfaces */ 2947 spapr_rtc_create(spapr); 2948 2949 /* Set up VIO bus */ 2950 spapr->vio_bus = spapr_vio_bus_init(); 2951 2952 for (i = 0; serial_hd(i); i++) { 2953 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2954 } 2955 2956 /* We always have at least the nvram device on VIO */ 2957 spapr_create_nvram(spapr); 2958 2959 /* 2960 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2961 * connectors (described in root DT node's "ibm,drc-types" property) 2962 * are pre-initialized here. additional child connectors (such as 2963 * connectors for a PHBs PCI slots) are added as needed during their 2964 * parent's realization. 2965 */ 2966 if (smc->dr_phb_enabled) { 2967 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2968 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2969 } 2970 } 2971 2972 /* Set up PCI */ 2973 spapr_pci_rtas_init(); 2974 2975 phb = spapr_create_default_phb(); 2976 2977 for (i = 0; i < nb_nics; i++) { 2978 NICInfo *nd = &nd_table[i]; 2979 2980 if (!nd->model) { 2981 nd->model = g_strdup("spapr-vlan"); 2982 } 2983 2984 if (g_str_equal(nd->model, "spapr-vlan") || 2985 g_str_equal(nd->model, "ibmveth")) { 2986 spapr_vlan_create(spapr->vio_bus, nd); 2987 } else { 2988 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2989 } 2990 } 2991 2992 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2993 spapr_vscsi_create(spapr->vio_bus); 2994 } 2995 2996 /* Graphics */ 2997 has_vga = spapr_vga_init(phb->bus, &error_fatal); 2998 if (has_vga) { 2999 spapr->want_stdout_path = !machine->enable_graphics; 3000 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3001 } else { 3002 spapr->want_stdout_path = true; 3003 } 3004 3005 if (machine->usb) { 3006 if (smc->use_ohci_by_default) { 3007 pci_create_simple(phb->bus, -1, "pci-ohci"); 3008 } else { 3009 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3010 } 3011 3012 if (has_vga) { 3013 USBBus *usb_bus = usb_bus_find(-1); 3014 3015 usb_create_simple(usb_bus, "usb-kbd"); 3016 usb_create_simple(usb_bus, "usb-mouse"); 3017 } 3018 } 3019 3020 if (kernel_filename) { 3021 uint64_t loaded_addr = 0; 3022 3023 spapr->kernel_size = load_elf(kernel_filename, NULL, 3024 translate_kernel_address, spapr, 3025 NULL, &loaded_addr, NULL, NULL, 1, 3026 PPC_ELF_MACHINE, 0, 0); 3027 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3028 spapr->kernel_size = load_elf(kernel_filename, NULL, 3029 translate_kernel_address, spapr, 3030 NULL, &loaded_addr, NULL, NULL, 0, 3031 PPC_ELF_MACHINE, 0, 0); 3032 spapr->kernel_le = spapr->kernel_size > 0; 3033 } 3034 if (spapr->kernel_size < 0) { 3035 error_report("error loading %s: %s", kernel_filename, 3036 load_elf_strerror(spapr->kernel_size)); 3037 exit(1); 3038 } 3039 3040 if (spapr->kernel_addr != loaded_addr) { 3041 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3042 " to 0x%"PRIx64, 3043 spapr->kernel_addr, loaded_addr); 3044 spapr->kernel_addr = loaded_addr; 3045 } 3046 3047 /* load initrd */ 3048 if (initrd_filename) { 3049 /* Try to locate the initrd in the gap between the kernel 3050 * and the firmware. Add a bit of space just in case 3051 */ 3052 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3053 + 0x1ffff) & ~0xffff; 3054 spapr->initrd_size = load_image_targphys(initrd_filename, 3055 spapr->initrd_base, 3056 load_limit 3057 - spapr->initrd_base); 3058 if (spapr->initrd_size < 0) { 3059 error_report("could not load initial ram disk '%s'", 3060 initrd_filename); 3061 exit(1); 3062 } 3063 } 3064 } 3065 3066 /* FIXME: Should register things through the MachineState's qdev 3067 * interface, this is a legacy from the sPAPREnvironment structure 3068 * which predated MachineState but had a similar function */ 3069 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3070 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3071 &savevm_htab_handlers, spapr); 3072 3073 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3074 3075 qemu_register_boot_set(spapr_boot_set, spapr); 3076 3077 /* 3078 * Nothing needs to be done to resume a suspended guest because 3079 * suspending does not change the machine state, so no need for 3080 * a ->wakeup method. 3081 */ 3082 qemu_register_wakeup_support(); 3083 3084 if (kvm_enabled()) { 3085 /* to stop and start vmclock */ 3086 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3087 &spapr->tb); 3088 3089 kvmppc_spapr_enable_inkernel_multitce(); 3090 } 3091 3092 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3093 if (spapr->vof) { 3094 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3095 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3096 } 3097 3098 spapr_watchdog_init(spapr); 3099 } 3100 3101 #define DEFAULT_KVM_TYPE "auto" 3102 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3103 { 3104 /* 3105 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3106 * accomodate the 'HV' and 'PV' formats that exists in the 3107 * wild. The 'auto' mode is being introduced already as 3108 * lower-case, thus we don't need to bother checking for 3109 * "AUTO". 3110 */ 3111 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3112 return 0; 3113 } 3114 3115 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3116 return 1; 3117 } 3118 3119 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3120 return 2; 3121 } 3122 3123 error_report("Unknown kvm-type specified '%s'", vm_type); 3124 return -1; 3125 } 3126 3127 /* 3128 * Implementation of an interface to adjust firmware path 3129 * for the bootindex property handling. 3130 */ 3131 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3132 DeviceState *dev) 3133 { 3134 #define CAST(type, obj, name) \ 3135 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3136 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3137 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3138 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3139 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3140 3141 if (d && bus) { 3142 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3143 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3144 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3145 3146 if (spapr) { 3147 /* 3148 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3149 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3150 * 0x8000 | (target << 8) | (bus << 5) | lun 3151 * (see the "Logical unit addressing format" table in SAM5) 3152 */ 3153 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3154 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3155 (uint64_t)id << 48); 3156 } else if (virtio) { 3157 /* 3158 * We use SRP luns of the form 01000000 | (target << 8) | lun 3159 * in the top 32 bits of the 64-bit LUN 3160 * Note: the quote above is from SLOF and it is wrong, 3161 * the actual binding is: 3162 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3163 */ 3164 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3165 if (d->lun >= 256) { 3166 /* Use the LUN "flat space addressing method" */ 3167 id |= 0x4000; 3168 } 3169 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3170 (uint64_t)id << 32); 3171 } else if (usb) { 3172 /* 3173 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3174 * in the top 32 bits of the 64-bit LUN 3175 */ 3176 unsigned usb_port = atoi(usb->port->path); 3177 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3178 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3179 (uint64_t)id << 32); 3180 } 3181 } 3182 3183 /* 3184 * SLOF probes the USB devices, and if it recognizes that the device is a 3185 * storage device, it changes its name to "storage" instead of "usb-host", 3186 * and additionally adds a child node for the SCSI LUN, so the correct 3187 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3188 */ 3189 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3190 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3191 if (usb_device_is_scsi_storage(usbdev)) { 3192 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3193 } 3194 } 3195 3196 if (phb) { 3197 /* Replace "pci" with "pci@800000020000000" */ 3198 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3199 } 3200 3201 if (vsc) { 3202 /* Same logic as virtio above */ 3203 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3204 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3205 } 3206 3207 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3208 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3209 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3210 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3211 } 3212 3213 if (pcidev) { 3214 return spapr_pci_fw_dev_name(pcidev); 3215 } 3216 3217 return NULL; 3218 } 3219 3220 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3221 { 3222 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3223 3224 return g_strdup(spapr->kvm_type); 3225 } 3226 3227 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3228 { 3229 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3230 3231 g_free(spapr->kvm_type); 3232 spapr->kvm_type = g_strdup(value); 3233 } 3234 3235 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3236 { 3237 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3238 3239 return spapr->use_hotplug_event_source; 3240 } 3241 3242 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3243 Error **errp) 3244 { 3245 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3246 3247 spapr->use_hotplug_event_source = value; 3248 } 3249 3250 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3251 { 3252 return true; 3253 } 3254 3255 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3256 { 3257 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3258 3259 switch (spapr->resize_hpt) { 3260 case SPAPR_RESIZE_HPT_DEFAULT: 3261 return g_strdup("default"); 3262 case SPAPR_RESIZE_HPT_DISABLED: 3263 return g_strdup("disabled"); 3264 case SPAPR_RESIZE_HPT_ENABLED: 3265 return g_strdup("enabled"); 3266 case SPAPR_RESIZE_HPT_REQUIRED: 3267 return g_strdup("required"); 3268 } 3269 g_assert_not_reached(); 3270 } 3271 3272 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3273 { 3274 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3275 3276 if (strcmp(value, "default") == 0) { 3277 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3278 } else if (strcmp(value, "disabled") == 0) { 3279 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3280 } else if (strcmp(value, "enabled") == 0) { 3281 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3282 } else if (strcmp(value, "required") == 0) { 3283 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3284 } else { 3285 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3286 } 3287 } 3288 3289 static bool spapr_get_vof(Object *obj, Error **errp) 3290 { 3291 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3292 3293 return spapr->vof != NULL; 3294 } 3295 3296 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3297 { 3298 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3299 3300 if (spapr->vof) { 3301 vof_cleanup(spapr->vof); 3302 g_free(spapr->vof); 3303 spapr->vof = NULL; 3304 } 3305 if (!value) { 3306 return; 3307 } 3308 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3309 } 3310 3311 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3312 { 3313 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3314 3315 if (spapr->irq == &spapr_irq_xics_legacy) { 3316 return g_strdup("legacy"); 3317 } else if (spapr->irq == &spapr_irq_xics) { 3318 return g_strdup("xics"); 3319 } else if (spapr->irq == &spapr_irq_xive) { 3320 return g_strdup("xive"); 3321 } else if (spapr->irq == &spapr_irq_dual) { 3322 return g_strdup("dual"); 3323 } 3324 g_assert_not_reached(); 3325 } 3326 3327 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3328 { 3329 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3330 3331 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3332 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3333 return; 3334 } 3335 3336 /* The legacy IRQ backend can not be set */ 3337 if (strcmp(value, "xics") == 0) { 3338 spapr->irq = &spapr_irq_xics; 3339 } else if (strcmp(value, "xive") == 0) { 3340 spapr->irq = &spapr_irq_xive; 3341 } else if (strcmp(value, "dual") == 0) { 3342 spapr->irq = &spapr_irq_dual; 3343 } else { 3344 error_setg(errp, "Bad value for \"ic-mode\" property"); 3345 } 3346 } 3347 3348 static char *spapr_get_host_model(Object *obj, Error **errp) 3349 { 3350 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3351 3352 return g_strdup(spapr->host_model); 3353 } 3354 3355 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3356 { 3357 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3358 3359 g_free(spapr->host_model); 3360 spapr->host_model = g_strdup(value); 3361 } 3362 3363 static char *spapr_get_host_serial(Object *obj, Error **errp) 3364 { 3365 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3366 3367 return g_strdup(spapr->host_serial); 3368 } 3369 3370 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3371 { 3372 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3373 3374 g_free(spapr->host_serial); 3375 spapr->host_serial = g_strdup(value); 3376 } 3377 3378 static void spapr_instance_init(Object *obj) 3379 { 3380 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3381 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3382 MachineState *ms = MACHINE(spapr); 3383 MachineClass *mc = MACHINE_GET_CLASS(ms); 3384 3385 /* 3386 * NVDIMM support went live in 5.1 without considering that, in 3387 * other archs, the user needs to enable NVDIMM support with the 3388 * 'nvdimm' machine option and the default behavior is NVDIMM 3389 * support disabled. It is too late to roll back to the standard 3390 * behavior without breaking 5.1 guests. 3391 */ 3392 if (mc->nvdimm_supported) { 3393 ms->nvdimms_state->is_enabled = true; 3394 } 3395 3396 spapr->htab_fd = -1; 3397 spapr->use_hotplug_event_source = true; 3398 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3399 object_property_add_str(obj, "kvm-type", 3400 spapr_get_kvm_type, spapr_set_kvm_type); 3401 object_property_set_description(obj, "kvm-type", 3402 "Specifies the KVM virtualization mode (auto," 3403 " hv, pr). Defaults to 'auto'. This mode will use" 3404 " any available KVM module loaded in the host," 3405 " where kvm_hv takes precedence if both kvm_hv and" 3406 " kvm_pr are loaded."); 3407 object_property_add_bool(obj, "modern-hotplug-events", 3408 spapr_get_modern_hotplug_events, 3409 spapr_set_modern_hotplug_events); 3410 object_property_set_description(obj, "modern-hotplug-events", 3411 "Use dedicated hotplug event mechanism in" 3412 " place of standard EPOW events when possible" 3413 " (required for memory hot-unplug support)"); 3414 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3415 "Maximum permitted CPU compatibility mode"); 3416 3417 object_property_add_str(obj, "resize-hpt", 3418 spapr_get_resize_hpt, spapr_set_resize_hpt); 3419 object_property_set_description(obj, "resize-hpt", 3420 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3421 object_property_add_uint32_ptr(obj, "vsmt", 3422 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3423 object_property_set_description(obj, "vsmt", 3424 "Virtual SMT: KVM behaves as if this were" 3425 " the host's SMT mode"); 3426 3427 object_property_add_bool(obj, "vfio-no-msix-emulation", 3428 spapr_get_msix_emulation, NULL); 3429 3430 object_property_add_uint64_ptr(obj, "kernel-addr", 3431 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3432 object_property_set_description(obj, "kernel-addr", 3433 stringify(KERNEL_LOAD_ADDR) 3434 " for -kernel is the default"); 3435 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3436 3437 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3438 object_property_set_description(obj, "x-vof", 3439 "Enable Virtual Open Firmware (experimental)"); 3440 3441 /* The machine class defines the default interrupt controller mode */ 3442 spapr->irq = smc->irq; 3443 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3444 spapr_set_ic_mode); 3445 object_property_set_description(obj, "ic-mode", 3446 "Specifies the interrupt controller mode (xics, xive, dual)"); 3447 3448 object_property_add_str(obj, "host-model", 3449 spapr_get_host_model, spapr_set_host_model); 3450 object_property_set_description(obj, "host-model", 3451 "Host model to advertise in guest device tree"); 3452 object_property_add_str(obj, "host-serial", 3453 spapr_get_host_serial, spapr_set_host_serial); 3454 object_property_set_description(obj, "host-serial", 3455 "Host serial number to advertise in guest device tree"); 3456 } 3457 3458 static void spapr_machine_finalizefn(Object *obj) 3459 { 3460 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3461 3462 g_free(spapr->kvm_type); 3463 } 3464 3465 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3466 { 3467 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3468 PowerPCCPU *cpu = POWERPC_CPU(cs); 3469 CPUPPCState *env = &cpu->env; 3470 3471 cpu_synchronize_state(cs); 3472 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3473 if (spapr->fwnmi_system_reset_addr != -1) { 3474 uint64_t rtas_addr, addr; 3475 3476 /* get rtas addr from fdt */ 3477 rtas_addr = spapr_get_rtas_addr(); 3478 if (!rtas_addr) { 3479 qemu_system_guest_panicked(NULL); 3480 return; 3481 } 3482 3483 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3484 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3485 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3486 env->gpr[3] = addr; 3487 } 3488 ppc_cpu_do_system_reset(cs); 3489 if (spapr->fwnmi_system_reset_addr != -1) { 3490 env->nip = spapr->fwnmi_system_reset_addr; 3491 } 3492 } 3493 3494 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3495 { 3496 CPUState *cs; 3497 3498 CPU_FOREACH(cs) { 3499 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3500 } 3501 } 3502 3503 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3504 void *fdt, int *fdt_start_offset, Error **errp) 3505 { 3506 uint64_t addr; 3507 uint32_t node; 3508 3509 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3510 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3511 &error_abort); 3512 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3513 SPAPR_MEMORY_BLOCK_SIZE); 3514 return 0; 3515 } 3516 3517 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3518 bool dedicated_hp_event_source) 3519 { 3520 SpaprDrc *drc; 3521 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3522 int i; 3523 uint64_t addr = addr_start; 3524 bool hotplugged = spapr_drc_hotplugged(dev); 3525 3526 for (i = 0; i < nr_lmbs; i++) { 3527 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3528 addr / SPAPR_MEMORY_BLOCK_SIZE); 3529 g_assert(drc); 3530 3531 /* 3532 * memory_device_get_free_addr() provided a range of free addresses 3533 * that doesn't overlap with any existing mapping at pre-plug. The 3534 * corresponding LMB DRCs are thus assumed to be all attachable. 3535 */ 3536 spapr_drc_attach(drc, dev); 3537 if (!hotplugged) { 3538 spapr_drc_reset(drc); 3539 } 3540 addr += SPAPR_MEMORY_BLOCK_SIZE; 3541 } 3542 /* send hotplug notification to the 3543 * guest only in case of hotplugged memory 3544 */ 3545 if (hotplugged) { 3546 if (dedicated_hp_event_source) { 3547 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3548 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3549 g_assert(drc); 3550 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3551 nr_lmbs, 3552 spapr_drc_index(drc)); 3553 } else { 3554 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3555 nr_lmbs); 3556 } 3557 } 3558 } 3559 3560 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3561 { 3562 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3563 PCDIMMDevice *dimm = PC_DIMM(dev); 3564 uint64_t size, addr; 3565 int64_t slot; 3566 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3567 3568 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3569 3570 pc_dimm_plug(dimm, MACHINE(ms)); 3571 3572 if (!is_nvdimm) { 3573 addr = object_property_get_uint(OBJECT(dimm), 3574 PC_DIMM_ADDR_PROP, &error_abort); 3575 spapr_add_lmbs(dev, addr, size, 3576 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3577 } else { 3578 slot = object_property_get_int(OBJECT(dimm), 3579 PC_DIMM_SLOT_PROP, &error_abort); 3580 /* We should have valid slot number at this point */ 3581 g_assert(slot >= 0); 3582 spapr_add_nvdimm(dev, slot); 3583 } 3584 } 3585 3586 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3587 Error **errp) 3588 { 3589 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3590 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3591 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3592 PCDIMMDevice *dimm = PC_DIMM(dev); 3593 Error *local_err = NULL; 3594 uint64_t size; 3595 Object *memdev; 3596 hwaddr pagesize; 3597 3598 if (!smc->dr_lmb_enabled) { 3599 error_setg(errp, "Memory hotplug not supported for this machine"); 3600 return; 3601 } 3602 3603 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3604 if (local_err) { 3605 error_propagate(errp, local_err); 3606 return; 3607 } 3608 3609 if (is_nvdimm) { 3610 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3611 return; 3612 } 3613 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3614 error_setg(errp, "Hotplugged memory size must be a multiple of " 3615 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3616 return; 3617 } 3618 3619 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3620 &error_abort); 3621 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3622 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3623 return; 3624 } 3625 3626 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3627 } 3628 3629 struct SpaprDimmState { 3630 PCDIMMDevice *dimm; 3631 uint32_t nr_lmbs; 3632 QTAILQ_ENTRY(SpaprDimmState) next; 3633 }; 3634 3635 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3636 PCDIMMDevice *dimm) 3637 { 3638 SpaprDimmState *dimm_state = NULL; 3639 3640 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3641 if (dimm_state->dimm == dimm) { 3642 break; 3643 } 3644 } 3645 return dimm_state; 3646 } 3647 3648 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3649 uint32_t nr_lmbs, 3650 PCDIMMDevice *dimm) 3651 { 3652 SpaprDimmState *ds = NULL; 3653 3654 /* 3655 * If this request is for a DIMM whose removal had failed earlier 3656 * (due to guest's refusal to remove the LMBs), we would have this 3657 * dimm already in the pending_dimm_unplugs list. In that 3658 * case don't add again. 3659 */ 3660 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3661 if (!ds) { 3662 ds = g_new0(SpaprDimmState, 1); 3663 ds->nr_lmbs = nr_lmbs; 3664 ds->dimm = dimm; 3665 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3666 } 3667 return ds; 3668 } 3669 3670 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3671 SpaprDimmState *dimm_state) 3672 { 3673 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3674 g_free(dimm_state); 3675 } 3676 3677 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3678 PCDIMMDevice *dimm) 3679 { 3680 SpaprDrc *drc; 3681 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3682 &error_abort); 3683 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3684 uint32_t avail_lmbs = 0; 3685 uint64_t addr_start, addr; 3686 int i; 3687 3688 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3689 &error_abort); 3690 3691 addr = addr_start; 3692 for (i = 0; i < nr_lmbs; i++) { 3693 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3694 addr / SPAPR_MEMORY_BLOCK_SIZE); 3695 g_assert(drc); 3696 if (drc->dev) { 3697 avail_lmbs++; 3698 } 3699 addr += SPAPR_MEMORY_BLOCK_SIZE; 3700 } 3701 3702 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3703 } 3704 3705 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3706 { 3707 SpaprDimmState *ds; 3708 PCDIMMDevice *dimm; 3709 SpaprDrc *drc; 3710 uint32_t nr_lmbs; 3711 uint64_t size, addr_start, addr; 3712 g_autofree char *qapi_error = NULL; 3713 int i; 3714 3715 if (!dev) { 3716 return; 3717 } 3718 3719 dimm = PC_DIMM(dev); 3720 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3721 3722 /* 3723 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3724 * unplug state, but one of its DRC is marked as unplug_requested. 3725 * This is bad and weird enough to g_assert() out. 3726 */ 3727 g_assert(ds); 3728 3729 spapr_pending_dimm_unplugs_remove(spapr, ds); 3730 3731 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3732 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3733 3734 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3735 &error_abort); 3736 3737 addr = addr_start; 3738 for (i = 0; i < nr_lmbs; i++) { 3739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3740 addr / SPAPR_MEMORY_BLOCK_SIZE); 3741 g_assert(drc); 3742 3743 drc->unplug_requested = false; 3744 addr += SPAPR_MEMORY_BLOCK_SIZE; 3745 } 3746 3747 /* 3748 * Tell QAPI that something happened and the memory 3749 * hotunplug wasn't successful. Keep sending 3750 * MEM_UNPLUG_ERROR even while sending 3751 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3752 * MEM_UNPLUG_ERROR is due. 3753 */ 3754 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3755 "for device %s", dev->id); 3756 3757 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3758 3759 qapi_event_send_device_unplug_guest_error(dev->id, 3760 dev->canonical_path); 3761 } 3762 3763 /* Callback to be called during DRC release. */ 3764 void spapr_lmb_release(DeviceState *dev) 3765 { 3766 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3767 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3768 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3769 3770 /* This information will get lost if a migration occurs 3771 * during the unplug process. In this case recover it. */ 3772 if (ds == NULL) { 3773 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3774 g_assert(ds); 3775 /* The DRC being examined by the caller at least must be counted */ 3776 g_assert(ds->nr_lmbs); 3777 } 3778 3779 if (--ds->nr_lmbs) { 3780 return; 3781 } 3782 3783 /* 3784 * Now that all the LMBs have been removed by the guest, call the 3785 * unplug handler chain. This can never fail. 3786 */ 3787 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3788 object_unparent(OBJECT(dev)); 3789 } 3790 3791 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3792 { 3793 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3794 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3795 3796 /* We really shouldn't get this far without anything to unplug */ 3797 g_assert(ds); 3798 3799 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3800 qdev_unrealize(dev); 3801 spapr_pending_dimm_unplugs_remove(spapr, ds); 3802 } 3803 3804 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3805 DeviceState *dev, Error **errp) 3806 { 3807 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3808 PCDIMMDevice *dimm = PC_DIMM(dev); 3809 uint32_t nr_lmbs; 3810 uint64_t size, addr_start, addr; 3811 int i; 3812 SpaprDrc *drc; 3813 3814 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3815 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3816 return; 3817 } 3818 3819 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3820 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3821 3822 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3823 &error_abort); 3824 3825 /* 3826 * An existing pending dimm state for this DIMM means that there is an 3827 * unplug operation in progress, waiting for the spapr_lmb_release 3828 * callback to complete the job (BQL can't cover that far). In this case, 3829 * bail out to avoid detaching DRCs that were already released. 3830 */ 3831 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3832 error_setg(errp, "Memory unplug already in progress for device %s", 3833 dev->id); 3834 return; 3835 } 3836 3837 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3838 3839 addr = addr_start; 3840 for (i = 0; i < nr_lmbs; i++) { 3841 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3842 addr / SPAPR_MEMORY_BLOCK_SIZE); 3843 g_assert(drc); 3844 3845 spapr_drc_unplug_request(drc); 3846 addr += SPAPR_MEMORY_BLOCK_SIZE; 3847 } 3848 3849 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3850 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3851 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3852 nr_lmbs, spapr_drc_index(drc)); 3853 } 3854 3855 /* Callback to be called during DRC release. */ 3856 void spapr_core_release(DeviceState *dev) 3857 { 3858 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3859 3860 /* Call the unplug handler chain. This can never fail. */ 3861 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3862 object_unparent(OBJECT(dev)); 3863 } 3864 3865 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3866 { 3867 MachineState *ms = MACHINE(hotplug_dev); 3868 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3869 CPUCore *cc = CPU_CORE(dev); 3870 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3871 3872 if (smc->pre_2_10_has_unused_icps) { 3873 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3874 int i; 3875 3876 for (i = 0; i < cc->nr_threads; i++) { 3877 CPUState *cs = CPU(sc->threads[i]); 3878 3879 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3880 } 3881 } 3882 3883 assert(core_slot); 3884 core_slot->cpu = NULL; 3885 qdev_unrealize(dev); 3886 } 3887 3888 static 3889 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3890 Error **errp) 3891 { 3892 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3893 int index; 3894 SpaprDrc *drc; 3895 CPUCore *cc = CPU_CORE(dev); 3896 3897 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3898 error_setg(errp, "Unable to find CPU core with core-id: %d", 3899 cc->core_id); 3900 return; 3901 } 3902 if (index == 0) { 3903 error_setg(errp, "Boot CPU core may not be unplugged"); 3904 return; 3905 } 3906 3907 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3908 spapr_vcpu_id(spapr, cc->core_id)); 3909 g_assert(drc); 3910 3911 if (!spapr_drc_unplug_requested(drc)) { 3912 spapr_drc_unplug_request(drc); 3913 } 3914 3915 /* 3916 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3917 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3918 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3919 * attempt (e.g. the kernel will refuse to remove the last online 3920 * CPU), we will never attempt it again because unplug_requested 3921 * will still be 'true' in that case. 3922 */ 3923 spapr_hotplug_req_remove_by_index(drc); 3924 } 3925 3926 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3927 void *fdt, int *fdt_start_offset, Error **errp) 3928 { 3929 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3930 CPUState *cs = CPU(core->threads[0]); 3931 PowerPCCPU *cpu = POWERPC_CPU(cs); 3932 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3933 int id = spapr_get_vcpu_id(cpu); 3934 g_autofree char *nodename = NULL; 3935 int offset; 3936 3937 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3938 offset = fdt_add_subnode(fdt, 0, nodename); 3939 3940 spapr_dt_cpu(cs, fdt, offset, spapr); 3941 3942 /* 3943 * spapr_dt_cpu() does not fill the 'name' property in the 3944 * CPU node. The function is called during boot process, before 3945 * and after CAS, and overwriting the 'name' property written 3946 * by SLOF is not allowed. 3947 * 3948 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3949 * CPUs more compatible with the coldplugged ones, which have 3950 * the 'name' property. Linux Kernel also relies on this 3951 * property to identify CPU nodes. 3952 */ 3953 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3954 3955 *fdt_start_offset = offset; 3956 return 0; 3957 } 3958 3959 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3960 { 3961 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3962 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3963 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3964 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3965 CPUCore *cc = CPU_CORE(dev); 3966 CPUState *cs; 3967 SpaprDrc *drc; 3968 CPUArchId *core_slot; 3969 int index; 3970 bool hotplugged = spapr_drc_hotplugged(dev); 3971 int i; 3972 3973 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3974 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3975 3976 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3977 spapr_vcpu_id(spapr, cc->core_id)); 3978 3979 g_assert(drc || !mc->has_hotpluggable_cpus); 3980 3981 if (drc) { 3982 /* 3983 * spapr_core_pre_plug() already buys us this is a brand new 3984 * core being plugged into a free slot. Nothing should already 3985 * be attached to the corresponding DRC. 3986 */ 3987 spapr_drc_attach(drc, dev); 3988 3989 if (hotplugged) { 3990 /* 3991 * Send hotplug notification interrupt to the guest only 3992 * in case of hotplugged CPUs. 3993 */ 3994 spapr_hotplug_req_add_by_index(drc); 3995 } else { 3996 spapr_drc_reset(drc); 3997 } 3998 } 3999 4000 core_slot->cpu = OBJECT(dev); 4001 4002 /* 4003 * Set compatibility mode to match the boot CPU, which was either set 4004 * by the machine reset code or by CAS. This really shouldn't fail at 4005 * this point. 4006 */ 4007 if (hotplugged) { 4008 for (i = 0; i < cc->nr_threads; i++) { 4009 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 4010 &error_abort); 4011 } 4012 } 4013 4014 if (smc->pre_2_10_has_unused_icps) { 4015 for (i = 0; i < cc->nr_threads; i++) { 4016 cs = CPU(core->threads[i]); 4017 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4018 } 4019 } 4020 } 4021 4022 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4023 Error **errp) 4024 { 4025 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4026 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4027 CPUCore *cc = CPU_CORE(dev); 4028 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4029 const char *type = object_get_typename(OBJECT(dev)); 4030 CPUArchId *core_slot; 4031 int index; 4032 unsigned int smp_threads = machine->smp.threads; 4033 4034 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4035 error_setg(errp, "CPU hotplug not supported for this machine"); 4036 return; 4037 } 4038 4039 if (strcmp(base_core_type, type)) { 4040 error_setg(errp, "CPU core type should be %s", base_core_type); 4041 return; 4042 } 4043 4044 if (cc->core_id % smp_threads) { 4045 error_setg(errp, "invalid core id %d", cc->core_id); 4046 return; 4047 } 4048 4049 /* 4050 * In general we should have homogeneous threads-per-core, but old 4051 * (pre hotplug support) machine types allow the last core to have 4052 * reduced threads as a compatibility hack for when we allowed 4053 * total vcpus not a multiple of threads-per-core. 4054 */ 4055 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4056 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4057 smp_threads); 4058 return; 4059 } 4060 4061 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4062 if (!core_slot) { 4063 error_setg(errp, "core id %d out of range", cc->core_id); 4064 return; 4065 } 4066 4067 if (core_slot->cpu) { 4068 error_setg(errp, "core %d already populated", cc->core_id); 4069 return; 4070 } 4071 4072 numa_cpu_pre_plug(core_slot, dev, errp); 4073 } 4074 4075 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4076 void *fdt, int *fdt_start_offset, Error **errp) 4077 { 4078 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4079 int intc_phandle; 4080 4081 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4082 if (intc_phandle <= 0) { 4083 return -1; 4084 } 4085 4086 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4087 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4088 return -1; 4089 } 4090 4091 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4092 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4093 4094 return 0; 4095 } 4096 4097 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4098 Error **errp) 4099 { 4100 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4101 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4102 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4103 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4104 SpaprDrc *drc; 4105 4106 if (dev->hotplugged && !smc->dr_phb_enabled) { 4107 error_setg(errp, "PHB hotplug not supported for this machine"); 4108 return false; 4109 } 4110 4111 if (sphb->index == (uint32_t)-1) { 4112 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4113 return false; 4114 } 4115 4116 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4117 if (drc && drc->dev) { 4118 error_setg(errp, "PHB %d already attached", sphb->index); 4119 return false; 4120 } 4121 4122 /* 4123 * This will check that sphb->index doesn't exceed the maximum number of 4124 * PHBs for the current machine type. 4125 */ 4126 return 4127 smc->phb_placement(spapr, sphb->index, 4128 &sphb->buid, &sphb->io_win_addr, 4129 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4130 windows_supported, sphb->dma_liobn, 4131 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 4132 errp); 4133 } 4134 4135 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4136 { 4137 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4138 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4139 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4140 SpaprDrc *drc; 4141 bool hotplugged = spapr_drc_hotplugged(dev); 4142 4143 if (!smc->dr_phb_enabled) { 4144 return; 4145 } 4146 4147 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4148 /* hotplug hooks should check it's enabled before getting this far */ 4149 assert(drc); 4150 4151 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4152 spapr_drc_attach(drc, dev); 4153 4154 if (hotplugged) { 4155 spapr_hotplug_req_add_by_index(drc); 4156 } else { 4157 spapr_drc_reset(drc); 4158 } 4159 } 4160 4161 void spapr_phb_release(DeviceState *dev) 4162 { 4163 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4164 4165 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4166 object_unparent(OBJECT(dev)); 4167 } 4168 4169 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4170 { 4171 qdev_unrealize(dev); 4172 } 4173 4174 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4175 DeviceState *dev, Error **errp) 4176 { 4177 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4178 SpaprDrc *drc; 4179 4180 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4181 assert(drc); 4182 4183 if (!spapr_drc_unplug_requested(drc)) { 4184 spapr_drc_unplug_request(drc); 4185 spapr_hotplug_req_remove_by_index(drc); 4186 } else { 4187 error_setg(errp, 4188 "PCI Host Bridge unplug already in progress for device %s", 4189 dev->id); 4190 } 4191 } 4192 4193 static 4194 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4195 Error **errp) 4196 { 4197 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4198 4199 if (spapr->tpm_proxy != NULL) { 4200 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4201 return false; 4202 } 4203 4204 return true; 4205 } 4206 4207 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4208 { 4209 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4210 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4211 4212 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4213 g_assert(spapr->tpm_proxy == NULL); 4214 4215 spapr->tpm_proxy = tpm_proxy; 4216 } 4217 4218 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4219 { 4220 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4221 4222 qdev_unrealize(dev); 4223 object_unparent(OBJECT(dev)); 4224 spapr->tpm_proxy = NULL; 4225 } 4226 4227 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4228 DeviceState *dev, Error **errp) 4229 { 4230 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4231 spapr_memory_plug(hotplug_dev, dev); 4232 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4233 spapr_core_plug(hotplug_dev, dev); 4234 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4235 spapr_phb_plug(hotplug_dev, dev); 4236 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4237 spapr_tpm_proxy_plug(hotplug_dev, dev); 4238 } 4239 } 4240 4241 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4242 DeviceState *dev, Error **errp) 4243 { 4244 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4245 spapr_memory_unplug(hotplug_dev, dev); 4246 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4247 spapr_core_unplug(hotplug_dev, dev); 4248 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4249 spapr_phb_unplug(hotplug_dev, dev); 4250 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4251 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4252 } 4253 } 4254 4255 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4256 { 4257 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4258 /* 4259 * CAS will process all pending unplug requests. 4260 * 4261 * HACK: a guest could theoretically have cleared all bits in OV5, 4262 * but none of the guests we care for do. 4263 */ 4264 spapr_ovec_empty(spapr->ov5_cas); 4265 } 4266 4267 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4268 DeviceState *dev, Error **errp) 4269 { 4270 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4271 MachineClass *mc = MACHINE_GET_CLASS(sms); 4272 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4273 4274 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4275 if (spapr_memory_hot_unplug_supported(sms)) { 4276 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4277 } else { 4278 error_setg(errp, "Memory hot unplug not supported for this guest"); 4279 } 4280 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4281 if (!mc->has_hotpluggable_cpus) { 4282 error_setg(errp, "CPU hot unplug not supported on this machine"); 4283 return; 4284 } 4285 spapr_core_unplug_request(hotplug_dev, dev, errp); 4286 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4287 if (!smc->dr_phb_enabled) { 4288 error_setg(errp, "PHB hot unplug not supported on this machine"); 4289 return; 4290 } 4291 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4292 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4293 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4294 } 4295 } 4296 4297 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4298 DeviceState *dev, Error **errp) 4299 { 4300 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4301 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4302 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4303 spapr_core_pre_plug(hotplug_dev, dev, errp); 4304 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4305 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4306 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4307 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4308 } 4309 } 4310 4311 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4312 DeviceState *dev) 4313 { 4314 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4315 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4316 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4317 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4318 return HOTPLUG_HANDLER(machine); 4319 } 4320 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4321 PCIDevice *pcidev = PCI_DEVICE(dev); 4322 PCIBus *root = pci_device_root_bus(pcidev); 4323 SpaprPhbState *phb = 4324 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4325 TYPE_SPAPR_PCI_HOST_BRIDGE); 4326 4327 if (phb) { 4328 return HOTPLUG_HANDLER(phb); 4329 } 4330 } 4331 return NULL; 4332 } 4333 4334 static CpuInstanceProperties 4335 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4336 { 4337 CPUArchId *core_slot; 4338 MachineClass *mc = MACHINE_GET_CLASS(machine); 4339 4340 /* make sure possible_cpu are intialized */ 4341 mc->possible_cpu_arch_ids(machine); 4342 /* get CPU core slot containing thread that matches cpu_index */ 4343 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4344 assert(core_slot); 4345 return core_slot->props; 4346 } 4347 4348 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4349 { 4350 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4351 } 4352 4353 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4354 { 4355 int i; 4356 unsigned int smp_threads = machine->smp.threads; 4357 unsigned int smp_cpus = machine->smp.cpus; 4358 const char *core_type; 4359 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4360 MachineClass *mc = MACHINE_GET_CLASS(machine); 4361 4362 if (!mc->has_hotpluggable_cpus) { 4363 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4364 } 4365 if (machine->possible_cpus) { 4366 assert(machine->possible_cpus->len == spapr_max_cores); 4367 return machine->possible_cpus; 4368 } 4369 4370 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4371 if (!core_type) { 4372 error_report("Unable to find sPAPR CPU Core definition"); 4373 exit(1); 4374 } 4375 4376 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4377 sizeof(CPUArchId) * spapr_max_cores); 4378 machine->possible_cpus->len = spapr_max_cores; 4379 for (i = 0; i < machine->possible_cpus->len; i++) { 4380 int core_id = i * smp_threads; 4381 4382 machine->possible_cpus->cpus[i].type = core_type; 4383 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4384 machine->possible_cpus->cpus[i].arch_id = core_id; 4385 machine->possible_cpus->cpus[i].props.has_core_id = true; 4386 machine->possible_cpus->cpus[i].props.core_id = core_id; 4387 } 4388 return machine->possible_cpus; 4389 } 4390 4391 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4392 uint64_t *buid, hwaddr *pio, 4393 hwaddr *mmio32, hwaddr *mmio64, 4394 unsigned n_dma, uint32_t *liobns, 4395 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4396 { 4397 /* 4398 * New-style PHB window placement. 4399 * 4400 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4401 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4402 * windows. 4403 * 4404 * Some guest kernels can't work with MMIO windows above 1<<46 4405 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4406 * 4407 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4408 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4409 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4410 * 1TiB 64-bit MMIO windows for each PHB. 4411 */ 4412 const uint64_t base_buid = 0x800000020000000ULL; 4413 int i; 4414 4415 /* Sanity check natural alignments */ 4416 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4417 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4418 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4419 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4420 /* Sanity check bounds */ 4421 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4422 SPAPR_PCI_MEM32_WIN_SIZE); 4423 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4424 SPAPR_PCI_MEM64_WIN_SIZE); 4425 4426 if (index >= SPAPR_MAX_PHBS) { 4427 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4428 SPAPR_MAX_PHBS - 1); 4429 return false; 4430 } 4431 4432 *buid = base_buid + index; 4433 for (i = 0; i < n_dma; ++i) { 4434 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4435 } 4436 4437 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4438 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4439 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4440 4441 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4442 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4443 return true; 4444 } 4445 4446 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4447 { 4448 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4449 4450 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4451 } 4452 4453 static void spapr_ics_resend(XICSFabric *dev) 4454 { 4455 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4456 4457 ics_resend(spapr->ics); 4458 } 4459 4460 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4461 { 4462 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4463 4464 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4465 } 4466 4467 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4468 Monitor *mon) 4469 { 4470 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4471 4472 spapr_irq_print_info(spapr, mon); 4473 monitor_printf(mon, "irqchip: %s\n", 4474 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4475 } 4476 4477 /* 4478 * This is a XIVE only operation 4479 */ 4480 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4481 uint8_t nvt_blk, uint32_t nvt_idx, 4482 bool cam_ignore, uint8_t priority, 4483 uint32_t logic_serv, XiveTCTXMatch *match) 4484 { 4485 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4486 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4487 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4488 int count; 4489 4490 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4491 priority, logic_serv, match); 4492 if (count < 0) { 4493 return count; 4494 } 4495 4496 /* 4497 * When we implement the save and restore of the thread interrupt 4498 * contexts in the enter/exit CPU handlers of the machine and the 4499 * escalations in QEMU, we should be able to handle non dispatched 4500 * vCPUs. 4501 * 4502 * Until this is done, the sPAPR machine should find at least one 4503 * matching context always. 4504 */ 4505 if (count == 0) { 4506 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4507 nvt_blk, nvt_idx); 4508 } 4509 4510 return count; 4511 } 4512 4513 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4514 { 4515 return cpu->vcpu_id; 4516 } 4517 4518 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4519 { 4520 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4521 MachineState *ms = MACHINE(spapr); 4522 int vcpu_id; 4523 4524 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4525 4526 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4527 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4528 error_append_hint(errp, "Adjust the number of cpus to %d " 4529 "or try to raise the number of threads per core\n", 4530 vcpu_id * ms->smp.threads / spapr->vsmt); 4531 return false; 4532 } 4533 4534 cpu->vcpu_id = vcpu_id; 4535 return true; 4536 } 4537 4538 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4539 { 4540 CPUState *cs; 4541 4542 CPU_FOREACH(cs) { 4543 PowerPCCPU *cpu = POWERPC_CPU(cs); 4544 4545 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4546 return cpu; 4547 } 4548 } 4549 4550 return NULL; 4551 } 4552 4553 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4554 { 4555 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4556 4557 return spapr_cpu->in_nested; 4558 } 4559 4560 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4561 { 4562 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4563 4564 /* These are only called by TCG, KVM maintains dispatch state */ 4565 4566 spapr_cpu->prod = false; 4567 if (spapr_cpu->vpa_addr) { 4568 CPUState *cs = CPU(cpu); 4569 uint32_t dispatch; 4570 4571 dispatch = ldl_be_phys(cs->as, 4572 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4573 dispatch++; 4574 if ((dispatch & 1) != 0) { 4575 qemu_log_mask(LOG_GUEST_ERROR, 4576 "VPA: incorrect dispatch counter value for " 4577 "dispatched partition %u, correcting.\n", dispatch); 4578 dispatch++; 4579 } 4580 stl_be_phys(cs->as, 4581 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4582 } 4583 } 4584 4585 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4586 { 4587 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4588 4589 if (spapr_cpu->vpa_addr) { 4590 CPUState *cs = CPU(cpu); 4591 uint32_t dispatch; 4592 4593 dispatch = ldl_be_phys(cs->as, 4594 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4595 dispatch++; 4596 if ((dispatch & 1) != 1) { 4597 qemu_log_mask(LOG_GUEST_ERROR, 4598 "VPA: incorrect dispatch counter value for " 4599 "preempted partition %u, correcting.\n", dispatch); 4600 dispatch++; 4601 } 4602 stl_be_phys(cs->as, 4603 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4604 } 4605 } 4606 4607 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4608 { 4609 MachineClass *mc = MACHINE_CLASS(oc); 4610 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4611 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4612 NMIClass *nc = NMI_CLASS(oc); 4613 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4614 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4615 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4616 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4617 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4618 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4619 4620 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4621 mc->ignore_boot_device_suffixes = true; 4622 4623 /* 4624 * We set up the default / latest behaviour here. The class_init 4625 * functions for the specific versioned machine types can override 4626 * these details for backwards compatibility 4627 */ 4628 mc->init = spapr_machine_init; 4629 mc->reset = spapr_machine_reset; 4630 mc->block_default_type = IF_SCSI; 4631 4632 /* 4633 * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values 4634 * should be limited by the host capability instead of hardcoded. 4635 * max_cpus for KVM guests will be checked in kvm_init(), and TCG 4636 * guests are welcome to have as many CPUs as the host are capable 4637 * of emulate. 4638 */ 4639 mc->max_cpus = INT32_MAX; 4640 4641 mc->no_parallel = 1; 4642 mc->default_boot_order = ""; 4643 mc->default_ram_size = 512 * MiB; 4644 mc->default_ram_id = "ppc_spapr.ram"; 4645 mc->default_display = "std"; 4646 mc->kvm_type = spapr_kvm_type; 4647 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4648 mc->pci_allow_0_address = true; 4649 assert(!mc->get_hotplug_handler); 4650 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4651 hc->pre_plug = spapr_machine_device_pre_plug; 4652 hc->plug = spapr_machine_device_plug; 4653 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4654 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4655 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4656 hc->unplug_request = spapr_machine_device_unplug_request; 4657 hc->unplug = spapr_machine_device_unplug; 4658 4659 smc->dr_lmb_enabled = true; 4660 smc->update_dt_enabled = true; 4661 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2"); 4662 mc->has_hotpluggable_cpus = true; 4663 mc->nvdimm_supported = true; 4664 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4665 fwc->get_dev_path = spapr_get_fw_dev_path; 4666 nc->nmi_monitor_handler = spapr_nmi; 4667 smc->phb_placement = spapr_phb_placement; 4668 vhc->cpu_in_nested = spapr_cpu_in_nested; 4669 vhc->deliver_hv_excp = spapr_exit_nested; 4670 vhc->hypercall = emulate_spapr_hypercall; 4671 vhc->hpt_mask = spapr_hpt_mask; 4672 vhc->map_hptes = spapr_map_hptes; 4673 vhc->unmap_hptes = spapr_unmap_hptes; 4674 vhc->hpte_set_c = spapr_hpte_set_c; 4675 vhc->hpte_set_r = spapr_hpte_set_r; 4676 vhc->get_pate = spapr_get_pate; 4677 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4678 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4679 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4680 xic->ics_get = spapr_ics_get; 4681 xic->ics_resend = spapr_ics_resend; 4682 xic->icp_get = spapr_icp_get; 4683 ispc->print_info = spapr_pic_print_info; 4684 /* Force NUMA node memory size to be a multiple of 4685 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4686 * in which LMBs are represented and hot-added 4687 */ 4688 mc->numa_mem_align_shift = 28; 4689 mc->auto_enable_numa = true; 4690 4691 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4692 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4693 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4694 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4695 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4696 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4697 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4698 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4699 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4700 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4701 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4702 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4703 4704 /* 4705 * This cap specifies whether the AIL 3 mode for 4706 * H_SET_RESOURCE is supported. The default is modified 4707 * by default_caps_with_cpu(). 4708 */ 4709 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4710 spapr_caps_add_properties(smc); 4711 smc->irq = &spapr_irq_dual; 4712 smc->dr_phb_enabled = true; 4713 smc->linux_pci_probe = true; 4714 smc->smp_threads_vsmt = true; 4715 smc->nr_xirqs = SPAPR_NR_XIRQS; 4716 xfc->match_nvt = spapr_match_nvt; 4717 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4718 vmc->quiesce = spapr_vof_quiesce; 4719 vmc->setprop = spapr_vof_setprop; 4720 } 4721 4722 static const TypeInfo spapr_machine_info = { 4723 .name = TYPE_SPAPR_MACHINE, 4724 .parent = TYPE_MACHINE, 4725 .abstract = true, 4726 .instance_size = sizeof(SpaprMachineState), 4727 .instance_init = spapr_instance_init, 4728 .instance_finalize = spapr_machine_finalizefn, 4729 .class_size = sizeof(SpaprMachineClass), 4730 .class_init = spapr_machine_class_init, 4731 .interfaces = (InterfaceInfo[]) { 4732 { TYPE_FW_PATH_PROVIDER }, 4733 { TYPE_NMI }, 4734 { TYPE_HOTPLUG_HANDLER }, 4735 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4736 { TYPE_XICS_FABRIC }, 4737 { TYPE_INTERRUPT_STATS_PROVIDER }, 4738 { TYPE_XIVE_FABRIC }, 4739 { TYPE_VOF_MACHINE_IF }, 4740 { } 4741 }, 4742 }; 4743 4744 static void spapr_machine_latest_class_options(MachineClass *mc) 4745 { 4746 mc->alias = "pseries"; 4747 mc->is_default = true; 4748 } 4749 4750 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4751 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4752 void *data) \ 4753 { \ 4754 MachineClass *mc = MACHINE_CLASS(oc); \ 4755 spapr_machine_##suffix##_class_options(mc); \ 4756 if (latest) { \ 4757 spapr_machine_latest_class_options(mc); \ 4758 } \ 4759 } \ 4760 static const TypeInfo spapr_machine_##suffix##_info = { \ 4761 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4762 .parent = TYPE_SPAPR_MACHINE, \ 4763 .class_init = spapr_machine_##suffix##_class_init, \ 4764 }; \ 4765 static void spapr_machine_register_##suffix(void) \ 4766 { \ 4767 type_register(&spapr_machine_##suffix##_info); \ 4768 } \ 4769 type_init(spapr_machine_register_##suffix) 4770 4771 /* 4772 * pseries-8.2 4773 */ 4774 static void spapr_machine_8_2_class_options(MachineClass *mc) 4775 { 4776 /* Defaults for the latest behaviour inherited from the base class */ 4777 } 4778 4779 DEFINE_SPAPR_MACHINE(8_2, "8.2", true); 4780 4781 /* 4782 * pseries-8.1 4783 */ 4784 static void spapr_machine_8_1_class_options(MachineClass *mc) 4785 { 4786 spapr_machine_8_2_class_options(mc); 4787 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4788 } 4789 4790 DEFINE_SPAPR_MACHINE(8_1, "8.1", false); 4791 4792 /* 4793 * pseries-8.0 4794 */ 4795 static void spapr_machine_8_0_class_options(MachineClass *mc) 4796 { 4797 spapr_machine_8_1_class_options(mc); 4798 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4799 } 4800 4801 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4802 4803 /* 4804 * pseries-7.2 4805 */ 4806 static void spapr_machine_7_2_class_options(MachineClass *mc) 4807 { 4808 spapr_machine_8_0_class_options(mc); 4809 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4810 } 4811 4812 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4813 4814 /* 4815 * pseries-7.1 4816 */ 4817 static void spapr_machine_7_1_class_options(MachineClass *mc) 4818 { 4819 spapr_machine_7_2_class_options(mc); 4820 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4821 } 4822 4823 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4824 4825 /* 4826 * pseries-7.0 4827 */ 4828 static void spapr_machine_7_0_class_options(MachineClass *mc) 4829 { 4830 spapr_machine_7_1_class_options(mc); 4831 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4832 } 4833 4834 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4835 4836 /* 4837 * pseries-6.2 4838 */ 4839 static void spapr_machine_6_2_class_options(MachineClass *mc) 4840 { 4841 spapr_machine_7_0_class_options(mc); 4842 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4843 } 4844 4845 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4846 4847 /* 4848 * pseries-6.1 4849 */ 4850 static void spapr_machine_6_1_class_options(MachineClass *mc) 4851 { 4852 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4853 4854 spapr_machine_6_2_class_options(mc); 4855 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4856 smc->pre_6_2_numa_affinity = true; 4857 mc->smp_props.prefer_sockets = true; 4858 } 4859 4860 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4861 4862 /* 4863 * pseries-6.0 4864 */ 4865 static void spapr_machine_6_0_class_options(MachineClass *mc) 4866 { 4867 spapr_machine_6_1_class_options(mc); 4868 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4869 } 4870 4871 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4872 4873 /* 4874 * pseries-5.2 4875 */ 4876 static void spapr_machine_5_2_class_options(MachineClass *mc) 4877 { 4878 spapr_machine_6_0_class_options(mc); 4879 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4880 } 4881 4882 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4883 4884 /* 4885 * pseries-5.1 4886 */ 4887 static void spapr_machine_5_1_class_options(MachineClass *mc) 4888 { 4889 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4890 4891 spapr_machine_5_2_class_options(mc); 4892 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4893 smc->pre_5_2_numa_associativity = true; 4894 } 4895 4896 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4897 4898 /* 4899 * pseries-5.0 4900 */ 4901 static void spapr_machine_5_0_class_options(MachineClass *mc) 4902 { 4903 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4904 static GlobalProperty compat[] = { 4905 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4906 }; 4907 4908 spapr_machine_5_1_class_options(mc); 4909 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4910 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4911 mc->numa_mem_supported = true; 4912 smc->pre_5_1_assoc_refpoints = true; 4913 } 4914 4915 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4916 4917 /* 4918 * pseries-4.2 4919 */ 4920 static void spapr_machine_4_2_class_options(MachineClass *mc) 4921 { 4922 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4923 4924 spapr_machine_5_0_class_options(mc); 4925 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4926 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4927 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4928 smc->rma_limit = 16 * GiB; 4929 mc->nvdimm_supported = false; 4930 } 4931 4932 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4933 4934 /* 4935 * pseries-4.1 4936 */ 4937 static void spapr_machine_4_1_class_options(MachineClass *mc) 4938 { 4939 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4940 static GlobalProperty compat[] = { 4941 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4942 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4943 }; 4944 4945 spapr_machine_4_2_class_options(mc); 4946 smc->linux_pci_probe = false; 4947 smc->smp_threads_vsmt = false; 4948 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4949 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4950 } 4951 4952 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4953 4954 /* 4955 * pseries-4.0 4956 */ 4957 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4958 uint64_t *buid, hwaddr *pio, 4959 hwaddr *mmio32, hwaddr *mmio64, 4960 unsigned n_dma, uint32_t *liobns, 4961 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4962 { 4963 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 4964 liobns, nv2gpa, nv2atsd, errp)) { 4965 return false; 4966 } 4967 4968 *nv2gpa = 0; 4969 *nv2atsd = 0; 4970 return true; 4971 } 4972 static void spapr_machine_4_0_class_options(MachineClass *mc) 4973 { 4974 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4975 4976 spapr_machine_4_1_class_options(mc); 4977 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4978 smc->phb_placement = phb_placement_4_0; 4979 smc->irq = &spapr_irq_xics; 4980 smc->pre_4_1_migration = true; 4981 } 4982 4983 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4984 4985 /* 4986 * pseries-3.1 4987 */ 4988 static void spapr_machine_3_1_class_options(MachineClass *mc) 4989 { 4990 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4991 4992 spapr_machine_4_0_class_options(mc); 4993 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4994 4995 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4996 smc->update_dt_enabled = false; 4997 smc->dr_phb_enabled = false; 4998 smc->broken_host_serial_model = true; 4999 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 5000 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 5001 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 5002 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 5003 } 5004 5005 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 5006 5007 /* 5008 * pseries-3.0 5009 */ 5010 5011 static void spapr_machine_3_0_class_options(MachineClass *mc) 5012 { 5013 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5014 5015 spapr_machine_3_1_class_options(mc); 5016 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5017 5018 smc->legacy_irq_allocation = true; 5019 smc->nr_xirqs = 0x400; 5020 smc->irq = &spapr_irq_xics_legacy; 5021 } 5022 5023 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 5024 5025 /* 5026 * pseries-2.12 5027 */ 5028 static void spapr_machine_2_12_class_options(MachineClass *mc) 5029 { 5030 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5031 static GlobalProperty compat[] = { 5032 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5033 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5034 }; 5035 5036 spapr_machine_3_0_class_options(mc); 5037 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5038 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5039 5040 /* We depend on kvm_enabled() to choose a default value for the 5041 * hpt-max-page-size capability. Of course we can't do it here 5042 * because this is too early and the HW accelerator isn't initialzed 5043 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5044 */ 5045 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5046 } 5047 5048 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5049 5050 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5051 { 5052 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5053 5054 spapr_machine_2_12_class_options(mc); 5055 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5056 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5057 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5058 } 5059 5060 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5061 5062 /* 5063 * pseries-2.11 5064 */ 5065 5066 static void spapr_machine_2_11_class_options(MachineClass *mc) 5067 { 5068 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5069 5070 spapr_machine_2_12_class_options(mc); 5071 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5072 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5073 } 5074 5075 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5076 5077 /* 5078 * pseries-2.10 5079 */ 5080 5081 static void spapr_machine_2_10_class_options(MachineClass *mc) 5082 { 5083 spapr_machine_2_11_class_options(mc); 5084 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5085 } 5086 5087 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5088 5089 /* 5090 * pseries-2.9 5091 */ 5092 5093 static void spapr_machine_2_9_class_options(MachineClass *mc) 5094 { 5095 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5096 static GlobalProperty compat[] = { 5097 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5098 }; 5099 5100 spapr_machine_2_10_class_options(mc); 5101 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5102 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5103 smc->pre_2_10_has_unused_icps = true; 5104 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5105 } 5106 5107 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5108 5109 /* 5110 * pseries-2.8 5111 */ 5112 5113 static void spapr_machine_2_8_class_options(MachineClass *mc) 5114 { 5115 static GlobalProperty compat[] = { 5116 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5117 }; 5118 5119 spapr_machine_2_9_class_options(mc); 5120 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5121 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5122 mc->numa_mem_align_shift = 23; 5123 } 5124 5125 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5126 5127 /* 5128 * pseries-2.7 5129 */ 5130 5131 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5132 uint64_t *buid, hwaddr *pio, 5133 hwaddr *mmio32, hwaddr *mmio64, 5134 unsigned n_dma, uint32_t *liobns, 5135 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 5136 { 5137 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5138 const uint64_t base_buid = 0x800000020000000ULL; 5139 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5140 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5141 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5142 const uint32_t max_index = 255; 5143 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5144 5145 uint64_t ram_top = MACHINE(spapr)->ram_size; 5146 hwaddr phb0_base, phb_base; 5147 int i; 5148 5149 /* Do we have device memory? */ 5150 if (MACHINE(spapr)->device_memory) { 5151 /* Can't just use maxram_size, because there may be an 5152 * alignment gap between normal and device memory regions 5153 */ 5154 ram_top = MACHINE(spapr)->device_memory->base + 5155 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5156 } 5157 5158 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5159 5160 if (index > max_index) { 5161 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5162 max_index); 5163 return false; 5164 } 5165 5166 *buid = base_buid + index; 5167 for (i = 0; i < n_dma; ++i) { 5168 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5169 } 5170 5171 phb_base = phb0_base + index * phb_spacing; 5172 *pio = phb_base + pio_offset; 5173 *mmio32 = phb_base + mmio_offset; 5174 /* 5175 * We don't set the 64-bit MMIO window, relying on the PHB's 5176 * fallback behaviour of automatically splitting a large "32-bit" 5177 * window into contiguous 32-bit and 64-bit windows 5178 */ 5179 5180 *nv2gpa = 0; 5181 *nv2atsd = 0; 5182 return true; 5183 } 5184 5185 static void spapr_machine_2_7_class_options(MachineClass *mc) 5186 { 5187 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5188 static GlobalProperty compat[] = { 5189 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5190 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5191 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5192 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5193 }; 5194 5195 spapr_machine_2_8_class_options(mc); 5196 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5197 mc->default_machine_opts = "modern-hotplug-events=off"; 5198 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5199 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5200 smc->phb_placement = phb_placement_2_7; 5201 } 5202 5203 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5204 5205 /* 5206 * pseries-2.6 5207 */ 5208 5209 static void spapr_machine_2_6_class_options(MachineClass *mc) 5210 { 5211 static GlobalProperty compat[] = { 5212 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5213 }; 5214 5215 spapr_machine_2_7_class_options(mc); 5216 mc->has_hotpluggable_cpus = false; 5217 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5218 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5219 } 5220 5221 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5222 5223 /* 5224 * pseries-2.5 5225 */ 5226 5227 static void spapr_machine_2_5_class_options(MachineClass *mc) 5228 { 5229 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5230 static GlobalProperty compat[] = { 5231 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5232 }; 5233 5234 spapr_machine_2_6_class_options(mc); 5235 smc->use_ohci_by_default = true; 5236 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5237 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5238 } 5239 5240 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5241 5242 /* 5243 * pseries-2.4 5244 */ 5245 5246 static void spapr_machine_2_4_class_options(MachineClass *mc) 5247 { 5248 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5249 5250 spapr_machine_2_5_class_options(mc); 5251 smc->dr_lmb_enabled = false; 5252 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5253 } 5254 5255 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5256 5257 /* 5258 * pseries-2.3 5259 */ 5260 5261 static void spapr_machine_2_3_class_options(MachineClass *mc) 5262 { 5263 static GlobalProperty compat[] = { 5264 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5265 }; 5266 spapr_machine_2_4_class_options(mc); 5267 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5268 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5269 } 5270 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5271 5272 /* 5273 * pseries-2.2 5274 */ 5275 5276 static void spapr_machine_2_2_class_options(MachineClass *mc) 5277 { 5278 static GlobalProperty compat[] = { 5279 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5280 }; 5281 5282 spapr_machine_2_3_class_options(mc); 5283 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5284 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5285 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5286 } 5287 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5288 5289 /* 5290 * pseries-2.1 5291 */ 5292 5293 static void spapr_machine_2_1_class_options(MachineClass *mc) 5294 { 5295 spapr_machine_2_2_class_options(mc); 5296 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5297 } 5298 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5299 5300 static void spapr_machine_register_types(void) 5301 { 5302 type_register_static(&spapr_machine_info); 5303 } 5304 5305 type_init(spapr_machine_register_types) 5306