xref: /qemu/hw/ppc/spapr.c (revision 9c7b7f01f982a22b06c0d2f49a0d2466b5f34485)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58 
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61 
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
70 
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
75 
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
83 
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
90 
91 #include "monitor/monitor.h"
92 
93 #include <libfdt.h>
94 
95 /* SLOF memory layout:
96  *
97  * SLOF raw image loaded at 0, copies its romfs right below the flat
98  * device-tree, then position SLOF itself 31M below that
99  *
100  * So we set FW_OVERHEAD to 40MB which should account for all of that
101  * and more
102  *
103  * We load our kernel at 4M, leaving space for SLOF initial image
104  */
105 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE             0x400000
107 #define FW_FILE_NAME            "slof.bin"
108 #define FW_FILE_NAME_VOF        "vof.bin"
109 #define FW_OVERHEAD             0x2800000
110 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
111 
112 #define MIN_RMA_SLOF            (128 * MiB)
113 
114 #define PHANDLE_INTC            0x00001111
115 
116 /* These two functions implement the VCPU id numbering: one to compute them
117  * all and one to identify thread 0 of a VCORE. Any change to the first one
118  * is likely to have an impact on the second one, so let's keep them close.
119  */
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
121 {
122     MachineState *ms = MACHINE(spapr);
123     unsigned int smp_threads = ms->smp.threads;
124 
125     assert(spapr->vsmt);
126     return
127         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
128 }
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130                                       PowerPCCPU *cpu)
131 {
132     assert(spapr->vsmt);
133     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
134 }
135 
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
137 {
138     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139      * and newer QEMUs don't even have them. In both cases, we don't want
140      * to send anything on the wire.
141      */
142     return false;
143 }
144 
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146     .name = "icp/server",
147     .version_id = 1,
148     .minimum_version_id = 1,
149     .needed = pre_2_10_vmstate_dummy_icp_needed,
150     .fields = (VMStateField[]) {
151         VMSTATE_UNUSED(4), /* uint32_t xirr */
152         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
153         VMSTATE_UNUSED(1), /* uint8_t mfrr */
154         VMSTATE_END_OF_LIST()
155     },
156 };
157 
158 static void pre_2_10_vmstate_register_dummy_icp(int i)
159 {
160     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
161                      (void *)(uintptr_t) i);
162 }
163 
164 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
165 {
166     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
167                        (void *)(uintptr_t) i);
168 }
169 
170 int spapr_max_server_number(SpaprMachineState *spapr)
171 {
172     MachineState *ms = MACHINE(spapr);
173 
174     assert(spapr->vsmt);
175     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
176 }
177 
178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
179                                   int smt_threads)
180 {
181     int i, ret = 0;
182     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
183     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
184     int index = spapr_get_vcpu_id(cpu);
185 
186     if (cpu->compat_pvr) {
187         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
188         if (ret < 0) {
189             return ret;
190         }
191     }
192 
193     /* Build interrupt servers and gservers properties */
194     for (i = 0; i < smt_threads; i++) {
195         servers_prop[i] = cpu_to_be32(index + i);
196         /* Hack, direct the group queues back to cpu 0 */
197         gservers_prop[i*2] = cpu_to_be32(index + i);
198         gservers_prop[i*2 + 1] = 0;
199     }
200     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
201                       servers_prop, sizeof(*servers_prop) * smt_threads);
202     if (ret < 0) {
203         return ret;
204     }
205     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
206                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
207 
208     return ret;
209 }
210 
211 static void spapr_dt_pa_features(SpaprMachineState *spapr,
212                                  PowerPCCPU *cpu,
213                                  void *fdt, int offset)
214 {
215     uint8_t pa_features_206[] = { 6, 0,
216         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
217     uint8_t pa_features_207[] = { 24, 0,
218         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
219         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
220         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
221         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
222     uint8_t pa_features_300[] = { 66, 0,
223         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
224         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
225         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
226         /* 6: DS207 */
227         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
228         /* 16: Vector */
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
230         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
231         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
232         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
234         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
235         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
236         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
238         /* 42: PM, 44: PC RA, 46: SC vec'd */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
240         /* 48: SIMD, 50: QP BFP, 52: String */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
242         /* 54: DecFP, 56: DecI, 58: SHA */
243         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
244         /* 60: NM atomic, 62: RNG */
245         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
246     };
247     uint8_t *pa_features = NULL;
248     size_t pa_size;
249 
250     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
251         pa_features = pa_features_206;
252         pa_size = sizeof(pa_features_206);
253     }
254     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
255         pa_features = pa_features_207;
256         pa_size = sizeof(pa_features_207);
257     }
258     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
259         pa_features = pa_features_300;
260         pa_size = sizeof(pa_features_300);
261     }
262     if (!pa_features) {
263         return;
264     }
265 
266     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
267         /*
268          * Note: we keep CI large pages off by default because a 64K capable
269          * guest provisioned with large pages might otherwise try to map a qemu
270          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
271          * even if that qemu runs on a 4k host.
272          * We dd this bit back here if we are confident this is not an issue
273          */
274         pa_features[3] |= 0x20;
275     }
276     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
277         pa_features[24] |= 0x80;    /* Transactional memory support */
278     }
279     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
280         /* Workaround for broken kernels that attempt (guest) radix
281          * mode when they can't handle it, if they see the radix bit set
282          * in pa-features. So hide it from them. */
283         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284     }
285 
286     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 }
288 
289 static hwaddr spapr_node0_size(MachineState *machine)
290 {
291     if (machine->numa_state->num_nodes) {
292         int i;
293         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
294             if (machine->numa_state->nodes[i].node_mem) {
295                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
296                            machine->ram_size);
297             }
298         }
299     }
300     return machine->ram_size;
301 }
302 
303 static void add_str(GString *s, const gchar *s1)
304 {
305     g_string_append_len(s, s1, strlen(s1) + 1);
306 }
307 
308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
309                                 hwaddr start, hwaddr size)
310 {
311     char mem_name[32];
312     uint64_t mem_reg_property[2];
313     int off;
314 
315     mem_reg_property[0] = cpu_to_be64(start);
316     mem_reg_property[1] = cpu_to_be64(size);
317 
318     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
319     off = fdt_add_subnode(fdt, 0, mem_name);
320     _FDT(off);
321     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
322     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
323                       sizeof(mem_reg_property))));
324     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
325     return off;
326 }
327 
328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
329 {
330     MemoryDeviceInfoList *info;
331 
332     for (info = list; info; info = info->next) {
333         MemoryDeviceInfo *value = info->value;
334 
335         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
336             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
337 
338             if (addr >= pcdimm_info->addr &&
339                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
340                 return pcdimm_info->node;
341             }
342         }
343     }
344 
345     return -1;
346 }
347 
348 struct sPAPRDrconfCellV2 {
349      uint32_t seq_lmbs;
350      uint64_t base_addr;
351      uint32_t drc_index;
352      uint32_t aa_index;
353      uint32_t flags;
354 } QEMU_PACKED;
355 
356 typedef struct DrconfCellQueue {
357     struct sPAPRDrconfCellV2 cell;
358     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
359 } DrconfCellQueue;
360 
361 static DrconfCellQueue *
362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
363                       uint32_t drc_index, uint32_t aa_index,
364                       uint32_t flags)
365 {
366     DrconfCellQueue *elem;
367 
368     elem = g_malloc0(sizeof(*elem));
369     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
370     elem->cell.base_addr = cpu_to_be64(base_addr);
371     elem->cell.drc_index = cpu_to_be32(drc_index);
372     elem->cell.aa_index = cpu_to_be32(aa_index);
373     elem->cell.flags = cpu_to_be32(flags);
374 
375     return elem;
376 }
377 
378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
379                                       int offset, MemoryDeviceInfoList *dimms)
380 {
381     MachineState *machine = MACHINE(spapr);
382     uint8_t *int_buf, *cur_index;
383     int ret;
384     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
385     uint64_t addr, cur_addr, size;
386     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
387     uint64_t mem_end = machine->device_memory->base +
388                        memory_region_size(&machine->device_memory->mr);
389     uint32_t node, buf_len, nr_entries = 0;
390     SpaprDrc *drc;
391     DrconfCellQueue *elem, *next;
392     MemoryDeviceInfoList *info;
393     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
394         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
395 
396     /* Entry to cover RAM and the gap area */
397     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
398                                  SPAPR_LMB_FLAGS_RESERVED |
399                                  SPAPR_LMB_FLAGS_DRC_INVALID);
400     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
401     nr_entries++;
402 
403     cur_addr = machine->device_memory->base;
404     for (info = dimms; info; info = info->next) {
405         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
406 
407         addr = di->addr;
408         size = di->size;
409         node = di->node;
410 
411         /*
412          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
413          * area is marked hotpluggable in the next iteration for the bigger
414          * chunk including the NVDIMM occupied area.
415          */
416         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
417             continue;
418 
419         /* Entry for hot-pluggable area */
420         if (cur_addr < addr) {
421             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
422             g_assert(drc);
423             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
424                                          cur_addr, spapr_drc_index(drc), -1, 0);
425             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
426             nr_entries++;
427         }
428 
429         /* Entry for DIMM */
430         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
431         g_assert(drc);
432         elem = spapr_get_drconf_cell(size / lmb_size, addr,
433                                      spapr_drc_index(drc), node,
434                                      (SPAPR_LMB_FLAGS_ASSIGNED |
435                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
436         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
437         nr_entries++;
438         cur_addr = addr + size;
439     }
440 
441     /* Entry for remaining hotpluggable area */
442     if (cur_addr < mem_end) {
443         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
444         g_assert(drc);
445         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
446                                      cur_addr, spapr_drc_index(drc), -1, 0);
447         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
448         nr_entries++;
449     }
450 
451     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
452     int_buf = cur_index = g_malloc0(buf_len);
453     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
454     cur_index += sizeof(nr_entries);
455 
456     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
457         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
458         cur_index += sizeof(elem->cell);
459         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
460         g_free(elem);
461     }
462 
463     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
464     g_free(int_buf);
465     if (ret < 0) {
466         return -1;
467     }
468     return 0;
469 }
470 
471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
472                                    int offset, MemoryDeviceInfoList *dimms)
473 {
474     MachineState *machine = MACHINE(spapr);
475     int i, ret;
476     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
477     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
478     uint32_t nr_lmbs = (machine->device_memory->base +
479                        memory_region_size(&machine->device_memory->mr)) /
480                        lmb_size;
481     uint32_t *int_buf, *cur_index, buf_len;
482 
483     /*
484      * Allocate enough buffer size to fit in ibm,dynamic-memory
485      */
486     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
487     cur_index = int_buf = g_malloc0(buf_len);
488     int_buf[0] = cpu_to_be32(nr_lmbs);
489     cur_index++;
490     for (i = 0; i < nr_lmbs; i++) {
491         uint64_t addr = i * lmb_size;
492         uint32_t *dynamic_memory = cur_index;
493 
494         if (i >= device_lmb_start) {
495             SpaprDrc *drc;
496 
497             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
498             g_assert(drc);
499 
500             dynamic_memory[0] = cpu_to_be32(addr >> 32);
501             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
502             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
503             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
504             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
505             if (memory_region_present(get_system_memory(), addr)) {
506                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
507             } else {
508                 dynamic_memory[5] = cpu_to_be32(0);
509             }
510         } else {
511             /*
512              * LMB information for RMA, boot time RAM and gap b/n RAM and
513              * device memory region -- all these are marked as reserved
514              * and as having no valid DRC.
515              */
516             dynamic_memory[0] = cpu_to_be32(addr >> 32);
517             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
518             dynamic_memory[2] = cpu_to_be32(0);
519             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
520             dynamic_memory[4] = cpu_to_be32(-1);
521             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
522                                             SPAPR_LMB_FLAGS_DRC_INVALID);
523         }
524 
525         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
526     }
527     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
528     g_free(int_buf);
529     if (ret < 0) {
530         return -1;
531     }
532     return 0;
533 }
534 
535 /*
536  * Adds ibm,dynamic-reconfiguration-memory node.
537  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
538  * of this device tree node.
539  */
540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
541                                                    void *fdt)
542 {
543     MachineState *machine = MACHINE(spapr);
544     int ret, offset;
545     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
546     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
547                                 cpu_to_be32(lmb_size & 0xffffffff)};
548     MemoryDeviceInfoList *dimms = NULL;
549 
550     /* Don't create the node if there is no device memory. */
551     if (!machine->device_memory) {
552         return 0;
553     }
554 
555     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
556 
557     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
558                     sizeof(prop_lmb_size));
559     if (ret < 0) {
560         return ret;
561     }
562 
563     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
564     if (ret < 0) {
565         return ret;
566     }
567 
568     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
569     if (ret < 0) {
570         return ret;
571     }
572 
573     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
574     dimms = qmp_memory_device_list();
575     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
576         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
577     } else {
578         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
579     }
580     qapi_free_MemoryDeviceInfoList(dimms);
581 
582     if (ret < 0) {
583         return ret;
584     }
585 
586     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
587 
588     return ret;
589 }
590 
591 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
592 {
593     MachineState *machine = MACHINE(spapr);
594     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
595     hwaddr mem_start, node_size;
596     int i, nb_nodes = machine->numa_state->num_nodes;
597     NodeInfo *nodes = machine->numa_state->nodes;
598 
599     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
600         if (!nodes[i].node_mem) {
601             continue;
602         }
603         if (mem_start >= machine->ram_size) {
604             node_size = 0;
605         } else {
606             node_size = nodes[i].node_mem;
607             if (node_size > machine->ram_size - mem_start) {
608                 node_size = machine->ram_size - mem_start;
609             }
610         }
611         if (!mem_start) {
612             /* spapr_machine_init() checks for rma_size <= node0_size
613              * already */
614             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
615             mem_start += spapr->rma_size;
616             node_size -= spapr->rma_size;
617         }
618         for ( ; node_size; ) {
619             hwaddr sizetmp = pow2floor(node_size);
620 
621             /* mem_start != 0 here */
622             if (ctzl(mem_start) < ctzl(sizetmp)) {
623                 sizetmp = 1ULL << ctzl(mem_start);
624             }
625 
626             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
627             node_size -= sizetmp;
628             mem_start += sizetmp;
629         }
630     }
631 
632     /* Generate ibm,dynamic-reconfiguration-memory node if required */
633     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
634         int ret;
635 
636         g_assert(smc->dr_lmb_enabled);
637         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
638         if (ret) {
639             return ret;
640         }
641     }
642 
643     return 0;
644 }
645 
646 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
647                          SpaprMachineState *spapr)
648 {
649     MachineState *ms = MACHINE(spapr);
650     PowerPCCPU *cpu = POWERPC_CPU(cs);
651     CPUPPCState *env = &cpu->env;
652     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
653     int index = spapr_get_vcpu_id(cpu);
654     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
655                        0xffffffff, 0xffffffff};
656     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
657         : SPAPR_TIMEBASE_FREQ;
658     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
659     uint32_t page_sizes_prop[64];
660     size_t page_sizes_prop_size;
661     unsigned int smp_threads = ms->smp.threads;
662     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
663     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
664     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
665     SpaprDrc *drc;
666     int drc_index;
667     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
668     int i;
669 
670     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
671     if (drc) {
672         drc_index = spapr_drc_index(drc);
673         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
674     }
675 
676     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
677     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
678 
679     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
680     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
681                            env->dcache_line_size)));
682     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
683                            env->dcache_line_size)));
684     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
685                            env->icache_line_size)));
686     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
687                            env->icache_line_size)));
688 
689     if (pcc->l1_dcache_size) {
690         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
691                                pcc->l1_dcache_size)));
692     } else {
693         warn_report("Unknown L1 dcache size for cpu");
694     }
695     if (pcc->l1_icache_size) {
696         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
697                                pcc->l1_icache_size)));
698     } else {
699         warn_report("Unknown L1 icache size for cpu");
700     }
701 
702     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
703     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
704     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
705     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
706     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
707     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
708 
709     if (ppc_has_spr(cpu, SPR_PURR)) {
710         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
711     }
712     if (ppc_has_spr(cpu, SPR_PURR)) {
713         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
714     }
715 
716     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
717         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
718                           segs, sizeof(segs))));
719     }
720 
721     /* Advertise VSX (vector extensions) if available
722      *   1               == VMX / Altivec available
723      *   2               == VSX available
724      *
725      * Only CPUs for which we create core types in spapr_cpu_core.c
726      * are possible, and all of those have VMX */
727     if (env->insns_flags & PPC_ALTIVEC) {
728         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
729             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
730         } else {
731             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
732         }
733     }
734 
735     /* Advertise DFP (Decimal Floating Point) if available
736      *   0 / no property == no DFP
737      *   1               == DFP available */
738     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
739         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
740     }
741 
742     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
743                                                       sizeof(page_sizes_prop));
744     if (page_sizes_prop_size) {
745         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
746                           page_sizes_prop, page_sizes_prop_size)));
747     }
748 
749     spapr_dt_pa_features(spapr, cpu, fdt, offset);
750 
751     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
752                            cs->cpu_index / vcpus_per_socket)));
753 
754     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
755                       pft_size_prop, sizeof(pft_size_prop))));
756 
757     if (ms->numa_state->num_nodes > 1) {
758         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
759     }
760 
761     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
762 
763     if (pcc->radix_page_info) {
764         for (i = 0; i < pcc->radix_page_info->count; i++) {
765             radix_AP_encodings[i] =
766                 cpu_to_be32(pcc->radix_page_info->entries[i]);
767         }
768         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
769                           radix_AP_encodings,
770                           pcc->radix_page_info->count *
771                           sizeof(radix_AP_encodings[0]))));
772     }
773 
774     /*
775      * We set this property to let the guest know that it can use the large
776      * decrementer and its width in bits.
777      */
778     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
779         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
780                               pcc->lrg_decr_bits)));
781 }
782 
783 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
784 {
785     CPUState **rev;
786     CPUState *cs;
787     int n_cpus;
788     int cpus_offset;
789     int i;
790 
791     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
792     _FDT(cpus_offset);
793     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
794     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
795 
796     /*
797      * We walk the CPUs in reverse order to ensure that CPU DT nodes
798      * created by fdt_add_subnode() end up in the right order in FDT
799      * for the guest kernel the enumerate the CPUs correctly.
800      *
801      * The CPU list cannot be traversed in reverse order, so we need
802      * to do extra work.
803      */
804     n_cpus = 0;
805     rev = NULL;
806     CPU_FOREACH(cs) {
807         rev = g_renew(CPUState *, rev, n_cpus + 1);
808         rev[n_cpus++] = cs;
809     }
810 
811     for (i = n_cpus - 1; i >= 0; i--) {
812         CPUState *cs = rev[i];
813         PowerPCCPU *cpu = POWERPC_CPU(cs);
814         int index = spapr_get_vcpu_id(cpu);
815         DeviceClass *dc = DEVICE_GET_CLASS(cs);
816         g_autofree char *nodename = NULL;
817         int offset;
818 
819         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
820             continue;
821         }
822 
823         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
824         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
825         _FDT(offset);
826         spapr_dt_cpu(cs, fdt, offset, spapr);
827     }
828 
829     g_free(rev);
830 }
831 
832 static int spapr_dt_rng(void *fdt)
833 {
834     int node;
835     int ret;
836 
837     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
838     if (node <= 0) {
839         return -1;
840     }
841     ret = fdt_setprop_string(fdt, node, "device_type",
842                              "ibm,platform-facilities");
843     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
844     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
845 
846     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
847     if (node <= 0) {
848         return -1;
849     }
850     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
851 
852     return ret ? -1 : 0;
853 }
854 
855 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
856 {
857     MachineState *ms = MACHINE(spapr);
858     int rtas;
859     GString *hypertas = g_string_sized_new(256);
860     GString *qemu_hypertas = g_string_sized_new(256);
861     uint32_t lrdr_capacity[] = {
862         0,
863         0,
864         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
865         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
866         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
867     };
868 
869     /* Do we have device memory? */
870     if (MACHINE(spapr)->device_memory) {
871         uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
872             memory_region_size(&MACHINE(spapr)->device_memory->mr);
873 
874         lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
875         lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
876     }
877 
878     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
879 
880     /* hypertas */
881     add_str(hypertas, "hcall-pft");
882     add_str(hypertas, "hcall-term");
883     add_str(hypertas, "hcall-dabr");
884     add_str(hypertas, "hcall-interrupt");
885     add_str(hypertas, "hcall-tce");
886     add_str(hypertas, "hcall-vio");
887     add_str(hypertas, "hcall-splpar");
888     add_str(hypertas, "hcall-join");
889     add_str(hypertas, "hcall-bulk");
890     add_str(hypertas, "hcall-set-mode");
891     add_str(hypertas, "hcall-sprg0");
892     add_str(hypertas, "hcall-copy");
893     add_str(hypertas, "hcall-debug");
894     add_str(hypertas, "hcall-vphn");
895     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
896         add_str(hypertas, "hcall-rpt-invalidate");
897     }
898 
899     add_str(qemu_hypertas, "hcall-memop1");
900 
901     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
902         add_str(hypertas, "hcall-multi-tce");
903     }
904 
905     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
906         add_str(hypertas, "hcall-hpt-resize");
907     }
908 
909     add_str(hypertas, "hcall-watchdog");
910 
911     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
912                      hypertas->str, hypertas->len));
913     g_string_free(hypertas, TRUE);
914     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
915                      qemu_hypertas->str, qemu_hypertas->len));
916     g_string_free(qemu_hypertas, TRUE);
917 
918     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
919 
920     /*
921      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
922      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
923      *
924      * The system reset requirements are driven by existing Linux and PowerVM
925      * implementation which (contrary to PAPR) saves r3 in the error log
926      * structure like machine check, so Linux expects to find the saved r3
927      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
928      * does not look at the error value).
929      *
930      * System reset interrupts are not subject to interlock like machine
931      * check, so this memory area could be corrupted if the sreset is
932      * interrupted by a machine check (or vice versa) if it was shared. To
933      * prevent this, system reset uses per-CPU areas for the sreset save
934      * area. A system reset that interrupts a system reset handler could
935      * still overwrite this area, but Linux doesn't try to recover in that
936      * case anyway.
937      *
938      * The extra 8 bytes is required because Linux's FWNMI error log check
939      * is off-by-one.
940      *
941      * RTAS_MIN_SIZE is required for the RTAS blob itself.
942      */
943     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
944                           RTAS_ERROR_LOG_MAX +
945                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
946                           sizeof(uint64_t)));
947     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
948                           RTAS_ERROR_LOG_MAX));
949     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
950                           RTAS_EVENT_SCAN_RATE));
951 
952     g_assert(msi_nonbroken);
953     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
954 
955     /*
956      * According to PAPR, rtas ibm,os-term does not guarantee a return
957      * back to the guest cpu.
958      *
959      * While an additional ibm,extended-os-term property indicates
960      * that rtas call return will always occur. Set this property.
961      */
962     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
963 
964     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
965                      lrdr_capacity, sizeof(lrdr_capacity)));
966 
967     spapr_dt_rtas_tokens(fdt, rtas);
968 }
969 
970 /*
971  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
972  * and the XIVE features that the guest may request and thus the valid
973  * values for bytes 23..26 of option vector 5:
974  */
975 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
976                                           int chosen)
977 {
978     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
979 
980     char val[2 * 4] = {
981         23, 0x00, /* XICS / XIVE mode */
982         24, 0x00, /* Hash/Radix, filled in below. */
983         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
984         26, 0x40, /* Radix options: GTSE == yes. */
985     };
986 
987     if (spapr->irq->xics && spapr->irq->xive) {
988         val[1] = SPAPR_OV5_XIVE_BOTH;
989     } else if (spapr->irq->xive) {
990         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
991     } else {
992         assert(spapr->irq->xics);
993         val[1] = SPAPR_OV5_XIVE_LEGACY;
994     }
995 
996     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
997                           first_ppc_cpu->compat_pvr)) {
998         /*
999          * If we're in a pre POWER9 compat mode then the guest should
1000          * do hash and use the legacy interrupt mode
1001          */
1002         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1003         val[3] = 0x00; /* Hash */
1004         spapr_check_mmu_mode(false);
1005     } else if (kvm_enabled()) {
1006         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1007             val[3] = 0x80; /* OV5_MMU_BOTH */
1008         } else if (kvmppc_has_cap_mmu_radix()) {
1009             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1010         } else {
1011             val[3] = 0x00; /* Hash */
1012         }
1013     } else {
1014         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1015         val[3] = 0xC0;
1016     }
1017     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1018                      val, sizeof(val)));
1019 }
1020 
1021 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1022 {
1023     MachineState *machine = MACHINE(spapr);
1024     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1025     uint8_t rng_seed[32];
1026     int chosen;
1027 
1028     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1029 
1030     if (reset) {
1031         const char *boot_device = spapr->boot_device;
1032         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1033         size_t cb = 0;
1034         g_autofree char *bootlist = get_boot_devices_list(&cb);
1035 
1036         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1037             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1038                                     machine->kernel_cmdline));
1039         }
1040 
1041         if (spapr->initrd_size) {
1042             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1043                                   spapr->initrd_base));
1044             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1045                                   spapr->initrd_base + spapr->initrd_size));
1046         }
1047 
1048         if (spapr->kernel_size) {
1049             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1050                                   cpu_to_be64(spapr->kernel_size) };
1051 
1052             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1053                          &kprop, sizeof(kprop)));
1054             if (spapr->kernel_le) {
1055                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1056             }
1057         }
1058         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1059             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1060         }
1061         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1062         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1063         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1064 
1065         if (cb && bootlist) {
1066             int i;
1067 
1068             for (i = 0; i < cb; i++) {
1069                 if (bootlist[i] == '\n') {
1070                     bootlist[i] = ' ';
1071                 }
1072             }
1073             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1074         }
1075 
1076         if (boot_device && strlen(boot_device)) {
1077             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1078         }
1079 
1080         if (spapr->want_stdout_path && stdout_path) {
1081             /*
1082              * "linux,stdout-path" and "stdout" properties are
1083              * deprecated by linux kernel. New platforms should only
1084              * use the "stdout-path" property. Set the new property
1085              * and continue using older property to remain compatible
1086              * with the existing firmware.
1087              */
1088             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1089             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1090         }
1091 
1092         /*
1093          * We can deal with BAR reallocation just fine, advertise it
1094          * to the guest
1095          */
1096         if (smc->linux_pci_probe) {
1097             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1098         }
1099 
1100         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1101     }
1102 
1103     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1104     _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1105 
1106     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1107 }
1108 
1109 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1110 {
1111     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1112      * KVM to work under pHyp with some guest co-operation */
1113     int hypervisor;
1114     uint8_t hypercall[16];
1115 
1116     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1117     /* indicate KVM hypercall interface */
1118     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1119     if (kvmppc_has_cap_fixup_hcalls()) {
1120         /*
1121          * Older KVM versions with older guest kernels were broken
1122          * with the magic page, don't allow the guest to map it.
1123          */
1124         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1125                                   sizeof(hypercall))) {
1126             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1127                              hypercall, sizeof(hypercall)));
1128         }
1129     }
1130 }
1131 
1132 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1133 {
1134     MachineState *machine = MACHINE(spapr);
1135     MachineClass *mc = MACHINE_GET_CLASS(machine);
1136     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1137     uint32_t root_drc_type_mask = 0;
1138     int ret;
1139     void *fdt;
1140     SpaprPhbState *phb;
1141     char *buf;
1142 
1143     fdt = g_malloc0(space);
1144     _FDT((fdt_create_empty_tree(fdt, space)));
1145 
1146     /* Root node */
1147     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1148     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1149     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1150 
1151     /* Guest UUID & Name*/
1152     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1153     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1154     if (qemu_uuid_set) {
1155         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1156     }
1157     g_free(buf);
1158 
1159     if (qemu_get_vm_name()) {
1160         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1161                                 qemu_get_vm_name()));
1162     }
1163 
1164     /* Host Model & Serial Number */
1165     if (spapr->host_model) {
1166         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1167     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1168         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1169         g_free(buf);
1170     }
1171 
1172     if (spapr->host_serial) {
1173         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1174     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1175         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1176         g_free(buf);
1177     }
1178 
1179     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1180     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1181 
1182     /* /interrupt controller */
1183     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1184 
1185     ret = spapr_dt_memory(spapr, fdt);
1186     if (ret < 0) {
1187         error_report("couldn't setup memory nodes in fdt");
1188         exit(1);
1189     }
1190 
1191     /* /vdevice */
1192     spapr_dt_vdevice(spapr->vio_bus, fdt);
1193 
1194     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1195         ret = spapr_dt_rng(fdt);
1196         if (ret < 0) {
1197             error_report("could not set up rng device in the fdt");
1198             exit(1);
1199         }
1200     }
1201 
1202     QLIST_FOREACH(phb, &spapr->phbs, list) {
1203         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1204         if (ret < 0) {
1205             error_report("couldn't setup PCI devices in fdt");
1206             exit(1);
1207         }
1208     }
1209 
1210     spapr_dt_cpus(fdt, spapr);
1211 
1212     /* ibm,drc-indexes and friends */
1213     if (smc->dr_lmb_enabled) {
1214         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1215     }
1216     if (smc->dr_phb_enabled) {
1217         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1218     }
1219     if (mc->nvdimm_supported) {
1220         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1221     }
1222     if (root_drc_type_mask) {
1223         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1224     }
1225 
1226     if (mc->has_hotpluggable_cpus) {
1227         int offset = fdt_path_offset(fdt, "/cpus");
1228         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1229         if (ret < 0) {
1230             error_report("Couldn't set up CPU DR device tree properties");
1231             exit(1);
1232         }
1233     }
1234 
1235     /* /event-sources */
1236     spapr_dt_events(spapr, fdt);
1237 
1238     /* /rtas */
1239     spapr_dt_rtas(spapr, fdt);
1240 
1241     /* /chosen */
1242     spapr_dt_chosen(spapr, fdt, reset);
1243 
1244     /* /hypervisor */
1245     if (kvm_enabled()) {
1246         spapr_dt_hypervisor(spapr, fdt);
1247     }
1248 
1249     /* Build memory reserve map */
1250     if (reset) {
1251         if (spapr->kernel_size) {
1252             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1253                                   spapr->kernel_size)));
1254         }
1255         if (spapr->initrd_size) {
1256             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1257                                   spapr->initrd_size)));
1258         }
1259     }
1260 
1261     /* NVDIMM devices */
1262     if (mc->nvdimm_supported) {
1263         spapr_dt_persistent_memory(spapr, fdt);
1264     }
1265 
1266     return fdt;
1267 }
1268 
1269 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1270 {
1271     SpaprMachineState *spapr = opaque;
1272 
1273     return (addr & 0x0fffffff) + spapr->kernel_addr;
1274 }
1275 
1276 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1277                                     PowerPCCPU *cpu)
1278 {
1279     CPUPPCState *env = &cpu->env;
1280 
1281     /* The TCG path should also be holding the BQL at this point */
1282     g_assert(qemu_mutex_iothread_locked());
1283 
1284     g_assert(!vhyp_cpu_in_nested(cpu));
1285 
1286     if (FIELD_EX64(env->msr, MSR, PR)) {
1287         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1288         env->gpr[3] = H_PRIVILEGE;
1289     } else {
1290         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1291     }
1292 }
1293 
1294 struct LPCRSyncState {
1295     target_ulong value;
1296     target_ulong mask;
1297 };
1298 
1299 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1300 {
1301     struct LPCRSyncState *s = arg.host_ptr;
1302     PowerPCCPU *cpu = POWERPC_CPU(cs);
1303     CPUPPCState *env = &cpu->env;
1304     target_ulong lpcr;
1305 
1306     cpu_synchronize_state(cs);
1307     lpcr = env->spr[SPR_LPCR];
1308     lpcr &= ~s->mask;
1309     lpcr |= s->value;
1310     ppc_store_lpcr(cpu, lpcr);
1311 }
1312 
1313 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1314 {
1315     CPUState *cs;
1316     struct LPCRSyncState s = {
1317         .value = value,
1318         .mask = mask
1319     };
1320     CPU_FOREACH(cs) {
1321         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1322     }
1323 }
1324 
1325 /* May be used when the machine is not running */
1326 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1327 {
1328     CPUState *cs;
1329     CPU_FOREACH(cs) {
1330         PowerPCCPU *cpu = POWERPC_CPU(cs);
1331         CPUPPCState *env = &cpu->env;
1332         target_ulong lpcr;
1333 
1334         lpcr = env->spr[SPR_LPCR];
1335         lpcr &= ~(LPCR_HR | LPCR_UPRT);
1336         ppc_store_lpcr(cpu, lpcr);
1337     }
1338 }
1339 
1340 
1341 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1342                            target_ulong lpid, ppc_v3_pate_t *entry)
1343 {
1344     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1345     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1346 
1347     if (!spapr_cpu->in_nested) {
1348         assert(lpid == 0);
1349 
1350         /* Copy PATE1:GR into PATE0:HR */
1351         entry->dw0 = spapr->patb_entry & PATE0_HR;
1352         entry->dw1 = spapr->patb_entry;
1353 
1354     } else {
1355         uint64_t patb, pats;
1356 
1357         assert(lpid != 0);
1358 
1359         patb = spapr->nested_ptcr & PTCR_PATB;
1360         pats = spapr->nested_ptcr & PTCR_PATS;
1361 
1362         /* Check if partition table is properly aligned */
1363         if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1364             return false;
1365         }
1366 
1367         /* Calculate number of entries */
1368         pats = 1ull << (pats + 12 - 4);
1369         if (pats <= lpid) {
1370             return false;
1371         }
1372 
1373         /* Grab entry */
1374         patb += 16 * lpid;
1375         entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1376         entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1377     }
1378 
1379     return true;
1380 }
1381 
1382 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1383 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1384 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1385 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1386 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1387 
1388 /*
1389  * Get the fd to access the kernel htab, re-opening it if necessary
1390  */
1391 static int get_htab_fd(SpaprMachineState *spapr)
1392 {
1393     Error *local_err = NULL;
1394 
1395     if (spapr->htab_fd >= 0) {
1396         return spapr->htab_fd;
1397     }
1398 
1399     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1400     if (spapr->htab_fd < 0) {
1401         error_report_err(local_err);
1402     }
1403 
1404     return spapr->htab_fd;
1405 }
1406 
1407 void close_htab_fd(SpaprMachineState *spapr)
1408 {
1409     if (spapr->htab_fd >= 0) {
1410         close(spapr->htab_fd);
1411     }
1412     spapr->htab_fd = -1;
1413 }
1414 
1415 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1416 {
1417     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1418 
1419     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1420 }
1421 
1422 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1423 {
1424     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1425 
1426     assert(kvm_enabled());
1427 
1428     if (!spapr->htab) {
1429         return 0;
1430     }
1431 
1432     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1433 }
1434 
1435 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1436                                                 hwaddr ptex, int n)
1437 {
1438     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1439     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1440 
1441     if (!spapr->htab) {
1442         /*
1443          * HTAB is controlled by KVM. Fetch into temporary buffer
1444          */
1445         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1446         kvmppc_read_hptes(hptes, ptex, n);
1447         return hptes;
1448     }
1449 
1450     /*
1451      * HTAB is controlled by QEMU. Just point to the internally
1452      * accessible PTEG.
1453      */
1454     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1455 }
1456 
1457 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1458                               const ppc_hash_pte64_t *hptes,
1459                               hwaddr ptex, int n)
1460 {
1461     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1462 
1463     if (!spapr->htab) {
1464         g_free((void *)hptes);
1465     }
1466 
1467     /* Nothing to do for qemu managed HPT */
1468 }
1469 
1470 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1471                       uint64_t pte0, uint64_t pte1)
1472 {
1473     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1474     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1475 
1476     if (!spapr->htab) {
1477         kvmppc_write_hpte(ptex, pte0, pte1);
1478     } else {
1479         if (pte0 & HPTE64_V_VALID) {
1480             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1481             /*
1482              * When setting valid, we write PTE1 first. This ensures
1483              * proper synchronization with the reading code in
1484              * ppc_hash64_pteg_search()
1485              */
1486             smp_wmb();
1487             stq_p(spapr->htab + offset, pte0);
1488         } else {
1489             stq_p(spapr->htab + offset, pte0);
1490             /*
1491              * When clearing it we set PTE0 first. This ensures proper
1492              * synchronization with the reading code in
1493              * ppc_hash64_pteg_search()
1494              */
1495             smp_wmb();
1496             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1497         }
1498     }
1499 }
1500 
1501 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1502                              uint64_t pte1)
1503 {
1504     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1505     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1506 
1507     if (!spapr->htab) {
1508         /* There should always be a hash table when this is called */
1509         error_report("spapr_hpte_set_c called with no hash table !");
1510         return;
1511     }
1512 
1513     /* The HW performs a non-atomic byte update */
1514     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1515 }
1516 
1517 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1518                              uint64_t pte1)
1519 {
1520     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1521     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1522 
1523     if (!spapr->htab) {
1524         /* There should always be a hash table when this is called */
1525         error_report("spapr_hpte_set_r called with no hash table !");
1526         return;
1527     }
1528 
1529     /* The HW performs a non-atomic byte update */
1530     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1531 }
1532 
1533 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1534 {
1535     int shift;
1536 
1537     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1538      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1539      * that's much more than is needed for Linux guests */
1540     shift = ctz64(pow2ceil(ramsize)) - 7;
1541     shift = MAX(shift, 18); /* Minimum architected size */
1542     shift = MIN(shift, 46); /* Maximum architected size */
1543     return shift;
1544 }
1545 
1546 void spapr_free_hpt(SpaprMachineState *spapr)
1547 {
1548     qemu_vfree(spapr->htab);
1549     spapr->htab = NULL;
1550     spapr->htab_shift = 0;
1551     close_htab_fd(spapr);
1552 }
1553 
1554 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1555 {
1556     ERRP_GUARD();
1557     long rc;
1558 
1559     /* Clean up any HPT info from a previous boot */
1560     spapr_free_hpt(spapr);
1561 
1562     rc = kvmppc_reset_htab(shift);
1563 
1564     if (rc == -EOPNOTSUPP) {
1565         error_setg(errp, "HPT not supported in nested guests");
1566         return -EOPNOTSUPP;
1567     }
1568 
1569     if (rc < 0) {
1570         /* kernel-side HPT needed, but couldn't allocate one */
1571         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1572                          shift);
1573         error_append_hint(errp, "Try smaller maxmem?\n");
1574         return -errno;
1575     } else if (rc > 0) {
1576         /* kernel-side HPT allocated */
1577         if (rc != shift) {
1578             error_setg(errp,
1579                        "Requested order %d HPT, but kernel allocated order %ld",
1580                        shift, rc);
1581             error_append_hint(errp, "Try smaller maxmem?\n");
1582             return -ENOSPC;
1583         }
1584 
1585         spapr->htab_shift = shift;
1586         spapr->htab = NULL;
1587     } else {
1588         /* kernel-side HPT not needed, allocate in userspace instead */
1589         size_t size = 1ULL << shift;
1590         int i;
1591 
1592         spapr->htab = qemu_memalign(size, size);
1593         memset(spapr->htab, 0, size);
1594         spapr->htab_shift = shift;
1595 
1596         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1597             DIRTY_HPTE(HPTE(spapr->htab, i));
1598         }
1599     }
1600     /* We're setting up a hash table, so that means we're not radix */
1601     spapr->patb_entry = 0;
1602     spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1603     return 0;
1604 }
1605 
1606 void spapr_setup_hpt(SpaprMachineState *spapr)
1607 {
1608     int hpt_shift;
1609 
1610     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1611         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1612     } else {
1613         uint64_t current_ram_size;
1614 
1615         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1616         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1617     }
1618     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1619 
1620     if (kvm_enabled()) {
1621         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1622 
1623         /* Check our RMA fits in the possible VRMA */
1624         if (vrma_limit < spapr->rma_size) {
1625             error_report("Unable to create %" HWADDR_PRIu
1626                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1627                          spapr->rma_size / MiB, vrma_limit / MiB);
1628             exit(EXIT_FAILURE);
1629         }
1630     }
1631 }
1632 
1633 void spapr_check_mmu_mode(bool guest_radix)
1634 {
1635     if (guest_radix) {
1636         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1637             error_report("Guest requested unavailable MMU mode (radix).");
1638             exit(EXIT_FAILURE);
1639         }
1640     } else {
1641         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1642             && !kvmppc_has_cap_mmu_hash_v3()) {
1643             error_report("Guest requested unavailable MMU mode (hash).");
1644             exit(EXIT_FAILURE);
1645         }
1646     }
1647 }
1648 
1649 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1650 {
1651     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1652     PowerPCCPU *first_ppc_cpu;
1653     hwaddr fdt_addr;
1654     void *fdt;
1655     int rc;
1656 
1657     pef_kvm_reset(machine->cgs, &error_fatal);
1658     spapr_caps_apply(spapr);
1659 
1660     first_ppc_cpu = POWERPC_CPU(first_cpu);
1661     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1662         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1663                               spapr->max_compat_pvr)) {
1664         /*
1665          * If using KVM with radix mode available, VCPUs can be started
1666          * without a HPT because KVM will start them in radix mode.
1667          * Set the GR bit in PATE so that we know there is no HPT.
1668          */
1669         spapr->patb_entry = PATE1_GR;
1670         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1671     } else {
1672         spapr_setup_hpt(spapr);
1673     }
1674 
1675     qemu_devices_reset(reason);
1676 
1677     spapr_ovec_cleanup(spapr->ov5_cas);
1678     spapr->ov5_cas = spapr_ovec_new();
1679 
1680     ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1681 
1682     /*
1683      * This is fixing some of the default configuration of the XIVE
1684      * devices. To be called after the reset of the machine devices.
1685      */
1686     spapr_irq_reset(spapr, &error_fatal);
1687 
1688     /*
1689      * There is no CAS under qtest. Simulate one to please the code that
1690      * depends on spapr->ov5_cas. This is especially needed to test device
1691      * unplug, so we do that before resetting the DRCs.
1692      */
1693     if (qtest_enabled()) {
1694         spapr_ovec_cleanup(spapr->ov5_cas);
1695         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1696     }
1697 
1698     spapr_nvdimm_finish_flushes();
1699 
1700     /* DRC reset may cause a device to be unplugged. This will cause troubles
1701      * if this device is used by another device (eg, a running vhost backend
1702      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1703      * situations, we reset DRCs after all devices have been reset.
1704      */
1705     spapr_drc_reset_all(spapr);
1706 
1707     spapr_clear_pending_events(spapr);
1708 
1709     /*
1710      * We place the device tree just below either the top of the RMA,
1711      * or just below 2GB, whichever is lower, so that it can be
1712      * processed with 32-bit real mode code if necessary
1713      */
1714     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1715 
1716     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1717     if (spapr->vof) {
1718         spapr_vof_reset(spapr, fdt, &error_fatal);
1719         /*
1720          * Do not pack the FDT as the client may change properties.
1721          * VOF client does not expect the FDT so we do not load it to the VM.
1722          */
1723     } else {
1724         rc = fdt_pack(fdt);
1725         /* Should only fail if we've built a corrupted tree */
1726         assert(rc == 0);
1727 
1728         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1729                                   0, fdt_addr, 0);
1730         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1731     }
1732     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1733 
1734     g_free(spapr->fdt_blob);
1735     spapr->fdt_size = fdt_totalsize(fdt);
1736     spapr->fdt_initial_size = spapr->fdt_size;
1737     spapr->fdt_blob = fdt;
1738 
1739     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1740     machine->fdt = fdt;
1741 
1742     /* Set up the entry state */
1743     first_ppc_cpu->env.gpr[5] = 0;
1744 
1745     spapr->fwnmi_system_reset_addr = -1;
1746     spapr->fwnmi_machine_check_addr = -1;
1747     spapr->fwnmi_machine_check_interlock = -1;
1748 
1749     /* Signal all vCPUs waiting on this condition */
1750     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1751 
1752     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1753 }
1754 
1755 static void spapr_create_nvram(SpaprMachineState *spapr)
1756 {
1757     DeviceState *dev = qdev_new("spapr-nvram");
1758     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1759 
1760     if (dinfo) {
1761         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1762                                 &error_fatal);
1763     }
1764 
1765     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1766 
1767     spapr->nvram = (struct SpaprNvram *)dev;
1768 }
1769 
1770 static void spapr_rtc_create(SpaprMachineState *spapr)
1771 {
1772     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1773                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1774                                        &error_fatal, NULL);
1775     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1776     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1777                               "date");
1778 }
1779 
1780 /* Returns whether we want to use VGA or not */
1781 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1782 {
1783     vga_interface_created = true;
1784     switch (vga_interface_type) {
1785     case VGA_NONE:
1786         return false;
1787     case VGA_DEVICE:
1788         return true;
1789     case VGA_STD:
1790     case VGA_VIRTIO:
1791     case VGA_CIRRUS:
1792         return pci_vga_init(pci_bus) != NULL;
1793     default:
1794         error_setg(errp,
1795                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1796         return false;
1797     }
1798 }
1799 
1800 static int spapr_pre_load(void *opaque)
1801 {
1802     int rc;
1803 
1804     rc = spapr_caps_pre_load(opaque);
1805     if (rc) {
1806         return rc;
1807     }
1808 
1809     return 0;
1810 }
1811 
1812 static int spapr_post_load(void *opaque, int version_id)
1813 {
1814     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1815     int err = 0;
1816 
1817     err = spapr_caps_post_migration(spapr);
1818     if (err) {
1819         return err;
1820     }
1821 
1822     /*
1823      * In earlier versions, there was no separate qdev for the PAPR
1824      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1825      * So when migrating from those versions, poke the incoming offset
1826      * value into the RTC device
1827      */
1828     if (version_id < 3) {
1829         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1830         if (err) {
1831             return err;
1832         }
1833     }
1834 
1835     if (kvm_enabled() && spapr->patb_entry) {
1836         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1837         bool radix = !!(spapr->patb_entry & PATE1_GR);
1838         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1839 
1840         /*
1841          * Update LPCR:HR and UPRT as they may not be set properly in
1842          * the stream
1843          */
1844         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1845                             LPCR_HR | LPCR_UPRT);
1846 
1847         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1848         if (err) {
1849             error_report("Process table config unsupported by the host");
1850             return -EINVAL;
1851         }
1852     }
1853 
1854     err = spapr_irq_post_load(spapr, version_id);
1855     if (err) {
1856         return err;
1857     }
1858 
1859     return err;
1860 }
1861 
1862 static int spapr_pre_save(void *opaque)
1863 {
1864     int rc;
1865 
1866     rc = spapr_caps_pre_save(opaque);
1867     if (rc) {
1868         return rc;
1869     }
1870 
1871     return 0;
1872 }
1873 
1874 static bool version_before_3(void *opaque, int version_id)
1875 {
1876     return version_id < 3;
1877 }
1878 
1879 static bool spapr_pending_events_needed(void *opaque)
1880 {
1881     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1882     return !QTAILQ_EMPTY(&spapr->pending_events);
1883 }
1884 
1885 static const VMStateDescription vmstate_spapr_event_entry = {
1886     .name = "spapr_event_log_entry",
1887     .version_id = 1,
1888     .minimum_version_id = 1,
1889     .fields = (VMStateField[]) {
1890         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1891         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1892         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1893                                      NULL, extended_length),
1894         VMSTATE_END_OF_LIST()
1895     },
1896 };
1897 
1898 static const VMStateDescription vmstate_spapr_pending_events = {
1899     .name = "spapr_pending_events",
1900     .version_id = 1,
1901     .minimum_version_id = 1,
1902     .needed = spapr_pending_events_needed,
1903     .fields = (VMStateField[]) {
1904         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1905                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1906         VMSTATE_END_OF_LIST()
1907     },
1908 };
1909 
1910 static bool spapr_ov5_cas_needed(void *opaque)
1911 {
1912     SpaprMachineState *spapr = opaque;
1913     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1914     bool cas_needed;
1915 
1916     /* Prior to the introduction of SpaprOptionVector, we had two option
1917      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1918      * Both of these options encode machine topology into the device-tree
1919      * in such a way that the now-booted OS should still be able to interact
1920      * appropriately with QEMU regardless of what options were actually
1921      * negotiatied on the source side.
1922      *
1923      * As such, we can avoid migrating the CAS-negotiated options if these
1924      * are the only options available on the current machine/platform.
1925      * Since these are the only options available for pseries-2.7 and
1926      * earlier, this allows us to maintain old->new/new->old migration
1927      * compatibility.
1928      *
1929      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1930      * via default pseries-2.8 machines and explicit command-line parameters.
1931      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1932      * of the actual CAS-negotiated values to continue working properly. For
1933      * example, availability of memory unplug depends on knowing whether
1934      * OV5_HP_EVT was negotiated via CAS.
1935      *
1936      * Thus, for any cases where the set of available CAS-negotiatable
1937      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1938      * include the CAS-negotiated options in the migration stream, unless
1939      * if they affect boot time behaviour only.
1940      */
1941     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1942     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1943     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1944 
1945     /* We need extra information if we have any bits outside the mask
1946      * defined above */
1947     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1948 
1949     spapr_ovec_cleanup(ov5_mask);
1950 
1951     return cas_needed;
1952 }
1953 
1954 static const VMStateDescription vmstate_spapr_ov5_cas = {
1955     .name = "spapr_option_vector_ov5_cas",
1956     .version_id = 1,
1957     .minimum_version_id = 1,
1958     .needed = spapr_ov5_cas_needed,
1959     .fields = (VMStateField[]) {
1960         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1961                                  vmstate_spapr_ovec, SpaprOptionVector),
1962         VMSTATE_END_OF_LIST()
1963     },
1964 };
1965 
1966 static bool spapr_patb_entry_needed(void *opaque)
1967 {
1968     SpaprMachineState *spapr = opaque;
1969 
1970     return !!spapr->patb_entry;
1971 }
1972 
1973 static const VMStateDescription vmstate_spapr_patb_entry = {
1974     .name = "spapr_patb_entry",
1975     .version_id = 1,
1976     .minimum_version_id = 1,
1977     .needed = spapr_patb_entry_needed,
1978     .fields = (VMStateField[]) {
1979         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1980         VMSTATE_END_OF_LIST()
1981     },
1982 };
1983 
1984 static bool spapr_irq_map_needed(void *opaque)
1985 {
1986     SpaprMachineState *spapr = opaque;
1987 
1988     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1989 }
1990 
1991 static const VMStateDescription vmstate_spapr_irq_map = {
1992     .name = "spapr_irq_map",
1993     .version_id = 1,
1994     .minimum_version_id = 1,
1995     .needed = spapr_irq_map_needed,
1996     .fields = (VMStateField[]) {
1997         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1998         VMSTATE_END_OF_LIST()
1999     },
2000 };
2001 
2002 static bool spapr_dtb_needed(void *opaque)
2003 {
2004     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2005 
2006     return smc->update_dt_enabled;
2007 }
2008 
2009 static int spapr_dtb_pre_load(void *opaque)
2010 {
2011     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2012 
2013     g_free(spapr->fdt_blob);
2014     spapr->fdt_blob = NULL;
2015     spapr->fdt_size = 0;
2016 
2017     return 0;
2018 }
2019 
2020 static const VMStateDescription vmstate_spapr_dtb = {
2021     .name = "spapr_dtb",
2022     .version_id = 1,
2023     .minimum_version_id = 1,
2024     .needed = spapr_dtb_needed,
2025     .pre_load = spapr_dtb_pre_load,
2026     .fields = (VMStateField[]) {
2027         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2028         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2029         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2030                                      fdt_size),
2031         VMSTATE_END_OF_LIST()
2032     },
2033 };
2034 
2035 static bool spapr_fwnmi_needed(void *opaque)
2036 {
2037     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2038 
2039     return spapr->fwnmi_machine_check_addr != -1;
2040 }
2041 
2042 static int spapr_fwnmi_pre_save(void *opaque)
2043 {
2044     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2045 
2046     /*
2047      * Check if machine check handling is in progress and print a
2048      * warning message.
2049      */
2050     if (spapr->fwnmi_machine_check_interlock != -1) {
2051         warn_report("A machine check is being handled during migration. The"
2052                 "handler may run and log hardware error on the destination");
2053     }
2054 
2055     return 0;
2056 }
2057 
2058 static const VMStateDescription vmstate_spapr_fwnmi = {
2059     .name = "spapr_fwnmi",
2060     .version_id = 1,
2061     .minimum_version_id = 1,
2062     .needed = spapr_fwnmi_needed,
2063     .pre_save = spapr_fwnmi_pre_save,
2064     .fields = (VMStateField[]) {
2065         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2066         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2067         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2068         VMSTATE_END_OF_LIST()
2069     },
2070 };
2071 
2072 static const VMStateDescription vmstate_spapr = {
2073     .name = "spapr",
2074     .version_id = 3,
2075     .minimum_version_id = 1,
2076     .pre_load = spapr_pre_load,
2077     .post_load = spapr_post_load,
2078     .pre_save = spapr_pre_save,
2079     .fields = (VMStateField[]) {
2080         /* used to be @next_irq */
2081         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2082 
2083         /* RTC offset */
2084         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2085 
2086         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2087         VMSTATE_END_OF_LIST()
2088     },
2089     .subsections = (const VMStateDescription*[]) {
2090         &vmstate_spapr_ov5_cas,
2091         &vmstate_spapr_patb_entry,
2092         &vmstate_spapr_pending_events,
2093         &vmstate_spapr_cap_htm,
2094         &vmstate_spapr_cap_vsx,
2095         &vmstate_spapr_cap_dfp,
2096         &vmstate_spapr_cap_cfpc,
2097         &vmstate_spapr_cap_sbbc,
2098         &vmstate_spapr_cap_ibs,
2099         &vmstate_spapr_cap_hpt_maxpagesize,
2100         &vmstate_spapr_irq_map,
2101         &vmstate_spapr_cap_nested_kvm_hv,
2102         &vmstate_spapr_dtb,
2103         &vmstate_spapr_cap_large_decr,
2104         &vmstate_spapr_cap_ccf_assist,
2105         &vmstate_spapr_cap_fwnmi,
2106         &vmstate_spapr_fwnmi,
2107         &vmstate_spapr_cap_rpt_invalidate,
2108         NULL
2109     }
2110 };
2111 
2112 static int htab_save_setup(QEMUFile *f, void *opaque)
2113 {
2114     SpaprMachineState *spapr = opaque;
2115 
2116     /* "Iteration" header */
2117     if (!spapr->htab_shift) {
2118         qemu_put_be32(f, -1);
2119     } else {
2120         qemu_put_be32(f, spapr->htab_shift);
2121     }
2122 
2123     if (spapr->htab) {
2124         spapr->htab_save_index = 0;
2125         spapr->htab_first_pass = true;
2126     } else {
2127         if (spapr->htab_shift) {
2128             assert(kvm_enabled());
2129         }
2130     }
2131 
2132 
2133     return 0;
2134 }
2135 
2136 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2137                             int chunkstart, int n_valid, int n_invalid)
2138 {
2139     qemu_put_be32(f, chunkstart);
2140     qemu_put_be16(f, n_valid);
2141     qemu_put_be16(f, n_invalid);
2142     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2143                     HASH_PTE_SIZE_64 * n_valid);
2144 }
2145 
2146 static void htab_save_end_marker(QEMUFile *f)
2147 {
2148     qemu_put_be32(f, 0);
2149     qemu_put_be16(f, 0);
2150     qemu_put_be16(f, 0);
2151 }
2152 
2153 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2154                                  int64_t max_ns)
2155 {
2156     bool has_timeout = max_ns != -1;
2157     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2158     int index = spapr->htab_save_index;
2159     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2160 
2161     assert(spapr->htab_first_pass);
2162 
2163     do {
2164         int chunkstart;
2165 
2166         /* Consume invalid HPTEs */
2167         while ((index < htabslots)
2168                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2169             CLEAN_HPTE(HPTE(spapr->htab, index));
2170             index++;
2171         }
2172 
2173         /* Consume valid HPTEs */
2174         chunkstart = index;
2175         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2176                && HPTE_VALID(HPTE(spapr->htab, index))) {
2177             CLEAN_HPTE(HPTE(spapr->htab, index));
2178             index++;
2179         }
2180 
2181         if (index > chunkstart) {
2182             int n_valid = index - chunkstart;
2183 
2184             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2185 
2186             if (has_timeout &&
2187                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2188                 break;
2189             }
2190         }
2191     } while ((index < htabslots) && !migration_rate_exceeded(f));
2192 
2193     if (index >= htabslots) {
2194         assert(index == htabslots);
2195         index = 0;
2196         spapr->htab_first_pass = false;
2197     }
2198     spapr->htab_save_index = index;
2199 }
2200 
2201 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2202                                 int64_t max_ns)
2203 {
2204     bool final = max_ns < 0;
2205     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2206     int examined = 0, sent = 0;
2207     int index = spapr->htab_save_index;
2208     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2209 
2210     assert(!spapr->htab_first_pass);
2211 
2212     do {
2213         int chunkstart, invalidstart;
2214 
2215         /* Consume non-dirty HPTEs */
2216         while ((index < htabslots)
2217                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2218             index++;
2219             examined++;
2220         }
2221 
2222         chunkstart = index;
2223         /* Consume valid dirty HPTEs */
2224         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2225                && HPTE_DIRTY(HPTE(spapr->htab, index))
2226                && HPTE_VALID(HPTE(spapr->htab, index))) {
2227             CLEAN_HPTE(HPTE(spapr->htab, index));
2228             index++;
2229             examined++;
2230         }
2231 
2232         invalidstart = index;
2233         /* Consume invalid dirty HPTEs */
2234         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2235                && HPTE_DIRTY(HPTE(spapr->htab, index))
2236                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2237             CLEAN_HPTE(HPTE(spapr->htab, index));
2238             index++;
2239             examined++;
2240         }
2241 
2242         if (index > chunkstart) {
2243             int n_valid = invalidstart - chunkstart;
2244             int n_invalid = index - invalidstart;
2245 
2246             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2247             sent += index - chunkstart;
2248 
2249             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2250                 break;
2251             }
2252         }
2253 
2254         if (examined >= htabslots) {
2255             break;
2256         }
2257 
2258         if (index >= htabslots) {
2259             assert(index == htabslots);
2260             index = 0;
2261         }
2262     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2263 
2264     if (index >= htabslots) {
2265         assert(index == htabslots);
2266         index = 0;
2267     }
2268 
2269     spapr->htab_save_index = index;
2270 
2271     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2272 }
2273 
2274 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2275 #define MAX_KVM_BUF_SIZE    2048
2276 
2277 static int htab_save_iterate(QEMUFile *f, void *opaque)
2278 {
2279     SpaprMachineState *spapr = opaque;
2280     int fd;
2281     int rc = 0;
2282 
2283     /* Iteration header */
2284     if (!spapr->htab_shift) {
2285         qemu_put_be32(f, -1);
2286         return 1;
2287     } else {
2288         qemu_put_be32(f, 0);
2289     }
2290 
2291     if (!spapr->htab) {
2292         assert(kvm_enabled());
2293 
2294         fd = get_htab_fd(spapr);
2295         if (fd < 0) {
2296             return fd;
2297         }
2298 
2299         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2300         if (rc < 0) {
2301             return rc;
2302         }
2303     } else  if (spapr->htab_first_pass) {
2304         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2305     } else {
2306         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2307     }
2308 
2309     htab_save_end_marker(f);
2310 
2311     return rc;
2312 }
2313 
2314 static int htab_save_complete(QEMUFile *f, void *opaque)
2315 {
2316     SpaprMachineState *spapr = opaque;
2317     int fd;
2318 
2319     /* Iteration header */
2320     if (!spapr->htab_shift) {
2321         qemu_put_be32(f, -1);
2322         return 0;
2323     } else {
2324         qemu_put_be32(f, 0);
2325     }
2326 
2327     if (!spapr->htab) {
2328         int rc;
2329 
2330         assert(kvm_enabled());
2331 
2332         fd = get_htab_fd(spapr);
2333         if (fd < 0) {
2334             return fd;
2335         }
2336 
2337         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2338         if (rc < 0) {
2339             return rc;
2340         }
2341     } else {
2342         if (spapr->htab_first_pass) {
2343             htab_save_first_pass(f, spapr, -1);
2344         }
2345         htab_save_later_pass(f, spapr, -1);
2346     }
2347 
2348     /* End marker */
2349     htab_save_end_marker(f);
2350 
2351     return 0;
2352 }
2353 
2354 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2355 {
2356     SpaprMachineState *spapr = opaque;
2357     uint32_t section_hdr;
2358     int fd = -1;
2359     Error *local_err = NULL;
2360 
2361     if (version_id < 1 || version_id > 1) {
2362         error_report("htab_load() bad version");
2363         return -EINVAL;
2364     }
2365 
2366     section_hdr = qemu_get_be32(f);
2367 
2368     if (section_hdr == -1) {
2369         spapr_free_hpt(spapr);
2370         return 0;
2371     }
2372 
2373     if (section_hdr) {
2374         int ret;
2375 
2376         /* First section gives the htab size */
2377         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2378         if (ret < 0) {
2379             error_report_err(local_err);
2380             return ret;
2381         }
2382         return 0;
2383     }
2384 
2385     if (!spapr->htab) {
2386         assert(kvm_enabled());
2387 
2388         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2389         if (fd < 0) {
2390             error_report_err(local_err);
2391             return fd;
2392         }
2393     }
2394 
2395     while (true) {
2396         uint32_t index;
2397         uint16_t n_valid, n_invalid;
2398 
2399         index = qemu_get_be32(f);
2400         n_valid = qemu_get_be16(f);
2401         n_invalid = qemu_get_be16(f);
2402 
2403         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2404             /* End of Stream */
2405             break;
2406         }
2407 
2408         if ((index + n_valid + n_invalid) >
2409             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2410             /* Bad index in stream */
2411             error_report(
2412                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2413                 index, n_valid, n_invalid, spapr->htab_shift);
2414             return -EINVAL;
2415         }
2416 
2417         if (spapr->htab) {
2418             if (n_valid) {
2419                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2420                                 HASH_PTE_SIZE_64 * n_valid);
2421             }
2422             if (n_invalid) {
2423                 memset(HPTE(spapr->htab, index + n_valid), 0,
2424                        HASH_PTE_SIZE_64 * n_invalid);
2425             }
2426         } else {
2427             int rc;
2428 
2429             assert(fd >= 0);
2430 
2431             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2432                                         &local_err);
2433             if (rc < 0) {
2434                 error_report_err(local_err);
2435                 return rc;
2436             }
2437         }
2438     }
2439 
2440     if (!spapr->htab) {
2441         assert(fd >= 0);
2442         close(fd);
2443     }
2444 
2445     return 0;
2446 }
2447 
2448 static void htab_save_cleanup(void *opaque)
2449 {
2450     SpaprMachineState *spapr = opaque;
2451 
2452     close_htab_fd(spapr);
2453 }
2454 
2455 static SaveVMHandlers savevm_htab_handlers = {
2456     .save_setup = htab_save_setup,
2457     .save_live_iterate = htab_save_iterate,
2458     .save_live_complete_precopy = htab_save_complete,
2459     .save_cleanup = htab_save_cleanup,
2460     .load_state = htab_load,
2461 };
2462 
2463 static void spapr_boot_set(void *opaque, const char *boot_device,
2464                            Error **errp)
2465 {
2466     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2467 
2468     g_free(spapr->boot_device);
2469     spapr->boot_device = g_strdup(boot_device);
2470 }
2471 
2472 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2473 {
2474     MachineState *machine = MACHINE(spapr);
2475     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2476     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2477     int i;
2478 
2479     g_assert(!nr_lmbs || machine->device_memory);
2480     for (i = 0; i < nr_lmbs; i++) {
2481         uint64_t addr;
2482 
2483         addr = i * lmb_size + machine->device_memory->base;
2484         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2485                                addr / lmb_size);
2486     }
2487 }
2488 
2489 /*
2490  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2491  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2492  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2493  */
2494 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2495 {
2496     int i;
2497 
2498     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2499         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2500                    " is not aligned to %" PRIu64 " MiB",
2501                    machine->ram_size,
2502                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2503         return;
2504     }
2505 
2506     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2507         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2508                    " is not aligned to %" PRIu64 " MiB",
2509                    machine->ram_size,
2510                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2511         return;
2512     }
2513 
2514     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2515         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2516             error_setg(errp,
2517                        "Node %d memory size 0x%" PRIx64
2518                        " is not aligned to %" PRIu64 " MiB",
2519                        i, machine->numa_state->nodes[i].node_mem,
2520                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2521             return;
2522         }
2523     }
2524 }
2525 
2526 /* find cpu slot in machine->possible_cpus by core_id */
2527 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2528 {
2529     int index = id / ms->smp.threads;
2530 
2531     if (index >= ms->possible_cpus->len) {
2532         return NULL;
2533     }
2534     if (idx) {
2535         *idx = index;
2536     }
2537     return &ms->possible_cpus->cpus[index];
2538 }
2539 
2540 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2541 {
2542     MachineState *ms = MACHINE(spapr);
2543     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2544     Error *local_err = NULL;
2545     bool vsmt_user = !!spapr->vsmt;
2546     int kvm_smt = kvmppc_smt_threads();
2547     int ret;
2548     unsigned int smp_threads = ms->smp.threads;
2549 
2550     if (tcg_enabled()) {
2551         if (smp_threads > 1 &&
2552             !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2553                                    spapr->max_compat_pvr)) {
2554             error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2555             return;
2556         }
2557 
2558         if (smp_threads > 8) {
2559             error_setg(errp, "TCG cannot support more than 8 threads/core "
2560                        "on a pseries machine");
2561             return;
2562         }
2563     }
2564     if (!is_power_of_2(smp_threads)) {
2565         error_setg(errp, "Cannot support %d threads/core on a pseries "
2566                    "machine because it must be a power of 2", smp_threads);
2567         return;
2568     }
2569 
2570     /* Detemine the VSMT mode to use: */
2571     if (vsmt_user) {
2572         if (spapr->vsmt < smp_threads) {
2573             error_setg(errp, "Cannot support VSMT mode %d"
2574                        " because it must be >= threads/core (%d)",
2575                        spapr->vsmt, smp_threads);
2576             return;
2577         }
2578         /* In this case, spapr->vsmt has been set by the command line */
2579     } else if (!smc->smp_threads_vsmt) {
2580         /*
2581          * Default VSMT value is tricky, because we need it to be as
2582          * consistent as possible (for migration), but this requires
2583          * changing it for at least some existing cases.  We pick 8 as
2584          * the value that we'd get with KVM on POWER8, the
2585          * overwhelmingly common case in production systems.
2586          */
2587         spapr->vsmt = MAX(8, smp_threads);
2588     } else {
2589         spapr->vsmt = smp_threads;
2590     }
2591 
2592     /* KVM: If necessary, set the SMT mode: */
2593     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2594         ret = kvmppc_set_smt_threads(spapr->vsmt);
2595         if (ret) {
2596             /* Looks like KVM isn't able to change VSMT mode */
2597             error_setg(&local_err,
2598                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2599                        spapr->vsmt, ret);
2600             /* We can live with that if the default one is big enough
2601              * for the number of threads, and a submultiple of the one
2602              * we want.  In this case we'll waste some vcpu ids, but
2603              * behaviour will be correct */
2604             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2605                 warn_report_err(local_err);
2606             } else {
2607                 if (!vsmt_user) {
2608                     error_append_hint(&local_err,
2609                                       "On PPC, a VM with %d threads/core"
2610                                       " on a host with %d threads/core"
2611                                       " requires the use of VSMT mode %d.\n",
2612                                       smp_threads, kvm_smt, spapr->vsmt);
2613                 }
2614                 kvmppc_error_append_smt_possible_hint(&local_err);
2615                 error_propagate(errp, local_err);
2616             }
2617         }
2618     }
2619     /* else TCG: nothing to do currently */
2620 }
2621 
2622 static void spapr_init_cpus(SpaprMachineState *spapr)
2623 {
2624     MachineState *machine = MACHINE(spapr);
2625     MachineClass *mc = MACHINE_GET_CLASS(machine);
2626     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2627     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2628     const CPUArchIdList *possible_cpus;
2629     unsigned int smp_cpus = machine->smp.cpus;
2630     unsigned int smp_threads = machine->smp.threads;
2631     unsigned int max_cpus = machine->smp.max_cpus;
2632     int boot_cores_nr = smp_cpus / smp_threads;
2633     int i;
2634 
2635     possible_cpus = mc->possible_cpu_arch_ids(machine);
2636     if (mc->has_hotpluggable_cpus) {
2637         if (smp_cpus % smp_threads) {
2638             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2639                          smp_cpus, smp_threads);
2640             exit(1);
2641         }
2642         if (max_cpus % smp_threads) {
2643             error_report("max_cpus (%u) must be multiple of threads (%u)",
2644                          max_cpus, smp_threads);
2645             exit(1);
2646         }
2647     } else {
2648         if (max_cpus != smp_cpus) {
2649             error_report("This machine version does not support CPU hotplug");
2650             exit(1);
2651         }
2652         boot_cores_nr = possible_cpus->len;
2653     }
2654 
2655     if (smc->pre_2_10_has_unused_icps) {
2656         int i;
2657 
2658         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2659             /* Dummy entries get deregistered when real ICPState objects
2660              * are registered during CPU core hotplug.
2661              */
2662             pre_2_10_vmstate_register_dummy_icp(i);
2663         }
2664     }
2665 
2666     for (i = 0; i < possible_cpus->len; i++) {
2667         int core_id = i * smp_threads;
2668 
2669         if (mc->has_hotpluggable_cpus) {
2670             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2671                                    spapr_vcpu_id(spapr, core_id));
2672         }
2673 
2674         if (i < boot_cores_nr) {
2675             Object *core  = object_new(type);
2676             int nr_threads = smp_threads;
2677 
2678             /* Handle the partially filled core for older machine types */
2679             if ((i + 1) * smp_threads >= smp_cpus) {
2680                 nr_threads = smp_cpus - i * smp_threads;
2681             }
2682 
2683             object_property_set_int(core, "nr-threads", nr_threads,
2684                                     &error_fatal);
2685             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2686                                     &error_fatal);
2687             qdev_realize(DEVICE(core), NULL, &error_fatal);
2688 
2689             object_unref(core);
2690         }
2691     }
2692 }
2693 
2694 static PCIHostState *spapr_create_default_phb(void)
2695 {
2696     DeviceState *dev;
2697 
2698     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2699     qdev_prop_set_uint32(dev, "index", 0);
2700     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2701 
2702     return PCI_HOST_BRIDGE(dev);
2703 }
2704 
2705 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2706 {
2707     MachineState *machine = MACHINE(spapr);
2708     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2709     hwaddr rma_size = machine->ram_size;
2710     hwaddr node0_size = spapr_node0_size(machine);
2711 
2712     /* RMA has to fit in the first NUMA node */
2713     rma_size = MIN(rma_size, node0_size);
2714 
2715     /*
2716      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2717      * never exceed that
2718      */
2719     rma_size = MIN(rma_size, 1 * TiB);
2720 
2721     /*
2722      * Clamp the RMA size based on machine type.  This is for
2723      * migration compatibility with older qemu versions, which limited
2724      * the RMA size for complicated and mostly bad reasons.
2725      */
2726     if (smc->rma_limit) {
2727         rma_size = MIN(rma_size, smc->rma_limit);
2728     }
2729 
2730     if (rma_size < MIN_RMA_SLOF) {
2731         error_setg(errp,
2732                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2733                    "ldMiB guest RMA (Real Mode Area memory)",
2734                    MIN_RMA_SLOF / MiB);
2735         return 0;
2736     }
2737 
2738     return rma_size;
2739 }
2740 
2741 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2742 {
2743     MachineState *machine = MACHINE(spapr);
2744     int i;
2745 
2746     for (i = 0; i < machine->ram_slots; i++) {
2747         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2748     }
2749 }
2750 
2751 /* pSeries LPAR / sPAPR hardware init */
2752 static void spapr_machine_init(MachineState *machine)
2753 {
2754     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2755     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2756     MachineClass *mc = MACHINE_GET_CLASS(machine);
2757     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2758     const char *bios_name = machine->firmware ?: bios_default;
2759     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2760     const char *kernel_filename = machine->kernel_filename;
2761     const char *initrd_filename = machine->initrd_filename;
2762     PCIHostState *phb;
2763     bool has_vga;
2764     int i;
2765     MemoryRegion *sysmem = get_system_memory();
2766     long load_limit, fw_size;
2767     Error *resize_hpt_err = NULL;
2768 
2769     if (!filename) {
2770         error_report("Could not find LPAR firmware '%s'", bios_name);
2771         exit(1);
2772     }
2773     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2774     if (fw_size <= 0) {
2775         error_report("Could not load LPAR firmware '%s'", filename);
2776         exit(1);
2777     }
2778 
2779     /*
2780      * if Secure VM (PEF) support is configured, then initialize it
2781      */
2782     pef_kvm_init(machine->cgs, &error_fatal);
2783 
2784     msi_nonbroken = true;
2785 
2786     QLIST_INIT(&spapr->phbs);
2787     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2788 
2789     /* Determine capabilities to run with */
2790     spapr_caps_init(spapr);
2791 
2792     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2793     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2794         /*
2795          * If the user explicitly requested a mode we should either
2796          * supply it, or fail completely (which we do below).  But if
2797          * it's not set explicitly, we reset our mode to something
2798          * that works
2799          */
2800         if (resize_hpt_err) {
2801             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2802             error_free(resize_hpt_err);
2803             resize_hpt_err = NULL;
2804         } else {
2805             spapr->resize_hpt = smc->resize_hpt_default;
2806         }
2807     }
2808 
2809     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2810 
2811     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2812         /*
2813          * User requested HPT resize, but this host can't supply it.  Bail out
2814          */
2815         error_report_err(resize_hpt_err);
2816         exit(1);
2817     }
2818     error_free(resize_hpt_err);
2819 
2820     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2821 
2822     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2823     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2824 
2825     /*
2826      * VSMT must be set in order to be able to compute VCPU ids, ie to
2827      * call spapr_max_server_number() or spapr_vcpu_id().
2828      */
2829     spapr_set_vsmt_mode(spapr, &error_fatal);
2830 
2831     /* Set up Interrupt Controller before we create the VCPUs */
2832     spapr_irq_init(spapr, &error_fatal);
2833 
2834     /* Set up containers for ibm,client-architecture-support negotiated options
2835      */
2836     spapr->ov5 = spapr_ovec_new();
2837     spapr->ov5_cas = spapr_ovec_new();
2838 
2839     if (smc->dr_lmb_enabled) {
2840         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2841         spapr_validate_node_memory(machine, &error_fatal);
2842     }
2843 
2844     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2845 
2846     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2847     if (!smc->pre_6_2_numa_affinity) {
2848         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2849     }
2850 
2851     /* advertise support for dedicated HP event source to guests */
2852     if (spapr->use_hotplug_event_source) {
2853         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2854     }
2855 
2856     /* advertise support for HPT resizing */
2857     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2858         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2859     }
2860 
2861     /* advertise support for ibm,dyamic-memory-v2 */
2862     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2863 
2864     /* advertise XIVE on POWER9 machines */
2865     if (spapr->irq->xive) {
2866         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2867     }
2868 
2869     /* init CPUs */
2870     spapr_init_cpus(spapr);
2871 
2872     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2873 
2874     /* Init numa_assoc_array */
2875     spapr_numa_associativity_init(spapr, machine);
2876 
2877     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2878         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2879                               spapr->max_compat_pvr)) {
2880         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2881         /* KVM and TCG always allow GTSE with radix... */
2882         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2883     }
2884     /* ... but not with hash (currently). */
2885 
2886     if (kvm_enabled()) {
2887         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2888         kvmppc_enable_logical_ci_hcalls();
2889         kvmppc_enable_set_mode_hcall();
2890 
2891         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2892         kvmppc_enable_clear_ref_mod_hcalls();
2893 
2894         /* Enable H_PAGE_INIT */
2895         kvmppc_enable_h_page_init();
2896     }
2897 
2898     /* map RAM */
2899     memory_region_add_subregion(sysmem, 0, machine->ram);
2900 
2901     /* initialize hotplug memory address space */
2902     if (machine->ram_size < machine->maxram_size) {
2903         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2904         hwaddr device_mem_base;
2905 
2906         /*
2907          * Limit the number of hotpluggable memory slots to half the number
2908          * slots that KVM supports, leaving the other half for PCI and other
2909          * devices. However ensure that number of slots doesn't drop below 32.
2910          */
2911         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2912                            SPAPR_MAX_RAM_SLOTS;
2913 
2914         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2915             max_memslots = SPAPR_MAX_RAM_SLOTS;
2916         }
2917         if (machine->ram_slots > max_memslots) {
2918             error_report("Specified number of memory slots %"
2919                          PRIu64" exceeds max supported %d",
2920                          machine->ram_slots, max_memslots);
2921             exit(1);
2922         }
2923 
2924         device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2925         machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2926     }
2927 
2928     if (smc->dr_lmb_enabled) {
2929         spapr_create_lmb_dr_connectors(spapr);
2930     }
2931 
2932     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2933         /* Create the error string for live migration blocker */
2934         error_setg(&spapr->fwnmi_migration_blocker,
2935             "A machine check is being handled during migration. The handler"
2936             "may run and log hardware error on the destination");
2937     }
2938 
2939     if (mc->nvdimm_supported) {
2940         spapr_create_nvdimm_dr_connectors(spapr);
2941     }
2942 
2943     /* Set up RTAS event infrastructure */
2944     spapr_events_init(spapr);
2945 
2946     /* Set up the RTC RTAS interfaces */
2947     spapr_rtc_create(spapr);
2948 
2949     /* Set up VIO bus */
2950     spapr->vio_bus = spapr_vio_bus_init();
2951 
2952     for (i = 0; serial_hd(i); i++) {
2953         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2954     }
2955 
2956     /* We always have at least the nvram device on VIO */
2957     spapr_create_nvram(spapr);
2958 
2959     /*
2960      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2961      * connectors (described in root DT node's "ibm,drc-types" property)
2962      * are pre-initialized here. additional child connectors (such as
2963      * connectors for a PHBs PCI slots) are added as needed during their
2964      * parent's realization.
2965      */
2966     if (smc->dr_phb_enabled) {
2967         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2968             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2969         }
2970     }
2971 
2972     /* Set up PCI */
2973     spapr_pci_rtas_init();
2974 
2975     phb = spapr_create_default_phb();
2976 
2977     for (i = 0; i < nb_nics; i++) {
2978         NICInfo *nd = &nd_table[i];
2979 
2980         if (!nd->model) {
2981             nd->model = g_strdup("spapr-vlan");
2982         }
2983 
2984         if (g_str_equal(nd->model, "spapr-vlan") ||
2985             g_str_equal(nd->model, "ibmveth")) {
2986             spapr_vlan_create(spapr->vio_bus, nd);
2987         } else {
2988             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2989         }
2990     }
2991 
2992     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2993         spapr_vscsi_create(spapr->vio_bus);
2994     }
2995 
2996     /* Graphics */
2997     has_vga = spapr_vga_init(phb->bus, &error_fatal);
2998     if (has_vga) {
2999         spapr->want_stdout_path = !machine->enable_graphics;
3000         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3001     } else {
3002         spapr->want_stdout_path = true;
3003     }
3004 
3005     if (machine->usb) {
3006         if (smc->use_ohci_by_default) {
3007             pci_create_simple(phb->bus, -1, "pci-ohci");
3008         } else {
3009             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3010         }
3011 
3012         if (has_vga) {
3013             USBBus *usb_bus = usb_bus_find(-1);
3014 
3015             usb_create_simple(usb_bus, "usb-kbd");
3016             usb_create_simple(usb_bus, "usb-mouse");
3017         }
3018     }
3019 
3020     if (kernel_filename) {
3021         uint64_t loaded_addr = 0;
3022 
3023         spapr->kernel_size = load_elf(kernel_filename, NULL,
3024                                       translate_kernel_address, spapr,
3025                                       NULL, &loaded_addr, NULL, NULL, 1,
3026                                       PPC_ELF_MACHINE, 0, 0);
3027         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3028             spapr->kernel_size = load_elf(kernel_filename, NULL,
3029                                           translate_kernel_address, spapr,
3030                                           NULL, &loaded_addr, NULL, NULL, 0,
3031                                           PPC_ELF_MACHINE, 0, 0);
3032             spapr->kernel_le = spapr->kernel_size > 0;
3033         }
3034         if (spapr->kernel_size < 0) {
3035             error_report("error loading %s: %s", kernel_filename,
3036                          load_elf_strerror(spapr->kernel_size));
3037             exit(1);
3038         }
3039 
3040         if (spapr->kernel_addr != loaded_addr) {
3041             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3042                         " to 0x%"PRIx64,
3043                         spapr->kernel_addr, loaded_addr);
3044             spapr->kernel_addr = loaded_addr;
3045         }
3046 
3047         /* load initrd */
3048         if (initrd_filename) {
3049             /* Try to locate the initrd in the gap between the kernel
3050              * and the firmware. Add a bit of space just in case
3051              */
3052             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3053                                   + 0x1ffff) & ~0xffff;
3054             spapr->initrd_size = load_image_targphys(initrd_filename,
3055                                                      spapr->initrd_base,
3056                                                      load_limit
3057                                                      - spapr->initrd_base);
3058             if (spapr->initrd_size < 0) {
3059                 error_report("could not load initial ram disk '%s'",
3060                              initrd_filename);
3061                 exit(1);
3062             }
3063         }
3064     }
3065 
3066     /* FIXME: Should register things through the MachineState's qdev
3067      * interface, this is a legacy from the sPAPREnvironment structure
3068      * which predated MachineState but had a similar function */
3069     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3070     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3071                          &savevm_htab_handlers, spapr);
3072 
3073     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3074 
3075     qemu_register_boot_set(spapr_boot_set, spapr);
3076 
3077     /*
3078      * Nothing needs to be done to resume a suspended guest because
3079      * suspending does not change the machine state, so no need for
3080      * a ->wakeup method.
3081      */
3082     qemu_register_wakeup_support();
3083 
3084     if (kvm_enabled()) {
3085         /* to stop and start vmclock */
3086         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3087                                          &spapr->tb);
3088 
3089         kvmppc_spapr_enable_inkernel_multitce();
3090     }
3091 
3092     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3093     if (spapr->vof) {
3094         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3095         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3096     }
3097 
3098     spapr_watchdog_init(spapr);
3099 }
3100 
3101 #define DEFAULT_KVM_TYPE "auto"
3102 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3103 {
3104     /*
3105      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3106      * accomodate the 'HV' and 'PV' formats that exists in the
3107      * wild. The 'auto' mode is being introduced already as
3108      * lower-case, thus we don't need to bother checking for
3109      * "AUTO".
3110      */
3111     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3112         return 0;
3113     }
3114 
3115     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3116         return 1;
3117     }
3118 
3119     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3120         return 2;
3121     }
3122 
3123     error_report("Unknown kvm-type specified '%s'", vm_type);
3124     return -1;
3125 }
3126 
3127 /*
3128  * Implementation of an interface to adjust firmware path
3129  * for the bootindex property handling.
3130  */
3131 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3132                                    DeviceState *dev)
3133 {
3134 #define CAST(type, obj, name) \
3135     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3136     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3137     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3138     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3139     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3140 
3141     if (d && bus) {
3142         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3143         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3144         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3145 
3146         if (spapr) {
3147             /*
3148              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3149              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3150              * 0x8000 | (target << 8) | (bus << 5) | lun
3151              * (see the "Logical unit addressing format" table in SAM5)
3152              */
3153             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3154             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3155                                    (uint64_t)id << 48);
3156         } else if (virtio) {
3157             /*
3158              * We use SRP luns of the form 01000000 | (target << 8) | lun
3159              * in the top 32 bits of the 64-bit LUN
3160              * Note: the quote above is from SLOF and it is wrong,
3161              * the actual binding is:
3162              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3163              */
3164             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3165             if (d->lun >= 256) {
3166                 /* Use the LUN "flat space addressing method" */
3167                 id |= 0x4000;
3168             }
3169             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3170                                    (uint64_t)id << 32);
3171         } else if (usb) {
3172             /*
3173              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3174              * in the top 32 bits of the 64-bit LUN
3175              */
3176             unsigned usb_port = atoi(usb->port->path);
3177             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3178             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3179                                    (uint64_t)id << 32);
3180         }
3181     }
3182 
3183     /*
3184      * SLOF probes the USB devices, and if it recognizes that the device is a
3185      * storage device, it changes its name to "storage" instead of "usb-host",
3186      * and additionally adds a child node for the SCSI LUN, so the correct
3187      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3188      */
3189     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3190         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3191         if (usb_device_is_scsi_storage(usbdev)) {
3192             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3193         }
3194     }
3195 
3196     if (phb) {
3197         /* Replace "pci" with "pci@800000020000000" */
3198         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3199     }
3200 
3201     if (vsc) {
3202         /* Same logic as virtio above */
3203         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3204         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3205     }
3206 
3207     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3208         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3209         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3210         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3211     }
3212 
3213     if (pcidev) {
3214         return spapr_pci_fw_dev_name(pcidev);
3215     }
3216 
3217     return NULL;
3218 }
3219 
3220 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3221 {
3222     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3223 
3224     return g_strdup(spapr->kvm_type);
3225 }
3226 
3227 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3228 {
3229     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3230 
3231     g_free(spapr->kvm_type);
3232     spapr->kvm_type = g_strdup(value);
3233 }
3234 
3235 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3236 {
3237     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3238 
3239     return spapr->use_hotplug_event_source;
3240 }
3241 
3242 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3243                                             Error **errp)
3244 {
3245     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3246 
3247     spapr->use_hotplug_event_source = value;
3248 }
3249 
3250 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3251 {
3252     return true;
3253 }
3254 
3255 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3256 {
3257     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3258 
3259     switch (spapr->resize_hpt) {
3260     case SPAPR_RESIZE_HPT_DEFAULT:
3261         return g_strdup("default");
3262     case SPAPR_RESIZE_HPT_DISABLED:
3263         return g_strdup("disabled");
3264     case SPAPR_RESIZE_HPT_ENABLED:
3265         return g_strdup("enabled");
3266     case SPAPR_RESIZE_HPT_REQUIRED:
3267         return g_strdup("required");
3268     }
3269     g_assert_not_reached();
3270 }
3271 
3272 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3273 {
3274     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3275 
3276     if (strcmp(value, "default") == 0) {
3277         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3278     } else if (strcmp(value, "disabled") == 0) {
3279         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3280     } else if (strcmp(value, "enabled") == 0) {
3281         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3282     } else if (strcmp(value, "required") == 0) {
3283         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3284     } else {
3285         error_setg(errp, "Bad value for \"resize-hpt\" property");
3286     }
3287 }
3288 
3289 static bool spapr_get_vof(Object *obj, Error **errp)
3290 {
3291     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3292 
3293     return spapr->vof != NULL;
3294 }
3295 
3296 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3297 {
3298     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3299 
3300     if (spapr->vof) {
3301         vof_cleanup(spapr->vof);
3302         g_free(spapr->vof);
3303         spapr->vof = NULL;
3304     }
3305     if (!value) {
3306         return;
3307     }
3308     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3309 }
3310 
3311 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3312 {
3313     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3314 
3315     if (spapr->irq == &spapr_irq_xics_legacy) {
3316         return g_strdup("legacy");
3317     } else if (spapr->irq == &spapr_irq_xics) {
3318         return g_strdup("xics");
3319     } else if (spapr->irq == &spapr_irq_xive) {
3320         return g_strdup("xive");
3321     } else if (spapr->irq == &spapr_irq_dual) {
3322         return g_strdup("dual");
3323     }
3324     g_assert_not_reached();
3325 }
3326 
3327 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3328 {
3329     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3330 
3331     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3332         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3333         return;
3334     }
3335 
3336     /* The legacy IRQ backend can not be set */
3337     if (strcmp(value, "xics") == 0) {
3338         spapr->irq = &spapr_irq_xics;
3339     } else if (strcmp(value, "xive") == 0) {
3340         spapr->irq = &spapr_irq_xive;
3341     } else if (strcmp(value, "dual") == 0) {
3342         spapr->irq = &spapr_irq_dual;
3343     } else {
3344         error_setg(errp, "Bad value for \"ic-mode\" property");
3345     }
3346 }
3347 
3348 static char *spapr_get_host_model(Object *obj, Error **errp)
3349 {
3350     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3351 
3352     return g_strdup(spapr->host_model);
3353 }
3354 
3355 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3356 {
3357     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3358 
3359     g_free(spapr->host_model);
3360     spapr->host_model = g_strdup(value);
3361 }
3362 
3363 static char *spapr_get_host_serial(Object *obj, Error **errp)
3364 {
3365     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3366 
3367     return g_strdup(spapr->host_serial);
3368 }
3369 
3370 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3371 {
3372     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3373 
3374     g_free(spapr->host_serial);
3375     spapr->host_serial = g_strdup(value);
3376 }
3377 
3378 static void spapr_instance_init(Object *obj)
3379 {
3380     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3381     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3382     MachineState *ms = MACHINE(spapr);
3383     MachineClass *mc = MACHINE_GET_CLASS(ms);
3384 
3385     /*
3386      * NVDIMM support went live in 5.1 without considering that, in
3387      * other archs, the user needs to enable NVDIMM support with the
3388      * 'nvdimm' machine option and the default behavior is NVDIMM
3389      * support disabled. It is too late to roll back to the standard
3390      * behavior without breaking 5.1 guests.
3391      */
3392     if (mc->nvdimm_supported) {
3393         ms->nvdimms_state->is_enabled = true;
3394     }
3395 
3396     spapr->htab_fd = -1;
3397     spapr->use_hotplug_event_source = true;
3398     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3399     object_property_add_str(obj, "kvm-type",
3400                             spapr_get_kvm_type, spapr_set_kvm_type);
3401     object_property_set_description(obj, "kvm-type",
3402                                     "Specifies the KVM virtualization mode (auto,"
3403                                     " hv, pr). Defaults to 'auto'. This mode will use"
3404                                     " any available KVM module loaded in the host,"
3405                                     " where kvm_hv takes precedence if both kvm_hv and"
3406                                     " kvm_pr are loaded.");
3407     object_property_add_bool(obj, "modern-hotplug-events",
3408                             spapr_get_modern_hotplug_events,
3409                             spapr_set_modern_hotplug_events);
3410     object_property_set_description(obj, "modern-hotplug-events",
3411                                     "Use dedicated hotplug event mechanism in"
3412                                     " place of standard EPOW events when possible"
3413                                     " (required for memory hot-unplug support)");
3414     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3415                             "Maximum permitted CPU compatibility mode");
3416 
3417     object_property_add_str(obj, "resize-hpt",
3418                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3419     object_property_set_description(obj, "resize-hpt",
3420                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3421     object_property_add_uint32_ptr(obj, "vsmt",
3422                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3423     object_property_set_description(obj, "vsmt",
3424                                     "Virtual SMT: KVM behaves as if this were"
3425                                     " the host's SMT mode");
3426 
3427     object_property_add_bool(obj, "vfio-no-msix-emulation",
3428                              spapr_get_msix_emulation, NULL);
3429 
3430     object_property_add_uint64_ptr(obj, "kernel-addr",
3431                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3432     object_property_set_description(obj, "kernel-addr",
3433                                     stringify(KERNEL_LOAD_ADDR)
3434                                     " for -kernel is the default");
3435     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3436 
3437     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3438     object_property_set_description(obj, "x-vof",
3439                                     "Enable Virtual Open Firmware (experimental)");
3440 
3441     /* The machine class defines the default interrupt controller mode */
3442     spapr->irq = smc->irq;
3443     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3444                             spapr_set_ic_mode);
3445     object_property_set_description(obj, "ic-mode",
3446                  "Specifies the interrupt controller mode (xics, xive, dual)");
3447 
3448     object_property_add_str(obj, "host-model",
3449         spapr_get_host_model, spapr_set_host_model);
3450     object_property_set_description(obj, "host-model",
3451         "Host model to advertise in guest device tree");
3452     object_property_add_str(obj, "host-serial",
3453         spapr_get_host_serial, spapr_set_host_serial);
3454     object_property_set_description(obj, "host-serial",
3455         "Host serial number to advertise in guest device tree");
3456 }
3457 
3458 static void spapr_machine_finalizefn(Object *obj)
3459 {
3460     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3461 
3462     g_free(spapr->kvm_type);
3463 }
3464 
3465 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3466 {
3467     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3468     PowerPCCPU *cpu = POWERPC_CPU(cs);
3469     CPUPPCState *env = &cpu->env;
3470 
3471     cpu_synchronize_state(cs);
3472     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3473     if (spapr->fwnmi_system_reset_addr != -1) {
3474         uint64_t rtas_addr, addr;
3475 
3476         /* get rtas addr from fdt */
3477         rtas_addr = spapr_get_rtas_addr();
3478         if (!rtas_addr) {
3479             qemu_system_guest_panicked(NULL);
3480             return;
3481         }
3482 
3483         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3484         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3485         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3486         env->gpr[3] = addr;
3487     }
3488     ppc_cpu_do_system_reset(cs);
3489     if (spapr->fwnmi_system_reset_addr != -1) {
3490         env->nip = spapr->fwnmi_system_reset_addr;
3491     }
3492 }
3493 
3494 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3495 {
3496     CPUState *cs;
3497 
3498     CPU_FOREACH(cs) {
3499         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3500     }
3501 }
3502 
3503 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3504                           void *fdt, int *fdt_start_offset, Error **errp)
3505 {
3506     uint64_t addr;
3507     uint32_t node;
3508 
3509     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3510     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3511                                     &error_abort);
3512     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3513                                              SPAPR_MEMORY_BLOCK_SIZE);
3514     return 0;
3515 }
3516 
3517 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3518                            bool dedicated_hp_event_source)
3519 {
3520     SpaprDrc *drc;
3521     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3522     int i;
3523     uint64_t addr = addr_start;
3524     bool hotplugged = spapr_drc_hotplugged(dev);
3525 
3526     for (i = 0; i < nr_lmbs; i++) {
3527         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3528                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3529         g_assert(drc);
3530 
3531         /*
3532          * memory_device_get_free_addr() provided a range of free addresses
3533          * that doesn't overlap with any existing mapping at pre-plug. The
3534          * corresponding LMB DRCs are thus assumed to be all attachable.
3535          */
3536         spapr_drc_attach(drc, dev);
3537         if (!hotplugged) {
3538             spapr_drc_reset(drc);
3539         }
3540         addr += SPAPR_MEMORY_BLOCK_SIZE;
3541     }
3542     /* send hotplug notification to the
3543      * guest only in case of hotplugged memory
3544      */
3545     if (hotplugged) {
3546         if (dedicated_hp_event_source) {
3547             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3548                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3549             g_assert(drc);
3550             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3551                                                    nr_lmbs,
3552                                                    spapr_drc_index(drc));
3553         } else {
3554             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3555                                            nr_lmbs);
3556         }
3557     }
3558 }
3559 
3560 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3561 {
3562     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3563     PCDIMMDevice *dimm = PC_DIMM(dev);
3564     uint64_t size, addr;
3565     int64_t slot;
3566     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3567 
3568     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3569 
3570     pc_dimm_plug(dimm, MACHINE(ms));
3571 
3572     if (!is_nvdimm) {
3573         addr = object_property_get_uint(OBJECT(dimm),
3574                                         PC_DIMM_ADDR_PROP, &error_abort);
3575         spapr_add_lmbs(dev, addr, size,
3576                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3577     } else {
3578         slot = object_property_get_int(OBJECT(dimm),
3579                                        PC_DIMM_SLOT_PROP, &error_abort);
3580         /* We should have valid slot number at this point */
3581         g_assert(slot >= 0);
3582         spapr_add_nvdimm(dev, slot);
3583     }
3584 }
3585 
3586 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3587                                   Error **errp)
3588 {
3589     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3590     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3591     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3592     PCDIMMDevice *dimm = PC_DIMM(dev);
3593     Error *local_err = NULL;
3594     uint64_t size;
3595     Object *memdev;
3596     hwaddr pagesize;
3597 
3598     if (!smc->dr_lmb_enabled) {
3599         error_setg(errp, "Memory hotplug not supported for this machine");
3600         return;
3601     }
3602 
3603     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3604     if (local_err) {
3605         error_propagate(errp, local_err);
3606         return;
3607     }
3608 
3609     if (is_nvdimm) {
3610         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3611             return;
3612         }
3613     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3614         error_setg(errp, "Hotplugged memory size must be a multiple of "
3615                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3616         return;
3617     }
3618 
3619     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3620                                       &error_abort);
3621     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3622     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3623         return;
3624     }
3625 
3626     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3627 }
3628 
3629 struct SpaprDimmState {
3630     PCDIMMDevice *dimm;
3631     uint32_t nr_lmbs;
3632     QTAILQ_ENTRY(SpaprDimmState) next;
3633 };
3634 
3635 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3636                                                        PCDIMMDevice *dimm)
3637 {
3638     SpaprDimmState *dimm_state = NULL;
3639 
3640     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3641         if (dimm_state->dimm == dimm) {
3642             break;
3643         }
3644     }
3645     return dimm_state;
3646 }
3647 
3648 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3649                                                       uint32_t nr_lmbs,
3650                                                       PCDIMMDevice *dimm)
3651 {
3652     SpaprDimmState *ds = NULL;
3653 
3654     /*
3655      * If this request is for a DIMM whose removal had failed earlier
3656      * (due to guest's refusal to remove the LMBs), we would have this
3657      * dimm already in the pending_dimm_unplugs list. In that
3658      * case don't add again.
3659      */
3660     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3661     if (!ds) {
3662         ds = g_new0(SpaprDimmState, 1);
3663         ds->nr_lmbs = nr_lmbs;
3664         ds->dimm = dimm;
3665         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3666     }
3667     return ds;
3668 }
3669 
3670 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3671                                               SpaprDimmState *dimm_state)
3672 {
3673     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3674     g_free(dimm_state);
3675 }
3676 
3677 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3678                                                         PCDIMMDevice *dimm)
3679 {
3680     SpaprDrc *drc;
3681     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3682                                                   &error_abort);
3683     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3684     uint32_t avail_lmbs = 0;
3685     uint64_t addr_start, addr;
3686     int i;
3687 
3688     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3689                                           &error_abort);
3690 
3691     addr = addr_start;
3692     for (i = 0; i < nr_lmbs; i++) {
3693         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3694                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3695         g_assert(drc);
3696         if (drc->dev) {
3697             avail_lmbs++;
3698         }
3699         addr += SPAPR_MEMORY_BLOCK_SIZE;
3700     }
3701 
3702     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3703 }
3704 
3705 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3706 {
3707     SpaprDimmState *ds;
3708     PCDIMMDevice *dimm;
3709     SpaprDrc *drc;
3710     uint32_t nr_lmbs;
3711     uint64_t size, addr_start, addr;
3712     g_autofree char *qapi_error = NULL;
3713     int i;
3714 
3715     if (!dev) {
3716         return;
3717     }
3718 
3719     dimm = PC_DIMM(dev);
3720     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3721 
3722     /*
3723      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3724      * unplug state, but one of its DRC is marked as unplug_requested.
3725      * This is bad and weird enough to g_assert() out.
3726      */
3727     g_assert(ds);
3728 
3729     spapr_pending_dimm_unplugs_remove(spapr, ds);
3730 
3731     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3732     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3733 
3734     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3735                                           &error_abort);
3736 
3737     addr = addr_start;
3738     for (i = 0; i < nr_lmbs; i++) {
3739         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3740                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3741         g_assert(drc);
3742 
3743         drc->unplug_requested = false;
3744         addr += SPAPR_MEMORY_BLOCK_SIZE;
3745     }
3746 
3747     /*
3748      * Tell QAPI that something happened and the memory
3749      * hotunplug wasn't successful. Keep sending
3750      * MEM_UNPLUG_ERROR even while sending
3751      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3752      * MEM_UNPLUG_ERROR is due.
3753      */
3754     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3755                                  "for device %s", dev->id);
3756 
3757     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3758 
3759     qapi_event_send_device_unplug_guest_error(dev->id,
3760                                               dev->canonical_path);
3761 }
3762 
3763 /* Callback to be called during DRC release. */
3764 void spapr_lmb_release(DeviceState *dev)
3765 {
3766     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3767     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3768     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3769 
3770     /* This information will get lost if a migration occurs
3771      * during the unplug process. In this case recover it. */
3772     if (ds == NULL) {
3773         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3774         g_assert(ds);
3775         /* The DRC being examined by the caller at least must be counted */
3776         g_assert(ds->nr_lmbs);
3777     }
3778 
3779     if (--ds->nr_lmbs) {
3780         return;
3781     }
3782 
3783     /*
3784      * Now that all the LMBs have been removed by the guest, call the
3785      * unplug handler chain. This can never fail.
3786      */
3787     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3788     object_unparent(OBJECT(dev));
3789 }
3790 
3791 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3792 {
3793     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3794     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3795 
3796     /* We really shouldn't get this far without anything to unplug */
3797     g_assert(ds);
3798 
3799     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3800     qdev_unrealize(dev);
3801     spapr_pending_dimm_unplugs_remove(spapr, ds);
3802 }
3803 
3804 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3805                                         DeviceState *dev, Error **errp)
3806 {
3807     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3808     PCDIMMDevice *dimm = PC_DIMM(dev);
3809     uint32_t nr_lmbs;
3810     uint64_t size, addr_start, addr;
3811     int i;
3812     SpaprDrc *drc;
3813 
3814     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3815         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3816         return;
3817     }
3818 
3819     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3820     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3821 
3822     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3823                                           &error_abort);
3824 
3825     /*
3826      * An existing pending dimm state for this DIMM means that there is an
3827      * unplug operation in progress, waiting for the spapr_lmb_release
3828      * callback to complete the job (BQL can't cover that far). In this case,
3829      * bail out to avoid detaching DRCs that were already released.
3830      */
3831     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3832         error_setg(errp, "Memory unplug already in progress for device %s",
3833                    dev->id);
3834         return;
3835     }
3836 
3837     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3838 
3839     addr = addr_start;
3840     for (i = 0; i < nr_lmbs; i++) {
3841         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3842                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3843         g_assert(drc);
3844 
3845         spapr_drc_unplug_request(drc);
3846         addr += SPAPR_MEMORY_BLOCK_SIZE;
3847     }
3848 
3849     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3850                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3851     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3852                                               nr_lmbs, spapr_drc_index(drc));
3853 }
3854 
3855 /* Callback to be called during DRC release. */
3856 void spapr_core_release(DeviceState *dev)
3857 {
3858     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3859 
3860     /* Call the unplug handler chain. This can never fail. */
3861     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3862     object_unparent(OBJECT(dev));
3863 }
3864 
3865 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3866 {
3867     MachineState *ms = MACHINE(hotplug_dev);
3868     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3869     CPUCore *cc = CPU_CORE(dev);
3870     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3871 
3872     if (smc->pre_2_10_has_unused_icps) {
3873         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3874         int i;
3875 
3876         for (i = 0; i < cc->nr_threads; i++) {
3877             CPUState *cs = CPU(sc->threads[i]);
3878 
3879             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3880         }
3881     }
3882 
3883     assert(core_slot);
3884     core_slot->cpu = NULL;
3885     qdev_unrealize(dev);
3886 }
3887 
3888 static
3889 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3890                                Error **errp)
3891 {
3892     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3893     int index;
3894     SpaprDrc *drc;
3895     CPUCore *cc = CPU_CORE(dev);
3896 
3897     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3898         error_setg(errp, "Unable to find CPU core with core-id: %d",
3899                    cc->core_id);
3900         return;
3901     }
3902     if (index == 0) {
3903         error_setg(errp, "Boot CPU core may not be unplugged");
3904         return;
3905     }
3906 
3907     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3908                           spapr_vcpu_id(spapr, cc->core_id));
3909     g_assert(drc);
3910 
3911     if (!spapr_drc_unplug_requested(drc)) {
3912         spapr_drc_unplug_request(drc);
3913     }
3914 
3915     /*
3916      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3917      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3918      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3919      * attempt (e.g. the kernel will refuse to remove the last online
3920      * CPU), we will never attempt it again because unplug_requested
3921      * will still be 'true' in that case.
3922      */
3923     spapr_hotplug_req_remove_by_index(drc);
3924 }
3925 
3926 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3927                            void *fdt, int *fdt_start_offset, Error **errp)
3928 {
3929     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3930     CPUState *cs = CPU(core->threads[0]);
3931     PowerPCCPU *cpu = POWERPC_CPU(cs);
3932     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3933     int id = spapr_get_vcpu_id(cpu);
3934     g_autofree char *nodename = NULL;
3935     int offset;
3936 
3937     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3938     offset = fdt_add_subnode(fdt, 0, nodename);
3939 
3940     spapr_dt_cpu(cs, fdt, offset, spapr);
3941 
3942     /*
3943      * spapr_dt_cpu() does not fill the 'name' property in the
3944      * CPU node. The function is called during boot process, before
3945      * and after CAS, and overwriting the 'name' property written
3946      * by SLOF is not allowed.
3947      *
3948      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3949      * CPUs more compatible with the coldplugged ones, which have
3950      * the 'name' property. Linux Kernel also relies on this
3951      * property to identify CPU nodes.
3952      */
3953     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3954 
3955     *fdt_start_offset = offset;
3956     return 0;
3957 }
3958 
3959 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3960 {
3961     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3962     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3963     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3964     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3965     CPUCore *cc = CPU_CORE(dev);
3966     CPUState *cs;
3967     SpaprDrc *drc;
3968     CPUArchId *core_slot;
3969     int index;
3970     bool hotplugged = spapr_drc_hotplugged(dev);
3971     int i;
3972 
3973     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3974     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3975 
3976     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3977                           spapr_vcpu_id(spapr, cc->core_id));
3978 
3979     g_assert(drc || !mc->has_hotpluggable_cpus);
3980 
3981     if (drc) {
3982         /*
3983          * spapr_core_pre_plug() already buys us this is a brand new
3984          * core being plugged into a free slot. Nothing should already
3985          * be attached to the corresponding DRC.
3986          */
3987         spapr_drc_attach(drc, dev);
3988 
3989         if (hotplugged) {
3990             /*
3991              * Send hotplug notification interrupt to the guest only
3992              * in case of hotplugged CPUs.
3993              */
3994             spapr_hotplug_req_add_by_index(drc);
3995         } else {
3996             spapr_drc_reset(drc);
3997         }
3998     }
3999 
4000     core_slot->cpu = OBJECT(dev);
4001 
4002     /*
4003      * Set compatibility mode to match the boot CPU, which was either set
4004      * by the machine reset code or by CAS. This really shouldn't fail at
4005      * this point.
4006      */
4007     if (hotplugged) {
4008         for (i = 0; i < cc->nr_threads; i++) {
4009             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4010                            &error_abort);
4011         }
4012     }
4013 
4014     if (smc->pre_2_10_has_unused_icps) {
4015         for (i = 0; i < cc->nr_threads; i++) {
4016             cs = CPU(core->threads[i]);
4017             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4018         }
4019     }
4020 }
4021 
4022 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4023                                 Error **errp)
4024 {
4025     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4026     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4027     CPUCore *cc = CPU_CORE(dev);
4028     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4029     const char *type = object_get_typename(OBJECT(dev));
4030     CPUArchId *core_slot;
4031     int index;
4032     unsigned int smp_threads = machine->smp.threads;
4033 
4034     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4035         error_setg(errp, "CPU hotplug not supported for this machine");
4036         return;
4037     }
4038 
4039     if (strcmp(base_core_type, type)) {
4040         error_setg(errp, "CPU core type should be %s", base_core_type);
4041         return;
4042     }
4043 
4044     if (cc->core_id % smp_threads) {
4045         error_setg(errp, "invalid core id %d", cc->core_id);
4046         return;
4047     }
4048 
4049     /*
4050      * In general we should have homogeneous threads-per-core, but old
4051      * (pre hotplug support) machine types allow the last core to have
4052      * reduced threads as a compatibility hack for when we allowed
4053      * total vcpus not a multiple of threads-per-core.
4054      */
4055     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4056         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4057                    smp_threads);
4058         return;
4059     }
4060 
4061     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4062     if (!core_slot) {
4063         error_setg(errp, "core id %d out of range", cc->core_id);
4064         return;
4065     }
4066 
4067     if (core_slot->cpu) {
4068         error_setg(errp, "core %d already populated", cc->core_id);
4069         return;
4070     }
4071 
4072     numa_cpu_pre_plug(core_slot, dev, errp);
4073 }
4074 
4075 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4076                           void *fdt, int *fdt_start_offset, Error **errp)
4077 {
4078     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4079     int intc_phandle;
4080 
4081     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4082     if (intc_phandle <= 0) {
4083         return -1;
4084     }
4085 
4086     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4087         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4088         return -1;
4089     }
4090 
4091     /* generally SLOF creates these, for hotplug it's up to QEMU */
4092     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4093 
4094     return 0;
4095 }
4096 
4097 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4098                                Error **errp)
4099 {
4100     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4101     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4102     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4103     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4104     SpaprDrc *drc;
4105 
4106     if (dev->hotplugged && !smc->dr_phb_enabled) {
4107         error_setg(errp, "PHB hotplug not supported for this machine");
4108         return false;
4109     }
4110 
4111     if (sphb->index == (uint32_t)-1) {
4112         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4113         return false;
4114     }
4115 
4116     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4117     if (drc && drc->dev) {
4118         error_setg(errp, "PHB %d already attached", sphb->index);
4119         return false;
4120     }
4121 
4122     /*
4123      * This will check that sphb->index doesn't exceed the maximum number of
4124      * PHBs for the current machine type.
4125      */
4126     return
4127         smc->phb_placement(spapr, sphb->index,
4128                            &sphb->buid, &sphb->io_win_addr,
4129                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4130                            windows_supported, sphb->dma_liobn,
4131                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4132                            errp);
4133 }
4134 
4135 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4136 {
4137     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4138     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4139     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4140     SpaprDrc *drc;
4141     bool hotplugged = spapr_drc_hotplugged(dev);
4142 
4143     if (!smc->dr_phb_enabled) {
4144         return;
4145     }
4146 
4147     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4148     /* hotplug hooks should check it's enabled before getting this far */
4149     assert(drc);
4150 
4151     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4152     spapr_drc_attach(drc, dev);
4153 
4154     if (hotplugged) {
4155         spapr_hotplug_req_add_by_index(drc);
4156     } else {
4157         spapr_drc_reset(drc);
4158     }
4159 }
4160 
4161 void spapr_phb_release(DeviceState *dev)
4162 {
4163     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4164 
4165     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4166     object_unparent(OBJECT(dev));
4167 }
4168 
4169 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4170 {
4171     qdev_unrealize(dev);
4172 }
4173 
4174 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4175                                      DeviceState *dev, Error **errp)
4176 {
4177     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4178     SpaprDrc *drc;
4179 
4180     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4181     assert(drc);
4182 
4183     if (!spapr_drc_unplug_requested(drc)) {
4184         spapr_drc_unplug_request(drc);
4185         spapr_hotplug_req_remove_by_index(drc);
4186     } else {
4187         error_setg(errp,
4188                    "PCI Host Bridge unplug already in progress for device %s",
4189                    dev->id);
4190     }
4191 }
4192 
4193 static
4194 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4195                               Error **errp)
4196 {
4197     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4198 
4199     if (spapr->tpm_proxy != NULL) {
4200         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4201         return false;
4202     }
4203 
4204     return true;
4205 }
4206 
4207 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4208 {
4209     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4210     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4211 
4212     /* Already checked in spapr_tpm_proxy_pre_plug() */
4213     g_assert(spapr->tpm_proxy == NULL);
4214 
4215     spapr->tpm_proxy = tpm_proxy;
4216 }
4217 
4218 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4219 {
4220     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4221 
4222     qdev_unrealize(dev);
4223     object_unparent(OBJECT(dev));
4224     spapr->tpm_proxy = NULL;
4225 }
4226 
4227 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4228                                       DeviceState *dev, Error **errp)
4229 {
4230     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4231         spapr_memory_plug(hotplug_dev, dev);
4232     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4233         spapr_core_plug(hotplug_dev, dev);
4234     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4235         spapr_phb_plug(hotplug_dev, dev);
4236     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4237         spapr_tpm_proxy_plug(hotplug_dev, dev);
4238     }
4239 }
4240 
4241 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4242                                         DeviceState *dev, Error **errp)
4243 {
4244     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4245         spapr_memory_unplug(hotplug_dev, dev);
4246     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4247         spapr_core_unplug(hotplug_dev, dev);
4248     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4249         spapr_phb_unplug(hotplug_dev, dev);
4250     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4251         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4252     }
4253 }
4254 
4255 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4256 {
4257     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4258         /*
4259          * CAS will process all pending unplug requests.
4260          *
4261          * HACK: a guest could theoretically have cleared all bits in OV5,
4262          * but none of the guests we care for do.
4263          */
4264         spapr_ovec_empty(spapr->ov5_cas);
4265 }
4266 
4267 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4268                                                 DeviceState *dev, Error **errp)
4269 {
4270     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4271     MachineClass *mc = MACHINE_GET_CLASS(sms);
4272     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4273 
4274     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4275         if (spapr_memory_hot_unplug_supported(sms)) {
4276             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4277         } else {
4278             error_setg(errp, "Memory hot unplug not supported for this guest");
4279         }
4280     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4281         if (!mc->has_hotpluggable_cpus) {
4282             error_setg(errp, "CPU hot unplug not supported on this machine");
4283             return;
4284         }
4285         spapr_core_unplug_request(hotplug_dev, dev, errp);
4286     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4287         if (!smc->dr_phb_enabled) {
4288             error_setg(errp, "PHB hot unplug not supported on this machine");
4289             return;
4290         }
4291         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4292     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4293         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4294     }
4295 }
4296 
4297 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4298                                           DeviceState *dev, Error **errp)
4299 {
4300     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4301         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4302     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4303         spapr_core_pre_plug(hotplug_dev, dev, errp);
4304     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4305         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4306     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4307         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4308     }
4309 }
4310 
4311 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4312                                                  DeviceState *dev)
4313 {
4314     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4315         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4316         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4317         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4318         return HOTPLUG_HANDLER(machine);
4319     }
4320     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4321         PCIDevice *pcidev = PCI_DEVICE(dev);
4322         PCIBus *root = pci_device_root_bus(pcidev);
4323         SpaprPhbState *phb =
4324             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4325                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4326 
4327         if (phb) {
4328             return HOTPLUG_HANDLER(phb);
4329         }
4330     }
4331     return NULL;
4332 }
4333 
4334 static CpuInstanceProperties
4335 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4336 {
4337     CPUArchId *core_slot;
4338     MachineClass *mc = MACHINE_GET_CLASS(machine);
4339 
4340     /* make sure possible_cpu are intialized */
4341     mc->possible_cpu_arch_ids(machine);
4342     /* get CPU core slot containing thread that matches cpu_index */
4343     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4344     assert(core_slot);
4345     return core_slot->props;
4346 }
4347 
4348 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4349 {
4350     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4351 }
4352 
4353 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4354 {
4355     int i;
4356     unsigned int smp_threads = machine->smp.threads;
4357     unsigned int smp_cpus = machine->smp.cpus;
4358     const char *core_type;
4359     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4360     MachineClass *mc = MACHINE_GET_CLASS(machine);
4361 
4362     if (!mc->has_hotpluggable_cpus) {
4363         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4364     }
4365     if (machine->possible_cpus) {
4366         assert(machine->possible_cpus->len == spapr_max_cores);
4367         return machine->possible_cpus;
4368     }
4369 
4370     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4371     if (!core_type) {
4372         error_report("Unable to find sPAPR CPU Core definition");
4373         exit(1);
4374     }
4375 
4376     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4377                              sizeof(CPUArchId) * spapr_max_cores);
4378     machine->possible_cpus->len = spapr_max_cores;
4379     for (i = 0; i < machine->possible_cpus->len; i++) {
4380         int core_id = i * smp_threads;
4381 
4382         machine->possible_cpus->cpus[i].type = core_type;
4383         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4384         machine->possible_cpus->cpus[i].arch_id = core_id;
4385         machine->possible_cpus->cpus[i].props.has_core_id = true;
4386         machine->possible_cpus->cpus[i].props.core_id = core_id;
4387     }
4388     return machine->possible_cpus;
4389 }
4390 
4391 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4392                                 uint64_t *buid, hwaddr *pio,
4393                                 hwaddr *mmio32, hwaddr *mmio64,
4394                                 unsigned n_dma, uint32_t *liobns,
4395                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4396 {
4397     /*
4398      * New-style PHB window placement.
4399      *
4400      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4401      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4402      * windows.
4403      *
4404      * Some guest kernels can't work with MMIO windows above 1<<46
4405      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4406      *
4407      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4408      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4409      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4410      * 1TiB 64-bit MMIO windows for each PHB.
4411      */
4412     const uint64_t base_buid = 0x800000020000000ULL;
4413     int i;
4414 
4415     /* Sanity check natural alignments */
4416     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4417     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4418     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4419     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4420     /* Sanity check bounds */
4421     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4422                       SPAPR_PCI_MEM32_WIN_SIZE);
4423     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4424                       SPAPR_PCI_MEM64_WIN_SIZE);
4425 
4426     if (index >= SPAPR_MAX_PHBS) {
4427         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4428                    SPAPR_MAX_PHBS - 1);
4429         return false;
4430     }
4431 
4432     *buid = base_buid + index;
4433     for (i = 0; i < n_dma; ++i) {
4434         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4435     }
4436 
4437     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4438     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4439     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4440 
4441     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4442     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4443     return true;
4444 }
4445 
4446 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4447 {
4448     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4449 
4450     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4451 }
4452 
4453 static void spapr_ics_resend(XICSFabric *dev)
4454 {
4455     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4456 
4457     ics_resend(spapr->ics);
4458 }
4459 
4460 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4461 {
4462     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4463 
4464     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4465 }
4466 
4467 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4468                                  Monitor *mon)
4469 {
4470     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4471 
4472     spapr_irq_print_info(spapr, mon);
4473     monitor_printf(mon, "irqchip: %s\n",
4474                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4475 }
4476 
4477 /*
4478  * This is a XIVE only operation
4479  */
4480 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4481                            uint8_t nvt_blk, uint32_t nvt_idx,
4482                            bool cam_ignore, uint8_t priority,
4483                            uint32_t logic_serv, XiveTCTXMatch *match)
4484 {
4485     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4486     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4487     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4488     int count;
4489 
4490     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4491                            priority, logic_serv, match);
4492     if (count < 0) {
4493         return count;
4494     }
4495 
4496     /*
4497      * When we implement the save and restore of the thread interrupt
4498      * contexts in the enter/exit CPU handlers of the machine and the
4499      * escalations in QEMU, we should be able to handle non dispatched
4500      * vCPUs.
4501      *
4502      * Until this is done, the sPAPR machine should find at least one
4503      * matching context always.
4504      */
4505     if (count == 0) {
4506         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4507                       nvt_blk, nvt_idx);
4508     }
4509 
4510     return count;
4511 }
4512 
4513 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4514 {
4515     return cpu->vcpu_id;
4516 }
4517 
4518 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4519 {
4520     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4521     MachineState *ms = MACHINE(spapr);
4522     int vcpu_id;
4523 
4524     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4525 
4526     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4527         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4528         error_append_hint(errp, "Adjust the number of cpus to %d "
4529                           "or try to raise the number of threads per core\n",
4530                           vcpu_id * ms->smp.threads / spapr->vsmt);
4531         return false;
4532     }
4533 
4534     cpu->vcpu_id = vcpu_id;
4535     return true;
4536 }
4537 
4538 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4539 {
4540     CPUState *cs;
4541 
4542     CPU_FOREACH(cs) {
4543         PowerPCCPU *cpu = POWERPC_CPU(cs);
4544 
4545         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4546             return cpu;
4547         }
4548     }
4549 
4550     return NULL;
4551 }
4552 
4553 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4554 {
4555     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4556 
4557     return spapr_cpu->in_nested;
4558 }
4559 
4560 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4561 {
4562     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4563 
4564     /* These are only called by TCG, KVM maintains dispatch state */
4565 
4566     spapr_cpu->prod = false;
4567     if (spapr_cpu->vpa_addr) {
4568         CPUState *cs = CPU(cpu);
4569         uint32_t dispatch;
4570 
4571         dispatch = ldl_be_phys(cs->as,
4572                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4573         dispatch++;
4574         if ((dispatch & 1) != 0) {
4575             qemu_log_mask(LOG_GUEST_ERROR,
4576                           "VPA: incorrect dispatch counter value for "
4577                           "dispatched partition %u, correcting.\n", dispatch);
4578             dispatch++;
4579         }
4580         stl_be_phys(cs->as,
4581                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4582     }
4583 }
4584 
4585 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4586 {
4587     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4588 
4589     if (spapr_cpu->vpa_addr) {
4590         CPUState *cs = CPU(cpu);
4591         uint32_t dispatch;
4592 
4593         dispatch = ldl_be_phys(cs->as,
4594                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4595         dispatch++;
4596         if ((dispatch & 1) != 1) {
4597             qemu_log_mask(LOG_GUEST_ERROR,
4598                           "VPA: incorrect dispatch counter value for "
4599                           "preempted partition %u, correcting.\n", dispatch);
4600             dispatch++;
4601         }
4602         stl_be_phys(cs->as,
4603                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4604     }
4605 }
4606 
4607 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4608 {
4609     MachineClass *mc = MACHINE_CLASS(oc);
4610     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4611     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4612     NMIClass *nc = NMI_CLASS(oc);
4613     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4614     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4615     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4616     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4617     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4618     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4619 
4620     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4621     mc->ignore_boot_device_suffixes = true;
4622 
4623     /*
4624      * We set up the default / latest behaviour here.  The class_init
4625      * functions for the specific versioned machine types can override
4626      * these details for backwards compatibility
4627      */
4628     mc->init = spapr_machine_init;
4629     mc->reset = spapr_machine_reset;
4630     mc->block_default_type = IF_SCSI;
4631 
4632     /*
4633      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4634      * should be limited by the host capability instead of hardcoded.
4635      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4636      * guests are welcome to have as many CPUs as the host are capable
4637      * of emulate.
4638      */
4639     mc->max_cpus = INT32_MAX;
4640 
4641     mc->no_parallel = 1;
4642     mc->default_boot_order = "";
4643     mc->default_ram_size = 512 * MiB;
4644     mc->default_ram_id = "ppc_spapr.ram";
4645     mc->default_display = "std";
4646     mc->kvm_type = spapr_kvm_type;
4647     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4648     mc->pci_allow_0_address = true;
4649     assert(!mc->get_hotplug_handler);
4650     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4651     hc->pre_plug = spapr_machine_device_pre_plug;
4652     hc->plug = spapr_machine_device_plug;
4653     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4654     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4655     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4656     hc->unplug_request = spapr_machine_device_unplug_request;
4657     hc->unplug = spapr_machine_device_unplug;
4658 
4659     smc->dr_lmb_enabled = true;
4660     smc->update_dt_enabled = true;
4661     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4662     mc->has_hotpluggable_cpus = true;
4663     mc->nvdimm_supported = true;
4664     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4665     fwc->get_dev_path = spapr_get_fw_dev_path;
4666     nc->nmi_monitor_handler = spapr_nmi;
4667     smc->phb_placement = spapr_phb_placement;
4668     vhc->cpu_in_nested = spapr_cpu_in_nested;
4669     vhc->deliver_hv_excp = spapr_exit_nested;
4670     vhc->hypercall = emulate_spapr_hypercall;
4671     vhc->hpt_mask = spapr_hpt_mask;
4672     vhc->map_hptes = spapr_map_hptes;
4673     vhc->unmap_hptes = spapr_unmap_hptes;
4674     vhc->hpte_set_c = spapr_hpte_set_c;
4675     vhc->hpte_set_r = spapr_hpte_set_r;
4676     vhc->get_pate = spapr_get_pate;
4677     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4678     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4679     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4680     xic->ics_get = spapr_ics_get;
4681     xic->ics_resend = spapr_ics_resend;
4682     xic->icp_get = spapr_icp_get;
4683     ispc->print_info = spapr_pic_print_info;
4684     /* Force NUMA node memory size to be a multiple of
4685      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4686      * in which LMBs are represented and hot-added
4687      */
4688     mc->numa_mem_align_shift = 28;
4689     mc->auto_enable_numa = true;
4690 
4691     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4692     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4693     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4694     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4695     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4696     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4697     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4698     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4699     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4700     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4701     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4702     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4703 
4704     /*
4705      * This cap specifies whether the AIL 3 mode for
4706      * H_SET_RESOURCE is supported. The default is modified
4707      * by default_caps_with_cpu().
4708      */
4709     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4710     spapr_caps_add_properties(smc);
4711     smc->irq = &spapr_irq_dual;
4712     smc->dr_phb_enabled = true;
4713     smc->linux_pci_probe = true;
4714     smc->smp_threads_vsmt = true;
4715     smc->nr_xirqs = SPAPR_NR_XIRQS;
4716     xfc->match_nvt = spapr_match_nvt;
4717     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4718     vmc->quiesce = spapr_vof_quiesce;
4719     vmc->setprop = spapr_vof_setprop;
4720 }
4721 
4722 static const TypeInfo spapr_machine_info = {
4723     .name          = TYPE_SPAPR_MACHINE,
4724     .parent        = TYPE_MACHINE,
4725     .abstract      = true,
4726     .instance_size = sizeof(SpaprMachineState),
4727     .instance_init = spapr_instance_init,
4728     .instance_finalize = spapr_machine_finalizefn,
4729     .class_size    = sizeof(SpaprMachineClass),
4730     .class_init    = spapr_machine_class_init,
4731     .interfaces = (InterfaceInfo[]) {
4732         { TYPE_FW_PATH_PROVIDER },
4733         { TYPE_NMI },
4734         { TYPE_HOTPLUG_HANDLER },
4735         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4736         { TYPE_XICS_FABRIC },
4737         { TYPE_INTERRUPT_STATS_PROVIDER },
4738         { TYPE_XIVE_FABRIC },
4739         { TYPE_VOF_MACHINE_IF },
4740         { }
4741     },
4742 };
4743 
4744 static void spapr_machine_latest_class_options(MachineClass *mc)
4745 {
4746     mc->alias = "pseries";
4747     mc->is_default = true;
4748 }
4749 
4750 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4751     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4752                                                     void *data)      \
4753     {                                                                \
4754         MachineClass *mc = MACHINE_CLASS(oc);                        \
4755         spapr_machine_##suffix##_class_options(mc);                  \
4756         if (latest) {                                                \
4757             spapr_machine_latest_class_options(mc);                  \
4758         }                                                            \
4759     }                                                                \
4760     static const TypeInfo spapr_machine_##suffix##_info = {          \
4761         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4762         .parent = TYPE_SPAPR_MACHINE,                                \
4763         .class_init = spapr_machine_##suffix##_class_init,           \
4764     };                                                               \
4765     static void spapr_machine_register_##suffix(void)                \
4766     {                                                                \
4767         type_register(&spapr_machine_##suffix##_info);               \
4768     }                                                                \
4769     type_init(spapr_machine_register_##suffix)
4770 
4771 /*
4772  * pseries-8.2
4773  */
4774 static void spapr_machine_8_2_class_options(MachineClass *mc)
4775 {
4776     /* Defaults for the latest behaviour inherited from the base class */
4777 }
4778 
4779 DEFINE_SPAPR_MACHINE(8_2, "8.2", true);
4780 
4781 /*
4782  * pseries-8.1
4783  */
4784 static void spapr_machine_8_1_class_options(MachineClass *mc)
4785 {
4786     spapr_machine_8_2_class_options(mc);
4787     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4788 }
4789 
4790 DEFINE_SPAPR_MACHINE(8_1, "8.1", false);
4791 
4792 /*
4793  * pseries-8.0
4794  */
4795 static void spapr_machine_8_0_class_options(MachineClass *mc)
4796 {
4797     spapr_machine_8_1_class_options(mc);
4798     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4799 }
4800 
4801 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4802 
4803 /*
4804  * pseries-7.2
4805  */
4806 static void spapr_machine_7_2_class_options(MachineClass *mc)
4807 {
4808     spapr_machine_8_0_class_options(mc);
4809     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4810 }
4811 
4812 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4813 
4814 /*
4815  * pseries-7.1
4816  */
4817 static void spapr_machine_7_1_class_options(MachineClass *mc)
4818 {
4819     spapr_machine_7_2_class_options(mc);
4820     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4821 }
4822 
4823 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4824 
4825 /*
4826  * pseries-7.0
4827  */
4828 static void spapr_machine_7_0_class_options(MachineClass *mc)
4829 {
4830     spapr_machine_7_1_class_options(mc);
4831     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4832 }
4833 
4834 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4835 
4836 /*
4837  * pseries-6.2
4838  */
4839 static void spapr_machine_6_2_class_options(MachineClass *mc)
4840 {
4841     spapr_machine_7_0_class_options(mc);
4842     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4843 }
4844 
4845 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4846 
4847 /*
4848  * pseries-6.1
4849  */
4850 static void spapr_machine_6_1_class_options(MachineClass *mc)
4851 {
4852     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4853 
4854     spapr_machine_6_2_class_options(mc);
4855     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4856     smc->pre_6_2_numa_affinity = true;
4857     mc->smp_props.prefer_sockets = true;
4858 }
4859 
4860 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4861 
4862 /*
4863  * pseries-6.0
4864  */
4865 static void spapr_machine_6_0_class_options(MachineClass *mc)
4866 {
4867     spapr_machine_6_1_class_options(mc);
4868     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4869 }
4870 
4871 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4872 
4873 /*
4874  * pseries-5.2
4875  */
4876 static void spapr_machine_5_2_class_options(MachineClass *mc)
4877 {
4878     spapr_machine_6_0_class_options(mc);
4879     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4880 }
4881 
4882 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4883 
4884 /*
4885  * pseries-5.1
4886  */
4887 static void spapr_machine_5_1_class_options(MachineClass *mc)
4888 {
4889     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4890 
4891     spapr_machine_5_2_class_options(mc);
4892     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4893     smc->pre_5_2_numa_associativity = true;
4894 }
4895 
4896 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4897 
4898 /*
4899  * pseries-5.0
4900  */
4901 static void spapr_machine_5_0_class_options(MachineClass *mc)
4902 {
4903     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4904     static GlobalProperty compat[] = {
4905         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4906     };
4907 
4908     spapr_machine_5_1_class_options(mc);
4909     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4910     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4911     mc->numa_mem_supported = true;
4912     smc->pre_5_1_assoc_refpoints = true;
4913 }
4914 
4915 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4916 
4917 /*
4918  * pseries-4.2
4919  */
4920 static void spapr_machine_4_2_class_options(MachineClass *mc)
4921 {
4922     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4923 
4924     spapr_machine_5_0_class_options(mc);
4925     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4926     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4927     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4928     smc->rma_limit = 16 * GiB;
4929     mc->nvdimm_supported = false;
4930 }
4931 
4932 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4933 
4934 /*
4935  * pseries-4.1
4936  */
4937 static void spapr_machine_4_1_class_options(MachineClass *mc)
4938 {
4939     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4940     static GlobalProperty compat[] = {
4941         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4942         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4943     };
4944 
4945     spapr_machine_4_2_class_options(mc);
4946     smc->linux_pci_probe = false;
4947     smc->smp_threads_vsmt = false;
4948     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4949     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4950 }
4951 
4952 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4953 
4954 /*
4955  * pseries-4.0
4956  */
4957 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4958                               uint64_t *buid, hwaddr *pio,
4959                               hwaddr *mmio32, hwaddr *mmio64,
4960                               unsigned n_dma, uint32_t *liobns,
4961                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4962 {
4963     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4964                              liobns, nv2gpa, nv2atsd, errp)) {
4965         return false;
4966     }
4967 
4968     *nv2gpa = 0;
4969     *nv2atsd = 0;
4970     return true;
4971 }
4972 static void spapr_machine_4_0_class_options(MachineClass *mc)
4973 {
4974     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4975 
4976     spapr_machine_4_1_class_options(mc);
4977     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4978     smc->phb_placement = phb_placement_4_0;
4979     smc->irq = &spapr_irq_xics;
4980     smc->pre_4_1_migration = true;
4981 }
4982 
4983 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4984 
4985 /*
4986  * pseries-3.1
4987  */
4988 static void spapr_machine_3_1_class_options(MachineClass *mc)
4989 {
4990     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4991 
4992     spapr_machine_4_0_class_options(mc);
4993     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4994 
4995     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4996     smc->update_dt_enabled = false;
4997     smc->dr_phb_enabled = false;
4998     smc->broken_host_serial_model = true;
4999     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
5000     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
5001     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
5002     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
5003 }
5004 
5005 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
5006 
5007 /*
5008  * pseries-3.0
5009  */
5010 
5011 static void spapr_machine_3_0_class_options(MachineClass *mc)
5012 {
5013     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5014 
5015     spapr_machine_3_1_class_options(mc);
5016     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5017 
5018     smc->legacy_irq_allocation = true;
5019     smc->nr_xirqs = 0x400;
5020     smc->irq = &spapr_irq_xics_legacy;
5021 }
5022 
5023 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
5024 
5025 /*
5026  * pseries-2.12
5027  */
5028 static void spapr_machine_2_12_class_options(MachineClass *mc)
5029 {
5030     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5031     static GlobalProperty compat[] = {
5032         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5033         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5034     };
5035 
5036     spapr_machine_3_0_class_options(mc);
5037     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5038     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5039 
5040     /* We depend on kvm_enabled() to choose a default value for the
5041      * hpt-max-page-size capability. Of course we can't do it here
5042      * because this is too early and the HW accelerator isn't initialzed
5043      * yet. Postpone this to machine init (see default_caps_with_cpu()).
5044      */
5045     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5046 }
5047 
5048 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5049 
5050 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5051 {
5052     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5053 
5054     spapr_machine_2_12_class_options(mc);
5055     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5056     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5057     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5058 }
5059 
5060 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5061 
5062 /*
5063  * pseries-2.11
5064  */
5065 
5066 static void spapr_machine_2_11_class_options(MachineClass *mc)
5067 {
5068     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5069 
5070     spapr_machine_2_12_class_options(mc);
5071     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5072     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5073 }
5074 
5075 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5076 
5077 /*
5078  * pseries-2.10
5079  */
5080 
5081 static void spapr_machine_2_10_class_options(MachineClass *mc)
5082 {
5083     spapr_machine_2_11_class_options(mc);
5084     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5085 }
5086 
5087 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5088 
5089 /*
5090  * pseries-2.9
5091  */
5092 
5093 static void spapr_machine_2_9_class_options(MachineClass *mc)
5094 {
5095     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5096     static GlobalProperty compat[] = {
5097         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5098     };
5099 
5100     spapr_machine_2_10_class_options(mc);
5101     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5102     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5103     smc->pre_2_10_has_unused_icps = true;
5104     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5105 }
5106 
5107 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5108 
5109 /*
5110  * pseries-2.8
5111  */
5112 
5113 static void spapr_machine_2_8_class_options(MachineClass *mc)
5114 {
5115     static GlobalProperty compat[] = {
5116         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5117     };
5118 
5119     spapr_machine_2_9_class_options(mc);
5120     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5121     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5122     mc->numa_mem_align_shift = 23;
5123 }
5124 
5125 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5126 
5127 /*
5128  * pseries-2.7
5129  */
5130 
5131 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5132                               uint64_t *buid, hwaddr *pio,
5133                               hwaddr *mmio32, hwaddr *mmio64,
5134                               unsigned n_dma, uint32_t *liobns,
5135                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5136 {
5137     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5138     const uint64_t base_buid = 0x800000020000000ULL;
5139     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5140     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5141     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5142     const uint32_t max_index = 255;
5143     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5144 
5145     uint64_t ram_top = MACHINE(spapr)->ram_size;
5146     hwaddr phb0_base, phb_base;
5147     int i;
5148 
5149     /* Do we have device memory? */
5150     if (MACHINE(spapr)->device_memory) {
5151         /* Can't just use maxram_size, because there may be an
5152          * alignment gap between normal and device memory regions
5153          */
5154         ram_top = MACHINE(spapr)->device_memory->base +
5155             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5156     }
5157 
5158     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5159 
5160     if (index > max_index) {
5161         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5162                    max_index);
5163         return false;
5164     }
5165 
5166     *buid = base_buid + index;
5167     for (i = 0; i < n_dma; ++i) {
5168         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5169     }
5170 
5171     phb_base = phb0_base + index * phb_spacing;
5172     *pio = phb_base + pio_offset;
5173     *mmio32 = phb_base + mmio_offset;
5174     /*
5175      * We don't set the 64-bit MMIO window, relying on the PHB's
5176      * fallback behaviour of automatically splitting a large "32-bit"
5177      * window into contiguous 32-bit and 64-bit windows
5178      */
5179 
5180     *nv2gpa = 0;
5181     *nv2atsd = 0;
5182     return true;
5183 }
5184 
5185 static void spapr_machine_2_7_class_options(MachineClass *mc)
5186 {
5187     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5188     static GlobalProperty compat[] = {
5189         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5190         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5191         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5192         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5193     };
5194 
5195     spapr_machine_2_8_class_options(mc);
5196     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5197     mc->default_machine_opts = "modern-hotplug-events=off";
5198     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5199     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5200     smc->phb_placement = phb_placement_2_7;
5201 }
5202 
5203 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5204 
5205 /*
5206  * pseries-2.6
5207  */
5208 
5209 static void spapr_machine_2_6_class_options(MachineClass *mc)
5210 {
5211     static GlobalProperty compat[] = {
5212         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5213     };
5214 
5215     spapr_machine_2_7_class_options(mc);
5216     mc->has_hotpluggable_cpus = false;
5217     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5218     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5219 }
5220 
5221 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5222 
5223 /*
5224  * pseries-2.5
5225  */
5226 
5227 static void spapr_machine_2_5_class_options(MachineClass *mc)
5228 {
5229     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5230     static GlobalProperty compat[] = {
5231         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5232     };
5233 
5234     spapr_machine_2_6_class_options(mc);
5235     smc->use_ohci_by_default = true;
5236     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5237     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5238 }
5239 
5240 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5241 
5242 /*
5243  * pseries-2.4
5244  */
5245 
5246 static void spapr_machine_2_4_class_options(MachineClass *mc)
5247 {
5248     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5249 
5250     spapr_machine_2_5_class_options(mc);
5251     smc->dr_lmb_enabled = false;
5252     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5253 }
5254 
5255 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5256 
5257 /*
5258  * pseries-2.3
5259  */
5260 
5261 static void spapr_machine_2_3_class_options(MachineClass *mc)
5262 {
5263     static GlobalProperty compat[] = {
5264         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5265     };
5266     spapr_machine_2_4_class_options(mc);
5267     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5268     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5269 }
5270 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5271 
5272 /*
5273  * pseries-2.2
5274  */
5275 
5276 static void spapr_machine_2_2_class_options(MachineClass *mc)
5277 {
5278     static GlobalProperty compat[] = {
5279         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5280     };
5281 
5282     spapr_machine_2_3_class_options(mc);
5283     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5284     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5285     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5286 }
5287 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5288 
5289 /*
5290  * pseries-2.1
5291  */
5292 
5293 static void spapr_machine_2_1_class_options(MachineClass *mc)
5294 {
5295     spapr_machine_2_2_class_options(mc);
5296     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5297 }
5298 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5299 
5300 static void spapr_machine_register_types(void)
5301 {
5302     type_register_static(&spapr_machine_info);
5303 }
5304 
5305 type_init(spapr_machine_register_types)
5306