1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "qom/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "qemu/cutils.h" 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 #include "hw/ppc/spapr_tpm_proxy.h" 83 84 #include <libfdt.h> 85 86 /* SLOF memory layout: 87 * 88 * SLOF raw image loaded at 0, copies its romfs right below the flat 89 * device-tree, then position SLOF itself 31M below that 90 * 91 * So we set FW_OVERHEAD to 40MB which should account for all of that 92 * and more 93 * 94 * We load our kernel at 4M, leaving space for SLOF initial image 95 */ 96 #define FDT_MAX_SIZE 0x100000 97 #define RTAS_MAX_SIZE 0x10000 98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 99 #define FW_MAX_SIZE 0x400000 100 #define FW_FILE_NAME "slof.bin" 101 #define FW_OVERHEAD 0x2800000 102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 103 104 #define MIN_RMA_SLOF 128UL 105 106 #define PHANDLE_INTC 0x00001111 107 108 /* These two functions implement the VCPU id numbering: one to compute them 109 * all and one to identify thread 0 of a VCORE. Any change to the first one 110 * is likely to have an impact on the second one, so let's keep them close. 111 */ 112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 113 { 114 MachineState *ms = MACHINE(spapr); 115 unsigned int smp_threads = ms->smp.threads; 116 117 assert(spapr->vsmt); 118 return 119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 120 } 121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 122 PowerPCCPU *cpu) 123 { 124 assert(spapr->vsmt); 125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 126 } 127 128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 129 { 130 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 131 * and newer QEMUs don't even have them. In both cases, we don't want 132 * to send anything on the wire. 133 */ 134 return false; 135 } 136 137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 138 .name = "icp/server", 139 .version_id = 1, 140 .minimum_version_id = 1, 141 .needed = pre_2_10_vmstate_dummy_icp_needed, 142 .fields = (VMStateField[]) { 143 VMSTATE_UNUSED(4), /* uint32_t xirr */ 144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 145 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 146 VMSTATE_END_OF_LIST() 147 }, 148 }; 149 150 static void pre_2_10_vmstate_register_dummy_icp(int i) 151 { 152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 153 (void *)(uintptr_t) i); 154 } 155 156 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 157 { 158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 159 (void *)(uintptr_t) i); 160 } 161 162 int spapr_max_server_number(SpaprMachineState *spapr) 163 { 164 MachineState *ms = MACHINE(spapr); 165 166 assert(spapr->vsmt); 167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 168 } 169 170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 171 int smt_threads) 172 { 173 int i, ret = 0; 174 uint32_t servers_prop[smt_threads]; 175 uint32_t gservers_prop[smt_threads * 2]; 176 int index = spapr_get_vcpu_id(cpu); 177 178 if (cpu->compat_pvr) { 179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 180 if (ret < 0) { 181 return ret; 182 } 183 } 184 185 /* Build interrupt servers and gservers properties */ 186 for (i = 0; i < smt_threads; i++) { 187 servers_prop[i] = cpu_to_be32(index + i); 188 /* Hack, direct the group queues back to cpu 0 */ 189 gservers_prop[i*2] = cpu_to_be32(index + i); 190 gservers_prop[i*2 + 1] = 0; 191 } 192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 193 servers_prop, sizeof(servers_prop)); 194 if (ret < 0) { 195 return ret; 196 } 197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 198 gservers_prop, sizeof(gservers_prop)); 199 200 return ret; 201 } 202 203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 204 { 205 int index = spapr_get_vcpu_id(cpu); 206 uint32_t associativity[] = {cpu_to_be32(0x5), 207 cpu_to_be32(0x0), 208 cpu_to_be32(0x0), 209 cpu_to_be32(0x0), 210 cpu_to_be32(cpu->node_id), 211 cpu_to_be32(index)}; 212 213 /* Advertise NUMA via ibm,associativity */ 214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 215 sizeof(associativity)); 216 } 217 218 /* Populate the "ibm,pa-features" property */ 219 static void spapr_populate_pa_features(SpaprMachineState *spapr, 220 PowerPCCPU *cpu, 221 void *fdt, int offset, 222 bool legacy_guest) 223 { 224 uint8_t pa_features_206[] = { 6, 0, 225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 226 uint8_t pa_features_207[] = { 24, 0, 227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 231 uint8_t pa_features_300[] = { 66, 0, 232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 235 /* 6: DS207 */ 236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 237 /* 16: Vector */ 238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 247 /* 42: PM, 44: PC RA, 46: SC vec'd */ 248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 249 /* 48: SIMD, 50: QP BFP, 52: String */ 250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 251 /* 54: DecFP, 56: DecI, 58: SHA */ 252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 253 /* 60: NM atomic, 62: RNG */ 254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 255 }; 256 uint8_t *pa_features = NULL; 257 size_t pa_size; 258 259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 260 pa_features = pa_features_206; 261 pa_size = sizeof(pa_features_206); 262 } 263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 264 pa_features = pa_features_207; 265 pa_size = sizeof(pa_features_207); 266 } 267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 268 pa_features = pa_features_300; 269 pa_size = sizeof(pa_features_300); 270 } 271 if (!pa_features) { 272 return; 273 } 274 275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 276 /* 277 * Note: we keep CI large pages off by default because a 64K capable 278 * guest provisioned with large pages might otherwise try to map a qemu 279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 280 * even if that qemu runs on a 4k host. 281 * We dd this bit back here if we are confident this is not an issue 282 */ 283 pa_features[3] |= 0x20; 284 } 285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 286 pa_features[24] |= 0x80; /* Transactional memory support */ 287 } 288 if (legacy_guest && pa_size > 40) { 289 /* Workaround for broken kernels that attempt (guest) radix 290 * mode when they can't handle it, if they see the radix bit set 291 * in pa-features. So hide it from them. */ 292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 293 } 294 295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 296 } 297 298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 299 { 300 MachineState *ms = MACHINE(spapr); 301 int ret = 0, offset, cpus_offset; 302 CPUState *cs; 303 char cpu_model[32]; 304 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 305 306 CPU_FOREACH(cs) { 307 PowerPCCPU *cpu = POWERPC_CPU(cs); 308 DeviceClass *dc = DEVICE_GET_CLASS(cs); 309 int index = spapr_get_vcpu_id(cpu); 310 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu)); 311 312 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 313 continue; 314 } 315 316 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 317 318 cpus_offset = fdt_path_offset(fdt, "/cpus"); 319 if (cpus_offset < 0) { 320 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 321 if (cpus_offset < 0) { 322 return cpus_offset; 323 } 324 } 325 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 326 if (offset < 0) { 327 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 328 if (offset < 0) { 329 return offset; 330 } 331 } 332 333 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 334 pft_size_prop, sizeof(pft_size_prop)); 335 if (ret < 0) { 336 return ret; 337 } 338 339 if (nb_numa_nodes > 1) { 340 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 341 if (ret < 0) { 342 return ret; 343 } 344 } 345 346 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 347 if (ret < 0) { 348 return ret; 349 } 350 351 spapr_populate_pa_features(spapr, cpu, fdt, offset, 352 spapr->cas_legacy_guest_workaround); 353 } 354 return ret; 355 } 356 357 static hwaddr spapr_node0_size(MachineState *machine) 358 { 359 if (nb_numa_nodes) { 360 int i; 361 for (i = 0; i < nb_numa_nodes; ++i) { 362 if (numa_info[i].node_mem) { 363 return MIN(pow2floor(numa_info[i].node_mem), 364 machine->ram_size); 365 } 366 } 367 } 368 return machine->ram_size; 369 } 370 371 static void add_str(GString *s, const gchar *s1) 372 { 373 g_string_append_len(s, s1, strlen(s1) + 1); 374 } 375 376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 377 hwaddr size) 378 { 379 uint32_t associativity[] = { 380 cpu_to_be32(0x4), /* length */ 381 cpu_to_be32(0x0), cpu_to_be32(0x0), 382 cpu_to_be32(0x0), cpu_to_be32(nodeid) 383 }; 384 char mem_name[32]; 385 uint64_t mem_reg_property[2]; 386 int off; 387 388 mem_reg_property[0] = cpu_to_be64(start); 389 mem_reg_property[1] = cpu_to_be64(size); 390 391 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 392 off = fdt_add_subnode(fdt, 0, mem_name); 393 _FDT(off); 394 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 395 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 396 sizeof(mem_reg_property)))); 397 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 398 sizeof(associativity)))); 399 return off; 400 } 401 402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 403 { 404 MachineState *machine = MACHINE(spapr); 405 hwaddr mem_start, node_size; 406 int i, nb_nodes = nb_numa_nodes; 407 NodeInfo *nodes = numa_info; 408 NodeInfo ramnode; 409 410 /* No NUMA nodes, assume there is just one node with whole RAM */ 411 if (!nb_numa_nodes) { 412 nb_nodes = 1; 413 ramnode.node_mem = machine->ram_size; 414 nodes = &ramnode; 415 } 416 417 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 418 if (!nodes[i].node_mem) { 419 continue; 420 } 421 if (mem_start >= machine->ram_size) { 422 node_size = 0; 423 } else { 424 node_size = nodes[i].node_mem; 425 if (node_size > machine->ram_size - mem_start) { 426 node_size = machine->ram_size - mem_start; 427 } 428 } 429 if (!mem_start) { 430 /* spapr_machine_init() checks for rma_size <= node0_size 431 * already */ 432 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 433 mem_start += spapr->rma_size; 434 node_size -= spapr->rma_size; 435 } 436 for ( ; node_size; ) { 437 hwaddr sizetmp = pow2floor(node_size); 438 439 /* mem_start != 0 here */ 440 if (ctzl(mem_start) < ctzl(sizetmp)) { 441 sizetmp = 1ULL << ctzl(mem_start); 442 } 443 444 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 445 node_size -= sizetmp; 446 mem_start += sizetmp; 447 } 448 } 449 450 return 0; 451 } 452 453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 454 SpaprMachineState *spapr) 455 { 456 MachineState *ms = MACHINE(spapr); 457 PowerPCCPU *cpu = POWERPC_CPU(cs); 458 CPUPPCState *env = &cpu->env; 459 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 460 int index = spapr_get_vcpu_id(cpu); 461 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 462 0xffffffff, 0xffffffff}; 463 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 464 : SPAPR_TIMEBASE_FREQ; 465 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 466 uint32_t page_sizes_prop[64]; 467 size_t page_sizes_prop_size; 468 unsigned int smp_threads = ms->smp.threads; 469 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 470 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 471 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 472 SpaprDrc *drc; 473 int drc_index; 474 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 475 int i; 476 477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 478 if (drc) { 479 drc_index = spapr_drc_index(drc); 480 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 481 } 482 483 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 484 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 485 486 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 488 env->dcache_line_size))); 489 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 490 env->dcache_line_size))); 491 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 492 env->icache_line_size))); 493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 494 env->icache_line_size))); 495 496 if (pcc->l1_dcache_size) { 497 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 498 pcc->l1_dcache_size))); 499 } else { 500 warn_report("Unknown L1 dcache size for cpu"); 501 } 502 if (pcc->l1_icache_size) { 503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 504 pcc->l1_icache_size))); 505 } else { 506 warn_report("Unknown L1 icache size for cpu"); 507 } 508 509 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 510 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 511 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 513 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 514 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 515 516 if (env->spr_cb[SPR_PURR].oea_read) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 518 } 519 if (env->spr_cb[SPR_SPURR].oea_read) { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 521 } 522 523 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 524 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 525 segs, sizeof(segs)))); 526 } 527 528 /* Advertise VSX (vector extensions) if available 529 * 1 == VMX / Altivec available 530 * 2 == VSX available 531 * 532 * Only CPUs for which we create core types in spapr_cpu_core.c 533 * are possible, and all of those have VMX */ 534 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 536 } else { 537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 538 } 539 540 /* Advertise DFP (Decimal Floating Point) if available 541 * 0 / no property == no DFP 542 * 1 == DFP available */ 543 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 545 } 546 547 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 548 sizeof(page_sizes_prop)); 549 if (page_sizes_prop_size) { 550 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 551 page_sizes_prop, page_sizes_prop_size))); 552 } 553 554 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 555 556 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 557 cs->cpu_index / vcpus_per_socket))); 558 559 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 560 pft_size_prop, sizeof(pft_size_prop)))); 561 562 if (nb_numa_nodes > 1) { 563 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 564 } 565 566 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 567 568 if (pcc->radix_page_info) { 569 for (i = 0; i < pcc->radix_page_info->count; i++) { 570 radix_AP_encodings[i] = 571 cpu_to_be32(pcc->radix_page_info->entries[i]); 572 } 573 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 574 radix_AP_encodings, 575 pcc->radix_page_info->count * 576 sizeof(radix_AP_encodings[0])))); 577 } 578 579 /* 580 * We set this property to let the guest know that it can use the large 581 * decrementer and its width in bits. 582 */ 583 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 584 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 585 pcc->lrg_decr_bits))); 586 } 587 588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 589 { 590 CPUState **rev; 591 CPUState *cs; 592 int n_cpus; 593 int cpus_offset; 594 char *nodename; 595 int i; 596 597 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 598 _FDT(cpus_offset); 599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 600 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 601 602 /* 603 * We walk the CPUs in reverse order to ensure that CPU DT nodes 604 * created by fdt_add_subnode() end up in the right order in FDT 605 * for the guest kernel the enumerate the CPUs correctly. 606 * 607 * The CPU list cannot be traversed in reverse order, so we need 608 * to do extra work. 609 */ 610 n_cpus = 0; 611 rev = NULL; 612 CPU_FOREACH(cs) { 613 rev = g_renew(CPUState *, rev, n_cpus + 1); 614 rev[n_cpus++] = cs; 615 } 616 617 for (i = n_cpus - 1; i >= 0; i--) { 618 CPUState *cs = rev[i]; 619 PowerPCCPU *cpu = POWERPC_CPU(cs); 620 int index = spapr_get_vcpu_id(cpu); 621 DeviceClass *dc = DEVICE_GET_CLASS(cs); 622 int offset; 623 624 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 625 continue; 626 } 627 628 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 629 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 630 g_free(nodename); 631 _FDT(offset); 632 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 633 } 634 635 g_free(rev); 636 } 637 638 static int spapr_rng_populate_dt(void *fdt) 639 { 640 int node; 641 int ret; 642 643 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 644 if (node <= 0) { 645 return -1; 646 } 647 ret = fdt_setprop_string(fdt, node, "device_type", 648 "ibm,platform-facilities"); 649 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 650 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 651 652 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 653 if (node <= 0) { 654 return -1; 655 } 656 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 657 658 return ret ? -1 : 0; 659 } 660 661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 662 { 663 MemoryDeviceInfoList *info; 664 665 for (info = list; info; info = info->next) { 666 MemoryDeviceInfo *value = info->value; 667 668 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 669 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 670 671 if (addr >= pcdimm_info->addr && 672 addr < (pcdimm_info->addr + pcdimm_info->size)) { 673 return pcdimm_info->node; 674 } 675 } 676 } 677 678 return -1; 679 } 680 681 struct sPAPRDrconfCellV2 { 682 uint32_t seq_lmbs; 683 uint64_t base_addr; 684 uint32_t drc_index; 685 uint32_t aa_index; 686 uint32_t flags; 687 } QEMU_PACKED; 688 689 typedef struct DrconfCellQueue { 690 struct sPAPRDrconfCellV2 cell; 691 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 692 } DrconfCellQueue; 693 694 static DrconfCellQueue * 695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 696 uint32_t drc_index, uint32_t aa_index, 697 uint32_t flags) 698 { 699 DrconfCellQueue *elem; 700 701 elem = g_malloc0(sizeof(*elem)); 702 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 703 elem->cell.base_addr = cpu_to_be64(base_addr); 704 elem->cell.drc_index = cpu_to_be32(drc_index); 705 elem->cell.aa_index = cpu_to_be32(aa_index); 706 elem->cell.flags = cpu_to_be32(flags); 707 708 return elem; 709 } 710 711 /* ibm,dynamic-memory-v2 */ 712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 713 int offset, MemoryDeviceInfoList *dimms) 714 { 715 MachineState *machine = MACHINE(spapr); 716 uint8_t *int_buf, *cur_index; 717 int ret; 718 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 719 uint64_t addr, cur_addr, size; 720 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 721 uint64_t mem_end = machine->device_memory->base + 722 memory_region_size(&machine->device_memory->mr); 723 uint32_t node, buf_len, nr_entries = 0; 724 SpaprDrc *drc; 725 DrconfCellQueue *elem, *next; 726 MemoryDeviceInfoList *info; 727 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 728 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 729 730 /* Entry to cover RAM and the gap area */ 731 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 732 SPAPR_LMB_FLAGS_RESERVED | 733 SPAPR_LMB_FLAGS_DRC_INVALID); 734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 735 nr_entries++; 736 737 cur_addr = machine->device_memory->base; 738 for (info = dimms; info; info = info->next) { 739 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 740 741 addr = di->addr; 742 size = di->size; 743 node = di->node; 744 745 /* Entry for hot-pluggable area */ 746 if (cur_addr < addr) { 747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 748 g_assert(drc); 749 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 750 cur_addr, spapr_drc_index(drc), -1, 0); 751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 752 nr_entries++; 753 } 754 755 /* Entry for DIMM */ 756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 757 g_assert(drc); 758 elem = spapr_get_drconf_cell(size / lmb_size, addr, 759 spapr_drc_index(drc), node, 760 SPAPR_LMB_FLAGS_ASSIGNED); 761 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 762 nr_entries++; 763 cur_addr = addr + size; 764 } 765 766 /* Entry for remaining hotpluggable area */ 767 if (cur_addr < mem_end) { 768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 769 g_assert(drc); 770 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 771 cur_addr, spapr_drc_index(drc), -1, 0); 772 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 773 nr_entries++; 774 } 775 776 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 777 int_buf = cur_index = g_malloc0(buf_len); 778 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 779 cur_index += sizeof(nr_entries); 780 781 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 782 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 783 cur_index += sizeof(elem->cell); 784 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 785 g_free(elem); 786 } 787 788 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 789 g_free(int_buf); 790 if (ret < 0) { 791 return -1; 792 } 793 return 0; 794 } 795 796 /* ibm,dynamic-memory */ 797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 798 int offset, MemoryDeviceInfoList *dimms) 799 { 800 MachineState *machine = MACHINE(spapr); 801 int i, ret; 802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 803 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 804 uint32_t nr_lmbs = (machine->device_memory->base + 805 memory_region_size(&machine->device_memory->mr)) / 806 lmb_size; 807 uint32_t *int_buf, *cur_index, buf_len; 808 809 /* 810 * Allocate enough buffer size to fit in ibm,dynamic-memory 811 */ 812 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 813 cur_index = int_buf = g_malloc0(buf_len); 814 int_buf[0] = cpu_to_be32(nr_lmbs); 815 cur_index++; 816 for (i = 0; i < nr_lmbs; i++) { 817 uint64_t addr = i * lmb_size; 818 uint32_t *dynamic_memory = cur_index; 819 820 if (i >= device_lmb_start) { 821 SpaprDrc *drc; 822 823 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 824 g_assert(drc); 825 826 dynamic_memory[0] = cpu_to_be32(addr >> 32); 827 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 828 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 829 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 830 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 831 if (memory_region_present(get_system_memory(), addr)) { 832 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 833 } else { 834 dynamic_memory[5] = cpu_to_be32(0); 835 } 836 } else { 837 /* 838 * LMB information for RMA, boot time RAM and gap b/n RAM and 839 * device memory region -- all these are marked as reserved 840 * and as having no valid DRC. 841 */ 842 dynamic_memory[0] = cpu_to_be32(addr >> 32); 843 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 844 dynamic_memory[2] = cpu_to_be32(0); 845 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 846 dynamic_memory[4] = cpu_to_be32(-1); 847 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 848 SPAPR_LMB_FLAGS_DRC_INVALID); 849 } 850 851 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 852 } 853 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 854 g_free(int_buf); 855 if (ret < 0) { 856 return -1; 857 } 858 return 0; 859 } 860 861 /* 862 * Adds ibm,dynamic-reconfiguration-memory node. 863 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 864 * of this device tree node. 865 */ 866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 867 { 868 MachineState *machine = MACHINE(spapr); 869 int ret, i, offset; 870 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 871 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 872 uint32_t *int_buf, *cur_index, buf_len; 873 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 874 MemoryDeviceInfoList *dimms = NULL; 875 876 /* 877 * Don't create the node if there is no device memory 878 */ 879 if (machine->ram_size == machine->maxram_size) { 880 return 0; 881 } 882 883 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 884 885 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 886 sizeof(prop_lmb_size)); 887 if (ret < 0) { 888 return ret; 889 } 890 891 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 892 if (ret < 0) { 893 return ret; 894 } 895 896 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 897 if (ret < 0) { 898 return ret; 899 } 900 901 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 902 dimms = qmp_memory_device_list(); 903 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 904 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 905 } else { 906 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 907 } 908 qapi_free_MemoryDeviceInfoList(dimms); 909 910 if (ret < 0) { 911 return ret; 912 } 913 914 /* ibm,associativity-lookup-arrays */ 915 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 916 cur_index = int_buf = g_malloc0(buf_len); 917 int_buf[0] = cpu_to_be32(nr_nodes); 918 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 919 cur_index += 2; 920 for (i = 0; i < nr_nodes; i++) { 921 uint32_t associativity[] = { 922 cpu_to_be32(0x0), 923 cpu_to_be32(0x0), 924 cpu_to_be32(0x0), 925 cpu_to_be32(i) 926 }; 927 memcpy(cur_index, associativity, sizeof(associativity)); 928 cur_index += 4; 929 } 930 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 931 (cur_index - int_buf) * sizeof(uint32_t)); 932 g_free(int_buf); 933 934 return ret; 935 } 936 937 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 938 SpaprOptionVector *ov5_updates) 939 { 940 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 941 int ret = 0, offset; 942 943 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 944 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 945 g_assert(smc->dr_lmb_enabled); 946 ret = spapr_populate_drconf_memory(spapr, fdt); 947 if (ret) { 948 goto out; 949 } 950 } 951 952 offset = fdt_path_offset(fdt, "/chosen"); 953 if (offset < 0) { 954 offset = fdt_add_subnode(fdt, 0, "chosen"); 955 if (offset < 0) { 956 return offset; 957 } 958 } 959 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 960 "ibm,architecture-vec-5"); 961 962 out: 963 return ret; 964 } 965 966 static bool spapr_hotplugged_dev_before_cas(void) 967 { 968 Object *drc_container, *obj; 969 ObjectProperty *prop; 970 ObjectPropertyIterator iter; 971 972 drc_container = container_get(object_get_root(), "/dr-connector"); 973 object_property_iter_init(&iter, drc_container); 974 while ((prop = object_property_iter_next(&iter))) { 975 if (!strstart(prop->type, "link<", NULL)) { 976 continue; 977 } 978 obj = object_property_get_link(drc_container, prop->name, NULL); 979 if (spapr_drc_needed(obj)) { 980 return true; 981 } 982 } 983 return false; 984 } 985 986 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 987 target_ulong addr, target_ulong size, 988 SpaprOptionVector *ov5_updates) 989 { 990 void *fdt, *fdt_skel; 991 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 992 993 if (spapr_hotplugged_dev_before_cas()) { 994 return 1; 995 } 996 997 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 998 error_report("SLOF provided an unexpected CAS buffer size " 999 TARGET_FMT_lu " (min: %zu, max: %u)", 1000 size, sizeof(hdr), FW_MAX_SIZE); 1001 exit(EXIT_FAILURE); 1002 } 1003 1004 size -= sizeof(hdr); 1005 1006 /* Create skeleton */ 1007 fdt_skel = g_malloc0(size); 1008 _FDT((fdt_create(fdt_skel, size))); 1009 _FDT((fdt_finish_reservemap(fdt_skel))); 1010 _FDT((fdt_begin_node(fdt_skel, ""))); 1011 _FDT((fdt_end_node(fdt_skel))); 1012 _FDT((fdt_finish(fdt_skel))); 1013 fdt = g_malloc0(size); 1014 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1015 g_free(fdt_skel); 1016 1017 /* Fixup cpu nodes */ 1018 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1019 1020 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1021 return -1; 1022 } 1023 1024 /* Pack resulting tree */ 1025 _FDT((fdt_pack(fdt))); 1026 1027 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1028 trace_spapr_cas_failed(size); 1029 return -1; 1030 } 1031 1032 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1033 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1034 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1035 g_free(fdt); 1036 1037 return 0; 1038 } 1039 1040 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1041 { 1042 MachineState *ms = MACHINE(spapr); 1043 int rtas; 1044 GString *hypertas = g_string_sized_new(256); 1045 GString *qemu_hypertas = g_string_sized_new(256); 1046 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1047 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1048 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1049 uint32_t lrdr_capacity[] = { 1050 cpu_to_be32(max_device_addr >> 32), 1051 cpu_to_be32(max_device_addr & 0xffffffff), 1052 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1053 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 1054 }; 1055 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1056 uint32_t maxdomains[] = { 1057 cpu_to_be32(4), 1058 maxdomain, 1059 maxdomain, 1060 maxdomain, 1061 cpu_to_be32(spapr->gpu_numa_id), 1062 }; 1063 1064 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1065 1066 /* hypertas */ 1067 add_str(hypertas, "hcall-pft"); 1068 add_str(hypertas, "hcall-term"); 1069 add_str(hypertas, "hcall-dabr"); 1070 add_str(hypertas, "hcall-interrupt"); 1071 add_str(hypertas, "hcall-tce"); 1072 add_str(hypertas, "hcall-vio"); 1073 add_str(hypertas, "hcall-splpar"); 1074 add_str(hypertas, "hcall-join"); 1075 add_str(hypertas, "hcall-bulk"); 1076 add_str(hypertas, "hcall-set-mode"); 1077 add_str(hypertas, "hcall-sprg0"); 1078 add_str(hypertas, "hcall-copy"); 1079 add_str(hypertas, "hcall-debug"); 1080 add_str(hypertas, "hcall-vphn"); 1081 add_str(qemu_hypertas, "hcall-memop1"); 1082 1083 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1084 add_str(hypertas, "hcall-multi-tce"); 1085 } 1086 1087 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1088 add_str(hypertas, "hcall-hpt-resize"); 1089 } 1090 1091 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1092 hypertas->str, hypertas->len)); 1093 g_string_free(hypertas, TRUE); 1094 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1095 qemu_hypertas->str, qemu_hypertas->len)); 1096 g_string_free(qemu_hypertas, TRUE); 1097 1098 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1099 refpoints, sizeof(refpoints))); 1100 1101 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1102 maxdomains, sizeof(maxdomains))); 1103 1104 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1105 RTAS_ERROR_LOG_MAX)); 1106 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1107 RTAS_EVENT_SCAN_RATE)); 1108 1109 g_assert(msi_nonbroken); 1110 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1111 1112 /* 1113 * According to PAPR, rtas ibm,os-term does not guarantee a return 1114 * back to the guest cpu. 1115 * 1116 * While an additional ibm,extended-os-term property indicates 1117 * that rtas call return will always occur. Set this property. 1118 */ 1119 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1120 1121 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1122 lrdr_capacity, sizeof(lrdr_capacity))); 1123 1124 spapr_dt_rtas_tokens(fdt, rtas); 1125 } 1126 1127 /* 1128 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1129 * and the XIVE features that the guest may request and thus the valid 1130 * values for bytes 23..26 of option vector 5: 1131 */ 1132 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1133 int chosen) 1134 { 1135 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1136 1137 char val[2 * 4] = { 1138 23, spapr->irq->ov5, /* Xive mode. */ 1139 24, 0x00, /* Hash/Radix, filled in below. */ 1140 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1141 26, 0x40, /* Radix options: GTSE == yes. */ 1142 }; 1143 1144 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1145 first_ppc_cpu->compat_pvr)) { 1146 /* 1147 * If we're in a pre POWER9 compat mode then the guest should 1148 * do hash and use the legacy interrupt mode 1149 */ 1150 val[1] = 0x00; /* XICS */ 1151 val[3] = 0x00; /* Hash */ 1152 } else if (kvm_enabled()) { 1153 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1154 val[3] = 0x80; /* OV5_MMU_BOTH */ 1155 } else if (kvmppc_has_cap_mmu_radix()) { 1156 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1157 } else { 1158 val[3] = 0x00; /* Hash */ 1159 } 1160 } else { 1161 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1162 val[3] = 0xC0; 1163 } 1164 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1165 val, sizeof(val))); 1166 } 1167 1168 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1169 { 1170 MachineState *machine = MACHINE(spapr); 1171 int chosen; 1172 const char *boot_device = machine->boot_order; 1173 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1174 size_t cb = 0; 1175 char *bootlist = get_boot_devices_list(&cb); 1176 1177 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1178 1179 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1180 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1181 spapr->initrd_base)); 1182 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1183 spapr->initrd_base + spapr->initrd_size)); 1184 1185 if (spapr->kernel_size) { 1186 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1187 cpu_to_be64(spapr->kernel_size) }; 1188 1189 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1190 &kprop, sizeof(kprop))); 1191 if (spapr->kernel_le) { 1192 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1193 } 1194 } 1195 if (boot_menu) { 1196 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1197 } 1198 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1199 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1200 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1201 1202 if (cb && bootlist) { 1203 int i; 1204 1205 for (i = 0; i < cb; i++) { 1206 if (bootlist[i] == '\n') { 1207 bootlist[i] = ' '; 1208 } 1209 } 1210 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1211 } 1212 1213 if (boot_device && strlen(boot_device)) { 1214 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1215 } 1216 1217 if (!spapr->has_graphics && stdout_path) { 1218 /* 1219 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1220 * kernel. New platforms should only use the "stdout-path" property. Set 1221 * the new property and continue using older property to remain 1222 * compatible with the existing firmware. 1223 */ 1224 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1225 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1226 } 1227 1228 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1229 1230 g_free(stdout_path); 1231 g_free(bootlist); 1232 } 1233 1234 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1235 { 1236 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1237 * KVM to work under pHyp with some guest co-operation */ 1238 int hypervisor; 1239 uint8_t hypercall[16]; 1240 1241 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1242 /* indicate KVM hypercall interface */ 1243 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1244 if (kvmppc_has_cap_fixup_hcalls()) { 1245 /* 1246 * Older KVM versions with older guest kernels were broken 1247 * with the magic page, don't allow the guest to map it. 1248 */ 1249 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1250 sizeof(hypercall))) { 1251 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1252 hypercall, sizeof(hypercall))); 1253 } 1254 } 1255 } 1256 1257 static void *spapr_build_fdt(SpaprMachineState *spapr) 1258 { 1259 MachineState *machine = MACHINE(spapr); 1260 MachineClass *mc = MACHINE_GET_CLASS(machine); 1261 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1262 int ret; 1263 void *fdt; 1264 SpaprPhbState *phb; 1265 char *buf; 1266 1267 fdt = g_malloc0(FDT_MAX_SIZE); 1268 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1269 1270 /* Root node */ 1271 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1272 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1273 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1274 1275 /* Guest UUID & Name*/ 1276 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1277 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1278 if (qemu_uuid_set) { 1279 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1280 } 1281 g_free(buf); 1282 1283 if (qemu_get_vm_name()) { 1284 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1285 qemu_get_vm_name())); 1286 } 1287 1288 /* Host Model & Serial Number */ 1289 if (spapr->host_model) { 1290 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1291 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1292 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1293 g_free(buf); 1294 } 1295 1296 if (spapr->host_serial) { 1297 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1298 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1299 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1300 g_free(buf); 1301 } 1302 1303 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1304 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1305 1306 /* /interrupt controller */ 1307 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1308 PHANDLE_INTC); 1309 1310 ret = spapr_populate_memory(spapr, fdt); 1311 if (ret < 0) { 1312 error_report("couldn't setup memory nodes in fdt"); 1313 exit(1); 1314 } 1315 1316 /* /vdevice */ 1317 spapr_dt_vdevice(spapr->vio_bus, fdt); 1318 1319 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1320 ret = spapr_rng_populate_dt(fdt); 1321 if (ret < 0) { 1322 error_report("could not set up rng device in the fdt"); 1323 exit(1); 1324 } 1325 } 1326 1327 QLIST_FOREACH(phb, &spapr->phbs, list) { 1328 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1329 if (ret < 0) { 1330 error_report("couldn't setup PCI devices in fdt"); 1331 exit(1); 1332 } 1333 } 1334 1335 /* cpus */ 1336 spapr_populate_cpus_dt_node(fdt, spapr); 1337 1338 if (smc->dr_lmb_enabled) { 1339 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1340 } 1341 1342 if (mc->has_hotpluggable_cpus) { 1343 int offset = fdt_path_offset(fdt, "/cpus"); 1344 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1345 if (ret < 0) { 1346 error_report("Couldn't set up CPU DR device tree properties"); 1347 exit(1); 1348 } 1349 } 1350 1351 /* /event-sources */ 1352 spapr_dt_events(spapr, fdt); 1353 1354 /* /rtas */ 1355 spapr_dt_rtas(spapr, fdt); 1356 1357 /* /chosen */ 1358 spapr_dt_chosen(spapr, fdt); 1359 1360 /* /hypervisor */ 1361 if (kvm_enabled()) { 1362 spapr_dt_hypervisor(spapr, fdt); 1363 } 1364 1365 /* Build memory reserve map */ 1366 if (spapr->kernel_size) { 1367 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1368 } 1369 if (spapr->initrd_size) { 1370 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1371 } 1372 1373 /* ibm,client-architecture-support updates */ 1374 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1375 if (ret < 0) { 1376 error_report("couldn't setup CAS properties fdt"); 1377 exit(1); 1378 } 1379 1380 if (smc->dr_phb_enabled) { 1381 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1382 if (ret < 0) { 1383 error_report("Couldn't set up PHB DR device tree properties"); 1384 exit(1); 1385 } 1386 } 1387 1388 return fdt; 1389 } 1390 1391 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1392 { 1393 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1394 } 1395 1396 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1397 PowerPCCPU *cpu) 1398 { 1399 CPUPPCState *env = &cpu->env; 1400 1401 /* The TCG path should also be holding the BQL at this point */ 1402 g_assert(qemu_mutex_iothread_locked()); 1403 1404 if (msr_pr) { 1405 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1406 env->gpr[3] = H_PRIVILEGE; 1407 } else { 1408 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1409 } 1410 } 1411 1412 struct LPCRSyncState { 1413 target_ulong value; 1414 target_ulong mask; 1415 }; 1416 1417 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1418 { 1419 struct LPCRSyncState *s = arg.host_ptr; 1420 PowerPCCPU *cpu = POWERPC_CPU(cs); 1421 CPUPPCState *env = &cpu->env; 1422 target_ulong lpcr; 1423 1424 cpu_synchronize_state(cs); 1425 lpcr = env->spr[SPR_LPCR]; 1426 lpcr &= ~s->mask; 1427 lpcr |= s->value; 1428 ppc_store_lpcr(cpu, lpcr); 1429 } 1430 1431 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1432 { 1433 CPUState *cs; 1434 struct LPCRSyncState s = { 1435 .value = value, 1436 .mask = mask 1437 }; 1438 CPU_FOREACH(cs) { 1439 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1440 } 1441 } 1442 1443 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1444 { 1445 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1446 1447 /* Copy PATE1:GR into PATE0:HR */ 1448 entry->dw0 = spapr->patb_entry & PATE0_HR; 1449 entry->dw1 = spapr->patb_entry; 1450 } 1451 1452 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1453 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1454 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1455 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1456 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1457 1458 /* 1459 * Get the fd to access the kernel htab, re-opening it if necessary 1460 */ 1461 static int get_htab_fd(SpaprMachineState *spapr) 1462 { 1463 Error *local_err = NULL; 1464 1465 if (spapr->htab_fd >= 0) { 1466 return spapr->htab_fd; 1467 } 1468 1469 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1470 if (spapr->htab_fd < 0) { 1471 error_report_err(local_err); 1472 } 1473 1474 return spapr->htab_fd; 1475 } 1476 1477 void close_htab_fd(SpaprMachineState *spapr) 1478 { 1479 if (spapr->htab_fd >= 0) { 1480 close(spapr->htab_fd); 1481 } 1482 spapr->htab_fd = -1; 1483 } 1484 1485 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1486 { 1487 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1488 1489 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1490 } 1491 1492 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1493 { 1494 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1495 1496 assert(kvm_enabled()); 1497 1498 if (!spapr->htab) { 1499 return 0; 1500 } 1501 1502 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1503 } 1504 1505 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1506 hwaddr ptex, int n) 1507 { 1508 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1509 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1510 1511 if (!spapr->htab) { 1512 /* 1513 * HTAB is controlled by KVM. Fetch into temporary buffer 1514 */ 1515 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1516 kvmppc_read_hptes(hptes, ptex, n); 1517 return hptes; 1518 } 1519 1520 /* 1521 * HTAB is controlled by QEMU. Just point to the internally 1522 * accessible PTEG. 1523 */ 1524 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1525 } 1526 1527 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1528 const ppc_hash_pte64_t *hptes, 1529 hwaddr ptex, int n) 1530 { 1531 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1532 1533 if (!spapr->htab) { 1534 g_free((void *)hptes); 1535 } 1536 1537 /* Nothing to do for qemu managed HPT */ 1538 } 1539 1540 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1541 uint64_t pte0, uint64_t pte1) 1542 { 1543 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1544 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1545 1546 if (!spapr->htab) { 1547 kvmppc_write_hpte(ptex, pte0, pte1); 1548 } else { 1549 if (pte0 & HPTE64_V_VALID) { 1550 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1551 /* 1552 * When setting valid, we write PTE1 first. This ensures 1553 * proper synchronization with the reading code in 1554 * ppc_hash64_pteg_search() 1555 */ 1556 smp_wmb(); 1557 stq_p(spapr->htab + offset, pte0); 1558 } else { 1559 stq_p(spapr->htab + offset, pte0); 1560 /* 1561 * When clearing it we set PTE0 first. This ensures proper 1562 * synchronization with the reading code in 1563 * ppc_hash64_pteg_search() 1564 */ 1565 smp_wmb(); 1566 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1567 } 1568 } 1569 } 1570 1571 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1572 uint64_t pte1) 1573 { 1574 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1575 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1576 1577 if (!spapr->htab) { 1578 /* There should always be a hash table when this is called */ 1579 error_report("spapr_hpte_set_c called with no hash table !"); 1580 return; 1581 } 1582 1583 /* The HW performs a non-atomic byte update */ 1584 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1585 } 1586 1587 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1588 uint64_t pte1) 1589 { 1590 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1591 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1592 1593 if (!spapr->htab) { 1594 /* There should always be a hash table when this is called */ 1595 error_report("spapr_hpte_set_r called with no hash table !"); 1596 return; 1597 } 1598 1599 /* The HW performs a non-atomic byte update */ 1600 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1601 } 1602 1603 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1604 { 1605 int shift; 1606 1607 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1608 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1609 * that's much more than is needed for Linux guests */ 1610 shift = ctz64(pow2ceil(ramsize)) - 7; 1611 shift = MAX(shift, 18); /* Minimum architected size */ 1612 shift = MIN(shift, 46); /* Maximum architected size */ 1613 return shift; 1614 } 1615 1616 void spapr_free_hpt(SpaprMachineState *spapr) 1617 { 1618 g_free(spapr->htab); 1619 spapr->htab = NULL; 1620 spapr->htab_shift = 0; 1621 close_htab_fd(spapr); 1622 } 1623 1624 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1625 Error **errp) 1626 { 1627 long rc; 1628 1629 /* Clean up any HPT info from a previous boot */ 1630 spapr_free_hpt(spapr); 1631 1632 rc = kvmppc_reset_htab(shift); 1633 if (rc < 0) { 1634 /* kernel-side HPT needed, but couldn't allocate one */ 1635 error_setg_errno(errp, errno, 1636 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1637 shift); 1638 /* This is almost certainly fatal, but if the caller really 1639 * wants to carry on with shift == 0, it's welcome to try */ 1640 } else if (rc > 0) { 1641 /* kernel-side HPT allocated */ 1642 if (rc != shift) { 1643 error_setg(errp, 1644 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1645 shift, rc); 1646 } 1647 1648 spapr->htab_shift = shift; 1649 spapr->htab = NULL; 1650 } else { 1651 /* kernel-side HPT not needed, allocate in userspace instead */ 1652 size_t size = 1ULL << shift; 1653 int i; 1654 1655 spapr->htab = qemu_memalign(size, size); 1656 if (!spapr->htab) { 1657 error_setg_errno(errp, errno, 1658 "Could not allocate HPT of order %d", shift); 1659 return; 1660 } 1661 1662 memset(spapr->htab, 0, size); 1663 spapr->htab_shift = shift; 1664 1665 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1666 DIRTY_HPTE(HPTE(spapr->htab, i)); 1667 } 1668 } 1669 /* We're setting up a hash table, so that means we're not radix */ 1670 spapr->patb_entry = 0; 1671 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1672 } 1673 1674 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1675 { 1676 int hpt_shift; 1677 1678 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1679 || (spapr->cas_reboot 1680 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1681 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1682 } else { 1683 uint64_t current_ram_size; 1684 1685 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1686 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1687 } 1688 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1689 1690 if (spapr->vrma_adjust) { 1691 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1692 spapr->htab_shift); 1693 } 1694 } 1695 1696 static int spapr_reset_drcs(Object *child, void *opaque) 1697 { 1698 SpaprDrc *drc = 1699 (SpaprDrc *) object_dynamic_cast(child, 1700 TYPE_SPAPR_DR_CONNECTOR); 1701 1702 if (drc) { 1703 spapr_drc_reset(drc); 1704 } 1705 1706 return 0; 1707 } 1708 1709 static void spapr_machine_reset(MachineState *machine) 1710 { 1711 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1712 PowerPCCPU *first_ppc_cpu; 1713 uint32_t rtas_limit; 1714 hwaddr rtas_addr, fdt_addr; 1715 void *fdt; 1716 int rc; 1717 1718 spapr_caps_apply(spapr); 1719 1720 first_ppc_cpu = POWERPC_CPU(first_cpu); 1721 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1722 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1723 spapr->max_compat_pvr)) { 1724 /* 1725 * If using KVM with radix mode available, VCPUs can be started 1726 * without a HPT because KVM will start them in radix mode. 1727 * Set the GR bit in PATE so that we know there is no HPT. 1728 */ 1729 spapr->patb_entry = PATE1_GR; 1730 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1731 } else { 1732 spapr_setup_hpt_and_vrma(spapr); 1733 } 1734 1735 /* 1736 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1737 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1738 * called from vPHB reset handler so we initialize the counter here. 1739 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1740 * must be equally distant from any other node. 1741 * The final value of spapr->gpu_numa_id is going to be written to 1742 * max-associativity-domains in spapr_build_fdt(). 1743 */ 1744 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1745 qemu_devices_reset(); 1746 1747 /* 1748 * If this reset wasn't generated by CAS, we should reset our 1749 * negotiated options and start from scratch 1750 */ 1751 if (!spapr->cas_reboot) { 1752 spapr_ovec_cleanup(spapr->ov5_cas); 1753 spapr->ov5_cas = spapr_ovec_new(); 1754 1755 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1756 } 1757 1758 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1759 spapr_irq_msi_reset(spapr); 1760 } 1761 1762 /* 1763 * This is fixing some of the default configuration of the XIVE 1764 * devices. To be called after the reset of the machine devices. 1765 */ 1766 spapr_irq_reset(spapr, &error_fatal); 1767 1768 /* 1769 * There is no CAS under qtest. Simulate one to please the code that 1770 * depends on spapr->ov5_cas. This is especially needed to test device 1771 * unplug, so we do that before resetting the DRCs. 1772 */ 1773 if (qtest_enabled()) { 1774 spapr_ovec_cleanup(spapr->ov5_cas); 1775 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1776 } 1777 1778 /* DRC reset may cause a device to be unplugged. This will cause troubles 1779 * if this device is used by another device (eg, a running vhost backend 1780 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1781 * situations, we reset DRCs after all devices have been reset. 1782 */ 1783 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1784 1785 spapr_clear_pending_events(spapr); 1786 1787 /* 1788 * We place the device tree and RTAS just below either the top of the RMA, 1789 * or just below 2GB, whichever is lower, so that it can be 1790 * processed with 32-bit real mode code if necessary 1791 */ 1792 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1793 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1794 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1795 1796 fdt = spapr_build_fdt(spapr); 1797 1798 spapr_load_rtas(spapr, fdt, rtas_addr); 1799 1800 rc = fdt_pack(fdt); 1801 1802 /* Should only fail if we've built a corrupted tree */ 1803 assert(rc == 0); 1804 1805 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1806 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1807 fdt_totalsize(fdt), FDT_MAX_SIZE); 1808 exit(1); 1809 } 1810 1811 /* Load the fdt */ 1812 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1813 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1814 g_free(spapr->fdt_blob); 1815 spapr->fdt_size = fdt_totalsize(fdt); 1816 spapr->fdt_initial_size = spapr->fdt_size; 1817 spapr->fdt_blob = fdt; 1818 1819 /* Set up the entry state */ 1820 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1821 first_ppc_cpu->env.gpr[5] = 0; 1822 1823 spapr->cas_reboot = false; 1824 } 1825 1826 static void spapr_create_nvram(SpaprMachineState *spapr) 1827 { 1828 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1829 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1830 1831 if (dinfo) { 1832 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1833 &error_fatal); 1834 } 1835 1836 qdev_init_nofail(dev); 1837 1838 spapr->nvram = (struct SpaprNvram *)dev; 1839 } 1840 1841 static void spapr_rtc_create(SpaprMachineState *spapr) 1842 { 1843 object_initialize_child(OBJECT(spapr), "rtc", 1844 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1845 &error_fatal, NULL); 1846 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1847 &error_fatal); 1848 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1849 "date", &error_fatal); 1850 } 1851 1852 /* Returns whether we want to use VGA or not */ 1853 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1854 { 1855 switch (vga_interface_type) { 1856 case VGA_NONE: 1857 return false; 1858 case VGA_DEVICE: 1859 return true; 1860 case VGA_STD: 1861 case VGA_VIRTIO: 1862 case VGA_CIRRUS: 1863 return pci_vga_init(pci_bus) != NULL; 1864 default: 1865 error_setg(errp, 1866 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1867 return false; 1868 } 1869 } 1870 1871 static int spapr_pre_load(void *opaque) 1872 { 1873 int rc; 1874 1875 rc = spapr_caps_pre_load(opaque); 1876 if (rc) { 1877 return rc; 1878 } 1879 1880 return 0; 1881 } 1882 1883 static int spapr_post_load(void *opaque, int version_id) 1884 { 1885 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1886 int err = 0; 1887 1888 err = spapr_caps_post_migration(spapr); 1889 if (err) { 1890 return err; 1891 } 1892 1893 /* 1894 * In earlier versions, there was no separate qdev for the PAPR 1895 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1896 * So when migrating from those versions, poke the incoming offset 1897 * value into the RTC device 1898 */ 1899 if (version_id < 3) { 1900 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1901 if (err) { 1902 return err; 1903 } 1904 } 1905 1906 if (kvm_enabled() && spapr->patb_entry) { 1907 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1908 bool radix = !!(spapr->patb_entry & PATE1_GR); 1909 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1910 1911 /* 1912 * Update LPCR:HR and UPRT as they may not be set properly in 1913 * the stream 1914 */ 1915 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1916 LPCR_HR | LPCR_UPRT); 1917 1918 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1919 if (err) { 1920 error_report("Process table config unsupported by the host"); 1921 return -EINVAL; 1922 } 1923 } 1924 1925 err = spapr_irq_post_load(spapr, version_id); 1926 if (err) { 1927 return err; 1928 } 1929 1930 return err; 1931 } 1932 1933 static int spapr_pre_save(void *opaque) 1934 { 1935 int rc; 1936 1937 rc = spapr_caps_pre_save(opaque); 1938 if (rc) { 1939 return rc; 1940 } 1941 1942 return 0; 1943 } 1944 1945 static bool version_before_3(void *opaque, int version_id) 1946 { 1947 return version_id < 3; 1948 } 1949 1950 static bool spapr_pending_events_needed(void *opaque) 1951 { 1952 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1953 return !QTAILQ_EMPTY(&spapr->pending_events); 1954 } 1955 1956 static const VMStateDescription vmstate_spapr_event_entry = { 1957 .name = "spapr_event_log_entry", 1958 .version_id = 1, 1959 .minimum_version_id = 1, 1960 .fields = (VMStateField[]) { 1961 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1962 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1963 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1964 NULL, extended_length), 1965 VMSTATE_END_OF_LIST() 1966 }, 1967 }; 1968 1969 static const VMStateDescription vmstate_spapr_pending_events = { 1970 .name = "spapr_pending_events", 1971 .version_id = 1, 1972 .minimum_version_id = 1, 1973 .needed = spapr_pending_events_needed, 1974 .fields = (VMStateField[]) { 1975 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1976 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1977 VMSTATE_END_OF_LIST() 1978 }, 1979 }; 1980 1981 static bool spapr_ov5_cas_needed(void *opaque) 1982 { 1983 SpaprMachineState *spapr = opaque; 1984 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1985 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1986 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1987 bool cas_needed; 1988 1989 /* Prior to the introduction of SpaprOptionVector, we had two option 1990 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1991 * Both of these options encode machine topology into the device-tree 1992 * in such a way that the now-booted OS should still be able to interact 1993 * appropriately with QEMU regardless of what options were actually 1994 * negotiatied on the source side. 1995 * 1996 * As such, we can avoid migrating the CAS-negotiated options if these 1997 * are the only options available on the current machine/platform. 1998 * Since these are the only options available for pseries-2.7 and 1999 * earlier, this allows us to maintain old->new/new->old migration 2000 * compatibility. 2001 * 2002 * For QEMU 2.8+, there are additional CAS-negotiatable options available 2003 * via default pseries-2.8 machines and explicit command-line parameters. 2004 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 2005 * of the actual CAS-negotiated values to continue working properly. For 2006 * example, availability of memory unplug depends on knowing whether 2007 * OV5_HP_EVT was negotiated via CAS. 2008 * 2009 * Thus, for any cases where the set of available CAS-negotiatable 2010 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2011 * include the CAS-negotiated options in the migration stream, unless 2012 * if they affect boot time behaviour only. 2013 */ 2014 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2015 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2016 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2017 2018 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2019 * the mask itself since in the future it's possible "legacy" bits may be 2020 * removed via machine options, which could generate a false positive 2021 * that breaks migration. 2022 */ 2023 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2024 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2025 2026 spapr_ovec_cleanup(ov5_mask); 2027 spapr_ovec_cleanup(ov5_legacy); 2028 spapr_ovec_cleanup(ov5_removed); 2029 2030 return cas_needed; 2031 } 2032 2033 static const VMStateDescription vmstate_spapr_ov5_cas = { 2034 .name = "spapr_option_vector_ov5_cas", 2035 .version_id = 1, 2036 .minimum_version_id = 1, 2037 .needed = spapr_ov5_cas_needed, 2038 .fields = (VMStateField[]) { 2039 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2040 vmstate_spapr_ovec, SpaprOptionVector), 2041 VMSTATE_END_OF_LIST() 2042 }, 2043 }; 2044 2045 static bool spapr_patb_entry_needed(void *opaque) 2046 { 2047 SpaprMachineState *spapr = opaque; 2048 2049 return !!spapr->patb_entry; 2050 } 2051 2052 static const VMStateDescription vmstate_spapr_patb_entry = { 2053 .name = "spapr_patb_entry", 2054 .version_id = 1, 2055 .minimum_version_id = 1, 2056 .needed = spapr_patb_entry_needed, 2057 .fields = (VMStateField[]) { 2058 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2059 VMSTATE_END_OF_LIST() 2060 }, 2061 }; 2062 2063 static bool spapr_irq_map_needed(void *opaque) 2064 { 2065 SpaprMachineState *spapr = opaque; 2066 2067 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2068 } 2069 2070 static const VMStateDescription vmstate_spapr_irq_map = { 2071 .name = "spapr_irq_map", 2072 .version_id = 1, 2073 .minimum_version_id = 1, 2074 .needed = spapr_irq_map_needed, 2075 .fields = (VMStateField[]) { 2076 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2077 VMSTATE_END_OF_LIST() 2078 }, 2079 }; 2080 2081 static bool spapr_dtb_needed(void *opaque) 2082 { 2083 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2084 2085 return smc->update_dt_enabled; 2086 } 2087 2088 static int spapr_dtb_pre_load(void *opaque) 2089 { 2090 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2091 2092 g_free(spapr->fdt_blob); 2093 spapr->fdt_blob = NULL; 2094 spapr->fdt_size = 0; 2095 2096 return 0; 2097 } 2098 2099 static const VMStateDescription vmstate_spapr_dtb = { 2100 .name = "spapr_dtb", 2101 .version_id = 1, 2102 .minimum_version_id = 1, 2103 .needed = spapr_dtb_needed, 2104 .pre_load = spapr_dtb_pre_load, 2105 .fields = (VMStateField[]) { 2106 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2107 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2108 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2109 fdt_size), 2110 VMSTATE_END_OF_LIST() 2111 }, 2112 }; 2113 2114 static const VMStateDescription vmstate_spapr = { 2115 .name = "spapr", 2116 .version_id = 3, 2117 .minimum_version_id = 1, 2118 .pre_load = spapr_pre_load, 2119 .post_load = spapr_post_load, 2120 .pre_save = spapr_pre_save, 2121 .fields = (VMStateField[]) { 2122 /* used to be @next_irq */ 2123 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2124 2125 /* RTC offset */ 2126 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2127 2128 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2129 VMSTATE_END_OF_LIST() 2130 }, 2131 .subsections = (const VMStateDescription*[]) { 2132 &vmstate_spapr_ov5_cas, 2133 &vmstate_spapr_patb_entry, 2134 &vmstate_spapr_pending_events, 2135 &vmstate_spapr_cap_htm, 2136 &vmstate_spapr_cap_vsx, 2137 &vmstate_spapr_cap_dfp, 2138 &vmstate_spapr_cap_cfpc, 2139 &vmstate_spapr_cap_sbbc, 2140 &vmstate_spapr_cap_ibs, 2141 &vmstate_spapr_cap_hpt_maxpagesize, 2142 &vmstate_spapr_irq_map, 2143 &vmstate_spapr_cap_nested_kvm_hv, 2144 &vmstate_spapr_dtb, 2145 &vmstate_spapr_cap_large_decr, 2146 &vmstate_spapr_cap_ccf_assist, 2147 NULL 2148 } 2149 }; 2150 2151 static int htab_save_setup(QEMUFile *f, void *opaque) 2152 { 2153 SpaprMachineState *spapr = opaque; 2154 2155 /* "Iteration" header */ 2156 if (!spapr->htab_shift) { 2157 qemu_put_be32(f, -1); 2158 } else { 2159 qemu_put_be32(f, spapr->htab_shift); 2160 } 2161 2162 if (spapr->htab) { 2163 spapr->htab_save_index = 0; 2164 spapr->htab_first_pass = true; 2165 } else { 2166 if (spapr->htab_shift) { 2167 assert(kvm_enabled()); 2168 } 2169 } 2170 2171 2172 return 0; 2173 } 2174 2175 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2176 int chunkstart, int n_valid, int n_invalid) 2177 { 2178 qemu_put_be32(f, chunkstart); 2179 qemu_put_be16(f, n_valid); 2180 qemu_put_be16(f, n_invalid); 2181 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2182 HASH_PTE_SIZE_64 * n_valid); 2183 } 2184 2185 static void htab_save_end_marker(QEMUFile *f) 2186 { 2187 qemu_put_be32(f, 0); 2188 qemu_put_be16(f, 0); 2189 qemu_put_be16(f, 0); 2190 } 2191 2192 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2193 int64_t max_ns) 2194 { 2195 bool has_timeout = max_ns != -1; 2196 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2197 int index = spapr->htab_save_index; 2198 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2199 2200 assert(spapr->htab_first_pass); 2201 2202 do { 2203 int chunkstart; 2204 2205 /* Consume invalid HPTEs */ 2206 while ((index < htabslots) 2207 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2208 CLEAN_HPTE(HPTE(spapr->htab, index)); 2209 index++; 2210 } 2211 2212 /* Consume valid HPTEs */ 2213 chunkstart = index; 2214 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2215 && HPTE_VALID(HPTE(spapr->htab, index))) { 2216 CLEAN_HPTE(HPTE(spapr->htab, index)); 2217 index++; 2218 } 2219 2220 if (index > chunkstart) { 2221 int n_valid = index - chunkstart; 2222 2223 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2224 2225 if (has_timeout && 2226 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2227 break; 2228 } 2229 } 2230 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2231 2232 if (index >= htabslots) { 2233 assert(index == htabslots); 2234 index = 0; 2235 spapr->htab_first_pass = false; 2236 } 2237 spapr->htab_save_index = index; 2238 } 2239 2240 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2241 int64_t max_ns) 2242 { 2243 bool final = max_ns < 0; 2244 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2245 int examined = 0, sent = 0; 2246 int index = spapr->htab_save_index; 2247 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2248 2249 assert(!spapr->htab_first_pass); 2250 2251 do { 2252 int chunkstart, invalidstart; 2253 2254 /* Consume non-dirty HPTEs */ 2255 while ((index < htabslots) 2256 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2257 index++; 2258 examined++; 2259 } 2260 2261 chunkstart = index; 2262 /* Consume valid dirty HPTEs */ 2263 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2264 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2265 && HPTE_VALID(HPTE(spapr->htab, index))) { 2266 CLEAN_HPTE(HPTE(spapr->htab, index)); 2267 index++; 2268 examined++; 2269 } 2270 2271 invalidstart = index; 2272 /* Consume invalid dirty HPTEs */ 2273 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2274 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2275 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2276 CLEAN_HPTE(HPTE(spapr->htab, index)); 2277 index++; 2278 examined++; 2279 } 2280 2281 if (index > chunkstart) { 2282 int n_valid = invalidstart - chunkstart; 2283 int n_invalid = index - invalidstart; 2284 2285 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2286 sent += index - chunkstart; 2287 2288 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2289 break; 2290 } 2291 } 2292 2293 if (examined >= htabslots) { 2294 break; 2295 } 2296 2297 if (index >= htabslots) { 2298 assert(index == htabslots); 2299 index = 0; 2300 } 2301 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2302 2303 if (index >= htabslots) { 2304 assert(index == htabslots); 2305 index = 0; 2306 } 2307 2308 spapr->htab_save_index = index; 2309 2310 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2311 } 2312 2313 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2314 #define MAX_KVM_BUF_SIZE 2048 2315 2316 static int htab_save_iterate(QEMUFile *f, void *opaque) 2317 { 2318 SpaprMachineState *spapr = opaque; 2319 int fd; 2320 int rc = 0; 2321 2322 /* Iteration header */ 2323 if (!spapr->htab_shift) { 2324 qemu_put_be32(f, -1); 2325 return 1; 2326 } else { 2327 qemu_put_be32(f, 0); 2328 } 2329 2330 if (!spapr->htab) { 2331 assert(kvm_enabled()); 2332 2333 fd = get_htab_fd(spapr); 2334 if (fd < 0) { 2335 return fd; 2336 } 2337 2338 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2339 if (rc < 0) { 2340 return rc; 2341 } 2342 } else if (spapr->htab_first_pass) { 2343 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2344 } else { 2345 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2346 } 2347 2348 htab_save_end_marker(f); 2349 2350 return rc; 2351 } 2352 2353 static int htab_save_complete(QEMUFile *f, void *opaque) 2354 { 2355 SpaprMachineState *spapr = opaque; 2356 int fd; 2357 2358 /* Iteration header */ 2359 if (!spapr->htab_shift) { 2360 qemu_put_be32(f, -1); 2361 return 0; 2362 } else { 2363 qemu_put_be32(f, 0); 2364 } 2365 2366 if (!spapr->htab) { 2367 int rc; 2368 2369 assert(kvm_enabled()); 2370 2371 fd = get_htab_fd(spapr); 2372 if (fd < 0) { 2373 return fd; 2374 } 2375 2376 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2377 if (rc < 0) { 2378 return rc; 2379 } 2380 } else { 2381 if (spapr->htab_first_pass) { 2382 htab_save_first_pass(f, spapr, -1); 2383 } 2384 htab_save_later_pass(f, spapr, -1); 2385 } 2386 2387 /* End marker */ 2388 htab_save_end_marker(f); 2389 2390 return 0; 2391 } 2392 2393 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2394 { 2395 SpaprMachineState *spapr = opaque; 2396 uint32_t section_hdr; 2397 int fd = -1; 2398 Error *local_err = NULL; 2399 2400 if (version_id < 1 || version_id > 1) { 2401 error_report("htab_load() bad version"); 2402 return -EINVAL; 2403 } 2404 2405 section_hdr = qemu_get_be32(f); 2406 2407 if (section_hdr == -1) { 2408 spapr_free_hpt(spapr); 2409 return 0; 2410 } 2411 2412 if (section_hdr) { 2413 /* First section gives the htab size */ 2414 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2415 if (local_err) { 2416 error_report_err(local_err); 2417 return -EINVAL; 2418 } 2419 return 0; 2420 } 2421 2422 if (!spapr->htab) { 2423 assert(kvm_enabled()); 2424 2425 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2426 if (fd < 0) { 2427 error_report_err(local_err); 2428 return fd; 2429 } 2430 } 2431 2432 while (true) { 2433 uint32_t index; 2434 uint16_t n_valid, n_invalid; 2435 2436 index = qemu_get_be32(f); 2437 n_valid = qemu_get_be16(f); 2438 n_invalid = qemu_get_be16(f); 2439 2440 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2441 /* End of Stream */ 2442 break; 2443 } 2444 2445 if ((index + n_valid + n_invalid) > 2446 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2447 /* Bad index in stream */ 2448 error_report( 2449 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2450 index, n_valid, n_invalid, spapr->htab_shift); 2451 return -EINVAL; 2452 } 2453 2454 if (spapr->htab) { 2455 if (n_valid) { 2456 qemu_get_buffer(f, HPTE(spapr->htab, index), 2457 HASH_PTE_SIZE_64 * n_valid); 2458 } 2459 if (n_invalid) { 2460 memset(HPTE(spapr->htab, index + n_valid), 0, 2461 HASH_PTE_SIZE_64 * n_invalid); 2462 } 2463 } else { 2464 int rc; 2465 2466 assert(fd >= 0); 2467 2468 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2469 if (rc < 0) { 2470 return rc; 2471 } 2472 } 2473 } 2474 2475 if (!spapr->htab) { 2476 assert(fd >= 0); 2477 close(fd); 2478 } 2479 2480 return 0; 2481 } 2482 2483 static void htab_save_cleanup(void *opaque) 2484 { 2485 SpaprMachineState *spapr = opaque; 2486 2487 close_htab_fd(spapr); 2488 } 2489 2490 static SaveVMHandlers savevm_htab_handlers = { 2491 .save_setup = htab_save_setup, 2492 .save_live_iterate = htab_save_iterate, 2493 .save_live_complete_precopy = htab_save_complete, 2494 .save_cleanup = htab_save_cleanup, 2495 .load_state = htab_load, 2496 }; 2497 2498 static void spapr_boot_set(void *opaque, const char *boot_device, 2499 Error **errp) 2500 { 2501 MachineState *machine = MACHINE(opaque); 2502 machine->boot_order = g_strdup(boot_device); 2503 } 2504 2505 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2506 { 2507 MachineState *machine = MACHINE(spapr); 2508 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2509 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2510 int i; 2511 2512 for (i = 0; i < nr_lmbs; i++) { 2513 uint64_t addr; 2514 2515 addr = i * lmb_size + machine->device_memory->base; 2516 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2517 addr / lmb_size); 2518 } 2519 } 2520 2521 /* 2522 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2523 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2524 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2525 */ 2526 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2527 { 2528 int i; 2529 2530 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2531 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2532 " is not aligned to %" PRIu64 " MiB", 2533 machine->ram_size, 2534 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2535 return; 2536 } 2537 2538 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2539 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2540 " is not aligned to %" PRIu64 " MiB", 2541 machine->ram_size, 2542 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2543 return; 2544 } 2545 2546 for (i = 0; i < nb_numa_nodes; i++) { 2547 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2548 error_setg(errp, 2549 "Node %d memory size 0x%" PRIx64 2550 " is not aligned to %" PRIu64 " MiB", 2551 i, numa_info[i].node_mem, 2552 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2553 return; 2554 } 2555 } 2556 } 2557 2558 /* find cpu slot in machine->possible_cpus by core_id */ 2559 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2560 { 2561 int index = id / ms->smp.threads; 2562 2563 if (index >= ms->possible_cpus->len) { 2564 return NULL; 2565 } 2566 if (idx) { 2567 *idx = index; 2568 } 2569 return &ms->possible_cpus->cpus[index]; 2570 } 2571 2572 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2573 { 2574 MachineState *ms = MACHINE(spapr); 2575 Error *local_err = NULL; 2576 bool vsmt_user = !!spapr->vsmt; 2577 int kvm_smt = kvmppc_smt_threads(); 2578 int ret; 2579 unsigned int smp_threads = ms->smp.threads; 2580 2581 if (!kvm_enabled() && (smp_threads > 1)) { 2582 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2583 "on a pseries machine"); 2584 goto out; 2585 } 2586 if (!is_power_of_2(smp_threads)) { 2587 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2588 "machine because it must be a power of 2", smp_threads); 2589 goto out; 2590 } 2591 2592 /* Detemine the VSMT mode to use: */ 2593 if (vsmt_user) { 2594 if (spapr->vsmt < smp_threads) { 2595 error_setg(&local_err, "Cannot support VSMT mode %d" 2596 " because it must be >= threads/core (%d)", 2597 spapr->vsmt, smp_threads); 2598 goto out; 2599 } 2600 /* In this case, spapr->vsmt has been set by the command line */ 2601 } else { 2602 /* 2603 * Default VSMT value is tricky, because we need it to be as 2604 * consistent as possible (for migration), but this requires 2605 * changing it for at least some existing cases. We pick 8 as 2606 * the value that we'd get with KVM on POWER8, the 2607 * overwhelmingly common case in production systems. 2608 */ 2609 spapr->vsmt = MAX(8, smp_threads); 2610 } 2611 2612 /* KVM: If necessary, set the SMT mode: */ 2613 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2614 ret = kvmppc_set_smt_threads(spapr->vsmt); 2615 if (ret) { 2616 /* Looks like KVM isn't able to change VSMT mode */ 2617 error_setg(&local_err, 2618 "Failed to set KVM's VSMT mode to %d (errno %d)", 2619 spapr->vsmt, ret); 2620 /* We can live with that if the default one is big enough 2621 * for the number of threads, and a submultiple of the one 2622 * we want. In this case we'll waste some vcpu ids, but 2623 * behaviour will be correct */ 2624 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2625 warn_report_err(local_err); 2626 local_err = NULL; 2627 goto out; 2628 } else { 2629 if (!vsmt_user) { 2630 error_append_hint(&local_err, 2631 "On PPC, a VM with %d threads/core" 2632 " on a host with %d threads/core" 2633 " requires the use of VSMT mode %d.\n", 2634 smp_threads, kvm_smt, spapr->vsmt); 2635 } 2636 kvmppc_hint_smt_possible(&local_err); 2637 goto out; 2638 } 2639 } 2640 } 2641 /* else TCG: nothing to do currently */ 2642 out: 2643 error_propagate(errp, local_err); 2644 } 2645 2646 static void spapr_init_cpus(SpaprMachineState *spapr) 2647 { 2648 MachineState *machine = MACHINE(spapr); 2649 MachineClass *mc = MACHINE_GET_CLASS(machine); 2650 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2651 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2652 const CPUArchIdList *possible_cpus; 2653 unsigned int smp_cpus = machine->smp.cpus; 2654 unsigned int smp_threads = machine->smp.threads; 2655 unsigned int max_cpus = machine->smp.max_cpus; 2656 int boot_cores_nr = smp_cpus / smp_threads; 2657 int i; 2658 2659 possible_cpus = mc->possible_cpu_arch_ids(machine); 2660 if (mc->has_hotpluggable_cpus) { 2661 if (smp_cpus % smp_threads) { 2662 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2663 smp_cpus, smp_threads); 2664 exit(1); 2665 } 2666 if (max_cpus % smp_threads) { 2667 error_report("max_cpus (%u) must be multiple of threads (%u)", 2668 max_cpus, smp_threads); 2669 exit(1); 2670 } 2671 } else { 2672 if (max_cpus != smp_cpus) { 2673 error_report("This machine version does not support CPU hotplug"); 2674 exit(1); 2675 } 2676 boot_cores_nr = possible_cpus->len; 2677 } 2678 2679 if (smc->pre_2_10_has_unused_icps) { 2680 int i; 2681 2682 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2683 /* Dummy entries get deregistered when real ICPState objects 2684 * are registered during CPU core hotplug. 2685 */ 2686 pre_2_10_vmstate_register_dummy_icp(i); 2687 } 2688 } 2689 2690 for (i = 0; i < possible_cpus->len; i++) { 2691 int core_id = i * smp_threads; 2692 2693 if (mc->has_hotpluggable_cpus) { 2694 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2695 spapr_vcpu_id(spapr, core_id)); 2696 } 2697 2698 if (i < boot_cores_nr) { 2699 Object *core = object_new(type); 2700 int nr_threads = smp_threads; 2701 2702 /* Handle the partially filled core for older machine types */ 2703 if ((i + 1) * smp_threads >= smp_cpus) { 2704 nr_threads = smp_cpus - i * smp_threads; 2705 } 2706 2707 object_property_set_int(core, nr_threads, "nr-threads", 2708 &error_fatal); 2709 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2710 &error_fatal); 2711 object_property_set_bool(core, true, "realized", &error_fatal); 2712 2713 object_unref(core); 2714 } 2715 } 2716 } 2717 2718 static PCIHostState *spapr_create_default_phb(void) 2719 { 2720 DeviceState *dev; 2721 2722 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2723 qdev_prop_set_uint32(dev, "index", 0); 2724 qdev_init_nofail(dev); 2725 2726 return PCI_HOST_BRIDGE(dev); 2727 } 2728 2729 /* pSeries LPAR / sPAPR hardware init */ 2730 static void spapr_machine_init(MachineState *machine) 2731 { 2732 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2733 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2734 const char *kernel_filename = machine->kernel_filename; 2735 const char *initrd_filename = machine->initrd_filename; 2736 PCIHostState *phb; 2737 int i; 2738 MemoryRegion *sysmem = get_system_memory(); 2739 MemoryRegion *ram = g_new(MemoryRegion, 1); 2740 hwaddr node0_size = spapr_node0_size(machine); 2741 long load_limit, fw_size; 2742 char *filename; 2743 Error *resize_hpt_err = NULL; 2744 2745 msi_nonbroken = true; 2746 2747 QLIST_INIT(&spapr->phbs); 2748 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2749 2750 /* Determine capabilities to run with */ 2751 spapr_caps_init(spapr); 2752 2753 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2754 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2755 /* 2756 * If the user explicitly requested a mode we should either 2757 * supply it, or fail completely (which we do below). But if 2758 * it's not set explicitly, we reset our mode to something 2759 * that works 2760 */ 2761 if (resize_hpt_err) { 2762 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2763 error_free(resize_hpt_err); 2764 resize_hpt_err = NULL; 2765 } else { 2766 spapr->resize_hpt = smc->resize_hpt_default; 2767 } 2768 } 2769 2770 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2771 2772 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2773 /* 2774 * User requested HPT resize, but this host can't supply it. Bail out 2775 */ 2776 error_report_err(resize_hpt_err); 2777 exit(1); 2778 } 2779 2780 spapr->rma_size = node0_size; 2781 2782 /* With KVM, we don't actually know whether KVM supports an 2783 * unbounded RMA (PR KVM) or is limited by the hash table size 2784 * (HV KVM using VRMA), so we always assume the latter 2785 * 2786 * In that case, we also limit the initial allocations for RTAS 2787 * etc... to 256M since we have no way to know what the VRMA size 2788 * is going to be as it depends on the size of the hash table 2789 * which isn't determined yet. 2790 */ 2791 if (kvm_enabled()) { 2792 spapr->vrma_adjust = 1; 2793 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2794 } 2795 2796 /* Actually we don't support unbounded RMA anymore since we added 2797 * proper emulation of HV mode. The max we can get is 16G which 2798 * also happens to be what we configure for PAPR mode so make sure 2799 * we don't do anything bigger than that 2800 */ 2801 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2802 2803 if (spapr->rma_size > node0_size) { 2804 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2805 spapr->rma_size); 2806 exit(1); 2807 } 2808 2809 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2810 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2811 2812 /* 2813 * VSMT must be set in order to be able to compute VCPU ids, ie to 2814 * call spapr_max_server_number() or spapr_vcpu_id(). 2815 */ 2816 spapr_set_vsmt_mode(spapr, &error_fatal); 2817 2818 /* Set up Interrupt Controller before we create the VCPUs */ 2819 spapr_irq_init(spapr, &error_fatal); 2820 2821 /* Set up containers for ibm,client-architecture-support negotiated options 2822 */ 2823 spapr->ov5 = spapr_ovec_new(); 2824 spapr->ov5_cas = spapr_ovec_new(); 2825 2826 if (smc->dr_lmb_enabled) { 2827 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2828 spapr_validate_node_memory(machine, &error_fatal); 2829 } 2830 2831 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2832 2833 /* advertise support for dedicated HP event source to guests */ 2834 if (spapr->use_hotplug_event_source) { 2835 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2836 } 2837 2838 /* advertise support for HPT resizing */ 2839 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2840 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2841 } 2842 2843 /* advertise support for ibm,dyamic-memory-v2 */ 2844 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2845 2846 /* advertise XIVE on POWER9 machines */ 2847 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2848 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2849 } 2850 2851 /* init CPUs */ 2852 spapr_init_cpus(spapr); 2853 2854 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2855 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2856 spapr->max_compat_pvr)) { 2857 /* KVM and TCG always allow GTSE with radix... */ 2858 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2859 } 2860 /* ... but not with hash (currently). */ 2861 2862 if (kvm_enabled()) { 2863 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2864 kvmppc_enable_logical_ci_hcalls(); 2865 kvmppc_enable_set_mode_hcall(); 2866 2867 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2868 kvmppc_enable_clear_ref_mod_hcalls(); 2869 2870 /* Enable H_PAGE_INIT */ 2871 kvmppc_enable_h_page_init(); 2872 } 2873 2874 /* allocate RAM */ 2875 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2876 machine->ram_size); 2877 memory_region_add_subregion(sysmem, 0, ram); 2878 2879 /* always allocate the device memory information */ 2880 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2881 2882 /* initialize hotplug memory address space */ 2883 if (machine->ram_size < machine->maxram_size) { 2884 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2885 /* 2886 * Limit the number of hotpluggable memory slots to half the number 2887 * slots that KVM supports, leaving the other half for PCI and other 2888 * devices. However ensure that number of slots doesn't drop below 32. 2889 */ 2890 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2891 SPAPR_MAX_RAM_SLOTS; 2892 2893 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2894 max_memslots = SPAPR_MAX_RAM_SLOTS; 2895 } 2896 if (machine->ram_slots > max_memslots) { 2897 error_report("Specified number of memory slots %" 2898 PRIu64" exceeds max supported %d", 2899 machine->ram_slots, max_memslots); 2900 exit(1); 2901 } 2902 2903 machine->device_memory->base = ROUND_UP(machine->ram_size, 2904 SPAPR_DEVICE_MEM_ALIGN); 2905 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2906 "device-memory", device_mem_size); 2907 memory_region_add_subregion(sysmem, machine->device_memory->base, 2908 &machine->device_memory->mr); 2909 } 2910 2911 if (smc->dr_lmb_enabled) { 2912 spapr_create_lmb_dr_connectors(spapr); 2913 } 2914 2915 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2916 if (!filename) { 2917 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2918 exit(1); 2919 } 2920 spapr->rtas_size = get_image_size(filename); 2921 if (spapr->rtas_size < 0) { 2922 error_report("Could not get size of LPAR rtas '%s'", filename); 2923 exit(1); 2924 } 2925 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2926 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2927 error_report("Could not load LPAR rtas '%s'", filename); 2928 exit(1); 2929 } 2930 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2931 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2932 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2933 exit(1); 2934 } 2935 g_free(filename); 2936 2937 /* Set up RTAS event infrastructure */ 2938 spapr_events_init(spapr); 2939 2940 /* Set up the RTC RTAS interfaces */ 2941 spapr_rtc_create(spapr); 2942 2943 /* Set up VIO bus */ 2944 spapr->vio_bus = spapr_vio_bus_init(); 2945 2946 for (i = 0; i < serial_max_hds(); i++) { 2947 if (serial_hd(i)) { 2948 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2949 } 2950 } 2951 2952 /* We always have at least the nvram device on VIO */ 2953 spapr_create_nvram(spapr); 2954 2955 /* 2956 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2957 * connectors (described in root DT node's "ibm,drc-types" property) 2958 * are pre-initialized here. additional child connectors (such as 2959 * connectors for a PHBs PCI slots) are added as needed during their 2960 * parent's realization. 2961 */ 2962 if (smc->dr_phb_enabled) { 2963 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2964 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2965 } 2966 } 2967 2968 /* Set up PCI */ 2969 spapr_pci_rtas_init(); 2970 2971 phb = spapr_create_default_phb(); 2972 2973 for (i = 0; i < nb_nics; i++) { 2974 NICInfo *nd = &nd_table[i]; 2975 2976 if (!nd->model) { 2977 nd->model = g_strdup("spapr-vlan"); 2978 } 2979 2980 if (g_str_equal(nd->model, "spapr-vlan") || 2981 g_str_equal(nd->model, "ibmveth")) { 2982 spapr_vlan_create(spapr->vio_bus, nd); 2983 } else { 2984 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2985 } 2986 } 2987 2988 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2989 spapr_vscsi_create(spapr->vio_bus); 2990 } 2991 2992 /* Graphics */ 2993 if (spapr_vga_init(phb->bus, &error_fatal)) { 2994 spapr->has_graphics = true; 2995 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2996 } 2997 2998 if (machine->usb) { 2999 if (smc->use_ohci_by_default) { 3000 pci_create_simple(phb->bus, -1, "pci-ohci"); 3001 } else { 3002 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3003 } 3004 3005 if (spapr->has_graphics) { 3006 USBBus *usb_bus = usb_bus_find(-1); 3007 3008 usb_create_simple(usb_bus, "usb-kbd"); 3009 usb_create_simple(usb_bus, "usb-mouse"); 3010 } 3011 } 3012 3013 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 3014 error_report( 3015 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 3016 MIN_RMA_SLOF); 3017 exit(1); 3018 } 3019 3020 if (kernel_filename) { 3021 uint64_t lowaddr = 0; 3022 3023 spapr->kernel_size = load_elf(kernel_filename, NULL, 3024 translate_kernel_address, NULL, 3025 NULL, &lowaddr, NULL, 1, 3026 PPC_ELF_MACHINE, 0, 0); 3027 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3028 spapr->kernel_size = load_elf(kernel_filename, NULL, 3029 translate_kernel_address, NULL, NULL, 3030 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3031 0, 0); 3032 spapr->kernel_le = spapr->kernel_size > 0; 3033 } 3034 if (spapr->kernel_size < 0) { 3035 error_report("error loading %s: %s", kernel_filename, 3036 load_elf_strerror(spapr->kernel_size)); 3037 exit(1); 3038 } 3039 3040 /* load initrd */ 3041 if (initrd_filename) { 3042 /* Try to locate the initrd in the gap between the kernel 3043 * and the firmware. Add a bit of space just in case 3044 */ 3045 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3046 + 0x1ffff) & ~0xffff; 3047 spapr->initrd_size = load_image_targphys(initrd_filename, 3048 spapr->initrd_base, 3049 load_limit 3050 - spapr->initrd_base); 3051 if (spapr->initrd_size < 0) { 3052 error_report("could not load initial ram disk '%s'", 3053 initrd_filename); 3054 exit(1); 3055 } 3056 } 3057 } 3058 3059 if (bios_name == NULL) { 3060 bios_name = FW_FILE_NAME; 3061 } 3062 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3063 if (!filename) { 3064 error_report("Could not find LPAR firmware '%s'", bios_name); 3065 exit(1); 3066 } 3067 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3068 if (fw_size <= 0) { 3069 error_report("Could not load LPAR firmware '%s'", filename); 3070 exit(1); 3071 } 3072 g_free(filename); 3073 3074 /* FIXME: Should register things through the MachineState's qdev 3075 * interface, this is a legacy from the sPAPREnvironment structure 3076 * which predated MachineState but had a similar function */ 3077 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3078 register_savevm_live(NULL, "spapr/htab", -1, 1, 3079 &savevm_htab_handlers, spapr); 3080 3081 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3082 &error_fatal); 3083 3084 qemu_register_boot_set(spapr_boot_set, spapr); 3085 3086 /* 3087 * Nothing needs to be done to resume a suspended guest because 3088 * suspending does not change the machine state, so no need for 3089 * a ->wakeup method. 3090 */ 3091 qemu_register_wakeup_support(); 3092 3093 if (kvm_enabled()) { 3094 /* to stop and start vmclock */ 3095 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3096 &spapr->tb); 3097 3098 kvmppc_spapr_enable_inkernel_multitce(); 3099 } 3100 } 3101 3102 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3103 { 3104 if (!vm_type) { 3105 return 0; 3106 } 3107 3108 if (!strcmp(vm_type, "HV")) { 3109 return 1; 3110 } 3111 3112 if (!strcmp(vm_type, "PR")) { 3113 return 2; 3114 } 3115 3116 error_report("Unknown kvm-type specified '%s'", vm_type); 3117 exit(1); 3118 } 3119 3120 /* 3121 * Implementation of an interface to adjust firmware path 3122 * for the bootindex property handling. 3123 */ 3124 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3125 DeviceState *dev) 3126 { 3127 #define CAST(type, obj, name) \ 3128 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3129 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3130 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3131 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3132 3133 if (d) { 3134 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3135 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3136 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3137 3138 if (spapr) { 3139 /* 3140 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3141 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3142 * 0x8000 | (target << 8) | (bus << 5) | lun 3143 * (see the "Logical unit addressing format" table in SAM5) 3144 */ 3145 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3146 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3147 (uint64_t)id << 48); 3148 } else if (virtio) { 3149 /* 3150 * We use SRP luns of the form 01000000 | (target << 8) | lun 3151 * in the top 32 bits of the 64-bit LUN 3152 * Note: the quote above is from SLOF and it is wrong, 3153 * the actual binding is: 3154 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3155 */ 3156 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3157 if (d->lun >= 256) { 3158 /* Use the LUN "flat space addressing method" */ 3159 id |= 0x4000; 3160 } 3161 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3162 (uint64_t)id << 32); 3163 } else if (usb) { 3164 /* 3165 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3166 * in the top 32 bits of the 64-bit LUN 3167 */ 3168 unsigned usb_port = atoi(usb->port->path); 3169 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3170 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3171 (uint64_t)id << 32); 3172 } 3173 } 3174 3175 /* 3176 * SLOF probes the USB devices, and if it recognizes that the device is a 3177 * storage device, it changes its name to "storage" instead of "usb-host", 3178 * and additionally adds a child node for the SCSI LUN, so the correct 3179 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3180 */ 3181 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3182 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3183 if (usb_host_dev_is_scsi_storage(usbdev)) { 3184 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3185 } 3186 } 3187 3188 if (phb) { 3189 /* Replace "pci" with "pci@800000020000000" */ 3190 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3191 } 3192 3193 if (vsc) { 3194 /* Same logic as virtio above */ 3195 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3196 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3197 } 3198 3199 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3200 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3201 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3202 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3203 } 3204 3205 return NULL; 3206 } 3207 3208 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3209 { 3210 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3211 3212 return g_strdup(spapr->kvm_type); 3213 } 3214 3215 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3216 { 3217 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3218 3219 g_free(spapr->kvm_type); 3220 spapr->kvm_type = g_strdup(value); 3221 } 3222 3223 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3224 { 3225 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3226 3227 return spapr->use_hotplug_event_source; 3228 } 3229 3230 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3231 Error **errp) 3232 { 3233 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3234 3235 spapr->use_hotplug_event_source = value; 3236 } 3237 3238 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3239 { 3240 return true; 3241 } 3242 3243 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3244 { 3245 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3246 3247 switch (spapr->resize_hpt) { 3248 case SPAPR_RESIZE_HPT_DEFAULT: 3249 return g_strdup("default"); 3250 case SPAPR_RESIZE_HPT_DISABLED: 3251 return g_strdup("disabled"); 3252 case SPAPR_RESIZE_HPT_ENABLED: 3253 return g_strdup("enabled"); 3254 case SPAPR_RESIZE_HPT_REQUIRED: 3255 return g_strdup("required"); 3256 } 3257 g_assert_not_reached(); 3258 } 3259 3260 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3261 { 3262 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3263 3264 if (strcmp(value, "default") == 0) { 3265 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3266 } else if (strcmp(value, "disabled") == 0) { 3267 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3268 } else if (strcmp(value, "enabled") == 0) { 3269 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3270 } else if (strcmp(value, "required") == 0) { 3271 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3272 } else { 3273 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3274 } 3275 } 3276 3277 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3278 void *opaque, Error **errp) 3279 { 3280 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3281 } 3282 3283 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3284 void *opaque, Error **errp) 3285 { 3286 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3287 } 3288 3289 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3290 { 3291 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3292 3293 if (spapr->irq == &spapr_irq_xics_legacy) { 3294 return g_strdup("legacy"); 3295 } else if (spapr->irq == &spapr_irq_xics) { 3296 return g_strdup("xics"); 3297 } else if (spapr->irq == &spapr_irq_xive) { 3298 return g_strdup("xive"); 3299 } else if (spapr->irq == &spapr_irq_dual) { 3300 return g_strdup("dual"); 3301 } 3302 g_assert_not_reached(); 3303 } 3304 3305 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3306 { 3307 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3308 3309 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3310 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3311 return; 3312 } 3313 3314 /* The legacy IRQ backend can not be set */ 3315 if (strcmp(value, "xics") == 0) { 3316 spapr->irq = &spapr_irq_xics; 3317 } else if (strcmp(value, "xive") == 0) { 3318 spapr->irq = &spapr_irq_xive; 3319 } else if (strcmp(value, "dual") == 0) { 3320 spapr->irq = &spapr_irq_dual; 3321 } else { 3322 error_setg(errp, "Bad value for \"ic-mode\" property"); 3323 } 3324 } 3325 3326 static char *spapr_get_host_model(Object *obj, Error **errp) 3327 { 3328 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3329 3330 return g_strdup(spapr->host_model); 3331 } 3332 3333 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3334 { 3335 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3336 3337 g_free(spapr->host_model); 3338 spapr->host_model = g_strdup(value); 3339 } 3340 3341 static char *spapr_get_host_serial(Object *obj, Error **errp) 3342 { 3343 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3344 3345 return g_strdup(spapr->host_serial); 3346 } 3347 3348 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3349 { 3350 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3351 3352 g_free(spapr->host_serial); 3353 spapr->host_serial = g_strdup(value); 3354 } 3355 3356 static void spapr_instance_init(Object *obj) 3357 { 3358 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3359 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3360 3361 spapr->htab_fd = -1; 3362 spapr->use_hotplug_event_source = true; 3363 object_property_add_str(obj, "kvm-type", 3364 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3365 object_property_set_description(obj, "kvm-type", 3366 "Specifies the KVM virtualization mode (HV, PR)", 3367 NULL); 3368 object_property_add_bool(obj, "modern-hotplug-events", 3369 spapr_get_modern_hotplug_events, 3370 spapr_set_modern_hotplug_events, 3371 NULL); 3372 object_property_set_description(obj, "modern-hotplug-events", 3373 "Use dedicated hotplug event mechanism in" 3374 " place of standard EPOW events when possible" 3375 " (required for memory hot-unplug support)", 3376 NULL); 3377 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3378 "Maximum permitted CPU compatibility mode", 3379 &error_fatal); 3380 3381 object_property_add_str(obj, "resize-hpt", 3382 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3383 object_property_set_description(obj, "resize-hpt", 3384 "Resizing of the Hash Page Table (enabled, disabled, required)", 3385 NULL); 3386 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3387 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3388 object_property_set_description(obj, "vsmt", 3389 "Virtual SMT: KVM behaves as if this were" 3390 " the host's SMT mode", &error_abort); 3391 object_property_add_bool(obj, "vfio-no-msix-emulation", 3392 spapr_get_msix_emulation, NULL, NULL); 3393 3394 /* The machine class defines the default interrupt controller mode */ 3395 spapr->irq = smc->irq; 3396 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3397 spapr_set_ic_mode, NULL); 3398 object_property_set_description(obj, "ic-mode", 3399 "Specifies the interrupt controller mode (xics, xive, dual)", 3400 NULL); 3401 3402 object_property_add_str(obj, "host-model", 3403 spapr_get_host_model, spapr_set_host_model, 3404 &error_abort); 3405 object_property_set_description(obj, "host-model", 3406 "Host model to advertise in guest device tree", &error_abort); 3407 object_property_add_str(obj, "host-serial", 3408 spapr_get_host_serial, spapr_set_host_serial, 3409 &error_abort); 3410 object_property_set_description(obj, "host-serial", 3411 "Host serial number to advertise in guest device tree", &error_abort); 3412 } 3413 3414 static void spapr_machine_finalizefn(Object *obj) 3415 { 3416 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3417 3418 g_free(spapr->kvm_type); 3419 } 3420 3421 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3422 { 3423 cpu_synchronize_state(cs); 3424 ppc_cpu_do_system_reset(cs); 3425 } 3426 3427 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3428 { 3429 CPUState *cs; 3430 3431 CPU_FOREACH(cs) { 3432 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3433 } 3434 } 3435 3436 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3437 void *fdt, int *fdt_start_offset, Error **errp) 3438 { 3439 uint64_t addr; 3440 uint32_t node; 3441 3442 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3443 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3444 &error_abort); 3445 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3446 SPAPR_MEMORY_BLOCK_SIZE); 3447 return 0; 3448 } 3449 3450 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3451 bool dedicated_hp_event_source, Error **errp) 3452 { 3453 SpaprDrc *drc; 3454 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3455 int i; 3456 uint64_t addr = addr_start; 3457 bool hotplugged = spapr_drc_hotplugged(dev); 3458 Error *local_err = NULL; 3459 3460 for (i = 0; i < nr_lmbs; i++) { 3461 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3462 addr / SPAPR_MEMORY_BLOCK_SIZE); 3463 g_assert(drc); 3464 3465 spapr_drc_attach(drc, dev, &local_err); 3466 if (local_err) { 3467 while (addr > addr_start) { 3468 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3469 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3470 addr / SPAPR_MEMORY_BLOCK_SIZE); 3471 spapr_drc_detach(drc); 3472 } 3473 error_propagate(errp, local_err); 3474 return; 3475 } 3476 if (!hotplugged) { 3477 spapr_drc_reset(drc); 3478 } 3479 addr += SPAPR_MEMORY_BLOCK_SIZE; 3480 } 3481 /* send hotplug notification to the 3482 * guest only in case of hotplugged memory 3483 */ 3484 if (hotplugged) { 3485 if (dedicated_hp_event_source) { 3486 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3487 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3488 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3489 nr_lmbs, 3490 spapr_drc_index(drc)); 3491 } else { 3492 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3493 nr_lmbs); 3494 } 3495 } 3496 } 3497 3498 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3499 Error **errp) 3500 { 3501 Error *local_err = NULL; 3502 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3503 PCDIMMDevice *dimm = PC_DIMM(dev); 3504 uint64_t size, addr; 3505 3506 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3507 3508 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3509 if (local_err) { 3510 goto out; 3511 } 3512 3513 addr = object_property_get_uint(OBJECT(dimm), 3514 PC_DIMM_ADDR_PROP, &local_err); 3515 if (local_err) { 3516 goto out_unplug; 3517 } 3518 3519 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3520 &local_err); 3521 if (local_err) { 3522 goto out_unplug; 3523 } 3524 3525 return; 3526 3527 out_unplug: 3528 pc_dimm_unplug(dimm, MACHINE(ms)); 3529 out: 3530 error_propagate(errp, local_err); 3531 } 3532 3533 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3534 Error **errp) 3535 { 3536 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3537 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3538 PCDIMMDevice *dimm = PC_DIMM(dev); 3539 Error *local_err = NULL; 3540 uint64_t size; 3541 Object *memdev; 3542 hwaddr pagesize; 3543 3544 if (!smc->dr_lmb_enabled) { 3545 error_setg(errp, "Memory hotplug not supported for this machine"); 3546 return; 3547 } 3548 3549 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3550 if (local_err) { 3551 error_propagate(errp, local_err); 3552 return; 3553 } 3554 3555 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3556 error_setg(errp, "Hotplugged memory size must be a multiple of " 3557 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3558 return; 3559 } 3560 3561 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3562 &error_abort); 3563 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3564 spapr_check_pagesize(spapr, pagesize, &local_err); 3565 if (local_err) { 3566 error_propagate(errp, local_err); 3567 return; 3568 } 3569 3570 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3571 } 3572 3573 struct SpaprDimmState { 3574 PCDIMMDevice *dimm; 3575 uint32_t nr_lmbs; 3576 QTAILQ_ENTRY(SpaprDimmState) next; 3577 }; 3578 3579 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3580 PCDIMMDevice *dimm) 3581 { 3582 SpaprDimmState *dimm_state = NULL; 3583 3584 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3585 if (dimm_state->dimm == dimm) { 3586 break; 3587 } 3588 } 3589 return dimm_state; 3590 } 3591 3592 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3593 uint32_t nr_lmbs, 3594 PCDIMMDevice *dimm) 3595 { 3596 SpaprDimmState *ds = NULL; 3597 3598 /* 3599 * If this request is for a DIMM whose removal had failed earlier 3600 * (due to guest's refusal to remove the LMBs), we would have this 3601 * dimm already in the pending_dimm_unplugs list. In that 3602 * case don't add again. 3603 */ 3604 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3605 if (!ds) { 3606 ds = g_malloc0(sizeof(SpaprDimmState)); 3607 ds->nr_lmbs = nr_lmbs; 3608 ds->dimm = dimm; 3609 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3610 } 3611 return ds; 3612 } 3613 3614 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3615 SpaprDimmState *dimm_state) 3616 { 3617 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3618 g_free(dimm_state); 3619 } 3620 3621 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3622 PCDIMMDevice *dimm) 3623 { 3624 SpaprDrc *drc; 3625 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3626 &error_abort); 3627 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3628 uint32_t avail_lmbs = 0; 3629 uint64_t addr_start, addr; 3630 int i; 3631 3632 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3633 &error_abort); 3634 3635 addr = addr_start; 3636 for (i = 0; i < nr_lmbs; i++) { 3637 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3638 addr / SPAPR_MEMORY_BLOCK_SIZE); 3639 g_assert(drc); 3640 if (drc->dev) { 3641 avail_lmbs++; 3642 } 3643 addr += SPAPR_MEMORY_BLOCK_SIZE; 3644 } 3645 3646 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3647 } 3648 3649 /* Callback to be called during DRC release. */ 3650 void spapr_lmb_release(DeviceState *dev) 3651 { 3652 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3653 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3654 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3655 3656 /* This information will get lost if a migration occurs 3657 * during the unplug process. In this case recover it. */ 3658 if (ds == NULL) { 3659 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3660 g_assert(ds); 3661 /* The DRC being examined by the caller at least must be counted */ 3662 g_assert(ds->nr_lmbs); 3663 } 3664 3665 if (--ds->nr_lmbs) { 3666 return; 3667 } 3668 3669 /* 3670 * Now that all the LMBs have been removed by the guest, call the 3671 * unplug handler chain. This can never fail. 3672 */ 3673 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3674 object_unparent(OBJECT(dev)); 3675 } 3676 3677 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3678 { 3679 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3680 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3681 3682 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3683 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3684 spapr_pending_dimm_unplugs_remove(spapr, ds); 3685 } 3686 3687 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3688 DeviceState *dev, Error **errp) 3689 { 3690 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3691 Error *local_err = NULL; 3692 PCDIMMDevice *dimm = PC_DIMM(dev); 3693 uint32_t nr_lmbs; 3694 uint64_t size, addr_start, addr; 3695 int i; 3696 SpaprDrc *drc; 3697 3698 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3699 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3700 3701 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3702 &local_err); 3703 if (local_err) { 3704 goto out; 3705 } 3706 3707 /* 3708 * An existing pending dimm state for this DIMM means that there is an 3709 * unplug operation in progress, waiting for the spapr_lmb_release 3710 * callback to complete the job (BQL can't cover that far). In this case, 3711 * bail out to avoid detaching DRCs that were already released. 3712 */ 3713 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3714 error_setg(&local_err, 3715 "Memory unplug already in progress for device %s", 3716 dev->id); 3717 goto out; 3718 } 3719 3720 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3721 3722 addr = addr_start; 3723 for (i = 0; i < nr_lmbs; i++) { 3724 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3725 addr / SPAPR_MEMORY_BLOCK_SIZE); 3726 g_assert(drc); 3727 3728 spapr_drc_detach(drc); 3729 addr += SPAPR_MEMORY_BLOCK_SIZE; 3730 } 3731 3732 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3733 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3734 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3735 nr_lmbs, spapr_drc_index(drc)); 3736 out: 3737 error_propagate(errp, local_err); 3738 } 3739 3740 /* Callback to be called during DRC release. */ 3741 void spapr_core_release(DeviceState *dev) 3742 { 3743 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3744 3745 /* Call the unplug handler chain. This can never fail. */ 3746 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3747 object_unparent(OBJECT(dev)); 3748 } 3749 3750 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3751 { 3752 MachineState *ms = MACHINE(hotplug_dev); 3753 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3754 CPUCore *cc = CPU_CORE(dev); 3755 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3756 3757 if (smc->pre_2_10_has_unused_icps) { 3758 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3759 int i; 3760 3761 for (i = 0; i < cc->nr_threads; i++) { 3762 CPUState *cs = CPU(sc->threads[i]); 3763 3764 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3765 } 3766 } 3767 3768 assert(core_slot); 3769 core_slot->cpu = NULL; 3770 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3771 } 3772 3773 static 3774 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3775 Error **errp) 3776 { 3777 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3778 int index; 3779 SpaprDrc *drc; 3780 CPUCore *cc = CPU_CORE(dev); 3781 3782 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3783 error_setg(errp, "Unable to find CPU core with core-id: %d", 3784 cc->core_id); 3785 return; 3786 } 3787 if (index == 0) { 3788 error_setg(errp, "Boot CPU core may not be unplugged"); 3789 return; 3790 } 3791 3792 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3793 spapr_vcpu_id(spapr, cc->core_id)); 3794 g_assert(drc); 3795 3796 spapr_drc_detach(drc); 3797 3798 spapr_hotplug_req_remove_by_index(drc); 3799 } 3800 3801 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3802 void *fdt, int *fdt_start_offset, Error **errp) 3803 { 3804 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3805 CPUState *cs = CPU(core->threads[0]); 3806 PowerPCCPU *cpu = POWERPC_CPU(cs); 3807 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3808 int id = spapr_get_vcpu_id(cpu); 3809 char *nodename; 3810 int offset; 3811 3812 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3813 offset = fdt_add_subnode(fdt, 0, nodename); 3814 g_free(nodename); 3815 3816 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3817 3818 *fdt_start_offset = offset; 3819 return 0; 3820 } 3821 3822 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3823 Error **errp) 3824 { 3825 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3826 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3827 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3828 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3829 CPUCore *cc = CPU_CORE(dev); 3830 CPUState *cs; 3831 SpaprDrc *drc; 3832 Error *local_err = NULL; 3833 CPUArchId *core_slot; 3834 int index; 3835 bool hotplugged = spapr_drc_hotplugged(dev); 3836 3837 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3838 if (!core_slot) { 3839 error_setg(errp, "Unable to find CPU core with core-id: %d", 3840 cc->core_id); 3841 return; 3842 } 3843 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3844 spapr_vcpu_id(spapr, cc->core_id)); 3845 3846 g_assert(drc || !mc->has_hotpluggable_cpus); 3847 3848 if (drc) { 3849 spapr_drc_attach(drc, dev, &local_err); 3850 if (local_err) { 3851 error_propagate(errp, local_err); 3852 return; 3853 } 3854 3855 if (hotplugged) { 3856 /* 3857 * Send hotplug notification interrupt to the guest only 3858 * in case of hotplugged CPUs. 3859 */ 3860 spapr_hotplug_req_add_by_index(drc); 3861 } else { 3862 spapr_drc_reset(drc); 3863 } 3864 } 3865 3866 core_slot->cpu = OBJECT(dev); 3867 3868 if (smc->pre_2_10_has_unused_icps) { 3869 int i; 3870 3871 for (i = 0; i < cc->nr_threads; i++) { 3872 cs = CPU(core->threads[i]); 3873 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3874 } 3875 } 3876 } 3877 3878 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3879 Error **errp) 3880 { 3881 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3882 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3883 Error *local_err = NULL; 3884 CPUCore *cc = CPU_CORE(dev); 3885 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3886 const char *type = object_get_typename(OBJECT(dev)); 3887 CPUArchId *core_slot; 3888 int index; 3889 unsigned int smp_threads = machine->smp.threads; 3890 3891 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3892 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3893 goto out; 3894 } 3895 3896 if (strcmp(base_core_type, type)) { 3897 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3898 goto out; 3899 } 3900 3901 if (cc->core_id % smp_threads) { 3902 error_setg(&local_err, "invalid core id %d", cc->core_id); 3903 goto out; 3904 } 3905 3906 /* 3907 * In general we should have homogeneous threads-per-core, but old 3908 * (pre hotplug support) machine types allow the last core to have 3909 * reduced threads as a compatibility hack for when we allowed 3910 * total vcpus not a multiple of threads-per-core. 3911 */ 3912 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3913 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3914 cc->nr_threads, smp_threads); 3915 goto out; 3916 } 3917 3918 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3919 if (!core_slot) { 3920 error_setg(&local_err, "core id %d out of range", cc->core_id); 3921 goto out; 3922 } 3923 3924 if (core_slot->cpu) { 3925 error_setg(&local_err, "core %d already populated", cc->core_id); 3926 goto out; 3927 } 3928 3929 numa_cpu_pre_plug(core_slot, dev, &local_err); 3930 3931 out: 3932 error_propagate(errp, local_err); 3933 } 3934 3935 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3936 void *fdt, int *fdt_start_offset, Error **errp) 3937 { 3938 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3939 int intc_phandle; 3940 3941 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3942 if (intc_phandle <= 0) { 3943 return -1; 3944 } 3945 3946 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3947 fdt_start_offset)) { 3948 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3949 return -1; 3950 } 3951 3952 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3953 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3954 3955 return 0; 3956 } 3957 3958 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3959 Error **errp) 3960 { 3961 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3962 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3963 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3964 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3965 3966 if (dev->hotplugged && !smc->dr_phb_enabled) { 3967 error_setg(errp, "PHB hotplug not supported for this machine"); 3968 return; 3969 } 3970 3971 if (sphb->index == (uint32_t)-1) { 3972 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3973 return; 3974 } 3975 3976 /* 3977 * This will check that sphb->index doesn't exceed the maximum number of 3978 * PHBs for the current machine type. 3979 */ 3980 smc->phb_placement(spapr, sphb->index, 3981 &sphb->buid, &sphb->io_win_addr, 3982 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3983 windows_supported, sphb->dma_liobn, 3984 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3985 errp); 3986 } 3987 3988 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3989 Error **errp) 3990 { 3991 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3992 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3993 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3994 SpaprDrc *drc; 3995 bool hotplugged = spapr_drc_hotplugged(dev); 3996 Error *local_err = NULL; 3997 3998 if (!smc->dr_phb_enabled) { 3999 return; 4000 } 4001 4002 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4003 /* hotplug hooks should check it's enabled before getting this far */ 4004 assert(drc); 4005 4006 spapr_drc_attach(drc, DEVICE(dev), &local_err); 4007 if (local_err) { 4008 error_propagate(errp, local_err); 4009 return; 4010 } 4011 4012 if (hotplugged) { 4013 spapr_hotplug_req_add_by_index(drc); 4014 } else { 4015 spapr_drc_reset(drc); 4016 } 4017 } 4018 4019 void spapr_phb_release(DeviceState *dev) 4020 { 4021 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4022 4023 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4024 object_unparent(OBJECT(dev)); 4025 } 4026 4027 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4028 { 4029 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4030 } 4031 4032 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4033 DeviceState *dev, Error **errp) 4034 { 4035 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4036 SpaprDrc *drc; 4037 4038 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4039 assert(drc); 4040 4041 if (!spapr_drc_unplug_requested(drc)) { 4042 spapr_drc_detach(drc); 4043 spapr_hotplug_req_remove_by_index(drc); 4044 } 4045 } 4046 4047 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4048 Error **errp) 4049 { 4050 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4051 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4052 4053 if (spapr->tpm_proxy != NULL) { 4054 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4055 return; 4056 } 4057 4058 spapr->tpm_proxy = tpm_proxy; 4059 } 4060 4061 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4062 { 4063 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4064 4065 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4066 object_unparent(OBJECT(dev)); 4067 spapr->tpm_proxy = NULL; 4068 } 4069 4070 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4071 DeviceState *dev, Error **errp) 4072 { 4073 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4074 spapr_memory_plug(hotplug_dev, dev, errp); 4075 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4076 spapr_core_plug(hotplug_dev, dev, errp); 4077 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4078 spapr_phb_plug(hotplug_dev, dev, errp); 4079 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4080 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 4081 } 4082 } 4083 4084 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4085 DeviceState *dev, Error **errp) 4086 { 4087 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4088 spapr_memory_unplug(hotplug_dev, dev); 4089 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4090 spapr_core_unplug(hotplug_dev, dev); 4091 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4092 spapr_phb_unplug(hotplug_dev, dev); 4093 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4094 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4095 } 4096 } 4097 4098 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4099 DeviceState *dev, Error **errp) 4100 { 4101 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4102 MachineClass *mc = MACHINE_GET_CLASS(sms); 4103 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4104 4105 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4106 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4107 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4108 } else { 4109 /* NOTE: this means there is a window after guest reset, prior to 4110 * CAS negotiation, where unplug requests will fail due to the 4111 * capability not being detected yet. This is a bit different than 4112 * the case with PCI unplug, where the events will be queued and 4113 * eventually handled by the guest after boot 4114 */ 4115 error_setg(errp, "Memory hot unplug not supported for this guest"); 4116 } 4117 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4118 if (!mc->has_hotpluggable_cpus) { 4119 error_setg(errp, "CPU hot unplug not supported on this machine"); 4120 return; 4121 } 4122 spapr_core_unplug_request(hotplug_dev, dev, errp); 4123 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4124 if (!smc->dr_phb_enabled) { 4125 error_setg(errp, "PHB hot unplug not supported on this machine"); 4126 return; 4127 } 4128 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4129 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4130 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4131 } 4132 } 4133 4134 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4135 DeviceState *dev, Error **errp) 4136 { 4137 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4138 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4139 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4140 spapr_core_pre_plug(hotplug_dev, dev, errp); 4141 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4142 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4143 } 4144 } 4145 4146 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4147 DeviceState *dev) 4148 { 4149 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4150 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4151 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4152 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4153 return HOTPLUG_HANDLER(machine); 4154 } 4155 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4156 PCIDevice *pcidev = PCI_DEVICE(dev); 4157 PCIBus *root = pci_device_root_bus(pcidev); 4158 SpaprPhbState *phb = 4159 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4160 TYPE_SPAPR_PCI_HOST_BRIDGE); 4161 4162 if (phb) { 4163 return HOTPLUG_HANDLER(phb); 4164 } 4165 } 4166 return NULL; 4167 } 4168 4169 static CpuInstanceProperties 4170 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4171 { 4172 CPUArchId *core_slot; 4173 MachineClass *mc = MACHINE_GET_CLASS(machine); 4174 4175 /* make sure possible_cpu are intialized */ 4176 mc->possible_cpu_arch_ids(machine); 4177 /* get CPU core slot containing thread that matches cpu_index */ 4178 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4179 assert(core_slot); 4180 return core_slot->props; 4181 } 4182 4183 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4184 { 4185 return idx / ms->smp.cores % nb_numa_nodes; 4186 } 4187 4188 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4189 { 4190 int i; 4191 unsigned int smp_threads = machine->smp.threads; 4192 unsigned int smp_cpus = machine->smp.cpus; 4193 const char *core_type; 4194 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4195 MachineClass *mc = MACHINE_GET_CLASS(machine); 4196 4197 if (!mc->has_hotpluggable_cpus) { 4198 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4199 } 4200 if (machine->possible_cpus) { 4201 assert(machine->possible_cpus->len == spapr_max_cores); 4202 return machine->possible_cpus; 4203 } 4204 4205 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4206 if (!core_type) { 4207 error_report("Unable to find sPAPR CPU Core definition"); 4208 exit(1); 4209 } 4210 4211 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4212 sizeof(CPUArchId) * spapr_max_cores); 4213 machine->possible_cpus->len = spapr_max_cores; 4214 for (i = 0; i < machine->possible_cpus->len; i++) { 4215 int core_id = i * smp_threads; 4216 4217 machine->possible_cpus->cpus[i].type = core_type; 4218 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4219 machine->possible_cpus->cpus[i].arch_id = core_id; 4220 machine->possible_cpus->cpus[i].props.has_core_id = true; 4221 machine->possible_cpus->cpus[i].props.core_id = core_id; 4222 } 4223 return machine->possible_cpus; 4224 } 4225 4226 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4227 uint64_t *buid, hwaddr *pio, 4228 hwaddr *mmio32, hwaddr *mmio64, 4229 unsigned n_dma, uint32_t *liobns, 4230 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4231 { 4232 /* 4233 * New-style PHB window placement. 4234 * 4235 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4236 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4237 * windows. 4238 * 4239 * Some guest kernels can't work with MMIO windows above 1<<46 4240 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4241 * 4242 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4243 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4244 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4245 * 1TiB 64-bit MMIO windows for each PHB. 4246 */ 4247 const uint64_t base_buid = 0x800000020000000ULL; 4248 int i; 4249 4250 /* Sanity check natural alignments */ 4251 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4252 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4253 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4254 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4255 /* Sanity check bounds */ 4256 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4257 SPAPR_PCI_MEM32_WIN_SIZE); 4258 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4259 SPAPR_PCI_MEM64_WIN_SIZE); 4260 4261 if (index >= SPAPR_MAX_PHBS) { 4262 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4263 SPAPR_MAX_PHBS - 1); 4264 return; 4265 } 4266 4267 *buid = base_buid + index; 4268 for (i = 0; i < n_dma; ++i) { 4269 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4270 } 4271 4272 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4273 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4274 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4275 4276 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4277 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4278 } 4279 4280 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4281 { 4282 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4283 4284 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4285 } 4286 4287 static void spapr_ics_resend(XICSFabric *dev) 4288 { 4289 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4290 4291 ics_resend(spapr->ics); 4292 } 4293 4294 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4295 { 4296 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4297 4298 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4299 } 4300 4301 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4302 Monitor *mon) 4303 { 4304 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4305 4306 spapr->irq->print_info(spapr, mon); 4307 } 4308 4309 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4310 { 4311 return cpu->vcpu_id; 4312 } 4313 4314 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4315 { 4316 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4317 MachineState *ms = MACHINE(spapr); 4318 int vcpu_id; 4319 4320 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4321 4322 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4323 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4324 error_append_hint(errp, "Adjust the number of cpus to %d " 4325 "or try to raise the number of threads per core\n", 4326 vcpu_id * ms->smp.threads / spapr->vsmt); 4327 return; 4328 } 4329 4330 cpu->vcpu_id = vcpu_id; 4331 } 4332 4333 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4334 { 4335 CPUState *cs; 4336 4337 CPU_FOREACH(cs) { 4338 PowerPCCPU *cpu = POWERPC_CPU(cs); 4339 4340 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4341 return cpu; 4342 } 4343 } 4344 4345 return NULL; 4346 } 4347 4348 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4349 { 4350 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4351 4352 /* These are only called by TCG, KVM maintains dispatch state */ 4353 4354 spapr_cpu->prod = false; 4355 if (spapr_cpu->vpa_addr) { 4356 CPUState *cs = CPU(cpu); 4357 uint32_t dispatch; 4358 4359 dispatch = ldl_be_phys(cs->as, 4360 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4361 dispatch++; 4362 if ((dispatch & 1) != 0) { 4363 qemu_log_mask(LOG_GUEST_ERROR, 4364 "VPA: incorrect dispatch counter value for " 4365 "dispatched partition %u, correcting.\n", dispatch); 4366 dispatch++; 4367 } 4368 stl_be_phys(cs->as, 4369 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4370 } 4371 } 4372 4373 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4374 { 4375 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4376 4377 if (spapr_cpu->vpa_addr) { 4378 CPUState *cs = CPU(cpu); 4379 uint32_t dispatch; 4380 4381 dispatch = ldl_be_phys(cs->as, 4382 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4383 dispatch++; 4384 if ((dispatch & 1) != 1) { 4385 qemu_log_mask(LOG_GUEST_ERROR, 4386 "VPA: incorrect dispatch counter value for " 4387 "preempted partition %u, correcting.\n", dispatch); 4388 dispatch++; 4389 } 4390 stl_be_phys(cs->as, 4391 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4392 } 4393 } 4394 4395 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4396 { 4397 MachineClass *mc = MACHINE_CLASS(oc); 4398 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4399 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4400 NMIClass *nc = NMI_CLASS(oc); 4401 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4402 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4403 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4404 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4405 4406 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4407 mc->ignore_boot_device_suffixes = true; 4408 4409 /* 4410 * We set up the default / latest behaviour here. The class_init 4411 * functions for the specific versioned machine types can override 4412 * these details for backwards compatibility 4413 */ 4414 mc->init = spapr_machine_init; 4415 mc->reset = spapr_machine_reset; 4416 mc->block_default_type = IF_SCSI; 4417 mc->max_cpus = 1024; 4418 mc->no_parallel = 1; 4419 mc->default_boot_order = ""; 4420 mc->default_ram_size = 512 * MiB; 4421 mc->default_display = "std"; 4422 mc->kvm_type = spapr_kvm_type; 4423 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4424 mc->pci_allow_0_address = true; 4425 assert(!mc->get_hotplug_handler); 4426 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4427 hc->pre_plug = spapr_machine_device_pre_plug; 4428 hc->plug = spapr_machine_device_plug; 4429 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4430 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4431 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4432 hc->unplug_request = spapr_machine_device_unplug_request; 4433 hc->unplug = spapr_machine_device_unplug; 4434 4435 smc->dr_lmb_enabled = true; 4436 smc->update_dt_enabled = true; 4437 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4438 mc->has_hotpluggable_cpus = true; 4439 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4440 fwc->get_dev_path = spapr_get_fw_dev_path; 4441 nc->nmi_monitor_handler = spapr_nmi; 4442 smc->phb_placement = spapr_phb_placement; 4443 vhc->hypercall = emulate_spapr_hypercall; 4444 vhc->hpt_mask = spapr_hpt_mask; 4445 vhc->map_hptes = spapr_map_hptes; 4446 vhc->unmap_hptes = spapr_unmap_hptes; 4447 vhc->hpte_set_c = spapr_hpte_set_c; 4448 vhc->hpte_set_r = spapr_hpte_set_r; 4449 vhc->get_pate = spapr_get_pate; 4450 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4451 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4452 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4453 xic->ics_get = spapr_ics_get; 4454 xic->ics_resend = spapr_ics_resend; 4455 xic->icp_get = spapr_icp_get; 4456 ispc->print_info = spapr_pic_print_info; 4457 /* Force NUMA node memory size to be a multiple of 4458 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4459 * in which LMBs are represented and hot-added 4460 */ 4461 mc->numa_mem_align_shift = 28; 4462 mc->numa_mem_supported = true; 4463 4464 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4465 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4466 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4467 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4468 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4469 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4470 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4471 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4472 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4473 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4474 spapr_caps_add_properties(smc, &error_abort); 4475 smc->irq = &spapr_irq_dual; 4476 smc->dr_phb_enabled = true; 4477 } 4478 4479 static const TypeInfo spapr_machine_info = { 4480 .name = TYPE_SPAPR_MACHINE, 4481 .parent = TYPE_MACHINE, 4482 .abstract = true, 4483 .instance_size = sizeof(SpaprMachineState), 4484 .instance_init = spapr_instance_init, 4485 .instance_finalize = spapr_machine_finalizefn, 4486 .class_size = sizeof(SpaprMachineClass), 4487 .class_init = spapr_machine_class_init, 4488 .interfaces = (InterfaceInfo[]) { 4489 { TYPE_FW_PATH_PROVIDER }, 4490 { TYPE_NMI }, 4491 { TYPE_HOTPLUG_HANDLER }, 4492 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4493 { TYPE_XICS_FABRIC }, 4494 { TYPE_INTERRUPT_STATS_PROVIDER }, 4495 { } 4496 }, 4497 }; 4498 4499 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4500 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4501 void *data) \ 4502 { \ 4503 MachineClass *mc = MACHINE_CLASS(oc); \ 4504 spapr_machine_##suffix##_class_options(mc); \ 4505 if (latest) { \ 4506 mc->alias = "pseries"; \ 4507 mc->is_default = 1; \ 4508 } \ 4509 } \ 4510 static const TypeInfo spapr_machine_##suffix##_info = { \ 4511 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4512 .parent = TYPE_SPAPR_MACHINE, \ 4513 .class_init = spapr_machine_##suffix##_class_init, \ 4514 }; \ 4515 static void spapr_machine_register_##suffix(void) \ 4516 { \ 4517 type_register(&spapr_machine_##suffix##_info); \ 4518 } \ 4519 type_init(spapr_machine_register_##suffix) 4520 4521 /* 4522 * pseries-4.2 4523 */ 4524 static void spapr_machine_4_2_class_options(MachineClass *mc) 4525 { 4526 /* Defaults for the latest behaviour inherited from the base class */ 4527 } 4528 4529 DEFINE_SPAPR_MACHINE(4_2, "4.2", true); 4530 4531 /* 4532 * pseries-4.1 4533 */ 4534 static void spapr_machine_4_1_class_options(MachineClass *mc) 4535 { 4536 static GlobalProperty compat[] = { 4537 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4538 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4539 }; 4540 4541 spapr_machine_4_2_class_options(mc); 4542 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4543 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4544 } 4545 4546 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4547 4548 /* 4549 * pseries-4.0 4550 */ 4551 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4552 uint64_t *buid, hwaddr *pio, 4553 hwaddr *mmio32, hwaddr *mmio64, 4554 unsigned n_dma, uint32_t *liobns, 4555 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4556 { 4557 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4558 nv2gpa, nv2atsd, errp); 4559 *nv2gpa = 0; 4560 *nv2atsd = 0; 4561 } 4562 4563 static void spapr_machine_4_0_class_options(MachineClass *mc) 4564 { 4565 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4566 4567 spapr_machine_4_1_class_options(mc); 4568 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4569 smc->phb_placement = phb_placement_4_0; 4570 smc->irq = &spapr_irq_xics; 4571 smc->pre_4_1_migration = true; 4572 } 4573 4574 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4575 4576 /* 4577 * pseries-3.1 4578 */ 4579 static void spapr_machine_3_1_class_options(MachineClass *mc) 4580 { 4581 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4582 4583 spapr_machine_4_0_class_options(mc); 4584 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4585 4586 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4587 smc->update_dt_enabled = false; 4588 smc->dr_phb_enabled = false; 4589 smc->broken_host_serial_model = true; 4590 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4591 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4592 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4593 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4594 } 4595 4596 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4597 4598 /* 4599 * pseries-3.0 4600 */ 4601 4602 static void spapr_machine_3_0_class_options(MachineClass *mc) 4603 { 4604 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4605 4606 spapr_machine_3_1_class_options(mc); 4607 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4608 4609 smc->legacy_irq_allocation = true; 4610 smc->irq = &spapr_irq_xics_legacy; 4611 } 4612 4613 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4614 4615 /* 4616 * pseries-2.12 4617 */ 4618 static void spapr_machine_2_12_class_options(MachineClass *mc) 4619 { 4620 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4621 static GlobalProperty compat[] = { 4622 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4623 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4624 }; 4625 4626 spapr_machine_3_0_class_options(mc); 4627 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4628 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4629 4630 /* We depend on kvm_enabled() to choose a default value for the 4631 * hpt-max-page-size capability. Of course we can't do it here 4632 * because this is too early and the HW accelerator isn't initialzed 4633 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4634 */ 4635 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4636 } 4637 4638 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4639 4640 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4641 { 4642 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4643 4644 spapr_machine_2_12_class_options(mc); 4645 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4646 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4647 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4648 } 4649 4650 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4651 4652 /* 4653 * pseries-2.11 4654 */ 4655 4656 static void spapr_machine_2_11_class_options(MachineClass *mc) 4657 { 4658 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4659 4660 spapr_machine_2_12_class_options(mc); 4661 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4662 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4663 } 4664 4665 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4666 4667 /* 4668 * pseries-2.10 4669 */ 4670 4671 static void spapr_machine_2_10_class_options(MachineClass *mc) 4672 { 4673 spapr_machine_2_11_class_options(mc); 4674 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4675 } 4676 4677 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4678 4679 /* 4680 * pseries-2.9 4681 */ 4682 4683 static void spapr_machine_2_9_class_options(MachineClass *mc) 4684 { 4685 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4686 static GlobalProperty compat[] = { 4687 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4688 }; 4689 4690 spapr_machine_2_10_class_options(mc); 4691 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4692 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4693 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4694 smc->pre_2_10_has_unused_icps = true; 4695 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4696 } 4697 4698 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4699 4700 /* 4701 * pseries-2.8 4702 */ 4703 4704 static void spapr_machine_2_8_class_options(MachineClass *mc) 4705 { 4706 static GlobalProperty compat[] = { 4707 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4708 }; 4709 4710 spapr_machine_2_9_class_options(mc); 4711 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4712 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4713 mc->numa_mem_align_shift = 23; 4714 } 4715 4716 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4717 4718 /* 4719 * pseries-2.7 4720 */ 4721 4722 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4723 uint64_t *buid, hwaddr *pio, 4724 hwaddr *mmio32, hwaddr *mmio64, 4725 unsigned n_dma, uint32_t *liobns, 4726 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4727 { 4728 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4729 const uint64_t base_buid = 0x800000020000000ULL; 4730 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4731 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4732 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4733 const uint32_t max_index = 255; 4734 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4735 4736 uint64_t ram_top = MACHINE(spapr)->ram_size; 4737 hwaddr phb0_base, phb_base; 4738 int i; 4739 4740 /* Do we have device memory? */ 4741 if (MACHINE(spapr)->maxram_size > ram_top) { 4742 /* Can't just use maxram_size, because there may be an 4743 * alignment gap between normal and device memory regions 4744 */ 4745 ram_top = MACHINE(spapr)->device_memory->base + 4746 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4747 } 4748 4749 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4750 4751 if (index > max_index) { 4752 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4753 max_index); 4754 return; 4755 } 4756 4757 *buid = base_buid + index; 4758 for (i = 0; i < n_dma; ++i) { 4759 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4760 } 4761 4762 phb_base = phb0_base + index * phb_spacing; 4763 *pio = phb_base + pio_offset; 4764 *mmio32 = phb_base + mmio_offset; 4765 /* 4766 * We don't set the 64-bit MMIO window, relying on the PHB's 4767 * fallback behaviour of automatically splitting a large "32-bit" 4768 * window into contiguous 32-bit and 64-bit windows 4769 */ 4770 4771 *nv2gpa = 0; 4772 *nv2atsd = 0; 4773 } 4774 4775 static void spapr_machine_2_7_class_options(MachineClass *mc) 4776 { 4777 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4778 static GlobalProperty compat[] = { 4779 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4780 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4781 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4782 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4783 }; 4784 4785 spapr_machine_2_8_class_options(mc); 4786 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4787 mc->default_machine_opts = "modern-hotplug-events=off"; 4788 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4789 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4790 smc->phb_placement = phb_placement_2_7; 4791 } 4792 4793 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4794 4795 /* 4796 * pseries-2.6 4797 */ 4798 4799 static void spapr_machine_2_6_class_options(MachineClass *mc) 4800 { 4801 static GlobalProperty compat[] = { 4802 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4803 }; 4804 4805 spapr_machine_2_7_class_options(mc); 4806 mc->has_hotpluggable_cpus = false; 4807 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4808 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4809 } 4810 4811 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4812 4813 /* 4814 * pseries-2.5 4815 */ 4816 4817 static void spapr_machine_2_5_class_options(MachineClass *mc) 4818 { 4819 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4820 static GlobalProperty compat[] = { 4821 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4822 }; 4823 4824 spapr_machine_2_6_class_options(mc); 4825 smc->use_ohci_by_default = true; 4826 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4827 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4828 } 4829 4830 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4831 4832 /* 4833 * pseries-2.4 4834 */ 4835 4836 static void spapr_machine_2_4_class_options(MachineClass *mc) 4837 { 4838 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4839 4840 spapr_machine_2_5_class_options(mc); 4841 smc->dr_lmb_enabled = false; 4842 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4843 } 4844 4845 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4846 4847 /* 4848 * pseries-2.3 4849 */ 4850 4851 static void spapr_machine_2_3_class_options(MachineClass *mc) 4852 { 4853 static GlobalProperty compat[] = { 4854 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4855 }; 4856 spapr_machine_2_4_class_options(mc); 4857 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4858 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4859 } 4860 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4861 4862 /* 4863 * pseries-2.2 4864 */ 4865 4866 static void spapr_machine_2_2_class_options(MachineClass *mc) 4867 { 4868 static GlobalProperty compat[] = { 4869 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4870 }; 4871 4872 spapr_machine_2_3_class_options(mc); 4873 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4874 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4875 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4876 } 4877 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4878 4879 /* 4880 * pseries-2.1 4881 */ 4882 4883 static void spapr_machine_2_1_class_options(MachineClass *mc) 4884 { 4885 spapr_machine_2_2_class_options(mc); 4886 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4887 } 4888 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4889 4890 static void spapr_machine_register_types(void) 4891 { 4892 type_register_static(&spapr_machine_info); 4893 } 4894 4895 type_init(spapr_machine_register_types) 4896