xref: /qemu/hw/ppc/spapr.c (revision 7e721e7b10e166003d4fdcfab90a72c93d4df839)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 
84 #include <libfdt.h>
85 
86 /* SLOF memory layout:
87  *
88  * SLOF raw image loaded at 0, copies its romfs right below the flat
89  * device-tree, then position SLOF itself 31M below that
90  *
91  * So we set FW_OVERHEAD to 40MB which should account for all of that
92  * and more
93  *
94  * We load our kernel at 4M, leaving space for SLOF initial image
95  */
96 #define FDT_MAX_SIZE            0x100000
97 #define RTAS_MAX_SIZE           0x10000
98 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
99 #define FW_MAX_SIZE             0x400000
100 #define FW_FILE_NAME            "slof.bin"
101 #define FW_OVERHEAD             0x2800000
102 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
103 
104 #define MIN_RMA_SLOF            128UL
105 
106 #define PHANDLE_INTC            0x00001111
107 
108 /* These two functions implement the VCPU id numbering: one to compute them
109  * all and one to identify thread 0 of a VCORE. Any change to the first one
110  * is likely to have an impact on the second one, so let's keep them close.
111  */
112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
113 {
114     MachineState *ms = MACHINE(spapr);
115     unsigned int smp_threads = ms->smp.threads;
116 
117     assert(spapr->vsmt);
118     return
119         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
120 }
121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
122                                       PowerPCCPU *cpu)
123 {
124     assert(spapr->vsmt);
125     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
126 }
127 
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
129 {
130     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131      * and newer QEMUs don't even have them. In both cases, we don't want
132      * to send anything on the wire.
133      */
134     return false;
135 }
136 
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138     .name = "icp/server",
139     .version_id = 1,
140     .minimum_version_id = 1,
141     .needed = pre_2_10_vmstate_dummy_icp_needed,
142     .fields = (VMStateField[]) {
143         VMSTATE_UNUSED(4), /* uint32_t xirr */
144         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145         VMSTATE_UNUSED(1), /* uint8_t mfrr */
146         VMSTATE_END_OF_LIST()
147     },
148 };
149 
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
151 {
152     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153                      (void *)(uintptr_t) i);
154 }
155 
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
157 {
158     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159                        (void *)(uintptr_t) i);
160 }
161 
162 int spapr_max_server_number(SpaprMachineState *spapr)
163 {
164     MachineState *ms = MACHINE(spapr);
165 
166     assert(spapr->vsmt);
167     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
168 }
169 
170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
171                                   int smt_threads)
172 {
173     int i, ret = 0;
174     uint32_t servers_prop[smt_threads];
175     uint32_t gservers_prop[smt_threads * 2];
176     int index = spapr_get_vcpu_id(cpu);
177 
178     if (cpu->compat_pvr) {
179         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
180         if (ret < 0) {
181             return ret;
182         }
183     }
184 
185     /* Build interrupt servers and gservers properties */
186     for (i = 0; i < smt_threads; i++) {
187         servers_prop[i] = cpu_to_be32(index + i);
188         /* Hack, direct the group queues back to cpu 0 */
189         gservers_prop[i*2] = cpu_to_be32(index + i);
190         gservers_prop[i*2 + 1] = 0;
191     }
192     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
193                       servers_prop, sizeof(servers_prop));
194     if (ret < 0) {
195         return ret;
196     }
197     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
198                       gservers_prop, sizeof(gservers_prop));
199 
200     return ret;
201 }
202 
203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
204 {
205     int index = spapr_get_vcpu_id(cpu);
206     uint32_t associativity[] = {cpu_to_be32(0x5),
207                                 cpu_to_be32(0x0),
208                                 cpu_to_be32(0x0),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(cpu->node_id),
211                                 cpu_to_be32(index)};
212 
213     /* Advertise NUMA via ibm,associativity */
214     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
215                           sizeof(associativity));
216 }
217 
218 /* Populate the "ibm,pa-features" property */
219 static void spapr_populate_pa_features(SpaprMachineState *spapr,
220                                        PowerPCCPU *cpu,
221                                        void *fdt, int offset,
222                                        bool legacy_guest)
223 {
224     uint8_t pa_features_206[] = { 6, 0,
225         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226     uint8_t pa_features_207[] = { 24, 0,
227         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231     uint8_t pa_features_300[] = { 66, 0,
232         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235         /* 6: DS207 */
236         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237         /* 16: Vector */
238         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247         /* 42: PM, 44: PC RA, 46: SC vec'd */
248         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249         /* 48: SIMD, 50: QP BFP, 52: String */
250         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251         /* 54: DecFP, 56: DecI, 58: SHA */
252         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253         /* 60: NM atomic, 62: RNG */
254         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255     };
256     uint8_t *pa_features = NULL;
257     size_t pa_size;
258 
259     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260         pa_features = pa_features_206;
261         pa_size = sizeof(pa_features_206);
262     }
263     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264         pa_features = pa_features_207;
265         pa_size = sizeof(pa_features_207);
266     }
267     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268         pa_features = pa_features_300;
269         pa_size = sizeof(pa_features_300);
270     }
271     if (!pa_features) {
272         return;
273     }
274 
275     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276         /*
277          * Note: we keep CI large pages off by default because a 64K capable
278          * guest provisioned with large pages might otherwise try to map a qemu
279          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280          * even if that qemu runs on a 4k host.
281          * We dd this bit back here if we are confident this is not an issue
282          */
283         pa_features[3] |= 0x20;
284     }
285     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286         pa_features[24] |= 0x80;    /* Transactional memory support */
287     }
288     if (legacy_guest && pa_size > 40) {
289         /* Workaround for broken kernels that attempt (guest) radix
290          * mode when they can't handle it, if they see the radix bit set
291          * in pa-features. So hide it from them. */
292         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293     }
294 
295     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297 
298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
299 {
300     MachineState *ms = MACHINE(spapr);
301     int ret = 0, offset, cpus_offset;
302     CPUState *cs;
303     char cpu_model[32];
304     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
305 
306     CPU_FOREACH(cs) {
307         PowerPCCPU *cpu = POWERPC_CPU(cs);
308         DeviceClass *dc = DEVICE_GET_CLASS(cs);
309         int index = spapr_get_vcpu_id(cpu);
310         int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
311 
312         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
313             continue;
314         }
315 
316         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
317 
318         cpus_offset = fdt_path_offset(fdt, "/cpus");
319         if (cpus_offset < 0) {
320             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
321             if (cpus_offset < 0) {
322                 return cpus_offset;
323             }
324         }
325         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
326         if (offset < 0) {
327             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
328             if (offset < 0) {
329                 return offset;
330             }
331         }
332 
333         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
334                           pft_size_prop, sizeof(pft_size_prop));
335         if (ret < 0) {
336             return ret;
337         }
338 
339         if (ms->numa_state->num_nodes > 1) {
340             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
341             if (ret < 0) {
342                 return ret;
343             }
344         }
345 
346         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
347         if (ret < 0) {
348             return ret;
349         }
350 
351         spapr_populate_pa_features(spapr, cpu, fdt, offset,
352                                    spapr->cas_legacy_guest_workaround);
353     }
354     return ret;
355 }
356 
357 static hwaddr spapr_node0_size(MachineState *machine)
358 {
359     if (machine->numa_state->num_nodes) {
360         int i;
361         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
362             if (machine->numa_state->nodes[i].node_mem) {
363                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
364                            machine->ram_size);
365             }
366         }
367     }
368     return machine->ram_size;
369 }
370 
371 static void add_str(GString *s, const gchar *s1)
372 {
373     g_string_append_len(s, s1, strlen(s1) + 1);
374 }
375 
376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
377                                        hwaddr size)
378 {
379     uint32_t associativity[] = {
380         cpu_to_be32(0x4), /* length */
381         cpu_to_be32(0x0), cpu_to_be32(0x0),
382         cpu_to_be32(0x0), cpu_to_be32(nodeid)
383     };
384     char mem_name[32];
385     uint64_t mem_reg_property[2];
386     int off;
387 
388     mem_reg_property[0] = cpu_to_be64(start);
389     mem_reg_property[1] = cpu_to_be64(size);
390 
391     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
392     off = fdt_add_subnode(fdt, 0, mem_name);
393     _FDT(off);
394     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
395     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
396                       sizeof(mem_reg_property))));
397     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
398                       sizeof(associativity))));
399     return off;
400 }
401 
402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
403 {
404     MachineState *machine = MACHINE(spapr);
405     hwaddr mem_start, node_size;
406     int i, nb_nodes = machine->numa_state->num_nodes;
407     NodeInfo *nodes = machine->numa_state->nodes;
408     NodeInfo ramnode;
409 
410     /* No NUMA nodes, assume there is just one node with whole RAM */
411     if (!nb_nodes) {
412         nb_nodes = 1;
413         ramnode.node_mem = machine->ram_size;
414         nodes = &ramnode;
415     }
416 
417     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
418         if (!nodes[i].node_mem) {
419             continue;
420         }
421         if (mem_start >= machine->ram_size) {
422             node_size = 0;
423         } else {
424             node_size = nodes[i].node_mem;
425             if (node_size > machine->ram_size - mem_start) {
426                 node_size = machine->ram_size - mem_start;
427             }
428         }
429         if (!mem_start) {
430             /* spapr_machine_init() checks for rma_size <= node0_size
431              * already */
432             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
433             mem_start += spapr->rma_size;
434             node_size -= spapr->rma_size;
435         }
436         for ( ; node_size; ) {
437             hwaddr sizetmp = pow2floor(node_size);
438 
439             /* mem_start != 0 here */
440             if (ctzl(mem_start) < ctzl(sizetmp)) {
441                 sizetmp = 1ULL << ctzl(mem_start);
442             }
443 
444             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
445             node_size -= sizetmp;
446             mem_start += sizetmp;
447         }
448     }
449 
450     return 0;
451 }
452 
453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
454                                   SpaprMachineState *spapr)
455 {
456     MachineState *ms = MACHINE(spapr);
457     PowerPCCPU *cpu = POWERPC_CPU(cs);
458     CPUPPCState *env = &cpu->env;
459     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
460     int index = spapr_get_vcpu_id(cpu);
461     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
462                        0xffffffff, 0xffffffff};
463     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
464         : SPAPR_TIMEBASE_FREQ;
465     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
466     uint32_t page_sizes_prop[64];
467     size_t page_sizes_prop_size;
468     unsigned int smp_threads = ms->smp.threads;
469     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
470     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
471     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
472     SpaprDrc *drc;
473     int drc_index;
474     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
475     int i;
476 
477     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
478     if (drc) {
479         drc_index = spapr_drc_index(drc);
480         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
481     }
482 
483     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
484     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
485 
486     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
487     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
488                            env->dcache_line_size)));
489     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
490                            env->dcache_line_size)));
491     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
492                            env->icache_line_size)));
493     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
494                            env->icache_line_size)));
495 
496     if (pcc->l1_dcache_size) {
497         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
498                                pcc->l1_dcache_size)));
499     } else {
500         warn_report("Unknown L1 dcache size for cpu");
501     }
502     if (pcc->l1_icache_size) {
503         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
504                                pcc->l1_icache_size)));
505     } else {
506         warn_report("Unknown L1 icache size for cpu");
507     }
508 
509     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
510     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
511     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
512     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
513     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
514     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
515 
516     if (env->spr_cb[SPR_PURR].oea_read) {
517         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
518     }
519     if (env->spr_cb[SPR_SPURR].oea_read) {
520         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
521     }
522 
523     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
524         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
525                           segs, sizeof(segs))));
526     }
527 
528     /* Advertise VSX (vector extensions) if available
529      *   1               == VMX / Altivec available
530      *   2               == VSX available
531      *
532      * Only CPUs for which we create core types in spapr_cpu_core.c
533      * are possible, and all of those have VMX */
534     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
535         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
536     } else {
537         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
538     }
539 
540     /* Advertise DFP (Decimal Floating Point) if available
541      *   0 / no property == no DFP
542      *   1               == DFP available */
543     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
544         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
545     }
546 
547     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
548                                                       sizeof(page_sizes_prop));
549     if (page_sizes_prop_size) {
550         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
551                           page_sizes_prop, page_sizes_prop_size)));
552     }
553 
554     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
555 
556     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
557                            cs->cpu_index / vcpus_per_socket)));
558 
559     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
560                       pft_size_prop, sizeof(pft_size_prop))));
561 
562     if (ms->numa_state->num_nodes > 1) {
563         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
564     }
565 
566     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
567 
568     if (pcc->radix_page_info) {
569         for (i = 0; i < pcc->radix_page_info->count; i++) {
570             radix_AP_encodings[i] =
571                 cpu_to_be32(pcc->radix_page_info->entries[i]);
572         }
573         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
574                           radix_AP_encodings,
575                           pcc->radix_page_info->count *
576                           sizeof(radix_AP_encodings[0]))));
577     }
578 
579     /*
580      * We set this property to let the guest know that it can use the large
581      * decrementer and its width in bits.
582      */
583     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
584         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
585                               pcc->lrg_decr_bits)));
586 }
587 
588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
589 {
590     CPUState **rev;
591     CPUState *cs;
592     int n_cpus;
593     int cpus_offset;
594     char *nodename;
595     int i;
596 
597     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
598     _FDT(cpus_offset);
599     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
600     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
601 
602     /*
603      * We walk the CPUs in reverse order to ensure that CPU DT nodes
604      * created by fdt_add_subnode() end up in the right order in FDT
605      * for the guest kernel the enumerate the CPUs correctly.
606      *
607      * The CPU list cannot be traversed in reverse order, so we need
608      * to do extra work.
609      */
610     n_cpus = 0;
611     rev = NULL;
612     CPU_FOREACH(cs) {
613         rev = g_renew(CPUState *, rev, n_cpus + 1);
614         rev[n_cpus++] = cs;
615     }
616 
617     for (i = n_cpus - 1; i >= 0; i--) {
618         CPUState *cs = rev[i];
619         PowerPCCPU *cpu = POWERPC_CPU(cs);
620         int index = spapr_get_vcpu_id(cpu);
621         DeviceClass *dc = DEVICE_GET_CLASS(cs);
622         int offset;
623 
624         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
625             continue;
626         }
627 
628         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
629         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
630         g_free(nodename);
631         _FDT(offset);
632         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
633     }
634 
635     g_free(rev);
636 }
637 
638 static int spapr_rng_populate_dt(void *fdt)
639 {
640     int node;
641     int ret;
642 
643     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
644     if (node <= 0) {
645         return -1;
646     }
647     ret = fdt_setprop_string(fdt, node, "device_type",
648                              "ibm,platform-facilities");
649     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
650     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
651 
652     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
653     if (node <= 0) {
654         return -1;
655     }
656     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
657 
658     return ret ? -1 : 0;
659 }
660 
661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
662 {
663     MemoryDeviceInfoList *info;
664 
665     for (info = list; info; info = info->next) {
666         MemoryDeviceInfo *value = info->value;
667 
668         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
669             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
670 
671             if (addr >= pcdimm_info->addr &&
672                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
673                 return pcdimm_info->node;
674             }
675         }
676     }
677 
678     return -1;
679 }
680 
681 struct sPAPRDrconfCellV2 {
682      uint32_t seq_lmbs;
683      uint64_t base_addr;
684      uint32_t drc_index;
685      uint32_t aa_index;
686      uint32_t flags;
687 } QEMU_PACKED;
688 
689 typedef struct DrconfCellQueue {
690     struct sPAPRDrconfCellV2 cell;
691     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
692 } DrconfCellQueue;
693 
694 static DrconfCellQueue *
695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
696                       uint32_t drc_index, uint32_t aa_index,
697                       uint32_t flags)
698 {
699     DrconfCellQueue *elem;
700 
701     elem = g_malloc0(sizeof(*elem));
702     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
703     elem->cell.base_addr = cpu_to_be64(base_addr);
704     elem->cell.drc_index = cpu_to_be32(drc_index);
705     elem->cell.aa_index = cpu_to_be32(aa_index);
706     elem->cell.flags = cpu_to_be32(flags);
707 
708     return elem;
709 }
710 
711 /* ibm,dynamic-memory-v2 */
712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
713                                    int offset, MemoryDeviceInfoList *dimms)
714 {
715     MachineState *machine = MACHINE(spapr);
716     uint8_t *int_buf, *cur_index;
717     int ret;
718     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
719     uint64_t addr, cur_addr, size;
720     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
721     uint64_t mem_end = machine->device_memory->base +
722                        memory_region_size(&machine->device_memory->mr);
723     uint32_t node, buf_len, nr_entries = 0;
724     SpaprDrc *drc;
725     DrconfCellQueue *elem, *next;
726     MemoryDeviceInfoList *info;
727     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
728         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
729 
730     /* Entry to cover RAM and the gap area */
731     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
732                                  SPAPR_LMB_FLAGS_RESERVED |
733                                  SPAPR_LMB_FLAGS_DRC_INVALID);
734     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735     nr_entries++;
736 
737     cur_addr = machine->device_memory->base;
738     for (info = dimms; info; info = info->next) {
739         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
740 
741         addr = di->addr;
742         size = di->size;
743         node = di->node;
744 
745         /* Entry for hot-pluggable area */
746         if (cur_addr < addr) {
747             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
748             g_assert(drc);
749             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
750                                          cur_addr, spapr_drc_index(drc), -1, 0);
751             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
752             nr_entries++;
753         }
754 
755         /* Entry for DIMM */
756         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
757         g_assert(drc);
758         elem = spapr_get_drconf_cell(size / lmb_size, addr,
759                                      spapr_drc_index(drc), node,
760                                      SPAPR_LMB_FLAGS_ASSIGNED);
761         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762         nr_entries++;
763         cur_addr = addr + size;
764     }
765 
766     /* Entry for remaining hotpluggable area */
767     if (cur_addr < mem_end) {
768         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
769         g_assert(drc);
770         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
771                                      cur_addr, spapr_drc_index(drc), -1, 0);
772         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
773         nr_entries++;
774     }
775 
776     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
777     int_buf = cur_index = g_malloc0(buf_len);
778     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
779     cur_index += sizeof(nr_entries);
780 
781     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
782         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
783         cur_index += sizeof(elem->cell);
784         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
785         g_free(elem);
786     }
787 
788     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
789     g_free(int_buf);
790     if (ret < 0) {
791         return -1;
792     }
793     return 0;
794 }
795 
796 /* ibm,dynamic-memory */
797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
798                                    int offset, MemoryDeviceInfoList *dimms)
799 {
800     MachineState *machine = MACHINE(spapr);
801     int i, ret;
802     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
803     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
804     uint32_t nr_lmbs = (machine->device_memory->base +
805                        memory_region_size(&machine->device_memory->mr)) /
806                        lmb_size;
807     uint32_t *int_buf, *cur_index, buf_len;
808 
809     /*
810      * Allocate enough buffer size to fit in ibm,dynamic-memory
811      */
812     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
813     cur_index = int_buf = g_malloc0(buf_len);
814     int_buf[0] = cpu_to_be32(nr_lmbs);
815     cur_index++;
816     for (i = 0; i < nr_lmbs; i++) {
817         uint64_t addr = i * lmb_size;
818         uint32_t *dynamic_memory = cur_index;
819 
820         if (i >= device_lmb_start) {
821             SpaprDrc *drc;
822 
823             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
824             g_assert(drc);
825 
826             dynamic_memory[0] = cpu_to_be32(addr >> 32);
827             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
828             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
829             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
830             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
831             if (memory_region_present(get_system_memory(), addr)) {
832                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
833             } else {
834                 dynamic_memory[5] = cpu_to_be32(0);
835             }
836         } else {
837             /*
838              * LMB information for RMA, boot time RAM and gap b/n RAM and
839              * device memory region -- all these are marked as reserved
840              * and as having no valid DRC.
841              */
842             dynamic_memory[0] = cpu_to_be32(addr >> 32);
843             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
844             dynamic_memory[2] = cpu_to_be32(0);
845             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
846             dynamic_memory[4] = cpu_to_be32(-1);
847             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
848                                             SPAPR_LMB_FLAGS_DRC_INVALID);
849         }
850 
851         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
852     }
853     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
854     g_free(int_buf);
855     if (ret < 0) {
856         return -1;
857     }
858     return 0;
859 }
860 
861 /*
862  * Adds ibm,dynamic-reconfiguration-memory node.
863  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
864  * of this device tree node.
865  */
866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
867 {
868     MachineState *machine = MACHINE(spapr);
869     int nb_numa_nodes = machine->numa_state->num_nodes;
870     int ret, i, offset;
871     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
872     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
873     uint32_t *int_buf, *cur_index, buf_len;
874     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
875     MemoryDeviceInfoList *dimms = NULL;
876 
877     /*
878      * Don't create the node if there is no device memory
879      */
880     if (machine->ram_size == machine->maxram_size) {
881         return 0;
882     }
883 
884     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
885 
886     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
887                     sizeof(prop_lmb_size));
888     if (ret < 0) {
889         return ret;
890     }
891 
892     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
893     if (ret < 0) {
894         return ret;
895     }
896 
897     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
898     if (ret < 0) {
899         return ret;
900     }
901 
902     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
903     dimms = qmp_memory_device_list();
904     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
905         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
906     } else {
907         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
908     }
909     qapi_free_MemoryDeviceInfoList(dimms);
910 
911     if (ret < 0) {
912         return ret;
913     }
914 
915     /* ibm,associativity-lookup-arrays */
916     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
917     cur_index = int_buf = g_malloc0(buf_len);
918     int_buf[0] = cpu_to_be32(nr_nodes);
919     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
920     cur_index += 2;
921     for (i = 0; i < nr_nodes; i++) {
922         uint32_t associativity[] = {
923             cpu_to_be32(0x0),
924             cpu_to_be32(0x0),
925             cpu_to_be32(0x0),
926             cpu_to_be32(i)
927         };
928         memcpy(cur_index, associativity, sizeof(associativity));
929         cur_index += 4;
930     }
931     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
932             (cur_index - int_buf) * sizeof(uint32_t));
933     g_free(int_buf);
934 
935     return ret;
936 }
937 
938 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
939                                 SpaprOptionVector *ov5_updates)
940 {
941     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
942     int ret = 0, offset;
943 
944     /* Generate ibm,dynamic-reconfiguration-memory node if required */
945     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
946         g_assert(smc->dr_lmb_enabled);
947         ret = spapr_populate_drconf_memory(spapr, fdt);
948         if (ret) {
949             goto out;
950         }
951     }
952 
953     offset = fdt_path_offset(fdt, "/chosen");
954     if (offset < 0) {
955         offset = fdt_add_subnode(fdt, 0, "chosen");
956         if (offset < 0) {
957             return offset;
958         }
959     }
960     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
961                                  "ibm,architecture-vec-5");
962 
963 out:
964     return ret;
965 }
966 
967 static bool spapr_hotplugged_dev_before_cas(void)
968 {
969     Object *drc_container, *obj;
970     ObjectProperty *prop;
971     ObjectPropertyIterator iter;
972 
973     drc_container = container_get(object_get_root(), "/dr-connector");
974     object_property_iter_init(&iter, drc_container);
975     while ((prop = object_property_iter_next(&iter))) {
976         if (!strstart(prop->type, "link<", NULL)) {
977             continue;
978         }
979         obj = object_property_get_link(drc_container, prop->name, NULL);
980         if (spapr_drc_needed(obj)) {
981             return true;
982         }
983     }
984     return false;
985 }
986 
987 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
988                                  target_ulong addr, target_ulong size,
989                                  SpaprOptionVector *ov5_updates)
990 {
991     void *fdt, *fdt_skel;
992     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
993 
994     if (spapr_hotplugged_dev_before_cas()) {
995         return 1;
996     }
997 
998     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
999         error_report("SLOF provided an unexpected CAS buffer size "
1000                      TARGET_FMT_lu " (min: %zu, max: %u)",
1001                      size, sizeof(hdr), FW_MAX_SIZE);
1002         exit(EXIT_FAILURE);
1003     }
1004 
1005     size -= sizeof(hdr);
1006 
1007     /* Create skeleton */
1008     fdt_skel = g_malloc0(size);
1009     _FDT((fdt_create(fdt_skel, size)));
1010     _FDT((fdt_finish_reservemap(fdt_skel)));
1011     _FDT((fdt_begin_node(fdt_skel, "")));
1012     _FDT((fdt_end_node(fdt_skel)));
1013     _FDT((fdt_finish(fdt_skel)));
1014     fdt = g_malloc0(size);
1015     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1016     g_free(fdt_skel);
1017 
1018     /* Fixup cpu nodes */
1019     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1020 
1021     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1022         return -1;
1023     }
1024 
1025     /* Pack resulting tree */
1026     _FDT((fdt_pack(fdt)));
1027 
1028     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1029         trace_spapr_cas_failed(size);
1030         return -1;
1031     }
1032 
1033     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1034     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1035     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1036     g_free(fdt);
1037 
1038     return 0;
1039 }
1040 
1041 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1042 {
1043     MachineState *ms = MACHINE(spapr);
1044     int rtas;
1045     GString *hypertas = g_string_sized_new(256);
1046     GString *qemu_hypertas = g_string_sized_new(256);
1047     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1048     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1049         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1050     uint32_t lrdr_capacity[] = {
1051         cpu_to_be32(max_device_addr >> 32),
1052         cpu_to_be32(max_device_addr & 0xffffffff),
1053         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1054         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1055     };
1056     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1057     uint32_t maxdomains[] = {
1058         cpu_to_be32(4),
1059         maxdomain,
1060         maxdomain,
1061         maxdomain,
1062         cpu_to_be32(spapr->gpu_numa_id),
1063     };
1064 
1065     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1066 
1067     /* hypertas */
1068     add_str(hypertas, "hcall-pft");
1069     add_str(hypertas, "hcall-term");
1070     add_str(hypertas, "hcall-dabr");
1071     add_str(hypertas, "hcall-interrupt");
1072     add_str(hypertas, "hcall-tce");
1073     add_str(hypertas, "hcall-vio");
1074     add_str(hypertas, "hcall-splpar");
1075     add_str(hypertas, "hcall-join");
1076     add_str(hypertas, "hcall-bulk");
1077     add_str(hypertas, "hcall-set-mode");
1078     add_str(hypertas, "hcall-sprg0");
1079     add_str(hypertas, "hcall-copy");
1080     add_str(hypertas, "hcall-debug");
1081     add_str(hypertas, "hcall-vphn");
1082     add_str(qemu_hypertas, "hcall-memop1");
1083 
1084     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1085         add_str(hypertas, "hcall-multi-tce");
1086     }
1087 
1088     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1089         add_str(hypertas, "hcall-hpt-resize");
1090     }
1091 
1092     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1093                      hypertas->str, hypertas->len));
1094     g_string_free(hypertas, TRUE);
1095     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1096                      qemu_hypertas->str, qemu_hypertas->len));
1097     g_string_free(qemu_hypertas, TRUE);
1098 
1099     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1100                      refpoints, sizeof(refpoints)));
1101 
1102     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1103                      maxdomains, sizeof(maxdomains)));
1104 
1105     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1106                           RTAS_ERROR_LOG_MAX));
1107     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1108                           RTAS_EVENT_SCAN_RATE));
1109 
1110     g_assert(msi_nonbroken);
1111     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1112 
1113     /*
1114      * According to PAPR, rtas ibm,os-term does not guarantee a return
1115      * back to the guest cpu.
1116      *
1117      * While an additional ibm,extended-os-term property indicates
1118      * that rtas call return will always occur. Set this property.
1119      */
1120     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1121 
1122     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1123                      lrdr_capacity, sizeof(lrdr_capacity)));
1124 
1125     spapr_dt_rtas_tokens(fdt, rtas);
1126 }
1127 
1128 /*
1129  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1130  * and the XIVE features that the guest may request and thus the valid
1131  * values for bytes 23..26 of option vector 5:
1132  */
1133 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1134                                           int chosen)
1135 {
1136     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1137 
1138     char val[2 * 4] = {
1139         23, spapr->irq->ov5, /* Xive mode. */
1140         24, 0x00, /* Hash/Radix, filled in below. */
1141         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1142         26, 0x40, /* Radix options: GTSE == yes. */
1143     };
1144 
1145     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1146                           first_ppc_cpu->compat_pvr)) {
1147         /*
1148          * If we're in a pre POWER9 compat mode then the guest should
1149          * do hash and use the legacy interrupt mode
1150          */
1151         val[1] = 0x00; /* XICS */
1152         val[3] = 0x00; /* Hash */
1153     } else if (kvm_enabled()) {
1154         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1155             val[3] = 0x80; /* OV5_MMU_BOTH */
1156         } else if (kvmppc_has_cap_mmu_radix()) {
1157             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1158         } else {
1159             val[3] = 0x00; /* Hash */
1160         }
1161     } else {
1162         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1163         val[3] = 0xC0;
1164     }
1165     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1166                      val, sizeof(val)));
1167 }
1168 
1169 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1170 {
1171     MachineState *machine = MACHINE(spapr);
1172     int chosen;
1173     const char *boot_device = machine->boot_order;
1174     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1175     size_t cb = 0;
1176     char *bootlist = get_boot_devices_list(&cb);
1177 
1178     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1179 
1180     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1181     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1182                           spapr->initrd_base));
1183     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1184                           spapr->initrd_base + spapr->initrd_size));
1185 
1186     if (spapr->kernel_size) {
1187         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1188                               cpu_to_be64(spapr->kernel_size) };
1189 
1190         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1191                          &kprop, sizeof(kprop)));
1192         if (spapr->kernel_le) {
1193             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1194         }
1195     }
1196     if (boot_menu) {
1197         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1198     }
1199     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1200     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1201     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1202 
1203     if (cb && bootlist) {
1204         int i;
1205 
1206         for (i = 0; i < cb; i++) {
1207             if (bootlist[i] == '\n') {
1208                 bootlist[i] = ' ';
1209             }
1210         }
1211         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1212     }
1213 
1214     if (boot_device && strlen(boot_device)) {
1215         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1216     }
1217 
1218     if (!spapr->has_graphics && stdout_path) {
1219         /*
1220          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1221          * kernel. New platforms should only use the "stdout-path" property. Set
1222          * the new property and continue using older property to remain
1223          * compatible with the existing firmware.
1224          */
1225         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1226         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1227     }
1228 
1229     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1230 
1231     g_free(stdout_path);
1232     g_free(bootlist);
1233 }
1234 
1235 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1236 {
1237     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1238      * KVM to work under pHyp with some guest co-operation */
1239     int hypervisor;
1240     uint8_t hypercall[16];
1241 
1242     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1243     /* indicate KVM hypercall interface */
1244     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1245     if (kvmppc_has_cap_fixup_hcalls()) {
1246         /*
1247          * Older KVM versions with older guest kernels were broken
1248          * with the magic page, don't allow the guest to map it.
1249          */
1250         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1251                                   sizeof(hypercall))) {
1252             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1253                              hypercall, sizeof(hypercall)));
1254         }
1255     }
1256 }
1257 
1258 static void *spapr_build_fdt(SpaprMachineState *spapr)
1259 {
1260     MachineState *machine = MACHINE(spapr);
1261     MachineClass *mc = MACHINE_GET_CLASS(machine);
1262     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1263     int ret;
1264     void *fdt;
1265     SpaprPhbState *phb;
1266     char *buf;
1267 
1268     fdt = g_malloc0(FDT_MAX_SIZE);
1269     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1270 
1271     /* Root node */
1272     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1273     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1274     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1275 
1276     /* Guest UUID & Name*/
1277     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1278     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1279     if (qemu_uuid_set) {
1280         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1281     }
1282     g_free(buf);
1283 
1284     if (qemu_get_vm_name()) {
1285         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1286                                 qemu_get_vm_name()));
1287     }
1288 
1289     /* Host Model & Serial Number */
1290     if (spapr->host_model) {
1291         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1292     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1293         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1294         g_free(buf);
1295     }
1296 
1297     if (spapr->host_serial) {
1298         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1299     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1300         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1301         g_free(buf);
1302     }
1303 
1304     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1305     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1306 
1307     /* /interrupt controller */
1308     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1309                           PHANDLE_INTC);
1310 
1311     ret = spapr_populate_memory(spapr, fdt);
1312     if (ret < 0) {
1313         error_report("couldn't setup memory nodes in fdt");
1314         exit(1);
1315     }
1316 
1317     /* /vdevice */
1318     spapr_dt_vdevice(spapr->vio_bus, fdt);
1319 
1320     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1321         ret = spapr_rng_populate_dt(fdt);
1322         if (ret < 0) {
1323             error_report("could not set up rng device in the fdt");
1324             exit(1);
1325         }
1326     }
1327 
1328     QLIST_FOREACH(phb, &spapr->phbs, list) {
1329         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1330         if (ret < 0) {
1331             error_report("couldn't setup PCI devices in fdt");
1332             exit(1);
1333         }
1334     }
1335 
1336     /* cpus */
1337     spapr_populate_cpus_dt_node(fdt, spapr);
1338 
1339     if (smc->dr_lmb_enabled) {
1340         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1341     }
1342 
1343     if (mc->has_hotpluggable_cpus) {
1344         int offset = fdt_path_offset(fdt, "/cpus");
1345         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1346         if (ret < 0) {
1347             error_report("Couldn't set up CPU DR device tree properties");
1348             exit(1);
1349         }
1350     }
1351 
1352     /* /event-sources */
1353     spapr_dt_events(spapr, fdt);
1354 
1355     /* /rtas */
1356     spapr_dt_rtas(spapr, fdt);
1357 
1358     /* /chosen */
1359     spapr_dt_chosen(spapr, fdt);
1360 
1361     /* /hypervisor */
1362     if (kvm_enabled()) {
1363         spapr_dt_hypervisor(spapr, fdt);
1364     }
1365 
1366     /* Build memory reserve map */
1367     if (spapr->kernel_size) {
1368         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1369     }
1370     if (spapr->initrd_size) {
1371         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1372     }
1373 
1374     /* ibm,client-architecture-support updates */
1375     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1376     if (ret < 0) {
1377         error_report("couldn't setup CAS properties fdt");
1378         exit(1);
1379     }
1380 
1381     if (smc->dr_phb_enabled) {
1382         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1383         if (ret < 0) {
1384             error_report("Couldn't set up PHB DR device tree properties");
1385             exit(1);
1386         }
1387     }
1388 
1389     return fdt;
1390 }
1391 
1392 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1393 {
1394     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1395 }
1396 
1397 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1398                                     PowerPCCPU *cpu)
1399 {
1400     CPUPPCState *env = &cpu->env;
1401 
1402     /* The TCG path should also be holding the BQL at this point */
1403     g_assert(qemu_mutex_iothread_locked());
1404 
1405     if (msr_pr) {
1406         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1407         env->gpr[3] = H_PRIVILEGE;
1408     } else {
1409         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1410     }
1411 }
1412 
1413 struct LPCRSyncState {
1414     target_ulong value;
1415     target_ulong mask;
1416 };
1417 
1418 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1419 {
1420     struct LPCRSyncState *s = arg.host_ptr;
1421     PowerPCCPU *cpu = POWERPC_CPU(cs);
1422     CPUPPCState *env = &cpu->env;
1423     target_ulong lpcr;
1424 
1425     cpu_synchronize_state(cs);
1426     lpcr = env->spr[SPR_LPCR];
1427     lpcr &= ~s->mask;
1428     lpcr |= s->value;
1429     ppc_store_lpcr(cpu, lpcr);
1430 }
1431 
1432 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1433 {
1434     CPUState *cs;
1435     struct LPCRSyncState s = {
1436         .value = value,
1437         .mask = mask
1438     };
1439     CPU_FOREACH(cs) {
1440         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1441     }
1442 }
1443 
1444 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1445 {
1446     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1447 
1448     /* Copy PATE1:GR into PATE0:HR */
1449     entry->dw0 = spapr->patb_entry & PATE0_HR;
1450     entry->dw1 = spapr->patb_entry;
1451 }
1452 
1453 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1454 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1455 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1456 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1457 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1458 
1459 /*
1460  * Get the fd to access the kernel htab, re-opening it if necessary
1461  */
1462 static int get_htab_fd(SpaprMachineState *spapr)
1463 {
1464     Error *local_err = NULL;
1465 
1466     if (spapr->htab_fd >= 0) {
1467         return spapr->htab_fd;
1468     }
1469 
1470     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1471     if (spapr->htab_fd < 0) {
1472         error_report_err(local_err);
1473     }
1474 
1475     return spapr->htab_fd;
1476 }
1477 
1478 void close_htab_fd(SpaprMachineState *spapr)
1479 {
1480     if (spapr->htab_fd >= 0) {
1481         close(spapr->htab_fd);
1482     }
1483     spapr->htab_fd = -1;
1484 }
1485 
1486 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1487 {
1488     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1489 
1490     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1491 }
1492 
1493 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1494 {
1495     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1496 
1497     assert(kvm_enabled());
1498 
1499     if (!spapr->htab) {
1500         return 0;
1501     }
1502 
1503     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1504 }
1505 
1506 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1507                                                 hwaddr ptex, int n)
1508 {
1509     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1510     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1511 
1512     if (!spapr->htab) {
1513         /*
1514          * HTAB is controlled by KVM. Fetch into temporary buffer
1515          */
1516         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1517         kvmppc_read_hptes(hptes, ptex, n);
1518         return hptes;
1519     }
1520 
1521     /*
1522      * HTAB is controlled by QEMU. Just point to the internally
1523      * accessible PTEG.
1524      */
1525     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1526 }
1527 
1528 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1529                               const ppc_hash_pte64_t *hptes,
1530                               hwaddr ptex, int n)
1531 {
1532     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1533 
1534     if (!spapr->htab) {
1535         g_free((void *)hptes);
1536     }
1537 
1538     /* Nothing to do for qemu managed HPT */
1539 }
1540 
1541 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1542                       uint64_t pte0, uint64_t pte1)
1543 {
1544     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1545     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1546 
1547     if (!spapr->htab) {
1548         kvmppc_write_hpte(ptex, pte0, pte1);
1549     } else {
1550         if (pte0 & HPTE64_V_VALID) {
1551             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1552             /*
1553              * When setting valid, we write PTE1 first. This ensures
1554              * proper synchronization with the reading code in
1555              * ppc_hash64_pteg_search()
1556              */
1557             smp_wmb();
1558             stq_p(spapr->htab + offset, pte0);
1559         } else {
1560             stq_p(spapr->htab + offset, pte0);
1561             /*
1562              * When clearing it we set PTE0 first. This ensures proper
1563              * synchronization with the reading code in
1564              * ppc_hash64_pteg_search()
1565              */
1566             smp_wmb();
1567             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1568         }
1569     }
1570 }
1571 
1572 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1573                              uint64_t pte1)
1574 {
1575     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1576     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1577 
1578     if (!spapr->htab) {
1579         /* There should always be a hash table when this is called */
1580         error_report("spapr_hpte_set_c called with no hash table !");
1581         return;
1582     }
1583 
1584     /* The HW performs a non-atomic byte update */
1585     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1586 }
1587 
1588 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1589                              uint64_t pte1)
1590 {
1591     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1592     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1593 
1594     if (!spapr->htab) {
1595         /* There should always be a hash table when this is called */
1596         error_report("spapr_hpte_set_r called with no hash table !");
1597         return;
1598     }
1599 
1600     /* The HW performs a non-atomic byte update */
1601     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1602 }
1603 
1604 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1605 {
1606     int shift;
1607 
1608     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1609      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1610      * that's much more than is needed for Linux guests */
1611     shift = ctz64(pow2ceil(ramsize)) - 7;
1612     shift = MAX(shift, 18); /* Minimum architected size */
1613     shift = MIN(shift, 46); /* Maximum architected size */
1614     return shift;
1615 }
1616 
1617 void spapr_free_hpt(SpaprMachineState *spapr)
1618 {
1619     g_free(spapr->htab);
1620     spapr->htab = NULL;
1621     spapr->htab_shift = 0;
1622     close_htab_fd(spapr);
1623 }
1624 
1625 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1626                           Error **errp)
1627 {
1628     long rc;
1629 
1630     /* Clean up any HPT info from a previous boot */
1631     spapr_free_hpt(spapr);
1632 
1633     rc = kvmppc_reset_htab(shift);
1634     if (rc < 0) {
1635         /* kernel-side HPT needed, but couldn't allocate one */
1636         error_setg_errno(errp, errno,
1637                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1638                          shift);
1639         /* This is almost certainly fatal, but if the caller really
1640          * wants to carry on with shift == 0, it's welcome to try */
1641     } else if (rc > 0) {
1642         /* kernel-side HPT allocated */
1643         if (rc != shift) {
1644             error_setg(errp,
1645                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1646                        shift, rc);
1647         }
1648 
1649         spapr->htab_shift = shift;
1650         spapr->htab = NULL;
1651     } else {
1652         /* kernel-side HPT not needed, allocate in userspace instead */
1653         size_t size = 1ULL << shift;
1654         int i;
1655 
1656         spapr->htab = qemu_memalign(size, size);
1657         if (!spapr->htab) {
1658             error_setg_errno(errp, errno,
1659                              "Could not allocate HPT of order %d", shift);
1660             return;
1661         }
1662 
1663         memset(spapr->htab, 0, size);
1664         spapr->htab_shift = shift;
1665 
1666         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1667             DIRTY_HPTE(HPTE(spapr->htab, i));
1668         }
1669     }
1670     /* We're setting up a hash table, so that means we're not radix */
1671     spapr->patb_entry = 0;
1672     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1673 }
1674 
1675 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1676 {
1677     int hpt_shift;
1678 
1679     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1680         || (spapr->cas_reboot
1681             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1682         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1683     } else {
1684         uint64_t current_ram_size;
1685 
1686         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1687         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1688     }
1689     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1690 
1691     if (spapr->vrma_adjust) {
1692         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1693                                           spapr->htab_shift);
1694     }
1695 }
1696 
1697 static int spapr_reset_drcs(Object *child, void *opaque)
1698 {
1699     SpaprDrc *drc =
1700         (SpaprDrc *) object_dynamic_cast(child,
1701                                                  TYPE_SPAPR_DR_CONNECTOR);
1702 
1703     if (drc) {
1704         spapr_drc_reset(drc);
1705     }
1706 
1707     return 0;
1708 }
1709 
1710 static void spapr_machine_reset(MachineState *machine)
1711 {
1712     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1713     PowerPCCPU *first_ppc_cpu;
1714     uint32_t rtas_limit;
1715     hwaddr rtas_addr, fdt_addr;
1716     void *fdt;
1717     int rc;
1718 
1719     spapr_caps_apply(spapr);
1720 
1721     first_ppc_cpu = POWERPC_CPU(first_cpu);
1722     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1723         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1724                               spapr->max_compat_pvr)) {
1725         /*
1726          * If using KVM with radix mode available, VCPUs can be started
1727          * without a HPT because KVM will start them in radix mode.
1728          * Set the GR bit in PATE so that we know there is no HPT.
1729          */
1730         spapr->patb_entry = PATE1_GR;
1731         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1732     } else {
1733         spapr_setup_hpt_and_vrma(spapr);
1734     }
1735 
1736     /*
1737      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1738      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1739      * called from vPHB reset handler so we initialize the counter here.
1740      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1741      * must be equally distant from any other node.
1742      * The final value of spapr->gpu_numa_id is going to be written to
1743      * max-associativity-domains in spapr_build_fdt().
1744      */
1745     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
1746     qemu_devices_reset();
1747 
1748     /*
1749      * If this reset wasn't generated by CAS, we should reset our
1750      * negotiated options and start from scratch
1751      */
1752     if (!spapr->cas_reboot) {
1753         spapr_ovec_cleanup(spapr->ov5_cas);
1754         spapr->ov5_cas = spapr_ovec_new();
1755 
1756         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1757     }
1758 
1759     /*
1760      * This is fixing some of the default configuration of the XIVE
1761      * devices. To be called after the reset of the machine devices.
1762      */
1763     spapr_irq_reset(spapr, &error_fatal);
1764 
1765     /*
1766      * There is no CAS under qtest. Simulate one to please the code that
1767      * depends on spapr->ov5_cas. This is especially needed to test device
1768      * unplug, so we do that before resetting the DRCs.
1769      */
1770     if (qtest_enabled()) {
1771         spapr_ovec_cleanup(spapr->ov5_cas);
1772         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1773     }
1774 
1775     /* DRC reset may cause a device to be unplugged. This will cause troubles
1776      * if this device is used by another device (eg, a running vhost backend
1777      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1778      * situations, we reset DRCs after all devices have been reset.
1779      */
1780     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1781 
1782     spapr_clear_pending_events(spapr);
1783 
1784     /*
1785      * We place the device tree and RTAS just below either the top of the RMA,
1786      * or just below 2GB, whichever is lower, so that it can be
1787      * processed with 32-bit real mode code if necessary
1788      */
1789     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1790     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1791     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1792 
1793     fdt = spapr_build_fdt(spapr);
1794 
1795     spapr_load_rtas(spapr, fdt, rtas_addr);
1796 
1797     rc = fdt_pack(fdt);
1798 
1799     /* Should only fail if we've built a corrupted tree */
1800     assert(rc == 0);
1801 
1802     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1803         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1804                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1805         exit(1);
1806     }
1807 
1808     /* Load the fdt */
1809     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1810     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1811     g_free(spapr->fdt_blob);
1812     spapr->fdt_size = fdt_totalsize(fdt);
1813     spapr->fdt_initial_size = spapr->fdt_size;
1814     spapr->fdt_blob = fdt;
1815 
1816     /* Set up the entry state */
1817     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1818     first_ppc_cpu->env.gpr[5] = 0;
1819 
1820     spapr->cas_reboot = false;
1821 }
1822 
1823 static void spapr_create_nvram(SpaprMachineState *spapr)
1824 {
1825     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1826     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1827 
1828     if (dinfo) {
1829         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1830                             &error_fatal);
1831     }
1832 
1833     qdev_init_nofail(dev);
1834 
1835     spapr->nvram = (struct SpaprNvram *)dev;
1836 }
1837 
1838 static void spapr_rtc_create(SpaprMachineState *spapr)
1839 {
1840     object_initialize_child(OBJECT(spapr), "rtc",
1841                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1842                             &error_fatal, NULL);
1843     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1844                               &error_fatal);
1845     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1846                               "date", &error_fatal);
1847 }
1848 
1849 /* Returns whether we want to use VGA or not */
1850 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1851 {
1852     switch (vga_interface_type) {
1853     case VGA_NONE:
1854         return false;
1855     case VGA_DEVICE:
1856         return true;
1857     case VGA_STD:
1858     case VGA_VIRTIO:
1859     case VGA_CIRRUS:
1860         return pci_vga_init(pci_bus) != NULL;
1861     default:
1862         error_setg(errp,
1863                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1864         return false;
1865     }
1866 }
1867 
1868 static int spapr_pre_load(void *opaque)
1869 {
1870     int rc;
1871 
1872     rc = spapr_caps_pre_load(opaque);
1873     if (rc) {
1874         return rc;
1875     }
1876 
1877     return 0;
1878 }
1879 
1880 static int spapr_post_load(void *opaque, int version_id)
1881 {
1882     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1883     int err = 0;
1884 
1885     err = spapr_caps_post_migration(spapr);
1886     if (err) {
1887         return err;
1888     }
1889 
1890     /*
1891      * In earlier versions, there was no separate qdev for the PAPR
1892      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1893      * So when migrating from those versions, poke the incoming offset
1894      * value into the RTC device
1895      */
1896     if (version_id < 3) {
1897         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1898         if (err) {
1899             return err;
1900         }
1901     }
1902 
1903     if (kvm_enabled() && spapr->patb_entry) {
1904         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1905         bool radix = !!(spapr->patb_entry & PATE1_GR);
1906         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1907 
1908         /*
1909          * Update LPCR:HR and UPRT as they may not be set properly in
1910          * the stream
1911          */
1912         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1913                             LPCR_HR | LPCR_UPRT);
1914 
1915         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1916         if (err) {
1917             error_report("Process table config unsupported by the host");
1918             return -EINVAL;
1919         }
1920     }
1921 
1922     err = spapr_irq_post_load(spapr, version_id);
1923     if (err) {
1924         return err;
1925     }
1926 
1927     return err;
1928 }
1929 
1930 static int spapr_pre_save(void *opaque)
1931 {
1932     int rc;
1933 
1934     rc = spapr_caps_pre_save(opaque);
1935     if (rc) {
1936         return rc;
1937     }
1938 
1939     return 0;
1940 }
1941 
1942 static bool version_before_3(void *opaque, int version_id)
1943 {
1944     return version_id < 3;
1945 }
1946 
1947 static bool spapr_pending_events_needed(void *opaque)
1948 {
1949     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1950     return !QTAILQ_EMPTY(&spapr->pending_events);
1951 }
1952 
1953 static const VMStateDescription vmstate_spapr_event_entry = {
1954     .name = "spapr_event_log_entry",
1955     .version_id = 1,
1956     .minimum_version_id = 1,
1957     .fields = (VMStateField[]) {
1958         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1959         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1960         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1961                                      NULL, extended_length),
1962         VMSTATE_END_OF_LIST()
1963     },
1964 };
1965 
1966 static const VMStateDescription vmstate_spapr_pending_events = {
1967     .name = "spapr_pending_events",
1968     .version_id = 1,
1969     .minimum_version_id = 1,
1970     .needed = spapr_pending_events_needed,
1971     .fields = (VMStateField[]) {
1972         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1973                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1974         VMSTATE_END_OF_LIST()
1975     },
1976 };
1977 
1978 static bool spapr_ov5_cas_needed(void *opaque)
1979 {
1980     SpaprMachineState *spapr = opaque;
1981     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1982     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1983     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1984     bool cas_needed;
1985 
1986     /* Prior to the introduction of SpaprOptionVector, we had two option
1987      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1988      * Both of these options encode machine topology into the device-tree
1989      * in such a way that the now-booted OS should still be able to interact
1990      * appropriately with QEMU regardless of what options were actually
1991      * negotiatied on the source side.
1992      *
1993      * As such, we can avoid migrating the CAS-negotiated options if these
1994      * are the only options available on the current machine/platform.
1995      * Since these are the only options available for pseries-2.7 and
1996      * earlier, this allows us to maintain old->new/new->old migration
1997      * compatibility.
1998      *
1999      * For QEMU 2.8+, there are additional CAS-negotiatable options available
2000      * via default pseries-2.8 machines and explicit command-line parameters.
2001      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2002      * of the actual CAS-negotiated values to continue working properly. For
2003      * example, availability of memory unplug depends on knowing whether
2004      * OV5_HP_EVT was negotiated via CAS.
2005      *
2006      * Thus, for any cases where the set of available CAS-negotiatable
2007      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2008      * include the CAS-negotiated options in the migration stream, unless
2009      * if they affect boot time behaviour only.
2010      */
2011     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2012     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2013     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2014 
2015     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2016      * the mask itself since in the future it's possible "legacy" bits may be
2017      * removed via machine options, which could generate a false positive
2018      * that breaks migration.
2019      */
2020     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2021     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2022 
2023     spapr_ovec_cleanup(ov5_mask);
2024     spapr_ovec_cleanup(ov5_legacy);
2025     spapr_ovec_cleanup(ov5_removed);
2026 
2027     return cas_needed;
2028 }
2029 
2030 static const VMStateDescription vmstate_spapr_ov5_cas = {
2031     .name = "spapr_option_vector_ov5_cas",
2032     .version_id = 1,
2033     .minimum_version_id = 1,
2034     .needed = spapr_ov5_cas_needed,
2035     .fields = (VMStateField[]) {
2036         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2037                                  vmstate_spapr_ovec, SpaprOptionVector),
2038         VMSTATE_END_OF_LIST()
2039     },
2040 };
2041 
2042 static bool spapr_patb_entry_needed(void *opaque)
2043 {
2044     SpaprMachineState *spapr = opaque;
2045 
2046     return !!spapr->patb_entry;
2047 }
2048 
2049 static const VMStateDescription vmstate_spapr_patb_entry = {
2050     .name = "spapr_patb_entry",
2051     .version_id = 1,
2052     .minimum_version_id = 1,
2053     .needed = spapr_patb_entry_needed,
2054     .fields = (VMStateField[]) {
2055         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2056         VMSTATE_END_OF_LIST()
2057     },
2058 };
2059 
2060 static bool spapr_irq_map_needed(void *opaque)
2061 {
2062     SpaprMachineState *spapr = opaque;
2063 
2064     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2065 }
2066 
2067 static const VMStateDescription vmstate_spapr_irq_map = {
2068     .name = "spapr_irq_map",
2069     .version_id = 1,
2070     .minimum_version_id = 1,
2071     .needed = spapr_irq_map_needed,
2072     .fields = (VMStateField[]) {
2073         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2074         VMSTATE_END_OF_LIST()
2075     },
2076 };
2077 
2078 static bool spapr_dtb_needed(void *opaque)
2079 {
2080     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2081 
2082     return smc->update_dt_enabled;
2083 }
2084 
2085 static int spapr_dtb_pre_load(void *opaque)
2086 {
2087     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2088 
2089     g_free(spapr->fdt_blob);
2090     spapr->fdt_blob = NULL;
2091     spapr->fdt_size = 0;
2092 
2093     return 0;
2094 }
2095 
2096 static const VMStateDescription vmstate_spapr_dtb = {
2097     .name = "spapr_dtb",
2098     .version_id = 1,
2099     .minimum_version_id = 1,
2100     .needed = spapr_dtb_needed,
2101     .pre_load = spapr_dtb_pre_load,
2102     .fields = (VMStateField[]) {
2103         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2104         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2105         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2106                                      fdt_size),
2107         VMSTATE_END_OF_LIST()
2108     },
2109 };
2110 
2111 static const VMStateDescription vmstate_spapr = {
2112     .name = "spapr",
2113     .version_id = 3,
2114     .minimum_version_id = 1,
2115     .pre_load = spapr_pre_load,
2116     .post_load = spapr_post_load,
2117     .pre_save = spapr_pre_save,
2118     .fields = (VMStateField[]) {
2119         /* used to be @next_irq */
2120         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2121 
2122         /* RTC offset */
2123         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2124 
2125         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2126         VMSTATE_END_OF_LIST()
2127     },
2128     .subsections = (const VMStateDescription*[]) {
2129         &vmstate_spapr_ov5_cas,
2130         &vmstate_spapr_patb_entry,
2131         &vmstate_spapr_pending_events,
2132         &vmstate_spapr_cap_htm,
2133         &vmstate_spapr_cap_vsx,
2134         &vmstate_spapr_cap_dfp,
2135         &vmstate_spapr_cap_cfpc,
2136         &vmstate_spapr_cap_sbbc,
2137         &vmstate_spapr_cap_ibs,
2138         &vmstate_spapr_cap_hpt_maxpagesize,
2139         &vmstate_spapr_irq_map,
2140         &vmstate_spapr_cap_nested_kvm_hv,
2141         &vmstate_spapr_dtb,
2142         &vmstate_spapr_cap_large_decr,
2143         &vmstate_spapr_cap_ccf_assist,
2144         NULL
2145     }
2146 };
2147 
2148 static int htab_save_setup(QEMUFile *f, void *opaque)
2149 {
2150     SpaprMachineState *spapr = opaque;
2151 
2152     /* "Iteration" header */
2153     if (!spapr->htab_shift) {
2154         qemu_put_be32(f, -1);
2155     } else {
2156         qemu_put_be32(f, spapr->htab_shift);
2157     }
2158 
2159     if (spapr->htab) {
2160         spapr->htab_save_index = 0;
2161         spapr->htab_first_pass = true;
2162     } else {
2163         if (spapr->htab_shift) {
2164             assert(kvm_enabled());
2165         }
2166     }
2167 
2168 
2169     return 0;
2170 }
2171 
2172 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2173                             int chunkstart, int n_valid, int n_invalid)
2174 {
2175     qemu_put_be32(f, chunkstart);
2176     qemu_put_be16(f, n_valid);
2177     qemu_put_be16(f, n_invalid);
2178     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2179                     HASH_PTE_SIZE_64 * n_valid);
2180 }
2181 
2182 static void htab_save_end_marker(QEMUFile *f)
2183 {
2184     qemu_put_be32(f, 0);
2185     qemu_put_be16(f, 0);
2186     qemu_put_be16(f, 0);
2187 }
2188 
2189 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2190                                  int64_t max_ns)
2191 {
2192     bool has_timeout = max_ns != -1;
2193     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2194     int index = spapr->htab_save_index;
2195     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2196 
2197     assert(spapr->htab_first_pass);
2198 
2199     do {
2200         int chunkstart;
2201 
2202         /* Consume invalid HPTEs */
2203         while ((index < htabslots)
2204                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2205             CLEAN_HPTE(HPTE(spapr->htab, index));
2206             index++;
2207         }
2208 
2209         /* Consume valid HPTEs */
2210         chunkstart = index;
2211         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2212                && HPTE_VALID(HPTE(spapr->htab, index))) {
2213             CLEAN_HPTE(HPTE(spapr->htab, index));
2214             index++;
2215         }
2216 
2217         if (index > chunkstart) {
2218             int n_valid = index - chunkstart;
2219 
2220             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2221 
2222             if (has_timeout &&
2223                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2224                 break;
2225             }
2226         }
2227     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2228 
2229     if (index >= htabslots) {
2230         assert(index == htabslots);
2231         index = 0;
2232         spapr->htab_first_pass = false;
2233     }
2234     spapr->htab_save_index = index;
2235 }
2236 
2237 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2238                                 int64_t max_ns)
2239 {
2240     bool final = max_ns < 0;
2241     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2242     int examined = 0, sent = 0;
2243     int index = spapr->htab_save_index;
2244     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2245 
2246     assert(!spapr->htab_first_pass);
2247 
2248     do {
2249         int chunkstart, invalidstart;
2250 
2251         /* Consume non-dirty HPTEs */
2252         while ((index < htabslots)
2253                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2254             index++;
2255             examined++;
2256         }
2257 
2258         chunkstart = index;
2259         /* Consume valid dirty HPTEs */
2260         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2261                && HPTE_DIRTY(HPTE(spapr->htab, index))
2262                && HPTE_VALID(HPTE(spapr->htab, index))) {
2263             CLEAN_HPTE(HPTE(spapr->htab, index));
2264             index++;
2265             examined++;
2266         }
2267 
2268         invalidstart = index;
2269         /* Consume invalid dirty HPTEs */
2270         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2271                && HPTE_DIRTY(HPTE(spapr->htab, index))
2272                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2273             CLEAN_HPTE(HPTE(spapr->htab, index));
2274             index++;
2275             examined++;
2276         }
2277 
2278         if (index > chunkstart) {
2279             int n_valid = invalidstart - chunkstart;
2280             int n_invalid = index - invalidstart;
2281 
2282             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2283             sent += index - chunkstart;
2284 
2285             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2286                 break;
2287             }
2288         }
2289 
2290         if (examined >= htabslots) {
2291             break;
2292         }
2293 
2294         if (index >= htabslots) {
2295             assert(index == htabslots);
2296             index = 0;
2297         }
2298     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2299 
2300     if (index >= htabslots) {
2301         assert(index == htabslots);
2302         index = 0;
2303     }
2304 
2305     spapr->htab_save_index = index;
2306 
2307     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2308 }
2309 
2310 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2311 #define MAX_KVM_BUF_SIZE    2048
2312 
2313 static int htab_save_iterate(QEMUFile *f, void *opaque)
2314 {
2315     SpaprMachineState *spapr = opaque;
2316     int fd;
2317     int rc = 0;
2318 
2319     /* Iteration header */
2320     if (!spapr->htab_shift) {
2321         qemu_put_be32(f, -1);
2322         return 1;
2323     } else {
2324         qemu_put_be32(f, 0);
2325     }
2326 
2327     if (!spapr->htab) {
2328         assert(kvm_enabled());
2329 
2330         fd = get_htab_fd(spapr);
2331         if (fd < 0) {
2332             return fd;
2333         }
2334 
2335         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2336         if (rc < 0) {
2337             return rc;
2338         }
2339     } else  if (spapr->htab_first_pass) {
2340         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2341     } else {
2342         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2343     }
2344 
2345     htab_save_end_marker(f);
2346 
2347     return rc;
2348 }
2349 
2350 static int htab_save_complete(QEMUFile *f, void *opaque)
2351 {
2352     SpaprMachineState *spapr = opaque;
2353     int fd;
2354 
2355     /* Iteration header */
2356     if (!spapr->htab_shift) {
2357         qemu_put_be32(f, -1);
2358         return 0;
2359     } else {
2360         qemu_put_be32(f, 0);
2361     }
2362 
2363     if (!spapr->htab) {
2364         int rc;
2365 
2366         assert(kvm_enabled());
2367 
2368         fd = get_htab_fd(spapr);
2369         if (fd < 0) {
2370             return fd;
2371         }
2372 
2373         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2374         if (rc < 0) {
2375             return rc;
2376         }
2377     } else {
2378         if (spapr->htab_first_pass) {
2379             htab_save_first_pass(f, spapr, -1);
2380         }
2381         htab_save_later_pass(f, spapr, -1);
2382     }
2383 
2384     /* End marker */
2385     htab_save_end_marker(f);
2386 
2387     return 0;
2388 }
2389 
2390 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2391 {
2392     SpaprMachineState *spapr = opaque;
2393     uint32_t section_hdr;
2394     int fd = -1;
2395     Error *local_err = NULL;
2396 
2397     if (version_id < 1 || version_id > 1) {
2398         error_report("htab_load() bad version");
2399         return -EINVAL;
2400     }
2401 
2402     section_hdr = qemu_get_be32(f);
2403 
2404     if (section_hdr == -1) {
2405         spapr_free_hpt(spapr);
2406         return 0;
2407     }
2408 
2409     if (section_hdr) {
2410         /* First section gives the htab size */
2411         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2412         if (local_err) {
2413             error_report_err(local_err);
2414             return -EINVAL;
2415         }
2416         return 0;
2417     }
2418 
2419     if (!spapr->htab) {
2420         assert(kvm_enabled());
2421 
2422         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2423         if (fd < 0) {
2424             error_report_err(local_err);
2425             return fd;
2426         }
2427     }
2428 
2429     while (true) {
2430         uint32_t index;
2431         uint16_t n_valid, n_invalid;
2432 
2433         index = qemu_get_be32(f);
2434         n_valid = qemu_get_be16(f);
2435         n_invalid = qemu_get_be16(f);
2436 
2437         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2438             /* End of Stream */
2439             break;
2440         }
2441 
2442         if ((index + n_valid + n_invalid) >
2443             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2444             /* Bad index in stream */
2445             error_report(
2446                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2447                 index, n_valid, n_invalid, spapr->htab_shift);
2448             return -EINVAL;
2449         }
2450 
2451         if (spapr->htab) {
2452             if (n_valid) {
2453                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2454                                 HASH_PTE_SIZE_64 * n_valid);
2455             }
2456             if (n_invalid) {
2457                 memset(HPTE(spapr->htab, index + n_valid), 0,
2458                        HASH_PTE_SIZE_64 * n_invalid);
2459             }
2460         } else {
2461             int rc;
2462 
2463             assert(fd >= 0);
2464 
2465             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2466             if (rc < 0) {
2467                 return rc;
2468             }
2469         }
2470     }
2471 
2472     if (!spapr->htab) {
2473         assert(fd >= 0);
2474         close(fd);
2475     }
2476 
2477     return 0;
2478 }
2479 
2480 static void htab_save_cleanup(void *opaque)
2481 {
2482     SpaprMachineState *spapr = opaque;
2483 
2484     close_htab_fd(spapr);
2485 }
2486 
2487 static SaveVMHandlers savevm_htab_handlers = {
2488     .save_setup = htab_save_setup,
2489     .save_live_iterate = htab_save_iterate,
2490     .save_live_complete_precopy = htab_save_complete,
2491     .save_cleanup = htab_save_cleanup,
2492     .load_state = htab_load,
2493 };
2494 
2495 static void spapr_boot_set(void *opaque, const char *boot_device,
2496                            Error **errp)
2497 {
2498     MachineState *machine = MACHINE(opaque);
2499     machine->boot_order = g_strdup(boot_device);
2500 }
2501 
2502 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2503 {
2504     MachineState *machine = MACHINE(spapr);
2505     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2506     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2507     int i;
2508 
2509     for (i = 0; i < nr_lmbs; i++) {
2510         uint64_t addr;
2511 
2512         addr = i * lmb_size + machine->device_memory->base;
2513         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2514                                addr / lmb_size);
2515     }
2516 }
2517 
2518 /*
2519  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2520  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2521  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2522  */
2523 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2524 {
2525     int i;
2526 
2527     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2528         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2529                    " is not aligned to %" PRIu64 " MiB",
2530                    machine->ram_size,
2531                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2532         return;
2533     }
2534 
2535     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2536         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2537                    " is not aligned to %" PRIu64 " MiB",
2538                    machine->ram_size,
2539                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2540         return;
2541     }
2542 
2543     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2544         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2545             error_setg(errp,
2546                        "Node %d memory size 0x%" PRIx64
2547                        " is not aligned to %" PRIu64 " MiB",
2548                        i, machine->numa_state->nodes[i].node_mem,
2549                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2550             return;
2551         }
2552     }
2553 }
2554 
2555 /* find cpu slot in machine->possible_cpus by core_id */
2556 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2557 {
2558     int index = id / ms->smp.threads;
2559 
2560     if (index >= ms->possible_cpus->len) {
2561         return NULL;
2562     }
2563     if (idx) {
2564         *idx = index;
2565     }
2566     return &ms->possible_cpus->cpus[index];
2567 }
2568 
2569 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2570 {
2571     MachineState *ms = MACHINE(spapr);
2572     Error *local_err = NULL;
2573     bool vsmt_user = !!spapr->vsmt;
2574     int kvm_smt = kvmppc_smt_threads();
2575     int ret;
2576     unsigned int smp_threads = ms->smp.threads;
2577 
2578     if (!kvm_enabled() && (smp_threads > 1)) {
2579         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2580                      "on a pseries machine");
2581         goto out;
2582     }
2583     if (!is_power_of_2(smp_threads)) {
2584         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2585                      "machine because it must be a power of 2", smp_threads);
2586         goto out;
2587     }
2588 
2589     /* Detemine the VSMT mode to use: */
2590     if (vsmt_user) {
2591         if (spapr->vsmt < smp_threads) {
2592             error_setg(&local_err, "Cannot support VSMT mode %d"
2593                          " because it must be >= threads/core (%d)",
2594                          spapr->vsmt, smp_threads);
2595             goto out;
2596         }
2597         /* In this case, spapr->vsmt has been set by the command line */
2598     } else {
2599         /*
2600          * Default VSMT value is tricky, because we need it to be as
2601          * consistent as possible (for migration), but this requires
2602          * changing it for at least some existing cases.  We pick 8 as
2603          * the value that we'd get with KVM on POWER8, the
2604          * overwhelmingly common case in production systems.
2605          */
2606         spapr->vsmt = MAX(8, smp_threads);
2607     }
2608 
2609     /* KVM: If necessary, set the SMT mode: */
2610     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2611         ret = kvmppc_set_smt_threads(spapr->vsmt);
2612         if (ret) {
2613             /* Looks like KVM isn't able to change VSMT mode */
2614             error_setg(&local_err,
2615                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2616                        spapr->vsmt, ret);
2617             /* We can live with that if the default one is big enough
2618              * for the number of threads, and a submultiple of the one
2619              * we want.  In this case we'll waste some vcpu ids, but
2620              * behaviour will be correct */
2621             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2622                 warn_report_err(local_err);
2623                 local_err = NULL;
2624                 goto out;
2625             } else {
2626                 if (!vsmt_user) {
2627                     error_append_hint(&local_err,
2628                                       "On PPC, a VM with %d threads/core"
2629                                       " on a host with %d threads/core"
2630                                       " requires the use of VSMT mode %d.\n",
2631                                       smp_threads, kvm_smt, spapr->vsmt);
2632                 }
2633                 kvmppc_hint_smt_possible(&local_err);
2634                 goto out;
2635             }
2636         }
2637     }
2638     /* else TCG: nothing to do currently */
2639 out:
2640     error_propagate(errp, local_err);
2641 }
2642 
2643 static void spapr_init_cpus(SpaprMachineState *spapr)
2644 {
2645     MachineState *machine = MACHINE(spapr);
2646     MachineClass *mc = MACHINE_GET_CLASS(machine);
2647     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2648     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2649     const CPUArchIdList *possible_cpus;
2650     unsigned int smp_cpus = machine->smp.cpus;
2651     unsigned int smp_threads = machine->smp.threads;
2652     unsigned int max_cpus = machine->smp.max_cpus;
2653     int boot_cores_nr = smp_cpus / smp_threads;
2654     int i;
2655 
2656     possible_cpus = mc->possible_cpu_arch_ids(machine);
2657     if (mc->has_hotpluggable_cpus) {
2658         if (smp_cpus % smp_threads) {
2659             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2660                          smp_cpus, smp_threads);
2661             exit(1);
2662         }
2663         if (max_cpus % smp_threads) {
2664             error_report("max_cpus (%u) must be multiple of threads (%u)",
2665                          max_cpus, smp_threads);
2666             exit(1);
2667         }
2668     } else {
2669         if (max_cpus != smp_cpus) {
2670             error_report("This machine version does not support CPU hotplug");
2671             exit(1);
2672         }
2673         boot_cores_nr = possible_cpus->len;
2674     }
2675 
2676     if (smc->pre_2_10_has_unused_icps) {
2677         int i;
2678 
2679         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2680             /* Dummy entries get deregistered when real ICPState objects
2681              * are registered during CPU core hotplug.
2682              */
2683             pre_2_10_vmstate_register_dummy_icp(i);
2684         }
2685     }
2686 
2687     for (i = 0; i < possible_cpus->len; i++) {
2688         int core_id = i * smp_threads;
2689 
2690         if (mc->has_hotpluggable_cpus) {
2691             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2692                                    spapr_vcpu_id(spapr, core_id));
2693         }
2694 
2695         if (i < boot_cores_nr) {
2696             Object *core  = object_new(type);
2697             int nr_threads = smp_threads;
2698 
2699             /* Handle the partially filled core for older machine types */
2700             if ((i + 1) * smp_threads >= smp_cpus) {
2701                 nr_threads = smp_cpus - i * smp_threads;
2702             }
2703 
2704             object_property_set_int(core, nr_threads, "nr-threads",
2705                                     &error_fatal);
2706             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2707                                     &error_fatal);
2708             object_property_set_bool(core, true, "realized", &error_fatal);
2709 
2710             object_unref(core);
2711         }
2712     }
2713 }
2714 
2715 static PCIHostState *spapr_create_default_phb(void)
2716 {
2717     DeviceState *dev;
2718 
2719     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2720     qdev_prop_set_uint32(dev, "index", 0);
2721     qdev_init_nofail(dev);
2722 
2723     return PCI_HOST_BRIDGE(dev);
2724 }
2725 
2726 /* pSeries LPAR / sPAPR hardware init */
2727 static void spapr_machine_init(MachineState *machine)
2728 {
2729     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2730     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2731     const char *kernel_filename = machine->kernel_filename;
2732     const char *initrd_filename = machine->initrd_filename;
2733     PCIHostState *phb;
2734     int i;
2735     MemoryRegion *sysmem = get_system_memory();
2736     MemoryRegion *ram = g_new(MemoryRegion, 1);
2737     hwaddr node0_size = spapr_node0_size(machine);
2738     long load_limit, fw_size;
2739     char *filename;
2740     Error *resize_hpt_err = NULL;
2741 
2742     msi_nonbroken = true;
2743 
2744     QLIST_INIT(&spapr->phbs);
2745     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2746 
2747     /* Determine capabilities to run with */
2748     spapr_caps_init(spapr);
2749 
2750     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2751     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2752         /*
2753          * If the user explicitly requested a mode we should either
2754          * supply it, or fail completely (which we do below).  But if
2755          * it's not set explicitly, we reset our mode to something
2756          * that works
2757          */
2758         if (resize_hpt_err) {
2759             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2760             error_free(resize_hpt_err);
2761             resize_hpt_err = NULL;
2762         } else {
2763             spapr->resize_hpt = smc->resize_hpt_default;
2764         }
2765     }
2766 
2767     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2768 
2769     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2770         /*
2771          * User requested HPT resize, but this host can't supply it.  Bail out
2772          */
2773         error_report_err(resize_hpt_err);
2774         exit(1);
2775     }
2776 
2777     spapr->rma_size = node0_size;
2778 
2779     /* With KVM, we don't actually know whether KVM supports an
2780      * unbounded RMA (PR KVM) or is limited by the hash table size
2781      * (HV KVM using VRMA), so we always assume the latter
2782      *
2783      * In that case, we also limit the initial allocations for RTAS
2784      * etc... to 256M since we have no way to know what the VRMA size
2785      * is going to be as it depends on the size of the hash table
2786      * which isn't determined yet.
2787      */
2788     if (kvm_enabled()) {
2789         spapr->vrma_adjust = 1;
2790         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2791     }
2792 
2793     /* Actually we don't support unbounded RMA anymore since we added
2794      * proper emulation of HV mode. The max we can get is 16G which
2795      * also happens to be what we configure for PAPR mode so make sure
2796      * we don't do anything bigger than that
2797      */
2798     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2799 
2800     if (spapr->rma_size > node0_size) {
2801         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2802                      spapr->rma_size);
2803         exit(1);
2804     }
2805 
2806     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2807     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2808 
2809     /*
2810      * VSMT must be set in order to be able to compute VCPU ids, ie to
2811      * call spapr_max_server_number() or spapr_vcpu_id().
2812      */
2813     spapr_set_vsmt_mode(spapr, &error_fatal);
2814 
2815     /* Set up Interrupt Controller before we create the VCPUs */
2816     spapr_irq_init(spapr, &error_fatal);
2817 
2818     /* Set up containers for ibm,client-architecture-support negotiated options
2819      */
2820     spapr->ov5 = spapr_ovec_new();
2821     spapr->ov5_cas = spapr_ovec_new();
2822 
2823     if (smc->dr_lmb_enabled) {
2824         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2825         spapr_validate_node_memory(machine, &error_fatal);
2826     }
2827 
2828     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2829 
2830     /* advertise support for dedicated HP event source to guests */
2831     if (spapr->use_hotplug_event_source) {
2832         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2833     }
2834 
2835     /* advertise support for HPT resizing */
2836     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2837         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2838     }
2839 
2840     /* advertise support for ibm,dyamic-memory-v2 */
2841     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2842 
2843     /* advertise XIVE on POWER9 machines */
2844     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2845         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2846     }
2847 
2848     /* init CPUs */
2849     spapr_init_cpus(spapr);
2850 
2851     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2852         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2853                               spapr->max_compat_pvr)) {
2854         /* KVM and TCG always allow GTSE with radix... */
2855         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2856     }
2857     /* ... but not with hash (currently). */
2858 
2859     if (kvm_enabled()) {
2860         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2861         kvmppc_enable_logical_ci_hcalls();
2862         kvmppc_enable_set_mode_hcall();
2863 
2864         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2865         kvmppc_enable_clear_ref_mod_hcalls();
2866 
2867         /* Enable H_PAGE_INIT */
2868         kvmppc_enable_h_page_init();
2869     }
2870 
2871     /* allocate RAM */
2872     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2873                                          machine->ram_size);
2874     memory_region_add_subregion(sysmem, 0, ram);
2875 
2876     /* always allocate the device memory information */
2877     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2878 
2879     /* initialize hotplug memory address space */
2880     if (machine->ram_size < machine->maxram_size) {
2881         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2882         /*
2883          * Limit the number of hotpluggable memory slots to half the number
2884          * slots that KVM supports, leaving the other half for PCI and other
2885          * devices. However ensure that number of slots doesn't drop below 32.
2886          */
2887         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2888                            SPAPR_MAX_RAM_SLOTS;
2889 
2890         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2891             max_memslots = SPAPR_MAX_RAM_SLOTS;
2892         }
2893         if (machine->ram_slots > max_memslots) {
2894             error_report("Specified number of memory slots %"
2895                          PRIu64" exceeds max supported %d",
2896                          machine->ram_slots, max_memslots);
2897             exit(1);
2898         }
2899 
2900         machine->device_memory->base = ROUND_UP(machine->ram_size,
2901                                                 SPAPR_DEVICE_MEM_ALIGN);
2902         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2903                            "device-memory", device_mem_size);
2904         memory_region_add_subregion(sysmem, machine->device_memory->base,
2905                                     &machine->device_memory->mr);
2906     }
2907 
2908     if (smc->dr_lmb_enabled) {
2909         spapr_create_lmb_dr_connectors(spapr);
2910     }
2911 
2912     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2913     if (!filename) {
2914         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2915         exit(1);
2916     }
2917     spapr->rtas_size = get_image_size(filename);
2918     if (spapr->rtas_size < 0) {
2919         error_report("Could not get size of LPAR rtas '%s'", filename);
2920         exit(1);
2921     }
2922     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2923     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2924         error_report("Could not load LPAR rtas '%s'", filename);
2925         exit(1);
2926     }
2927     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2928         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2929                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2930         exit(1);
2931     }
2932     g_free(filename);
2933 
2934     /* Set up RTAS event infrastructure */
2935     spapr_events_init(spapr);
2936 
2937     /* Set up the RTC RTAS interfaces */
2938     spapr_rtc_create(spapr);
2939 
2940     /* Set up VIO bus */
2941     spapr->vio_bus = spapr_vio_bus_init();
2942 
2943     for (i = 0; i < serial_max_hds(); i++) {
2944         if (serial_hd(i)) {
2945             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2946         }
2947     }
2948 
2949     /* We always have at least the nvram device on VIO */
2950     spapr_create_nvram(spapr);
2951 
2952     /*
2953      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2954      * connectors (described in root DT node's "ibm,drc-types" property)
2955      * are pre-initialized here. additional child connectors (such as
2956      * connectors for a PHBs PCI slots) are added as needed during their
2957      * parent's realization.
2958      */
2959     if (smc->dr_phb_enabled) {
2960         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2961             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2962         }
2963     }
2964 
2965     /* Set up PCI */
2966     spapr_pci_rtas_init();
2967 
2968     phb = spapr_create_default_phb();
2969 
2970     for (i = 0; i < nb_nics; i++) {
2971         NICInfo *nd = &nd_table[i];
2972 
2973         if (!nd->model) {
2974             nd->model = g_strdup("spapr-vlan");
2975         }
2976 
2977         if (g_str_equal(nd->model, "spapr-vlan") ||
2978             g_str_equal(nd->model, "ibmveth")) {
2979             spapr_vlan_create(spapr->vio_bus, nd);
2980         } else {
2981             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2982         }
2983     }
2984 
2985     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2986         spapr_vscsi_create(spapr->vio_bus);
2987     }
2988 
2989     /* Graphics */
2990     if (spapr_vga_init(phb->bus, &error_fatal)) {
2991         spapr->has_graphics = true;
2992         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2993     }
2994 
2995     if (machine->usb) {
2996         if (smc->use_ohci_by_default) {
2997             pci_create_simple(phb->bus, -1, "pci-ohci");
2998         } else {
2999             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3000         }
3001 
3002         if (spapr->has_graphics) {
3003             USBBus *usb_bus = usb_bus_find(-1);
3004 
3005             usb_create_simple(usb_bus, "usb-kbd");
3006             usb_create_simple(usb_bus, "usb-mouse");
3007         }
3008     }
3009 
3010     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3011         error_report(
3012             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3013             MIN_RMA_SLOF);
3014         exit(1);
3015     }
3016 
3017     if (kernel_filename) {
3018         uint64_t lowaddr = 0;
3019 
3020         spapr->kernel_size = load_elf(kernel_filename, NULL,
3021                                       translate_kernel_address, NULL,
3022                                       NULL, &lowaddr, NULL, 1,
3023                                       PPC_ELF_MACHINE, 0, 0);
3024         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3025             spapr->kernel_size = load_elf(kernel_filename, NULL,
3026                                           translate_kernel_address, NULL, NULL,
3027                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3028                                           0, 0);
3029             spapr->kernel_le = spapr->kernel_size > 0;
3030         }
3031         if (spapr->kernel_size < 0) {
3032             error_report("error loading %s: %s", kernel_filename,
3033                          load_elf_strerror(spapr->kernel_size));
3034             exit(1);
3035         }
3036 
3037         /* load initrd */
3038         if (initrd_filename) {
3039             /* Try to locate the initrd in the gap between the kernel
3040              * and the firmware. Add a bit of space just in case
3041              */
3042             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3043                                   + 0x1ffff) & ~0xffff;
3044             spapr->initrd_size = load_image_targphys(initrd_filename,
3045                                                      spapr->initrd_base,
3046                                                      load_limit
3047                                                      - spapr->initrd_base);
3048             if (spapr->initrd_size < 0) {
3049                 error_report("could not load initial ram disk '%s'",
3050                              initrd_filename);
3051                 exit(1);
3052             }
3053         }
3054     }
3055 
3056     if (bios_name == NULL) {
3057         bios_name = FW_FILE_NAME;
3058     }
3059     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3060     if (!filename) {
3061         error_report("Could not find LPAR firmware '%s'", bios_name);
3062         exit(1);
3063     }
3064     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3065     if (fw_size <= 0) {
3066         error_report("Could not load LPAR firmware '%s'", filename);
3067         exit(1);
3068     }
3069     g_free(filename);
3070 
3071     /* FIXME: Should register things through the MachineState's qdev
3072      * interface, this is a legacy from the sPAPREnvironment structure
3073      * which predated MachineState but had a similar function */
3074     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3075     register_savevm_live(NULL, "spapr/htab", -1, 1,
3076                          &savevm_htab_handlers, spapr);
3077 
3078     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3079                              &error_fatal);
3080 
3081     qemu_register_boot_set(spapr_boot_set, spapr);
3082 
3083     /*
3084      * Nothing needs to be done to resume a suspended guest because
3085      * suspending does not change the machine state, so no need for
3086      * a ->wakeup method.
3087      */
3088     qemu_register_wakeup_support();
3089 
3090     if (kvm_enabled()) {
3091         /* to stop and start vmclock */
3092         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3093                                          &spapr->tb);
3094 
3095         kvmppc_spapr_enable_inkernel_multitce();
3096     }
3097 }
3098 
3099 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3100 {
3101     if (!vm_type) {
3102         return 0;
3103     }
3104 
3105     if (!strcmp(vm_type, "HV")) {
3106         return 1;
3107     }
3108 
3109     if (!strcmp(vm_type, "PR")) {
3110         return 2;
3111     }
3112 
3113     error_report("Unknown kvm-type specified '%s'", vm_type);
3114     exit(1);
3115 }
3116 
3117 /*
3118  * Implementation of an interface to adjust firmware path
3119  * for the bootindex property handling.
3120  */
3121 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3122                                    DeviceState *dev)
3123 {
3124 #define CAST(type, obj, name) \
3125     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3126     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3127     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3128     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3129 
3130     if (d) {
3131         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3132         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3133         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3134 
3135         if (spapr) {
3136             /*
3137              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3138              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3139              * 0x8000 | (target << 8) | (bus << 5) | lun
3140              * (see the "Logical unit addressing format" table in SAM5)
3141              */
3142             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3143             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3144                                    (uint64_t)id << 48);
3145         } else if (virtio) {
3146             /*
3147              * We use SRP luns of the form 01000000 | (target << 8) | lun
3148              * in the top 32 bits of the 64-bit LUN
3149              * Note: the quote above is from SLOF and it is wrong,
3150              * the actual binding is:
3151              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3152              */
3153             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3154             if (d->lun >= 256) {
3155                 /* Use the LUN "flat space addressing method" */
3156                 id |= 0x4000;
3157             }
3158             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3159                                    (uint64_t)id << 32);
3160         } else if (usb) {
3161             /*
3162              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3163              * in the top 32 bits of the 64-bit LUN
3164              */
3165             unsigned usb_port = atoi(usb->port->path);
3166             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3167             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3168                                    (uint64_t)id << 32);
3169         }
3170     }
3171 
3172     /*
3173      * SLOF probes the USB devices, and if it recognizes that the device is a
3174      * storage device, it changes its name to "storage" instead of "usb-host",
3175      * and additionally adds a child node for the SCSI LUN, so the correct
3176      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3177      */
3178     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3179         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3180         if (usb_host_dev_is_scsi_storage(usbdev)) {
3181             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3182         }
3183     }
3184 
3185     if (phb) {
3186         /* Replace "pci" with "pci@800000020000000" */
3187         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3188     }
3189 
3190     if (vsc) {
3191         /* Same logic as virtio above */
3192         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3193         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3194     }
3195 
3196     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3197         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3198         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3199         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3200     }
3201 
3202     return NULL;
3203 }
3204 
3205 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3206 {
3207     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3208 
3209     return g_strdup(spapr->kvm_type);
3210 }
3211 
3212 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3213 {
3214     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3215 
3216     g_free(spapr->kvm_type);
3217     spapr->kvm_type = g_strdup(value);
3218 }
3219 
3220 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3221 {
3222     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3223 
3224     return spapr->use_hotplug_event_source;
3225 }
3226 
3227 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3228                                             Error **errp)
3229 {
3230     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3231 
3232     spapr->use_hotplug_event_source = value;
3233 }
3234 
3235 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3236 {
3237     return true;
3238 }
3239 
3240 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3241 {
3242     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3243 
3244     switch (spapr->resize_hpt) {
3245     case SPAPR_RESIZE_HPT_DEFAULT:
3246         return g_strdup("default");
3247     case SPAPR_RESIZE_HPT_DISABLED:
3248         return g_strdup("disabled");
3249     case SPAPR_RESIZE_HPT_ENABLED:
3250         return g_strdup("enabled");
3251     case SPAPR_RESIZE_HPT_REQUIRED:
3252         return g_strdup("required");
3253     }
3254     g_assert_not_reached();
3255 }
3256 
3257 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3258 {
3259     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3260 
3261     if (strcmp(value, "default") == 0) {
3262         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3263     } else if (strcmp(value, "disabled") == 0) {
3264         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3265     } else if (strcmp(value, "enabled") == 0) {
3266         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3267     } else if (strcmp(value, "required") == 0) {
3268         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3269     } else {
3270         error_setg(errp, "Bad value for \"resize-hpt\" property");
3271     }
3272 }
3273 
3274 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3275                                    void *opaque, Error **errp)
3276 {
3277     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3278 }
3279 
3280 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3281                                    void *opaque, Error **errp)
3282 {
3283     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3284 }
3285 
3286 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3287 {
3288     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3289 
3290     if (spapr->irq == &spapr_irq_xics_legacy) {
3291         return g_strdup("legacy");
3292     } else if (spapr->irq == &spapr_irq_xics) {
3293         return g_strdup("xics");
3294     } else if (spapr->irq == &spapr_irq_xive) {
3295         return g_strdup("xive");
3296     } else if (spapr->irq == &spapr_irq_dual) {
3297         return g_strdup("dual");
3298     }
3299     g_assert_not_reached();
3300 }
3301 
3302 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3303 {
3304     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3305 
3306     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3307         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3308         return;
3309     }
3310 
3311     /* The legacy IRQ backend can not be set */
3312     if (strcmp(value, "xics") == 0) {
3313         spapr->irq = &spapr_irq_xics;
3314     } else if (strcmp(value, "xive") == 0) {
3315         spapr->irq = &spapr_irq_xive;
3316     } else if (strcmp(value, "dual") == 0) {
3317         spapr->irq = &spapr_irq_dual;
3318     } else {
3319         error_setg(errp, "Bad value for \"ic-mode\" property");
3320     }
3321 }
3322 
3323 static char *spapr_get_host_model(Object *obj, Error **errp)
3324 {
3325     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3326 
3327     return g_strdup(spapr->host_model);
3328 }
3329 
3330 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3331 {
3332     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3333 
3334     g_free(spapr->host_model);
3335     spapr->host_model = g_strdup(value);
3336 }
3337 
3338 static char *spapr_get_host_serial(Object *obj, Error **errp)
3339 {
3340     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3341 
3342     return g_strdup(spapr->host_serial);
3343 }
3344 
3345 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3346 {
3347     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3348 
3349     g_free(spapr->host_serial);
3350     spapr->host_serial = g_strdup(value);
3351 }
3352 
3353 static void spapr_instance_init(Object *obj)
3354 {
3355     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3356     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3357 
3358     spapr->htab_fd = -1;
3359     spapr->use_hotplug_event_source = true;
3360     object_property_add_str(obj, "kvm-type",
3361                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3362     object_property_set_description(obj, "kvm-type",
3363                                     "Specifies the KVM virtualization mode (HV, PR)",
3364                                     NULL);
3365     object_property_add_bool(obj, "modern-hotplug-events",
3366                             spapr_get_modern_hotplug_events,
3367                             spapr_set_modern_hotplug_events,
3368                             NULL);
3369     object_property_set_description(obj, "modern-hotplug-events",
3370                                     "Use dedicated hotplug event mechanism in"
3371                                     " place of standard EPOW events when possible"
3372                                     " (required for memory hot-unplug support)",
3373                                     NULL);
3374     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3375                             "Maximum permitted CPU compatibility mode",
3376                             &error_fatal);
3377 
3378     object_property_add_str(obj, "resize-hpt",
3379                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3380     object_property_set_description(obj, "resize-hpt",
3381                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3382                                     NULL);
3383     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3384                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3385     object_property_set_description(obj, "vsmt",
3386                                     "Virtual SMT: KVM behaves as if this were"
3387                                     " the host's SMT mode", &error_abort);
3388     object_property_add_bool(obj, "vfio-no-msix-emulation",
3389                              spapr_get_msix_emulation, NULL, NULL);
3390 
3391     /* The machine class defines the default interrupt controller mode */
3392     spapr->irq = smc->irq;
3393     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3394                             spapr_set_ic_mode, NULL);
3395     object_property_set_description(obj, "ic-mode",
3396                  "Specifies the interrupt controller mode (xics, xive, dual)",
3397                  NULL);
3398 
3399     object_property_add_str(obj, "host-model",
3400         spapr_get_host_model, spapr_set_host_model,
3401         &error_abort);
3402     object_property_set_description(obj, "host-model",
3403         "Host model to advertise in guest device tree", &error_abort);
3404     object_property_add_str(obj, "host-serial",
3405         spapr_get_host_serial, spapr_set_host_serial,
3406         &error_abort);
3407     object_property_set_description(obj, "host-serial",
3408         "Host serial number to advertise in guest device tree", &error_abort);
3409 }
3410 
3411 static void spapr_machine_finalizefn(Object *obj)
3412 {
3413     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3414 
3415     g_free(spapr->kvm_type);
3416 }
3417 
3418 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3419 {
3420     cpu_synchronize_state(cs);
3421     ppc_cpu_do_system_reset(cs);
3422 }
3423 
3424 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3425 {
3426     CPUState *cs;
3427 
3428     CPU_FOREACH(cs) {
3429         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3430     }
3431 }
3432 
3433 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3434                           void *fdt, int *fdt_start_offset, Error **errp)
3435 {
3436     uint64_t addr;
3437     uint32_t node;
3438 
3439     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3440     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3441                                     &error_abort);
3442     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3443                                                    SPAPR_MEMORY_BLOCK_SIZE);
3444     return 0;
3445 }
3446 
3447 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3448                            bool dedicated_hp_event_source, Error **errp)
3449 {
3450     SpaprDrc *drc;
3451     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3452     int i;
3453     uint64_t addr = addr_start;
3454     bool hotplugged = spapr_drc_hotplugged(dev);
3455     Error *local_err = NULL;
3456 
3457     for (i = 0; i < nr_lmbs; i++) {
3458         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3459                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3460         g_assert(drc);
3461 
3462         spapr_drc_attach(drc, dev, &local_err);
3463         if (local_err) {
3464             while (addr > addr_start) {
3465                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3466                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3467                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3468                 spapr_drc_detach(drc);
3469             }
3470             error_propagate(errp, local_err);
3471             return;
3472         }
3473         if (!hotplugged) {
3474             spapr_drc_reset(drc);
3475         }
3476         addr += SPAPR_MEMORY_BLOCK_SIZE;
3477     }
3478     /* send hotplug notification to the
3479      * guest only in case of hotplugged memory
3480      */
3481     if (hotplugged) {
3482         if (dedicated_hp_event_source) {
3483             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3484                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3485             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3486                                                    nr_lmbs,
3487                                                    spapr_drc_index(drc));
3488         } else {
3489             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3490                                            nr_lmbs);
3491         }
3492     }
3493 }
3494 
3495 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3496                               Error **errp)
3497 {
3498     Error *local_err = NULL;
3499     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3500     PCDIMMDevice *dimm = PC_DIMM(dev);
3501     uint64_t size, addr;
3502 
3503     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3504 
3505     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3506     if (local_err) {
3507         goto out;
3508     }
3509 
3510     addr = object_property_get_uint(OBJECT(dimm),
3511                                     PC_DIMM_ADDR_PROP, &local_err);
3512     if (local_err) {
3513         goto out_unplug;
3514     }
3515 
3516     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3517                    &local_err);
3518     if (local_err) {
3519         goto out_unplug;
3520     }
3521 
3522     return;
3523 
3524 out_unplug:
3525     pc_dimm_unplug(dimm, MACHINE(ms));
3526 out:
3527     error_propagate(errp, local_err);
3528 }
3529 
3530 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3531                                   Error **errp)
3532 {
3533     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3534     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3535     PCDIMMDevice *dimm = PC_DIMM(dev);
3536     Error *local_err = NULL;
3537     uint64_t size;
3538     Object *memdev;
3539     hwaddr pagesize;
3540 
3541     if (!smc->dr_lmb_enabled) {
3542         error_setg(errp, "Memory hotplug not supported for this machine");
3543         return;
3544     }
3545 
3546     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3547     if (local_err) {
3548         error_propagate(errp, local_err);
3549         return;
3550     }
3551 
3552     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3553         error_setg(errp, "Hotplugged memory size must be a multiple of "
3554                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3555         return;
3556     }
3557 
3558     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3559                                       &error_abort);
3560     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3561     spapr_check_pagesize(spapr, pagesize, &local_err);
3562     if (local_err) {
3563         error_propagate(errp, local_err);
3564         return;
3565     }
3566 
3567     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3568 }
3569 
3570 struct SpaprDimmState {
3571     PCDIMMDevice *dimm;
3572     uint32_t nr_lmbs;
3573     QTAILQ_ENTRY(SpaprDimmState) next;
3574 };
3575 
3576 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3577                                                        PCDIMMDevice *dimm)
3578 {
3579     SpaprDimmState *dimm_state = NULL;
3580 
3581     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3582         if (dimm_state->dimm == dimm) {
3583             break;
3584         }
3585     }
3586     return dimm_state;
3587 }
3588 
3589 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3590                                                       uint32_t nr_lmbs,
3591                                                       PCDIMMDevice *dimm)
3592 {
3593     SpaprDimmState *ds = NULL;
3594 
3595     /*
3596      * If this request is for a DIMM whose removal had failed earlier
3597      * (due to guest's refusal to remove the LMBs), we would have this
3598      * dimm already in the pending_dimm_unplugs list. In that
3599      * case don't add again.
3600      */
3601     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3602     if (!ds) {
3603         ds = g_malloc0(sizeof(SpaprDimmState));
3604         ds->nr_lmbs = nr_lmbs;
3605         ds->dimm = dimm;
3606         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3607     }
3608     return ds;
3609 }
3610 
3611 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3612                                               SpaprDimmState *dimm_state)
3613 {
3614     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3615     g_free(dimm_state);
3616 }
3617 
3618 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3619                                                         PCDIMMDevice *dimm)
3620 {
3621     SpaprDrc *drc;
3622     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3623                                                   &error_abort);
3624     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3625     uint32_t avail_lmbs = 0;
3626     uint64_t addr_start, addr;
3627     int i;
3628 
3629     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3630                                          &error_abort);
3631 
3632     addr = addr_start;
3633     for (i = 0; i < nr_lmbs; i++) {
3634         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3635                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3636         g_assert(drc);
3637         if (drc->dev) {
3638             avail_lmbs++;
3639         }
3640         addr += SPAPR_MEMORY_BLOCK_SIZE;
3641     }
3642 
3643     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3644 }
3645 
3646 /* Callback to be called during DRC release. */
3647 void spapr_lmb_release(DeviceState *dev)
3648 {
3649     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3650     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3651     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3652 
3653     /* This information will get lost if a migration occurs
3654      * during the unplug process. In this case recover it. */
3655     if (ds == NULL) {
3656         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3657         g_assert(ds);
3658         /* The DRC being examined by the caller at least must be counted */
3659         g_assert(ds->nr_lmbs);
3660     }
3661 
3662     if (--ds->nr_lmbs) {
3663         return;
3664     }
3665 
3666     /*
3667      * Now that all the LMBs have been removed by the guest, call the
3668      * unplug handler chain. This can never fail.
3669      */
3670     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3671     object_unparent(OBJECT(dev));
3672 }
3673 
3674 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3675 {
3676     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3677     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3678 
3679     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3680     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3681     spapr_pending_dimm_unplugs_remove(spapr, ds);
3682 }
3683 
3684 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3685                                         DeviceState *dev, Error **errp)
3686 {
3687     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3688     Error *local_err = NULL;
3689     PCDIMMDevice *dimm = PC_DIMM(dev);
3690     uint32_t nr_lmbs;
3691     uint64_t size, addr_start, addr;
3692     int i;
3693     SpaprDrc *drc;
3694 
3695     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3696     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3697 
3698     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3699                                          &local_err);
3700     if (local_err) {
3701         goto out;
3702     }
3703 
3704     /*
3705      * An existing pending dimm state for this DIMM means that there is an
3706      * unplug operation in progress, waiting for the spapr_lmb_release
3707      * callback to complete the job (BQL can't cover that far). In this case,
3708      * bail out to avoid detaching DRCs that were already released.
3709      */
3710     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3711         error_setg(&local_err,
3712                    "Memory unplug already in progress for device %s",
3713                    dev->id);
3714         goto out;
3715     }
3716 
3717     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3718 
3719     addr = addr_start;
3720     for (i = 0; i < nr_lmbs; i++) {
3721         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3722                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3723         g_assert(drc);
3724 
3725         spapr_drc_detach(drc);
3726         addr += SPAPR_MEMORY_BLOCK_SIZE;
3727     }
3728 
3729     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3730                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3731     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3732                                               nr_lmbs, spapr_drc_index(drc));
3733 out:
3734     error_propagate(errp, local_err);
3735 }
3736 
3737 /* Callback to be called during DRC release. */
3738 void spapr_core_release(DeviceState *dev)
3739 {
3740     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3741 
3742     /* Call the unplug handler chain. This can never fail. */
3743     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3744     object_unparent(OBJECT(dev));
3745 }
3746 
3747 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3748 {
3749     MachineState *ms = MACHINE(hotplug_dev);
3750     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3751     CPUCore *cc = CPU_CORE(dev);
3752     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3753 
3754     if (smc->pre_2_10_has_unused_icps) {
3755         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3756         int i;
3757 
3758         for (i = 0; i < cc->nr_threads; i++) {
3759             CPUState *cs = CPU(sc->threads[i]);
3760 
3761             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3762         }
3763     }
3764 
3765     assert(core_slot);
3766     core_slot->cpu = NULL;
3767     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3768 }
3769 
3770 static
3771 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3772                                Error **errp)
3773 {
3774     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3775     int index;
3776     SpaprDrc *drc;
3777     CPUCore *cc = CPU_CORE(dev);
3778 
3779     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3780         error_setg(errp, "Unable to find CPU core with core-id: %d",
3781                    cc->core_id);
3782         return;
3783     }
3784     if (index == 0) {
3785         error_setg(errp, "Boot CPU core may not be unplugged");
3786         return;
3787     }
3788 
3789     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3790                           spapr_vcpu_id(spapr, cc->core_id));
3791     g_assert(drc);
3792 
3793     spapr_drc_detach(drc);
3794 
3795     spapr_hotplug_req_remove_by_index(drc);
3796 }
3797 
3798 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3799                            void *fdt, int *fdt_start_offset, Error **errp)
3800 {
3801     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3802     CPUState *cs = CPU(core->threads[0]);
3803     PowerPCCPU *cpu = POWERPC_CPU(cs);
3804     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3805     int id = spapr_get_vcpu_id(cpu);
3806     char *nodename;
3807     int offset;
3808 
3809     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3810     offset = fdt_add_subnode(fdt, 0, nodename);
3811     g_free(nodename);
3812 
3813     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3814 
3815     *fdt_start_offset = offset;
3816     return 0;
3817 }
3818 
3819 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3820                             Error **errp)
3821 {
3822     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3823     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3824     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3825     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3826     CPUCore *cc = CPU_CORE(dev);
3827     CPUState *cs;
3828     SpaprDrc *drc;
3829     Error *local_err = NULL;
3830     CPUArchId *core_slot;
3831     int index;
3832     bool hotplugged = spapr_drc_hotplugged(dev);
3833 
3834     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3835     if (!core_slot) {
3836         error_setg(errp, "Unable to find CPU core with core-id: %d",
3837                    cc->core_id);
3838         return;
3839     }
3840     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3841                           spapr_vcpu_id(spapr, cc->core_id));
3842 
3843     g_assert(drc || !mc->has_hotpluggable_cpus);
3844 
3845     if (drc) {
3846         spapr_drc_attach(drc, dev, &local_err);
3847         if (local_err) {
3848             error_propagate(errp, local_err);
3849             return;
3850         }
3851 
3852         if (hotplugged) {
3853             /*
3854              * Send hotplug notification interrupt to the guest only
3855              * in case of hotplugged CPUs.
3856              */
3857             spapr_hotplug_req_add_by_index(drc);
3858         } else {
3859             spapr_drc_reset(drc);
3860         }
3861     }
3862 
3863     core_slot->cpu = OBJECT(dev);
3864 
3865     if (smc->pre_2_10_has_unused_icps) {
3866         int i;
3867 
3868         for (i = 0; i < cc->nr_threads; i++) {
3869             cs = CPU(core->threads[i]);
3870             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3871         }
3872     }
3873 }
3874 
3875 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3876                                 Error **errp)
3877 {
3878     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3879     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3880     Error *local_err = NULL;
3881     CPUCore *cc = CPU_CORE(dev);
3882     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3883     const char *type = object_get_typename(OBJECT(dev));
3884     CPUArchId *core_slot;
3885     int index;
3886     unsigned int smp_threads = machine->smp.threads;
3887 
3888     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3889         error_setg(&local_err, "CPU hotplug not supported for this machine");
3890         goto out;
3891     }
3892 
3893     if (strcmp(base_core_type, type)) {
3894         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3895         goto out;
3896     }
3897 
3898     if (cc->core_id % smp_threads) {
3899         error_setg(&local_err, "invalid core id %d", cc->core_id);
3900         goto out;
3901     }
3902 
3903     /*
3904      * In general we should have homogeneous threads-per-core, but old
3905      * (pre hotplug support) machine types allow the last core to have
3906      * reduced threads as a compatibility hack for when we allowed
3907      * total vcpus not a multiple of threads-per-core.
3908      */
3909     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3910         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3911                    cc->nr_threads, smp_threads);
3912         goto out;
3913     }
3914 
3915     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3916     if (!core_slot) {
3917         error_setg(&local_err, "core id %d out of range", cc->core_id);
3918         goto out;
3919     }
3920 
3921     if (core_slot->cpu) {
3922         error_setg(&local_err, "core %d already populated", cc->core_id);
3923         goto out;
3924     }
3925 
3926     numa_cpu_pre_plug(core_slot, dev, &local_err);
3927 
3928 out:
3929     error_propagate(errp, local_err);
3930 }
3931 
3932 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3933                           void *fdt, int *fdt_start_offset, Error **errp)
3934 {
3935     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3936     int intc_phandle;
3937 
3938     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3939     if (intc_phandle <= 0) {
3940         return -1;
3941     }
3942 
3943     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3944                      fdt_start_offset)) {
3945         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3946         return -1;
3947     }
3948 
3949     /* generally SLOF creates these, for hotplug it's up to QEMU */
3950     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3951 
3952     return 0;
3953 }
3954 
3955 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3956                                Error **errp)
3957 {
3958     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3959     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3960     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3961     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3962 
3963     if (dev->hotplugged && !smc->dr_phb_enabled) {
3964         error_setg(errp, "PHB hotplug not supported for this machine");
3965         return;
3966     }
3967 
3968     if (sphb->index == (uint32_t)-1) {
3969         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3970         return;
3971     }
3972 
3973     /*
3974      * This will check that sphb->index doesn't exceed the maximum number of
3975      * PHBs for the current machine type.
3976      */
3977     smc->phb_placement(spapr, sphb->index,
3978                        &sphb->buid, &sphb->io_win_addr,
3979                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3980                        windows_supported, sphb->dma_liobn,
3981                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3982                        errp);
3983 }
3984 
3985 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3986                            Error **errp)
3987 {
3988     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3989     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3990     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3991     SpaprDrc *drc;
3992     bool hotplugged = spapr_drc_hotplugged(dev);
3993     Error *local_err = NULL;
3994 
3995     if (!smc->dr_phb_enabled) {
3996         return;
3997     }
3998 
3999     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4000     /* hotplug hooks should check it's enabled before getting this far */
4001     assert(drc);
4002 
4003     spapr_drc_attach(drc, DEVICE(dev), &local_err);
4004     if (local_err) {
4005         error_propagate(errp, local_err);
4006         return;
4007     }
4008 
4009     if (hotplugged) {
4010         spapr_hotplug_req_add_by_index(drc);
4011     } else {
4012         spapr_drc_reset(drc);
4013     }
4014 }
4015 
4016 void spapr_phb_release(DeviceState *dev)
4017 {
4018     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4019 
4020     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4021     object_unparent(OBJECT(dev));
4022 }
4023 
4024 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4025 {
4026     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4027 }
4028 
4029 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4030                                      DeviceState *dev, Error **errp)
4031 {
4032     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4033     SpaprDrc *drc;
4034 
4035     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4036     assert(drc);
4037 
4038     if (!spapr_drc_unplug_requested(drc)) {
4039         spapr_drc_detach(drc);
4040         spapr_hotplug_req_remove_by_index(drc);
4041     }
4042 }
4043 
4044 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4045                                  Error **errp)
4046 {
4047     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4048     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4049 
4050     if (spapr->tpm_proxy != NULL) {
4051         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4052         return;
4053     }
4054 
4055     spapr->tpm_proxy = tpm_proxy;
4056 }
4057 
4058 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4059 {
4060     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4061 
4062     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4063     object_unparent(OBJECT(dev));
4064     spapr->tpm_proxy = NULL;
4065 }
4066 
4067 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4068                                       DeviceState *dev, Error **errp)
4069 {
4070     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4071         spapr_memory_plug(hotplug_dev, dev, errp);
4072     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4073         spapr_core_plug(hotplug_dev, dev, errp);
4074     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4075         spapr_phb_plug(hotplug_dev, dev, errp);
4076     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4077         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4078     }
4079 }
4080 
4081 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4082                                         DeviceState *dev, Error **errp)
4083 {
4084     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4085         spapr_memory_unplug(hotplug_dev, dev);
4086     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4087         spapr_core_unplug(hotplug_dev, dev);
4088     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4089         spapr_phb_unplug(hotplug_dev, dev);
4090     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4091         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4092     }
4093 }
4094 
4095 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4096                                                 DeviceState *dev, Error **errp)
4097 {
4098     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4099     MachineClass *mc = MACHINE_GET_CLASS(sms);
4100     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4101 
4102     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4103         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4104             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4105         } else {
4106             /* NOTE: this means there is a window after guest reset, prior to
4107              * CAS negotiation, where unplug requests will fail due to the
4108              * capability not being detected yet. This is a bit different than
4109              * the case with PCI unplug, where the events will be queued and
4110              * eventually handled by the guest after boot
4111              */
4112             error_setg(errp, "Memory hot unplug not supported for this guest");
4113         }
4114     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4115         if (!mc->has_hotpluggable_cpus) {
4116             error_setg(errp, "CPU hot unplug not supported on this machine");
4117             return;
4118         }
4119         spapr_core_unplug_request(hotplug_dev, dev, errp);
4120     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4121         if (!smc->dr_phb_enabled) {
4122             error_setg(errp, "PHB hot unplug not supported on this machine");
4123             return;
4124         }
4125         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4126     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4127         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4128     }
4129 }
4130 
4131 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4132                                           DeviceState *dev, Error **errp)
4133 {
4134     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4135         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4136     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4137         spapr_core_pre_plug(hotplug_dev, dev, errp);
4138     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4139         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4140     }
4141 }
4142 
4143 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4144                                                  DeviceState *dev)
4145 {
4146     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4147         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4148         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4149         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4150         return HOTPLUG_HANDLER(machine);
4151     }
4152     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4153         PCIDevice *pcidev = PCI_DEVICE(dev);
4154         PCIBus *root = pci_device_root_bus(pcidev);
4155         SpaprPhbState *phb =
4156             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4157                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4158 
4159         if (phb) {
4160             return HOTPLUG_HANDLER(phb);
4161         }
4162     }
4163     return NULL;
4164 }
4165 
4166 static CpuInstanceProperties
4167 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4168 {
4169     CPUArchId *core_slot;
4170     MachineClass *mc = MACHINE_GET_CLASS(machine);
4171 
4172     /* make sure possible_cpu are intialized */
4173     mc->possible_cpu_arch_ids(machine);
4174     /* get CPU core slot containing thread that matches cpu_index */
4175     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4176     assert(core_slot);
4177     return core_slot->props;
4178 }
4179 
4180 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4181 {
4182     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4183 }
4184 
4185 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4186 {
4187     int i;
4188     unsigned int smp_threads = machine->smp.threads;
4189     unsigned int smp_cpus = machine->smp.cpus;
4190     const char *core_type;
4191     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4192     MachineClass *mc = MACHINE_GET_CLASS(machine);
4193 
4194     if (!mc->has_hotpluggable_cpus) {
4195         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4196     }
4197     if (machine->possible_cpus) {
4198         assert(machine->possible_cpus->len == spapr_max_cores);
4199         return machine->possible_cpus;
4200     }
4201 
4202     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4203     if (!core_type) {
4204         error_report("Unable to find sPAPR CPU Core definition");
4205         exit(1);
4206     }
4207 
4208     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4209                              sizeof(CPUArchId) * spapr_max_cores);
4210     machine->possible_cpus->len = spapr_max_cores;
4211     for (i = 0; i < machine->possible_cpus->len; i++) {
4212         int core_id = i * smp_threads;
4213 
4214         machine->possible_cpus->cpus[i].type = core_type;
4215         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4216         machine->possible_cpus->cpus[i].arch_id = core_id;
4217         machine->possible_cpus->cpus[i].props.has_core_id = true;
4218         machine->possible_cpus->cpus[i].props.core_id = core_id;
4219     }
4220     return machine->possible_cpus;
4221 }
4222 
4223 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4224                                 uint64_t *buid, hwaddr *pio,
4225                                 hwaddr *mmio32, hwaddr *mmio64,
4226                                 unsigned n_dma, uint32_t *liobns,
4227                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4228 {
4229     /*
4230      * New-style PHB window placement.
4231      *
4232      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4233      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4234      * windows.
4235      *
4236      * Some guest kernels can't work with MMIO windows above 1<<46
4237      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4238      *
4239      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4240      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4241      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4242      * 1TiB 64-bit MMIO windows for each PHB.
4243      */
4244     const uint64_t base_buid = 0x800000020000000ULL;
4245     int i;
4246 
4247     /* Sanity check natural alignments */
4248     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4249     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4250     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4251     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4252     /* Sanity check bounds */
4253     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4254                       SPAPR_PCI_MEM32_WIN_SIZE);
4255     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4256                       SPAPR_PCI_MEM64_WIN_SIZE);
4257 
4258     if (index >= SPAPR_MAX_PHBS) {
4259         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4260                    SPAPR_MAX_PHBS - 1);
4261         return;
4262     }
4263 
4264     *buid = base_buid + index;
4265     for (i = 0; i < n_dma; ++i) {
4266         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4267     }
4268 
4269     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4270     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4271     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4272 
4273     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4274     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4275 }
4276 
4277 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4278 {
4279     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4280 
4281     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4282 }
4283 
4284 static void spapr_ics_resend(XICSFabric *dev)
4285 {
4286     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4287 
4288     ics_resend(spapr->ics);
4289 }
4290 
4291 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4292 {
4293     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4294 
4295     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4296 }
4297 
4298 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4299                                  Monitor *mon)
4300 {
4301     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4302 
4303     spapr->irq->print_info(spapr, mon);
4304 }
4305 
4306 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4307 {
4308     return cpu->vcpu_id;
4309 }
4310 
4311 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4312 {
4313     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4314     MachineState *ms = MACHINE(spapr);
4315     int vcpu_id;
4316 
4317     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4318 
4319     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4320         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4321         error_append_hint(errp, "Adjust the number of cpus to %d "
4322                           "or try to raise the number of threads per core\n",
4323                           vcpu_id * ms->smp.threads / spapr->vsmt);
4324         return;
4325     }
4326 
4327     cpu->vcpu_id = vcpu_id;
4328 }
4329 
4330 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4331 {
4332     CPUState *cs;
4333 
4334     CPU_FOREACH(cs) {
4335         PowerPCCPU *cpu = POWERPC_CPU(cs);
4336 
4337         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4338             return cpu;
4339         }
4340     }
4341 
4342     return NULL;
4343 }
4344 
4345 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4346 {
4347     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4348 
4349     /* These are only called by TCG, KVM maintains dispatch state */
4350 
4351     spapr_cpu->prod = false;
4352     if (spapr_cpu->vpa_addr) {
4353         CPUState *cs = CPU(cpu);
4354         uint32_t dispatch;
4355 
4356         dispatch = ldl_be_phys(cs->as,
4357                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4358         dispatch++;
4359         if ((dispatch & 1) != 0) {
4360             qemu_log_mask(LOG_GUEST_ERROR,
4361                           "VPA: incorrect dispatch counter value for "
4362                           "dispatched partition %u, correcting.\n", dispatch);
4363             dispatch++;
4364         }
4365         stl_be_phys(cs->as,
4366                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4367     }
4368 }
4369 
4370 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4371 {
4372     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4373 
4374     if (spapr_cpu->vpa_addr) {
4375         CPUState *cs = CPU(cpu);
4376         uint32_t dispatch;
4377 
4378         dispatch = ldl_be_phys(cs->as,
4379                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4380         dispatch++;
4381         if ((dispatch & 1) != 1) {
4382             qemu_log_mask(LOG_GUEST_ERROR,
4383                           "VPA: incorrect dispatch counter value for "
4384                           "preempted partition %u, correcting.\n", dispatch);
4385             dispatch++;
4386         }
4387         stl_be_phys(cs->as,
4388                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4389     }
4390 }
4391 
4392 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4393 {
4394     MachineClass *mc = MACHINE_CLASS(oc);
4395     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4396     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4397     NMIClass *nc = NMI_CLASS(oc);
4398     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4399     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4400     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4401     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4402 
4403     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4404     mc->ignore_boot_device_suffixes = true;
4405 
4406     /*
4407      * We set up the default / latest behaviour here.  The class_init
4408      * functions for the specific versioned machine types can override
4409      * these details for backwards compatibility
4410      */
4411     mc->init = spapr_machine_init;
4412     mc->reset = spapr_machine_reset;
4413     mc->block_default_type = IF_SCSI;
4414     mc->max_cpus = 1024;
4415     mc->no_parallel = 1;
4416     mc->default_boot_order = "";
4417     mc->default_ram_size = 512 * MiB;
4418     mc->default_display = "std";
4419     mc->kvm_type = spapr_kvm_type;
4420     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4421     mc->pci_allow_0_address = true;
4422     assert(!mc->get_hotplug_handler);
4423     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4424     hc->pre_plug = spapr_machine_device_pre_plug;
4425     hc->plug = spapr_machine_device_plug;
4426     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4427     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4428     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4429     hc->unplug_request = spapr_machine_device_unplug_request;
4430     hc->unplug = spapr_machine_device_unplug;
4431 
4432     smc->dr_lmb_enabled = true;
4433     smc->update_dt_enabled = true;
4434     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4435     mc->has_hotpluggable_cpus = true;
4436     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4437     fwc->get_dev_path = spapr_get_fw_dev_path;
4438     nc->nmi_monitor_handler = spapr_nmi;
4439     smc->phb_placement = spapr_phb_placement;
4440     vhc->hypercall = emulate_spapr_hypercall;
4441     vhc->hpt_mask = spapr_hpt_mask;
4442     vhc->map_hptes = spapr_map_hptes;
4443     vhc->unmap_hptes = spapr_unmap_hptes;
4444     vhc->hpte_set_c = spapr_hpte_set_c;
4445     vhc->hpte_set_r = spapr_hpte_set_r;
4446     vhc->get_pate = spapr_get_pate;
4447     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4448     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4449     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4450     xic->ics_get = spapr_ics_get;
4451     xic->ics_resend = spapr_ics_resend;
4452     xic->icp_get = spapr_icp_get;
4453     ispc->print_info = spapr_pic_print_info;
4454     /* Force NUMA node memory size to be a multiple of
4455      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4456      * in which LMBs are represented and hot-added
4457      */
4458     mc->numa_mem_align_shift = 28;
4459     mc->numa_mem_supported = true;
4460 
4461     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4462     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4463     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4464     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4465     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4466     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4467     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4468     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4469     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4470     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4471     spapr_caps_add_properties(smc, &error_abort);
4472     smc->irq = &spapr_irq_dual;
4473     smc->dr_phb_enabled = true;
4474 }
4475 
4476 static const TypeInfo spapr_machine_info = {
4477     .name          = TYPE_SPAPR_MACHINE,
4478     .parent        = TYPE_MACHINE,
4479     .abstract      = true,
4480     .instance_size = sizeof(SpaprMachineState),
4481     .instance_init = spapr_instance_init,
4482     .instance_finalize = spapr_machine_finalizefn,
4483     .class_size    = sizeof(SpaprMachineClass),
4484     .class_init    = spapr_machine_class_init,
4485     .interfaces = (InterfaceInfo[]) {
4486         { TYPE_FW_PATH_PROVIDER },
4487         { TYPE_NMI },
4488         { TYPE_HOTPLUG_HANDLER },
4489         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4490         { TYPE_XICS_FABRIC },
4491         { TYPE_INTERRUPT_STATS_PROVIDER },
4492         { }
4493     },
4494 };
4495 
4496 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4497     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4498                                                     void *data)      \
4499     {                                                                \
4500         MachineClass *mc = MACHINE_CLASS(oc);                        \
4501         spapr_machine_##suffix##_class_options(mc);                  \
4502         if (latest) {                                                \
4503             mc->alias = "pseries";                                   \
4504             mc->is_default = 1;                                      \
4505         }                                                            \
4506     }                                                                \
4507     static const TypeInfo spapr_machine_##suffix##_info = {          \
4508         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4509         .parent = TYPE_SPAPR_MACHINE,                                \
4510         .class_init = spapr_machine_##suffix##_class_init,           \
4511     };                                                               \
4512     static void spapr_machine_register_##suffix(void)                \
4513     {                                                                \
4514         type_register(&spapr_machine_##suffix##_info);               \
4515     }                                                                \
4516     type_init(spapr_machine_register_##suffix)
4517 
4518 /*
4519  * pseries-4.2
4520  */
4521 static void spapr_machine_4_2_class_options(MachineClass *mc)
4522 {
4523     /* Defaults for the latest behaviour inherited from the base class */
4524 }
4525 
4526 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4527 
4528 /*
4529  * pseries-4.1
4530  */
4531 static void spapr_machine_4_1_class_options(MachineClass *mc)
4532 {
4533     static GlobalProperty compat[] = {
4534         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4535         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4536     };
4537 
4538     spapr_machine_4_2_class_options(mc);
4539     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4540     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4541 }
4542 
4543 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4544 
4545 /*
4546  * pseries-4.0
4547  */
4548 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4549                               uint64_t *buid, hwaddr *pio,
4550                               hwaddr *mmio32, hwaddr *mmio64,
4551                               unsigned n_dma, uint32_t *liobns,
4552                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4553 {
4554     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4555                         nv2gpa, nv2atsd, errp);
4556     *nv2gpa = 0;
4557     *nv2atsd = 0;
4558 }
4559 
4560 static void spapr_machine_4_0_class_options(MachineClass *mc)
4561 {
4562     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4563 
4564     spapr_machine_4_1_class_options(mc);
4565     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4566     smc->phb_placement = phb_placement_4_0;
4567     smc->irq = &spapr_irq_xics;
4568     smc->pre_4_1_migration = true;
4569 }
4570 
4571 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4572 
4573 /*
4574  * pseries-3.1
4575  */
4576 static void spapr_machine_3_1_class_options(MachineClass *mc)
4577 {
4578     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4579 
4580     spapr_machine_4_0_class_options(mc);
4581     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4582 
4583     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4584     smc->update_dt_enabled = false;
4585     smc->dr_phb_enabled = false;
4586     smc->broken_host_serial_model = true;
4587     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4588     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4589     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4590     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4591 }
4592 
4593 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4594 
4595 /*
4596  * pseries-3.0
4597  */
4598 
4599 static void spapr_machine_3_0_class_options(MachineClass *mc)
4600 {
4601     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4602 
4603     spapr_machine_3_1_class_options(mc);
4604     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4605 
4606     smc->legacy_irq_allocation = true;
4607     smc->irq = &spapr_irq_xics_legacy;
4608 }
4609 
4610 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4611 
4612 /*
4613  * pseries-2.12
4614  */
4615 static void spapr_machine_2_12_class_options(MachineClass *mc)
4616 {
4617     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4618     static GlobalProperty compat[] = {
4619         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4620         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4621     };
4622 
4623     spapr_machine_3_0_class_options(mc);
4624     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4625     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4626 
4627     /* We depend on kvm_enabled() to choose a default value for the
4628      * hpt-max-page-size capability. Of course we can't do it here
4629      * because this is too early and the HW accelerator isn't initialzed
4630      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4631      */
4632     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4633 }
4634 
4635 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4636 
4637 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4638 {
4639     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4640 
4641     spapr_machine_2_12_class_options(mc);
4642     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4643     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4644     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4645 }
4646 
4647 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4648 
4649 /*
4650  * pseries-2.11
4651  */
4652 
4653 static void spapr_machine_2_11_class_options(MachineClass *mc)
4654 {
4655     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4656 
4657     spapr_machine_2_12_class_options(mc);
4658     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4659     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4660 }
4661 
4662 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4663 
4664 /*
4665  * pseries-2.10
4666  */
4667 
4668 static void spapr_machine_2_10_class_options(MachineClass *mc)
4669 {
4670     spapr_machine_2_11_class_options(mc);
4671     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4672 }
4673 
4674 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4675 
4676 /*
4677  * pseries-2.9
4678  */
4679 
4680 static void spapr_machine_2_9_class_options(MachineClass *mc)
4681 {
4682     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4683     static GlobalProperty compat[] = {
4684         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4685     };
4686 
4687     spapr_machine_2_10_class_options(mc);
4688     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4689     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4690     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4691     smc->pre_2_10_has_unused_icps = true;
4692     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4693 }
4694 
4695 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4696 
4697 /*
4698  * pseries-2.8
4699  */
4700 
4701 static void spapr_machine_2_8_class_options(MachineClass *mc)
4702 {
4703     static GlobalProperty compat[] = {
4704         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4705     };
4706 
4707     spapr_machine_2_9_class_options(mc);
4708     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4709     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4710     mc->numa_mem_align_shift = 23;
4711 }
4712 
4713 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4714 
4715 /*
4716  * pseries-2.7
4717  */
4718 
4719 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4720                               uint64_t *buid, hwaddr *pio,
4721                               hwaddr *mmio32, hwaddr *mmio64,
4722                               unsigned n_dma, uint32_t *liobns,
4723                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4724 {
4725     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4726     const uint64_t base_buid = 0x800000020000000ULL;
4727     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4728     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4729     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4730     const uint32_t max_index = 255;
4731     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4732 
4733     uint64_t ram_top = MACHINE(spapr)->ram_size;
4734     hwaddr phb0_base, phb_base;
4735     int i;
4736 
4737     /* Do we have device memory? */
4738     if (MACHINE(spapr)->maxram_size > ram_top) {
4739         /* Can't just use maxram_size, because there may be an
4740          * alignment gap between normal and device memory regions
4741          */
4742         ram_top = MACHINE(spapr)->device_memory->base +
4743             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4744     }
4745 
4746     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4747 
4748     if (index > max_index) {
4749         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4750                    max_index);
4751         return;
4752     }
4753 
4754     *buid = base_buid + index;
4755     for (i = 0; i < n_dma; ++i) {
4756         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4757     }
4758 
4759     phb_base = phb0_base + index * phb_spacing;
4760     *pio = phb_base + pio_offset;
4761     *mmio32 = phb_base + mmio_offset;
4762     /*
4763      * We don't set the 64-bit MMIO window, relying on the PHB's
4764      * fallback behaviour of automatically splitting a large "32-bit"
4765      * window into contiguous 32-bit and 64-bit windows
4766      */
4767 
4768     *nv2gpa = 0;
4769     *nv2atsd = 0;
4770 }
4771 
4772 static void spapr_machine_2_7_class_options(MachineClass *mc)
4773 {
4774     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4775     static GlobalProperty compat[] = {
4776         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4777         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4778         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4779         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4780     };
4781 
4782     spapr_machine_2_8_class_options(mc);
4783     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4784     mc->default_machine_opts = "modern-hotplug-events=off";
4785     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4786     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4787     smc->phb_placement = phb_placement_2_7;
4788 }
4789 
4790 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4791 
4792 /*
4793  * pseries-2.6
4794  */
4795 
4796 static void spapr_machine_2_6_class_options(MachineClass *mc)
4797 {
4798     static GlobalProperty compat[] = {
4799         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4800     };
4801 
4802     spapr_machine_2_7_class_options(mc);
4803     mc->has_hotpluggable_cpus = false;
4804     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4805     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4806 }
4807 
4808 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4809 
4810 /*
4811  * pseries-2.5
4812  */
4813 
4814 static void spapr_machine_2_5_class_options(MachineClass *mc)
4815 {
4816     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4817     static GlobalProperty compat[] = {
4818         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4819     };
4820 
4821     spapr_machine_2_6_class_options(mc);
4822     smc->use_ohci_by_default = true;
4823     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4824     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4825 }
4826 
4827 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4828 
4829 /*
4830  * pseries-2.4
4831  */
4832 
4833 static void spapr_machine_2_4_class_options(MachineClass *mc)
4834 {
4835     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4836 
4837     spapr_machine_2_5_class_options(mc);
4838     smc->dr_lmb_enabled = false;
4839     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4840 }
4841 
4842 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4843 
4844 /*
4845  * pseries-2.3
4846  */
4847 
4848 static void spapr_machine_2_3_class_options(MachineClass *mc)
4849 {
4850     static GlobalProperty compat[] = {
4851         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4852     };
4853     spapr_machine_2_4_class_options(mc);
4854     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4855     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4856 }
4857 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4858 
4859 /*
4860  * pseries-2.2
4861  */
4862 
4863 static void spapr_machine_2_2_class_options(MachineClass *mc)
4864 {
4865     static GlobalProperty compat[] = {
4866         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4867     };
4868 
4869     spapr_machine_2_3_class_options(mc);
4870     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4871     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4872     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4873 }
4874 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4875 
4876 /*
4877  * pseries-2.1
4878  */
4879 
4880 static void spapr_machine_2_1_class_options(MachineClass *mc)
4881 {
4882     spapr_machine_2_2_class_options(mc);
4883     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4884 }
4885 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4886 
4887 static void spapr_machine_register_types(void)
4888 {
4889     type_register_static(&spapr_machine_info);
4890 }
4891 
4892 type_init(spapr_machine_register_types)
4893