1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * Copyright (c) 2010-2024, IBM Corporation.. 8 * 9 * SPDX-License-Identifier: GPL-2.0-or-later 10 * 11 * Permission is hereby granted, free of charge, to any person obtaining a copy 12 * of this software and associated documentation files (the "Software"), to deal 13 * in the Software without restriction, including without limitation the rights 14 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 15 * copies of the Software, and to permit persons to whom the Software is 16 * furnished to do so, subject to the following conditions: 17 * 18 * The above copyright notice and this permission notice shall be included in 19 * all copies or substantial portions of the Software. 20 * 21 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 22 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 23 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 24 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 25 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 26 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 27 * THE SOFTWARE. 28 */ 29 30 #include "qemu/osdep.h" 31 #include "qemu/datadir.h" 32 #include "qemu/memalign.h" 33 #include "qemu/guest-random.h" 34 #include "qapi/error.h" 35 #include "qapi/qapi-events-machine.h" 36 #include "qapi/qapi-events-qdev.h" 37 #include "qapi/visitor.h" 38 #include "system/system.h" 39 #include "system/hostmem.h" 40 #include "system/numa.h" 41 #include "system/tcg.h" 42 #include "system/qtest.h" 43 #include "system/reset.h" 44 #include "system/runstate.h" 45 #include "qemu/log.h" 46 #include "hw/fw-path-provider.h" 47 #include "elf.h" 48 #include "net/net.h" 49 #include "system/device_tree.h" 50 #include "system/cpus.h" 51 #include "system/hw_accel.h" 52 #include "kvm_ppc.h" 53 #include "migration/misc.h" 54 #include "migration/qemu-file-types.h" 55 #include "migration/global_state.h" 56 #include "migration/register.h" 57 #include "migration/blocker.h" 58 #include "mmu-hash64.h" 59 #include "mmu-book3s-v3.h" 60 #include "cpu-models.h" 61 #include "hw/core/cpu.h" 62 63 #include "hw/ppc/ppc.h" 64 #include "hw/loader.h" 65 66 #include "hw/ppc/fdt.h" 67 #include "hw/ppc/spapr.h" 68 #include "hw/ppc/spapr_nested.h" 69 #include "hw/ppc/spapr_vio.h" 70 #include "hw/ppc/vof.h" 71 #include "hw/qdev-properties.h" 72 #include "hw/pci-host/spapr.h" 73 #include "hw/pci/msi.h" 74 75 #include "hw/pci/pci.h" 76 #include "hw/scsi/scsi.h" 77 #include "hw/virtio/virtio-scsi.h" 78 #include "hw/virtio/vhost-scsi-common.h" 79 80 #include "exec/ram_addr.h" 81 #include "system/confidential-guest-support.h" 82 #include "hw/usb.h" 83 #include "qemu/config-file.h" 84 #include "qemu/error-report.h" 85 #include "trace.h" 86 #include "hw/nmi.h" 87 #include "hw/intc/intc.h" 88 89 #include "hw/ppc/spapr_cpu_core.h" 90 #include "hw/mem/memory-device.h" 91 #include "hw/ppc/spapr_tpm_proxy.h" 92 #include "hw/ppc/spapr_nvdimm.h" 93 #include "hw/ppc/spapr_numa.h" 94 95 #include <libfdt.h> 96 97 /* SLOF memory layout: 98 * 99 * SLOF raw image loaded at 0, copies its romfs right below the flat 100 * device-tree, then position SLOF itself 31M below that 101 * 102 * So we set FW_OVERHEAD to 40MB which should account for all of that 103 * and more 104 * 105 * We load our kernel at 4M, leaving space for SLOF initial image 106 */ 107 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 108 #define FW_MAX_SIZE 0x400000 109 #define FW_FILE_NAME "slof.bin" 110 #define FW_FILE_NAME_VOF "vof.bin" 111 #define FW_OVERHEAD 0x2800000 112 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 113 114 #define MIN_RMA_SLOF (128 * MiB) 115 116 #define PHANDLE_INTC 0x00001111 117 118 /* These two functions implement the VCPU id numbering: one to compute them 119 * all and one to identify thread 0 of a VCORE. Any change to the first one 120 * is likely to have an impact on the second one, so let's keep them close. 121 */ 122 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 123 { 124 MachineState *ms = MACHINE(spapr); 125 unsigned int smp_threads = ms->smp.threads; 126 127 assert(spapr->vsmt); 128 return 129 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 130 } 131 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 132 PowerPCCPU *cpu) 133 { 134 assert(spapr->vsmt); 135 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 136 } 137 138 int spapr_max_server_number(SpaprMachineState *spapr) 139 { 140 MachineState *ms = MACHINE(spapr); 141 142 assert(spapr->vsmt); 143 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 144 } 145 146 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 147 int smt_threads) 148 { 149 int i, ret = 0; 150 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 151 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 152 int index = spapr_get_vcpu_id(cpu); 153 154 if (cpu->compat_pvr) { 155 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 156 if (ret < 0) { 157 return ret; 158 } 159 } 160 161 /* Build interrupt servers and gservers properties */ 162 for (i = 0; i < smt_threads; i++) { 163 servers_prop[i] = cpu_to_be32(index + i); 164 /* Hack, direct the group queues back to cpu 0 */ 165 gservers_prop[i*2] = cpu_to_be32(index + i); 166 gservers_prop[i*2 + 1] = 0; 167 } 168 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 169 servers_prop, sizeof(*servers_prop) * smt_threads); 170 if (ret < 0) { 171 return ret; 172 } 173 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 174 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 175 176 return ret; 177 } 178 179 static void spapr_dt_pa_features(SpaprMachineState *spapr, 180 PowerPCCPU *cpu, 181 void *fdt, int offset) 182 { 183 /* 184 * SSO (SAO) ordering is supported on KVM and thread=single hosts, 185 * but not MTTCG, so disable it. To advertise it, a cap would have 186 * to be added, or support implemented for MTTCG. 187 * 188 * Copy/paste is not supported by TCG, so it is not advertised. KVM 189 * can execute them but it has no accelerator drivers which are usable, 190 * so there isn't much need for it anyway. 191 */ 192 193 /* These should be kept in sync with pnv */ 194 uint8_t pa_features_206[] = { 6, 0, 195 0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 }; 196 uint8_t pa_features_207[] = { 24, 0, 197 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, 198 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 199 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 200 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 201 uint8_t pa_features_300[] = { 66, 0, 202 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 203 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 204 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 205 /* 6: DS207 */ 206 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 207 /* 16: Vector */ 208 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 209 /* 18: Vec. Scalar, 20: Vec. XOR */ 210 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 211 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 212 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 213 /* 32: LE atomic, 34: EBB + ext EBB */ 214 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 215 /* 40: Radix MMU */ 216 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 217 /* 42: PM, 44: PC RA, 46: SC vec'd */ 218 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 219 /* 48: SIMD, 50: QP BFP, 52: String */ 220 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 221 /* 54: DecFP, 56: DecI, 58: SHA */ 222 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 223 /* 60: NM atomic, 62: RNG */ 224 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 225 }; 226 /* 3.1 removes SAO, HTM support */ 227 uint8_t pa_features_31[] = { 74, 0, 228 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 229 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 230 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 231 /* 6: DS207 */ 232 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 233 /* 16: Vector */ 234 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 235 /* 18: Vec. Scalar, 20: Vec. XOR */ 236 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 237 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 239 /* 32: LE atomic, 34: EBB + ext EBB */ 240 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 241 /* 40: Radix MMU */ 242 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 243 /* 42: PM, 44: PC RA, 46: SC vec'd */ 244 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 245 /* 48: SIMD, 50: QP BFP, 52: String */ 246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 247 /* 54: DecFP, 56: DecI, 58: SHA */ 248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 249 /* 60: NM atomic, 62: RNG, 64: DAWR1 (ISA 3.1) */ 250 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 251 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */ 252 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */ 253 /* 72: [P]HASHST/[P]HASHCHK */ 254 0x80, 0x00, /* 72 - 73 */ 255 }; 256 uint8_t *pa_features = NULL; 257 size_t pa_size; 258 259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 260 pa_features = pa_features_206; 261 pa_size = sizeof(pa_features_206); 262 } 263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 264 pa_features = pa_features_207; 265 pa_size = sizeof(pa_features_207); 266 } 267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 268 pa_features = pa_features_300; 269 pa_size = sizeof(pa_features_300); 270 } 271 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) { 272 pa_features = pa_features_31; 273 pa_size = sizeof(pa_features_31); 274 } 275 if (!pa_features) { 276 return; 277 } 278 279 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 280 /* 281 * Note: we keep CI large pages off by default because a 64K capable 282 * guest provisioned with large pages might otherwise try to map a qemu 283 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 284 * even if that qemu runs on a 4k host. 285 * We dd this bit back here if we are confident this is not an issue 286 */ 287 pa_features[3] |= 0x20; 288 } 289 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 290 pa_features[24] |= 0x80; /* Transactional memory support */ 291 } 292 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 293 /* Workaround for broken kernels that attempt (guest) radix 294 * mode when they can't handle it, if they see the radix bit set 295 * in pa-features. So hide it from them. */ 296 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 297 } 298 if (spapr_get_cap(spapr, SPAPR_CAP_DAWR1)) { 299 pa_features[66] |= 0x80; 300 } 301 302 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 303 } 304 305 static void spapr_dt_pi_features(SpaprMachineState *spapr, 306 PowerPCCPU *cpu, 307 void *fdt, int offset) 308 { 309 uint8_t pi_features[] = { 1, 0, 310 0x00 }; 311 312 if (kvm_enabled() && ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 313 0, cpu->compat_pvr)) { 314 /* 315 * POWER9 and later CPUs with KVM run in LPAR-per-thread mode where 316 * all threads are essentially independent CPUs, and msgsndp does not 317 * work (because it is physically-addressed) and therefore is 318 * emulated by KVM, so disable it here to ensure XIVE will be used. 319 * This is both KVM and CPU implementation-specific behaviour so a KVM 320 * cap would be cleanest, but for now this works. If KVM ever permits 321 * native msgsndp execution by guests, a cap could be added at that 322 * time. 323 */ 324 pi_features[2] |= 0x08; /* 4: No msgsndp */ 325 } 326 327 _FDT((fdt_setprop(fdt, offset, "ibm,pi-features", pi_features, 328 sizeof(pi_features)))); 329 } 330 331 static hwaddr spapr_node0_size(MachineState *machine) 332 { 333 if (machine->numa_state->num_nodes) { 334 int i; 335 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 336 if (machine->numa_state->nodes[i].node_mem) { 337 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 338 machine->ram_size); 339 } 340 } 341 } 342 return machine->ram_size; 343 } 344 345 static void add_str(GString *s, const gchar *s1) 346 { 347 g_string_append_len(s, s1, strlen(s1) + 1); 348 } 349 350 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 351 hwaddr start, hwaddr size) 352 { 353 char mem_name[32]; 354 uint64_t mem_reg_property[2]; 355 int off; 356 357 mem_reg_property[0] = cpu_to_be64(start); 358 mem_reg_property[1] = cpu_to_be64(size); 359 360 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 361 off = fdt_add_subnode(fdt, 0, mem_name); 362 _FDT(off); 363 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 364 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 365 sizeof(mem_reg_property)))); 366 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 367 return off; 368 } 369 370 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 371 { 372 MemoryDeviceInfoList *info; 373 374 for (info = list; info; info = info->next) { 375 MemoryDeviceInfo *value = info->value; 376 377 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 378 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 379 380 if (addr >= pcdimm_info->addr && 381 addr < (pcdimm_info->addr + pcdimm_info->size)) { 382 return pcdimm_info->node; 383 } 384 } 385 } 386 387 return -1; 388 } 389 390 struct sPAPRDrconfCellV2 { 391 uint32_t seq_lmbs; 392 uint64_t base_addr; 393 uint32_t drc_index; 394 uint32_t aa_index; 395 uint32_t flags; 396 } QEMU_PACKED; 397 398 typedef struct DrconfCellQueue { 399 struct sPAPRDrconfCellV2 cell; 400 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 401 } DrconfCellQueue; 402 403 static DrconfCellQueue * 404 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 405 uint32_t drc_index, uint32_t aa_index, 406 uint32_t flags) 407 { 408 DrconfCellQueue *elem; 409 410 elem = g_malloc0(sizeof(*elem)); 411 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 412 elem->cell.base_addr = cpu_to_be64(base_addr); 413 elem->cell.drc_index = cpu_to_be32(drc_index); 414 elem->cell.aa_index = cpu_to_be32(aa_index); 415 elem->cell.flags = cpu_to_be32(flags); 416 417 return elem; 418 } 419 420 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 421 int offset, MemoryDeviceInfoList *dimms) 422 { 423 MachineState *machine = MACHINE(spapr); 424 uint8_t *int_buf, *cur_index; 425 int ret; 426 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 427 uint64_t addr, cur_addr, size; 428 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 429 uint64_t mem_end = machine->device_memory->base + 430 memory_region_size(&machine->device_memory->mr); 431 uint32_t node, buf_len, nr_entries = 0; 432 SpaprDrc *drc; 433 DrconfCellQueue *elem, *next; 434 MemoryDeviceInfoList *info; 435 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 436 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 437 438 /* Entry to cover RAM and the gap area */ 439 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 440 SPAPR_LMB_FLAGS_RESERVED | 441 SPAPR_LMB_FLAGS_DRC_INVALID); 442 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 443 nr_entries++; 444 445 cur_addr = machine->device_memory->base; 446 for (info = dimms; info; info = info->next) { 447 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 448 449 addr = di->addr; 450 size = di->size; 451 node = di->node; 452 453 /* 454 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 455 * area is marked hotpluggable in the next iteration for the bigger 456 * chunk including the NVDIMM occupied area. 457 */ 458 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 459 continue; 460 461 /* Entry for hot-pluggable area */ 462 if (cur_addr < addr) { 463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 464 g_assert(drc); 465 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 466 cur_addr, spapr_drc_index(drc), -1, 0); 467 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 468 nr_entries++; 469 } 470 471 /* Entry for DIMM */ 472 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 473 g_assert(drc); 474 elem = spapr_get_drconf_cell(size / lmb_size, addr, 475 spapr_drc_index(drc), node, 476 (SPAPR_LMB_FLAGS_ASSIGNED | 477 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 478 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 479 nr_entries++; 480 cur_addr = addr + size; 481 } 482 483 /* Entry for remaining hotpluggable area */ 484 if (cur_addr < mem_end) { 485 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 486 g_assert(drc); 487 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 488 cur_addr, spapr_drc_index(drc), -1, 0); 489 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 490 nr_entries++; 491 } 492 493 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 494 int_buf = cur_index = g_malloc0(buf_len); 495 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 496 cur_index += sizeof(nr_entries); 497 498 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 499 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 500 cur_index += sizeof(elem->cell); 501 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 502 g_free(elem); 503 } 504 505 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 506 g_free(int_buf); 507 if (ret < 0) { 508 return -1; 509 } 510 return 0; 511 } 512 513 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 514 int offset, MemoryDeviceInfoList *dimms) 515 { 516 MachineState *machine = MACHINE(spapr); 517 int i, ret; 518 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 519 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 520 uint32_t nr_lmbs = (machine->device_memory->base + 521 memory_region_size(&machine->device_memory->mr)) / 522 lmb_size; 523 uint32_t *int_buf, *cur_index, buf_len; 524 525 /* 526 * Allocate enough buffer size to fit in ibm,dynamic-memory 527 */ 528 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 529 cur_index = int_buf = g_malloc0(buf_len); 530 int_buf[0] = cpu_to_be32(nr_lmbs); 531 cur_index++; 532 for (i = 0; i < nr_lmbs; i++) { 533 uint64_t addr = i * lmb_size; 534 uint32_t *dynamic_memory = cur_index; 535 536 if (i >= device_lmb_start) { 537 SpaprDrc *drc; 538 539 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 540 g_assert(drc); 541 542 dynamic_memory[0] = cpu_to_be32(addr >> 32); 543 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 544 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 545 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 546 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 547 if (memory_region_present(get_system_memory(), addr)) { 548 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 549 } else { 550 dynamic_memory[5] = cpu_to_be32(0); 551 } 552 } else { 553 /* 554 * LMB information for RMA, boot time RAM and gap b/n RAM and 555 * device memory region -- all these are marked as reserved 556 * and as having no valid DRC. 557 */ 558 dynamic_memory[0] = cpu_to_be32(addr >> 32); 559 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 560 dynamic_memory[2] = cpu_to_be32(0); 561 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 562 dynamic_memory[4] = cpu_to_be32(-1); 563 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 564 SPAPR_LMB_FLAGS_DRC_INVALID); 565 } 566 567 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 568 } 569 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 570 g_free(int_buf); 571 if (ret < 0) { 572 return -1; 573 } 574 return 0; 575 } 576 577 /* 578 * Adds ibm,dynamic-reconfiguration-memory node. 579 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 580 * of this device tree node. 581 */ 582 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 583 void *fdt) 584 { 585 MachineState *machine = MACHINE(spapr); 586 int ret, offset; 587 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 588 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 589 cpu_to_be32(lmb_size & 0xffffffff)}; 590 MemoryDeviceInfoList *dimms = NULL; 591 592 /* Don't create the node if there is no device memory. */ 593 if (!machine->device_memory) { 594 return 0; 595 } 596 597 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 598 599 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 600 sizeof(prop_lmb_size)); 601 if (ret < 0) { 602 return ret; 603 } 604 605 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 606 if (ret < 0) { 607 return ret; 608 } 609 610 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 611 if (ret < 0) { 612 return ret; 613 } 614 615 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 616 dimms = qmp_memory_device_list(); 617 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 618 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 619 } else { 620 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 621 } 622 qapi_free_MemoryDeviceInfoList(dimms); 623 624 if (ret < 0) { 625 return ret; 626 } 627 628 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 629 630 return ret; 631 } 632 633 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 634 { 635 MachineState *machine = MACHINE(spapr); 636 hwaddr mem_start, node_size; 637 int i, nb_nodes = machine->numa_state->num_nodes; 638 NodeInfo *nodes = machine->numa_state->nodes; 639 640 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 641 if (!nodes[i].node_mem) { 642 continue; 643 } 644 if (mem_start >= machine->ram_size) { 645 node_size = 0; 646 } else { 647 node_size = nodes[i].node_mem; 648 if (node_size > machine->ram_size - mem_start) { 649 node_size = machine->ram_size - mem_start; 650 } 651 } 652 if (!mem_start) { 653 /* spapr_machine_init() checks for rma_size <= node0_size 654 * already */ 655 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 656 mem_start += spapr->rma_size; 657 node_size -= spapr->rma_size; 658 } 659 for ( ; node_size; ) { 660 hwaddr sizetmp = pow2floor(node_size); 661 662 /* mem_start != 0 here */ 663 if (ctzl(mem_start) < ctzl(sizetmp)) { 664 sizetmp = 1ULL << ctzl(mem_start); 665 } 666 667 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 668 node_size -= sizetmp; 669 mem_start += sizetmp; 670 } 671 } 672 673 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 674 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 675 int ret; 676 677 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 678 if (ret) { 679 return ret; 680 } 681 } 682 683 return 0; 684 } 685 686 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 687 SpaprMachineState *spapr) 688 { 689 MachineState *ms = MACHINE(spapr); 690 PowerPCCPU *cpu = POWERPC_CPU(cs); 691 CPUPPCState *env = &cpu->env; 692 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 693 int index = spapr_get_vcpu_id(cpu); 694 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 695 0xffffffff, 0xffffffff}; 696 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 697 : SPAPR_TIMEBASE_FREQ; 698 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 699 uint32_t page_sizes_prop[64]; 700 size_t page_sizes_prop_size; 701 unsigned int smp_threads = ms->smp.threads; 702 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 703 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 704 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 705 SpaprDrc *drc; 706 int drc_index; 707 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 708 int i; 709 710 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, env->core_index); 711 if (drc) { 712 drc_index = spapr_drc_index(drc); 713 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 714 } 715 716 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 717 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 718 719 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 720 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 721 env->dcache_line_size))); 722 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 723 env->dcache_line_size))); 724 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 725 env->icache_line_size))); 726 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 727 env->icache_line_size))); 728 729 if (pcc->l1_dcache_size) { 730 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 731 pcc->l1_dcache_size))); 732 } else { 733 warn_report("Unknown L1 dcache size for cpu"); 734 } 735 if (pcc->l1_icache_size) { 736 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 737 pcc->l1_icache_size))); 738 } else { 739 warn_report("Unknown L1 icache size for cpu"); 740 } 741 742 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 743 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 744 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 745 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 746 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 747 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 748 749 if (ppc_has_spr(cpu, SPR_PURR)) { 750 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 751 } 752 if (ppc_has_spr(cpu, SPR_PURR)) { 753 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 754 } 755 756 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 757 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 758 segs, sizeof(segs)))); 759 } 760 761 /* Advertise VSX (vector extensions) if available 762 * 1 == VMX / Altivec available 763 * 2 == VSX available 764 * 765 * Only CPUs for which we create core types in spapr_cpu_core.c 766 * are possible, and all of those have VMX */ 767 if (env->insns_flags & PPC_ALTIVEC) { 768 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 769 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 770 } else { 771 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 772 } 773 } 774 775 /* Advertise DFP (Decimal Floating Point) if available 776 * 0 / no property == no DFP 777 * 1 == DFP available */ 778 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 779 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 780 } 781 782 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 783 sizeof(page_sizes_prop)); 784 if (page_sizes_prop_size) { 785 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 786 page_sizes_prop, page_sizes_prop_size))); 787 } 788 789 spapr_dt_pa_features(spapr, cpu, fdt, offset); 790 791 spapr_dt_pi_features(spapr, cpu, fdt, offset); 792 793 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 794 cs->cpu_index / vcpus_per_socket))); 795 796 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 797 pft_size_prop, sizeof(pft_size_prop)))); 798 799 if (ms->numa_state->num_nodes > 1) { 800 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 801 } 802 803 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 804 805 if (pcc->radix_page_info) { 806 for (i = 0; i < pcc->radix_page_info->count; i++) { 807 radix_AP_encodings[i] = 808 cpu_to_be32(pcc->radix_page_info->entries[i]); 809 } 810 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 811 radix_AP_encodings, 812 pcc->radix_page_info->count * 813 sizeof(radix_AP_encodings[0])))); 814 } 815 816 /* 817 * We set this property to let the guest know that it can use the large 818 * decrementer and its width in bits. 819 */ 820 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 821 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 822 pcc->lrg_decr_bits))); 823 } 824 825 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs, 826 int cpus_offset) 827 { 828 PowerPCCPU *cpu = POWERPC_CPU(cs); 829 int index = spapr_get_vcpu_id(cpu); 830 DeviceClass *dc = DEVICE_GET_CLASS(cs); 831 g_autofree char *nodename = NULL; 832 int offset; 833 834 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 835 return; 836 } 837 838 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 839 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 840 _FDT(offset); 841 spapr_dt_cpu(cs, fdt, offset, spapr); 842 } 843 844 845 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 846 { 847 CPUState **rev; 848 CPUState *cs; 849 int n_cpus; 850 int cpus_offset; 851 int i; 852 853 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 854 _FDT(cpus_offset); 855 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 856 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 857 858 /* 859 * We walk the CPUs in reverse order to ensure that CPU DT nodes 860 * created by fdt_add_subnode() end up in the right order in FDT 861 * for the guest kernel the enumerate the CPUs correctly. 862 * 863 * The CPU list cannot be traversed in reverse order, so we need 864 * to do extra work. 865 */ 866 n_cpus = 0; 867 rev = NULL; 868 CPU_FOREACH(cs) { 869 rev = g_renew(CPUState *, rev, n_cpus + 1); 870 rev[n_cpus++] = cs; 871 } 872 873 for (i = n_cpus - 1; i >= 0; i--) { 874 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset); 875 } 876 877 g_free(rev); 878 } 879 880 static int spapr_dt_rng(void *fdt) 881 { 882 int node; 883 int ret; 884 885 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 886 if (node <= 0) { 887 return -1; 888 } 889 ret = fdt_setprop_string(fdt, node, "device_type", 890 "ibm,platform-facilities"); 891 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 892 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 893 894 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 895 if (node <= 0) { 896 return -1; 897 } 898 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 899 900 return ret ? -1 : 0; 901 } 902 903 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 904 { 905 MachineState *ms = MACHINE(spapr); 906 int rtas; 907 GString *hypertas = g_string_sized_new(256); 908 GString *qemu_hypertas = g_string_sized_new(256); 909 uint32_t lrdr_capacity[] = { 910 0, 911 0, 912 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 913 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 914 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 915 }; 916 917 /* Do we have device memory? */ 918 if (MACHINE(spapr)->device_memory) { 919 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 920 memory_region_size(&MACHINE(spapr)->device_memory->mr); 921 922 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 923 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 924 } 925 926 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 927 928 /* hypertas */ 929 add_str(hypertas, "hcall-pft"); 930 add_str(hypertas, "hcall-term"); 931 add_str(hypertas, "hcall-dabr"); 932 add_str(hypertas, "hcall-interrupt"); 933 add_str(hypertas, "hcall-tce"); 934 add_str(hypertas, "hcall-vio"); 935 add_str(hypertas, "hcall-splpar"); 936 add_str(hypertas, "hcall-join"); 937 add_str(hypertas, "hcall-bulk"); 938 add_str(hypertas, "hcall-set-mode"); 939 add_str(hypertas, "hcall-sprg0"); 940 add_str(hypertas, "hcall-copy"); 941 add_str(hypertas, "hcall-debug"); 942 add_str(hypertas, "hcall-vphn"); 943 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 944 add_str(hypertas, "hcall-rpt-invalidate"); 945 } 946 947 add_str(qemu_hypertas, "hcall-memop1"); 948 949 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 950 add_str(hypertas, "hcall-multi-tce"); 951 } 952 953 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 954 add_str(hypertas, "hcall-hpt-resize"); 955 } 956 957 add_str(hypertas, "hcall-watchdog"); 958 959 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 960 hypertas->str, hypertas->len)); 961 g_string_free(hypertas, TRUE); 962 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 963 qemu_hypertas->str, qemu_hypertas->len)); 964 g_string_free(qemu_hypertas, TRUE); 965 966 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 967 968 /* 969 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 970 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 971 * 972 * The system reset requirements are driven by existing Linux and PowerVM 973 * implementation which (contrary to PAPR) saves r3 in the error log 974 * structure like machine check, so Linux expects to find the saved r3 975 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 976 * does not look at the error value). 977 * 978 * System reset interrupts are not subject to interlock like machine 979 * check, so this memory area could be corrupted if the sreset is 980 * interrupted by a machine check (or vice versa) if it was shared. To 981 * prevent this, system reset uses per-CPU areas for the sreset save 982 * area. A system reset that interrupts a system reset handler could 983 * still overwrite this area, but Linux doesn't try to recover in that 984 * case anyway. 985 * 986 * The extra 8 bytes is required because Linux's FWNMI error log check 987 * is off-by-one. 988 * 989 * RTAS_MIN_SIZE is required for the RTAS blob itself. 990 */ 991 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 992 RTAS_ERROR_LOG_MAX + 993 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 994 sizeof(uint64_t))); 995 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 996 RTAS_ERROR_LOG_MAX)); 997 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 998 RTAS_EVENT_SCAN_RATE)); 999 1000 g_assert(msi_nonbroken); 1001 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1002 1003 /* 1004 * According to PAPR, rtas ibm,os-term does not guarantee a return 1005 * back to the guest cpu. 1006 * 1007 * While an additional ibm,extended-os-term property indicates 1008 * that rtas call return will always occur. Set this property. 1009 */ 1010 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1011 1012 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1013 lrdr_capacity, sizeof(lrdr_capacity))); 1014 1015 spapr_dt_rtas_tokens(fdt, rtas); 1016 } 1017 1018 /* 1019 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1020 * and the XIVE features that the guest may request and thus the valid 1021 * values for bytes 23..26 of option vector 5: 1022 */ 1023 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1024 int chosen) 1025 { 1026 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1027 1028 char val[2 * 4] = { 1029 23, 0x00, /* XICS / XIVE mode */ 1030 24, 0x00, /* Hash/Radix, filled in below. */ 1031 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1032 26, 0x40, /* Radix options: GTSE == yes. */ 1033 }; 1034 1035 if (spapr->irq->xics && spapr->irq->xive) { 1036 val[1] = SPAPR_OV5_XIVE_BOTH; 1037 } else if (spapr->irq->xive) { 1038 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1039 } else { 1040 assert(spapr->irq->xics); 1041 val[1] = SPAPR_OV5_XIVE_LEGACY; 1042 } 1043 1044 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1045 first_ppc_cpu->compat_pvr)) { 1046 /* 1047 * If we're in a pre POWER9 compat mode then the guest should 1048 * do hash and use the legacy interrupt mode 1049 */ 1050 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1051 val[3] = 0x00; /* Hash */ 1052 spapr_check_mmu_mode(false); 1053 } else if (kvm_enabled()) { 1054 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1055 val[3] = 0x80; /* OV5_MMU_BOTH */ 1056 } else if (kvmppc_has_cap_mmu_radix()) { 1057 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1058 } else { 1059 val[3] = 0x00; /* Hash */ 1060 } 1061 } else { 1062 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1063 val[3] = 0xC0; 1064 } 1065 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1066 val, sizeof(val))); 1067 } 1068 1069 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1070 { 1071 MachineState *machine = MACHINE(spapr); 1072 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1073 int chosen; 1074 1075 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1076 1077 if (reset) { 1078 const char *boot_device = spapr->boot_device; 1079 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1080 size_t cb = 0; 1081 g_autofree char *bootlist = get_boot_devices_list(&cb); 1082 1083 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1084 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1085 machine->kernel_cmdline)); 1086 } 1087 1088 if (spapr->initrd_size) { 1089 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1090 spapr->initrd_base)); 1091 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1092 spapr->initrd_base + spapr->initrd_size)); 1093 } 1094 1095 if (spapr->kernel_size) { 1096 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1097 cpu_to_be64(spapr->kernel_size) }; 1098 1099 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1100 &kprop, sizeof(kprop))); 1101 if (spapr->kernel_le) { 1102 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1103 } 1104 } 1105 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1106 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1107 } 1108 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1109 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1110 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1111 1112 if (cb && bootlist) { 1113 int i; 1114 1115 for (i = 0; i < cb; i++) { 1116 if (bootlist[i] == '\n') { 1117 bootlist[i] = ' '; 1118 } 1119 } 1120 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1121 } 1122 1123 if (boot_device && strlen(boot_device)) { 1124 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1125 } 1126 1127 if (spapr->want_stdout_path && stdout_path) { 1128 /* 1129 * "linux,stdout-path" and "stdout" properties are 1130 * deprecated by linux kernel. New platforms should only 1131 * use the "stdout-path" property. Set the new property 1132 * and continue using older property to remain compatible 1133 * with the existing firmware. 1134 */ 1135 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1136 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1137 } 1138 1139 /* 1140 * We can deal with BAR reallocation just fine, advertise it 1141 * to the guest 1142 */ 1143 if (smc->linux_pci_probe) { 1144 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1145 } 1146 1147 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1148 } 1149 1150 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); 1151 1152 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1153 } 1154 1155 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1156 { 1157 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1158 * KVM to work under pHyp with some guest co-operation */ 1159 int hypervisor; 1160 uint8_t hypercall[16]; 1161 1162 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1163 /* indicate KVM hypercall interface */ 1164 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1165 if (kvmppc_has_cap_fixup_hcalls()) { 1166 /* 1167 * Older KVM versions with older guest kernels were broken 1168 * with the magic page, don't allow the guest to map it. 1169 */ 1170 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall, 1171 sizeof(hypercall))) { 1172 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1173 hypercall, sizeof(hypercall))); 1174 } 1175 } 1176 } 1177 1178 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1179 { 1180 MachineState *machine = MACHINE(spapr); 1181 MachineClass *mc = MACHINE_GET_CLASS(machine); 1182 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1183 uint32_t root_drc_type_mask = 0; 1184 int ret; 1185 void *fdt; 1186 SpaprPhbState *phb; 1187 char *buf; 1188 1189 fdt = g_malloc0(space); 1190 _FDT((fdt_create_empty_tree(fdt, space))); 1191 1192 /* Root node */ 1193 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1194 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1195 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1196 1197 /* Guest UUID & Name*/ 1198 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1199 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1200 if (qemu_uuid_set) { 1201 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1202 } 1203 g_free(buf); 1204 1205 if (qemu_get_vm_name()) { 1206 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1207 qemu_get_vm_name())); 1208 } 1209 1210 /* Host Model & Serial Number */ 1211 if (spapr->host_model) { 1212 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1213 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1214 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1215 g_free(buf); 1216 } 1217 1218 if (spapr->host_serial) { 1219 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1220 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1221 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1222 g_free(buf); 1223 } 1224 1225 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1226 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1227 1228 /* /interrupt controller */ 1229 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1230 1231 ret = spapr_dt_memory(spapr, fdt); 1232 if (ret < 0) { 1233 error_report("couldn't setup memory nodes in fdt"); 1234 exit(1); 1235 } 1236 1237 /* /vdevice */ 1238 spapr_dt_vdevice(spapr->vio_bus, fdt); 1239 1240 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1241 ret = spapr_dt_rng(fdt); 1242 if (ret < 0) { 1243 error_report("could not set up rng device in the fdt"); 1244 exit(1); 1245 } 1246 } 1247 1248 QLIST_FOREACH(phb, &spapr->phbs, list) { 1249 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1250 if (ret < 0) { 1251 error_report("couldn't setup PCI devices in fdt"); 1252 exit(1); 1253 } 1254 } 1255 1256 spapr_dt_cpus(fdt, spapr); 1257 1258 /* ibm,drc-indexes and friends */ 1259 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1260 if (smc->dr_phb_enabled) { 1261 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1262 } 1263 if (mc->nvdimm_supported) { 1264 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1265 } 1266 if (root_drc_type_mask) { 1267 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1268 } 1269 1270 if (mc->has_hotpluggable_cpus) { 1271 int offset = fdt_path_offset(fdt, "/cpus"); 1272 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1273 if (ret < 0) { 1274 error_report("Couldn't set up CPU DR device tree properties"); 1275 exit(1); 1276 } 1277 } 1278 1279 /* /event-sources */ 1280 spapr_dt_events(spapr, fdt); 1281 1282 /* /rtas */ 1283 spapr_dt_rtas(spapr, fdt); 1284 1285 /* /chosen */ 1286 spapr_dt_chosen(spapr, fdt, reset); 1287 1288 /* /hypervisor */ 1289 if (kvm_enabled()) { 1290 spapr_dt_hypervisor(spapr, fdt); 1291 } 1292 1293 /* Build memory reserve map */ 1294 if (reset) { 1295 if (spapr->kernel_size) { 1296 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1297 spapr->kernel_size))); 1298 } 1299 if (spapr->initrd_size) { 1300 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1301 spapr->initrd_size))); 1302 } 1303 } 1304 1305 /* NVDIMM devices */ 1306 if (mc->nvdimm_supported) { 1307 spapr_dt_persistent_memory(spapr, fdt); 1308 } 1309 1310 return fdt; 1311 } 1312 1313 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1314 { 1315 SpaprMachineState *spapr = opaque; 1316 1317 return (addr & 0x0fffffff) + spapr->kernel_addr; 1318 } 1319 1320 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1321 PowerPCCPU *cpu) 1322 { 1323 CPUPPCState *env = &cpu->env; 1324 1325 /* The TCG path should also be holding the BQL at this point */ 1326 g_assert(bql_locked()); 1327 1328 g_assert(!vhyp_cpu_in_nested(cpu)); 1329 1330 if (FIELD_EX64(env->msr, MSR, PR)) { 1331 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1332 env->gpr[3] = H_PRIVILEGE; 1333 } else { 1334 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1335 } 1336 } 1337 1338 struct LPCRSyncState { 1339 target_ulong value; 1340 target_ulong mask; 1341 }; 1342 1343 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1344 { 1345 struct LPCRSyncState *s = arg.host_ptr; 1346 PowerPCCPU *cpu = POWERPC_CPU(cs); 1347 CPUPPCState *env = &cpu->env; 1348 target_ulong lpcr; 1349 1350 cpu_synchronize_state(cs); 1351 lpcr = env->spr[SPR_LPCR]; 1352 lpcr &= ~s->mask; 1353 lpcr |= s->value; 1354 ppc_store_lpcr(cpu, lpcr); 1355 } 1356 1357 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1358 { 1359 CPUState *cs; 1360 struct LPCRSyncState s = { 1361 .value = value, 1362 .mask = mask 1363 }; 1364 CPU_FOREACH(cs) { 1365 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1366 } 1367 } 1368 1369 /* May be used when the machine is not running */ 1370 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1371 { 1372 CPUState *cs; 1373 CPU_FOREACH(cs) { 1374 PowerPCCPU *cpu = POWERPC_CPU(cs); 1375 CPUPPCState *env = &cpu->env; 1376 target_ulong lpcr; 1377 1378 lpcr = env->spr[SPR_LPCR]; 1379 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1380 ppc_store_lpcr(cpu, lpcr); 1381 } 1382 } 1383 1384 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1385 target_ulong lpid, ppc_v3_pate_t *entry) 1386 { 1387 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1388 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1389 1390 if (!spapr_cpu->in_nested) { 1391 assert(lpid == 0); 1392 1393 /* Copy PATE1:GR into PATE0:HR */ 1394 entry->dw0 = spapr->patb_entry & PATE0_HR; 1395 entry->dw1 = spapr->patb_entry; 1396 return true; 1397 } else { 1398 if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) { 1399 return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry); 1400 } else if (spapr_nested_api(spapr) == NESTED_API_PAPR) { 1401 return spapr_get_pate_nested_papr(spapr, cpu, lpid, entry); 1402 } else { 1403 g_assert_not_reached(); 1404 } 1405 } 1406 } 1407 1408 static uint64_t *hpte_get_ptr(SpaprMachineState *s, unsigned index) 1409 { 1410 uint64_t *table = s->htab; 1411 1412 return &table[2 * index]; 1413 } 1414 1415 static bool hpte_is_valid(SpaprMachineState *s, unsigned index) 1416 { 1417 return ldq_be_p(hpte_get_ptr(s, index)) & HPTE64_V_VALID; 1418 } 1419 1420 static bool hpte_is_dirty(SpaprMachineState *s, unsigned index) 1421 { 1422 return ldq_be_p(hpte_get_ptr(s, index)) & HPTE64_V_HPTE_DIRTY; 1423 } 1424 1425 static void hpte_set_clean(SpaprMachineState *s, unsigned index) 1426 { 1427 stq_be_p(hpte_get_ptr(s, index), 1428 ldq_be_p(hpte_get_ptr(s, index)) & ~HPTE64_V_HPTE_DIRTY); 1429 } 1430 1431 static void hpte_set_dirty(SpaprMachineState *s, unsigned index) 1432 { 1433 stq_be_p(hpte_get_ptr(s, index), 1434 ldq_be_p(hpte_get_ptr(s, index)) | HPTE64_V_HPTE_DIRTY); 1435 } 1436 1437 /* 1438 * Get the fd to access the kernel htab, re-opening it if necessary 1439 */ 1440 static int get_htab_fd(SpaprMachineState *spapr) 1441 { 1442 Error *local_err = NULL; 1443 1444 if (spapr->htab_fd >= 0) { 1445 return spapr->htab_fd; 1446 } 1447 1448 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1449 if (spapr->htab_fd < 0) { 1450 error_report_err(local_err); 1451 } 1452 1453 return spapr->htab_fd; 1454 } 1455 1456 void close_htab_fd(SpaprMachineState *spapr) 1457 { 1458 if (spapr->htab_fd >= 0) { 1459 close(spapr->htab_fd); 1460 } 1461 spapr->htab_fd = -1; 1462 } 1463 1464 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1465 { 1466 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1467 1468 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1469 } 1470 1471 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1472 { 1473 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1474 1475 assert(kvm_enabled()); 1476 1477 if (!spapr->htab) { 1478 return 0; 1479 } 1480 1481 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1482 } 1483 1484 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1485 hwaddr ptex, int n) 1486 { 1487 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1488 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1489 1490 if (!spapr->htab) { 1491 /* 1492 * HTAB is controlled by KVM. Fetch into temporary buffer 1493 */ 1494 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1495 kvmppc_read_hptes(hptes, ptex, n); 1496 return hptes; 1497 } 1498 1499 /* 1500 * HTAB is controlled by QEMU. Just point to the internally 1501 * accessible PTEG. 1502 */ 1503 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1504 } 1505 1506 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1507 const ppc_hash_pte64_t *hptes, 1508 hwaddr ptex, int n) 1509 { 1510 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1511 1512 if (!spapr->htab) { 1513 g_free((void *)hptes); 1514 } 1515 1516 /* Nothing to do for qemu managed HPT */ 1517 } 1518 1519 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1520 uint64_t pte0, uint64_t pte1) 1521 { 1522 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1523 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1524 1525 if (!spapr->htab) { 1526 kvmppc_write_hpte(ptex, pte0, pte1); 1527 } else { 1528 if (pte0 & HPTE64_V_VALID) { 1529 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1530 /* 1531 * When setting valid, we write PTE1 first. This ensures 1532 * proper synchronization with the reading code in 1533 * ppc_hash64_pteg_search() 1534 */ 1535 smp_wmb(); 1536 stq_p(spapr->htab + offset, pte0); 1537 } else { 1538 stq_p(spapr->htab + offset, pte0); 1539 /* 1540 * When clearing it we set PTE0 first. This ensures proper 1541 * synchronization with the reading code in 1542 * ppc_hash64_pteg_search() 1543 */ 1544 smp_wmb(); 1545 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1546 } 1547 } 1548 } 1549 1550 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1551 uint64_t pte1) 1552 { 1553 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1554 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1555 1556 if (!spapr->htab) { 1557 /* There should always be a hash table when this is called */ 1558 error_report("spapr_hpte_set_c called with no hash table !"); 1559 return; 1560 } 1561 1562 /* The HW performs a non-atomic byte update */ 1563 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1564 } 1565 1566 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1567 uint64_t pte1) 1568 { 1569 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1570 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1571 1572 if (!spapr->htab) { 1573 /* There should always be a hash table when this is called */ 1574 error_report("spapr_hpte_set_r called with no hash table !"); 1575 return; 1576 } 1577 1578 /* The HW performs a non-atomic byte update */ 1579 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1580 } 1581 1582 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1583 { 1584 int shift; 1585 1586 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1587 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1588 * that's much more than is needed for Linux guests */ 1589 shift = ctz64(pow2ceil(ramsize)) - 7; 1590 shift = MAX(shift, 18); /* Minimum architected size */ 1591 shift = MIN(shift, 46); /* Maximum architected size */ 1592 return shift; 1593 } 1594 1595 void spapr_free_hpt(SpaprMachineState *spapr) 1596 { 1597 qemu_vfree(spapr->htab); 1598 spapr->htab = NULL; 1599 spapr->htab_shift = 0; 1600 close_htab_fd(spapr); 1601 } 1602 1603 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1604 { 1605 ERRP_GUARD(); 1606 long rc; 1607 1608 /* Clean up any HPT info from a previous boot */ 1609 spapr_free_hpt(spapr); 1610 1611 rc = kvmppc_reset_htab(shift); 1612 1613 if (rc == -EOPNOTSUPP) { 1614 error_setg(errp, "HPT not supported in nested guests"); 1615 return -EOPNOTSUPP; 1616 } 1617 1618 if (rc < 0) { 1619 /* kernel-side HPT needed, but couldn't allocate one */ 1620 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1621 shift); 1622 error_append_hint(errp, "Try smaller maxmem?\n"); 1623 return -errno; 1624 } else if (rc > 0) { 1625 /* kernel-side HPT allocated */ 1626 if (rc != shift) { 1627 error_setg(errp, 1628 "Requested order %d HPT, but kernel allocated order %ld", 1629 shift, rc); 1630 error_append_hint(errp, "Try smaller maxmem?\n"); 1631 return -ENOSPC; 1632 } 1633 1634 spapr->htab_shift = shift; 1635 spapr->htab = NULL; 1636 } else { 1637 /* kernel-side HPT not needed, allocate in userspace instead */ 1638 size_t size = 1ULL << shift; 1639 int i; 1640 1641 spapr->htab = qemu_memalign(size, size); 1642 memset(spapr->htab, 0, size); 1643 spapr->htab_shift = shift; 1644 1645 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1646 hpte_set_dirty(spapr, i); 1647 } 1648 } 1649 /* We're setting up a hash table, so that means we're not radix */ 1650 spapr->patb_entry = 0; 1651 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1652 return 0; 1653 } 1654 1655 void spapr_setup_hpt(SpaprMachineState *spapr) 1656 { 1657 int hpt_shift; 1658 1659 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1660 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1661 } else { 1662 uint64_t current_ram_size; 1663 1664 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1665 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1666 } 1667 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1668 1669 if (kvm_enabled()) { 1670 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1671 1672 /* Check our RMA fits in the possible VRMA */ 1673 if (vrma_limit < spapr->rma_size) { 1674 error_report("Unable to create %" HWADDR_PRIu 1675 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1676 spapr->rma_size / MiB, vrma_limit / MiB); 1677 exit(EXIT_FAILURE); 1678 } 1679 } 1680 } 1681 1682 void spapr_check_mmu_mode(bool guest_radix) 1683 { 1684 if (guest_radix) { 1685 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1686 error_report("Guest requested unavailable MMU mode (radix)."); 1687 exit(EXIT_FAILURE); 1688 } 1689 } else { 1690 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1691 && !kvmppc_has_cap_mmu_hash_v3()) { 1692 error_report("Guest requested unavailable MMU mode (hash)."); 1693 exit(EXIT_FAILURE); 1694 } 1695 } 1696 } 1697 1698 static void spapr_machine_reset(MachineState *machine, ResetType type) 1699 { 1700 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1701 PowerPCCPU *first_ppc_cpu; 1702 hwaddr fdt_addr; 1703 void *fdt; 1704 int rc; 1705 1706 if (type != RESET_TYPE_SNAPSHOT_LOAD) { 1707 /* 1708 * Record-replay snapshot load must not consume random, this was 1709 * already replayed from initial machine reset. 1710 */ 1711 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); 1712 } 1713 1714 if (machine->cgs) { 1715 confidential_guest_kvm_reset(machine->cgs, &error_fatal); 1716 } 1717 spapr_caps_apply(spapr); 1718 spapr_nested_reset(spapr); 1719 1720 first_ppc_cpu = POWERPC_CPU(first_cpu); 1721 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1722 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1723 spapr->max_compat_pvr)) { 1724 /* 1725 * If using KVM with radix mode available, VCPUs can be started 1726 * without a HPT because KVM will start them in radix mode. 1727 * Set the GR bit in PATE so that we know there is no HPT. 1728 */ 1729 spapr->patb_entry = PATE1_GR; 1730 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1731 } else { 1732 spapr_setup_hpt(spapr); 1733 } 1734 1735 qemu_devices_reset(type); 1736 1737 spapr_ovec_cleanup(spapr->ov5_cas); 1738 spapr->ov5_cas = spapr_ovec_new(); 1739 1740 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1741 1742 /* 1743 * This is fixing some of the default configuration of the XIVE 1744 * devices. To be called after the reset of the machine devices. 1745 */ 1746 spapr_irq_reset(spapr, &error_fatal); 1747 1748 /* 1749 * There is no CAS under qtest. Simulate one to please the code that 1750 * depends on spapr->ov5_cas. This is especially needed to test device 1751 * unplug, so we do that before resetting the DRCs. 1752 */ 1753 if (qtest_enabled()) { 1754 spapr_ovec_cleanup(spapr->ov5_cas); 1755 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1756 } 1757 1758 spapr_nvdimm_finish_flushes(); 1759 1760 /* DRC reset may cause a device to be unplugged. This will cause troubles 1761 * if this device is used by another device (eg, a running vhost backend 1762 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1763 * situations, we reset DRCs after all devices have been reset. 1764 */ 1765 spapr_drc_reset_all(spapr); 1766 1767 spapr_clear_pending_events(spapr); 1768 1769 /* 1770 * We place the device tree just below either the top of the RMA, 1771 * or just below 2GB, whichever is lower, so that it can be 1772 * processed with 32-bit real mode code if necessary 1773 */ 1774 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1775 1776 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1777 if (spapr->vof) { 1778 spapr_vof_reset(spapr, fdt, &error_fatal); 1779 /* 1780 * Do not pack the FDT as the client may change properties. 1781 * VOF client does not expect the FDT so we do not load it to the VM. 1782 */ 1783 } else { 1784 rc = fdt_pack(fdt); 1785 /* Should only fail if we've built a corrupted tree */ 1786 assert(rc == 0); 1787 1788 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1789 0, fdt_addr, 0); 1790 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1791 } 1792 1793 g_free(spapr->fdt_blob); 1794 spapr->fdt_size = fdt_totalsize(fdt); 1795 spapr->fdt_initial_size = spapr->fdt_size; 1796 spapr->fdt_blob = fdt; 1797 1798 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1799 machine->fdt = fdt; 1800 1801 /* Set up the entry state */ 1802 first_ppc_cpu->env.gpr[5] = 0; 1803 1804 spapr->fwnmi_system_reset_addr = -1; 1805 spapr->fwnmi_machine_check_addr = -1; 1806 spapr->fwnmi_machine_check_interlock = -1; 1807 1808 /* Signal all vCPUs waiting on this condition */ 1809 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1810 1811 migrate_del_blocker(&spapr->fwnmi_migration_blocker); 1812 } 1813 1814 static void spapr_create_nvram(SpaprMachineState *spapr) 1815 { 1816 DeviceState *dev = qdev_new("spapr-nvram"); 1817 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1818 1819 if (dinfo) { 1820 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1821 &error_fatal); 1822 } 1823 1824 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1825 1826 spapr->nvram = (struct SpaprNvram *)dev; 1827 } 1828 1829 static void spapr_rtc_create(SpaprMachineState *spapr) 1830 { 1831 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1832 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1833 &error_fatal, NULL); 1834 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1835 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1836 "date"); 1837 } 1838 1839 /* Returns whether we want to use VGA or not */ 1840 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1841 { 1842 vga_interface_created = true; 1843 switch (vga_interface_type) { 1844 case VGA_NONE: 1845 return false; 1846 case VGA_DEVICE: 1847 return true; 1848 case VGA_STD: 1849 case VGA_VIRTIO: 1850 case VGA_CIRRUS: 1851 return pci_vga_init(pci_bus) != NULL; 1852 default: 1853 error_setg(errp, 1854 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1855 return false; 1856 } 1857 } 1858 1859 static int spapr_pre_load(void *opaque) 1860 { 1861 int rc; 1862 1863 rc = spapr_caps_pre_load(opaque); 1864 if (rc) { 1865 return rc; 1866 } 1867 1868 return 0; 1869 } 1870 1871 static int spapr_post_load(void *opaque, int version_id) 1872 { 1873 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1874 int err = 0; 1875 1876 err = spapr_caps_post_migration(spapr); 1877 if (err) { 1878 return err; 1879 } 1880 1881 /* 1882 * In earlier versions, there was no separate qdev for the PAPR 1883 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1884 * So when migrating from those versions, poke the incoming offset 1885 * value into the RTC device 1886 */ 1887 if (version_id < 3) { 1888 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1889 if (err) { 1890 return err; 1891 } 1892 } 1893 1894 if (kvm_enabled() && spapr->patb_entry) { 1895 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1896 bool radix = !!(spapr->patb_entry & PATE1_GR); 1897 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1898 1899 /* 1900 * Update LPCR:HR and UPRT as they may not be set properly in 1901 * the stream 1902 */ 1903 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1904 LPCR_HR | LPCR_UPRT); 1905 1906 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1907 if (err) { 1908 error_report("Process table config unsupported by the host"); 1909 return -EINVAL; 1910 } 1911 } 1912 1913 err = spapr_irq_post_load(spapr, version_id); 1914 if (err) { 1915 return err; 1916 } 1917 1918 return err; 1919 } 1920 1921 static int spapr_pre_save(void *opaque) 1922 { 1923 int rc; 1924 1925 rc = spapr_caps_pre_save(opaque); 1926 if (rc) { 1927 return rc; 1928 } 1929 1930 return 0; 1931 } 1932 1933 static bool version_before_3(void *opaque, int version_id) 1934 { 1935 return version_id < 3; 1936 } 1937 1938 static bool spapr_pending_events_needed(void *opaque) 1939 { 1940 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1941 return !QTAILQ_EMPTY(&spapr->pending_events); 1942 } 1943 1944 static const VMStateDescription vmstate_spapr_event_entry = { 1945 .name = "spapr_event_log_entry", 1946 .version_id = 1, 1947 .minimum_version_id = 1, 1948 .fields = (const VMStateField[]) { 1949 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1950 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1951 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1952 NULL, extended_length), 1953 VMSTATE_END_OF_LIST() 1954 }, 1955 }; 1956 1957 static const VMStateDescription vmstate_spapr_pending_events = { 1958 .name = "spapr_pending_events", 1959 .version_id = 1, 1960 .minimum_version_id = 1, 1961 .needed = spapr_pending_events_needed, 1962 .fields = (const VMStateField[]) { 1963 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1964 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1965 VMSTATE_END_OF_LIST() 1966 }, 1967 }; 1968 1969 static bool spapr_ov5_cas_needed(void *opaque) 1970 { 1971 SpaprMachineState *spapr = opaque; 1972 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1973 bool cas_needed; 1974 1975 /* Prior to the introduction of SpaprOptionVector, we had two option 1976 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1977 * Both of these options encode machine topology into the device-tree 1978 * in such a way that the now-booted OS should still be able to interact 1979 * appropriately with QEMU regardless of what options were actually 1980 * negotiatied on the source side. 1981 * 1982 * As such, we can avoid migrating the CAS-negotiated options if these 1983 * are the only options available on the current machine/platform. 1984 * Since these are the only options available for pseries-2.7 and 1985 * earlier, this allows us to maintain old->new/new->old migration 1986 * compatibility. 1987 * 1988 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1989 * via default pseries-2.8 machines and explicit command-line parameters. 1990 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1991 * of the actual CAS-negotiated values to continue working properly. For 1992 * example, availability of memory unplug depends on knowing whether 1993 * OV5_HP_EVT was negotiated via CAS. 1994 * 1995 * Thus, for any cases where the set of available CAS-negotiatable 1996 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1997 * include the CAS-negotiated options in the migration stream, unless 1998 * if they affect boot time behaviour only. 1999 */ 2000 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2001 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2002 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2003 2004 /* We need extra information if we have any bits outside the mask 2005 * defined above */ 2006 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 2007 2008 spapr_ovec_cleanup(ov5_mask); 2009 2010 return cas_needed; 2011 } 2012 2013 static const VMStateDescription vmstate_spapr_ov5_cas = { 2014 .name = "spapr_option_vector_ov5_cas", 2015 .version_id = 1, 2016 .minimum_version_id = 1, 2017 .needed = spapr_ov5_cas_needed, 2018 .fields = (const VMStateField[]) { 2019 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2020 vmstate_spapr_ovec, SpaprOptionVector), 2021 VMSTATE_END_OF_LIST() 2022 }, 2023 }; 2024 2025 static bool spapr_patb_entry_needed(void *opaque) 2026 { 2027 SpaprMachineState *spapr = opaque; 2028 2029 return !!spapr->patb_entry; 2030 } 2031 2032 static const VMStateDescription vmstate_spapr_patb_entry = { 2033 .name = "spapr_patb_entry", 2034 .version_id = 1, 2035 .minimum_version_id = 1, 2036 .needed = spapr_patb_entry_needed, 2037 .fields = (const VMStateField[]) { 2038 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2039 VMSTATE_END_OF_LIST() 2040 }, 2041 }; 2042 2043 static bool spapr_irq_map_needed(void *opaque) 2044 { 2045 SpaprMachineState *spapr = opaque; 2046 2047 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2048 } 2049 2050 static const VMStateDescription vmstate_spapr_irq_map = { 2051 .name = "spapr_irq_map", 2052 .version_id = 1, 2053 .minimum_version_id = 1, 2054 .needed = spapr_irq_map_needed, 2055 .fields = (const VMStateField[]) { 2056 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2057 VMSTATE_END_OF_LIST() 2058 }, 2059 }; 2060 2061 static bool spapr_dtb_needed(void *opaque) 2062 { 2063 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2064 2065 return smc->update_dt_enabled; 2066 } 2067 2068 static int spapr_dtb_pre_load(void *opaque) 2069 { 2070 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2071 2072 g_free(spapr->fdt_blob); 2073 spapr->fdt_blob = NULL; 2074 spapr->fdt_size = 0; 2075 2076 return 0; 2077 } 2078 2079 static const VMStateDescription vmstate_spapr_dtb = { 2080 .name = "spapr_dtb", 2081 .version_id = 1, 2082 .minimum_version_id = 1, 2083 .needed = spapr_dtb_needed, 2084 .pre_load = spapr_dtb_pre_load, 2085 .fields = (const VMStateField[]) { 2086 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2087 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2088 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2089 fdt_size), 2090 VMSTATE_END_OF_LIST() 2091 }, 2092 }; 2093 2094 static bool spapr_fwnmi_needed(void *opaque) 2095 { 2096 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2097 2098 return spapr->fwnmi_machine_check_addr != -1; 2099 } 2100 2101 static int spapr_fwnmi_pre_save(void *opaque) 2102 { 2103 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2104 2105 /* 2106 * Check if machine check handling is in progress and print a 2107 * warning message. 2108 */ 2109 if (spapr->fwnmi_machine_check_interlock != -1) { 2110 warn_report("A machine check is being handled during migration. The" 2111 "handler may run and log hardware error on the destination"); 2112 } 2113 2114 return 0; 2115 } 2116 2117 static const VMStateDescription vmstate_spapr_fwnmi = { 2118 .name = "spapr_fwnmi", 2119 .version_id = 1, 2120 .minimum_version_id = 1, 2121 .needed = spapr_fwnmi_needed, 2122 .pre_save = spapr_fwnmi_pre_save, 2123 .fields = (const VMStateField[]) { 2124 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2125 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2126 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2127 VMSTATE_END_OF_LIST() 2128 }, 2129 }; 2130 2131 static const VMStateDescription vmstate_spapr = { 2132 .name = "spapr", 2133 .version_id = 3, 2134 .minimum_version_id = 1, 2135 .pre_load = spapr_pre_load, 2136 .post_load = spapr_post_load, 2137 .pre_save = spapr_pre_save, 2138 .fields = (const VMStateField[]) { 2139 /* used to be @next_irq */ 2140 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2141 2142 /* RTC offset */ 2143 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2144 2145 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2146 VMSTATE_END_OF_LIST() 2147 }, 2148 .subsections = (const VMStateDescription * const []) { 2149 &vmstate_spapr_ov5_cas, 2150 &vmstate_spapr_patb_entry, 2151 &vmstate_spapr_pending_events, 2152 &vmstate_spapr_cap_htm, 2153 &vmstate_spapr_cap_vsx, 2154 &vmstate_spapr_cap_dfp, 2155 &vmstate_spapr_cap_cfpc, 2156 &vmstate_spapr_cap_sbbc, 2157 &vmstate_spapr_cap_ibs, 2158 &vmstate_spapr_cap_hpt_maxpagesize, 2159 &vmstate_spapr_irq_map, 2160 &vmstate_spapr_cap_nested_kvm_hv, 2161 &vmstate_spapr_dtb, 2162 &vmstate_spapr_cap_large_decr, 2163 &vmstate_spapr_cap_ccf_assist, 2164 &vmstate_spapr_cap_fwnmi, 2165 &vmstate_spapr_fwnmi, 2166 &vmstate_spapr_cap_rpt_invalidate, 2167 &vmstate_spapr_cap_ail_mode_3, 2168 &vmstate_spapr_cap_nested_papr, 2169 &vmstate_spapr_cap_dawr1, 2170 NULL 2171 } 2172 }; 2173 2174 static int htab_save_setup(QEMUFile *f, void *opaque, Error **errp) 2175 { 2176 SpaprMachineState *spapr = opaque; 2177 2178 /* "Iteration" header */ 2179 if (!spapr->htab_shift) { 2180 qemu_put_be32(f, -1); 2181 } else { 2182 qemu_put_be32(f, spapr->htab_shift); 2183 } 2184 2185 if (spapr->htab) { 2186 spapr->htab_save_index = 0; 2187 spapr->htab_first_pass = true; 2188 } else { 2189 if (spapr->htab_shift) { 2190 assert(kvm_enabled()); 2191 } 2192 } 2193 2194 2195 return 0; 2196 } 2197 2198 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2199 int chunkstart, int n_valid, int n_invalid) 2200 { 2201 qemu_put_be32(f, chunkstart); 2202 qemu_put_be16(f, n_valid); 2203 qemu_put_be16(f, n_invalid); 2204 qemu_put_buffer(f, (void *)hpte_get_ptr(spapr, chunkstart), 2205 HASH_PTE_SIZE_64 * n_valid); 2206 } 2207 2208 static void htab_save_end_marker(QEMUFile *f) 2209 { 2210 qemu_put_be32(f, 0); 2211 qemu_put_be16(f, 0); 2212 qemu_put_be16(f, 0); 2213 } 2214 2215 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2216 int64_t max_ns) 2217 { 2218 bool has_timeout = max_ns != -1; 2219 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2220 int index = spapr->htab_save_index; 2221 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2222 2223 assert(spapr->htab_first_pass); 2224 2225 do { 2226 int chunkstart; 2227 2228 /* Consume invalid HPTEs */ 2229 while ((index < htabslots) 2230 && !hpte_is_valid(spapr, index)) { 2231 hpte_set_clean(spapr, index); 2232 index++; 2233 } 2234 2235 /* Consume valid HPTEs */ 2236 chunkstart = index; 2237 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2238 && hpte_is_valid(spapr, index)) { 2239 hpte_set_clean(spapr, index); 2240 index++; 2241 } 2242 2243 if (index > chunkstart) { 2244 int n_valid = index - chunkstart; 2245 2246 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2247 2248 if (has_timeout && 2249 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2250 break; 2251 } 2252 } 2253 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2254 2255 if (index >= htabslots) { 2256 assert(index == htabslots); 2257 index = 0; 2258 spapr->htab_first_pass = false; 2259 } 2260 spapr->htab_save_index = index; 2261 } 2262 2263 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2264 int64_t max_ns) 2265 { 2266 bool final = max_ns < 0; 2267 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2268 int examined = 0, sent = 0; 2269 int index = spapr->htab_save_index; 2270 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2271 2272 assert(!spapr->htab_first_pass); 2273 2274 do { 2275 int chunkstart, invalidstart; 2276 2277 /* Consume non-dirty HPTEs */ 2278 while ((index < htabslots) 2279 && !hpte_is_dirty(spapr, index)) { 2280 index++; 2281 examined++; 2282 } 2283 2284 chunkstart = index; 2285 /* Consume valid dirty HPTEs */ 2286 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2287 && hpte_is_dirty(spapr, index) 2288 && hpte_is_valid(spapr, index)) { 2289 hpte_set_clean(spapr, index); 2290 index++; 2291 examined++; 2292 } 2293 2294 invalidstart = index; 2295 /* Consume invalid dirty HPTEs */ 2296 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2297 && hpte_is_dirty(spapr, index) 2298 && !hpte_is_valid(spapr, index)) { 2299 hpte_set_clean(spapr, index); 2300 index++; 2301 examined++; 2302 } 2303 2304 if (index > chunkstart) { 2305 int n_valid = invalidstart - chunkstart; 2306 int n_invalid = index - invalidstart; 2307 2308 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2309 sent += index - chunkstart; 2310 2311 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2312 break; 2313 } 2314 } 2315 2316 if (examined >= htabslots) { 2317 break; 2318 } 2319 2320 if (index >= htabslots) { 2321 assert(index == htabslots); 2322 index = 0; 2323 } 2324 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2325 2326 if (index >= htabslots) { 2327 assert(index == htabslots); 2328 index = 0; 2329 } 2330 2331 spapr->htab_save_index = index; 2332 2333 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2334 } 2335 2336 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2337 #define MAX_KVM_BUF_SIZE 2048 2338 2339 static int htab_save_iterate(QEMUFile *f, void *opaque) 2340 { 2341 SpaprMachineState *spapr = opaque; 2342 int fd; 2343 int rc = 0; 2344 2345 /* Iteration header */ 2346 if (!spapr->htab_shift) { 2347 qemu_put_be32(f, -1); 2348 return 1; 2349 } else { 2350 qemu_put_be32(f, 0); 2351 } 2352 2353 if (!spapr->htab) { 2354 assert(kvm_enabled()); 2355 2356 fd = get_htab_fd(spapr); 2357 if (fd < 0) { 2358 return fd; 2359 } 2360 2361 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2362 if (rc < 0) { 2363 return rc; 2364 } 2365 } else if (spapr->htab_first_pass) { 2366 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2367 } else { 2368 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2369 } 2370 2371 htab_save_end_marker(f); 2372 2373 return rc; 2374 } 2375 2376 static int htab_save_complete(QEMUFile *f, void *opaque) 2377 { 2378 SpaprMachineState *spapr = opaque; 2379 int fd; 2380 2381 /* Iteration header */ 2382 if (!spapr->htab_shift) { 2383 qemu_put_be32(f, -1); 2384 return 0; 2385 } else { 2386 qemu_put_be32(f, 0); 2387 } 2388 2389 if (!spapr->htab) { 2390 int rc; 2391 2392 assert(kvm_enabled()); 2393 2394 fd = get_htab_fd(spapr); 2395 if (fd < 0) { 2396 return fd; 2397 } 2398 2399 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2400 if (rc < 0) { 2401 return rc; 2402 } 2403 } else { 2404 if (spapr->htab_first_pass) { 2405 htab_save_first_pass(f, spapr, -1); 2406 } 2407 htab_save_later_pass(f, spapr, -1); 2408 } 2409 2410 /* End marker */ 2411 htab_save_end_marker(f); 2412 2413 return 0; 2414 } 2415 2416 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2417 { 2418 SpaprMachineState *spapr = opaque; 2419 uint32_t section_hdr; 2420 int fd = -1; 2421 Error *local_err = NULL; 2422 2423 if (version_id < 1 || version_id > 1) { 2424 error_report("htab_load() bad version"); 2425 return -EINVAL; 2426 } 2427 2428 section_hdr = qemu_get_be32(f); 2429 2430 if (section_hdr == -1) { 2431 spapr_free_hpt(spapr); 2432 return 0; 2433 } 2434 2435 if (section_hdr) { 2436 int ret; 2437 2438 /* First section gives the htab size */ 2439 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2440 if (ret < 0) { 2441 error_report_err(local_err); 2442 return ret; 2443 } 2444 return 0; 2445 } 2446 2447 if (!spapr->htab) { 2448 assert(kvm_enabled()); 2449 2450 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2451 if (fd < 0) { 2452 error_report_err(local_err); 2453 return fd; 2454 } 2455 } 2456 2457 while (true) { 2458 uint32_t index; 2459 uint16_t n_valid, n_invalid; 2460 2461 index = qemu_get_be32(f); 2462 n_valid = qemu_get_be16(f); 2463 n_invalid = qemu_get_be16(f); 2464 2465 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2466 /* End of Stream */ 2467 break; 2468 } 2469 2470 if ((index + n_valid + n_invalid) > 2471 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2472 /* Bad index in stream */ 2473 error_report( 2474 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2475 index, n_valid, n_invalid, spapr->htab_shift); 2476 return -EINVAL; 2477 } 2478 2479 if (spapr->htab) { 2480 if (n_valid) { 2481 qemu_get_buffer(f, (void *)hpte_get_ptr(spapr, index), 2482 HASH_PTE_SIZE_64 * n_valid); 2483 } 2484 if (n_invalid) { 2485 memset(hpte_get_ptr(spapr, index + n_valid), 0, 2486 HASH_PTE_SIZE_64 * n_invalid); 2487 } 2488 } else { 2489 int rc; 2490 2491 assert(fd >= 0); 2492 2493 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2494 &local_err); 2495 if (rc < 0) { 2496 error_report_err(local_err); 2497 return rc; 2498 } 2499 } 2500 } 2501 2502 if (!spapr->htab) { 2503 assert(fd >= 0); 2504 close(fd); 2505 } 2506 2507 return 0; 2508 } 2509 2510 static void htab_save_cleanup(void *opaque) 2511 { 2512 SpaprMachineState *spapr = opaque; 2513 2514 close_htab_fd(spapr); 2515 } 2516 2517 static SaveVMHandlers savevm_htab_handlers = { 2518 .save_setup = htab_save_setup, 2519 .save_live_iterate = htab_save_iterate, 2520 .save_live_complete_precopy = htab_save_complete, 2521 .save_cleanup = htab_save_cleanup, 2522 .load_state = htab_load, 2523 }; 2524 2525 static void spapr_boot_set(void *opaque, const char *boot_device, 2526 Error **errp) 2527 { 2528 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2529 2530 g_free(spapr->boot_device); 2531 spapr->boot_device = g_strdup(boot_device); 2532 } 2533 2534 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2535 { 2536 MachineState *machine = MACHINE(spapr); 2537 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2538 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2539 int i; 2540 2541 g_assert(!nr_lmbs || machine->device_memory); 2542 for (i = 0; i < nr_lmbs; i++) { 2543 uint64_t addr; 2544 2545 addr = i * lmb_size + machine->device_memory->base; 2546 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2547 addr / lmb_size); 2548 } 2549 } 2550 2551 /* 2552 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2553 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2554 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2555 */ 2556 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2557 { 2558 int i; 2559 2560 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2561 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2562 " is not aligned to %" PRIu64 " MiB", 2563 machine->ram_size, 2564 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2565 return; 2566 } 2567 2568 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2569 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2570 " is not aligned to %" PRIu64 " MiB", 2571 machine->ram_size, 2572 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2573 return; 2574 } 2575 2576 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2577 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2578 error_setg(errp, 2579 "Node %d memory size 0x%" PRIx64 2580 " is not aligned to %" PRIu64 " MiB", 2581 i, machine->numa_state->nodes[i].node_mem, 2582 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2583 return; 2584 } 2585 } 2586 } 2587 2588 /* find cpu slot in machine->possible_cpus by core_id */ 2589 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2590 { 2591 int index = id / ms->smp.threads; 2592 2593 if (index >= ms->possible_cpus->len) { 2594 return NULL; 2595 } 2596 if (idx) { 2597 *idx = index; 2598 } 2599 return &ms->possible_cpus->cpus[index]; 2600 } 2601 2602 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2603 { 2604 MachineState *ms = MACHINE(spapr); 2605 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2606 Error *local_err = NULL; 2607 bool vsmt_user = !!spapr->vsmt; 2608 int kvm_smt = kvmppc_smt_threads(); 2609 int ret; 2610 unsigned int smp_threads = ms->smp.threads; 2611 2612 if (tcg_enabled()) { 2613 if (smp_threads > 1 && 2614 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2615 spapr->max_compat_pvr)) { 2616 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2617 return; 2618 } 2619 2620 if (smp_threads > 8) { 2621 error_setg(errp, "TCG cannot support more than 8 threads/core " 2622 "on a pseries machine"); 2623 return; 2624 } 2625 } 2626 if (!is_power_of_2(smp_threads)) { 2627 error_setg(errp, "Cannot support %d threads/core on a pseries " 2628 "machine because it must be a power of 2", smp_threads); 2629 return; 2630 } 2631 2632 /* Determine the VSMT mode to use: */ 2633 if (vsmt_user) { 2634 if (spapr->vsmt < smp_threads) { 2635 error_setg(errp, "Cannot support VSMT mode %d" 2636 " because it must be >= threads/core (%d)", 2637 spapr->vsmt, smp_threads); 2638 return; 2639 } 2640 /* In this case, spapr->vsmt has been set by the command line */ 2641 } else if (!smc->smp_threads_vsmt) { 2642 /* 2643 * Default VSMT value is tricky, because we need it to be as 2644 * consistent as possible (for migration), but this requires 2645 * changing it for at least some existing cases. We pick 8 as 2646 * the value that we'd get with KVM on POWER8, the 2647 * overwhelmingly common case in production systems. 2648 */ 2649 spapr->vsmt = MAX(8, smp_threads); 2650 } else { 2651 spapr->vsmt = smp_threads; 2652 } 2653 2654 /* KVM: If necessary, set the SMT mode: */ 2655 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2656 ret = kvmppc_set_smt_threads(spapr->vsmt); 2657 if (ret) { 2658 /* Looks like KVM isn't able to change VSMT mode */ 2659 error_setg(&local_err, 2660 "Failed to set KVM's VSMT mode to %d (errno %d)", 2661 spapr->vsmt, ret); 2662 /* We can live with that if the default one is big enough 2663 * for the number of threads, and a submultiple of the one 2664 * we want. In this case we'll waste some vcpu ids, but 2665 * behaviour will be correct */ 2666 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2667 warn_report_err(local_err); 2668 } else { 2669 if (!vsmt_user) { 2670 error_append_hint(&local_err, 2671 "On PPC, a VM with %d threads/core" 2672 " on a host with %d threads/core" 2673 " requires the use of VSMT mode %d.\n", 2674 smp_threads, kvm_smt, spapr->vsmt); 2675 } 2676 kvmppc_error_append_smt_possible_hint(&local_err); 2677 error_propagate(errp, local_err); 2678 } 2679 } 2680 } 2681 /* else TCG: nothing to do currently */ 2682 } 2683 2684 static void spapr_init_cpus(SpaprMachineState *spapr) 2685 { 2686 MachineState *machine = MACHINE(spapr); 2687 MachineClass *mc = MACHINE_GET_CLASS(machine); 2688 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2689 const CPUArchIdList *possible_cpus; 2690 unsigned int smp_cpus = machine->smp.cpus; 2691 unsigned int smp_threads = machine->smp.threads; 2692 unsigned int max_cpus = machine->smp.max_cpus; 2693 int boot_cores_nr = smp_cpus / smp_threads; 2694 int i; 2695 2696 possible_cpus = mc->possible_cpu_arch_ids(machine); 2697 if (mc->has_hotpluggable_cpus) { 2698 if (smp_cpus % smp_threads) { 2699 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2700 smp_cpus, smp_threads); 2701 exit(1); 2702 } 2703 if (max_cpus % smp_threads) { 2704 error_report("max_cpus (%u) must be multiple of threads (%u)", 2705 max_cpus, smp_threads); 2706 exit(1); 2707 } 2708 } else { 2709 if (max_cpus != smp_cpus) { 2710 error_report("This machine version does not support CPU hotplug"); 2711 exit(1); 2712 } 2713 boot_cores_nr = possible_cpus->len; 2714 } 2715 2716 for (i = 0; i < possible_cpus->len; i++) { 2717 int core_id = i * smp_threads; 2718 2719 if (mc->has_hotpluggable_cpus) { 2720 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2721 spapr_vcpu_id(spapr, core_id)); 2722 } 2723 2724 if (i < boot_cores_nr) { 2725 Object *core = object_new(type); 2726 int nr_threads = smp_threads; 2727 2728 /* Handle the partially filled core for older machine types */ 2729 if ((i + 1) * smp_threads >= smp_cpus) { 2730 nr_threads = smp_cpus - i * smp_threads; 2731 } 2732 2733 object_property_set_int(core, "nr-threads", nr_threads, 2734 &error_fatal); 2735 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2736 &error_fatal); 2737 qdev_realize(DEVICE(core), NULL, &error_fatal); 2738 2739 object_unref(core); 2740 } 2741 } 2742 } 2743 2744 static PCIHostState *spapr_create_default_phb(void) 2745 { 2746 DeviceState *dev; 2747 2748 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2749 qdev_prop_set_uint32(dev, "index", 0); 2750 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2751 2752 return PCI_HOST_BRIDGE(dev); 2753 } 2754 2755 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2756 { 2757 MachineState *machine = MACHINE(spapr); 2758 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2759 hwaddr rma_size = machine->ram_size; 2760 hwaddr node0_size = spapr_node0_size(machine); 2761 2762 /* RMA has to fit in the first NUMA node */ 2763 rma_size = MIN(rma_size, node0_size); 2764 2765 /* 2766 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2767 * never exceed that 2768 */ 2769 rma_size = MIN(rma_size, 1 * TiB); 2770 2771 /* 2772 * Clamp the RMA size based on machine type. This is for 2773 * migration compatibility with older qemu versions, which limited 2774 * the RMA size for complicated and mostly bad reasons. 2775 */ 2776 if (smc->rma_limit) { 2777 rma_size = MIN(rma_size, smc->rma_limit); 2778 } 2779 2780 if (rma_size < MIN_RMA_SLOF) { 2781 error_setg(errp, 2782 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2783 "ldMiB guest RMA (Real Mode Area memory)", 2784 MIN_RMA_SLOF / MiB); 2785 return 0; 2786 } 2787 2788 return rma_size; 2789 } 2790 2791 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2792 { 2793 MachineState *machine = MACHINE(spapr); 2794 int i; 2795 2796 for (i = 0; i < machine->ram_slots; i++) { 2797 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2798 } 2799 } 2800 2801 /* pSeries LPAR / sPAPR hardware init */ 2802 static void spapr_machine_init(MachineState *machine) 2803 { 2804 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2805 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2806 MachineClass *mc = MACHINE_GET_CLASS(machine); 2807 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2808 const char *bios_name = machine->firmware ?: bios_default; 2809 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2810 const char *kernel_filename = machine->kernel_filename; 2811 const char *initrd_filename = machine->initrd_filename; 2812 PCIHostState *phb; 2813 bool has_vga; 2814 int i; 2815 MemoryRegion *sysmem = get_system_memory(); 2816 long load_limit, fw_size; 2817 Error *resize_hpt_err = NULL; 2818 NICInfo *nd; 2819 2820 if (!filename) { 2821 error_report("Could not find LPAR firmware '%s'", bios_name); 2822 exit(1); 2823 } 2824 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2825 if (fw_size <= 0) { 2826 error_report("Could not load LPAR firmware '%s'", filename); 2827 exit(1); 2828 } 2829 2830 /* 2831 * if Secure VM (PEF) support is configured, then initialize it 2832 */ 2833 if (machine->cgs) { 2834 confidential_guest_kvm_init(machine->cgs, &error_fatal); 2835 } 2836 2837 msi_nonbroken = true; 2838 2839 QLIST_INIT(&spapr->phbs); 2840 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2841 2842 /* Determine capabilities to run with */ 2843 spapr_caps_init(spapr); 2844 2845 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2846 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2847 /* 2848 * If the user explicitly requested a mode we should either 2849 * supply it, or fail completely (which we do below). But if 2850 * it's not set explicitly, we reset our mode to something 2851 * that works 2852 */ 2853 if (resize_hpt_err) { 2854 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2855 error_free(resize_hpt_err); 2856 resize_hpt_err = NULL; 2857 } else { 2858 spapr->resize_hpt = smc->resize_hpt_default; 2859 } 2860 } 2861 2862 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2863 2864 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2865 /* 2866 * User requested HPT resize, but this host can't supply it. Bail out 2867 */ 2868 error_report_err(resize_hpt_err); 2869 exit(1); 2870 } 2871 error_free(resize_hpt_err); 2872 2873 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2874 2875 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2876 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2877 2878 /* 2879 * VSMT must be set in order to be able to compute VCPU ids, ie to 2880 * call spapr_max_server_number() or spapr_vcpu_id(). 2881 */ 2882 spapr_set_vsmt_mode(spapr, &error_fatal); 2883 2884 /* Set up Interrupt Controller before we create the VCPUs */ 2885 spapr_irq_init(spapr, &error_fatal); 2886 2887 /* Set up containers for ibm,client-architecture-support negotiated options 2888 */ 2889 spapr->ov5 = spapr_ovec_new(); 2890 spapr->ov5_cas = spapr_ovec_new(); 2891 2892 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2893 spapr_validate_node_memory(machine, &error_fatal); 2894 2895 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2896 2897 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2898 if (!smc->pre_6_2_numa_affinity) { 2899 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2900 } 2901 2902 /* advertise support for dedicated HP event source to guests */ 2903 if (spapr->use_hotplug_event_source) { 2904 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2905 } 2906 2907 /* advertise support for HPT resizing */ 2908 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2909 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2910 } 2911 2912 /* advertise support for ibm,dyamic-memory-v2 */ 2913 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2914 2915 /* advertise XIVE on POWER9 machines */ 2916 if (spapr->irq->xive) { 2917 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2918 } 2919 2920 qemu_guest_getrandom_nofail(&spapr->hashpkey_val, 2921 sizeof(spapr->hashpkey_val)); 2922 2923 /* init CPUs */ 2924 spapr_init_cpus(spapr); 2925 2926 /* Init numa_assoc_array */ 2927 spapr_numa_associativity_init(spapr, machine); 2928 2929 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2930 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2931 spapr->max_compat_pvr)) { 2932 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2933 /* KVM and TCG always allow GTSE with radix... */ 2934 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2935 } 2936 /* ... but not with hash (currently). */ 2937 2938 if (kvm_enabled()) { 2939 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2940 kvmppc_enable_logical_ci_hcalls(); 2941 kvmppc_enable_set_mode_hcall(); 2942 2943 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2944 kvmppc_enable_clear_ref_mod_hcalls(); 2945 2946 /* Enable H_PAGE_INIT */ 2947 kvmppc_enable_h_page_init(); 2948 } 2949 2950 /* map RAM */ 2951 memory_region_add_subregion(sysmem, 0, machine->ram); 2952 2953 /* initialize hotplug memory address space */ 2954 if (machine->ram_size < machine->maxram_size) { 2955 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2956 hwaddr device_mem_base; 2957 2958 /* 2959 * Limit the number of hotpluggable memory slots to half the number 2960 * slots that KVM supports, leaving the other half for PCI and other 2961 * devices. However ensure that number of slots doesn't drop below 32. 2962 */ 2963 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2964 SPAPR_MAX_RAM_SLOTS; 2965 2966 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2967 max_memslots = SPAPR_MAX_RAM_SLOTS; 2968 } 2969 if (machine->ram_slots > max_memslots) { 2970 error_report("Specified number of memory slots %" 2971 PRIu64" exceeds max supported %d", 2972 machine->ram_slots, max_memslots); 2973 exit(1); 2974 } 2975 2976 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2977 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2978 } 2979 2980 spapr_create_lmb_dr_connectors(spapr); 2981 2982 if (mc->nvdimm_supported) { 2983 spapr_create_nvdimm_dr_connectors(spapr); 2984 } 2985 2986 /* Set up RTAS event infrastructure */ 2987 spapr_events_init(spapr); 2988 2989 /* Set up the RTC RTAS interfaces */ 2990 spapr_rtc_create(spapr); 2991 2992 /* Set up VIO bus */ 2993 spapr->vio_bus = spapr_vio_bus_init(); 2994 2995 for (i = 0; serial_hd(i); i++) { 2996 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2997 } 2998 2999 /* We always have at least the nvram device on VIO */ 3000 spapr_create_nvram(spapr); 3001 3002 /* 3003 * Setup hotplug / dynamic-reconfiguration connectors. top-level 3004 * connectors (described in root DT node's "ibm,drc-types" property) 3005 * are pre-initialized here. additional child connectors (such as 3006 * connectors for a PHBs PCI slots) are added as needed during their 3007 * parent's realization. 3008 */ 3009 if (smc->dr_phb_enabled) { 3010 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 3011 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 3012 } 3013 } 3014 3015 /* Set up PCI */ 3016 spapr_pci_rtas_init(); 3017 3018 phb = spapr_create_default_phb(); 3019 3020 while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) { 3021 spapr_vlan_create(spapr->vio_bus, nd); 3022 } 3023 3024 pci_init_nic_devices(phb->bus, NULL); 3025 3026 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 3027 spapr_vscsi_create(spapr->vio_bus); 3028 } 3029 3030 /* Graphics */ 3031 has_vga = spapr_vga_init(phb->bus, &error_fatal); 3032 if (has_vga) { 3033 spapr->want_stdout_path = !machine->enable_graphics; 3034 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3035 } else { 3036 spapr->want_stdout_path = true; 3037 } 3038 3039 if (machine->usb) { 3040 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3041 3042 if (has_vga) { 3043 USBBus *usb_bus; 3044 3045 usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS, 3046 &error_abort)); 3047 usb_create_simple(usb_bus, "usb-kbd"); 3048 usb_create_simple(usb_bus, "usb-mouse"); 3049 } 3050 } 3051 3052 if (kernel_filename) { 3053 uint64_t loaded_addr = 0; 3054 3055 spapr->kernel_size = load_elf(kernel_filename, NULL, 3056 translate_kernel_address, spapr, 3057 NULL, &loaded_addr, NULL, NULL, 3058 ELFDATA2MSB, PPC_ELF_MACHINE, 0, 0); 3059 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3060 spapr->kernel_size = load_elf(kernel_filename, NULL, 3061 translate_kernel_address, spapr, 3062 NULL, &loaded_addr, NULL, NULL, 3063 ELFDATA2LSB, PPC_ELF_MACHINE, 0, 0); 3064 spapr->kernel_le = spapr->kernel_size > 0; 3065 } 3066 if (spapr->kernel_size < 0) { 3067 error_report("error loading %s: %s", kernel_filename, 3068 load_elf_strerror(spapr->kernel_size)); 3069 exit(1); 3070 } 3071 3072 if (spapr->kernel_addr != loaded_addr) { 3073 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3074 " to 0x%"PRIx64, 3075 spapr->kernel_addr, loaded_addr); 3076 spapr->kernel_addr = loaded_addr; 3077 } 3078 3079 /* load initrd */ 3080 if (initrd_filename) { 3081 /* Try to locate the initrd in the gap between the kernel 3082 * and the firmware. Add a bit of space just in case 3083 */ 3084 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3085 + 0x1ffff) & ~0xffff; 3086 spapr->initrd_size = load_image_targphys(initrd_filename, 3087 spapr->initrd_base, 3088 load_limit 3089 - spapr->initrd_base); 3090 if (spapr->initrd_size < 0) { 3091 error_report("could not load initial ram disk '%s'", 3092 initrd_filename); 3093 exit(1); 3094 } 3095 } 3096 } 3097 3098 /* FIXME: Should register things through the MachineState's qdev 3099 * interface, this is a legacy from the sPAPREnvironment structure 3100 * which predated MachineState but had a similar function */ 3101 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3102 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3103 &savevm_htab_handlers, spapr); 3104 3105 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3106 3107 qemu_register_boot_set(spapr_boot_set, spapr); 3108 3109 /* 3110 * Nothing needs to be done to resume a suspended guest because 3111 * suspending does not change the machine state, so no need for 3112 * a ->wakeup method. 3113 */ 3114 qemu_register_wakeup_support(); 3115 3116 if (kvm_enabled()) { 3117 /* to stop and start vmclock */ 3118 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3119 &spapr->tb); 3120 3121 kvmppc_spapr_enable_inkernel_multitce(); 3122 } 3123 3124 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3125 if (spapr->vof) { 3126 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3127 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3128 } 3129 3130 spapr_watchdog_init(spapr); 3131 } 3132 3133 #define DEFAULT_KVM_TYPE "auto" 3134 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3135 { 3136 /* 3137 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3138 * accommodate the 'HV' and 'PV' formats that exists in the 3139 * wild. The 'auto' mode is being introduced already as 3140 * lower-case, thus we don't need to bother checking for 3141 * "AUTO". 3142 */ 3143 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3144 return 0; 3145 } 3146 3147 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3148 return 1; 3149 } 3150 3151 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3152 return 2; 3153 } 3154 3155 error_report("Unknown kvm-type specified '%s'", vm_type); 3156 return -1; 3157 } 3158 3159 /* 3160 * Implementation of an interface to adjust firmware path 3161 * for the bootindex property handling. 3162 */ 3163 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3164 DeviceState *dev) 3165 { 3166 #define CAST(type, obj, name) \ 3167 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3168 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3169 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3170 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3171 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3172 3173 if (d && bus) { 3174 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3175 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3176 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3177 3178 if (spapr) { 3179 /* 3180 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3181 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3182 * 0x8000 | (target << 8) | (bus << 5) | lun 3183 * (see the "Logical unit addressing format" table in SAM5) 3184 */ 3185 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3186 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3187 (uint64_t)id << 48); 3188 } else if (virtio) { 3189 /* 3190 * We use SRP luns of the form 01000000 | (target << 8) | lun 3191 * in the top 32 bits of the 64-bit LUN 3192 * Note: the quote above is from SLOF and it is wrong, 3193 * the actual binding is: 3194 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3195 */ 3196 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3197 if (d->lun >= 256) { 3198 /* Use the LUN "flat space addressing method" */ 3199 id |= 0x4000; 3200 } 3201 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3202 (uint64_t)id << 32); 3203 } else if (usb) { 3204 /* 3205 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3206 * in the top 32 bits of the 64-bit LUN 3207 */ 3208 unsigned usb_port = atoi(usb->port->path); 3209 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3210 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3211 (uint64_t)id << 32); 3212 } 3213 } 3214 3215 /* 3216 * SLOF probes the USB devices, and if it recognizes that the device is a 3217 * storage device, it changes its name to "storage" instead of "usb-host", 3218 * and additionally adds a child node for the SCSI LUN, so the correct 3219 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3220 */ 3221 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3222 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3223 if (usb_device_is_scsi_storage(usbdev)) { 3224 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3225 } 3226 } 3227 3228 if (phb) { 3229 /* Replace "pci" with "pci@800000020000000" */ 3230 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3231 } 3232 3233 if (vsc) { 3234 /* Same logic as virtio above */ 3235 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3236 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3237 } 3238 3239 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3240 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3241 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3242 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn)); 3243 } 3244 3245 if (pcidev) { 3246 return spapr_pci_fw_dev_name(pcidev); 3247 } 3248 3249 return NULL; 3250 } 3251 3252 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3253 { 3254 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3255 3256 return g_strdup(spapr->kvm_type); 3257 } 3258 3259 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3260 { 3261 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3262 3263 g_free(spapr->kvm_type); 3264 spapr->kvm_type = g_strdup(value); 3265 } 3266 3267 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3268 { 3269 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3270 3271 return spapr->use_hotplug_event_source; 3272 } 3273 3274 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3275 Error **errp) 3276 { 3277 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3278 3279 spapr->use_hotplug_event_source = value; 3280 } 3281 3282 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3283 { 3284 return true; 3285 } 3286 3287 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3288 { 3289 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3290 3291 switch (spapr->resize_hpt) { 3292 case SPAPR_RESIZE_HPT_DEFAULT: 3293 return g_strdup("default"); 3294 case SPAPR_RESIZE_HPT_DISABLED: 3295 return g_strdup("disabled"); 3296 case SPAPR_RESIZE_HPT_ENABLED: 3297 return g_strdup("enabled"); 3298 case SPAPR_RESIZE_HPT_REQUIRED: 3299 return g_strdup("required"); 3300 } 3301 g_assert_not_reached(); 3302 } 3303 3304 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3305 { 3306 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3307 3308 if (strcmp(value, "default") == 0) { 3309 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3310 } else if (strcmp(value, "disabled") == 0) { 3311 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3312 } else if (strcmp(value, "enabled") == 0) { 3313 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3314 } else if (strcmp(value, "required") == 0) { 3315 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3316 } else { 3317 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3318 } 3319 } 3320 3321 static bool spapr_get_vof(Object *obj, Error **errp) 3322 { 3323 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3324 3325 return spapr->vof != NULL; 3326 } 3327 3328 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3329 { 3330 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3331 3332 if (spapr->vof) { 3333 vof_cleanup(spapr->vof); 3334 g_free(spapr->vof); 3335 spapr->vof = NULL; 3336 } 3337 if (!value) { 3338 return; 3339 } 3340 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3341 } 3342 3343 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3344 { 3345 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3346 3347 if (spapr->irq == &spapr_irq_xics_legacy) { 3348 return g_strdup("legacy"); 3349 } else if (spapr->irq == &spapr_irq_xics) { 3350 return g_strdup("xics"); 3351 } else if (spapr->irq == &spapr_irq_xive) { 3352 return g_strdup("xive"); 3353 } else if (spapr->irq == &spapr_irq_dual) { 3354 return g_strdup("dual"); 3355 } 3356 g_assert_not_reached(); 3357 } 3358 3359 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3360 { 3361 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3362 3363 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3364 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3365 return; 3366 } 3367 3368 /* The legacy IRQ backend can not be set */ 3369 if (strcmp(value, "xics") == 0) { 3370 spapr->irq = &spapr_irq_xics; 3371 } else if (strcmp(value, "xive") == 0) { 3372 spapr->irq = &spapr_irq_xive; 3373 } else if (strcmp(value, "dual") == 0) { 3374 spapr->irq = &spapr_irq_dual; 3375 } else { 3376 error_setg(errp, "Bad value for \"ic-mode\" property"); 3377 } 3378 } 3379 3380 static char *spapr_get_host_model(Object *obj, Error **errp) 3381 { 3382 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3383 3384 return g_strdup(spapr->host_model); 3385 } 3386 3387 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3388 { 3389 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3390 3391 g_free(spapr->host_model); 3392 spapr->host_model = g_strdup(value); 3393 } 3394 3395 static char *spapr_get_host_serial(Object *obj, Error **errp) 3396 { 3397 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3398 3399 return g_strdup(spapr->host_serial); 3400 } 3401 3402 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3403 { 3404 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3405 3406 g_free(spapr->host_serial); 3407 spapr->host_serial = g_strdup(value); 3408 } 3409 3410 static void spapr_instance_init(Object *obj) 3411 { 3412 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3413 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3414 MachineState *ms = MACHINE(spapr); 3415 MachineClass *mc = MACHINE_GET_CLASS(ms); 3416 3417 /* 3418 * NVDIMM support went live in 5.1 without considering that, in 3419 * other archs, the user needs to enable NVDIMM support with the 3420 * 'nvdimm' machine option and the default behavior is NVDIMM 3421 * support disabled. It is too late to roll back to the standard 3422 * behavior without breaking 5.1 guests. 3423 */ 3424 if (mc->nvdimm_supported) { 3425 ms->nvdimms_state->is_enabled = true; 3426 } 3427 3428 spapr->htab_fd = -1; 3429 spapr->use_hotplug_event_source = true; 3430 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3431 object_property_add_str(obj, "kvm-type", 3432 spapr_get_kvm_type, spapr_set_kvm_type); 3433 object_property_set_description(obj, "kvm-type", 3434 "Specifies the KVM virtualization mode (auto," 3435 " hv, pr). Defaults to 'auto'. This mode will use" 3436 " any available KVM module loaded in the host," 3437 " where kvm_hv takes precedence if both kvm_hv and" 3438 " kvm_pr are loaded."); 3439 object_property_add_bool(obj, "modern-hotplug-events", 3440 spapr_get_modern_hotplug_events, 3441 spapr_set_modern_hotplug_events); 3442 object_property_set_description(obj, "modern-hotplug-events", 3443 "Use dedicated hotplug event mechanism in" 3444 " place of standard EPOW events when possible" 3445 " (required for memory hot-unplug support)"); 3446 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3447 "Maximum permitted CPU compatibility mode"); 3448 3449 object_property_add_str(obj, "resize-hpt", 3450 spapr_get_resize_hpt, spapr_set_resize_hpt); 3451 object_property_set_description(obj, "resize-hpt", 3452 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3453 object_property_add_uint32_ptr(obj, "vsmt", 3454 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3455 object_property_set_description(obj, "vsmt", 3456 "Virtual SMT: KVM behaves as if this were" 3457 " the host's SMT mode"); 3458 3459 object_property_add_bool(obj, "vfio-no-msix-emulation", 3460 spapr_get_msix_emulation, NULL); 3461 3462 object_property_add_uint64_ptr(obj, "kernel-addr", 3463 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3464 object_property_set_description(obj, "kernel-addr", 3465 stringify(KERNEL_LOAD_ADDR) 3466 " for -kernel is the default"); 3467 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3468 3469 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3470 object_property_set_description(obj, "x-vof", 3471 "Enable Virtual Open Firmware (experimental)"); 3472 3473 /* The machine class defines the default interrupt controller mode */ 3474 spapr->irq = smc->irq; 3475 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3476 spapr_set_ic_mode); 3477 object_property_set_description(obj, "ic-mode", 3478 "Specifies the interrupt controller mode (xics, xive, dual)"); 3479 3480 object_property_add_str(obj, "host-model", 3481 spapr_get_host_model, spapr_set_host_model); 3482 object_property_set_description(obj, "host-model", 3483 "Host model to advertise in guest device tree"); 3484 object_property_add_str(obj, "host-serial", 3485 spapr_get_host_serial, spapr_set_host_serial); 3486 object_property_set_description(obj, "host-serial", 3487 "Host serial number to advertise in guest device tree"); 3488 } 3489 3490 static void spapr_machine_finalizefn(Object *obj) 3491 { 3492 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3493 3494 g_free(spapr->kvm_type); 3495 } 3496 3497 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3498 { 3499 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3500 CPUPPCState *env = cpu_env(cs); 3501 3502 cpu_synchronize_state(cs); 3503 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3504 if (spapr->fwnmi_system_reset_addr != -1) { 3505 uint64_t rtas_addr, addr; 3506 3507 /* get rtas addr from fdt */ 3508 rtas_addr = spapr_get_rtas_addr(); 3509 if (!rtas_addr) { 3510 qemu_system_guest_panicked(NULL); 3511 return; 3512 } 3513 3514 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3515 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3516 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3517 env->gpr[3] = addr; 3518 } 3519 ppc_cpu_do_system_reset(cs); 3520 if (spapr->fwnmi_system_reset_addr != -1) { 3521 env->nip = spapr->fwnmi_system_reset_addr; 3522 } 3523 } 3524 3525 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3526 { 3527 CPUState *cs; 3528 3529 CPU_FOREACH(cs) { 3530 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3531 } 3532 } 3533 3534 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3535 void *fdt, int *fdt_start_offset, Error **errp) 3536 { 3537 uint64_t addr; 3538 uint32_t node; 3539 3540 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3541 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3542 &error_abort); 3543 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3544 SPAPR_MEMORY_BLOCK_SIZE); 3545 return 0; 3546 } 3547 3548 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3549 bool dedicated_hp_event_source) 3550 { 3551 SpaprDrc *drc; 3552 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3553 int i; 3554 uint64_t addr = addr_start; 3555 bool hotplugged = spapr_drc_hotplugged(dev); 3556 3557 for (i = 0; i < nr_lmbs; i++) { 3558 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3559 addr / SPAPR_MEMORY_BLOCK_SIZE); 3560 g_assert(drc); 3561 3562 /* 3563 * memory_device_get_free_addr() provided a range of free addresses 3564 * that doesn't overlap with any existing mapping at pre-plug. The 3565 * corresponding LMB DRCs are thus assumed to be all attachable. 3566 */ 3567 spapr_drc_attach(drc, dev); 3568 if (!hotplugged) { 3569 spapr_drc_reset(drc); 3570 } 3571 addr += SPAPR_MEMORY_BLOCK_SIZE; 3572 } 3573 /* send hotplug notification to the 3574 * guest only in case of hotplugged memory 3575 */ 3576 if (hotplugged) { 3577 if (dedicated_hp_event_source) { 3578 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3579 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3580 g_assert(drc); 3581 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3582 nr_lmbs, 3583 spapr_drc_index(drc)); 3584 } else { 3585 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3586 nr_lmbs); 3587 } 3588 } 3589 } 3590 3591 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3592 { 3593 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3594 PCDIMMDevice *dimm = PC_DIMM(dev); 3595 uint64_t size, addr; 3596 int64_t slot; 3597 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3598 3599 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3600 3601 pc_dimm_plug(dimm, MACHINE(ms)); 3602 3603 if (!is_nvdimm) { 3604 addr = object_property_get_uint(OBJECT(dimm), 3605 PC_DIMM_ADDR_PROP, &error_abort); 3606 spapr_add_lmbs(dev, addr, size, 3607 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3608 } else { 3609 slot = object_property_get_int(OBJECT(dimm), 3610 PC_DIMM_SLOT_PROP, &error_abort); 3611 /* We should have valid slot number at this point */ 3612 g_assert(slot >= 0); 3613 spapr_add_nvdimm(dev, slot); 3614 } 3615 } 3616 3617 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3618 Error **errp) 3619 { 3620 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3621 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3622 PCDIMMDevice *dimm = PC_DIMM(dev); 3623 Error *local_err = NULL; 3624 uint64_t size; 3625 Object *memdev; 3626 hwaddr pagesize; 3627 3628 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3629 if (local_err) { 3630 error_propagate(errp, local_err); 3631 return; 3632 } 3633 3634 if (is_nvdimm) { 3635 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3636 return; 3637 } 3638 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3639 error_setg(errp, "Hotplugged memory size must be a multiple of " 3640 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3641 return; 3642 } 3643 3644 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3645 &error_abort); 3646 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3647 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3648 return; 3649 } 3650 3651 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), errp); 3652 } 3653 3654 struct SpaprDimmState { 3655 PCDIMMDevice *dimm; 3656 uint32_t nr_lmbs; 3657 QTAILQ_ENTRY(SpaprDimmState) next; 3658 }; 3659 3660 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3661 PCDIMMDevice *dimm) 3662 { 3663 SpaprDimmState *dimm_state = NULL; 3664 3665 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3666 if (dimm_state->dimm == dimm) { 3667 break; 3668 } 3669 } 3670 return dimm_state; 3671 } 3672 3673 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3674 uint32_t nr_lmbs, 3675 PCDIMMDevice *dimm) 3676 { 3677 SpaprDimmState *ds = NULL; 3678 3679 /* 3680 * If this request is for a DIMM whose removal had failed earlier 3681 * (due to guest's refusal to remove the LMBs), we would have this 3682 * dimm already in the pending_dimm_unplugs list. In that 3683 * case don't add again. 3684 */ 3685 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3686 if (!ds) { 3687 ds = g_new0(SpaprDimmState, 1); 3688 ds->nr_lmbs = nr_lmbs; 3689 ds->dimm = dimm; 3690 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3691 } 3692 return ds; 3693 } 3694 3695 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3696 SpaprDimmState *dimm_state) 3697 { 3698 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3699 g_free(dimm_state); 3700 } 3701 3702 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3703 PCDIMMDevice *dimm) 3704 { 3705 SpaprDrc *drc; 3706 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3707 &error_abort); 3708 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3709 uint32_t avail_lmbs = 0; 3710 uint64_t addr_start, addr; 3711 int i; 3712 3713 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3714 &error_abort); 3715 3716 addr = addr_start; 3717 for (i = 0; i < nr_lmbs; i++) { 3718 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3719 addr / SPAPR_MEMORY_BLOCK_SIZE); 3720 g_assert(drc); 3721 if (drc->dev) { 3722 avail_lmbs++; 3723 } 3724 addr += SPAPR_MEMORY_BLOCK_SIZE; 3725 } 3726 3727 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3728 } 3729 3730 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3731 { 3732 SpaprDimmState *ds; 3733 PCDIMMDevice *dimm; 3734 SpaprDrc *drc; 3735 uint32_t nr_lmbs; 3736 uint64_t size, addr_start, addr; 3737 int i; 3738 3739 if (!dev) { 3740 return; 3741 } 3742 3743 dimm = PC_DIMM(dev); 3744 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3745 3746 /* 3747 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3748 * unplug state, but one of its DRC is marked as unplug_requested. 3749 * This is bad and weird enough to g_assert() out. 3750 */ 3751 g_assert(ds); 3752 3753 spapr_pending_dimm_unplugs_remove(spapr, ds); 3754 3755 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3756 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3757 3758 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3759 &error_abort); 3760 3761 addr = addr_start; 3762 for (i = 0; i < nr_lmbs; i++) { 3763 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3764 addr / SPAPR_MEMORY_BLOCK_SIZE); 3765 g_assert(drc); 3766 3767 drc->unplug_requested = false; 3768 addr += SPAPR_MEMORY_BLOCK_SIZE; 3769 } 3770 3771 /* 3772 * Tell QAPI that something happened and the memory 3773 * hotunplug wasn't successful. 3774 */ 3775 qapi_event_send_device_unplug_guest_error(dev->id, 3776 dev->canonical_path); 3777 } 3778 3779 /* Callback to be called during DRC release. */ 3780 void spapr_lmb_release(DeviceState *dev) 3781 { 3782 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3783 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3784 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3785 3786 /* This information will get lost if a migration occurs 3787 * during the unplug process. In this case recover it. */ 3788 if (ds == NULL) { 3789 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3790 g_assert(ds); 3791 /* The DRC being examined by the caller at least must be counted */ 3792 g_assert(ds->nr_lmbs); 3793 } 3794 3795 if (--ds->nr_lmbs) { 3796 return; 3797 } 3798 3799 /* 3800 * Now that all the LMBs have been removed by the guest, call the 3801 * unplug handler chain. This can never fail. 3802 */ 3803 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3804 object_unparent(OBJECT(dev)); 3805 } 3806 3807 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3808 { 3809 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3810 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3811 3812 /* We really shouldn't get this far without anything to unplug */ 3813 g_assert(ds); 3814 3815 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3816 qdev_unrealize(dev); 3817 spapr_pending_dimm_unplugs_remove(spapr, ds); 3818 } 3819 3820 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3821 DeviceState *dev, Error **errp) 3822 { 3823 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3824 PCDIMMDevice *dimm = PC_DIMM(dev); 3825 uint32_t nr_lmbs; 3826 uint64_t size, addr_start, addr; 3827 int i; 3828 SpaprDrc *drc; 3829 3830 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3831 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3832 return; 3833 } 3834 3835 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3836 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3837 3838 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3839 &error_abort); 3840 3841 /* 3842 * An existing pending dimm state for this DIMM means that there is an 3843 * unplug operation in progress, waiting for the spapr_lmb_release 3844 * callback to complete the job (BQL can't cover that far). In this case, 3845 * bail out to avoid detaching DRCs that were already released. 3846 */ 3847 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3848 error_setg(errp, "Memory unplug already in progress for device %s", 3849 dev->id); 3850 return; 3851 } 3852 3853 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3854 3855 addr = addr_start; 3856 for (i = 0; i < nr_lmbs; i++) { 3857 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3858 addr / SPAPR_MEMORY_BLOCK_SIZE); 3859 g_assert(drc); 3860 3861 spapr_drc_unplug_request(drc); 3862 addr += SPAPR_MEMORY_BLOCK_SIZE; 3863 } 3864 3865 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3866 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3867 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3868 nr_lmbs, spapr_drc_index(drc)); 3869 } 3870 3871 /* Callback to be called during DRC release. */ 3872 void spapr_core_release(DeviceState *dev) 3873 { 3874 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3875 3876 /* Call the unplug handler chain. This can never fail. */ 3877 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3878 object_unparent(OBJECT(dev)); 3879 } 3880 3881 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3882 { 3883 MachineState *ms = MACHINE(hotplug_dev); 3884 CPUCore *cc = CPU_CORE(dev); 3885 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3886 3887 assert(core_slot); 3888 core_slot->cpu = NULL; 3889 qdev_unrealize(dev); 3890 } 3891 3892 static 3893 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3894 Error **errp) 3895 { 3896 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3897 int index; 3898 SpaprDrc *drc; 3899 CPUCore *cc = CPU_CORE(dev); 3900 3901 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3902 error_setg(errp, "Unable to find CPU core with core-id: %d", 3903 cc->core_id); 3904 return; 3905 } 3906 if (index == 0) { 3907 error_setg(errp, "Boot CPU core may not be unplugged"); 3908 return; 3909 } 3910 3911 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3912 spapr_vcpu_id(spapr, cc->core_id)); 3913 g_assert(drc); 3914 3915 if (!spapr_drc_unplug_requested(drc)) { 3916 spapr_drc_unplug_request(drc); 3917 } 3918 3919 /* 3920 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3921 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3922 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3923 * attempt (e.g. the kernel will refuse to remove the last online 3924 * CPU), we will never attempt it again because unplug_requested 3925 * will still be 'true' in that case. 3926 */ 3927 spapr_hotplug_req_remove_by_index(drc); 3928 } 3929 3930 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3931 void *fdt, int *fdt_start_offset, Error **errp) 3932 { 3933 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3934 CPUState *cs = CPU(core->threads[0]); 3935 PowerPCCPU *cpu = POWERPC_CPU(cs); 3936 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3937 int id = spapr_get_vcpu_id(cpu); 3938 g_autofree char *nodename = NULL; 3939 int offset; 3940 3941 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3942 offset = fdt_add_subnode(fdt, 0, nodename); 3943 3944 spapr_dt_cpu(cs, fdt, offset, spapr); 3945 3946 /* 3947 * spapr_dt_cpu() does not fill the 'name' property in the 3948 * CPU node. The function is called during boot process, before 3949 * and after CAS, and overwriting the 'name' property written 3950 * by SLOF is not allowed. 3951 * 3952 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3953 * CPUs more compatible with the coldplugged ones, which have 3954 * the 'name' property. Linux Kernel also relies on this 3955 * property to identify CPU nodes. 3956 */ 3957 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3958 3959 *fdt_start_offset = offset; 3960 return 0; 3961 } 3962 3963 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3964 { 3965 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3966 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3967 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3968 CPUCore *cc = CPU_CORE(dev); 3969 SpaprDrc *drc; 3970 CPUArchId *core_slot; 3971 int index; 3972 bool hotplugged = spapr_drc_hotplugged(dev); 3973 int i; 3974 3975 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3976 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 3977 3978 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3979 spapr_vcpu_id(spapr, cc->core_id)); 3980 3981 g_assert(drc || !mc->has_hotpluggable_cpus); 3982 3983 if (drc) { 3984 /* 3985 * spapr_core_pre_plug() already buys us this is a brand new 3986 * core being plugged into a free slot. Nothing should already 3987 * be attached to the corresponding DRC. 3988 */ 3989 spapr_drc_attach(drc, dev); 3990 3991 if (hotplugged) { 3992 /* 3993 * Send hotplug notification interrupt to the guest only 3994 * in case of hotplugged CPUs. 3995 */ 3996 spapr_hotplug_req_add_by_index(drc); 3997 } else { 3998 spapr_drc_reset(drc); 3999 } 4000 } 4001 4002 core_slot->cpu = CPU(dev); 4003 4004 /* 4005 * Set compatibility mode to match the boot CPU, which was either set 4006 * by the machine reset code or by CAS. This really shouldn't fail at 4007 * this point. 4008 */ 4009 if (hotplugged) { 4010 for (i = 0; i < cc->nr_threads; i++) { 4011 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 4012 &error_abort); 4013 } 4014 } 4015 4016 } 4017 4018 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4019 Error **errp) 4020 { 4021 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4022 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4023 CPUCore *cc = CPU_CORE(dev); 4024 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4025 const char *type = object_get_typename(OBJECT(dev)); 4026 CPUArchId *core_slot; 4027 int index; 4028 unsigned int smp_threads = machine->smp.threads; 4029 4030 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4031 error_setg(errp, "CPU hotplug not supported for this machine"); 4032 return; 4033 } 4034 4035 if (strcmp(base_core_type, type)) { 4036 error_setg(errp, "CPU core type should be %s", base_core_type); 4037 return; 4038 } 4039 4040 if (cc->core_id % smp_threads) { 4041 error_setg(errp, "invalid core id %d", cc->core_id); 4042 return; 4043 } 4044 4045 /* 4046 * In general we should have homogeneous threads-per-core, but old 4047 * (pre hotplug support) machine types allow the last core to have 4048 * reduced threads as a compatibility hack for when we allowed 4049 * total vcpus not a multiple of threads-per-core. 4050 */ 4051 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4052 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4053 smp_threads); 4054 return; 4055 } 4056 4057 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4058 if (!core_slot) { 4059 error_setg(errp, "core id %d out of range", cc->core_id); 4060 return; 4061 } 4062 4063 if (core_slot->cpu) { 4064 error_setg(errp, "core %d already populated", cc->core_id); 4065 return; 4066 } 4067 4068 numa_cpu_pre_plug(core_slot, dev, errp); 4069 } 4070 4071 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4072 void *fdt, int *fdt_start_offset, Error **errp) 4073 { 4074 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4075 int intc_phandle; 4076 4077 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4078 if (intc_phandle <= 0) { 4079 return -1; 4080 } 4081 4082 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4083 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4084 return -1; 4085 } 4086 4087 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4088 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4089 4090 return 0; 4091 } 4092 4093 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4094 Error **errp) 4095 { 4096 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4097 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4098 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4099 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4100 SpaprDrc *drc; 4101 4102 if (dev->hotplugged && !smc->dr_phb_enabled) { 4103 error_setg(errp, "PHB hotplug not supported for this machine"); 4104 return false; 4105 } 4106 4107 if (sphb->index == (uint32_t)-1) { 4108 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4109 return false; 4110 } 4111 4112 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4113 if (drc && drc->dev) { 4114 error_setg(errp, "PHB %d already attached", sphb->index); 4115 return false; 4116 } 4117 4118 /* 4119 * This will check that sphb->index doesn't exceed the maximum number of 4120 * PHBs for the current machine type. 4121 */ 4122 return 4123 smc->phb_placement(spapr, sphb->index, 4124 &sphb->buid, &sphb->io_win_addr, 4125 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4126 windows_supported, sphb->dma_liobn, 4127 errp); 4128 } 4129 4130 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4131 { 4132 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4133 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4134 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4135 SpaprDrc *drc; 4136 bool hotplugged = spapr_drc_hotplugged(dev); 4137 4138 if (!smc->dr_phb_enabled) { 4139 return; 4140 } 4141 4142 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4143 /* hotplug hooks should check it's enabled before getting this far */ 4144 assert(drc); 4145 4146 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4147 spapr_drc_attach(drc, dev); 4148 4149 if (hotplugged) { 4150 spapr_hotplug_req_add_by_index(drc); 4151 } else { 4152 spapr_drc_reset(drc); 4153 } 4154 } 4155 4156 void spapr_phb_release(DeviceState *dev) 4157 { 4158 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4159 4160 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4161 object_unparent(OBJECT(dev)); 4162 } 4163 4164 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4165 { 4166 qdev_unrealize(dev); 4167 } 4168 4169 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4170 DeviceState *dev, Error **errp) 4171 { 4172 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4173 SpaprDrc *drc; 4174 4175 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4176 assert(drc); 4177 4178 if (!spapr_drc_unplug_requested(drc)) { 4179 spapr_drc_unplug_request(drc); 4180 spapr_hotplug_req_remove_by_index(drc); 4181 } else { 4182 error_setg(errp, 4183 "PCI Host Bridge unplug already in progress for device %s", 4184 dev->id); 4185 } 4186 } 4187 4188 static 4189 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4190 Error **errp) 4191 { 4192 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4193 4194 if (spapr->tpm_proxy != NULL) { 4195 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4196 return false; 4197 } 4198 4199 return true; 4200 } 4201 4202 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4203 { 4204 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4205 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4206 4207 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4208 g_assert(spapr->tpm_proxy == NULL); 4209 4210 spapr->tpm_proxy = tpm_proxy; 4211 } 4212 4213 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4214 { 4215 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4216 4217 qdev_unrealize(dev); 4218 object_unparent(OBJECT(dev)); 4219 spapr->tpm_proxy = NULL; 4220 } 4221 4222 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4223 DeviceState *dev, Error **errp) 4224 { 4225 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4226 spapr_memory_plug(hotplug_dev, dev); 4227 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4228 spapr_core_plug(hotplug_dev, dev); 4229 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4230 spapr_phb_plug(hotplug_dev, dev); 4231 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4232 spapr_tpm_proxy_plug(hotplug_dev, dev); 4233 } 4234 } 4235 4236 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4237 DeviceState *dev, Error **errp) 4238 { 4239 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4240 spapr_memory_unplug(hotplug_dev, dev); 4241 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4242 spapr_core_unplug(hotplug_dev, dev); 4243 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4244 spapr_phb_unplug(hotplug_dev, dev); 4245 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4246 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4247 } 4248 } 4249 4250 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4251 { 4252 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4253 /* 4254 * CAS will process all pending unplug requests. 4255 * 4256 * HACK: a guest could theoretically have cleared all bits in OV5, 4257 * but none of the guests we care for do. 4258 */ 4259 spapr_ovec_empty(spapr->ov5_cas); 4260 } 4261 4262 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4263 DeviceState *dev, Error **errp) 4264 { 4265 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4266 MachineClass *mc = MACHINE_GET_CLASS(sms); 4267 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4268 4269 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4270 if (spapr_memory_hot_unplug_supported(sms)) { 4271 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4272 } else { 4273 error_setg(errp, "Memory hot unplug not supported for this guest"); 4274 } 4275 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4276 if (!mc->has_hotpluggable_cpus) { 4277 error_setg(errp, "CPU hot unplug not supported on this machine"); 4278 return; 4279 } 4280 spapr_core_unplug_request(hotplug_dev, dev, errp); 4281 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4282 if (!smc->dr_phb_enabled) { 4283 error_setg(errp, "PHB hot unplug not supported on this machine"); 4284 return; 4285 } 4286 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4287 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4288 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4289 } 4290 } 4291 4292 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4293 DeviceState *dev, Error **errp) 4294 { 4295 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4296 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4297 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4298 spapr_core_pre_plug(hotplug_dev, dev, errp); 4299 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4300 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4301 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4302 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4303 } 4304 } 4305 4306 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4307 DeviceState *dev) 4308 { 4309 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4310 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4311 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4312 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4313 return HOTPLUG_HANDLER(machine); 4314 } 4315 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4316 PCIDevice *pcidev = PCI_DEVICE(dev); 4317 PCIBus *root = pci_device_root_bus(pcidev); 4318 SpaprPhbState *phb = 4319 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4320 TYPE_SPAPR_PCI_HOST_BRIDGE); 4321 4322 if (phb) { 4323 return HOTPLUG_HANDLER(phb); 4324 } 4325 } 4326 return NULL; 4327 } 4328 4329 static CpuInstanceProperties 4330 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4331 { 4332 CPUArchId *core_slot; 4333 MachineClass *mc = MACHINE_GET_CLASS(machine); 4334 4335 /* make sure possible_cpu are initialized */ 4336 mc->possible_cpu_arch_ids(machine); 4337 /* get CPU core slot containing thread that matches cpu_index */ 4338 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4339 assert(core_slot); 4340 return core_slot->props; 4341 } 4342 4343 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4344 { 4345 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4346 } 4347 4348 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4349 { 4350 int i; 4351 unsigned int smp_threads = machine->smp.threads; 4352 unsigned int smp_cpus = machine->smp.cpus; 4353 const char *core_type; 4354 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4355 MachineClass *mc = MACHINE_GET_CLASS(machine); 4356 4357 if (!mc->has_hotpluggable_cpus) { 4358 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4359 } 4360 if (machine->possible_cpus) { 4361 assert(machine->possible_cpus->len == spapr_max_cores); 4362 return machine->possible_cpus; 4363 } 4364 4365 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4366 if (!core_type) { 4367 error_report("Unable to find sPAPR CPU Core definition"); 4368 exit(1); 4369 } 4370 4371 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4372 sizeof(CPUArchId) * spapr_max_cores); 4373 machine->possible_cpus->len = spapr_max_cores; 4374 for (i = 0; i < machine->possible_cpus->len; i++) { 4375 int core_id = i * smp_threads; 4376 4377 machine->possible_cpus->cpus[i].type = core_type; 4378 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4379 machine->possible_cpus->cpus[i].arch_id = core_id; 4380 machine->possible_cpus->cpus[i].props.has_core_id = true; 4381 machine->possible_cpus->cpus[i].props.core_id = core_id; 4382 } 4383 return machine->possible_cpus; 4384 } 4385 4386 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4387 uint64_t *buid, hwaddr *pio, 4388 hwaddr *mmio32, hwaddr *mmio64, 4389 unsigned n_dma, uint32_t *liobns, Error **errp) 4390 { 4391 /* 4392 * New-style PHB window placement. 4393 * 4394 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4395 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4396 * windows. 4397 * 4398 * Some guest kernels can't work with MMIO windows above 1<<46 4399 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4400 * 4401 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4402 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4403 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4404 * 1TiB 64-bit MMIO windows for each PHB. 4405 */ 4406 const uint64_t base_buid = 0x800000020000000ULL; 4407 int i; 4408 4409 /* Sanity check natural alignments */ 4410 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4411 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4412 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4413 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4414 /* Sanity check bounds */ 4415 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4416 SPAPR_PCI_MEM32_WIN_SIZE); 4417 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4418 SPAPR_PCI_MEM64_WIN_SIZE); 4419 4420 if (index >= SPAPR_MAX_PHBS) { 4421 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4422 SPAPR_MAX_PHBS - 1); 4423 return false; 4424 } 4425 4426 *buid = base_buid + index; 4427 for (i = 0; i < n_dma; ++i) { 4428 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4429 } 4430 4431 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4432 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4433 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4434 return true; 4435 } 4436 4437 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4438 { 4439 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4440 4441 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4442 } 4443 4444 static void spapr_ics_resend(XICSFabric *dev) 4445 { 4446 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4447 4448 ics_resend(spapr->ics); 4449 } 4450 4451 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4452 { 4453 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4454 4455 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4456 } 4457 4458 static void spapr_pic_print_info(InterruptStatsProvider *obj, GString *buf) 4459 { 4460 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4461 4462 spapr_irq_print_info(spapr, buf); 4463 g_string_append_printf(buf, "irqchip: %s\n", 4464 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4465 } 4466 4467 /* 4468 * This is a XIVE only operation 4469 */ 4470 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4471 uint8_t nvt_blk, uint32_t nvt_idx, 4472 bool crowd, bool cam_ignore, uint8_t priority, 4473 uint32_t logic_serv, XiveTCTXMatch *match) 4474 { 4475 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4476 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4477 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4478 int count; 4479 4480 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, crowd, cam_ignore, 4481 priority, logic_serv, match); 4482 if (count < 0) { 4483 return count; 4484 } 4485 4486 /* 4487 * When we implement the save and restore of the thread interrupt 4488 * contexts in the enter/exit CPU handlers of the machine and the 4489 * escalations in QEMU, we should be able to handle non dispatched 4490 * vCPUs. 4491 * 4492 * Until this is done, the sPAPR machine should find at least one 4493 * matching context always. 4494 */ 4495 if (count == 0) { 4496 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4497 nvt_blk, nvt_idx); 4498 } 4499 4500 return count; 4501 } 4502 4503 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4504 { 4505 return cpu->vcpu_id; 4506 } 4507 4508 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4509 { 4510 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4511 MachineState *ms = MACHINE(spapr); 4512 int vcpu_id; 4513 4514 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4515 4516 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4517 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4518 error_append_hint(errp, "Adjust the number of cpus to %d " 4519 "or try to raise the number of threads per core\n", 4520 vcpu_id * ms->smp.threads / spapr->vsmt); 4521 return false; 4522 } 4523 4524 cpu->vcpu_id = vcpu_id; 4525 return true; 4526 } 4527 4528 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4529 { 4530 CPUState *cs; 4531 4532 CPU_FOREACH(cs) { 4533 PowerPCCPU *cpu = POWERPC_CPU(cs); 4534 4535 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4536 return cpu; 4537 } 4538 } 4539 4540 return NULL; 4541 } 4542 4543 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4544 { 4545 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4546 4547 return spapr_cpu->in_nested; 4548 } 4549 4550 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4551 { 4552 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4553 4554 /* These are only called by TCG, KVM maintains dispatch state */ 4555 4556 spapr_cpu->prod = false; 4557 if (spapr_cpu->vpa_addr) { 4558 CPUState *cs = CPU(cpu); 4559 uint32_t dispatch; 4560 4561 dispatch = ldl_be_phys(cs->as, 4562 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4563 dispatch++; 4564 if ((dispatch & 1) != 0) { 4565 qemu_log_mask(LOG_GUEST_ERROR, 4566 "VPA: incorrect dispatch counter value for " 4567 "dispatched partition %u, correcting.\n", dispatch); 4568 dispatch++; 4569 } 4570 stl_be_phys(cs->as, 4571 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4572 } 4573 } 4574 4575 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4576 { 4577 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4578 4579 if (spapr_cpu->vpa_addr) { 4580 CPUState *cs = CPU(cpu); 4581 uint32_t dispatch; 4582 4583 dispatch = ldl_be_phys(cs->as, 4584 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4585 dispatch++; 4586 if ((dispatch & 1) != 1) { 4587 qemu_log_mask(LOG_GUEST_ERROR, 4588 "VPA: incorrect dispatch counter value for " 4589 "preempted partition %u, correcting.\n", dispatch); 4590 dispatch++; 4591 } 4592 stl_be_phys(cs->as, 4593 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4594 } 4595 } 4596 4597 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4598 { 4599 MachineClass *mc = MACHINE_CLASS(oc); 4600 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4601 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4602 NMIClass *nc = NMI_CLASS(oc); 4603 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4604 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4605 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4606 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4607 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4608 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4609 4610 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4611 mc->ignore_boot_device_suffixes = true; 4612 4613 /* 4614 * We set up the default / latest behaviour here. The class_init 4615 * functions for the specific versioned machine types can override 4616 * these details for backwards compatibility 4617 */ 4618 mc->init = spapr_machine_init; 4619 mc->reset = spapr_machine_reset; 4620 mc->block_default_type = IF_SCSI; 4621 4622 /* 4623 * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(), 4624 * In TCG the limit is restricted by the range of CPU IPIs available. 4625 */ 4626 mc->max_cpus = SPAPR_IRQ_NR_IPIS; 4627 4628 mc->no_parallel = 1; 4629 mc->default_boot_order = ""; 4630 mc->default_ram_size = 512 * MiB; 4631 mc->default_ram_id = "ppc_spapr.ram"; 4632 mc->default_display = "std"; 4633 mc->kvm_type = spapr_kvm_type; 4634 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4635 mc->pci_allow_0_address = true; 4636 assert(!mc->get_hotplug_handler); 4637 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4638 hc->pre_plug = spapr_machine_device_pre_plug; 4639 hc->plug = spapr_machine_device_plug; 4640 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4641 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4642 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4643 hc->unplug_request = spapr_machine_device_unplug_request; 4644 hc->unplug = spapr_machine_device_unplug; 4645 4646 smc->update_dt_enabled = true; 4647 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 4648 mc->has_hotpluggable_cpus = true; 4649 mc->nvdimm_supported = true; 4650 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4651 fwc->get_dev_path = spapr_get_fw_dev_path; 4652 nc->nmi_monitor_handler = spapr_nmi; 4653 smc->phb_placement = spapr_phb_placement; 4654 vhc->cpu_in_nested = spapr_cpu_in_nested; 4655 vhc->deliver_hv_excp = spapr_exit_nested; 4656 vhc->hypercall = emulate_spapr_hypercall; 4657 vhc->hpt_mask = spapr_hpt_mask; 4658 vhc->map_hptes = spapr_map_hptes; 4659 vhc->unmap_hptes = spapr_unmap_hptes; 4660 vhc->hpte_set_c = spapr_hpte_set_c; 4661 vhc->hpte_set_r = spapr_hpte_set_r; 4662 vhc->get_pate = spapr_get_pate; 4663 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4664 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4665 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4666 xic->ics_get = spapr_ics_get; 4667 xic->ics_resend = spapr_ics_resend; 4668 xic->icp_get = spapr_icp_get; 4669 ispc->print_info = spapr_pic_print_info; 4670 /* Force NUMA node memory size to be a multiple of 4671 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4672 * in which LMBs are represented and hot-added 4673 */ 4674 mc->numa_mem_align_shift = 28; 4675 mc->auto_enable_numa = true; 4676 4677 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4678 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4679 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4680 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4681 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4682 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4683 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4684 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4685 smc->default_caps.caps[SPAPR_CAP_NESTED_PAPR] = SPAPR_CAP_OFF; 4686 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4687 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4688 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4689 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4690 smc->default_caps.caps[SPAPR_CAP_DAWR1] = SPAPR_CAP_ON; 4691 4692 /* 4693 * This cap specifies whether the AIL 3 mode for 4694 * H_SET_RESOURCE is supported. The default is modified 4695 * by default_caps_with_cpu(). 4696 */ 4697 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4698 spapr_caps_add_properties(smc); 4699 smc->irq = &spapr_irq_dual; 4700 smc->dr_phb_enabled = true; 4701 smc->linux_pci_probe = true; 4702 smc->smp_threads_vsmt = true; 4703 smc->nr_xirqs = SPAPR_NR_XIRQS; 4704 xfc->match_nvt = spapr_match_nvt; 4705 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4706 vmc->quiesce = spapr_vof_quiesce; 4707 vmc->setprop = spapr_vof_setprop; 4708 } 4709 4710 static const TypeInfo spapr_machine_info = { 4711 .name = TYPE_SPAPR_MACHINE, 4712 .parent = TYPE_MACHINE, 4713 .abstract = true, 4714 .instance_size = sizeof(SpaprMachineState), 4715 .instance_init = spapr_instance_init, 4716 .instance_finalize = spapr_machine_finalizefn, 4717 .class_size = sizeof(SpaprMachineClass), 4718 .class_init = spapr_machine_class_init, 4719 .interfaces = (InterfaceInfo[]) { 4720 { TYPE_FW_PATH_PROVIDER }, 4721 { TYPE_NMI }, 4722 { TYPE_HOTPLUG_HANDLER }, 4723 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4724 { TYPE_XICS_FABRIC }, 4725 { TYPE_INTERRUPT_STATS_PROVIDER }, 4726 { TYPE_XIVE_FABRIC }, 4727 { TYPE_VOF_MACHINE_IF }, 4728 { } 4729 }, 4730 }; 4731 4732 static void spapr_machine_latest_class_options(MachineClass *mc) 4733 { 4734 mc->alias = "pseries"; 4735 mc->is_default = true; 4736 } 4737 4738 #define DEFINE_SPAPR_MACHINE_IMPL(latest, ...) \ 4739 static void MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__)( \ 4740 ObjectClass *oc, \ 4741 void *data) \ 4742 { \ 4743 MachineClass *mc = MACHINE_CLASS(oc); \ 4744 MACHINE_VER_SYM(class_options, spapr, __VA_ARGS__)(mc); \ 4745 MACHINE_VER_DEPRECATION(__VA_ARGS__); \ 4746 if (latest) { \ 4747 spapr_machine_latest_class_options(mc); \ 4748 } \ 4749 } \ 4750 static const TypeInfo MACHINE_VER_SYM(info, spapr, __VA_ARGS__) = \ 4751 { \ 4752 .name = MACHINE_VER_TYPE_NAME("pseries", __VA_ARGS__), \ 4753 .parent = TYPE_SPAPR_MACHINE, \ 4754 .class_init = MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__), \ 4755 }; \ 4756 static void MACHINE_VER_SYM(register, spapr, __VA_ARGS__)(void) \ 4757 { \ 4758 MACHINE_VER_DELETION(__VA_ARGS__); \ 4759 type_register_static(&MACHINE_VER_SYM(info, spapr, __VA_ARGS__)); \ 4760 } \ 4761 type_init(MACHINE_VER_SYM(register, spapr, __VA_ARGS__)) 4762 4763 #define DEFINE_SPAPR_MACHINE_AS_LATEST(major, minor) \ 4764 DEFINE_SPAPR_MACHINE_IMPL(true, major, minor) 4765 #define DEFINE_SPAPR_MACHINE(major, minor) \ 4766 DEFINE_SPAPR_MACHINE_IMPL(false, major, minor) 4767 4768 /* 4769 * pseries-10.0 4770 */ 4771 static void spapr_machine_10_0_class_options(MachineClass *mc) 4772 { 4773 /* Defaults for the latest behaviour inherited from the base class */ 4774 } 4775 4776 DEFINE_SPAPR_MACHINE_AS_LATEST(10, 0); 4777 4778 /* 4779 * pseries-9.2 4780 */ 4781 static void spapr_machine_9_2_class_options(MachineClass *mc) 4782 { 4783 spapr_machine_10_0_class_options(mc); 4784 compat_props_add(mc->compat_props, hw_compat_9_2, hw_compat_9_2_len); 4785 } 4786 4787 DEFINE_SPAPR_MACHINE(9, 2); 4788 4789 /* 4790 * pseries-9.1 4791 */ 4792 static void spapr_machine_9_1_class_options(MachineClass *mc) 4793 { 4794 spapr_machine_9_2_class_options(mc); 4795 compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len); 4796 } 4797 4798 DEFINE_SPAPR_MACHINE(9, 1); 4799 4800 /* 4801 * pseries-9.0 4802 */ 4803 static void spapr_machine_9_0_class_options(MachineClass *mc) 4804 { 4805 spapr_machine_9_1_class_options(mc); 4806 compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); 4807 } 4808 4809 DEFINE_SPAPR_MACHINE(9, 0); 4810 4811 /* 4812 * pseries-8.2 4813 */ 4814 static void spapr_machine_8_2_class_options(MachineClass *mc) 4815 { 4816 spapr_machine_9_0_class_options(mc); 4817 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 4818 } 4819 4820 DEFINE_SPAPR_MACHINE(8, 2); 4821 4822 /* 4823 * pseries-8.1 4824 */ 4825 static void spapr_machine_8_1_class_options(MachineClass *mc) 4826 { 4827 spapr_machine_8_2_class_options(mc); 4828 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4829 } 4830 4831 DEFINE_SPAPR_MACHINE(8, 1); 4832 4833 /* 4834 * pseries-8.0 4835 */ 4836 static void spapr_machine_8_0_class_options(MachineClass *mc) 4837 { 4838 spapr_machine_8_1_class_options(mc); 4839 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4840 } 4841 4842 DEFINE_SPAPR_MACHINE(8, 0); 4843 4844 /* 4845 * pseries-7.2 4846 */ 4847 static void spapr_machine_7_2_class_options(MachineClass *mc) 4848 { 4849 spapr_machine_8_0_class_options(mc); 4850 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4851 } 4852 4853 DEFINE_SPAPR_MACHINE(7, 2); 4854 4855 /* 4856 * pseries-7.1 4857 */ 4858 static void spapr_machine_7_1_class_options(MachineClass *mc) 4859 { 4860 spapr_machine_7_2_class_options(mc); 4861 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4862 } 4863 4864 DEFINE_SPAPR_MACHINE(7, 1); 4865 4866 /* 4867 * pseries-7.0 4868 */ 4869 static void spapr_machine_7_0_class_options(MachineClass *mc) 4870 { 4871 spapr_machine_7_1_class_options(mc); 4872 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4873 } 4874 4875 DEFINE_SPAPR_MACHINE(7, 0); 4876 4877 /* 4878 * pseries-6.2 4879 */ 4880 static void spapr_machine_6_2_class_options(MachineClass *mc) 4881 { 4882 spapr_machine_7_0_class_options(mc); 4883 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4884 } 4885 4886 DEFINE_SPAPR_MACHINE(6, 2); 4887 4888 /* 4889 * pseries-6.1 4890 */ 4891 static void spapr_machine_6_1_class_options(MachineClass *mc) 4892 { 4893 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4894 4895 spapr_machine_6_2_class_options(mc); 4896 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4897 smc->pre_6_2_numa_affinity = true; 4898 mc->smp_props.prefer_sockets = true; 4899 } 4900 4901 DEFINE_SPAPR_MACHINE(6, 1); 4902 4903 /* 4904 * pseries-6.0 4905 */ 4906 static void spapr_machine_6_0_class_options(MachineClass *mc) 4907 { 4908 spapr_machine_6_1_class_options(mc); 4909 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4910 } 4911 4912 DEFINE_SPAPR_MACHINE(6, 0); 4913 4914 /* 4915 * pseries-5.2 4916 */ 4917 static void spapr_machine_5_2_class_options(MachineClass *mc) 4918 { 4919 spapr_machine_6_0_class_options(mc); 4920 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4921 } 4922 4923 DEFINE_SPAPR_MACHINE(5, 2); 4924 4925 /* 4926 * pseries-5.1 4927 */ 4928 static void spapr_machine_5_1_class_options(MachineClass *mc) 4929 { 4930 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4931 4932 spapr_machine_5_2_class_options(mc); 4933 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4934 smc->pre_5_2_numa_associativity = true; 4935 } 4936 4937 DEFINE_SPAPR_MACHINE(5, 1); 4938 4939 /* 4940 * pseries-5.0 4941 */ 4942 static void spapr_machine_5_0_class_options(MachineClass *mc) 4943 { 4944 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4945 static GlobalProperty compat[] = { 4946 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4947 }; 4948 4949 spapr_machine_5_1_class_options(mc); 4950 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4951 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4952 mc->numa_mem_supported = true; 4953 smc->pre_5_1_assoc_refpoints = true; 4954 } 4955 4956 DEFINE_SPAPR_MACHINE(5, 0); 4957 4958 /* 4959 * pseries-4.2 4960 */ 4961 static void spapr_machine_4_2_class_options(MachineClass *mc) 4962 { 4963 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4964 4965 spapr_machine_5_0_class_options(mc); 4966 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4967 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4968 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4969 smc->rma_limit = 16 * GiB; 4970 mc->nvdimm_supported = false; 4971 } 4972 4973 DEFINE_SPAPR_MACHINE(4, 2); 4974 4975 /* 4976 * pseries-4.1 4977 */ 4978 static void spapr_machine_4_1_class_options(MachineClass *mc) 4979 { 4980 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4981 static GlobalProperty compat[] = { 4982 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4983 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4984 }; 4985 4986 spapr_machine_4_2_class_options(mc); 4987 smc->linux_pci_probe = false; 4988 smc->smp_threads_vsmt = false; 4989 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4990 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4991 } 4992 4993 DEFINE_SPAPR_MACHINE(4, 1); 4994 4995 /* 4996 * pseries-4.0 4997 */ 4998 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4999 uint64_t *buid, hwaddr *pio, 5000 hwaddr *mmio32, hwaddr *mmio64, 5001 unsigned n_dma, uint32_t *liobns, Error **errp) 5002 { 5003 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 5004 liobns, errp)) { 5005 return false; 5006 } 5007 return true; 5008 } 5009 static void spapr_machine_4_0_class_options(MachineClass *mc) 5010 { 5011 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5012 5013 spapr_machine_4_1_class_options(mc); 5014 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 5015 smc->phb_placement = phb_placement_4_0; 5016 smc->irq = &spapr_irq_xics; 5017 smc->pre_4_1_migration = true; 5018 } 5019 5020 DEFINE_SPAPR_MACHINE(4, 0); 5021 5022 /* 5023 * pseries-3.1 5024 */ 5025 static void spapr_machine_3_1_class_options(MachineClass *mc) 5026 { 5027 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5028 5029 spapr_machine_4_0_class_options(mc); 5030 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 5031 5032 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 5033 smc->update_dt_enabled = false; 5034 smc->dr_phb_enabled = false; 5035 smc->broken_host_serial_model = true; 5036 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 5037 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 5038 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 5039 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 5040 } 5041 5042 DEFINE_SPAPR_MACHINE(3, 1); 5043 5044 /* 5045 * pseries-3.0 5046 */ 5047 5048 static void spapr_machine_3_0_class_options(MachineClass *mc) 5049 { 5050 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5051 5052 spapr_machine_3_1_class_options(mc); 5053 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5054 5055 smc->legacy_irq_allocation = true; 5056 smc->nr_xirqs = 0x400; 5057 smc->irq = &spapr_irq_xics_legacy; 5058 } 5059 5060 DEFINE_SPAPR_MACHINE(3, 0); 5061 5062 static void spapr_machine_register_types(void) 5063 { 5064 type_register_static(&spapr_machine_info); 5065 } 5066 5067 type_init(spapr_machine_register_types) 5068