xref: /qemu/hw/ppc/spapr.c (revision 6c3829a26584f16259fbaeafc58a2c57c745cc39)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "hw/core/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 
84 #include <libfdt.h>
85 
86 /* SLOF memory layout:
87  *
88  * SLOF raw image loaded at 0, copies its romfs right below the flat
89  * device-tree, then position SLOF itself 31M below that
90  *
91  * So we set FW_OVERHEAD to 40MB which should account for all of that
92  * and more
93  *
94  * We load our kernel at 4M, leaving space for SLOF initial image
95  */
96 #define FDT_MAX_SIZE            0x100000
97 #define RTAS_MAX_SIZE           0x10000
98 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
99 #define FW_MAX_SIZE             0x400000
100 #define FW_FILE_NAME            "slof.bin"
101 #define FW_OVERHEAD             0x2800000
102 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
103 
104 #define MIN_RMA_SLOF            128UL
105 
106 #define PHANDLE_INTC            0x00001111
107 
108 /* These two functions implement the VCPU id numbering: one to compute them
109  * all and one to identify thread 0 of a VCORE. Any change to the first one
110  * is likely to have an impact on the second one, so let's keep them close.
111  */
112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
113 {
114     MachineState *ms = MACHINE(spapr);
115     unsigned int smp_threads = ms->smp.threads;
116 
117     assert(spapr->vsmt);
118     return
119         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
120 }
121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
122                                       PowerPCCPU *cpu)
123 {
124     assert(spapr->vsmt);
125     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
126 }
127 
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
129 {
130     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131      * and newer QEMUs don't even have them. In both cases, we don't want
132      * to send anything on the wire.
133      */
134     return false;
135 }
136 
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138     .name = "icp/server",
139     .version_id = 1,
140     .minimum_version_id = 1,
141     .needed = pre_2_10_vmstate_dummy_icp_needed,
142     .fields = (VMStateField[]) {
143         VMSTATE_UNUSED(4), /* uint32_t xirr */
144         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145         VMSTATE_UNUSED(1), /* uint8_t mfrr */
146         VMSTATE_END_OF_LIST()
147     },
148 };
149 
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
151 {
152     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153                      (void *)(uintptr_t) i);
154 }
155 
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
157 {
158     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159                        (void *)(uintptr_t) i);
160 }
161 
162 int spapr_max_server_number(SpaprMachineState *spapr)
163 {
164     MachineState *ms = MACHINE(spapr);
165 
166     assert(spapr->vsmt);
167     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
168 }
169 
170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
171                                   int smt_threads)
172 {
173     int i, ret = 0;
174     uint32_t servers_prop[smt_threads];
175     uint32_t gservers_prop[smt_threads * 2];
176     int index = spapr_get_vcpu_id(cpu);
177 
178     if (cpu->compat_pvr) {
179         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
180         if (ret < 0) {
181             return ret;
182         }
183     }
184 
185     /* Build interrupt servers and gservers properties */
186     for (i = 0; i < smt_threads; i++) {
187         servers_prop[i] = cpu_to_be32(index + i);
188         /* Hack, direct the group queues back to cpu 0 */
189         gservers_prop[i*2] = cpu_to_be32(index + i);
190         gservers_prop[i*2 + 1] = 0;
191     }
192     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
193                       servers_prop, sizeof(servers_prop));
194     if (ret < 0) {
195         return ret;
196     }
197     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
198                       gservers_prop, sizeof(gservers_prop));
199 
200     return ret;
201 }
202 
203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
204 {
205     int index = spapr_get_vcpu_id(cpu);
206     uint32_t associativity[] = {cpu_to_be32(0x5),
207                                 cpu_to_be32(0x0),
208                                 cpu_to_be32(0x0),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(cpu->node_id),
211                                 cpu_to_be32(index)};
212 
213     /* Advertise NUMA via ibm,associativity */
214     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
215                           sizeof(associativity));
216 }
217 
218 /* Populate the "ibm,pa-features" property */
219 static void spapr_populate_pa_features(SpaprMachineState *spapr,
220                                        PowerPCCPU *cpu,
221                                        void *fdt, int offset,
222                                        bool legacy_guest)
223 {
224     uint8_t pa_features_206[] = { 6, 0,
225         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226     uint8_t pa_features_207[] = { 24, 0,
227         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231     uint8_t pa_features_300[] = { 66, 0,
232         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235         /* 6: DS207 */
236         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237         /* 16: Vector */
238         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247         /* 42: PM, 44: PC RA, 46: SC vec'd */
248         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249         /* 48: SIMD, 50: QP BFP, 52: String */
250         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251         /* 54: DecFP, 56: DecI, 58: SHA */
252         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253         /* 60: NM atomic, 62: RNG */
254         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255     };
256     uint8_t *pa_features = NULL;
257     size_t pa_size;
258 
259     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260         pa_features = pa_features_206;
261         pa_size = sizeof(pa_features_206);
262     }
263     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264         pa_features = pa_features_207;
265         pa_size = sizeof(pa_features_207);
266     }
267     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268         pa_features = pa_features_300;
269         pa_size = sizeof(pa_features_300);
270     }
271     if (!pa_features) {
272         return;
273     }
274 
275     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276         /*
277          * Note: we keep CI large pages off by default because a 64K capable
278          * guest provisioned with large pages might otherwise try to map a qemu
279          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280          * even if that qemu runs on a 4k host.
281          * We dd this bit back here if we are confident this is not an issue
282          */
283         pa_features[3] |= 0x20;
284     }
285     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286         pa_features[24] |= 0x80;    /* Transactional memory support */
287     }
288     if (legacy_guest && pa_size > 40) {
289         /* Workaround for broken kernels that attempt (guest) radix
290          * mode when they can't handle it, if they see the radix bit set
291          * in pa-features. So hide it from them. */
292         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293     }
294 
295     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297 
298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
299 {
300     MachineState *ms = MACHINE(spapr);
301     int ret = 0, offset, cpus_offset;
302     CPUState *cs;
303     char cpu_model[32];
304     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
305 
306     CPU_FOREACH(cs) {
307         PowerPCCPU *cpu = POWERPC_CPU(cs);
308         DeviceClass *dc = DEVICE_GET_CLASS(cs);
309         int index = spapr_get_vcpu_id(cpu);
310         int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
311 
312         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
313             continue;
314         }
315 
316         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
317 
318         cpus_offset = fdt_path_offset(fdt, "/cpus");
319         if (cpus_offset < 0) {
320             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
321             if (cpus_offset < 0) {
322                 return cpus_offset;
323             }
324         }
325         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
326         if (offset < 0) {
327             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
328             if (offset < 0) {
329                 return offset;
330             }
331         }
332 
333         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
334                           pft_size_prop, sizeof(pft_size_prop));
335         if (ret < 0) {
336             return ret;
337         }
338 
339         if (nb_numa_nodes > 1) {
340             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
341             if (ret < 0) {
342                 return ret;
343             }
344         }
345 
346         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
347         if (ret < 0) {
348             return ret;
349         }
350 
351         spapr_populate_pa_features(spapr, cpu, fdt, offset,
352                                    spapr->cas_legacy_guest_workaround);
353     }
354     return ret;
355 }
356 
357 static hwaddr spapr_node0_size(MachineState *machine)
358 {
359     if (nb_numa_nodes) {
360         int i;
361         for (i = 0; i < nb_numa_nodes; ++i) {
362             if (numa_info[i].node_mem) {
363                 return MIN(pow2floor(numa_info[i].node_mem),
364                            machine->ram_size);
365             }
366         }
367     }
368     return machine->ram_size;
369 }
370 
371 static void add_str(GString *s, const gchar *s1)
372 {
373     g_string_append_len(s, s1, strlen(s1) + 1);
374 }
375 
376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
377                                        hwaddr size)
378 {
379     uint32_t associativity[] = {
380         cpu_to_be32(0x4), /* length */
381         cpu_to_be32(0x0), cpu_to_be32(0x0),
382         cpu_to_be32(0x0), cpu_to_be32(nodeid)
383     };
384     char mem_name[32];
385     uint64_t mem_reg_property[2];
386     int off;
387 
388     mem_reg_property[0] = cpu_to_be64(start);
389     mem_reg_property[1] = cpu_to_be64(size);
390 
391     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
392     off = fdt_add_subnode(fdt, 0, mem_name);
393     _FDT(off);
394     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
395     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
396                       sizeof(mem_reg_property))));
397     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
398                       sizeof(associativity))));
399     return off;
400 }
401 
402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
403 {
404     MachineState *machine = MACHINE(spapr);
405     hwaddr mem_start, node_size;
406     int i, nb_nodes = nb_numa_nodes;
407     NodeInfo *nodes = numa_info;
408     NodeInfo ramnode;
409 
410     /* No NUMA nodes, assume there is just one node with whole RAM */
411     if (!nb_numa_nodes) {
412         nb_nodes = 1;
413         ramnode.node_mem = machine->ram_size;
414         nodes = &ramnode;
415     }
416 
417     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
418         if (!nodes[i].node_mem) {
419             continue;
420         }
421         if (mem_start >= machine->ram_size) {
422             node_size = 0;
423         } else {
424             node_size = nodes[i].node_mem;
425             if (node_size > machine->ram_size - mem_start) {
426                 node_size = machine->ram_size - mem_start;
427             }
428         }
429         if (!mem_start) {
430             /* spapr_machine_init() checks for rma_size <= node0_size
431              * already */
432             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
433             mem_start += spapr->rma_size;
434             node_size -= spapr->rma_size;
435         }
436         for ( ; node_size; ) {
437             hwaddr sizetmp = pow2floor(node_size);
438 
439             /* mem_start != 0 here */
440             if (ctzl(mem_start) < ctzl(sizetmp)) {
441                 sizetmp = 1ULL << ctzl(mem_start);
442             }
443 
444             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
445             node_size -= sizetmp;
446             mem_start += sizetmp;
447         }
448     }
449 
450     return 0;
451 }
452 
453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
454                                   SpaprMachineState *spapr)
455 {
456     MachineState *ms = MACHINE(spapr);
457     PowerPCCPU *cpu = POWERPC_CPU(cs);
458     CPUPPCState *env = &cpu->env;
459     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
460     int index = spapr_get_vcpu_id(cpu);
461     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
462                        0xffffffff, 0xffffffff};
463     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
464         : SPAPR_TIMEBASE_FREQ;
465     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
466     uint32_t page_sizes_prop[64];
467     size_t page_sizes_prop_size;
468     unsigned int smp_threads = ms->smp.threads;
469     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
470     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
471     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
472     SpaprDrc *drc;
473     int drc_index;
474     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
475     int i;
476 
477     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
478     if (drc) {
479         drc_index = spapr_drc_index(drc);
480         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
481     }
482 
483     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
484     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
485 
486     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
487     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
488                            env->dcache_line_size)));
489     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
490                            env->dcache_line_size)));
491     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
492                            env->icache_line_size)));
493     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
494                            env->icache_line_size)));
495 
496     if (pcc->l1_dcache_size) {
497         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
498                                pcc->l1_dcache_size)));
499     } else {
500         warn_report("Unknown L1 dcache size for cpu");
501     }
502     if (pcc->l1_icache_size) {
503         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
504                                pcc->l1_icache_size)));
505     } else {
506         warn_report("Unknown L1 icache size for cpu");
507     }
508 
509     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
510     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
511     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
512     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
513     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
514     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
515 
516     if (env->spr_cb[SPR_PURR].oea_read) {
517         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
518     }
519     if (env->spr_cb[SPR_SPURR].oea_read) {
520         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
521     }
522 
523     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
524         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
525                           segs, sizeof(segs))));
526     }
527 
528     /* Advertise VSX (vector extensions) if available
529      *   1               == VMX / Altivec available
530      *   2               == VSX available
531      *
532      * Only CPUs for which we create core types in spapr_cpu_core.c
533      * are possible, and all of those have VMX */
534     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
535         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
536     } else {
537         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
538     }
539 
540     /* Advertise DFP (Decimal Floating Point) if available
541      *   0 / no property == no DFP
542      *   1               == DFP available */
543     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
544         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
545     }
546 
547     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
548                                                       sizeof(page_sizes_prop));
549     if (page_sizes_prop_size) {
550         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
551                           page_sizes_prop, page_sizes_prop_size)));
552     }
553 
554     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
555 
556     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
557                            cs->cpu_index / vcpus_per_socket)));
558 
559     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
560                       pft_size_prop, sizeof(pft_size_prop))));
561 
562     if (nb_numa_nodes > 1) {
563         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
564     }
565 
566     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
567 
568     if (pcc->radix_page_info) {
569         for (i = 0; i < pcc->radix_page_info->count; i++) {
570             radix_AP_encodings[i] =
571                 cpu_to_be32(pcc->radix_page_info->entries[i]);
572         }
573         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
574                           radix_AP_encodings,
575                           pcc->radix_page_info->count *
576                           sizeof(radix_AP_encodings[0]))));
577     }
578 
579     /*
580      * We set this property to let the guest know that it can use the large
581      * decrementer and its width in bits.
582      */
583     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
584         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
585                               pcc->lrg_decr_bits)));
586 }
587 
588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
589 {
590     CPUState **rev;
591     CPUState *cs;
592     int n_cpus;
593     int cpus_offset;
594     char *nodename;
595     int i;
596 
597     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
598     _FDT(cpus_offset);
599     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
600     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
601 
602     /*
603      * We walk the CPUs in reverse order to ensure that CPU DT nodes
604      * created by fdt_add_subnode() end up in the right order in FDT
605      * for the guest kernel the enumerate the CPUs correctly.
606      *
607      * The CPU list cannot be traversed in reverse order, so we need
608      * to do extra work.
609      */
610     n_cpus = 0;
611     rev = NULL;
612     CPU_FOREACH(cs) {
613         rev = g_renew(CPUState *, rev, n_cpus + 1);
614         rev[n_cpus++] = cs;
615     }
616 
617     for (i = n_cpus - 1; i >= 0; i--) {
618         CPUState *cs = rev[i];
619         PowerPCCPU *cpu = POWERPC_CPU(cs);
620         int index = spapr_get_vcpu_id(cpu);
621         DeviceClass *dc = DEVICE_GET_CLASS(cs);
622         int offset;
623 
624         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
625             continue;
626         }
627 
628         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
629         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
630         g_free(nodename);
631         _FDT(offset);
632         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
633     }
634 
635     g_free(rev);
636 }
637 
638 static int spapr_rng_populate_dt(void *fdt)
639 {
640     int node;
641     int ret;
642 
643     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
644     if (node <= 0) {
645         return -1;
646     }
647     ret = fdt_setprop_string(fdt, node, "device_type",
648                              "ibm,platform-facilities");
649     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
650     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
651 
652     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
653     if (node <= 0) {
654         return -1;
655     }
656     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
657 
658     return ret ? -1 : 0;
659 }
660 
661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
662 {
663     MemoryDeviceInfoList *info;
664 
665     for (info = list; info; info = info->next) {
666         MemoryDeviceInfo *value = info->value;
667 
668         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
669             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
670 
671             if (addr >= pcdimm_info->addr &&
672                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
673                 return pcdimm_info->node;
674             }
675         }
676     }
677 
678     return -1;
679 }
680 
681 struct sPAPRDrconfCellV2 {
682      uint32_t seq_lmbs;
683      uint64_t base_addr;
684      uint32_t drc_index;
685      uint32_t aa_index;
686      uint32_t flags;
687 } QEMU_PACKED;
688 
689 typedef struct DrconfCellQueue {
690     struct sPAPRDrconfCellV2 cell;
691     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
692 } DrconfCellQueue;
693 
694 static DrconfCellQueue *
695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
696                       uint32_t drc_index, uint32_t aa_index,
697                       uint32_t flags)
698 {
699     DrconfCellQueue *elem;
700 
701     elem = g_malloc0(sizeof(*elem));
702     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
703     elem->cell.base_addr = cpu_to_be64(base_addr);
704     elem->cell.drc_index = cpu_to_be32(drc_index);
705     elem->cell.aa_index = cpu_to_be32(aa_index);
706     elem->cell.flags = cpu_to_be32(flags);
707 
708     return elem;
709 }
710 
711 /* ibm,dynamic-memory-v2 */
712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
713                                    int offset, MemoryDeviceInfoList *dimms)
714 {
715     MachineState *machine = MACHINE(spapr);
716     uint8_t *int_buf, *cur_index;
717     int ret;
718     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
719     uint64_t addr, cur_addr, size;
720     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
721     uint64_t mem_end = machine->device_memory->base +
722                        memory_region_size(&machine->device_memory->mr);
723     uint32_t node, buf_len, nr_entries = 0;
724     SpaprDrc *drc;
725     DrconfCellQueue *elem, *next;
726     MemoryDeviceInfoList *info;
727     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
728         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
729 
730     /* Entry to cover RAM and the gap area */
731     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
732                                  SPAPR_LMB_FLAGS_RESERVED |
733                                  SPAPR_LMB_FLAGS_DRC_INVALID);
734     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735     nr_entries++;
736 
737     cur_addr = machine->device_memory->base;
738     for (info = dimms; info; info = info->next) {
739         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
740 
741         addr = di->addr;
742         size = di->size;
743         node = di->node;
744 
745         /* Entry for hot-pluggable area */
746         if (cur_addr < addr) {
747             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
748             g_assert(drc);
749             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
750                                          cur_addr, spapr_drc_index(drc), -1, 0);
751             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
752             nr_entries++;
753         }
754 
755         /* Entry for DIMM */
756         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
757         g_assert(drc);
758         elem = spapr_get_drconf_cell(size / lmb_size, addr,
759                                      spapr_drc_index(drc), node,
760                                      SPAPR_LMB_FLAGS_ASSIGNED);
761         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762         nr_entries++;
763         cur_addr = addr + size;
764     }
765 
766     /* Entry for remaining hotpluggable area */
767     if (cur_addr < mem_end) {
768         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
769         g_assert(drc);
770         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
771                                      cur_addr, spapr_drc_index(drc), -1, 0);
772         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
773         nr_entries++;
774     }
775 
776     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
777     int_buf = cur_index = g_malloc0(buf_len);
778     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
779     cur_index += sizeof(nr_entries);
780 
781     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
782         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
783         cur_index += sizeof(elem->cell);
784         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
785         g_free(elem);
786     }
787 
788     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
789     g_free(int_buf);
790     if (ret < 0) {
791         return -1;
792     }
793     return 0;
794 }
795 
796 /* ibm,dynamic-memory */
797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
798                                    int offset, MemoryDeviceInfoList *dimms)
799 {
800     MachineState *machine = MACHINE(spapr);
801     int i, ret;
802     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
803     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
804     uint32_t nr_lmbs = (machine->device_memory->base +
805                        memory_region_size(&machine->device_memory->mr)) /
806                        lmb_size;
807     uint32_t *int_buf, *cur_index, buf_len;
808 
809     /*
810      * Allocate enough buffer size to fit in ibm,dynamic-memory
811      */
812     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
813     cur_index = int_buf = g_malloc0(buf_len);
814     int_buf[0] = cpu_to_be32(nr_lmbs);
815     cur_index++;
816     for (i = 0; i < nr_lmbs; i++) {
817         uint64_t addr = i * lmb_size;
818         uint32_t *dynamic_memory = cur_index;
819 
820         if (i >= device_lmb_start) {
821             SpaprDrc *drc;
822 
823             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
824             g_assert(drc);
825 
826             dynamic_memory[0] = cpu_to_be32(addr >> 32);
827             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
828             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
829             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
830             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
831             if (memory_region_present(get_system_memory(), addr)) {
832                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
833             } else {
834                 dynamic_memory[5] = cpu_to_be32(0);
835             }
836         } else {
837             /*
838              * LMB information for RMA, boot time RAM and gap b/n RAM and
839              * device memory region -- all these are marked as reserved
840              * and as having no valid DRC.
841              */
842             dynamic_memory[0] = cpu_to_be32(addr >> 32);
843             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
844             dynamic_memory[2] = cpu_to_be32(0);
845             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
846             dynamic_memory[4] = cpu_to_be32(-1);
847             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
848                                             SPAPR_LMB_FLAGS_DRC_INVALID);
849         }
850 
851         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
852     }
853     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
854     g_free(int_buf);
855     if (ret < 0) {
856         return -1;
857     }
858     return 0;
859 }
860 
861 /*
862  * Adds ibm,dynamic-reconfiguration-memory node.
863  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
864  * of this device tree node.
865  */
866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
867 {
868     MachineState *machine = MACHINE(spapr);
869     int ret, i, offset;
870     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
871     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
872     uint32_t *int_buf, *cur_index, buf_len;
873     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
874     MemoryDeviceInfoList *dimms = NULL;
875 
876     /*
877      * Don't create the node if there is no device memory
878      */
879     if (machine->ram_size == machine->maxram_size) {
880         return 0;
881     }
882 
883     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
884 
885     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
886                     sizeof(prop_lmb_size));
887     if (ret < 0) {
888         return ret;
889     }
890 
891     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
892     if (ret < 0) {
893         return ret;
894     }
895 
896     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
897     if (ret < 0) {
898         return ret;
899     }
900 
901     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
902     dimms = qmp_memory_device_list();
903     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
904         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
905     } else {
906         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
907     }
908     qapi_free_MemoryDeviceInfoList(dimms);
909 
910     if (ret < 0) {
911         return ret;
912     }
913 
914     /* ibm,associativity-lookup-arrays */
915     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
916     cur_index = int_buf = g_malloc0(buf_len);
917     int_buf[0] = cpu_to_be32(nr_nodes);
918     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
919     cur_index += 2;
920     for (i = 0; i < nr_nodes; i++) {
921         uint32_t associativity[] = {
922             cpu_to_be32(0x0),
923             cpu_to_be32(0x0),
924             cpu_to_be32(0x0),
925             cpu_to_be32(i)
926         };
927         memcpy(cur_index, associativity, sizeof(associativity));
928         cur_index += 4;
929     }
930     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
931             (cur_index - int_buf) * sizeof(uint32_t));
932     g_free(int_buf);
933 
934     return ret;
935 }
936 
937 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
938                                 SpaprOptionVector *ov5_updates)
939 {
940     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
941     int ret = 0, offset;
942 
943     /* Generate ibm,dynamic-reconfiguration-memory node if required */
944     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
945         g_assert(smc->dr_lmb_enabled);
946         ret = spapr_populate_drconf_memory(spapr, fdt);
947         if (ret) {
948             goto out;
949         }
950     }
951 
952     offset = fdt_path_offset(fdt, "/chosen");
953     if (offset < 0) {
954         offset = fdt_add_subnode(fdt, 0, "chosen");
955         if (offset < 0) {
956             return offset;
957         }
958     }
959     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
960                                  "ibm,architecture-vec-5");
961 
962 out:
963     return ret;
964 }
965 
966 static bool spapr_hotplugged_dev_before_cas(void)
967 {
968     Object *drc_container, *obj;
969     ObjectProperty *prop;
970     ObjectPropertyIterator iter;
971 
972     drc_container = container_get(object_get_root(), "/dr-connector");
973     object_property_iter_init(&iter, drc_container);
974     while ((prop = object_property_iter_next(&iter))) {
975         if (!strstart(prop->type, "link<", NULL)) {
976             continue;
977         }
978         obj = object_property_get_link(drc_container, prop->name, NULL);
979         if (spapr_drc_needed(obj)) {
980             return true;
981         }
982     }
983     return false;
984 }
985 
986 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
987                                  target_ulong addr, target_ulong size,
988                                  SpaprOptionVector *ov5_updates)
989 {
990     void *fdt, *fdt_skel;
991     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
992 
993     if (spapr_hotplugged_dev_before_cas()) {
994         return 1;
995     }
996 
997     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
998         error_report("SLOF provided an unexpected CAS buffer size "
999                      TARGET_FMT_lu " (min: %zu, max: %u)",
1000                      size, sizeof(hdr), FW_MAX_SIZE);
1001         exit(EXIT_FAILURE);
1002     }
1003 
1004     size -= sizeof(hdr);
1005 
1006     /* Create skeleton */
1007     fdt_skel = g_malloc0(size);
1008     _FDT((fdt_create(fdt_skel, size)));
1009     _FDT((fdt_finish_reservemap(fdt_skel)));
1010     _FDT((fdt_begin_node(fdt_skel, "")));
1011     _FDT((fdt_end_node(fdt_skel)));
1012     _FDT((fdt_finish(fdt_skel)));
1013     fdt = g_malloc0(size);
1014     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1015     g_free(fdt_skel);
1016 
1017     /* Fixup cpu nodes */
1018     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1019 
1020     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1021         return -1;
1022     }
1023 
1024     /* Pack resulting tree */
1025     _FDT((fdt_pack(fdt)));
1026 
1027     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1028         trace_spapr_cas_failed(size);
1029         return -1;
1030     }
1031 
1032     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1033     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1034     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1035     g_free(fdt);
1036 
1037     return 0;
1038 }
1039 
1040 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1041 {
1042     MachineState *ms = MACHINE(spapr);
1043     int rtas;
1044     GString *hypertas = g_string_sized_new(256);
1045     GString *qemu_hypertas = g_string_sized_new(256);
1046     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1047     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1048         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1049     uint32_t lrdr_capacity[] = {
1050         cpu_to_be32(max_device_addr >> 32),
1051         cpu_to_be32(max_device_addr & 0xffffffff),
1052         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1053         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1054     };
1055     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1056     uint32_t maxdomains[] = {
1057         cpu_to_be32(4),
1058         maxdomain,
1059         maxdomain,
1060         maxdomain,
1061         cpu_to_be32(spapr->gpu_numa_id),
1062     };
1063 
1064     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1065 
1066     /* hypertas */
1067     add_str(hypertas, "hcall-pft");
1068     add_str(hypertas, "hcall-term");
1069     add_str(hypertas, "hcall-dabr");
1070     add_str(hypertas, "hcall-interrupt");
1071     add_str(hypertas, "hcall-tce");
1072     add_str(hypertas, "hcall-vio");
1073     add_str(hypertas, "hcall-splpar");
1074     add_str(hypertas, "hcall-join");
1075     add_str(hypertas, "hcall-bulk");
1076     add_str(hypertas, "hcall-set-mode");
1077     add_str(hypertas, "hcall-sprg0");
1078     add_str(hypertas, "hcall-copy");
1079     add_str(hypertas, "hcall-debug");
1080     add_str(hypertas, "hcall-vphn");
1081     add_str(qemu_hypertas, "hcall-memop1");
1082 
1083     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1084         add_str(hypertas, "hcall-multi-tce");
1085     }
1086 
1087     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1088         add_str(hypertas, "hcall-hpt-resize");
1089     }
1090 
1091     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1092                      hypertas->str, hypertas->len));
1093     g_string_free(hypertas, TRUE);
1094     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1095                      qemu_hypertas->str, qemu_hypertas->len));
1096     g_string_free(qemu_hypertas, TRUE);
1097 
1098     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1099                      refpoints, sizeof(refpoints)));
1100 
1101     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1102                      maxdomains, sizeof(maxdomains)));
1103 
1104     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1105                           RTAS_ERROR_LOG_MAX));
1106     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1107                           RTAS_EVENT_SCAN_RATE));
1108 
1109     g_assert(msi_nonbroken);
1110     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1111 
1112     /*
1113      * According to PAPR, rtas ibm,os-term does not guarantee a return
1114      * back to the guest cpu.
1115      *
1116      * While an additional ibm,extended-os-term property indicates
1117      * that rtas call return will always occur. Set this property.
1118      */
1119     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1120 
1121     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1122                      lrdr_capacity, sizeof(lrdr_capacity)));
1123 
1124     spapr_dt_rtas_tokens(fdt, rtas);
1125 }
1126 
1127 /*
1128  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1129  * and the XIVE features that the guest may request and thus the valid
1130  * values for bytes 23..26 of option vector 5:
1131  */
1132 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1133                                           int chosen)
1134 {
1135     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1136 
1137     char val[2 * 4] = {
1138         23, spapr->irq->ov5, /* Xive mode. */
1139         24, 0x00, /* Hash/Radix, filled in below. */
1140         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1141         26, 0x40, /* Radix options: GTSE == yes. */
1142     };
1143 
1144     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1145                           first_ppc_cpu->compat_pvr)) {
1146         /*
1147          * If we're in a pre POWER9 compat mode then the guest should
1148          * do hash and use the legacy interrupt mode
1149          */
1150         val[1] = 0x00; /* XICS */
1151         val[3] = 0x00; /* Hash */
1152     } else if (kvm_enabled()) {
1153         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1154             val[3] = 0x80; /* OV5_MMU_BOTH */
1155         } else if (kvmppc_has_cap_mmu_radix()) {
1156             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1157         } else {
1158             val[3] = 0x00; /* Hash */
1159         }
1160     } else {
1161         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1162         val[3] = 0xC0;
1163     }
1164     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1165                      val, sizeof(val)));
1166 }
1167 
1168 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1169 {
1170     MachineState *machine = MACHINE(spapr);
1171     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1172     int chosen;
1173     const char *boot_device = machine->boot_order;
1174     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1175     size_t cb = 0;
1176     char *bootlist = get_boot_devices_list(&cb);
1177 
1178     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1179 
1180     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1181     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1182                           spapr->initrd_base));
1183     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1184                           spapr->initrd_base + spapr->initrd_size));
1185 
1186     if (spapr->kernel_size) {
1187         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1188                               cpu_to_be64(spapr->kernel_size) };
1189 
1190         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1191                          &kprop, sizeof(kprop)));
1192         if (spapr->kernel_le) {
1193             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1194         }
1195     }
1196     if (boot_menu) {
1197         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1198     }
1199     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1200     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1201     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1202 
1203     if (cb && bootlist) {
1204         int i;
1205 
1206         for (i = 0; i < cb; i++) {
1207             if (bootlist[i] == '\n') {
1208                 bootlist[i] = ' ';
1209             }
1210         }
1211         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1212     }
1213 
1214     if (boot_device && strlen(boot_device)) {
1215         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1216     }
1217 
1218     if (!spapr->has_graphics && stdout_path) {
1219         /*
1220          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1221          * kernel. New platforms should only use the "stdout-path" property. Set
1222          * the new property and continue using older property to remain
1223          * compatible with the existing firmware.
1224          */
1225         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1226         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1227     }
1228 
1229     /* We can deal with BAR reallocation just fine, advertise it to the guest */
1230     if (smc->linux_pci_probe) {
1231         _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1232     }
1233 
1234     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1235 
1236     g_free(stdout_path);
1237     g_free(bootlist);
1238 }
1239 
1240 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1241 {
1242     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1243      * KVM to work under pHyp with some guest co-operation */
1244     int hypervisor;
1245     uint8_t hypercall[16];
1246 
1247     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1248     /* indicate KVM hypercall interface */
1249     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1250     if (kvmppc_has_cap_fixup_hcalls()) {
1251         /*
1252          * Older KVM versions with older guest kernels were broken
1253          * with the magic page, don't allow the guest to map it.
1254          */
1255         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1256                                   sizeof(hypercall))) {
1257             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1258                              hypercall, sizeof(hypercall)));
1259         }
1260     }
1261 }
1262 
1263 static void *spapr_build_fdt(SpaprMachineState *spapr)
1264 {
1265     MachineState *machine = MACHINE(spapr);
1266     MachineClass *mc = MACHINE_GET_CLASS(machine);
1267     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1268     int ret;
1269     void *fdt;
1270     SpaprPhbState *phb;
1271     char *buf;
1272 
1273     fdt = g_malloc0(FDT_MAX_SIZE);
1274     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1275 
1276     /* Root node */
1277     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1278     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1279     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1280 
1281     /* Guest UUID & Name*/
1282     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1283     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1284     if (qemu_uuid_set) {
1285         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1286     }
1287     g_free(buf);
1288 
1289     if (qemu_get_vm_name()) {
1290         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1291                                 qemu_get_vm_name()));
1292     }
1293 
1294     /* Host Model & Serial Number */
1295     if (spapr->host_model) {
1296         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1297     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1298         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1299         g_free(buf);
1300     }
1301 
1302     if (spapr->host_serial) {
1303         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1304     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1305         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1306         g_free(buf);
1307     }
1308 
1309     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1310     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1311 
1312     /* /interrupt controller */
1313     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1314                           PHANDLE_INTC);
1315 
1316     ret = spapr_populate_memory(spapr, fdt);
1317     if (ret < 0) {
1318         error_report("couldn't setup memory nodes in fdt");
1319         exit(1);
1320     }
1321 
1322     /* /vdevice */
1323     spapr_dt_vdevice(spapr->vio_bus, fdt);
1324 
1325     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1326         ret = spapr_rng_populate_dt(fdt);
1327         if (ret < 0) {
1328             error_report("could not set up rng device in the fdt");
1329             exit(1);
1330         }
1331     }
1332 
1333     QLIST_FOREACH(phb, &spapr->phbs, list) {
1334         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1335         if (ret < 0) {
1336             error_report("couldn't setup PCI devices in fdt");
1337             exit(1);
1338         }
1339     }
1340 
1341     /* cpus */
1342     spapr_populate_cpus_dt_node(fdt, spapr);
1343 
1344     if (smc->dr_lmb_enabled) {
1345         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1346     }
1347 
1348     if (mc->has_hotpluggable_cpus) {
1349         int offset = fdt_path_offset(fdt, "/cpus");
1350         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1351         if (ret < 0) {
1352             error_report("Couldn't set up CPU DR device tree properties");
1353             exit(1);
1354         }
1355     }
1356 
1357     /* /event-sources */
1358     spapr_dt_events(spapr, fdt);
1359 
1360     /* /rtas */
1361     spapr_dt_rtas(spapr, fdt);
1362 
1363     /* /chosen */
1364     spapr_dt_chosen(spapr, fdt);
1365 
1366     /* /hypervisor */
1367     if (kvm_enabled()) {
1368         spapr_dt_hypervisor(spapr, fdt);
1369     }
1370 
1371     /* Build memory reserve map */
1372     if (spapr->kernel_size) {
1373         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1374     }
1375     if (spapr->initrd_size) {
1376         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1377     }
1378 
1379     /* ibm,client-architecture-support updates */
1380     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1381     if (ret < 0) {
1382         error_report("couldn't setup CAS properties fdt");
1383         exit(1);
1384     }
1385 
1386     if (smc->dr_phb_enabled) {
1387         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1388         if (ret < 0) {
1389             error_report("Couldn't set up PHB DR device tree properties");
1390             exit(1);
1391         }
1392     }
1393 
1394     return fdt;
1395 }
1396 
1397 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1398 {
1399     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1400 }
1401 
1402 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1403                                     PowerPCCPU *cpu)
1404 {
1405     CPUPPCState *env = &cpu->env;
1406 
1407     /* The TCG path should also be holding the BQL at this point */
1408     g_assert(qemu_mutex_iothread_locked());
1409 
1410     if (msr_pr) {
1411         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1412         env->gpr[3] = H_PRIVILEGE;
1413     } else {
1414         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1415     }
1416 }
1417 
1418 struct LPCRSyncState {
1419     target_ulong value;
1420     target_ulong mask;
1421 };
1422 
1423 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1424 {
1425     struct LPCRSyncState *s = arg.host_ptr;
1426     PowerPCCPU *cpu = POWERPC_CPU(cs);
1427     CPUPPCState *env = &cpu->env;
1428     target_ulong lpcr;
1429 
1430     cpu_synchronize_state(cs);
1431     lpcr = env->spr[SPR_LPCR];
1432     lpcr &= ~s->mask;
1433     lpcr |= s->value;
1434     ppc_store_lpcr(cpu, lpcr);
1435 }
1436 
1437 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1438 {
1439     CPUState *cs;
1440     struct LPCRSyncState s = {
1441         .value = value,
1442         .mask = mask
1443     };
1444     CPU_FOREACH(cs) {
1445         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1446     }
1447 }
1448 
1449 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1450 {
1451     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1452 
1453     /* Copy PATE1:GR into PATE0:HR */
1454     entry->dw0 = spapr->patb_entry & PATE0_HR;
1455     entry->dw1 = spapr->patb_entry;
1456 }
1457 
1458 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1459 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1460 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1461 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1462 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1463 
1464 /*
1465  * Get the fd to access the kernel htab, re-opening it if necessary
1466  */
1467 static int get_htab_fd(SpaprMachineState *spapr)
1468 {
1469     Error *local_err = NULL;
1470 
1471     if (spapr->htab_fd >= 0) {
1472         return spapr->htab_fd;
1473     }
1474 
1475     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1476     if (spapr->htab_fd < 0) {
1477         error_report_err(local_err);
1478     }
1479 
1480     return spapr->htab_fd;
1481 }
1482 
1483 void close_htab_fd(SpaprMachineState *spapr)
1484 {
1485     if (spapr->htab_fd >= 0) {
1486         close(spapr->htab_fd);
1487     }
1488     spapr->htab_fd = -1;
1489 }
1490 
1491 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1492 {
1493     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1494 
1495     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1496 }
1497 
1498 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1499 {
1500     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1501 
1502     assert(kvm_enabled());
1503 
1504     if (!spapr->htab) {
1505         return 0;
1506     }
1507 
1508     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1509 }
1510 
1511 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1512                                                 hwaddr ptex, int n)
1513 {
1514     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1515     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1516 
1517     if (!spapr->htab) {
1518         /*
1519          * HTAB is controlled by KVM. Fetch into temporary buffer
1520          */
1521         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1522         kvmppc_read_hptes(hptes, ptex, n);
1523         return hptes;
1524     }
1525 
1526     /*
1527      * HTAB is controlled by QEMU. Just point to the internally
1528      * accessible PTEG.
1529      */
1530     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1531 }
1532 
1533 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1534                               const ppc_hash_pte64_t *hptes,
1535                               hwaddr ptex, int n)
1536 {
1537     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1538 
1539     if (!spapr->htab) {
1540         g_free((void *)hptes);
1541     }
1542 
1543     /* Nothing to do for qemu managed HPT */
1544 }
1545 
1546 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1547                       uint64_t pte0, uint64_t pte1)
1548 {
1549     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1550     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1551 
1552     if (!spapr->htab) {
1553         kvmppc_write_hpte(ptex, pte0, pte1);
1554     } else {
1555         if (pte0 & HPTE64_V_VALID) {
1556             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1557             /*
1558              * When setting valid, we write PTE1 first. This ensures
1559              * proper synchronization with the reading code in
1560              * ppc_hash64_pteg_search()
1561              */
1562             smp_wmb();
1563             stq_p(spapr->htab + offset, pte0);
1564         } else {
1565             stq_p(spapr->htab + offset, pte0);
1566             /*
1567              * When clearing it we set PTE0 first. This ensures proper
1568              * synchronization with the reading code in
1569              * ppc_hash64_pteg_search()
1570              */
1571             smp_wmb();
1572             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1573         }
1574     }
1575 }
1576 
1577 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1578                              uint64_t pte1)
1579 {
1580     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1581     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1582 
1583     if (!spapr->htab) {
1584         /* There should always be a hash table when this is called */
1585         error_report("spapr_hpte_set_c called with no hash table !");
1586         return;
1587     }
1588 
1589     /* The HW performs a non-atomic byte update */
1590     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1591 }
1592 
1593 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1594                              uint64_t pte1)
1595 {
1596     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1597     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1598 
1599     if (!spapr->htab) {
1600         /* There should always be a hash table when this is called */
1601         error_report("spapr_hpte_set_r called with no hash table !");
1602         return;
1603     }
1604 
1605     /* The HW performs a non-atomic byte update */
1606     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1607 }
1608 
1609 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1610 {
1611     int shift;
1612 
1613     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1614      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1615      * that's much more than is needed for Linux guests */
1616     shift = ctz64(pow2ceil(ramsize)) - 7;
1617     shift = MAX(shift, 18); /* Minimum architected size */
1618     shift = MIN(shift, 46); /* Maximum architected size */
1619     return shift;
1620 }
1621 
1622 void spapr_free_hpt(SpaprMachineState *spapr)
1623 {
1624     g_free(spapr->htab);
1625     spapr->htab = NULL;
1626     spapr->htab_shift = 0;
1627     close_htab_fd(spapr);
1628 }
1629 
1630 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1631                           Error **errp)
1632 {
1633     long rc;
1634 
1635     /* Clean up any HPT info from a previous boot */
1636     spapr_free_hpt(spapr);
1637 
1638     rc = kvmppc_reset_htab(shift);
1639     if (rc < 0) {
1640         /* kernel-side HPT needed, but couldn't allocate one */
1641         error_setg_errno(errp, errno,
1642                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1643                          shift);
1644         /* This is almost certainly fatal, but if the caller really
1645          * wants to carry on with shift == 0, it's welcome to try */
1646     } else if (rc > 0) {
1647         /* kernel-side HPT allocated */
1648         if (rc != shift) {
1649             error_setg(errp,
1650                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1651                        shift, rc);
1652         }
1653 
1654         spapr->htab_shift = shift;
1655         spapr->htab = NULL;
1656     } else {
1657         /* kernel-side HPT not needed, allocate in userspace instead */
1658         size_t size = 1ULL << shift;
1659         int i;
1660 
1661         spapr->htab = qemu_memalign(size, size);
1662         if (!spapr->htab) {
1663             error_setg_errno(errp, errno,
1664                              "Could not allocate HPT of order %d", shift);
1665             return;
1666         }
1667 
1668         memset(spapr->htab, 0, size);
1669         spapr->htab_shift = shift;
1670 
1671         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1672             DIRTY_HPTE(HPTE(spapr->htab, i));
1673         }
1674     }
1675     /* We're setting up a hash table, so that means we're not radix */
1676     spapr->patb_entry = 0;
1677     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1678 }
1679 
1680 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1681 {
1682     int hpt_shift;
1683 
1684     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1685         || (spapr->cas_reboot
1686             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1687         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1688     } else {
1689         uint64_t current_ram_size;
1690 
1691         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1692         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1693     }
1694     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1695 
1696     if (spapr->vrma_adjust) {
1697         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1698                                           spapr->htab_shift);
1699     }
1700 }
1701 
1702 static int spapr_reset_drcs(Object *child, void *opaque)
1703 {
1704     SpaprDrc *drc =
1705         (SpaprDrc *) object_dynamic_cast(child,
1706                                                  TYPE_SPAPR_DR_CONNECTOR);
1707 
1708     if (drc) {
1709         spapr_drc_reset(drc);
1710     }
1711 
1712     return 0;
1713 }
1714 
1715 static void spapr_machine_reset(MachineState *machine)
1716 {
1717     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1718     PowerPCCPU *first_ppc_cpu;
1719     uint32_t rtas_limit;
1720     hwaddr rtas_addr, fdt_addr;
1721     void *fdt;
1722     int rc;
1723 
1724     spapr_caps_apply(spapr);
1725 
1726     first_ppc_cpu = POWERPC_CPU(first_cpu);
1727     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1728         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1729                               spapr->max_compat_pvr)) {
1730         /*
1731          * If using KVM with radix mode available, VCPUs can be started
1732          * without a HPT because KVM will start them in radix mode.
1733          * Set the GR bit in PATE so that we know there is no HPT.
1734          */
1735         spapr->patb_entry = PATE1_GR;
1736         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1737     } else {
1738         spapr_setup_hpt_and_vrma(spapr);
1739     }
1740 
1741     /*
1742      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1743      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1744      * called from vPHB reset handler so we initialize the counter here.
1745      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1746      * must be equally distant from any other node.
1747      * The final value of spapr->gpu_numa_id is going to be written to
1748      * max-associativity-domains in spapr_build_fdt().
1749      */
1750     spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1751     qemu_devices_reset();
1752 
1753     /*
1754      * If this reset wasn't generated by CAS, we should reset our
1755      * negotiated options and start from scratch
1756      */
1757     if (!spapr->cas_reboot) {
1758         spapr_ovec_cleanup(spapr->ov5_cas);
1759         spapr->ov5_cas = spapr_ovec_new();
1760 
1761         /*
1762          * reset compat_pvr for all CPUs
1763          * as qemu_devices_reset() is called before this,
1764          * it can't be propagated by spapr_cpu_reset()
1765          * from the first CPU to all the others
1766          */
1767         ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1768     }
1769 
1770     /*
1771      * This is fixing some of the default configuration of the XIVE
1772      * devices. To be called after the reset of the machine devices.
1773      */
1774     spapr_irq_reset(spapr, &error_fatal);
1775 
1776     /*
1777      * There is no CAS under qtest. Simulate one to please the code that
1778      * depends on spapr->ov5_cas. This is especially needed to test device
1779      * unplug, so we do that before resetting the DRCs.
1780      */
1781     if (qtest_enabled()) {
1782         spapr_ovec_cleanup(spapr->ov5_cas);
1783         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1784     }
1785 
1786     /* DRC reset may cause a device to be unplugged. This will cause troubles
1787      * if this device is used by another device (eg, a running vhost backend
1788      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1789      * situations, we reset DRCs after all devices have been reset.
1790      */
1791     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1792 
1793     spapr_clear_pending_events(spapr);
1794 
1795     /*
1796      * We place the device tree and RTAS just below either the top of the RMA,
1797      * or just below 2GB, whichever is lower, so that it can be
1798      * processed with 32-bit real mode code if necessary
1799      */
1800     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1801     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1802     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1803 
1804     fdt = spapr_build_fdt(spapr);
1805 
1806     spapr_load_rtas(spapr, fdt, rtas_addr);
1807 
1808     rc = fdt_pack(fdt);
1809 
1810     /* Should only fail if we've built a corrupted tree */
1811     assert(rc == 0);
1812 
1813     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1814         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1815                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1816         exit(1);
1817     }
1818 
1819     /* Load the fdt */
1820     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1821     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1822     g_free(spapr->fdt_blob);
1823     spapr->fdt_size = fdt_totalsize(fdt);
1824     spapr->fdt_initial_size = spapr->fdt_size;
1825     spapr->fdt_blob = fdt;
1826 
1827     /* Set up the entry state */
1828     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1829     first_ppc_cpu->env.gpr[5] = 0;
1830 
1831     spapr->cas_reboot = false;
1832 }
1833 
1834 static void spapr_create_nvram(SpaprMachineState *spapr)
1835 {
1836     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1837     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1838 
1839     if (dinfo) {
1840         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1841                             &error_fatal);
1842     }
1843 
1844     qdev_init_nofail(dev);
1845 
1846     spapr->nvram = (struct SpaprNvram *)dev;
1847 }
1848 
1849 static void spapr_rtc_create(SpaprMachineState *spapr)
1850 {
1851     object_initialize_child(OBJECT(spapr), "rtc",
1852                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1853                             &error_fatal, NULL);
1854     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1855                               &error_fatal);
1856     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1857                               "date", &error_fatal);
1858 }
1859 
1860 /* Returns whether we want to use VGA or not */
1861 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1862 {
1863     switch (vga_interface_type) {
1864     case VGA_NONE:
1865         return false;
1866     case VGA_DEVICE:
1867         return true;
1868     case VGA_STD:
1869     case VGA_VIRTIO:
1870     case VGA_CIRRUS:
1871         return pci_vga_init(pci_bus) != NULL;
1872     default:
1873         error_setg(errp,
1874                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1875         return false;
1876     }
1877 }
1878 
1879 static int spapr_pre_load(void *opaque)
1880 {
1881     int rc;
1882 
1883     rc = spapr_caps_pre_load(opaque);
1884     if (rc) {
1885         return rc;
1886     }
1887 
1888     return 0;
1889 }
1890 
1891 static int spapr_post_load(void *opaque, int version_id)
1892 {
1893     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1894     int err = 0;
1895 
1896     err = spapr_caps_post_migration(spapr);
1897     if (err) {
1898         return err;
1899     }
1900 
1901     /*
1902      * In earlier versions, there was no separate qdev for the PAPR
1903      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1904      * So when migrating from those versions, poke the incoming offset
1905      * value into the RTC device
1906      */
1907     if (version_id < 3) {
1908         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1909         if (err) {
1910             return err;
1911         }
1912     }
1913 
1914     if (kvm_enabled() && spapr->patb_entry) {
1915         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1916         bool radix = !!(spapr->patb_entry & PATE1_GR);
1917         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1918 
1919         /*
1920          * Update LPCR:HR and UPRT as they may not be set properly in
1921          * the stream
1922          */
1923         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1924                             LPCR_HR | LPCR_UPRT);
1925 
1926         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1927         if (err) {
1928             error_report("Process table config unsupported by the host");
1929             return -EINVAL;
1930         }
1931     }
1932 
1933     err = spapr_irq_post_load(spapr, version_id);
1934     if (err) {
1935         return err;
1936     }
1937 
1938     return err;
1939 }
1940 
1941 static int spapr_pre_save(void *opaque)
1942 {
1943     int rc;
1944 
1945     rc = spapr_caps_pre_save(opaque);
1946     if (rc) {
1947         return rc;
1948     }
1949 
1950     return 0;
1951 }
1952 
1953 static bool version_before_3(void *opaque, int version_id)
1954 {
1955     return version_id < 3;
1956 }
1957 
1958 static bool spapr_pending_events_needed(void *opaque)
1959 {
1960     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1961     return !QTAILQ_EMPTY(&spapr->pending_events);
1962 }
1963 
1964 static const VMStateDescription vmstate_spapr_event_entry = {
1965     .name = "spapr_event_log_entry",
1966     .version_id = 1,
1967     .minimum_version_id = 1,
1968     .fields = (VMStateField[]) {
1969         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1970         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1971         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1972                                      NULL, extended_length),
1973         VMSTATE_END_OF_LIST()
1974     },
1975 };
1976 
1977 static const VMStateDescription vmstate_spapr_pending_events = {
1978     .name = "spapr_pending_events",
1979     .version_id = 1,
1980     .minimum_version_id = 1,
1981     .needed = spapr_pending_events_needed,
1982     .fields = (VMStateField[]) {
1983         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1984                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1985         VMSTATE_END_OF_LIST()
1986     },
1987 };
1988 
1989 static bool spapr_ov5_cas_needed(void *opaque)
1990 {
1991     SpaprMachineState *spapr = opaque;
1992     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1993     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1994     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1995     bool cas_needed;
1996 
1997     /* Prior to the introduction of SpaprOptionVector, we had two option
1998      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1999      * Both of these options encode machine topology into the device-tree
2000      * in such a way that the now-booted OS should still be able to interact
2001      * appropriately with QEMU regardless of what options were actually
2002      * negotiatied on the source side.
2003      *
2004      * As such, we can avoid migrating the CAS-negotiated options if these
2005      * are the only options available on the current machine/platform.
2006      * Since these are the only options available for pseries-2.7 and
2007      * earlier, this allows us to maintain old->new/new->old migration
2008      * compatibility.
2009      *
2010      * For QEMU 2.8+, there are additional CAS-negotiatable options available
2011      * via default pseries-2.8 machines and explicit command-line parameters.
2012      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2013      * of the actual CAS-negotiated values to continue working properly. For
2014      * example, availability of memory unplug depends on knowing whether
2015      * OV5_HP_EVT was negotiated via CAS.
2016      *
2017      * Thus, for any cases where the set of available CAS-negotiatable
2018      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2019      * include the CAS-negotiated options in the migration stream, unless
2020      * if they affect boot time behaviour only.
2021      */
2022     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2023     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2024     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2025 
2026     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2027      * the mask itself since in the future it's possible "legacy" bits may be
2028      * removed via machine options, which could generate a false positive
2029      * that breaks migration.
2030      */
2031     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2032     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2033 
2034     spapr_ovec_cleanup(ov5_mask);
2035     spapr_ovec_cleanup(ov5_legacy);
2036     spapr_ovec_cleanup(ov5_removed);
2037 
2038     return cas_needed;
2039 }
2040 
2041 static const VMStateDescription vmstate_spapr_ov5_cas = {
2042     .name = "spapr_option_vector_ov5_cas",
2043     .version_id = 1,
2044     .minimum_version_id = 1,
2045     .needed = spapr_ov5_cas_needed,
2046     .fields = (VMStateField[]) {
2047         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2048                                  vmstate_spapr_ovec, SpaprOptionVector),
2049         VMSTATE_END_OF_LIST()
2050     },
2051 };
2052 
2053 static bool spapr_patb_entry_needed(void *opaque)
2054 {
2055     SpaprMachineState *spapr = opaque;
2056 
2057     return !!spapr->patb_entry;
2058 }
2059 
2060 static const VMStateDescription vmstate_spapr_patb_entry = {
2061     .name = "spapr_patb_entry",
2062     .version_id = 1,
2063     .minimum_version_id = 1,
2064     .needed = spapr_patb_entry_needed,
2065     .fields = (VMStateField[]) {
2066         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2067         VMSTATE_END_OF_LIST()
2068     },
2069 };
2070 
2071 static bool spapr_irq_map_needed(void *opaque)
2072 {
2073     SpaprMachineState *spapr = opaque;
2074 
2075     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2076 }
2077 
2078 static const VMStateDescription vmstate_spapr_irq_map = {
2079     .name = "spapr_irq_map",
2080     .version_id = 1,
2081     .minimum_version_id = 1,
2082     .needed = spapr_irq_map_needed,
2083     .fields = (VMStateField[]) {
2084         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2085         VMSTATE_END_OF_LIST()
2086     },
2087 };
2088 
2089 static bool spapr_dtb_needed(void *opaque)
2090 {
2091     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2092 
2093     return smc->update_dt_enabled;
2094 }
2095 
2096 static int spapr_dtb_pre_load(void *opaque)
2097 {
2098     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2099 
2100     g_free(spapr->fdt_blob);
2101     spapr->fdt_blob = NULL;
2102     spapr->fdt_size = 0;
2103 
2104     return 0;
2105 }
2106 
2107 static const VMStateDescription vmstate_spapr_dtb = {
2108     .name = "spapr_dtb",
2109     .version_id = 1,
2110     .minimum_version_id = 1,
2111     .needed = spapr_dtb_needed,
2112     .pre_load = spapr_dtb_pre_load,
2113     .fields = (VMStateField[]) {
2114         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2115         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2116         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2117                                      fdt_size),
2118         VMSTATE_END_OF_LIST()
2119     },
2120 };
2121 
2122 static const VMStateDescription vmstate_spapr = {
2123     .name = "spapr",
2124     .version_id = 3,
2125     .minimum_version_id = 1,
2126     .pre_load = spapr_pre_load,
2127     .post_load = spapr_post_load,
2128     .pre_save = spapr_pre_save,
2129     .fields = (VMStateField[]) {
2130         /* used to be @next_irq */
2131         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2132 
2133         /* RTC offset */
2134         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2135 
2136         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2137         VMSTATE_END_OF_LIST()
2138     },
2139     .subsections = (const VMStateDescription*[]) {
2140         &vmstate_spapr_ov5_cas,
2141         &vmstate_spapr_patb_entry,
2142         &vmstate_spapr_pending_events,
2143         &vmstate_spapr_cap_htm,
2144         &vmstate_spapr_cap_vsx,
2145         &vmstate_spapr_cap_dfp,
2146         &vmstate_spapr_cap_cfpc,
2147         &vmstate_spapr_cap_sbbc,
2148         &vmstate_spapr_cap_ibs,
2149         &vmstate_spapr_cap_hpt_maxpagesize,
2150         &vmstate_spapr_irq_map,
2151         &vmstate_spapr_cap_nested_kvm_hv,
2152         &vmstate_spapr_dtb,
2153         &vmstate_spapr_cap_large_decr,
2154         &vmstate_spapr_cap_ccf_assist,
2155         NULL
2156     }
2157 };
2158 
2159 static int htab_save_setup(QEMUFile *f, void *opaque)
2160 {
2161     SpaprMachineState *spapr = opaque;
2162 
2163     /* "Iteration" header */
2164     if (!spapr->htab_shift) {
2165         qemu_put_be32(f, -1);
2166     } else {
2167         qemu_put_be32(f, spapr->htab_shift);
2168     }
2169 
2170     if (spapr->htab) {
2171         spapr->htab_save_index = 0;
2172         spapr->htab_first_pass = true;
2173     } else {
2174         if (spapr->htab_shift) {
2175             assert(kvm_enabled());
2176         }
2177     }
2178 
2179 
2180     return 0;
2181 }
2182 
2183 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2184                             int chunkstart, int n_valid, int n_invalid)
2185 {
2186     qemu_put_be32(f, chunkstart);
2187     qemu_put_be16(f, n_valid);
2188     qemu_put_be16(f, n_invalid);
2189     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2190                     HASH_PTE_SIZE_64 * n_valid);
2191 }
2192 
2193 static void htab_save_end_marker(QEMUFile *f)
2194 {
2195     qemu_put_be32(f, 0);
2196     qemu_put_be16(f, 0);
2197     qemu_put_be16(f, 0);
2198 }
2199 
2200 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2201                                  int64_t max_ns)
2202 {
2203     bool has_timeout = max_ns != -1;
2204     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2205     int index = spapr->htab_save_index;
2206     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2207 
2208     assert(spapr->htab_first_pass);
2209 
2210     do {
2211         int chunkstart;
2212 
2213         /* Consume invalid HPTEs */
2214         while ((index < htabslots)
2215                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2216             CLEAN_HPTE(HPTE(spapr->htab, index));
2217             index++;
2218         }
2219 
2220         /* Consume valid HPTEs */
2221         chunkstart = index;
2222         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2223                && HPTE_VALID(HPTE(spapr->htab, index))) {
2224             CLEAN_HPTE(HPTE(spapr->htab, index));
2225             index++;
2226         }
2227 
2228         if (index > chunkstart) {
2229             int n_valid = index - chunkstart;
2230 
2231             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2232 
2233             if (has_timeout &&
2234                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2235                 break;
2236             }
2237         }
2238     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2239 
2240     if (index >= htabslots) {
2241         assert(index == htabslots);
2242         index = 0;
2243         spapr->htab_first_pass = false;
2244     }
2245     spapr->htab_save_index = index;
2246 }
2247 
2248 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2249                                 int64_t max_ns)
2250 {
2251     bool final = max_ns < 0;
2252     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2253     int examined = 0, sent = 0;
2254     int index = spapr->htab_save_index;
2255     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2256 
2257     assert(!spapr->htab_first_pass);
2258 
2259     do {
2260         int chunkstart, invalidstart;
2261 
2262         /* Consume non-dirty HPTEs */
2263         while ((index < htabslots)
2264                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2265             index++;
2266             examined++;
2267         }
2268 
2269         chunkstart = index;
2270         /* Consume valid dirty HPTEs */
2271         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2272                && HPTE_DIRTY(HPTE(spapr->htab, index))
2273                && HPTE_VALID(HPTE(spapr->htab, index))) {
2274             CLEAN_HPTE(HPTE(spapr->htab, index));
2275             index++;
2276             examined++;
2277         }
2278 
2279         invalidstart = index;
2280         /* Consume invalid dirty HPTEs */
2281         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2282                && HPTE_DIRTY(HPTE(spapr->htab, index))
2283                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2284             CLEAN_HPTE(HPTE(spapr->htab, index));
2285             index++;
2286             examined++;
2287         }
2288 
2289         if (index > chunkstart) {
2290             int n_valid = invalidstart - chunkstart;
2291             int n_invalid = index - invalidstart;
2292 
2293             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2294             sent += index - chunkstart;
2295 
2296             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2297                 break;
2298             }
2299         }
2300 
2301         if (examined >= htabslots) {
2302             break;
2303         }
2304 
2305         if (index >= htabslots) {
2306             assert(index == htabslots);
2307             index = 0;
2308         }
2309     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2310 
2311     if (index >= htabslots) {
2312         assert(index == htabslots);
2313         index = 0;
2314     }
2315 
2316     spapr->htab_save_index = index;
2317 
2318     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2319 }
2320 
2321 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2322 #define MAX_KVM_BUF_SIZE    2048
2323 
2324 static int htab_save_iterate(QEMUFile *f, void *opaque)
2325 {
2326     SpaprMachineState *spapr = opaque;
2327     int fd;
2328     int rc = 0;
2329 
2330     /* Iteration header */
2331     if (!spapr->htab_shift) {
2332         qemu_put_be32(f, -1);
2333         return 1;
2334     } else {
2335         qemu_put_be32(f, 0);
2336     }
2337 
2338     if (!spapr->htab) {
2339         assert(kvm_enabled());
2340 
2341         fd = get_htab_fd(spapr);
2342         if (fd < 0) {
2343             return fd;
2344         }
2345 
2346         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2347         if (rc < 0) {
2348             return rc;
2349         }
2350     } else  if (spapr->htab_first_pass) {
2351         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2352     } else {
2353         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2354     }
2355 
2356     htab_save_end_marker(f);
2357 
2358     return rc;
2359 }
2360 
2361 static int htab_save_complete(QEMUFile *f, void *opaque)
2362 {
2363     SpaprMachineState *spapr = opaque;
2364     int fd;
2365 
2366     /* Iteration header */
2367     if (!spapr->htab_shift) {
2368         qemu_put_be32(f, -1);
2369         return 0;
2370     } else {
2371         qemu_put_be32(f, 0);
2372     }
2373 
2374     if (!spapr->htab) {
2375         int rc;
2376 
2377         assert(kvm_enabled());
2378 
2379         fd = get_htab_fd(spapr);
2380         if (fd < 0) {
2381             return fd;
2382         }
2383 
2384         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2385         if (rc < 0) {
2386             return rc;
2387         }
2388     } else {
2389         if (spapr->htab_first_pass) {
2390             htab_save_first_pass(f, spapr, -1);
2391         }
2392         htab_save_later_pass(f, spapr, -1);
2393     }
2394 
2395     /* End marker */
2396     htab_save_end_marker(f);
2397 
2398     return 0;
2399 }
2400 
2401 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2402 {
2403     SpaprMachineState *spapr = opaque;
2404     uint32_t section_hdr;
2405     int fd = -1;
2406     Error *local_err = NULL;
2407 
2408     if (version_id < 1 || version_id > 1) {
2409         error_report("htab_load() bad version");
2410         return -EINVAL;
2411     }
2412 
2413     section_hdr = qemu_get_be32(f);
2414 
2415     if (section_hdr == -1) {
2416         spapr_free_hpt(spapr);
2417         return 0;
2418     }
2419 
2420     if (section_hdr) {
2421         /* First section gives the htab size */
2422         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2423         if (local_err) {
2424             error_report_err(local_err);
2425             return -EINVAL;
2426         }
2427         return 0;
2428     }
2429 
2430     if (!spapr->htab) {
2431         assert(kvm_enabled());
2432 
2433         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2434         if (fd < 0) {
2435             error_report_err(local_err);
2436             return fd;
2437         }
2438     }
2439 
2440     while (true) {
2441         uint32_t index;
2442         uint16_t n_valid, n_invalid;
2443 
2444         index = qemu_get_be32(f);
2445         n_valid = qemu_get_be16(f);
2446         n_invalid = qemu_get_be16(f);
2447 
2448         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2449             /* End of Stream */
2450             break;
2451         }
2452 
2453         if ((index + n_valid + n_invalid) >
2454             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2455             /* Bad index in stream */
2456             error_report(
2457                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2458                 index, n_valid, n_invalid, spapr->htab_shift);
2459             return -EINVAL;
2460         }
2461 
2462         if (spapr->htab) {
2463             if (n_valid) {
2464                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2465                                 HASH_PTE_SIZE_64 * n_valid);
2466             }
2467             if (n_invalid) {
2468                 memset(HPTE(spapr->htab, index + n_valid), 0,
2469                        HASH_PTE_SIZE_64 * n_invalid);
2470             }
2471         } else {
2472             int rc;
2473 
2474             assert(fd >= 0);
2475 
2476             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2477             if (rc < 0) {
2478                 return rc;
2479             }
2480         }
2481     }
2482 
2483     if (!spapr->htab) {
2484         assert(fd >= 0);
2485         close(fd);
2486     }
2487 
2488     return 0;
2489 }
2490 
2491 static void htab_save_cleanup(void *opaque)
2492 {
2493     SpaprMachineState *spapr = opaque;
2494 
2495     close_htab_fd(spapr);
2496 }
2497 
2498 static SaveVMHandlers savevm_htab_handlers = {
2499     .save_setup = htab_save_setup,
2500     .save_live_iterate = htab_save_iterate,
2501     .save_live_complete_precopy = htab_save_complete,
2502     .save_cleanup = htab_save_cleanup,
2503     .load_state = htab_load,
2504 };
2505 
2506 static void spapr_boot_set(void *opaque, const char *boot_device,
2507                            Error **errp)
2508 {
2509     MachineState *machine = MACHINE(opaque);
2510     machine->boot_order = g_strdup(boot_device);
2511 }
2512 
2513 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2514 {
2515     MachineState *machine = MACHINE(spapr);
2516     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2517     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2518     int i;
2519 
2520     for (i = 0; i < nr_lmbs; i++) {
2521         uint64_t addr;
2522 
2523         addr = i * lmb_size + machine->device_memory->base;
2524         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2525                                addr / lmb_size);
2526     }
2527 }
2528 
2529 /*
2530  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2531  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2532  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2533  */
2534 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2535 {
2536     int i;
2537 
2538     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2539         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2540                    " is not aligned to %" PRIu64 " MiB",
2541                    machine->ram_size,
2542                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2543         return;
2544     }
2545 
2546     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2547         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2548                    " is not aligned to %" PRIu64 " MiB",
2549                    machine->ram_size,
2550                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2551         return;
2552     }
2553 
2554     for (i = 0; i < nb_numa_nodes; i++) {
2555         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2556             error_setg(errp,
2557                        "Node %d memory size 0x%" PRIx64
2558                        " is not aligned to %" PRIu64 " MiB",
2559                        i, numa_info[i].node_mem,
2560                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2561             return;
2562         }
2563     }
2564 }
2565 
2566 /* find cpu slot in machine->possible_cpus by core_id */
2567 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2568 {
2569     int index = id / ms->smp.threads;
2570 
2571     if (index >= ms->possible_cpus->len) {
2572         return NULL;
2573     }
2574     if (idx) {
2575         *idx = index;
2576     }
2577     return &ms->possible_cpus->cpus[index];
2578 }
2579 
2580 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2581 {
2582     MachineState *ms = MACHINE(spapr);
2583     Error *local_err = NULL;
2584     bool vsmt_user = !!spapr->vsmt;
2585     int kvm_smt = kvmppc_smt_threads();
2586     int ret;
2587     unsigned int smp_threads = ms->smp.threads;
2588 
2589     if (!kvm_enabled() && (smp_threads > 1)) {
2590         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2591                      "on a pseries machine");
2592         goto out;
2593     }
2594     if (!is_power_of_2(smp_threads)) {
2595         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2596                      "machine because it must be a power of 2", smp_threads);
2597         goto out;
2598     }
2599 
2600     /* Detemine the VSMT mode to use: */
2601     if (vsmt_user) {
2602         if (spapr->vsmt < smp_threads) {
2603             error_setg(&local_err, "Cannot support VSMT mode %d"
2604                          " because it must be >= threads/core (%d)",
2605                          spapr->vsmt, smp_threads);
2606             goto out;
2607         }
2608         /* In this case, spapr->vsmt has been set by the command line */
2609     } else {
2610         /*
2611          * Default VSMT value is tricky, because we need it to be as
2612          * consistent as possible (for migration), but this requires
2613          * changing it for at least some existing cases.  We pick 8 as
2614          * the value that we'd get with KVM on POWER8, the
2615          * overwhelmingly common case in production systems.
2616          */
2617         spapr->vsmt = MAX(8, smp_threads);
2618     }
2619 
2620     /* KVM: If necessary, set the SMT mode: */
2621     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2622         ret = kvmppc_set_smt_threads(spapr->vsmt);
2623         if (ret) {
2624             /* Looks like KVM isn't able to change VSMT mode */
2625             error_setg(&local_err,
2626                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2627                        spapr->vsmt, ret);
2628             /* We can live with that if the default one is big enough
2629              * for the number of threads, and a submultiple of the one
2630              * we want.  In this case we'll waste some vcpu ids, but
2631              * behaviour will be correct */
2632             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2633                 warn_report_err(local_err);
2634                 local_err = NULL;
2635                 goto out;
2636             } else {
2637                 if (!vsmt_user) {
2638                     error_append_hint(&local_err,
2639                                       "On PPC, a VM with %d threads/core"
2640                                       " on a host with %d threads/core"
2641                                       " requires the use of VSMT mode %d.\n",
2642                                       smp_threads, kvm_smt, spapr->vsmt);
2643                 }
2644                 kvmppc_hint_smt_possible(&local_err);
2645                 goto out;
2646             }
2647         }
2648     }
2649     /* else TCG: nothing to do currently */
2650 out:
2651     error_propagate(errp, local_err);
2652 }
2653 
2654 static void spapr_init_cpus(SpaprMachineState *spapr)
2655 {
2656     MachineState *machine = MACHINE(spapr);
2657     MachineClass *mc = MACHINE_GET_CLASS(machine);
2658     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2659     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2660     const CPUArchIdList *possible_cpus;
2661     unsigned int smp_cpus = machine->smp.cpus;
2662     unsigned int smp_threads = machine->smp.threads;
2663     unsigned int max_cpus = machine->smp.max_cpus;
2664     int boot_cores_nr = smp_cpus / smp_threads;
2665     int i;
2666 
2667     possible_cpus = mc->possible_cpu_arch_ids(machine);
2668     if (mc->has_hotpluggable_cpus) {
2669         if (smp_cpus % smp_threads) {
2670             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2671                          smp_cpus, smp_threads);
2672             exit(1);
2673         }
2674         if (max_cpus % smp_threads) {
2675             error_report("max_cpus (%u) must be multiple of threads (%u)",
2676                          max_cpus, smp_threads);
2677             exit(1);
2678         }
2679     } else {
2680         if (max_cpus != smp_cpus) {
2681             error_report("This machine version does not support CPU hotplug");
2682             exit(1);
2683         }
2684         boot_cores_nr = possible_cpus->len;
2685     }
2686 
2687     if (smc->pre_2_10_has_unused_icps) {
2688         int i;
2689 
2690         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2691             /* Dummy entries get deregistered when real ICPState objects
2692              * are registered during CPU core hotplug.
2693              */
2694             pre_2_10_vmstate_register_dummy_icp(i);
2695         }
2696     }
2697 
2698     for (i = 0; i < possible_cpus->len; i++) {
2699         int core_id = i * smp_threads;
2700 
2701         if (mc->has_hotpluggable_cpus) {
2702             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2703                                    spapr_vcpu_id(spapr, core_id));
2704         }
2705 
2706         if (i < boot_cores_nr) {
2707             Object *core  = object_new(type);
2708             int nr_threads = smp_threads;
2709 
2710             /* Handle the partially filled core for older machine types */
2711             if ((i + 1) * smp_threads >= smp_cpus) {
2712                 nr_threads = smp_cpus - i * smp_threads;
2713             }
2714 
2715             object_property_set_int(core, nr_threads, "nr-threads",
2716                                     &error_fatal);
2717             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2718                                     &error_fatal);
2719             object_property_set_bool(core, true, "realized", &error_fatal);
2720 
2721             object_unref(core);
2722         }
2723     }
2724 }
2725 
2726 static PCIHostState *spapr_create_default_phb(void)
2727 {
2728     DeviceState *dev;
2729 
2730     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2731     qdev_prop_set_uint32(dev, "index", 0);
2732     qdev_init_nofail(dev);
2733 
2734     return PCI_HOST_BRIDGE(dev);
2735 }
2736 
2737 /* pSeries LPAR / sPAPR hardware init */
2738 static void spapr_machine_init(MachineState *machine)
2739 {
2740     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2741     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2742     const char *kernel_filename = machine->kernel_filename;
2743     const char *initrd_filename = machine->initrd_filename;
2744     PCIHostState *phb;
2745     int i;
2746     MemoryRegion *sysmem = get_system_memory();
2747     MemoryRegion *ram = g_new(MemoryRegion, 1);
2748     hwaddr node0_size = spapr_node0_size(machine);
2749     long load_limit, fw_size;
2750     char *filename;
2751     Error *resize_hpt_err = NULL;
2752 
2753     msi_nonbroken = true;
2754 
2755     QLIST_INIT(&spapr->phbs);
2756     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2757 
2758     /* Determine capabilities to run with */
2759     spapr_caps_init(spapr);
2760 
2761     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2762     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2763         /*
2764          * If the user explicitly requested a mode we should either
2765          * supply it, or fail completely (which we do below).  But if
2766          * it's not set explicitly, we reset our mode to something
2767          * that works
2768          */
2769         if (resize_hpt_err) {
2770             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2771             error_free(resize_hpt_err);
2772             resize_hpt_err = NULL;
2773         } else {
2774             spapr->resize_hpt = smc->resize_hpt_default;
2775         }
2776     }
2777 
2778     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2779 
2780     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2781         /*
2782          * User requested HPT resize, but this host can't supply it.  Bail out
2783          */
2784         error_report_err(resize_hpt_err);
2785         exit(1);
2786     }
2787 
2788     spapr->rma_size = node0_size;
2789 
2790     /* With KVM, we don't actually know whether KVM supports an
2791      * unbounded RMA (PR KVM) or is limited by the hash table size
2792      * (HV KVM using VRMA), so we always assume the latter
2793      *
2794      * In that case, we also limit the initial allocations for RTAS
2795      * etc... to 256M since we have no way to know what the VRMA size
2796      * is going to be as it depends on the size of the hash table
2797      * which isn't determined yet.
2798      */
2799     if (kvm_enabled()) {
2800         spapr->vrma_adjust = 1;
2801         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2802     }
2803 
2804     /* Actually we don't support unbounded RMA anymore since we added
2805      * proper emulation of HV mode. The max we can get is 16G which
2806      * also happens to be what we configure for PAPR mode so make sure
2807      * we don't do anything bigger than that
2808      */
2809     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2810 
2811     if (spapr->rma_size > node0_size) {
2812         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2813                      spapr->rma_size);
2814         exit(1);
2815     }
2816 
2817     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2818     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2819 
2820     /*
2821      * VSMT must be set in order to be able to compute VCPU ids, ie to
2822      * call spapr_max_server_number() or spapr_vcpu_id().
2823      */
2824     spapr_set_vsmt_mode(spapr, &error_fatal);
2825 
2826     /* Set up Interrupt Controller before we create the VCPUs */
2827     spapr_irq_init(spapr, &error_fatal);
2828 
2829     /* Set up containers for ibm,client-architecture-support negotiated options
2830      */
2831     spapr->ov5 = spapr_ovec_new();
2832     spapr->ov5_cas = spapr_ovec_new();
2833 
2834     if (smc->dr_lmb_enabled) {
2835         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2836         spapr_validate_node_memory(machine, &error_fatal);
2837     }
2838 
2839     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2840 
2841     /* advertise support for dedicated HP event source to guests */
2842     if (spapr->use_hotplug_event_source) {
2843         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2844     }
2845 
2846     /* advertise support for HPT resizing */
2847     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2848         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2849     }
2850 
2851     /* advertise support for ibm,dyamic-memory-v2 */
2852     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2853 
2854     /* advertise XIVE on POWER9 machines */
2855     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2856         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2857     }
2858 
2859     /* init CPUs */
2860     spapr_init_cpus(spapr);
2861 
2862     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2863         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2864                               spapr->max_compat_pvr)) {
2865         /* KVM and TCG always allow GTSE with radix... */
2866         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2867     }
2868     /* ... but not with hash (currently). */
2869 
2870     if (kvm_enabled()) {
2871         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2872         kvmppc_enable_logical_ci_hcalls();
2873         kvmppc_enable_set_mode_hcall();
2874 
2875         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2876         kvmppc_enable_clear_ref_mod_hcalls();
2877 
2878         /* Enable H_PAGE_INIT */
2879         kvmppc_enable_h_page_init();
2880     }
2881 
2882     /* allocate RAM */
2883     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2884                                          machine->ram_size);
2885     memory_region_add_subregion(sysmem, 0, ram);
2886 
2887     /* always allocate the device memory information */
2888     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2889 
2890     /* initialize hotplug memory address space */
2891     if (machine->ram_size < machine->maxram_size) {
2892         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2893         /*
2894          * Limit the number of hotpluggable memory slots to half the number
2895          * slots that KVM supports, leaving the other half for PCI and other
2896          * devices. However ensure that number of slots doesn't drop below 32.
2897          */
2898         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2899                            SPAPR_MAX_RAM_SLOTS;
2900 
2901         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2902             max_memslots = SPAPR_MAX_RAM_SLOTS;
2903         }
2904         if (machine->ram_slots > max_memslots) {
2905             error_report("Specified number of memory slots %"
2906                          PRIu64" exceeds max supported %d",
2907                          machine->ram_slots, max_memslots);
2908             exit(1);
2909         }
2910 
2911         machine->device_memory->base = ROUND_UP(machine->ram_size,
2912                                                 SPAPR_DEVICE_MEM_ALIGN);
2913         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2914                            "device-memory", device_mem_size);
2915         memory_region_add_subregion(sysmem, machine->device_memory->base,
2916                                     &machine->device_memory->mr);
2917     }
2918 
2919     if (smc->dr_lmb_enabled) {
2920         spapr_create_lmb_dr_connectors(spapr);
2921     }
2922 
2923     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2924     if (!filename) {
2925         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2926         exit(1);
2927     }
2928     spapr->rtas_size = get_image_size(filename);
2929     if (spapr->rtas_size < 0) {
2930         error_report("Could not get size of LPAR rtas '%s'", filename);
2931         exit(1);
2932     }
2933     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2934     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2935         error_report("Could not load LPAR rtas '%s'", filename);
2936         exit(1);
2937     }
2938     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2939         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2940                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2941         exit(1);
2942     }
2943     g_free(filename);
2944 
2945     /* Set up RTAS event infrastructure */
2946     spapr_events_init(spapr);
2947 
2948     /* Set up the RTC RTAS interfaces */
2949     spapr_rtc_create(spapr);
2950 
2951     /* Set up VIO bus */
2952     spapr->vio_bus = spapr_vio_bus_init();
2953 
2954     for (i = 0; i < serial_max_hds(); i++) {
2955         if (serial_hd(i)) {
2956             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2957         }
2958     }
2959 
2960     /* We always have at least the nvram device on VIO */
2961     spapr_create_nvram(spapr);
2962 
2963     /*
2964      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2965      * connectors (described in root DT node's "ibm,drc-types" property)
2966      * are pre-initialized here. additional child connectors (such as
2967      * connectors for a PHBs PCI slots) are added as needed during their
2968      * parent's realization.
2969      */
2970     if (smc->dr_phb_enabled) {
2971         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2972             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2973         }
2974     }
2975 
2976     /* Set up PCI */
2977     spapr_pci_rtas_init();
2978 
2979     phb = spapr_create_default_phb();
2980 
2981     for (i = 0; i < nb_nics; i++) {
2982         NICInfo *nd = &nd_table[i];
2983 
2984         if (!nd->model) {
2985             nd->model = g_strdup("spapr-vlan");
2986         }
2987 
2988         if (g_str_equal(nd->model, "spapr-vlan") ||
2989             g_str_equal(nd->model, "ibmveth")) {
2990             spapr_vlan_create(spapr->vio_bus, nd);
2991         } else {
2992             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2993         }
2994     }
2995 
2996     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2997         spapr_vscsi_create(spapr->vio_bus);
2998     }
2999 
3000     /* Graphics */
3001     if (spapr_vga_init(phb->bus, &error_fatal)) {
3002         spapr->has_graphics = true;
3003         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3004     }
3005 
3006     if (machine->usb) {
3007         if (smc->use_ohci_by_default) {
3008             pci_create_simple(phb->bus, -1, "pci-ohci");
3009         } else {
3010             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3011         }
3012 
3013         if (spapr->has_graphics) {
3014             USBBus *usb_bus = usb_bus_find(-1);
3015 
3016             usb_create_simple(usb_bus, "usb-kbd");
3017             usb_create_simple(usb_bus, "usb-mouse");
3018         }
3019     }
3020 
3021     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3022         error_report(
3023             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3024             MIN_RMA_SLOF);
3025         exit(1);
3026     }
3027 
3028     if (kernel_filename) {
3029         uint64_t lowaddr = 0;
3030 
3031         spapr->kernel_size = load_elf(kernel_filename, NULL,
3032                                       translate_kernel_address, NULL,
3033                                       NULL, &lowaddr, NULL, 1,
3034                                       PPC_ELF_MACHINE, 0, 0);
3035         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3036             spapr->kernel_size = load_elf(kernel_filename, NULL,
3037                                           translate_kernel_address, NULL, NULL,
3038                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3039                                           0, 0);
3040             spapr->kernel_le = spapr->kernel_size > 0;
3041         }
3042         if (spapr->kernel_size < 0) {
3043             error_report("error loading %s: %s", kernel_filename,
3044                          load_elf_strerror(spapr->kernel_size));
3045             exit(1);
3046         }
3047 
3048         /* load initrd */
3049         if (initrd_filename) {
3050             /* Try to locate the initrd in the gap between the kernel
3051              * and the firmware. Add a bit of space just in case
3052              */
3053             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3054                                   + 0x1ffff) & ~0xffff;
3055             spapr->initrd_size = load_image_targphys(initrd_filename,
3056                                                      spapr->initrd_base,
3057                                                      load_limit
3058                                                      - spapr->initrd_base);
3059             if (spapr->initrd_size < 0) {
3060                 error_report("could not load initial ram disk '%s'",
3061                              initrd_filename);
3062                 exit(1);
3063             }
3064         }
3065     }
3066 
3067     if (bios_name == NULL) {
3068         bios_name = FW_FILE_NAME;
3069     }
3070     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3071     if (!filename) {
3072         error_report("Could not find LPAR firmware '%s'", bios_name);
3073         exit(1);
3074     }
3075     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3076     if (fw_size <= 0) {
3077         error_report("Could not load LPAR firmware '%s'", filename);
3078         exit(1);
3079     }
3080     g_free(filename);
3081 
3082     /* FIXME: Should register things through the MachineState's qdev
3083      * interface, this is a legacy from the sPAPREnvironment structure
3084      * which predated MachineState but had a similar function */
3085     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3086     register_savevm_live(NULL, "spapr/htab", -1, 1,
3087                          &savevm_htab_handlers, spapr);
3088 
3089     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3090                              &error_fatal);
3091 
3092     qemu_register_boot_set(spapr_boot_set, spapr);
3093 
3094     /*
3095      * Nothing needs to be done to resume a suspended guest because
3096      * suspending does not change the machine state, so no need for
3097      * a ->wakeup method.
3098      */
3099     qemu_register_wakeup_support();
3100 
3101     if (kvm_enabled()) {
3102         /* to stop and start vmclock */
3103         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3104                                          &spapr->tb);
3105 
3106         kvmppc_spapr_enable_inkernel_multitce();
3107     }
3108 }
3109 
3110 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3111 {
3112     if (!vm_type) {
3113         return 0;
3114     }
3115 
3116     if (!strcmp(vm_type, "HV")) {
3117         return 1;
3118     }
3119 
3120     if (!strcmp(vm_type, "PR")) {
3121         return 2;
3122     }
3123 
3124     error_report("Unknown kvm-type specified '%s'", vm_type);
3125     exit(1);
3126 }
3127 
3128 /*
3129  * Implementation of an interface to adjust firmware path
3130  * for the bootindex property handling.
3131  */
3132 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3133                                    DeviceState *dev)
3134 {
3135 #define CAST(type, obj, name) \
3136     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3137     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3138     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3139     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3140 
3141     if (d) {
3142         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3143         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3144         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3145 
3146         if (spapr) {
3147             /*
3148              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3149              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3150              * 0x8000 | (target << 8) | (bus << 5) | lun
3151              * (see the "Logical unit addressing format" table in SAM5)
3152              */
3153             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3154             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3155                                    (uint64_t)id << 48);
3156         } else if (virtio) {
3157             /*
3158              * We use SRP luns of the form 01000000 | (target << 8) | lun
3159              * in the top 32 bits of the 64-bit LUN
3160              * Note: the quote above is from SLOF and it is wrong,
3161              * the actual binding is:
3162              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3163              */
3164             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3165             if (d->lun >= 256) {
3166                 /* Use the LUN "flat space addressing method" */
3167                 id |= 0x4000;
3168             }
3169             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3170                                    (uint64_t)id << 32);
3171         } else if (usb) {
3172             /*
3173              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3174              * in the top 32 bits of the 64-bit LUN
3175              */
3176             unsigned usb_port = atoi(usb->port->path);
3177             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3178             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3179                                    (uint64_t)id << 32);
3180         }
3181     }
3182 
3183     /*
3184      * SLOF probes the USB devices, and if it recognizes that the device is a
3185      * storage device, it changes its name to "storage" instead of "usb-host",
3186      * and additionally adds a child node for the SCSI LUN, so the correct
3187      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3188      */
3189     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3190         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3191         if (usb_host_dev_is_scsi_storage(usbdev)) {
3192             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3193         }
3194     }
3195 
3196     if (phb) {
3197         /* Replace "pci" with "pci@800000020000000" */
3198         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3199     }
3200 
3201     if (vsc) {
3202         /* Same logic as virtio above */
3203         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3204         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3205     }
3206 
3207     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3208         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3209         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3210         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3211     }
3212 
3213     return NULL;
3214 }
3215 
3216 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3217 {
3218     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219 
3220     return g_strdup(spapr->kvm_type);
3221 }
3222 
3223 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3224 {
3225     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3226 
3227     g_free(spapr->kvm_type);
3228     spapr->kvm_type = g_strdup(value);
3229 }
3230 
3231 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3232 {
3233     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3234 
3235     return spapr->use_hotplug_event_source;
3236 }
3237 
3238 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3239                                             Error **errp)
3240 {
3241     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3242 
3243     spapr->use_hotplug_event_source = value;
3244 }
3245 
3246 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3247 {
3248     return true;
3249 }
3250 
3251 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3252 {
3253     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3254 
3255     switch (spapr->resize_hpt) {
3256     case SPAPR_RESIZE_HPT_DEFAULT:
3257         return g_strdup("default");
3258     case SPAPR_RESIZE_HPT_DISABLED:
3259         return g_strdup("disabled");
3260     case SPAPR_RESIZE_HPT_ENABLED:
3261         return g_strdup("enabled");
3262     case SPAPR_RESIZE_HPT_REQUIRED:
3263         return g_strdup("required");
3264     }
3265     g_assert_not_reached();
3266 }
3267 
3268 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3269 {
3270     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3271 
3272     if (strcmp(value, "default") == 0) {
3273         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3274     } else if (strcmp(value, "disabled") == 0) {
3275         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3276     } else if (strcmp(value, "enabled") == 0) {
3277         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3278     } else if (strcmp(value, "required") == 0) {
3279         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3280     } else {
3281         error_setg(errp, "Bad value for \"resize-hpt\" property");
3282     }
3283 }
3284 
3285 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3286                                    void *opaque, Error **errp)
3287 {
3288     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3289 }
3290 
3291 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3292                                    void *opaque, Error **errp)
3293 {
3294     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3295 }
3296 
3297 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3298 {
3299     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300 
3301     if (spapr->irq == &spapr_irq_xics_legacy) {
3302         return g_strdup("legacy");
3303     } else if (spapr->irq == &spapr_irq_xics) {
3304         return g_strdup("xics");
3305     } else if (spapr->irq == &spapr_irq_xive) {
3306         return g_strdup("xive");
3307     } else if (spapr->irq == &spapr_irq_dual) {
3308         return g_strdup("dual");
3309     }
3310     g_assert_not_reached();
3311 }
3312 
3313 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3314 {
3315     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3316 
3317     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3318         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3319         return;
3320     }
3321 
3322     /* The legacy IRQ backend can not be set */
3323     if (strcmp(value, "xics") == 0) {
3324         spapr->irq = &spapr_irq_xics;
3325     } else if (strcmp(value, "xive") == 0) {
3326         spapr->irq = &spapr_irq_xive;
3327     } else if (strcmp(value, "dual") == 0) {
3328         spapr->irq = &spapr_irq_dual;
3329     } else {
3330         error_setg(errp, "Bad value for \"ic-mode\" property");
3331     }
3332 }
3333 
3334 static char *spapr_get_host_model(Object *obj, Error **errp)
3335 {
3336     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3337 
3338     return g_strdup(spapr->host_model);
3339 }
3340 
3341 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3342 {
3343     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3344 
3345     g_free(spapr->host_model);
3346     spapr->host_model = g_strdup(value);
3347 }
3348 
3349 static char *spapr_get_host_serial(Object *obj, Error **errp)
3350 {
3351     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3352 
3353     return g_strdup(spapr->host_serial);
3354 }
3355 
3356 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3357 {
3358     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3359 
3360     g_free(spapr->host_serial);
3361     spapr->host_serial = g_strdup(value);
3362 }
3363 
3364 static void spapr_instance_init(Object *obj)
3365 {
3366     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3367     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3368 
3369     spapr->htab_fd = -1;
3370     spapr->use_hotplug_event_source = true;
3371     object_property_add_str(obj, "kvm-type",
3372                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3373     object_property_set_description(obj, "kvm-type",
3374                                     "Specifies the KVM virtualization mode (HV, PR)",
3375                                     NULL);
3376     object_property_add_bool(obj, "modern-hotplug-events",
3377                             spapr_get_modern_hotplug_events,
3378                             spapr_set_modern_hotplug_events,
3379                             NULL);
3380     object_property_set_description(obj, "modern-hotplug-events",
3381                                     "Use dedicated hotplug event mechanism in"
3382                                     " place of standard EPOW events when possible"
3383                                     " (required for memory hot-unplug support)",
3384                                     NULL);
3385     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3386                             "Maximum permitted CPU compatibility mode",
3387                             &error_fatal);
3388 
3389     object_property_add_str(obj, "resize-hpt",
3390                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3391     object_property_set_description(obj, "resize-hpt",
3392                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3393                                     NULL);
3394     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3395                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3396     object_property_set_description(obj, "vsmt",
3397                                     "Virtual SMT: KVM behaves as if this were"
3398                                     " the host's SMT mode", &error_abort);
3399     object_property_add_bool(obj, "vfio-no-msix-emulation",
3400                              spapr_get_msix_emulation, NULL, NULL);
3401 
3402     /* The machine class defines the default interrupt controller mode */
3403     spapr->irq = smc->irq;
3404     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3405                             spapr_set_ic_mode, NULL);
3406     object_property_set_description(obj, "ic-mode",
3407                  "Specifies the interrupt controller mode (xics, xive, dual)",
3408                  NULL);
3409 
3410     object_property_add_str(obj, "host-model",
3411         spapr_get_host_model, spapr_set_host_model,
3412         &error_abort);
3413     object_property_set_description(obj, "host-model",
3414         "Host model to advertise in guest device tree", &error_abort);
3415     object_property_add_str(obj, "host-serial",
3416         spapr_get_host_serial, spapr_set_host_serial,
3417         &error_abort);
3418     object_property_set_description(obj, "host-serial",
3419         "Host serial number to advertise in guest device tree", &error_abort);
3420 }
3421 
3422 static void spapr_machine_finalizefn(Object *obj)
3423 {
3424     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3425 
3426     g_free(spapr->kvm_type);
3427 }
3428 
3429 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3430 {
3431     cpu_synchronize_state(cs);
3432     ppc_cpu_do_system_reset(cs);
3433 }
3434 
3435 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3436 {
3437     CPUState *cs;
3438 
3439     CPU_FOREACH(cs) {
3440         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3441     }
3442 }
3443 
3444 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3445                           void *fdt, int *fdt_start_offset, Error **errp)
3446 {
3447     uint64_t addr;
3448     uint32_t node;
3449 
3450     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3451     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3452                                     &error_abort);
3453     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3454                                                    SPAPR_MEMORY_BLOCK_SIZE);
3455     return 0;
3456 }
3457 
3458 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3459                            bool dedicated_hp_event_source, Error **errp)
3460 {
3461     SpaprDrc *drc;
3462     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3463     int i;
3464     uint64_t addr = addr_start;
3465     bool hotplugged = spapr_drc_hotplugged(dev);
3466     Error *local_err = NULL;
3467 
3468     for (i = 0; i < nr_lmbs; i++) {
3469         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3470                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3471         g_assert(drc);
3472 
3473         spapr_drc_attach(drc, dev, &local_err);
3474         if (local_err) {
3475             while (addr > addr_start) {
3476                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3477                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3478                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3479                 spapr_drc_detach(drc);
3480             }
3481             error_propagate(errp, local_err);
3482             return;
3483         }
3484         if (!hotplugged) {
3485             spapr_drc_reset(drc);
3486         }
3487         addr += SPAPR_MEMORY_BLOCK_SIZE;
3488     }
3489     /* send hotplug notification to the
3490      * guest only in case of hotplugged memory
3491      */
3492     if (hotplugged) {
3493         if (dedicated_hp_event_source) {
3494             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3495                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3496             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3497                                                    nr_lmbs,
3498                                                    spapr_drc_index(drc));
3499         } else {
3500             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3501                                            nr_lmbs);
3502         }
3503     }
3504 }
3505 
3506 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3507                               Error **errp)
3508 {
3509     Error *local_err = NULL;
3510     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3511     PCDIMMDevice *dimm = PC_DIMM(dev);
3512     uint64_t size, addr;
3513 
3514     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3515 
3516     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3517     if (local_err) {
3518         goto out;
3519     }
3520 
3521     addr = object_property_get_uint(OBJECT(dimm),
3522                                     PC_DIMM_ADDR_PROP, &local_err);
3523     if (local_err) {
3524         goto out_unplug;
3525     }
3526 
3527     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3528                    &local_err);
3529     if (local_err) {
3530         goto out_unplug;
3531     }
3532 
3533     return;
3534 
3535 out_unplug:
3536     pc_dimm_unplug(dimm, MACHINE(ms));
3537 out:
3538     error_propagate(errp, local_err);
3539 }
3540 
3541 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3542                                   Error **errp)
3543 {
3544     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3545     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3546     PCDIMMDevice *dimm = PC_DIMM(dev);
3547     Error *local_err = NULL;
3548     uint64_t size;
3549     Object *memdev;
3550     hwaddr pagesize;
3551 
3552     if (!smc->dr_lmb_enabled) {
3553         error_setg(errp, "Memory hotplug not supported for this machine");
3554         return;
3555     }
3556 
3557     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3558     if (local_err) {
3559         error_propagate(errp, local_err);
3560         return;
3561     }
3562 
3563     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3564         error_setg(errp, "Hotplugged memory size must be a multiple of "
3565                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3566         return;
3567     }
3568 
3569     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3570                                       &error_abort);
3571     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3572     spapr_check_pagesize(spapr, pagesize, &local_err);
3573     if (local_err) {
3574         error_propagate(errp, local_err);
3575         return;
3576     }
3577 
3578     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3579 }
3580 
3581 struct SpaprDimmState {
3582     PCDIMMDevice *dimm;
3583     uint32_t nr_lmbs;
3584     QTAILQ_ENTRY(SpaprDimmState) next;
3585 };
3586 
3587 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3588                                                        PCDIMMDevice *dimm)
3589 {
3590     SpaprDimmState *dimm_state = NULL;
3591 
3592     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3593         if (dimm_state->dimm == dimm) {
3594             break;
3595         }
3596     }
3597     return dimm_state;
3598 }
3599 
3600 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3601                                                       uint32_t nr_lmbs,
3602                                                       PCDIMMDevice *dimm)
3603 {
3604     SpaprDimmState *ds = NULL;
3605 
3606     /*
3607      * If this request is for a DIMM whose removal had failed earlier
3608      * (due to guest's refusal to remove the LMBs), we would have this
3609      * dimm already in the pending_dimm_unplugs list. In that
3610      * case don't add again.
3611      */
3612     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3613     if (!ds) {
3614         ds = g_malloc0(sizeof(SpaprDimmState));
3615         ds->nr_lmbs = nr_lmbs;
3616         ds->dimm = dimm;
3617         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3618     }
3619     return ds;
3620 }
3621 
3622 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3623                                               SpaprDimmState *dimm_state)
3624 {
3625     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3626     g_free(dimm_state);
3627 }
3628 
3629 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3630                                                         PCDIMMDevice *dimm)
3631 {
3632     SpaprDrc *drc;
3633     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3634                                                   &error_abort);
3635     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3636     uint32_t avail_lmbs = 0;
3637     uint64_t addr_start, addr;
3638     int i;
3639 
3640     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3641                                          &error_abort);
3642 
3643     addr = addr_start;
3644     for (i = 0; i < nr_lmbs; i++) {
3645         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3646                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3647         g_assert(drc);
3648         if (drc->dev) {
3649             avail_lmbs++;
3650         }
3651         addr += SPAPR_MEMORY_BLOCK_SIZE;
3652     }
3653 
3654     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3655 }
3656 
3657 /* Callback to be called during DRC release. */
3658 void spapr_lmb_release(DeviceState *dev)
3659 {
3660     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3661     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3662     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3663 
3664     /* This information will get lost if a migration occurs
3665      * during the unplug process. In this case recover it. */
3666     if (ds == NULL) {
3667         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3668         g_assert(ds);
3669         /* The DRC being examined by the caller at least must be counted */
3670         g_assert(ds->nr_lmbs);
3671     }
3672 
3673     if (--ds->nr_lmbs) {
3674         return;
3675     }
3676 
3677     /*
3678      * Now that all the LMBs have been removed by the guest, call the
3679      * unplug handler chain. This can never fail.
3680      */
3681     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3682     object_unparent(OBJECT(dev));
3683 }
3684 
3685 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3686 {
3687     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3688     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3689 
3690     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3691     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3692     spapr_pending_dimm_unplugs_remove(spapr, ds);
3693 }
3694 
3695 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3696                                         DeviceState *dev, Error **errp)
3697 {
3698     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3699     Error *local_err = NULL;
3700     PCDIMMDevice *dimm = PC_DIMM(dev);
3701     uint32_t nr_lmbs;
3702     uint64_t size, addr_start, addr;
3703     int i;
3704     SpaprDrc *drc;
3705 
3706     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3707     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3708 
3709     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3710                                          &local_err);
3711     if (local_err) {
3712         goto out;
3713     }
3714 
3715     /*
3716      * An existing pending dimm state for this DIMM means that there is an
3717      * unplug operation in progress, waiting for the spapr_lmb_release
3718      * callback to complete the job (BQL can't cover that far). In this case,
3719      * bail out to avoid detaching DRCs that were already released.
3720      */
3721     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3722         error_setg(&local_err,
3723                    "Memory unplug already in progress for device %s",
3724                    dev->id);
3725         goto out;
3726     }
3727 
3728     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3729 
3730     addr = addr_start;
3731     for (i = 0; i < nr_lmbs; i++) {
3732         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3733                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3734         g_assert(drc);
3735 
3736         spapr_drc_detach(drc);
3737         addr += SPAPR_MEMORY_BLOCK_SIZE;
3738     }
3739 
3740     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3741                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3742     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3743                                               nr_lmbs, spapr_drc_index(drc));
3744 out:
3745     error_propagate(errp, local_err);
3746 }
3747 
3748 /* Callback to be called during DRC release. */
3749 void spapr_core_release(DeviceState *dev)
3750 {
3751     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3752 
3753     /* Call the unplug handler chain. This can never fail. */
3754     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3755     object_unparent(OBJECT(dev));
3756 }
3757 
3758 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3759 {
3760     MachineState *ms = MACHINE(hotplug_dev);
3761     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3762     CPUCore *cc = CPU_CORE(dev);
3763     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3764 
3765     if (smc->pre_2_10_has_unused_icps) {
3766         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3767         int i;
3768 
3769         for (i = 0; i < cc->nr_threads; i++) {
3770             CPUState *cs = CPU(sc->threads[i]);
3771 
3772             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3773         }
3774     }
3775 
3776     assert(core_slot);
3777     core_slot->cpu = NULL;
3778     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3779 }
3780 
3781 static
3782 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3783                                Error **errp)
3784 {
3785     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3786     int index;
3787     SpaprDrc *drc;
3788     CPUCore *cc = CPU_CORE(dev);
3789 
3790     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3791         error_setg(errp, "Unable to find CPU core with core-id: %d",
3792                    cc->core_id);
3793         return;
3794     }
3795     if (index == 0) {
3796         error_setg(errp, "Boot CPU core may not be unplugged");
3797         return;
3798     }
3799 
3800     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3801                           spapr_vcpu_id(spapr, cc->core_id));
3802     g_assert(drc);
3803 
3804     spapr_drc_detach(drc);
3805 
3806     spapr_hotplug_req_remove_by_index(drc);
3807 }
3808 
3809 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3810                            void *fdt, int *fdt_start_offset, Error **errp)
3811 {
3812     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3813     CPUState *cs = CPU(core->threads[0]);
3814     PowerPCCPU *cpu = POWERPC_CPU(cs);
3815     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3816     int id = spapr_get_vcpu_id(cpu);
3817     char *nodename;
3818     int offset;
3819 
3820     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3821     offset = fdt_add_subnode(fdt, 0, nodename);
3822     g_free(nodename);
3823 
3824     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3825 
3826     *fdt_start_offset = offset;
3827     return 0;
3828 }
3829 
3830 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3831                             Error **errp)
3832 {
3833     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3834     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3835     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3836     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3837     CPUCore *cc = CPU_CORE(dev);
3838     CPUState *cs;
3839     SpaprDrc *drc;
3840     Error *local_err = NULL;
3841     CPUArchId *core_slot;
3842     int index;
3843     bool hotplugged = spapr_drc_hotplugged(dev);
3844 
3845     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3846     if (!core_slot) {
3847         error_setg(errp, "Unable to find CPU core with core-id: %d",
3848                    cc->core_id);
3849         return;
3850     }
3851     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3852                           spapr_vcpu_id(spapr, cc->core_id));
3853 
3854     g_assert(drc || !mc->has_hotpluggable_cpus);
3855 
3856     if (drc) {
3857         spapr_drc_attach(drc, dev, &local_err);
3858         if (local_err) {
3859             error_propagate(errp, local_err);
3860             return;
3861         }
3862 
3863         if (hotplugged) {
3864             /*
3865              * Send hotplug notification interrupt to the guest only
3866              * in case of hotplugged CPUs.
3867              */
3868             spapr_hotplug_req_add_by_index(drc);
3869         } else {
3870             spapr_drc_reset(drc);
3871         }
3872     }
3873 
3874     core_slot->cpu = OBJECT(dev);
3875 
3876     if (smc->pre_2_10_has_unused_icps) {
3877         int i;
3878 
3879         for (i = 0; i < cc->nr_threads; i++) {
3880             cs = CPU(core->threads[i]);
3881             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3882         }
3883     }
3884 }
3885 
3886 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3887                                 Error **errp)
3888 {
3889     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3890     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3891     Error *local_err = NULL;
3892     CPUCore *cc = CPU_CORE(dev);
3893     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3894     const char *type = object_get_typename(OBJECT(dev));
3895     CPUArchId *core_slot;
3896     int index;
3897     unsigned int smp_threads = machine->smp.threads;
3898 
3899     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3900         error_setg(&local_err, "CPU hotplug not supported for this machine");
3901         goto out;
3902     }
3903 
3904     if (strcmp(base_core_type, type)) {
3905         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3906         goto out;
3907     }
3908 
3909     if (cc->core_id % smp_threads) {
3910         error_setg(&local_err, "invalid core id %d", cc->core_id);
3911         goto out;
3912     }
3913 
3914     /*
3915      * In general we should have homogeneous threads-per-core, but old
3916      * (pre hotplug support) machine types allow the last core to have
3917      * reduced threads as a compatibility hack for when we allowed
3918      * total vcpus not a multiple of threads-per-core.
3919      */
3920     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3921         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3922                    cc->nr_threads, smp_threads);
3923         goto out;
3924     }
3925 
3926     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3927     if (!core_slot) {
3928         error_setg(&local_err, "core id %d out of range", cc->core_id);
3929         goto out;
3930     }
3931 
3932     if (core_slot->cpu) {
3933         error_setg(&local_err, "core %d already populated", cc->core_id);
3934         goto out;
3935     }
3936 
3937     numa_cpu_pre_plug(core_slot, dev, &local_err);
3938 
3939 out:
3940     error_propagate(errp, local_err);
3941 }
3942 
3943 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3944                           void *fdt, int *fdt_start_offset, Error **errp)
3945 {
3946     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3947     int intc_phandle;
3948 
3949     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3950     if (intc_phandle <= 0) {
3951         return -1;
3952     }
3953 
3954     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3955                      fdt_start_offset)) {
3956         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3957         return -1;
3958     }
3959 
3960     /* generally SLOF creates these, for hotplug it's up to QEMU */
3961     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3962 
3963     return 0;
3964 }
3965 
3966 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3967                                Error **errp)
3968 {
3969     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3970     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3971     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3972     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3973 
3974     if (dev->hotplugged && !smc->dr_phb_enabled) {
3975         error_setg(errp, "PHB hotplug not supported for this machine");
3976         return;
3977     }
3978 
3979     if (sphb->index == (uint32_t)-1) {
3980         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3981         return;
3982     }
3983 
3984     /*
3985      * This will check that sphb->index doesn't exceed the maximum number of
3986      * PHBs for the current machine type.
3987      */
3988     smc->phb_placement(spapr, sphb->index,
3989                        &sphb->buid, &sphb->io_win_addr,
3990                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3991                        windows_supported, sphb->dma_liobn,
3992                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3993                        errp);
3994 }
3995 
3996 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3997                            Error **errp)
3998 {
3999     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4000     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4001     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4002     SpaprDrc *drc;
4003     bool hotplugged = spapr_drc_hotplugged(dev);
4004     Error *local_err = NULL;
4005 
4006     if (!smc->dr_phb_enabled) {
4007         return;
4008     }
4009 
4010     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4011     /* hotplug hooks should check it's enabled before getting this far */
4012     assert(drc);
4013 
4014     spapr_drc_attach(drc, DEVICE(dev), &local_err);
4015     if (local_err) {
4016         error_propagate(errp, local_err);
4017         return;
4018     }
4019 
4020     if (hotplugged) {
4021         spapr_hotplug_req_add_by_index(drc);
4022     } else {
4023         spapr_drc_reset(drc);
4024     }
4025 }
4026 
4027 void spapr_phb_release(DeviceState *dev)
4028 {
4029     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4030 
4031     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4032     object_unparent(OBJECT(dev));
4033 }
4034 
4035 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4036 {
4037     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4038 }
4039 
4040 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4041                                      DeviceState *dev, Error **errp)
4042 {
4043     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4044     SpaprDrc *drc;
4045 
4046     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4047     assert(drc);
4048 
4049     if (!spapr_drc_unplug_requested(drc)) {
4050         spapr_drc_detach(drc);
4051         spapr_hotplug_req_remove_by_index(drc);
4052     }
4053 }
4054 
4055 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4056                                  Error **errp)
4057 {
4058     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4059     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4060 
4061     if (spapr->tpm_proxy != NULL) {
4062         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4063         return;
4064     }
4065 
4066     spapr->tpm_proxy = tpm_proxy;
4067 }
4068 
4069 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4070 {
4071     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4072 
4073     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4074     object_unparent(OBJECT(dev));
4075     spapr->tpm_proxy = NULL;
4076 }
4077 
4078 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4079                                       DeviceState *dev, Error **errp)
4080 {
4081     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4082         spapr_memory_plug(hotplug_dev, dev, errp);
4083     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4084         spapr_core_plug(hotplug_dev, dev, errp);
4085     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4086         spapr_phb_plug(hotplug_dev, dev, errp);
4087     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4088         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4089     }
4090 }
4091 
4092 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4093                                         DeviceState *dev, Error **errp)
4094 {
4095     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4096         spapr_memory_unplug(hotplug_dev, dev);
4097     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4098         spapr_core_unplug(hotplug_dev, dev);
4099     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4100         spapr_phb_unplug(hotplug_dev, dev);
4101     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4102         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4103     }
4104 }
4105 
4106 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4107                                                 DeviceState *dev, Error **errp)
4108 {
4109     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4110     MachineClass *mc = MACHINE_GET_CLASS(sms);
4111     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4112 
4113     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4114         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4115             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4116         } else {
4117             /* NOTE: this means there is a window after guest reset, prior to
4118              * CAS negotiation, where unplug requests will fail due to the
4119              * capability not being detected yet. This is a bit different than
4120              * the case with PCI unplug, where the events will be queued and
4121              * eventually handled by the guest after boot
4122              */
4123             error_setg(errp, "Memory hot unplug not supported for this guest");
4124         }
4125     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4126         if (!mc->has_hotpluggable_cpus) {
4127             error_setg(errp, "CPU hot unplug not supported on this machine");
4128             return;
4129         }
4130         spapr_core_unplug_request(hotplug_dev, dev, errp);
4131     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4132         if (!smc->dr_phb_enabled) {
4133             error_setg(errp, "PHB hot unplug not supported on this machine");
4134             return;
4135         }
4136         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4137     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4138         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4139     }
4140 }
4141 
4142 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4143                                           DeviceState *dev, Error **errp)
4144 {
4145     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4146         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4147     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4148         spapr_core_pre_plug(hotplug_dev, dev, errp);
4149     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4150         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4151     }
4152 }
4153 
4154 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4155                                                  DeviceState *dev)
4156 {
4157     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4158         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4159         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4160         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4161         return HOTPLUG_HANDLER(machine);
4162     }
4163     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4164         PCIDevice *pcidev = PCI_DEVICE(dev);
4165         PCIBus *root = pci_device_root_bus(pcidev);
4166         SpaprPhbState *phb =
4167             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4168                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4169 
4170         if (phb) {
4171             return HOTPLUG_HANDLER(phb);
4172         }
4173     }
4174     return NULL;
4175 }
4176 
4177 static CpuInstanceProperties
4178 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4179 {
4180     CPUArchId *core_slot;
4181     MachineClass *mc = MACHINE_GET_CLASS(machine);
4182 
4183     /* make sure possible_cpu are intialized */
4184     mc->possible_cpu_arch_ids(machine);
4185     /* get CPU core slot containing thread that matches cpu_index */
4186     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4187     assert(core_slot);
4188     return core_slot->props;
4189 }
4190 
4191 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4192 {
4193     return idx / ms->smp.cores % nb_numa_nodes;
4194 }
4195 
4196 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4197 {
4198     int i;
4199     unsigned int smp_threads = machine->smp.threads;
4200     unsigned int smp_cpus = machine->smp.cpus;
4201     const char *core_type;
4202     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4203     MachineClass *mc = MACHINE_GET_CLASS(machine);
4204 
4205     if (!mc->has_hotpluggable_cpus) {
4206         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4207     }
4208     if (machine->possible_cpus) {
4209         assert(machine->possible_cpus->len == spapr_max_cores);
4210         return machine->possible_cpus;
4211     }
4212 
4213     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4214     if (!core_type) {
4215         error_report("Unable to find sPAPR CPU Core definition");
4216         exit(1);
4217     }
4218 
4219     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4220                              sizeof(CPUArchId) * spapr_max_cores);
4221     machine->possible_cpus->len = spapr_max_cores;
4222     for (i = 0; i < machine->possible_cpus->len; i++) {
4223         int core_id = i * smp_threads;
4224 
4225         machine->possible_cpus->cpus[i].type = core_type;
4226         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4227         machine->possible_cpus->cpus[i].arch_id = core_id;
4228         machine->possible_cpus->cpus[i].props.has_core_id = true;
4229         machine->possible_cpus->cpus[i].props.core_id = core_id;
4230     }
4231     return machine->possible_cpus;
4232 }
4233 
4234 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4235                                 uint64_t *buid, hwaddr *pio,
4236                                 hwaddr *mmio32, hwaddr *mmio64,
4237                                 unsigned n_dma, uint32_t *liobns,
4238                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4239 {
4240     /*
4241      * New-style PHB window placement.
4242      *
4243      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4244      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4245      * windows.
4246      *
4247      * Some guest kernels can't work with MMIO windows above 1<<46
4248      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4249      *
4250      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4251      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4252      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4253      * 1TiB 64-bit MMIO windows for each PHB.
4254      */
4255     const uint64_t base_buid = 0x800000020000000ULL;
4256     int i;
4257 
4258     /* Sanity check natural alignments */
4259     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4260     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4261     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4262     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4263     /* Sanity check bounds */
4264     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4265                       SPAPR_PCI_MEM32_WIN_SIZE);
4266     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4267                       SPAPR_PCI_MEM64_WIN_SIZE);
4268 
4269     if (index >= SPAPR_MAX_PHBS) {
4270         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4271                    SPAPR_MAX_PHBS - 1);
4272         return;
4273     }
4274 
4275     *buid = base_buid + index;
4276     for (i = 0; i < n_dma; ++i) {
4277         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4278     }
4279 
4280     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4281     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4282     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4283 
4284     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4285     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4286 }
4287 
4288 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4289 {
4290     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4291 
4292     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4293 }
4294 
4295 static void spapr_ics_resend(XICSFabric *dev)
4296 {
4297     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4298 
4299     ics_resend(spapr->ics);
4300 }
4301 
4302 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4303 {
4304     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4305 
4306     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4307 }
4308 
4309 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4310                                  Monitor *mon)
4311 {
4312     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4313 
4314     spapr->irq->print_info(spapr, mon);
4315 }
4316 
4317 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4318 {
4319     return cpu->vcpu_id;
4320 }
4321 
4322 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4323 {
4324     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4325     MachineState *ms = MACHINE(spapr);
4326     int vcpu_id;
4327 
4328     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4329 
4330     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4331         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4332         error_append_hint(errp, "Adjust the number of cpus to %d "
4333                           "or try to raise the number of threads per core\n",
4334                           vcpu_id * ms->smp.threads / spapr->vsmt);
4335         return;
4336     }
4337 
4338     cpu->vcpu_id = vcpu_id;
4339 }
4340 
4341 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4342 {
4343     CPUState *cs;
4344 
4345     CPU_FOREACH(cs) {
4346         PowerPCCPU *cpu = POWERPC_CPU(cs);
4347 
4348         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4349             return cpu;
4350         }
4351     }
4352 
4353     return NULL;
4354 }
4355 
4356 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4357 {
4358     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4359 
4360     /* These are only called by TCG, KVM maintains dispatch state */
4361 
4362     spapr_cpu->prod = false;
4363     if (spapr_cpu->vpa_addr) {
4364         CPUState *cs = CPU(cpu);
4365         uint32_t dispatch;
4366 
4367         dispatch = ldl_be_phys(cs->as,
4368                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4369         dispatch++;
4370         if ((dispatch & 1) != 0) {
4371             qemu_log_mask(LOG_GUEST_ERROR,
4372                           "VPA: incorrect dispatch counter value for "
4373                           "dispatched partition %u, correcting.\n", dispatch);
4374             dispatch++;
4375         }
4376         stl_be_phys(cs->as,
4377                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4378     }
4379 }
4380 
4381 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4382 {
4383     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4384 
4385     if (spapr_cpu->vpa_addr) {
4386         CPUState *cs = CPU(cpu);
4387         uint32_t dispatch;
4388 
4389         dispatch = ldl_be_phys(cs->as,
4390                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4391         dispatch++;
4392         if ((dispatch & 1) != 1) {
4393             qemu_log_mask(LOG_GUEST_ERROR,
4394                           "VPA: incorrect dispatch counter value for "
4395                           "preempted partition %u, correcting.\n", dispatch);
4396             dispatch++;
4397         }
4398         stl_be_phys(cs->as,
4399                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4400     }
4401 }
4402 
4403 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4404 {
4405     MachineClass *mc = MACHINE_CLASS(oc);
4406     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4407     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4408     NMIClass *nc = NMI_CLASS(oc);
4409     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4410     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4411     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4412     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4413 
4414     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4415     mc->ignore_boot_device_suffixes = true;
4416 
4417     /*
4418      * We set up the default / latest behaviour here.  The class_init
4419      * functions for the specific versioned machine types can override
4420      * these details for backwards compatibility
4421      */
4422     mc->init = spapr_machine_init;
4423     mc->reset = spapr_machine_reset;
4424     mc->block_default_type = IF_SCSI;
4425     mc->max_cpus = 1024;
4426     mc->no_parallel = 1;
4427     mc->default_boot_order = "";
4428     mc->default_ram_size = 512 * MiB;
4429     mc->default_display = "std";
4430     mc->kvm_type = spapr_kvm_type;
4431     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4432     mc->pci_allow_0_address = true;
4433     assert(!mc->get_hotplug_handler);
4434     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4435     hc->pre_plug = spapr_machine_device_pre_plug;
4436     hc->plug = spapr_machine_device_plug;
4437     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4438     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4439     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4440     hc->unplug_request = spapr_machine_device_unplug_request;
4441     hc->unplug = spapr_machine_device_unplug;
4442 
4443     smc->dr_lmb_enabled = true;
4444     smc->update_dt_enabled = true;
4445     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4446     mc->has_hotpluggable_cpus = true;
4447     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4448     fwc->get_dev_path = spapr_get_fw_dev_path;
4449     nc->nmi_monitor_handler = spapr_nmi;
4450     smc->phb_placement = spapr_phb_placement;
4451     vhc->hypercall = emulate_spapr_hypercall;
4452     vhc->hpt_mask = spapr_hpt_mask;
4453     vhc->map_hptes = spapr_map_hptes;
4454     vhc->unmap_hptes = spapr_unmap_hptes;
4455     vhc->hpte_set_c = spapr_hpte_set_c;
4456     vhc->hpte_set_r = spapr_hpte_set_r;
4457     vhc->get_pate = spapr_get_pate;
4458     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4459     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4460     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4461     xic->ics_get = spapr_ics_get;
4462     xic->ics_resend = spapr_ics_resend;
4463     xic->icp_get = spapr_icp_get;
4464     ispc->print_info = spapr_pic_print_info;
4465     /* Force NUMA node memory size to be a multiple of
4466      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4467      * in which LMBs are represented and hot-added
4468      */
4469     mc->numa_mem_align_shift = 28;
4470     mc->numa_mem_supported = true;
4471 
4472     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4473     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4474     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4475     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4476     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4477     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4478     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4479     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4480     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4481     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4482     spapr_caps_add_properties(smc, &error_abort);
4483     smc->irq = &spapr_irq_dual;
4484     smc->dr_phb_enabled = true;
4485     smc->linux_pci_probe = true;
4486 }
4487 
4488 static const TypeInfo spapr_machine_info = {
4489     .name          = TYPE_SPAPR_MACHINE,
4490     .parent        = TYPE_MACHINE,
4491     .abstract      = true,
4492     .instance_size = sizeof(SpaprMachineState),
4493     .instance_init = spapr_instance_init,
4494     .instance_finalize = spapr_machine_finalizefn,
4495     .class_size    = sizeof(SpaprMachineClass),
4496     .class_init    = spapr_machine_class_init,
4497     .interfaces = (InterfaceInfo[]) {
4498         { TYPE_FW_PATH_PROVIDER },
4499         { TYPE_NMI },
4500         { TYPE_HOTPLUG_HANDLER },
4501         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4502         { TYPE_XICS_FABRIC },
4503         { TYPE_INTERRUPT_STATS_PROVIDER },
4504         { }
4505     },
4506 };
4507 
4508 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4509     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4510                                                     void *data)      \
4511     {                                                                \
4512         MachineClass *mc = MACHINE_CLASS(oc);                        \
4513         spapr_machine_##suffix##_class_options(mc);                  \
4514         if (latest) {                                                \
4515             mc->alias = "pseries";                                   \
4516             mc->is_default = 1;                                      \
4517         }                                                            \
4518     }                                                                \
4519     static const TypeInfo spapr_machine_##suffix##_info = {          \
4520         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4521         .parent = TYPE_SPAPR_MACHINE,                                \
4522         .class_init = spapr_machine_##suffix##_class_init,           \
4523     };                                                               \
4524     static void spapr_machine_register_##suffix(void)                \
4525     {                                                                \
4526         type_register(&spapr_machine_##suffix##_info);               \
4527     }                                                                \
4528     type_init(spapr_machine_register_##suffix)
4529 
4530 /*
4531  * pseries-4.2
4532  */
4533 static void spapr_machine_4_2_class_options(MachineClass *mc)
4534 {
4535     /* Defaults for the latest behaviour inherited from the base class */
4536 }
4537 
4538 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4539 
4540 /*
4541  * pseries-4.1
4542  */
4543 static void spapr_machine_4_1_class_options(MachineClass *mc)
4544 {
4545     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4546     static GlobalProperty compat[] = {
4547         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4548         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4549     };
4550 
4551     spapr_machine_4_2_class_options(mc);
4552     smc->linux_pci_probe = false;
4553     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4554     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4555 }
4556 
4557 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4558 
4559 /*
4560  * pseries-4.0
4561  */
4562 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4563                               uint64_t *buid, hwaddr *pio,
4564                               hwaddr *mmio32, hwaddr *mmio64,
4565                               unsigned n_dma, uint32_t *liobns,
4566                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4567 {
4568     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4569                         nv2gpa, nv2atsd, errp);
4570     *nv2gpa = 0;
4571     *nv2atsd = 0;
4572 }
4573 
4574 static void spapr_machine_4_0_class_options(MachineClass *mc)
4575 {
4576     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4577 
4578     spapr_machine_4_1_class_options(mc);
4579     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4580     smc->phb_placement = phb_placement_4_0;
4581     smc->irq = &spapr_irq_xics;
4582     smc->pre_4_1_migration = true;
4583 }
4584 
4585 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4586 
4587 /*
4588  * pseries-3.1
4589  */
4590 static void spapr_machine_3_1_class_options(MachineClass *mc)
4591 {
4592     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4593 
4594     spapr_machine_4_0_class_options(mc);
4595     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4596 
4597     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4598     smc->update_dt_enabled = false;
4599     smc->dr_phb_enabled = false;
4600     smc->broken_host_serial_model = true;
4601     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4602     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4603     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4604     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4605 }
4606 
4607 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4608 
4609 /*
4610  * pseries-3.0
4611  */
4612 
4613 static void spapr_machine_3_0_class_options(MachineClass *mc)
4614 {
4615     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4616 
4617     spapr_machine_3_1_class_options(mc);
4618     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4619 
4620     smc->legacy_irq_allocation = true;
4621     smc->irq = &spapr_irq_xics_legacy;
4622 }
4623 
4624 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4625 
4626 /*
4627  * pseries-2.12
4628  */
4629 static void spapr_machine_2_12_class_options(MachineClass *mc)
4630 {
4631     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4632     static GlobalProperty compat[] = {
4633         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4634         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4635     };
4636 
4637     spapr_machine_3_0_class_options(mc);
4638     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4639     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4640 
4641     /* We depend on kvm_enabled() to choose a default value for the
4642      * hpt-max-page-size capability. Of course we can't do it here
4643      * because this is too early and the HW accelerator isn't initialzed
4644      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4645      */
4646     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4647 }
4648 
4649 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4650 
4651 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4652 {
4653     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4654 
4655     spapr_machine_2_12_class_options(mc);
4656     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4657     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4658     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4659 }
4660 
4661 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4662 
4663 /*
4664  * pseries-2.11
4665  */
4666 
4667 static void spapr_machine_2_11_class_options(MachineClass *mc)
4668 {
4669     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4670 
4671     spapr_machine_2_12_class_options(mc);
4672     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4673     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4674 }
4675 
4676 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4677 
4678 /*
4679  * pseries-2.10
4680  */
4681 
4682 static void spapr_machine_2_10_class_options(MachineClass *mc)
4683 {
4684     spapr_machine_2_11_class_options(mc);
4685     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4686 }
4687 
4688 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4689 
4690 /*
4691  * pseries-2.9
4692  */
4693 
4694 static void spapr_machine_2_9_class_options(MachineClass *mc)
4695 {
4696     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4697     static GlobalProperty compat[] = {
4698         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4699     };
4700 
4701     spapr_machine_2_10_class_options(mc);
4702     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4703     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4704     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4705     smc->pre_2_10_has_unused_icps = true;
4706     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4707 }
4708 
4709 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4710 
4711 /*
4712  * pseries-2.8
4713  */
4714 
4715 static void spapr_machine_2_8_class_options(MachineClass *mc)
4716 {
4717     static GlobalProperty compat[] = {
4718         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4719     };
4720 
4721     spapr_machine_2_9_class_options(mc);
4722     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4723     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4724     mc->numa_mem_align_shift = 23;
4725 }
4726 
4727 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4728 
4729 /*
4730  * pseries-2.7
4731  */
4732 
4733 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4734                               uint64_t *buid, hwaddr *pio,
4735                               hwaddr *mmio32, hwaddr *mmio64,
4736                               unsigned n_dma, uint32_t *liobns,
4737                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4738 {
4739     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4740     const uint64_t base_buid = 0x800000020000000ULL;
4741     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4742     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4743     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4744     const uint32_t max_index = 255;
4745     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4746 
4747     uint64_t ram_top = MACHINE(spapr)->ram_size;
4748     hwaddr phb0_base, phb_base;
4749     int i;
4750 
4751     /* Do we have device memory? */
4752     if (MACHINE(spapr)->maxram_size > ram_top) {
4753         /* Can't just use maxram_size, because there may be an
4754          * alignment gap between normal and device memory regions
4755          */
4756         ram_top = MACHINE(spapr)->device_memory->base +
4757             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4758     }
4759 
4760     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4761 
4762     if (index > max_index) {
4763         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4764                    max_index);
4765         return;
4766     }
4767 
4768     *buid = base_buid + index;
4769     for (i = 0; i < n_dma; ++i) {
4770         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4771     }
4772 
4773     phb_base = phb0_base + index * phb_spacing;
4774     *pio = phb_base + pio_offset;
4775     *mmio32 = phb_base + mmio_offset;
4776     /*
4777      * We don't set the 64-bit MMIO window, relying on the PHB's
4778      * fallback behaviour of automatically splitting a large "32-bit"
4779      * window into contiguous 32-bit and 64-bit windows
4780      */
4781 
4782     *nv2gpa = 0;
4783     *nv2atsd = 0;
4784 }
4785 
4786 static void spapr_machine_2_7_class_options(MachineClass *mc)
4787 {
4788     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4789     static GlobalProperty compat[] = {
4790         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4791         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4792         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4793         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4794     };
4795 
4796     spapr_machine_2_8_class_options(mc);
4797     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4798     mc->default_machine_opts = "modern-hotplug-events=off";
4799     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4800     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4801     smc->phb_placement = phb_placement_2_7;
4802 }
4803 
4804 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4805 
4806 /*
4807  * pseries-2.6
4808  */
4809 
4810 static void spapr_machine_2_6_class_options(MachineClass *mc)
4811 {
4812     static GlobalProperty compat[] = {
4813         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4814     };
4815 
4816     spapr_machine_2_7_class_options(mc);
4817     mc->has_hotpluggable_cpus = false;
4818     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4819     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4820 }
4821 
4822 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4823 
4824 /*
4825  * pseries-2.5
4826  */
4827 
4828 static void spapr_machine_2_5_class_options(MachineClass *mc)
4829 {
4830     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4831     static GlobalProperty compat[] = {
4832         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4833     };
4834 
4835     spapr_machine_2_6_class_options(mc);
4836     smc->use_ohci_by_default = true;
4837     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4838     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4839 }
4840 
4841 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4842 
4843 /*
4844  * pseries-2.4
4845  */
4846 
4847 static void spapr_machine_2_4_class_options(MachineClass *mc)
4848 {
4849     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4850 
4851     spapr_machine_2_5_class_options(mc);
4852     smc->dr_lmb_enabled = false;
4853     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4854 }
4855 
4856 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4857 
4858 /*
4859  * pseries-2.3
4860  */
4861 
4862 static void spapr_machine_2_3_class_options(MachineClass *mc)
4863 {
4864     static GlobalProperty compat[] = {
4865         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4866     };
4867     spapr_machine_2_4_class_options(mc);
4868     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4869     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4870 }
4871 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4872 
4873 /*
4874  * pseries-2.2
4875  */
4876 
4877 static void spapr_machine_2_2_class_options(MachineClass *mc)
4878 {
4879     static GlobalProperty compat[] = {
4880         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4881     };
4882 
4883     spapr_machine_2_3_class_options(mc);
4884     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4885     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4886     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4887 }
4888 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4889 
4890 /*
4891  * pseries-2.1
4892  */
4893 
4894 static void spapr_machine_2_1_class_options(MachineClass *mc)
4895 {
4896     spapr_machine_2_2_class_options(mc);
4897     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4898 }
4899 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4900 
4901 static void spapr_machine_register_types(void)
4902 {
4903     type_register_static(&spapr_machine_info);
4904 }
4905 
4906 type_init(spapr_machine_register_types)
4907