1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "hw/core/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "qemu/cutils.h" 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 #include "hw/ppc/spapr_tpm_proxy.h" 83 84 #include <libfdt.h> 85 86 /* SLOF memory layout: 87 * 88 * SLOF raw image loaded at 0, copies its romfs right below the flat 89 * device-tree, then position SLOF itself 31M below that 90 * 91 * So we set FW_OVERHEAD to 40MB which should account for all of that 92 * and more 93 * 94 * We load our kernel at 4M, leaving space for SLOF initial image 95 */ 96 #define FDT_MAX_SIZE 0x100000 97 #define RTAS_MAX_SIZE 0x10000 98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 99 #define FW_MAX_SIZE 0x400000 100 #define FW_FILE_NAME "slof.bin" 101 #define FW_OVERHEAD 0x2800000 102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 103 104 #define MIN_RMA_SLOF 128UL 105 106 #define PHANDLE_INTC 0x00001111 107 108 /* These two functions implement the VCPU id numbering: one to compute them 109 * all and one to identify thread 0 of a VCORE. Any change to the first one 110 * is likely to have an impact on the second one, so let's keep them close. 111 */ 112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 113 { 114 MachineState *ms = MACHINE(spapr); 115 unsigned int smp_threads = ms->smp.threads; 116 117 assert(spapr->vsmt); 118 return 119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 120 } 121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 122 PowerPCCPU *cpu) 123 { 124 assert(spapr->vsmt); 125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 126 } 127 128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 129 { 130 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 131 * and newer QEMUs don't even have them. In both cases, we don't want 132 * to send anything on the wire. 133 */ 134 return false; 135 } 136 137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 138 .name = "icp/server", 139 .version_id = 1, 140 .minimum_version_id = 1, 141 .needed = pre_2_10_vmstate_dummy_icp_needed, 142 .fields = (VMStateField[]) { 143 VMSTATE_UNUSED(4), /* uint32_t xirr */ 144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 145 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 146 VMSTATE_END_OF_LIST() 147 }, 148 }; 149 150 static void pre_2_10_vmstate_register_dummy_icp(int i) 151 { 152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 153 (void *)(uintptr_t) i); 154 } 155 156 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 157 { 158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 159 (void *)(uintptr_t) i); 160 } 161 162 int spapr_max_server_number(SpaprMachineState *spapr) 163 { 164 MachineState *ms = MACHINE(spapr); 165 166 assert(spapr->vsmt); 167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 168 } 169 170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 171 int smt_threads) 172 { 173 int i, ret = 0; 174 uint32_t servers_prop[smt_threads]; 175 uint32_t gservers_prop[smt_threads * 2]; 176 int index = spapr_get_vcpu_id(cpu); 177 178 if (cpu->compat_pvr) { 179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 180 if (ret < 0) { 181 return ret; 182 } 183 } 184 185 /* Build interrupt servers and gservers properties */ 186 for (i = 0; i < smt_threads; i++) { 187 servers_prop[i] = cpu_to_be32(index + i); 188 /* Hack, direct the group queues back to cpu 0 */ 189 gservers_prop[i*2] = cpu_to_be32(index + i); 190 gservers_prop[i*2 + 1] = 0; 191 } 192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 193 servers_prop, sizeof(servers_prop)); 194 if (ret < 0) { 195 return ret; 196 } 197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 198 gservers_prop, sizeof(gservers_prop)); 199 200 return ret; 201 } 202 203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 204 { 205 int index = spapr_get_vcpu_id(cpu); 206 uint32_t associativity[] = {cpu_to_be32(0x5), 207 cpu_to_be32(0x0), 208 cpu_to_be32(0x0), 209 cpu_to_be32(0x0), 210 cpu_to_be32(cpu->node_id), 211 cpu_to_be32(index)}; 212 213 /* Advertise NUMA via ibm,associativity */ 214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 215 sizeof(associativity)); 216 } 217 218 /* Populate the "ibm,pa-features" property */ 219 static void spapr_populate_pa_features(SpaprMachineState *spapr, 220 PowerPCCPU *cpu, 221 void *fdt, int offset, 222 bool legacy_guest) 223 { 224 uint8_t pa_features_206[] = { 6, 0, 225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 226 uint8_t pa_features_207[] = { 24, 0, 227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 231 uint8_t pa_features_300[] = { 66, 0, 232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 235 /* 6: DS207 */ 236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 237 /* 16: Vector */ 238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 247 /* 42: PM, 44: PC RA, 46: SC vec'd */ 248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 249 /* 48: SIMD, 50: QP BFP, 52: String */ 250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 251 /* 54: DecFP, 56: DecI, 58: SHA */ 252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 253 /* 60: NM atomic, 62: RNG */ 254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 255 }; 256 uint8_t *pa_features = NULL; 257 size_t pa_size; 258 259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 260 pa_features = pa_features_206; 261 pa_size = sizeof(pa_features_206); 262 } 263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 264 pa_features = pa_features_207; 265 pa_size = sizeof(pa_features_207); 266 } 267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 268 pa_features = pa_features_300; 269 pa_size = sizeof(pa_features_300); 270 } 271 if (!pa_features) { 272 return; 273 } 274 275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 276 /* 277 * Note: we keep CI large pages off by default because a 64K capable 278 * guest provisioned with large pages might otherwise try to map a qemu 279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 280 * even if that qemu runs on a 4k host. 281 * We dd this bit back here if we are confident this is not an issue 282 */ 283 pa_features[3] |= 0x20; 284 } 285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 286 pa_features[24] |= 0x80; /* Transactional memory support */ 287 } 288 if (legacy_guest && pa_size > 40) { 289 /* Workaround for broken kernels that attempt (guest) radix 290 * mode when they can't handle it, if they see the radix bit set 291 * in pa-features. So hide it from them. */ 292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 293 } 294 295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 296 } 297 298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 299 { 300 MachineState *ms = MACHINE(spapr); 301 int ret = 0, offset, cpus_offset; 302 CPUState *cs; 303 char cpu_model[32]; 304 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 305 306 CPU_FOREACH(cs) { 307 PowerPCCPU *cpu = POWERPC_CPU(cs); 308 DeviceClass *dc = DEVICE_GET_CLASS(cs); 309 int index = spapr_get_vcpu_id(cpu); 310 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu)); 311 312 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 313 continue; 314 } 315 316 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 317 318 cpus_offset = fdt_path_offset(fdt, "/cpus"); 319 if (cpus_offset < 0) { 320 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 321 if (cpus_offset < 0) { 322 return cpus_offset; 323 } 324 } 325 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 326 if (offset < 0) { 327 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 328 if (offset < 0) { 329 return offset; 330 } 331 } 332 333 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 334 pft_size_prop, sizeof(pft_size_prop)); 335 if (ret < 0) { 336 return ret; 337 } 338 339 if (nb_numa_nodes > 1) { 340 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 341 if (ret < 0) { 342 return ret; 343 } 344 } 345 346 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 347 if (ret < 0) { 348 return ret; 349 } 350 351 spapr_populate_pa_features(spapr, cpu, fdt, offset, 352 spapr->cas_legacy_guest_workaround); 353 } 354 return ret; 355 } 356 357 static hwaddr spapr_node0_size(MachineState *machine) 358 { 359 if (nb_numa_nodes) { 360 int i; 361 for (i = 0; i < nb_numa_nodes; ++i) { 362 if (numa_info[i].node_mem) { 363 return MIN(pow2floor(numa_info[i].node_mem), 364 machine->ram_size); 365 } 366 } 367 } 368 return machine->ram_size; 369 } 370 371 static void add_str(GString *s, const gchar *s1) 372 { 373 g_string_append_len(s, s1, strlen(s1) + 1); 374 } 375 376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 377 hwaddr size) 378 { 379 uint32_t associativity[] = { 380 cpu_to_be32(0x4), /* length */ 381 cpu_to_be32(0x0), cpu_to_be32(0x0), 382 cpu_to_be32(0x0), cpu_to_be32(nodeid) 383 }; 384 char mem_name[32]; 385 uint64_t mem_reg_property[2]; 386 int off; 387 388 mem_reg_property[0] = cpu_to_be64(start); 389 mem_reg_property[1] = cpu_to_be64(size); 390 391 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 392 off = fdt_add_subnode(fdt, 0, mem_name); 393 _FDT(off); 394 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 395 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 396 sizeof(mem_reg_property)))); 397 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 398 sizeof(associativity)))); 399 return off; 400 } 401 402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 403 { 404 MachineState *machine = MACHINE(spapr); 405 hwaddr mem_start, node_size; 406 int i, nb_nodes = nb_numa_nodes; 407 NodeInfo *nodes = numa_info; 408 NodeInfo ramnode; 409 410 /* No NUMA nodes, assume there is just one node with whole RAM */ 411 if (!nb_numa_nodes) { 412 nb_nodes = 1; 413 ramnode.node_mem = machine->ram_size; 414 nodes = &ramnode; 415 } 416 417 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 418 if (!nodes[i].node_mem) { 419 continue; 420 } 421 if (mem_start >= machine->ram_size) { 422 node_size = 0; 423 } else { 424 node_size = nodes[i].node_mem; 425 if (node_size > machine->ram_size - mem_start) { 426 node_size = machine->ram_size - mem_start; 427 } 428 } 429 if (!mem_start) { 430 /* spapr_machine_init() checks for rma_size <= node0_size 431 * already */ 432 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 433 mem_start += spapr->rma_size; 434 node_size -= spapr->rma_size; 435 } 436 for ( ; node_size; ) { 437 hwaddr sizetmp = pow2floor(node_size); 438 439 /* mem_start != 0 here */ 440 if (ctzl(mem_start) < ctzl(sizetmp)) { 441 sizetmp = 1ULL << ctzl(mem_start); 442 } 443 444 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 445 node_size -= sizetmp; 446 mem_start += sizetmp; 447 } 448 } 449 450 return 0; 451 } 452 453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 454 SpaprMachineState *spapr) 455 { 456 MachineState *ms = MACHINE(spapr); 457 PowerPCCPU *cpu = POWERPC_CPU(cs); 458 CPUPPCState *env = &cpu->env; 459 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 460 int index = spapr_get_vcpu_id(cpu); 461 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 462 0xffffffff, 0xffffffff}; 463 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 464 : SPAPR_TIMEBASE_FREQ; 465 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 466 uint32_t page_sizes_prop[64]; 467 size_t page_sizes_prop_size; 468 unsigned int smp_threads = ms->smp.threads; 469 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 470 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 471 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 472 SpaprDrc *drc; 473 int drc_index; 474 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 475 int i; 476 477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 478 if (drc) { 479 drc_index = spapr_drc_index(drc); 480 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 481 } 482 483 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 484 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 485 486 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 488 env->dcache_line_size))); 489 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 490 env->dcache_line_size))); 491 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 492 env->icache_line_size))); 493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 494 env->icache_line_size))); 495 496 if (pcc->l1_dcache_size) { 497 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 498 pcc->l1_dcache_size))); 499 } else { 500 warn_report("Unknown L1 dcache size for cpu"); 501 } 502 if (pcc->l1_icache_size) { 503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 504 pcc->l1_icache_size))); 505 } else { 506 warn_report("Unknown L1 icache size for cpu"); 507 } 508 509 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 510 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 511 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 513 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 514 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 515 516 if (env->spr_cb[SPR_PURR].oea_read) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 518 } 519 if (env->spr_cb[SPR_SPURR].oea_read) { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 521 } 522 523 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 524 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 525 segs, sizeof(segs)))); 526 } 527 528 /* Advertise VSX (vector extensions) if available 529 * 1 == VMX / Altivec available 530 * 2 == VSX available 531 * 532 * Only CPUs for which we create core types in spapr_cpu_core.c 533 * are possible, and all of those have VMX */ 534 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 536 } else { 537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 538 } 539 540 /* Advertise DFP (Decimal Floating Point) if available 541 * 0 / no property == no DFP 542 * 1 == DFP available */ 543 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 545 } 546 547 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 548 sizeof(page_sizes_prop)); 549 if (page_sizes_prop_size) { 550 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 551 page_sizes_prop, page_sizes_prop_size))); 552 } 553 554 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 555 556 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 557 cs->cpu_index / vcpus_per_socket))); 558 559 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 560 pft_size_prop, sizeof(pft_size_prop)))); 561 562 if (nb_numa_nodes > 1) { 563 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 564 } 565 566 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 567 568 if (pcc->radix_page_info) { 569 for (i = 0; i < pcc->radix_page_info->count; i++) { 570 radix_AP_encodings[i] = 571 cpu_to_be32(pcc->radix_page_info->entries[i]); 572 } 573 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 574 radix_AP_encodings, 575 pcc->radix_page_info->count * 576 sizeof(radix_AP_encodings[0])))); 577 } 578 579 /* 580 * We set this property to let the guest know that it can use the large 581 * decrementer and its width in bits. 582 */ 583 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 584 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 585 pcc->lrg_decr_bits))); 586 } 587 588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 589 { 590 CPUState **rev; 591 CPUState *cs; 592 int n_cpus; 593 int cpus_offset; 594 char *nodename; 595 int i; 596 597 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 598 _FDT(cpus_offset); 599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 600 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 601 602 /* 603 * We walk the CPUs in reverse order to ensure that CPU DT nodes 604 * created by fdt_add_subnode() end up in the right order in FDT 605 * for the guest kernel the enumerate the CPUs correctly. 606 * 607 * The CPU list cannot be traversed in reverse order, so we need 608 * to do extra work. 609 */ 610 n_cpus = 0; 611 rev = NULL; 612 CPU_FOREACH(cs) { 613 rev = g_renew(CPUState *, rev, n_cpus + 1); 614 rev[n_cpus++] = cs; 615 } 616 617 for (i = n_cpus - 1; i >= 0; i--) { 618 CPUState *cs = rev[i]; 619 PowerPCCPU *cpu = POWERPC_CPU(cs); 620 int index = spapr_get_vcpu_id(cpu); 621 DeviceClass *dc = DEVICE_GET_CLASS(cs); 622 int offset; 623 624 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 625 continue; 626 } 627 628 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 629 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 630 g_free(nodename); 631 _FDT(offset); 632 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 633 } 634 635 g_free(rev); 636 } 637 638 static int spapr_rng_populate_dt(void *fdt) 639 { 640 int node; 641 int ret; 642 643 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 644 if (node <= 0) { 645 return -1; 646 } 647 ret = fdt_setprop_string(fdt, node, "device_type", 648 "ibm,platform-facilities"); 649 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 650 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 651 652 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 653 if (node <= 0) { 654 return -1; 655 } 656 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 657 658 return ret ? -1 : 0; 659 } 660 661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 662 { 663 MemoryDeviceInfoList *info; 664 665 for (info = list; info; info = info->next) { 666 MemoryDeviceInfo *value = info->value; 667 668 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 669 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 670 671 if (addr >= pcdimm_info->addr && 672 addr < (pcdimm_info->addr + pcdimm_info->size)) { 673 return pcdimm_info->node; 674 } 675 } 676 } 677 678 return -1; 679 } 680 681 struct sPAPRDrconfCellV2 { 682 uint32_t seq_lmbs; 683 uint64_t base_addr; 684 uint32_t drc_index; 685 uint32_t aa_index; 686 uint32_t flags; 687 } QEMU_PACKED; 688 689 typedef struct DrconfCellQueue { 690 struct sPAPRDrconfCellV2 cell; 691 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 692 } DrconfCellQueue; 693 694 static DrconfCellQueue * 695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 696 uint32_t drc_index, uint32_t aa_index, 697 uint32_t flags) 698 { 699 DrconfCellQueue *elem; 700 701 elem = g_malloc0(sizeof(*elem)); 702 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 703 elem->cell.base_addr = cpu_to_be64(base_addr); 704 elem->cell.drc_index = cpu_to_be32(drc_index); 705 elem->cell.aa_index = cpu_to_be32(aa_index); 706 elem->cell.flags = cpu_to_be32(flags); 707 708 return elem; 709 } 710 711 /* ibm,dynamic-memory-v2 */ 712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 713 int offset, MemoryDeviceInfoList *dimms) 714 { 715 MachineState *machine = MACHINE(spapr); 716 uint8_t *int_buf, *cur_index; 717 int ret; 718 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 719 uint64_t addr, cur_addr, size; 720 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 721 uint64_t mem_end = machine->device_memory->base + 722 memory_region_size(&machine->device_memory->mr); 723 uint32_t node, buf_len, nr_entries = 0; 724 SpaprDrc *drc; 725 DrconfCellQueue *elem, *next; 726 MemoryDeviceInfoList *info; 727 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 728 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 729 730 /* Entry to cover RAM and the gap area */ 731 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 732 SPAPR_LMB_FLAGS_RESERVED | 733 SPAPR_LMB_FLAGS_DRC_INVALID); 734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 735 nr_entries++; 736 737 cur_addr = machine->device_memory->base; 738 for (info = dimms; info; info = info->next) { 739 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 740 741 addr = di->addr; 742 size = di->size; 743 node = di->node; 744 745 /* Entry for hot-pluggable area */ 746 if (cur_addr < addr) { 747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 748 g_assert(drc); 749 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 750 cur_addr, spapr_drc_index(drc), -1, 0); 751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 752 nr_entries++; 753 } 754 755 /* Entry for DIMM */ 756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 757 g_assert(drc); 758 elem = spapr_get_drconf_cell(size / lmb_size, addr, 759 spapr_drc_index(drc), node, 760 SPAPR_LMB_FLAGS_ASSIGNED); 761 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 762 nr_entries++; 763 cur_addr = addr + size; 764 } 765 766 /* Entry for remaining hotpluggable area */ 767 if (cur_addr < mem_end) { 768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 769 g_assert(drc); 770 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 771 cur_addr, spapr_drc_index(drc), -1, 0); 772 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 773 nr_entries++; 774 } 775 776 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 777 int_buf = cur_index = g_malloc0(buf_len); 778 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 779 cur_index += sizeof(nr_entries); 780 781 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 782 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 783 cur_index += sizeof(elem->cell); 784 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 785 g_free(elem); 786 } 787 788 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 789 g_free(int_buf); 790 if (ret < 0) { 791 return -1; 792 } 793 return 0; 794 } 795 796 /* ibm,dynamic-memory */ 797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 798 int offset, MemoryDeviceInfoList *dimms) 799 { 800 MachineState *machine = MACHINE(spapr); 801 int i, ret; 802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 803 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 804 uint32_t nr_lmbs = (machine->device_memory->base + 805 memory_region_size(&machine->device_memory->mr)) / 806 lmb_size; 807 uint32_t *int_buf, *cur_index, buf_len; 808 809 /* 810 * Allocate enough buffer size to fit in ibm,dynamic-memory 811 */ 812 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 813 cur_index = int_buf = g_malloc0(buf_len); 814 int_buf[0] = cpu_to_be32(nr_lmbs); 815 cur_index++; 816 for (i = 0; i < nr_lmbs; i++) { 817 uint64_t addr = i * lmb_size; 818 uint32_t *dynamic_memory = cur_index; 819 820 if (i >= device_lmb_start) { 821 SpaprDrc *drc; 822 823 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 824 g_assert(drc); 825 826 dynamic_memory[0] = cpu_to_be32(addr >> 32); 827 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 828 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 829 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 830 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 831 if (memory_region_present(get_system_memory(), addr)) { 832 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 833 } else { 834 dynamic_memory[5] = cpu_to_be32(0); 835 } 836 } else { 837 /* 838 * LMB information for RMA, boot time RAM and gap b/n RAM and 839 * device memory region -- all these are marked as reserved 840 * and as having no valid DRC. 841 */ 842 dynamic_memory[0] = cpu_to_be32(addr >> 32); 843 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 844 dynamic_memory[2] = cpu_to_be32(0); 845 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 846 dynamic_memory[4] = cpu_to_be32(-1); 847 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 848 SPAPR_LMB_FLAGS_DRC_INVALID); 849 } 850 851 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 852 } 853 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 854 g_free(int_buf); 855 if (ret < 0) { 856 return -1; 857 } 858 return 0; 859 } 860 861 /* 862 * Adds ibm,dynamic-reconfiguration-memory node. 863 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 864 * of this device tree node. 865 */ 866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 867 { 868 MachineState *machine = MACHINE(spapr); 869 int ret, i, offset; 870 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 871 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 872 uint32_t *int_buf, *cur_index, buf_len; 873 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 874 MemoryDeviceInfoList *dimms = NULL; 875 876 /* 877 * Don't create the node if there is no device memory 878 */ 879 if (machine->ram_size == machine->maxram_size) { 880 return 0; 881 } 882 883 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 884 885 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 886 sizeof(prop_lmb_size)); 887 if (ret < 0) { 888 return ret; 889 } 890 891 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 892 if (ret < 0) { 893 return ret; 894 } 895 896 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 897 if (ret < 0) { 898 return ret; 899 } 900 901 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 902 dimms = qmp_memory_device_list(); 903 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 904 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 905 } else { 906 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 907 } 908 qapi_free_MemoryDeviceInfoList(dimms); 909 910 if (ret < 0) { 911 return ret; 912 } 913 914 /* ibm,associativity-lookup-arrays */ 915 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 916 cur_index = int_buf = g_malloc0(buf_len); 917 int_buf[0] = cpu_to_be32(nr_nodes); 918 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 919 cur_index += 2; 920 for (i = 0; i < nr_nodes; i++) { 921 uint32_t associativity[] = { 922 cpu_to_be32(0x0), 923 cpu_to_be32(0x0), 924 cpu_to_be32(0x0), 925 cpu_to_be32(i) 926 }; 927 memcpy(cur_index, associativity, sizeof(associativity)); 928 cur_index += 4; 929 } 930 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 931 (cur_index - int_buf) * sizeof(uint32_t)); 932 g_free(int_buf); 933 934 return ret; 935 } 936 937 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 938 SpaprOptionVector *ov5_updates) 939 { 940 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 941 int ret = 0, offset; 942 943 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 944 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 945 g_assert(smc->dr_lmb_enabled); 946 ret = spapr_populate_drconf_memory(spapr, fdt); 947 if (ret) { 948 goto out; 949 } 950 } 951 952 offset = fdt_path_offset(fdt, "/chosen"); 953 if (offset < 0) { 954 offset = fdt_add_subnode(fdt, 0, "chosen"); 955 if (offset < 0) { 956 return offset; 957 } 958 } 959 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 960 "ibm,architecture-vec-5"); 961 962 out: 963 return ret; 964 } 965 966 static bool spapr_hotplugged_dev_before_cas(void) 967 { 968 Object *drc_container, *obj; 969 ObjectProperty *prop; 970 ObjectPropertyIterator iter; 971 972 drc_container = container_get(object_get_root(), "/dr-connector"); 973 object_property_iter_init(&iter, drc_container); 974 while ((prop = object_property_iter_next(&iter))) { 975 if (!strstart(prop->type, "link<", NULL)) { 976 continue; 977 } 978 obj = object_property_get_link(drc_container, prop->name, NULL); 979 if (spapr_drc_needed(obj)) { 980 return true; 981 } 982 } 983 return false; 984 } 985 986 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 987 target_ulong addr, target_ulong size, 988 SpaprOptionVector *ov5_updates) 989 { 990 void *fdt, *fdt_skel; 991 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 992 993 if (spapr_hotplugged_dev_before_cas()) { 994 return 1; 995 } 996 997 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 998 error_report("SLOF provided an unexpected CAS buffer size " 999 TARGET_FMT_lu " (min: %zu, max: %u)", 1000 size, sizeof(hdr), FW_MAX_SIZE); 1001 exit(EXIT_FAILURE); 1002 } 1003 1004 size -= sizeof(hdr); 1005 1006 /* Create skeleton */ 1007 fdt_skel = g_malloc0(size); 1008 _FDT((fdt_create(fdt_skel, size))); 1009 _FDT((fdt_finish_reservemap(fdt_skel))); 1010 _FDT((fdt_begin_node(fdt_skel, ""))); 1011 _FDT((fdt_end_node(fdt_skel))); 1012 _FDT((fdt_finish(fdt_skel))); 1013 fdt = g_malloc0(size); 1014 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1015 g_free(fdt_skel); 1016 1017 /* Fixup cpu nodes */ 1018 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1019 1020 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1021 return -1; 1022 } 1023 1024 /* Pack resulting tree */ 1025 _FDT((fdt_pack(fdt))); 1026 1027 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1028 trace_spapr_cas_failed(size); 1029 return -1; 1030 } 1031 1032 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1033 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1034 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1035 g_free(fdt); 1036 1037 return 0; 1038 } 1039 1040 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1041 { 1042 MachineState *ms = MACHINE(spapr); 1043 int rtas; 1044 GString *hypertas = g_string_sized_new(256); 1045 GString *qemu_hypertas = g_string_sized_new(256); 1046 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1047 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1048 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1049 uint32_t lrdr_capacity[] = { 1050 cpu_to_be32(max_device_addr >> 32), 1051 cpu_to_be32(max_device_addr & 0xffffffff), 1052 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1053 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 1054 }; 1055 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1056 uint32_t maxdomains[] = { 1057 cpu_to_be32(4), 1058 maxdomain, 1059 maxdomain, 1060 maxdomain, 1061 cpu_to_be32(spapr->gpu_numa_id), 1062 }; 1063 1064 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1065 1066 /* hypertas */ 1067 add_str(hypertas, "hcall-pft"); 1068 add_str(hypertas, "hcall-term"); 1069 add_str(hypertas, "hcall-dabr"); 1070 add_str(hypertas, "hcall-interrupt"); 1071 add_str(hypertas, "hcall-tce"); 1072 add_str(hypertas, "hcall-vio"); 1073 add_str(hypertas, "hcall-splpar"); 1074 add_str(hypertas, "hcall-join"); 1075 add_str(hypertas, "hcall-bulk"); 1076 add_str(hypertas, "hcall-set-mode"); 1077 add_str(hypertas, "hcall-sprg0"); 1078 add_str(hypertas, "hcall-copy"); 1079 add_str(hypertas, "hcall-debug"); 1080 add_str(hypertas, "hcall-vphn"); 1081 add_str(qemu_hypertas, "hcall-memop1"); 1082 1083 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1084 add_str(hypertas, "hcall-multi-tce"); 1085 } 1086 1087 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1088 add_str(hypertas, "hcall-hpt-resize"); 1089 } 1090 1091 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1092 hypertas->str, hypertas->len)); 1093 g_string_free(hypertas, TRUE); 1094 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1095 qemu_hypertas->str, qemu_hypertas->len)); 1096 g_string_free(qemu_hypertas, TRUE); 1097 1098 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1099 refpoints, sizeof(refpoints))); 1100 1101 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1102 maxdomains, sizeof(maxdomains))); 1103 1104 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1105 RTAS_ERROR_LOG_MAX)); 1106 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1107 RTAS_EVENT_SCAN_RATE)); 1108 1109 g_assert(msi_nonbroken); 1110 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1111 1112 /* 1113 * According to PAPR, rtas ibm,os-term does not guarantee a return 1114 * back to the guest cpu. 1115 * 1116 * While an additional ibm,extended-os-term property indicates 1117 * that rtas call return will always occur. Set this property. 1118 */ 1119 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1120 1121 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1122 lrdr_capacity, sizeof(lrdr_capacity))); 1123 1124 spapr_dt_rtas_tokens(fdt, rtas); 1125 } 1126 1127 /* 1128 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1129 * and the XIVE features that the guest may request and thus the valid 1130 * values for bytes 23..26 of option vector 5: 1131 */ 1132 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1133 int chosen) 1134 { 1135 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1136 1137 char val[2 * 4] = { 1138 23, spapr->irq->ov5, /* Xive mode. */ 1139 24, 0x00, /* Hash/Radix, filled in below. */ 1140 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1141 26, 0x40, /* Radix options: GTSE == yes. */ 1142 }; 1143 1144 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1145 first_ppc_cpu->compat_pvr)) { 1146 /* 1147 * If we're in a pre POWER9 compat mode then the guest should 1148 * do hash and use the legacy interrupt mode 1149 */ 1150 val[1] = 0x00; /* XICS */ 1151 val[3] = 0x00; /* Hash */ 1152 } else if (kvm_enabled()) { 1153 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1154 val[3] = 0x80; /* OV5_MMU_BOTH */ 1155 } else if (kvmppc_has_cap_mmu_radix()) { 1156 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1157 } else { 1158 val[3] = 0x00; /* Hash */ 1159 } 1160 } else { 1161 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1162 val[3] = 0xC0; 1163 } 1164 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1165 val, sizeof(val))); 1166 } 1167 1168 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1169 { 1170 MachineState *machine = MACHINE(spapr); 1171 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1172 int chosen; 1173 const char *boot_device = machine->boot_order; 1174 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1175 size_t cb = 0; 1176 char *bootlist = get_boot_devices_list(&cb); 1177 1178 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1179 1180 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1181 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1182 spapr->initrd_base)); 1183 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1184 spapr->initrd_base + spapr->initrd_size)); 1185 1186 if (spapr->kernel_size) { 1187 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1188 cpu_to_be64(spapr->kernel_size) }; 1189 1190 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1191 &kprop, sizeof(kprop))); 1192 if (spapr->kernel_le) { 1193 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1194 } 1195 } 1196 if (boot_menu) { 1197 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1198 } 1199 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1200 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1201 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1202 1203 if (cb && bootlist) { 1204 int i; 1205 1206 for (i = 0; i < cb; i++) { 1207 if (bootlist[i] == '\n') { 1208 bootlist[i] = ' '; 1209 } 1210 } 1211 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1212 } 1213 1214 if (boot_device && strlen(boot_device)) { 1215 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1216 } 1217 1218 if (!spapr->has_graphics && stdout_path) { 1219 /* 1220 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1221 * kernel. New platforms should only use the "stdout-path" property. Set 1222 * the new property and continue using older property to remain 1223 * compatible with the existing firmware. 1224 */ 1225 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1226 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1227 } 1228 1229 /* We can deal with BAR reallocation just fine, advertise it to the guest */ 1230 if (smc->linux_pci_probe) { 1231 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1232 } 1233 1234 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1235 1236 g_free(stdout_path); 1237 g_free(bootlist); 1238 } 1239 1240 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1241 { 1242 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1243 * KVM to work under pHyp with some guest co-operation */ 1244 int hypervisor; 1245 uint8_t hypercall[16]; 1246 1247 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1248 /* indicate KVM hypercall interface */ 1249 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1250 if (kvmppc_has_cap_fixup_hcalls()) { 1251 /* 1252 * Older KVM versions with older guest kernels were broken 1253 * with the magic page, don't allow the guest to map it. 1254 */ 1255 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1256 sizeof(hypercall))) { 1257 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1258 hypercall, sizeof(hypercall))); 1259 } 1260 } 1261 } 1262 1263 static void *spapr_build_fdt(SpaprMachineState *spapr) 1264 { 1265 MachineState *machine = MACHINE(spapr); 1266 MachineClass *mc = MACHINE_GET_CLASS(machine); 1267 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1268 int ret; 1269 void *fdt; 1270 SpaprPhbState *phb; 1271 char *buf; 1272 1273 fdt = g_malloc0(FDT_MAX_SIZE); 1274 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1275 1276 /* Root node */ 1277 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1278 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1279 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1280 1281 /* Guest UUID & Name*/ 1282 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1283 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1284 if (qemu_uuid_set) { 1285 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1286 } 1287 g_free(buf); 1288 1289 if (qemu_get_vm_name()) { 1290 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1291 qemu_get_vm_name())); 1292 } 1293 1294 /* Host Model & Serial Number */ 1295 if (spapr->host_model) { 1296 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1297 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1298 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1299 g_free(buf); 1300 } 1301 1302 if (spapr->host_serial) { 1303 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1304 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1305 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1306 g_free(buf); 1307 } 1308 1309 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1310 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1311 1312 /* /interrupt controller */ 1313 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1314 PHANDLE_INTC); 1315 1316 ret = spapr_populate_memory(spapr, fdt); 1317 if (ret < 0) { 1318 error_report("couldn't setup memory nodes in fdt"); 1319 exit(1); 1320 } 1321 1322 /* /vdevice */ 1323 spapr_dt_vdevice(spapr->vio_bus, fdt); 1324 1325 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1326 ret = spapr_rng_populate_dt(fdt); 1327 if (ret < 0) { 1328 error_report("could not set up rng device in the fdt"); 1329 exit(1); 1330 } 1331 } 1332 1333 QLIST_FOREACH(phb, &spapr->phbs, list) { 1334 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1335 if (ret < 0) { 1336 error_report("couldn't setup PCI devices in fdt"); 1337 exit(1); 1338 } 1339 } 1340 1341 /* cpus */ 1342 spapr_populate_cpus_dt_node(fdt, spapr); 1343 1344 if (smc->dr_lmb_enabled) { 1345 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1346 } 1347 1348 if (mc->has_hotpluggable_cpus) { 1349 int offset = fdt_path_offset(fdt, "/cpus"); 1350 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1351 if (ret < 0) { 1352 error_report("Couldn't set up CPU DR device tree properties"); 1353 exit(1); 1354 } 1355 } 1356 1357 /* /event-sources */ 1358 spapr_dt_events(spapr, fdt); 1359 1360 /* /rtas */ 1361 spapr_dt_rtas(spapr, fdt); 1362 1363 /* /chosen */ 1364 spapr_dt_chosen(spapr, fdt); 1365 1366 /* /hypervisor */ 1367 if (kvm_enabled()) { 1368 spapr_dt_hypervisor(spapr, fdt); 1369 } 1370 1371 /* Build memory reserve map */ 1372 if (spapr->kernel_size) { 1373 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1374 } 1375 if (spapr->initrd_size) { 1376 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1377 } 1378 1379 /* ibm,client-architecture-support updates */ 1380 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1381 if (ret < 0) { 1382 error_report("couldn't setup CAS properties fdt"); 1383 exit(1); 1384 } 1385 1386 if (smc->dr_phb_enabled) { 1387 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1388 if (ret < 0) { 1389 error_report("Couldn't set up PHB DR device tree properties"); 1390 exit(1); 1391 } 1392 } 1393 1394 return fdt; 1395 } 1396 1397 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1398 { 1399 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1400 } 1401 1402 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1403 PowerPCCPU *cpu) 1404 { 1405 CPUPPCState *env = &cpu->env; 1406 1407 /* The TCG path should also be holding the BQL at this point */ 1408 g_assert(qemu_mutex_iothread_locked()); 1409 1410 if (msr_pr) { 1411 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1412 env->gpr[3] = H_PRIVILEGE; 1413 } else { 1414 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1415 } 1416 } 1417 1418 struct LPCRSyncState { 1419 target_ulong value; 1420 target_ulong mask; 1421 }; 1422 1423 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1424 { 1425 struct LPCRSyncState *s = arg.host_ptr; 1426 PowerPCCPU *cpu = POWERPC_CPU(cs); 1427 CPUPPCState *env = &cpu->env; 1428 target_ulong lpcr; 1429 1430 cpu_synchronize_state(cs); 1431 lpcr = env->spr[SPR_LPCR]; 1432 lpcr &= ~s->mask; 1433 lpcr |= s->value; 1434 ppc_store_lpcr(cpu, lpcr); 1435 } 1436 1437 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1438 { 1439 CPUState *cs; 1440 struct LPCRSyncState s = { 1441 .value = value, 1442 .mask = mask 1443 }; 1444 CPU_FOREACH(cs) { 1445 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1446 } 1447 } 1448 1449 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1450 { 1451 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1452 1453 /* Copy PATE1:GR into PATE0:HR */ 1454 entry->dw0 = spapr->patb_entry & PATE0_HR; 1455 entry->dw1 = spapr->patb_entry; 1456 } 1457 1458 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1459 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1460 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1461 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1462 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1463 1464 /* 1465 * Get the fd to access the kernel htab, re-opening it if necessary 1466 */ 1467 static int get_htab_fd(SpaprMachineState *spapr) 1468 { 1469 Error *local_err = NULL; 1470 1471 if (spapr->htab_fd >= 0) { 1472 return spapr->htab_fd; 1473 } 1474 1475 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1476 if (spapr->htab_fd < 0) { 1477 error_report_err(local_err); 1478 } 1479 1480 return spapr->htab_fd; 1481 } 1482 1483 void close_htab_fd(SpaprMachineState *spapr) 1484 { 1485 if (spapr->htab_fd >= 0) { 1486 close(spapr->htab_fd); 1487 } 1488 spapr->htab_fd = -1; 1489 } 1490 1491 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1492 { 1493 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1494 1495 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1496 } 1497 1498 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1499 { 1500 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1501 1502 assert(kvm_enabled()); 1503 1504 if (!spapr->htab) { 1505 return 0; 1506 } 1507 1508 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1509 } 1510 1511 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1512 hwaddr ptex, int n) 1513 { 1514 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1515 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1516 1517 if (!spapr->htab) { 1518 /* 1519 * HTAB is controlled by KVM. Fetch into temporary buffer 1520 */ 1521 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1522 kvmppc_read_hptes(hptes, ptex, n); 1523 return hptes; 1524 } 1525 1526 /* 1527 * HTAB is controlled by QEMU. Just point to the internally 1528 * accessible PTEG. 1529 */ 1530 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1531 } 1532 1533 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1534 const ppc_hash_pte64_t *hptes, 1535 hwaddr ptex, int n) 1536 { 1537 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1538 1539 if (!spapr->htab) { 1540 g_free((void *)hptes); 1541 } 1542 1543 /* Nothing to do for qemu managed HPT */ 1544 } 1545 1546 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1547 uint64_t pte0, uint64_t pte1) 1548 { 1549 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1550 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1551 1552 if (!spapr->htab) { 1553 kvmppc_write_hpte(ptex, pte0, pte1); 1554 } else { 1555 if (pte0 & HPTE64_V_VALID) { 1556 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1557 /* 1558 * When setting valid, we write PTE1 first. This ensures 1559 * proper synchronization with the reading code in 1560 * ppc_hash64_pteg_search() 1561 */ 1562 smp_wmb(); 1563 stq_p(spapr->htab + offset, pte0); 1564 } else { 1565 stq_p(spapr->htab + offset, pte0); 1566 /* 1567 * When clearing it we set PTE0 first. This ensures proper 1568 * synchronization with the reading code in 1569 * ppc_hash64_pteg_search() 1570 */ 1571 smp_wmb(); 1572 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1573 } 1574 } 1575 } 1576 1577 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1578 uint64_t pte1) 1579 { 1580 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1581 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1582 1583 if (!spapr->htab) { 1584 /* There should always be a hash table when this is called */ 1585 error_report("spapr_hpte_set_c called with no hash table !"); 1586 return; 1587 } 1588 1589 /* The HW performs a non-atomic byte update */ 1590 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1591 } 1592 1593 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1594 uint64_t pte1) 1595 { 1596 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1597 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1598 1599 if (!spapr->htab) { 1600 /* There should always be a hash table when this is called */ 1601 error_report("spapr_hpte_set_r called with no hash table !"); 1602 return; 1603 } 1604 1605 /* The HW performs a non-atomic byte update */ 1606 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1607 } 1608 1609 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1610 { 1611 int shift; 1612 1613 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1614 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1615 * that's much more than is needed for Linux guests */ 1616 shift = ctz64(pow2ceil(ramsize)) - 7; 1617 shift = MAX(shift, 18); /* Minimum architected size */ 1618 shift = MIN(shift, 46); /* Maximum architected size */ 1619 return shift; 1620 } 1621 1622 void spapr_free_hpt(SpaprMachineState *spapr) 1623 { 1624 g_free(spapr->htab); 1625 spapr->htab = NULL; 1626 spapr->htab_shift = 0; 1627 close_htab_fd(spapr); 1628 } 1629 1630 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1631 Error **errp) 1632 { 1633 long rc; 1634 1635 /* Clean up any HPT info from a previous boot */ 1636 spapr_free_hpt(spapr); 1637 1638 rc = kvmppc_reset_htab(shift); 1639 if (rc < 0) { 1640 /* kernel-side HPT needed, but couldn't allocate one */ 1641 error_setg_errno(errp, errno, 1642 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1643 shift); 1644 /* This is almost certainly fatal, but if the caller really 1645 * wants to carry on with shift == 0, it's welcome to try */ 1646 } else if (rc > 0) { 1647 /* kernel-side HPT allocated */ 1648 if (rc != shift) { 1649 error_setg(errp, 1650 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1651 shift, rc); 1652 } 1653 1654 spapr->htab_shift = shift; 1655 spapr->htab = NULL; 1656 } else { 1657 /* kernel-side HPT not needed, allocate in userspace instead */ 1658 size_t size = 1ULL << shift; 1659 int i; 1660 1661 spapr->htab = qemu_memalign(size, size); 1662 if (!spapr->htab) { 1663 error_setg_errno(errp, errno, 1664 "Could not allocate HPT of order %d", shift); 1665 return; 1666 } 1667 1668 memset(spapr->htab, 0, size); 1669 spapr->htab_shift = shift; 1670 1671 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1672 DIRTY_HPTE(HPTE(spapr->htab, i)); 1673 } 1674 } 1675 /* We're setting up a hash table, so that means we're not radix */ 1676 spapr->patb_entry = 0; 1677 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1678 } 1679 1680 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1681 { 1682 int hpt_shift; 1683 1684 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1685 || (spapr->cas_reboot 1686 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1687 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1688 } else { 1689 uint64_t current_ram_size; 1690 1691 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1692 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1693 } 1694 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1695 1696 if (spapr->vrma_adjust) { 1697 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1698 spapr->htab_shift); 1699 } 1700 } 1701 1702 static int spapr_reset_drcs(Object *child, void *opaque) 1703 { 1704 SpaprDrc *drc = 1705 (SpaprDrc *) object_dynamic_cast(child, 1706 TYPE_SPAPR_DR_CONNECTOR); 1707 1708 if (drc) { 1709 spapr_drc_reset(drc); 1710 } 1711 1712 return 0; 1713 } 1714 1715 static void spapr_machine_reset(MachineState *machine) 1716 { 1717 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1718 PowerPCCPU *first_ppc_cpu; 1719 uint32_t rtas_limit; 1720 hwaddr rtas_addr, fdt_addr; 1721 void *fdt; 1722 int rc; 1723 1724 spapr_caps_apply(spapr); 1725 1726 first_ppc_cpu = POWERPC_CPU(first_cpu); 1727 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1728 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1729 spapr->max_compat_pvr)) { 1730 /* 1731 * If using KVM with radix mode available, VCPUs can be started 1732 * without a HPT because KVM will start them in radix mode. 1733 * Set the GR bit in PATE so that we know there is no HPT. 1734 */ 1735 spapr->patb_entry = PATE1_GR; 1736 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1737 } else { 1738 spapr_setup_hpt_and_vrma(spapr); 1739 } 1740 1741 /* 1742 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1743 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1744 * called from vPHB reset handler so we initialize the counter here. 1745 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1746 * must be equally distant from any other node. 1747 * The final value of spapr->gpu_numa_id is going to be written to 1748 * max-associativity-domains in spapr_build_fdt(). 1749 */ 1750 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1751 qemu_devices_reset(); 1752 1753 /* 1754 * If this reset wasn't generated by CAS, we should reset our 1755 * negotiated options and start from scratch 1756 */ 1757 if (!spapr->cas_reboot) { 1758 spapr_ovec_cleanup(spapr->ov5_cas); 1759 spapr->ov5_cas = spapr_ovec_new(); 1760 1761 /* 1762 * reset compat_pvr for all CPUs 1763 * as qemu_devices_reset() is called before this, 1764 * it can't be propagated by spapr_cpu_reset() 1765 * from the first CPU to all the others 1766 */ 1767 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1768 } 1769 1770 /* 1771 * This is fixing some of the default configuration of the XIVE 1772 * devices. To be called after the reset of the machine devices. 1773 */ 1774 spapr_irq_reset(spapr, &error_fatal); 1775 1776 /* 1777 * There is no CAS under qtest. Simulate one to please the code that 1778 * depends on spapr->ov5_cas. This is especially needed to test device 1779 * unplug, so we do that before resetting the DRCs. 1780 */ 1781 if (qtest_enabled()) { 1782 spapr_ovec_cleanup(spapr->ov5_cas); 1783 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1784 } 1785 1786 /* DRC reset may cause a device to be unplugged. This will cause troubles 1787 * if this device is used by another device (eg, a running vhost backend 1788 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1789 * situations, we reset DRCs after all devices have been reset. 1790 */ 1791 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1792 1793 spapr_clear_pending_events(spapr); 1794 1795 /* 1796 * We place the device tree and RTAS just below either the top of the RMA, 1797 * or just below 2GB, whichever is lower, so that it can be 1798 * processed with 32-bit real mode code if necessary 1799 */ 1800 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1801 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1802 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1803 1804 fdt = spapr_build_fdt(spapr); 1805 1806 spapr_load_rtas(spapr, fdt, rtas_addr); 1807 1808 rc = fdt_pack(fdt); 1809 1810 /* Should only fail if we've built a corrupted tree */ 1811 assert(rc == 0); 1812 1813 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1814 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1815 fdt_totalsize(fdt), FDT_MAX_SIZE); 1816 exit(1); 1817 } 1818 1819 /* Load the fdt */ 1820 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1821 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1822 g_free(spapr->fdt_blob); 1823 spapr->fdt_size = fdt_totalsize(fdt); 1824 spapr->fdt_initial_size = spapr->fdt_size; 1825 spapr->fdt_blob = fdt; 1826 1827 /* Set up the entry state */ 1828 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1829 first_ppc_cpu->env.gpr[5] = 0; 1830 1831 spapr->cas_reboot = false; 1832 } 1833 1834 static void spapr_create_nvram(SpaprMachineState *spapr) 1835 { 1836 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1837 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1838 1839 if (dinfo) { 1840 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1841 &error_fatal); 1842 } 1843 1844 qdev_init_nofail(dev); 1845 1846 spapr->nvram = (struct SpaprNvram *)dev; 1847 } 1848 1849 static void spapr_rtc_create(SpaprMachineState *spapr) 1850 { 1851 object_initialize_child(OBJECT(spapr), "rtc", 1852 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1853 &error_fatal, NULL); 1854 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1855 &error_fatal); 1856 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1857 "date", &error_fatal); 1858 } 1859 1860 /* Returns whether we want to use VGA or not */ 1861 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1862 { 1863 switch (vga_interface_type) { 1864 case VGA_NONE: 1865 return false; 1866 case VGA_DEVICE: 1867 return true; 1868 case VGA_STD: 1869 case VGA_VIRTIO: 1870 case VGA_CIRRUS: 1871 return pci_vga_init(pci_bus) != NULL; 1872 default: 1873 error_setg(errp, 1874 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1875 return false; 1876 } 1877 } 1878 1879 static int spapr_pre_load(void *opaque) 1880 { 1881 int rc; 1882 1883 rc = spapr_caps_pre_load(opaque); 1884 if (rc) { 1885 return rc; 1886 } 1887 1888 return 0; 1889 } 1890 1891 static int spapr_post_load(void *opaque, int version_id) 1892 { 1893 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1894 int err = 0; 1895 1896 err = spapr_caps_post_migration(spapr); 1897 if (err) { 1898 return err; 1899 } 1900 1901 /* 1902 * In earlier versions, there was no separate qdev for the PAPR 1903 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1904 * So when migrating from those versions, poke the incoming offset 1905 * value into the RTC device 1906 */ 1907 if (version_id < 3) { 1908 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1909 if (err) { 1910 return err; 1911 } 1912 } 1913 1914 if (kvm_enabled() && spapr->patb_entry) { 1915 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1916 bool radix = !!(spapr->patb_entry & PATE1_GR); 1917 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1918 1919 /* 1920 * Update LPCR:HR and UPRT as they may not be set properly in 1921 * the stream 1922 */ 1923 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1924 LPCR_HR | LPCR_UPRT); 1925 1926 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1927 if (err) { 1928 error_report("Process table config unsupported by the host"); 1929 return -EINVAL; 1930 } 1931 } 1932 1933 err = spapr_irq_post_load(spapr, version_id); 1934 if (err) { 1935 return err; 1936 } 1937 1938 return err; 1939 } 1940 1941 static int spapr_pre_save(void *opaque) 1942 { 1943 int rc; 1944 1945 rc = spapr_caps_pre_save(opaque); 1946 if (rc) { 1947 return rc; 1948 } 1949 1950 return 0; 1951 } 1952 1953 static bool version_before_3(void *opaque, int version_id) 1954 { 1955 return version_id < 3; 1956 } 1957 1958 static bool spapr_pending_events_needed(void *opaque) 1959 { 1960 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1961 return !QTAILQ_EMPTY(&spapr->pending_events); 1962 } 1963 1964 static const VMStateDescription vmstate_spapr_event_entry = { 1965 .name = "spapr_event_log_entry", 1966 .version_id = 1, 1967 .minimum_version_id = 1, 1968 .fields = (VMStateField[]) { 1969 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1970 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1971 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1972 NULL, extended_length), 1973 VMSTATE_END_OF_LIST() 1974 }, 1975 }; 1976 1977 static const VMStateDescription vmstate_spapr_pending_events = { 1978 .name = "spapr_pending_events", 1979 .version_id = 1, 1980 .minimum_version_id = 1, 1981 .needed = spapr_pending_events_needed, 1982 .fields = (VMStateField[]) { 1983 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1984 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1985 VMSTATE_END_OF_LIST() 1986 }, 1987 }; 1988 1989 static bool spapr_ov5_cas_needed(void *opaque) 1990 { 1991 SpaprMachineState *spapr = opaque; 1992 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1993 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1994 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1995 bool cas_needed; 1996 1997 /* Prior to the introduction of SpaprOptionVector, we had two option 1998 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1999 * Both of these options encode machine topology into the device-tree 2000 * in such a way that the now-booted OS should still be able to interact 2001 * appropriately with QEMU regardless of what options were actually 2002 * negotiatied on the source side. 2003 * 2004 * As such, we can avoid migrating the CAS-negotiated options if these 2005 * are the only options available on the current machine/platform. 2006 * Since these are the only options available for pseries-2.7 and 2007 * earlier, this allows us to maintain old->new/new->old migration 2008 * compatibility. 2009 * 2010 * For QEMU 2.8+, there are additional CAS-negotiatable options available 2011 * via default pseries-2.8 machines and explicit command-line parameters. 2012 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 2013 * of the actual CAS-negotiated values to continue working properly. For 2014 * example, availability of memory unplug depends on knowing whether 2015 * OV5_HP_EVT was negotiated via CAS. 2016 * 2017 * Thus, for any cases where the set of available CAS-negotiatable 2018 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2019 * include the CAS-negotiated options in the migration stream, unless 2020 * if they affect boot time behaviour only. 2021 */ 2022 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2023 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2024 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2025 2026 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2027 * the mask itself since in the future it's possible "legacy" bits may be 2028 * removed via machine options, which could generate a false positive 2029 * that breaks migration. 2030 */ 2031 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2032 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2033 2034 spapr_ovec_cleanup(ov5_mask); 2035 spapr_ovec_cleanup(ov5_legacy); 2036 spapr_ovec_cleanup(ov5_removed); 2037 2038 return cas_needed; 2039 } 2040 2041 static const VMStateDescription vmstate_spapr_ov5_cas = { 2042 .name = "spapr_option_vector_ov5_cas", 2043 .version_id = 1, 2044 .minimum_version_id = 1, 2045 .needed = spapr_ov5_cas_needed, 2046 .fields = (VMStateField[]) { 2047 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2048 vmstate_spapr_ovec, SpaprOptionVector), 2049 VMSTATE_END_OF_LIST() 2050 }, 2051 }; 2052 2053 static bool spapr_patb_entry_needed(void *opaque) 2054 { 2055 SpaprMachineState *spapr = opaque; 2056 2057 return !!spapr->patb_entry; 2058 } 2059 2060 static const VMStateDescription vmstate_spapr_patb_entry = { 2061 .name = "spapr_patb_entry", 2062 .version_id = 1, 2063 .minimum_version_id = 1, 2064 .needed = spapr_patb_entry_needed, 2065 .fields = (VMStateField[]) { 2066 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2067 VMSTATE_END_OF_LIST() 2068 }, 2069 }; 2070 2071 static bool spapr_irq_map_needed(void *opaque) 2072 { 2073 SpaprMachineState *spapr = opaque; 2074 2075 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2076 } 2077 2078 static const VMStateDescription vmstate_spapr_irq_map = { 2079 .name = "spapr_irq_map", 2080 .version_id = 1, 2081 .minimum_version_id = 1, 2082 .needed = spapr_irq_map_needed, 2083 .fields = (VMStateField[]) { 2084 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2085 VMSTATE_END_OF_LIST() 2086 }, 2087 }; 2088 2089 static bool spapr_dtb_needed(void *opaque) 2090 { 2091 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2092 2093 return smc->update_dt_enabled; 2094 } 2095 2096 static int spapr_dtb_pre_load(void *opaque) 2097 { 2098 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2099 2100 g_free(spapr->fdt_blob); 2101 spapr->fdt_blob = NULL; 2102 spapr->fdt_size = 0; 2103 2104 return 0; 2105 } 2106 2107 static const VMStateDescription vmstate_spapr_dtb = { 2108 .name = "spapr_dtb", 2109 .version_id = 1, 2110 .minimum_version_id = 1, 2111 .needed = spapr_dtb_needed, 2112 .pre_load = spapr_dtb_pre_load, 2113 .fields = (VMStateField[]) { 2114 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2115 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2116 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2117 fdt_size), 2118 VMSTATE_END_OF_LIST() 2119 }, 2120 }; 2121 2122 static const VMStateDescription vmstate_spapr = { 2123 .name = "spapr", 2124 .version_id = 3, 2125 .minimum_version_id = 1, 2126 .pre_load = spapr_pre_load, 2127 .post_load = spapr_post_load, 2128 .pre_save = spapr_pre_save, 2129 .fields = (VMStateField[]) { 2130 /* used to be @next_irq */ 2131 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2132 2133 /* RTC offset */ 2134 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2135 2136 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2137 VMSTATE_END_OF_LIST() 2138 }, 2139 .subsections = (const VMStateDescription*[]) { 2140 &vmstate_spapr_ov5_cas, 2141 &vmstate_spapr_patb_entry, 2142 &vmstate_spapr_pending_events, 2143 &vmstate_spapr_cap_htm, 2144 &vmstate_spapr_cap_vsx, 2145 &vmstate_spapr_cap_dfp, 2146 &vmstate_spapr_cap_cfpc, 2147 &vmstate_spapr_cap_sbbc, 2148 &vmstate_spapr_cap_ibs, 2149 &vmstate_spapr_cap_hpt_maxpagesize, 2150 &vmstate_spapr_irq_map, 2151 &vmstate_spapr_cap_nested_kvm_hv, 2152 &vmstate_spapr_dtb, 2153 &vmstate_spapr_cap_large_decr, 2154 &vmstate_spapr_cap_ccf_assist, 2155 NULL 2156 } 2157 }; 2158 2159 static int htab_save_setup(QEMUFile *f, void *opaque) 2160 { 2161 SpaprMachineState *spapr = opaque; 2162 2163 /* "Iteration" header */ 2164 if (!spapr->htab_shift) { 2165 qemu_put_be32(f, -1); 2166 } else { 2167 qemu_put_be32(f, spapr->htab_shift); 2168 } 2169 2170 if (spapr->htab) { 2171 spapr->htab_save_index = 0; 2172 spapr->htab_first_pass = true; 2173 } else { 2174 if (spapr->htab_shift) { 2175 assert(kvm_enabled()); 2176 } 2177 } 2178 2179 2180 return 0; 2181 } 2182 2183 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2184 int chunkstart, int n_valid, int n_invalid) 2185 { 2186 qemu_put_be32(f, chunkstart); 2187 qemu_put_be16(f, n_valid); 2188 qemu_put_be16(f, n_invalid); 2189 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2190 HASH_PTE_SIZE_64 * n_valid); 2191 } 2192 2193 static void htab_save_end_marker(QEMUFile *f) 2194 { 2195 qemu_put_be32(f, 0); 2196 qemu_put_be16(f, 0); 2197 qemu_put_be16(f, 0); 2198 } 2199 2200 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2201 int64_t max_ns) 2202 { 2203 bool has_timeout = max_ns != -1; 2204 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2205 int index = spapr->htab_save_index; 2206 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2207 2208 assert(spapr->htab_first_pass); 2209 2210 do { 2211 int chunkstart; 2212 2213 /* Consume invalid HPTEs */ 2214 while ((index < htabslots) 2215 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2216 CLEAN_HPTE(HPTE(spapr->htab, index)); 2217 index++; 2218 } 2219 2220 /* Consume valid HPTEs */ 2221 chunkstart = index; 2222 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2223 && HPTE_VALID(HPTE(spapr->htab, index))) { 2224 CLEAN_HPTE(HPTE(spapr->htab, index)); 2225 index++; 2226 } 2227 2228 if (index > chunkstart) { 2229 int n_valid = index - chunkstart; 2230 2231 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2232 2233 if (has_timeout && 2234 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2235 break; 2236 } 2237 } 2238 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2239 2240 if (index >= htabslots) { 2241 assert(index == htabslots); 2242 index = 0; 2243 spapr->htab_first_pass = false; 2244 } 2245 spapr->htab_save_index = index; 2246 } 2247 2248 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2249 int64_t max_ns) 2250 { 2251 bool final = max_ns < 0; 2252 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2253 int examined = 0, sent = 0; 2254 int index = spapr->htab_save_index; 2255 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2256 2257 assert(!spapr->htab_first_pass); 2258 2259 do { 2260 int chunkstart, invalidstart; 2261 2262 /* Consume non-dirty HPTEs */ 2263 while ((index < htabslots) 2264 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2265 index++; 2266 examined++; 2267 } 2268 2269 chunkstart = index; 2270 /* Consume valid dirty HPTEs */ 2271 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2272 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2273 && HPTE_VALID(HPTE(spapr->htab, index))) { 2274 CLEAN_HPTE(HPTE(spapr->htab, index)); 2275 index++; 2276 examined++; 2277 } 2278 2279 invalidstart = index; 2280 /* Consume invalid dirty HPTEs */ 2281 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2282 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2283 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2284 CLEAN_HPTE(HPTE(spapr->htab, index)); 2285 index++; 2286 examined++; 2287 } 2288 2289 if (index > chunkstart) { 2290 int n_valid = invalidstart - chunkstart; 2291 int n_invalid = index - invalidstart; 2292 2293 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2294 sent += index - chunkstart; 2295 2296 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2297 break; 2298 } 2299 } 2300 2301 if (examined >= htabslots) { 2302 break; 2303 } 2304 2305 if (index >= htabslots) { 2306 assert(index == htabslots); 2307 index = 0; 2308 } 2309 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2310 2311 if (index >= htabslots) { 2312 assert(index == htabslots); 2313 index = 0; 2314 } 2315 2316 spapr->htab_save_index = index; 2317 2318 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2319 } 2320 2321 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2322 #define MAX_KVM_BUF_SIZE 2048 2323 2324 static int htab_save_iterate(QEMUFile *f, void *opaque) 2325 { 2326 SpaprMachineState *spapr = opaque; 2327 int fd; 2328 int rc = 0; 2329 2330 /* Iteration header */ 2331 if (!spapr->htab_shift) { 2332 qemu_put_be32(f, -1); 2333 return 1; 2334 } else { 2335 qemu_put_be32(f, 0); 2336 } 2337 2338 if (!spapr->htab) { 2339 assert(kvm_enabled()); 2340 2341 fd = get_htab_fd(spapr); 2342 if (fd < 0) { 2343 return fd; 2344 } 2345 2346 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2347 if (rc < 0) { 2348 return rc; 2349 } 2350 } else if (spapr->htab_first_pass) { 2351 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2352 } else { 2353 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2354 } 2355 2356 htab_save_end_marker(f); 2357 2358 return rc; 2359 } 2360 2361 static int htab_save_complete(QEMUFile *f, void *opaque) 2362 { 2363 SpaprMachineState *spapr = opaque; 2364 int fd; 2365 2366 /* Iteration header */ 2367 if (!spapr->htab_shift) { 2368 qemu_put_be32(f, -1); 2369 return 0; 2370 } else { 2371 qemu_put_be32(f, 0); 2372 } 2373 2374 if (!spapr->htab) { 2375 int rc; 2376 2377 assert(kvm_enabled()); 2378 2379 fd = get_htab_fd(spapr); 2380 if (fd < 0) { 2381 return fd; 2382 } 2383 2384 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2385 if (rc < 0) { 2386 return rc; 2387 } 2388 } else { 2389 if (spapr->htab_first_pass) { 2390 htab_save_first_pass(f, spapr, -1); 2391 } 2392 htab_save_later_pass(f, spapr, -1); 2393 } 2394 2395 /* End marker */ 2396 htab_save_end_marker(f); 2397 2398 return 0; 2399 } 2400 2401 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2402 { 2403 SpaprMachineState *spapr = opaque; 2404 uint32_t section_hdr; 2405 int fd = -1; 2406 Error *local_err = NULL; 2407 2408 if (version_id < 1 || version_id > 1) { 2409 error_report("htab_load() bad version"); 2410 return -EINVAL; 2411 } 2412 2413 section_hdr = qemu_get_be32(f); 2414 2415 if (section_hdr == -1) { 2416 spapr_free_hpt(spapr); 2417 return 0; 2418 } 2419 2420 if (section_hdr) { 2421 /* First section gives the htab size */ 2422 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2423 if (local_err) { 2424 error_report_err(local_err); 2425 return -EINVAL; 2426 } 2427 return 0; 2428 } 2429 2430 if (!spapr->htab) { 2431 assert(kvm_enabled()); 2432 2433 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2434 if (fd < 0) { 2435 error_report_err(local_err); 2436 return fd; 2437 } 2438 } 2439 2440 while (true) { 2441 uint32_t index; 2442 uint16_t n_valid, n_invalid; 2443 2444 index = qemu_get_be32(f); 2445 n_valid = qemu_get_be16(f); 2446 n_invalid = qemu_get_be16(f); 2447 2448 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2449 /* End of Stream */ 2450 break; 2451 } 2452 2453 if ((index + n_valid + n_invalid) > 2454 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2455 /* Bad index in stream */ 2456 error_report( 2457 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2458 index, n_valid, n_invalid, spapr->htab_shift); 2459 return -EINVAL; 2460 } 2461 2462 if (spapr->htab) { 2463 if (n_valid) { 2464 qemu_get_buffer(f, HPTE(spapr->htab, index), 2465 HASH_PTE_SIZE_64 * n_valid); 2466 } 2467 if (n_invalid) { 2468 memset(HPTE(spapr->htab, index + n_valid), 0, 2469 HASH_PTE_SIZE_64 * n_invalid); 2470 } 2471 } else { 2472 int rc; 2473 2474 assert(fd >= 0); 2475 2476 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2477 if (rc < 0) { 2478 return rc; 2479 } 2480 } 2481 } 2482 2483 if (!spapr->htab) { 2484 assert(fd >= 0); 2485 close(fd); 2486 } 2487 2488 return 0; 2489 } 2490 2491 static void htab_save_cleanup(void *opaque) 2492 { 2493 SpaprMachineState *spapr = opaque; 2494 2495 close_htab_fd(spapr); 2496 } 2497 2498 static SaveVMHandlers savevm_htab_handlers = { 2499 .save_setup = htab_save_setup, 2500 .save_live_iterate = htab_save_iterate, 2501 .save_live_complete_precopy = htab_save_complete, 2502 .save_cleanup = htab_save_cleanup, 2503 .load_state = htab_load, 2504 }; 2505 2506 static void spapr_boot_set(void *opaque, const char *boot_device, 2507 Error **errp) 2508 { 2509 MachineState *machine = MACHINE(opaque); 2510 machine->boot_order = g_strdup(boot_device); 2511 } 2512 2513 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2514 { 2515 MachineState *machine = MACHINE(spapr); 2516 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2517 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2518 int i; 2519 2520 for (i = 0; i < nr_lmbs; i++) { 2521 uint64_t addr; 2522 2523 addr = i * lmb_size + machine->device_memory->base; 2524 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2525 addr / lmb_size); 2526 } 2527 } 2528 2529 /* 2530 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2531 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2532 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2533 */ 2534 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2535 { 2536 int i; 2537 2538 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2539 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2540 " is not aligned to %" PRIu64 " MiB", 2541 machine->ram_size, 2542 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2543 return; 2544 } 2545 2546 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2547 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2548 " is not aligned to %" PRIu64 " MiB", 2549 machine->ram_size, 2550 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2551 return; 2552 } 2553 2554 for (i = 0; i < nb_numa_nodes; i++) { 2555 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2556 error_setg(errp, 2557 "Node %d memory size 0x%" PRIx64 2558 " is not aligned to %" PRIu64 " MiB", 2559 i, numa_info[i].node_mem, 2560 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2561 return; 2562 } 2563 } 2564 } 2565 2566 /* find cpu slot in machine->possible_cpus by core_id */ 2567 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2568 { 2569 int index = id / ms->smp.threads; 2570 2571 if (index >= ms->possible_cpus->len) { 2572 return NULL; 2573 } 2574 if (idx) { 2575 *idx = index; 2576 } 2577 return &ms->possible_cpus->cpus[index]; 2578 } 2579 2580 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2581 { 2582 MachineState *ms = MACHINE(spapr); 2583 Error *local_err = NULL; 2584 bool vsmt_user = !!spapr->vsmt; 2585 int kvm_smt = kvmppc_smt_threads(); 2586 int ret; 2587 unsigned int smp_threads = ms->smp.threads; 2588 2589 if (!kvm_enabled() && (smp_threads > 1)) { 2590 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2591 "on a pseries machine"); 2592 goto out; 2593 } 2594 if (!is_power_of_2(smp_threads)) { 2595 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2596 "machine because it must be a power of 2", smp_threads); 2597 goto out; 2598 } 2599 2600 /* Detemine the VSMT mode to use: */ 2601 if (vsmt_user) { 2602 if (spapr->vsmt < smp_threads) { 2603 error_setg(&local_err, "Cannot support VSMT mode %d" 2604 " because it must be >= threads/core (%d)", 2605 spapr->vsmt, smp_threads); 2606 goto out; 2607 } 2608 /* In this case, spapr->vsmt has been set by the command line */ 2609 } else { 2610 /* 2611 * Default VSMT value is tricky, because we need it to be as 2612 * consistent as possible (for migration), but this requires 2613 * changing it for at least some existing cases. We pick 8 as 2614 * the value that we'd get with KVM on POWER8, the 2615 * overwhelmingly common case in production systems. 2616 */ 2617 spapr->vsmt = MAX(8, smp_threads); 2618 } 2619 2620 /* KVM: If necessary, set the SMT mode: */ 2621 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2622 ret = kvmppc_set_smt_threads(spapr->vsmt); 2623 if (ret) { 2624 /* Looks like KVM isn't able to change VSMT mode */ 2625 error_setg(&local_err, 2626 "Failed to set KVM's VSMT mode to %d (errno %d)", 2627 spapr->vsmt, ret); 2628 /* We can live with that if the default one is big enough 2629 * for the number of threads, and a submultiple of the one 2630 * we want. In this case we'll waste some vcpu ids, but 2631 * behaviour will be correct */ 2632 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2633 warn_report_err(local_err); 2634 local_err = NULL; 2635 goto out; 2636 } else { 2637 if (!vsmt_user) { 2638 error_append_hint(&local_err, 2639 "On PPC, a VM with %d threads/core" 2640 " on a host with %d threads/core" 2641 " requires the use of VSMT mode %d.\n", 2642 smp_threads, kvm_smt, spapr->vsmt); 2643 } 2644 kvmppc_hint_smt_possible(&local_err); 2645 goto out; 2646 } 2647 } 2648 } 2649 /* else TCG: nothing to do currently */ 2650 out: 2651 error_propagate(errp, local_err); 2652 } 2653 2654 static void spapr_init_cpus(SpaprMachineState *spapr) 2655 { 2656 MachineState *machine = MACHINE(spapr); 2657 MachineClass *mc = MACHINE_GET_CLASS(machine); 2658 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2659 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2660 const CPUArchIdList *possible_cpus; 2661 unsigned int smp_cpus = machine->smp.cpus; 2662 unsigned int smp_threads = machine->smp.threads; 2663 unsigned int max_cpus = machine->smp.max_cpus; 2664 int boot_cores_nr = smp_cpus / smp_threads; 2665 int i; 2666 2667 possible_cpus = mc->possible_cpu_arch_ids(machine); 2668 if (mc->has_hotpluggable_cpus) { 2669 if (smp_cpus % smp_threads) { 2670 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2671 smp_cpus, smp_threads); 2672 exit(1); 2673 } 2674 if (max_cpus % smp_threads) { 2675 error_report("max_cpus (%u) must be multiple of threads (%u)", 2676 max_cpus, smp_threads); 2677 exit(1); 2678 } 2679 } else { 2680 if (max_cpus != smp_cpus) { 2681 error_report("This machine version does not support CPU hotplug"); 2682 exit(1); 2683 } 2684 boot_cores_nr = possible_cpus->len; 2685 } 2686 2687 if (smc->pre_2_10_has_unused_icps) { 2688 int i; 2689 2690 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2691 /* Dummy entries get deregistered when real ICPState objects 2692 * are registered during CPU core hotplug. 2693 */ 2694 pre_2_10_vmstate_register_dummy_icp(i); 2695 } 2696 } 2697 2698 for (i = 0; i < possible_cpus->len; i++) { 2699 int core_id = i * smp_threads; 2700 2701 if (mc->has_hotpluggable_cpus) { 2702 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2703 spapr_vcpu_id(spapr, core_id)); 2704 } 2705 2706 if (i < boot_cores_nr) { 2707 Object *core = object_new(type); 2708 int nr_threads = smp_threads; 2709 2710 /* Handle the partially filled core for older machine types */ 2711 if ((i + 1) * smp_threads >= smp_cpus) { 2712 nr_threads = smp_cpus - i * smp_threads; 2713 } 2714 2715 object_property_set_int(core, nr_threads, "nr-threads", 2716 &error_fatal); 2717 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2718 &error_fatal); 2719 object_property_set_bool(core, true, "realized", &error_fatal); 2720 2721 object_unref(core); 2722 } 2723 } 2724 } 2725 2726 static PCIHostState *spapr_create_default_phb(void) 2727 { 2728 DeviceState *dev; 2729 2730 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2731 qdev_prop_set_uint32(dev, "index", 0); 2732 qdev_init_nofail(dev); 2733 2734 return PCI_HOST_BRIDGE(dev); 2735 } 2736 2737 /* pSeries LPAR / sPAPR hardware init */ 2738 static void spapr_machine_init(MachineState *machine) 2739 { 2740 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2741 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2742 const char *kernel_filename = machine->kernel_filename; 2743 const char *initrd_filename = machine->initrd_filename; 2744 PCIHostState *phb; 2745 int i; 2746 MemoryRegion *sysmem = get_system_memory(); 2747 MemoryRegion *ram = g_new(MemoryRegion, 1); 2748 hwaddr node0_size = spapr_node0_size(machine); 2749 long load_limit, fw_size; 2750 char *filename; 2751 Error *resize_hpt_err = NULL; 2752 2753 msi_nonbroken = true; 2754 2755 QLIST_INIT(&spapr->phbs); 2756 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2757 2758 /* Determine capabilities to run with */ 2759 spapr_caps_init(spapr); 2760 2761 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2762 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2763 /* 2764 * If the user explicitly requested a mode we should either 2765 * supply it, or fail completely (which we do below). But if 2766 * it's not set explicitly, we reset our mode to something 2767 * that works 2768 */ 2769 if (resize_hpt_err) { 2770 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2771 error_free(resize_hpt_err); 2772 resize_hpt_err = NULL; 2773 } else { 2774 spapr->resize_hpt = smc->resize_hpt_default; 2775 } 2776 } 2777 2778 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2779 2780 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2781 /* 2782 * User requested HPT resize, but this host can't supply it. Bail out 2783 */ 2784 error_report_err(resize_hpt_err); 2785 exit(1); 2786 } 2787 2788 spapr->rma_size = node0_size; 2789 2790 /* With KVM, we don't actually know whether KVM supports an 2791 * unbounded RMA (PR KVM) or is limited by the hash table size 2792 * (HV KVM using VRMA), so we always assume the latter 2793 * 2794 * In that case, we also limit the initial allocations for RTAS 2795 * etc... to 256M since we have no way to know what the VRMA size 2796 * is going to be as it depends on the size of the hash table 2797 * which isn't determined yet. 2798 */ 2799 if (kvm_enabled()) { 2800 spapr->vrma_adjust = 1; 2801 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2802 } 2803 2804 /* Actually we don't support unbounded RMA anymore since we added 2805 * proper emulation of HV mode. The max we can get is 16G which 2806 * also happens to be what we configure for PAPR mode so make sure 2807 * we don't do anything bigger than that 2808 */ 2809 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2810 2811 if (spapr->rma_size > node0_size) { 2812 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2813 spapr->rma_size); 2814 exit(1); 2815 } 2816 2817 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2818 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2819 2820 /* 2821 * VSMT must be set in order to be able to compute VCPU ids, ie to 2822 * call spapr_max_server_number() or spapr_vcpu_id(). 2823 */ 2824 spapr_set_vsmt_mode(spapr, &error_fatal); 2825 2826 /* Set up Interrupt Controller before we create the VCPUs */ 2827 spapr_irq_init(spapr, &error_fatal); 2828 2829 /* Set up containers for ibm,client-architecture-support negotiated options 2830 */ 2831 spapr->ov5 = spapr_ovec_new(); 2832 spapr->ov5_cas = spapr_ovec_new(); 2833 2834 if (smc->dr_lmb_enabled) { 2835 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2836 spapr_validate_node_memory(machine, &error_fatal); 2837 } 2838 2839 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2840 2841 /* advertise support for dedicated HP event source to guests */ 2842 if (spapr->use_hotplug_event_source) { 2843 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2844 } 2845 2846 /* advertise support for HPT resizing */ 2847 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2848 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2849 } 2850 2851 /* advertise support for ibm,dyamic-memory-v2 */ 2852 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2853 2854 /* advertise XIVE on POWER9 machines */ 2855 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2856 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2857 } 2858 2859 /* init CPUs */ 2860 spapr_init_cpus(spapr); 2861 2862 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2863 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2864 spapr->max_compat_pvr)) { 2865 /* KVM and TCG always allow GTSE with radix... */ 2866 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2867 } 2868 /* ... but not with hash (currently). */ 2869 2870 if (kvm_enabled()) { 2871 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2872 kvmppc_enable_logical_ci_hcalls(); 2873 kvmppc_enable_set_mode_hcall(); 2874 2875 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2876 kvmppc_enable_clear_ref_mod_hcalls(); 2877 2878 /* Enable H_PAGE_INIT */ 2879 kvmppc_enable_h_page_init(); 2880 } 2881 2882 /* allocate RAM */ 2883 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2884 machine->ram_size); 2885 memory_region_add_subregion(sysmem, 0, ram); 2886 2887 /* always allocate the device memory information */ 2888 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2889 2890 /* initialize hotplug memory address space */ 2891 if (machine->ram_size < machine->maxram_size) { 2892 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2893 /* 2894 * Limit the number of hotpluggable memory slots to half the number 2895 * slots that KVM supports, leaving the other half for PCI and other 2896 * devices. However ensure that number of slots doesn't drop below 32. 2897 */ 2898 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2899 SPAPR_MAX_RAM_SLOTS; 2900 2901 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2902 max_memslots = SPAPR_MAX_RAM_SLOTS; 2903 } 2904 if (machine->ram_slots > max_memslots) { 2905 error_report("Specified number of memory slots %" 2906 PRIu64" exceeds max supported %d", 2907 machine->ram_slots, max_memslots); 2908 exit(1); 2909 } 2910 2911 machine->device_memory->base = ROUND_UP(machine->ram_size, 2912 SPAPR_DEVICE_MEM_ALIGN); 2913 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2914 "device-memory", device_mem_size); 2915 memory_region_add_subregion(sysmem, machine->device_memory->base, 2916 &machine->device_memory->mr); 2917 } 2918 2919 if (smc->dr_lmb_enabled) { 2920 spapr_create_lmb_dr_connectors(spapr); 2921 } 2922 2923 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2924 if (!filename) { 2925 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2926 exit(1); 2927 } 2928 spapr->rtas_size = get_image_size(filename); 2929 if (spapr->rtas_size < 0) { 2930 error_report("Could not get size of LPAR rtas '%s'", filename); 2931 exit(1); 2932 } 2933 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2934 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2935 error_report("Could not load LPAR rtas '%s'", filename); 2936 exit(1); 2937 } 2938 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2939 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2940 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2941 exit(1); 2942 } 2943 g_free(filename); 2944 2945 /* Set up RTAS event infrastructure */ 2946 spapr_events_init(spapr); 2947 2948 /* Set up the RTC RTAS interfaces */ 2949 spapr_rtc_create(spapr); 2950 2951 /* Set up VIO bus */ 2952 spapr->vio_bus = spapr_vio_bus_init(); 2953 2954 for (i = 0; i < serial_max_hds(); i++) { 2955 if (serial_hd(i)) { 2956 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2957 } 2958 } 2959 2960 /* We always have at least the nvram device on VIO */ 2961 spapr_create_nvram(spapr); 2962 2963 /* 2964 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2965 * connectors (described in root DT node's "ibm,drc-types" property) 2966 * are pre-initialized here. additional child connectors (such as 2967 * connectors for a PHBs PCI slots) are added as needed during their 2968 * parent's realization. 2969 */ 2970 if (smc->dr_phb_enabled) { 2971 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2972 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2973 } 2974 } 2975 2976 /* Set up PCI */ 2977 spapr_pci_rtas_init(); 2978 2979 phb = spapr_create_default_phb(); 2980 2981 for (i = 0; i < nb_nics; i++) { 2982 NICInfo *nd = &nd_table[i]; 2983 2984 if (!nd->model) { 2985 nd->model = g_strdup("spapr-vlan"); 2986 } 2987 2988 if (g_str_equal(nd->model, "spapr-vlan") || 2989 g_str_equal(nd->model, "ibmveth")) { 2990 spapr_vlan_create(spapr->vio_bus, nd); 2991 } else { 2992 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2993 } 2994 } 2995 2996 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2997 spapr_vscsi_create(spapr->vio_bus); 2998 } 2999 3000 /* Graphics */ 3001 if (spapr_vga_init(phb->bus, &error_fatal)) { 3002 spapr->has_graphics = true; 3003 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3004 } 3005 3006 if (machine->usb) { 3007 if (smc->use_ohci_by_default) { 3008 pci_create_simple(phb->bus, -1, "pci-ohci"); 3009 } else { 3010 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3011 } 3012 3013 if (spapr->has_graphics) { 3014 USBBus *usb_bus = usb_bus_find(-1); 3015 3016 usb_create_simple(usb_bus, "usb-kbd"); 3017 usb_create_simple(usb_bus, "usb-mouse"); 3018 } 3019 } 3020 3021 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 3022 error_report( 3023 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 3024 MIN_RMA_SLOF); 3025 exit(1); 3026 } 3027 3028 if (kernel_filename) { 3029 uint64_t lowaddr = 0; 3030 3031 spapr->kernel_size = load_elf(kernel_filename, NULL, 3032 translate_kernel_address, NULL, 3033 NULL, &lowaddr, NULL, 1, 3034 PPC_ELF_MACHINE, 0, 0); 3035 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3036 spapr->kernel_size = load_elf(kernel_filename, NULL, 3037 translate_kernel_address, NULL, NULL, 3038 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3039 0, 0); 3040 spapr->kernel_le = spapr->kernel_size > 0; 3041 } 3042 if (spapr->kernel_size < 0) { 3043 error_report("error loading %s: %s", kernel_filename, 3044 load_elf_strerror(spapr->kernel_size)); 3045 exit(1); 3046 } 3047 3048 /* load initrd */ 3049 if (initrd_filename) { 3050 /* Try to locate the initrd in the gap between the kernel 3051 * and the firmware. Add a bit of space just in case 3052 */ 3053 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3054 + 0x1ffff) & ~0xffff; 3055 spapr->initrd_size = load_image_targphys(initrd_filename, 3056 spapr->initrd_base, 3057 load_limit 3058 - spapr->initrd_base); 3059 if (spapr->initrd_size < 0) { 3060 error_report("could not load initial ram disk '%s'", 3061 initrd_filename); 3062 exit(1); 3063 } 3064 } 3065 } 3066 3067 if (bios_name == NULL) { 3068 bios_name = FW_FILE_NAME; 3069 } 3070 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3071 if (!filename) { 3072 error_report("Could not find LPAR firmware '%s'", bios_name); 3073 exit(1); 3074 } 3075 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3076 if (fw_size <= 0) { 3077 error_report("Could not load LPAR firmware '%s'", filename); 3078 exit(1); 3079 } 3080 g_free(filename); 3081 3082 /* FIXME: Should register things through the MachineState's qdev 3083 * interface, this is a legacy from the sPAPREnvironment structure 3084 * which predated MachineState but had a similar function */ 3085 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3086 register_savevm_live(NULL, "spapr/htab", -1, 1, 3087 &savevm_htab_handlers, spapr); 3088 3089 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3090 &error_fatal); 3091 3092 qemu_register_boot_set(spapr_boot_set, spapr); 3093 3094 /* 3095 * Nothing needs to be done to resume a suspended guest because 3096 * suspending does not change the machine state, so no need for 3097 * a ->wakeup method. 3098 */ 3099 qemu_register_wakeup_support(); 3100 3101 if (kvm_enabled()) { 3102 /* to stop and start vmclock */ 3103 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3104 &spapr->tb); 3105 3106 kvmppc_spapr_enable_inkernel_multitce(); 3107 } 3108 } 3109 3110 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3111 { 3112 if (!vm_type) { 3113 return 0; 3114 } 3115 3116 if (!strcmp(vm_type, "HV")) { 3117 return 1; 3118 } 3119 3120 if (!strcmp(vm_type, "PR")) { 3121 return 2; 3122 } 3123 3124 error_report("Unknown kvm-type specified '%s'", vm_type); 3125 exit(1); 3126 } 3127 3128 /* 3129 * Implementation of an interface to adjust firmware path 3130 * for the bootindex property handling. 3131 */ 3132 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3133 DeviceState *dev) 3134 { 3135 #define CAST(type, obj, name) \ 3136 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3137 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3138 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3139 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3140 3141 if (d) { 3142 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3143 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3144 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3145 3146 if (spapr) { 3147 /* 3148 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3149 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3150 * 0x8000 | (target << 8) | (bus << 5) | lun 3151 * (see the "Logical unit addressing format" table in SAM5) 3152 */ 3153 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3154 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3155 (uint64_t)id << 48); 3156 } else if (virtio) { 3157 /* 3158 * We use SRP luns of the form 01000000 | (target << 8) | lun 3159 * in the top 32 bits of the 64-bit LUN 3160 * Note: the quote above is from SLOF and it is wrong, 3161 * the actual binding is: 3162 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3163 */ 3164 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3165 if (d->lun >= 256) { 3166 /* Use the LUN "flat space addressing method" */ 3167 id |= 0x4000; 3168 } 3169 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3170 (uint64_t)id << 32); 3171 } else if (usb) { 3172 /* 3173 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3174 * in the top 32 bits of the 64-bit LUN 3175 */ 3176 unsigned usb_port = atoi(usb->port->path); 3177 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3178 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3179 (uint64_t)id << 32); 3180 } 3181 } 3182 3183 /* 3184 * SLOF probes the USB devices, and if it recognizes that the device is a 3185 * storage device, it changes its name to "storage" instead of "usb-host", 3186 * and additionally adds a child node for the SCSI LUN, so the correct 3187 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3188 */ 3189 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3190 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3191 if (usb_host_dev_is_scsi_storage(usbdev)) { 3192 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3193 } 3194 } 3195 3196 if (phb) { 3197 /* Replace "pci" with "pci@800000020000000" */ 3198 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3199 } 3200 3201 if (vsc) { 3202 /* Same logic as virtio above */ 3203 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3204 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3205 } 3206 3207 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3208 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3209 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3210 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3211 } 3212 3213 return NULL; 3214 } 3215 3216 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3217 { 3218 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3219 3220 return g_strdup(spapr->kvm_type); 3221 } 3222 3223 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3224 { 3225 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3226 3227 g_free(spapr->kvm_type); 3228 spapr->kvm_type = g_strdup(value); 3229 } 3230 3231 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3232 { 3233 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3234 3235 return spapr->use_hotplug_event_source; 3236 } 3237 3238 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3239 Error **errp) 3240 { 3241 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3242 3243 spapr->use_hotplug_event_source = value; 3244 } 3245 3246 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3247 { 3248 return true; 3249 } 3250 3251 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3252 { 3253 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3254 3255 switch (spapr->resize_hpt) { 3256 case SPAPR_RESIZE_HPT_DEFAULT: 3257 return g_strdup("default"); 3258 case SPAPR_RESIZE_HPT_DISABLED: 3259 return g_strdup("disabled"); 3260 case SPAPR_RESIZE_HPT_ENABLED: 3261 return g_strdup("enabled"); 3262 case SPAPR_RESIZE_HPT_REQUIRED: 3263 return g_strdup("required"); 3264 } 3265 g_assert_not_reached(); 3266 } 3267 3268 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3269 { 3270 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3271 3272 if (strcmp(value, "default") == 0) { 3273 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3274 } else if (strcmp(value, "disabled") == 0) { 3275 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3276 } else if (strcmp(value, "enabled") == 0) { 3277 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3278 } else if (strcmp(value, "required") == 0) { 3279 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3280 } else { 3281 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3282 } 3283 } 3284 3285 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3286 void *opaque, Error **errp) 3287 { 3288 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3289 } 3290 3291 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3292 void *opaque, Error **errp) 3293 { 3294 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3295 } 3296 3297 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3298 { 3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3300 3301 if (spapr->irq == &spapr_irq_xics_legacy) { 3302 return g_strdup("legacy"); 3303 } else if (spapr->irq == &spapr_irq_xics) { 3304 return g_strdup("xics"); 3305 } else if (spapr->irq == &spapr_irq_xive) { 3306 return g_strdup("xive"); 3307 } else if (spapr->irq == &spapr_irq_dual) { 3308 return g_strdup("dual"); 3309 } 3310 g_assert_not_reached(); 3311 } 3312 3313 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3314 { 3315 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3316 3317 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3318 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3319 return; 3320 } 3321 3322 /* The legacy IRQ backend can not be set */ 3323 if (strcmp(value, "xics") == 0) { 3324 spapr->irq = &spapr_irq_xics; 3325 } else if (strcmp(value, "xive") == 0) { 3326 spapr->irq = &spapr_irq_xive; 3327 } else if (strcmp(value, "dual") == 0) { 3328 spapr->irq = &spapr_irq_dual; 3329 } else { 3330 error_setg(errp, "Bad value for \"ic-mode\" property"); 3331 } 3332 } 3333 3334 static char *spapr_get_host_model(Object *obj, Error **errp) 3335 { 3336 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3337 3338 return g_strdup(spapr->host_model); 3339 } 3340 3341 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3342 { 3343 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3344 3345 g_free(spapr->host_model); 3346 spapr->host_model = g_strdup(value); 3347 } 3348 3349 static char *spapr_get_host_serial(Object *obj, Error **errp) 3350 { 3351 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3352 3353 return g_strdup(spapr->host_serial); 3354 } 3355 3356 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3357 { 3358 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3359 3360 g_free(spapr->host_serial); 3361 spapr->host_serial = g_strdup(value); 3362 } 3363 3364 static void spapr_instance_init(Object *obj) 3365 { 3366 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3367 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3368 3369 spapr->htab_fd = -1; 3370 spapr->use_hotplug_event_source = true; 3371 object_property_add_str(obj, "kvm-type", 3372 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3373 object_property_set_description(obj, "kvm-type", 3374 "Specifies the KVM virtualization mode (HV, PR)", 3375 NULL); 3376 object_property_add_bool(obj, "modern-hotplug-events", 3377 spapr_get_modern_hotplug_events, 3378 spapr_set_modern_hotplug_events, 3379 NULL); 3380 object_property_set_description(obj, "modern-hotplug-events", 3381 "Use dedicated hotplug event mechanism in" 3382 " place of standard EPOW events when possible" 3383 " (required for memory hot-unplug support)", 3384 NULL); 3385 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3386 "Maximum permitted CPU compatibility mode", 3387 &error_fatal); 3388 3389 object_property_add_str(obj, "resize-hpt", 3390 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3391 object_property_set_description(obj, "resize-hpt", 3392 "Resizing of the Hash Page Table (enabled, disabled, required)", 3393 NULL); 3394 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3395 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3396 object_property_set_description(obj, "vsmt", 3397 "Virtual SMT: KVM behaves as if this were" 3398 " the host's SMT mode", &error_abort); 3399 object_property_add_bool(obj, "vfio-no-msix-emulation", 3400 spapr_get_msix_emulation, NULL, NULL); 3401 3402 /* The machine class defines the default interrupt controller mode */ 3403 spapr->irq = smc->irq; 3404 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3405 spapr_set_ic_mode, NULL); 3406 object_property_set_description(obj, "ic-mode", 3407 "Specifies the interrupt controller mode (xics, xive, dual)", 3408 NULL); 3409 3410 object_property_add_str(obj, "host-model", 3411 spapr_get_host_model, spapr_set_host_model, 3412 &error_abort); 3413 object_property_set_description(obj, "host-model", 3414 "Host model to advertise in guest device tree", &error_abort); 3415 object_property_add_str(obj, "host-serial", 3416 spapr_get_host_serial, spapr_set_host_serial, 3417 &error_abort); 3418 object_property_set_description(obj, "host-serial", 3419 "Host serial number to advertise in guest device tree", &error_abort); 3420 } 3421 3422 static void spapr_machine_finalizefn(Object *obj) 3423 { 3424 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3425 3426 g_free(spapr->kvm_type); 3427 } 3428 3429 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3430 { 3431 cpu_synchronize_state(cs); 3432 ppc_cpu_do_system_reset(cs); 3433 } 3434 3435 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3436 { 3437 CPUState *cs; 3438 3439 CPU_FOREACH(cs) { 3440 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3441 } 3442 } 3443 3444 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3445 void *fdt, int *fdt_start_offset, Error **errp) 3446 { 3447 uint64_t addr; 3448 uint32_t node; 3449 3450 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3451 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3452 &error_abort); 3453 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3454 SPAPR_MEMORY_BLOCK_SIZE); 3455 return 0; 3456 } 3457 3458 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3459 bool dedicated_hp_event_source, Error **errp) 3460 { 3461 SpaprDrc *drc; 3462 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3463 int i; 3464 uint64_t addr = addr_start; 3465 bool hotplugged = spapr_drc_hotplugged(dev); 3466 Error *local_err = NULL; 3467 3468 for (i = 0; i < nr_lmbs; i++) { 3469 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3470 addr / SPAPR_MEMORY_BLOCK_SIZE); 3471 g_assert(drc); 3472 3473 spapr_drc_attach(drc, dev, &local_err); 3474 if (local_err) { 3475 while (addr > addr_start) { 3476 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3478 addr / SPAPR_MEMORY_BLOCK_SIZE); 3479 spapr_drc_detach(drc); 3480 } 3481 error_propagate(errp, local_err); 3482 return; 3483 } 3484 if (!hotplugged) { 3485 spapr_drc_reset(drc); 3486 } 3487 addr += SPAPR_MEMORY_BLOCK_SIZE; 3488 } 3489 /* send hotplug notification to the 3490 * guest only in case of hotplugged memory 3491 */ 3492 if (hotplugged) { 3493 if (dedicated_hp_event_source) { 3494 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3495 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3496 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3497 nr_lmbs, 3498 spapr_drc_index(drc)); 3499 } else { 3500 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3501 nr_lmbs); 3502 } 3503 } 3504 } 3505 3506 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3507 Error **errp) 3508 { 3509 Error *local_err = NULL; 3510 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3511 PCDIMMDevice *dimm = PC_DIMM(dev); 3512 uint64_t size, addr; 3513 3514 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3515 3516 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3517 if (local_err) { 3518 goto out; 3519 } 3520 3521 addr = object_property_get_uint(OBJECT(dimm), 3522 PC_DIMM_ADDR_PROP, &local_err); 3523 if (local_err) { 3524 goto out_unplug; 3525 } 3526 3527 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3528 &local_err); 3529 if (local_err) { 3530 goto out_unplug; 3531 } 3532 3533 return; 3534 3535 out_unplug: 3536 pc_dimm_unplug(dimm, MACHINE(ms)); 3537 out: 3538 error_propagate(errp, local_err); 3539 } 3540 3541 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3542 Error **errp) 3543 { 3544 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3545 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3546 PCDIMMDevice *dimm = PC_DIMM(dev); 3547 Error *local_err = NULL; 3548 uint64_t size; 3549 Object *memdev; 3550 hwaddr pagesize; 3551 3552 if (!smc->dr_lmb_enabled) { 3553 error_setg(errp, "Memory hotplug not supported for this machine"); 3554 return; 3555 } 3556 3557 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3558 if (local_err) { 3559 error_propagate(errp, local_err); 3560 return; 3561 } 3562 3563 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3564 error_setg(errp, "Hotplugged memory size must be a multiple of " 3565 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3566 return; 3567 } 3568 3569 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3570 &error_abort); 3571 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3572 spapr_check_pagesize(spapr, pagesize, &local_err); 3573 if (local_err) { 3574 error_propagate(errp, local_err); 3575 return; 3576 } 3577 3578 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3579 } 3580 3581 struct SpaprDimmState { 3582 PCDIMMDevice *dimm; 3583 uint32_t nr_lmbs; 3584 QTAILQ_ENTRY(SpaprDimmState) next; 3585 }; 3586 3587 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3588 PCDIMMDevice *dimm) 3589 { 3590 SpaprDimmState *dimm_state = NULL; 3591 3592 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3593 if (dimm_state->dimm == dimm) { 3594 break; 3595 } 3596 } 3597 return dimm_state; 3598 } 3599 3600 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3601 uint32_t nr_lmbs, 3602 PCDIMMDevice *dimm) 3603 { 3604 SpaprDimmState *ds = NULL; 3605 3606 /* 3607 * If this request is for a DIMM whose removal had failed earlier 3608 * (due to guest's refusal to remove the LMBs), we would have this 3609 * dimm already in the pending_dimm_unplugs list. In that 3610 * case don't add again. 3611 */ 3612 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3613 if (!ds) { 3614 ds = g_malloc0(sizeof(SpaprDimmState)); 3615 ds->nr_lmbs = nr_lmbs; 3616 ds->dimm = dimm; 3617 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3618 } 3619 return ds; 3620 } 3621 3622 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3623 SpaprDimmState *dimm_state) 3624 { 3625 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3626 g_free(dimm_state); 3627 } 3628 3629 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3630 PCDIMMDevice *dimm) 3631 { 3632 SpaprDrc *drc; 3633 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3634 &error_abort); 3635 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3636 uint32_t avail_lmbs = 0; 3637 uint64_t addr_start, addr; 3638 int i; 3639 3640 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3641 &error_abort); 3642 3643 addr = addr_start; 3644 for (i = 0; i < nr_lmbs; i++) { 3645 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3646 addr / SPAPR_MEMORY_BLOCK_SIZE); 3647 g_assert(drc); 3648 if (drc->dev) { 3649 avail_lmbs++; 3650 } 3651 addr += SPAPR_MEMORY_BLOCK_SIZE; 3652 } 3653 3654 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3655 } 3656 3657 /* Callback to be called during DRC release. */ 3658 void spapr_lmb_release(DeviceState *dev) 3659 { 3660 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3661 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3662 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3663 3664 /* This information will get lost if a migration occurs 3665 * during the unplug process. In this case recover it. */ 3666 if (ds == NULL) { 3667 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3668 g_assert(ds); 3669 /* The DRC being examined by the caller at least must be counted */ 3670 g_assert(ds->nr_lmbs); 3671 } 3672 3673 if (--ds->nr_lmbs) { 3674 return; 3675 } 3676 3677 /* 3678 * Now that all the LMBs have been removed by the guest, call the 3679 * unplug handler chain. This can never fail. 3680 */ 3681 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3682 object_unparent(OBJECT(dev)); 3683 } 3684 3685 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3686 { 3687 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3688 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3689 3690 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3691 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3692 spapr_pending_dimm_unplugs_remove(spapr, ds); 3693 } 3694 3695 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3696 DeviceState *dev, Error **errp) 3697 { 3698 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3699 Error *local_err = NULL; 3700 PCDIMMDevice *dimm = PC_DIMM(dev); 3701 uint32_t nr_lmbs; 3702 uint64_t size, addr_start, addr; 3703 int i; 3704 SpaprDrc *drc; 3705 3706 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3707 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3708 3709 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3710 &local_err); 3711 if (local_err) { 3712 goto out; 3713 } 3714 3715 /* 3716 * An existing pending dimm state for this DIMM means that there is an 3717 * unplug operation in progress, waiting for the spapr_lmb_release 3718 * callback to complete the job (BQL can't cover that far). In this case, 3719 * bail out to avoid detaching DRCs that were already released. 3720 */ 3721 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3722 error_setg(&local_err, 3723 "Memory unplug already in progress for device %s", 3724 dev->id); 3725 goto out; 3726 } 3727 3728 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3729 3730 addr = addr_start; 3731 for (i = 0; i < nr_lmbs; i++) { 3732 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3733 addr / SPAPR_MEMORY_BLOCK_SIZE); 3734 g_assert(drc); 3735 3736 spapr_drc_detach(drc); 3737 addr += SPAPR_MEMORY_BLOCK_SIZE; 3738 } 3739 3740 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3741 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3742 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3743 nr_lmbs, spapr_drc_index(drc)); 3744 out: 3745 error_propagate(errp, local_err); 3746 } 3747 3748 /* Callback to be called during DRC release. */ 3749 void spapr_core_release(DeviceState *dev) 3750 { 3751 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3752 3753 /* Call the unplug handler chain. This can never fail. */ 3754 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3755 object_unparent(OBJECT(dev)); 3756 } 3757 3758 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3759 { 3760 MachineState *ms = MACHINE(hotplug_dev); 3761 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3762 CPUCore *cc = CPU_CORE(dev); 3763 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3764 3765 if (smc->pre_2_10_has_unused_icps) { 3766 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3767 int i; 3768 3769 for (i = 0; i < cc->nr_threads; i++) { 3770 CPUState *cs = CPU(sc->threads[i]); 3771 3772 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3773 } 3774 } 3775 3776 assert(core_slot); 3777 core_slot->cpu = NULL; 3778 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3779 } 3780 3781 static 3782 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3783 Error **errp) 3784 { 3785 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3786 int index; 3787 SpaprDrc *drc; 3788 CPUCore *cc = CPU_CORE(dev); 3789 3790 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3791 error_setg(errp, "Unable to find CPU core with core-id: %d", 3792 cc->core_id); 3793 return; 3794 } 3795 if (index == 0) { 3796 error_setg(errp, "Boot CPU core may not be unplugged"); 3797 return; 3798 } 3799 3800 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3801 spapr_vcpu_id(spapr, cc->core_id)); 3802 g_assert(drc); 3803 3804 spapr_drc_detach(drc); 3805 3806 spapr_hotplug_req_remove_by_index(drc); 3807 } 3808 3809 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3810 void *fdt, int *fdt_start_offset, Error **errp) 3811 { 3812 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3813 CPUState *cs = CPU(core->threads[0]); 3814 PowerPCCPU *cpu = POWERPC_CPU(cs); 3815 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3816 int id = spapr_get_vcpu_id(cpu); 3817 char *nodename; 3818 int offset; 3819 3820 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3821 offset = fdt_add_subnode(fdt, 0, nodename); 3822 g_free(nodename); 3823 3824 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3825 3826 *fdt_start_offset = offset; 3827 return 0; 3828 } 3829 3830 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3831 Error **errp) 3832 { 3833 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3834 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3835 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3836 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3837 CPUCore *cc = CPU_CORE(dev); 3838 CPUState *cs; 3839 SpaprDrc *drc; 3840 Error *local_err = NULL; 3841 CPUArchId *core_slot; 3842 int index; 3843 bool hotplugged = spapr_drc_hotplugged(dev); 3844 3845 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3846 if (!core_slot) { 3847 error_setg(errp, "Unable to find CPU core with core-id: %d", 3848 cc->core_id); 3849 return; 3850 } 3851 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3852 spapr_vcpu_id(spapr, cc->core_id)); 3853 3854 g_assert(drc || !mc->has_hotpluggable_cpus); 3855 3856 if (drc) { 3857 spapr_drc_attach(drc, dev, &local_err); 3858 if (local_err) { 3859 error_propagate(errp, local_err); 3860 return; 3861 } 3862 3863 if (hotplugged) { 3864 /* 3865 * Send hotplug notification interrupt to the guest only 3866 * in case of hotplugged CPUs. 3867 */ 3868 spapr_hotplug_req_add_by_index(drc); 3869 } else { 3870 spapr_drc_reset(drc); 3871 } 3872 } 3873 3874 core_slot->cpu = OBJECT(dev); 3875 3876 if (smc->pre_2_10_has_unused_icps) { 3877 int i; 3878 3879 for (i = 0; i < cc->nr_threads; i++) { 3880 cs = CPU(core->threads[i]); 3881 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3882 } 3883 } 3884 } 3885 3886 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3887 Error **errp) 3888 { 3889 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3890 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3891 Error *local_err = NULL; 3892 CPUCore *cc = CPU_CORE(dev); 3893 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3894 const char *type = object_get_typename(OBJECT(dev)); 3895 CPUArchId *core_slot; 3896 int index; 3897 unsigned int smp_threads = machine->smp.threads; 3898 3899 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3900 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3901 goto out; 3902 } 3903 3904 if (strcmp(base_core_type, type)) { 3905 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3906 goto out; 3907 } 3908 3909 if (cc->core_id % smp_threads) { 3910 error_setg(&local_err, "invalid core id %d", cc->core_id); 3911 goto out; 3912 } 3913 3914 /* 3915 * In general we should have homogeneous threads-per-core, but old 3916 * (pre hotplug support) machine types allow the last core to have 3917 * reduced threads as a compatibility hack for when we allowed 3918 * total vcpus not a multiple of threads-per-core. 3919 */ 3920 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3921 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3922 cc->nr_threads, smp_threads); 3923 goto out; 3924 } 3925 3926 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3927 if (!core_slot) { 3928 error_setg(&local_err, "core id %d out of range", cc->core_id); 3929 goto out; 3930 } 3931 3932 if (core_slot->cpu) { 3933 error_setg(&local_err, "core %d already populated", cc->core_id); 3934 goto out; 3935 } 3936 3937 numa_cpu_pre_plug(core_slot, dev, &local_err); 3938 3939 out: 3940 error_propagate(errp, local_err); 3941 } 3942 3943 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3944 void *fdt, int *fdt_start_offset, Error **errp) 3945 { 3946 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3947 int intc_phandle; 3948 3949 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3950 if (intc_phandle <= 0) { 3951 return -1; 3952 } 3953 3954 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3955 fdt_start_offset)) { 3956 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3957 return -1; 3958 } 3959 3960 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3961 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3962 3963 return 0; 3964 } 3965 3966 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3967 Error **errp) 3968 { 3969 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3970 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3971 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3972 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3973 3974 if (dev->hotplugged && !smc->dr_phb_enabled) { 3975 error_setg(errp, "PHB hotplug not supported for this machine"); 3976 return; 3977 } 3978 3979 if (sphb->index == (uint32_t)-1) { 3980 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3981 return; 3982 } 3983 3984 /* 3985 * This will check that sphb->index doesn't exceed the maximum number of 3986 * PHBs for the current machine type. 3987 */ 3988 smc->phb_placement(spapr, sphb->index, 3989 &sphb->buid, &sphb->io_win_addr, 3990 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3991 windows_supported, sphb->dma_liobn, 3992 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3993 errp); 3994 } 3995 3996 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3997 Error **errp) 3998 { 3999 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4000 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4001 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4002 SpaprDrc *drc; 4003 bool hotplugged = spapr_drc_hotplugged(dev); 4004 Error *local_err = NULL; 4005 4006 if (!smc->dr_phb_enabled) { 4007 return; 4008 } 4009 4010 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4011 /* hotplug hooks should check it's enabled before getting this far */ 4012 assert(drc); 4013 4014 spapr_drc_attach(drc, DEVICE(dev), &local_err); 4015 if (local_err) { 4016 error_propagate(errp, local_err); 4017 return; 4018 } 4019 4020 if (hotplugged) { 4021 spapr_hotplug_req_add_by_index(drc); 4022 } else { 4023 spapr_drc_reset(drc); 4024 } 4025 } 4026 4027 void spapr_phb_release(DeviceState *dev) 4028 { 4029 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4030 4031 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4032 object_unparent(OBJECT(dev)); 4033 } 4034 4035 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4036 { 4037 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4038 } 4039 4040 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4041 DeviceState *dev, Error **errp) 4042 { 4043 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4044 SpaprDrc *drc; 4045 4046 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4047 assert(drc); 4048 4049 if (!spapr_drc_unplug_requested(drc)) { 4050 spapr_drc_detach(drc); 4051 spapr_hotplug_req_remove_by_index(drc); 4052 } 4053 } 4054 4055 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4056 Error **errp) 4057 { 4058 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4059 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4060 4061 if (spapr->tpm_proxy != NULL) { 4062 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4063 return; 4064 } 4065 4066 spapr->tpm_proxy = tpm_proxy; 4067 } 4068 4069 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4070 { 4071 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4072 4073 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4074 object_unparent(OBJECT(dev)); 4075 spapr->tpm_proxy = NULL; 4076 } 4077 4078 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4079 DeviceState *dev, Error **errp) 4080 { 4081 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4082 spapr_memory_plug(hotplug_dev, dev, errp); 4083 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4084 spapr_core_plug(hotplug_dev, dev, errp); 4085 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4086 spapr_phb_plug(hotplug_dev, dev, errp); 4087 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4088 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 4089 } 4090 } 4091 4092 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4093 DeviceState *dev, Error **errp) 4094 { 4095 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4096 spapr_memory_unplug(hotplug_dev, dev); 4097 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4098 spapr_core_unplug(hotplug_dev, dev); 4099 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4100 spapr_phb_unplug(hotplug_dev, dev); 4101 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4102 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4103 } 4104 } 4105 4106 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4107 DeviceState *dev, Error **errp) 4108 { 4109 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4110 MachineClass *mc = MACHINE_GET_CLASS(sms); 4111 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4112 4113 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4114 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4115 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4116 } else { 4117 /* NOTE: this means there is a window after guest reset, prior to 4118 * CAS negotiation, where unplug requests will fail due to the 4119 * capability not being detected yet. This is a bit different than 4120 * the case with PCI unplug, where the events will be queued and 4121 * eventually handled by the guest after boot 4122 */ 4123 error_setg(errp, "Memory hot unplug not supported for this guest"); 4124 } 4125 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4126 if (!mc->has_hotpluggable_cpus) { 4127 error_setg(errp, "CPU hot unplug not supported on this machine"); 4128 return; 4129 } 4130 spapr_core_unplug_request(hotplug_dev, dev, errp); 4131 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4132 if (!smc->dr_phb_enabled) { 4133 error_setg(errp, "PHB hot unplug not supported on this machine"); 4134 return; 4135 } 4136 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4137 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4138 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4139 } 4140 } 4141 4142 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4143 DeviceState *dev, Error **errp) 4144 { 4145 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4146 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4147 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4148 spapr_core_pre_plug(hotplug_dev, dev, errp); 4149 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4150 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4151 } 4152 } 4153 4154 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4155 DeviceState *dev) 4156 { 4157 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4158 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4159 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4160 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4161 return HOTPLUG_HANDLER(machine); 4162 } 4163 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4164 PCIDevice *pcidev = PCI_DEVICE(dev); 4165 PCIBus *root = pci_device_root_bus(pcidev); 4166 SpaprPhbState *phb = 4167 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4168 TYPE_SPAPR_PCI_HOST_BRIDGE); 4169 4170 if (phb) { 4171 return HOTPLUG_HANDLER(phb); 4172 } 4173 } 4174 return NULL; 4175 } 4176 4177 static CpuInstanceProperties 4178 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4179 { 4180 CPUArchId *core_slot; 4181 MachineClass *mc = MACHINE_GET_CLASS(machine); 4182 4183 /* make sure possible_cpu are intialized */ 4184 mc->possible_cpu_arch_ids(machine); 4185 /* get CPU core slot containing thread that matches cpu_index */ 4186 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4187 assert(core_slot); 4188 return core_slot->props; 4189 } 4190 4191 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4192 { 4193 return idx / ms->smp.cores % nb_numa_nodes; 4194 } 4195 4196 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4197 { 4198 int i; 4199 unsigned int smp_threads = machine->smp.threads; 4200 unsigned int smp_cpus = machine->smp.cpus; 4201 const char *core_type; 4202 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4203 MachineClass *mc = MACHINE_GET_CLASS(machine); 4204 4205 if (!mc->has_hotpluggable_cpus) { 4206 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4207 } 4208 if (machine->possible_cpus) { 4209 assert(machine->possible_cpus->len == spapr_max_cores); 4210 return machine->possible_cpus; 4211 } 4212 4213 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4214 if (!core_type) { 4215 error_report("Unable to find sPAPR CPU Core definition"); 4216 exit(1); 4217 } 4218 4219 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4220 sizeof(CPUArchId) * spapr_max_cores); 4221 machine->possible_cpus->len = spapr_max_cores; 4222 for (i = 0; i < machine->possible_cpus->len; i++) { 4223 int core_id = i * smp_threads; 4224 4225 machine->possible_cpus->cpus[i].type = core_type; 4226 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4227 machine->possible_cpus->cpus[i].arch_id = core_id; 4228 machine->possible_cpus->cpus[i].props.has_core_id = true; 4229 machine->possible_cpus->cpus[i].props.core_id = core_id; 4230 } 4231 return machine->possible_cpus; 4232 } 4233 4234 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4235 uint64_t *buid, hwaddr *pio, 4236 hwaddr *mmio32, hwaddr *mmio64, 4237 unsigned n_dma, uint32_t *liobns, 4238 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4239 { 4240 /* 4241 * New-style PHB window placement. 4242 * 4243 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4244 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4245 * windows. 4246 * 4247 * Some guest kernels can't work with MMIO windows above 1<<46 4248 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4249 * 4250 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4251 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4252 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4253 * 1TiB 64-bit MMIO windows for each PHB. 4254 */ 4255 const uint64_t base_buid = 0x800000020000000ULL; 4256 int i; 4257 4258 /* Sanity check natural alignments */ 4259 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4260 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4261 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4262 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4263 /* Sanity check bounds */ 4264 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4265 SPAPR_PCI_MEM32_WIN_SIZE); 4266 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4267 SPAPR_PCI_MEM64_WIN_SIZE); 4268 4269 if (index >= SPAPR_MAX_PHBS) { 4270 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4271 SPAPR_MAX_PHBS - 1); 4272 return; 4273 } 4274 4275 *buid = base_buid + index; 4276 for (i = 0; i < n_dma; ++i) { 4277 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4278 } 4279 4280 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4281 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4282 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4283 4284 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4285 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4286 } 4287 4288 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4289 { 4290 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4291 4292 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4293 } 4294 4295 static void spapr_ics_resend(XICSFabric *dev) 4296 { 4297 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4298 4299 ics_resend(spapr->ics); 4300 } 4301 4302 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4303 { 4304 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4305 4306 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4307 } 4308 4309 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4310 Monitor *mon) 4311 { 4312 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4313 4314 spapr->irq->print_info(spapr, mon); 4315 } 4316 4317 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4318 { 4319 return cpu->vcpu_id; 4320 } 4321 4322 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4323 { 4324 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4325 MachineState *ms = MACHINE(spapr); 4326 int vcpu_id; 4327 4328 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4329 4330 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4331 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4332 error_append_hint(errp, "Adjust the number of cpus to %d " 4333 "or try to raise the number of threads per core\n", 4334 vcpu_id * ms->smp.threads / spapr->vsmt); 4335 return; 4336 } 4337 4338 cpu->vcpu_id = vcpu_id; 4339 } 4340 4341 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4342 { 4343 CPUState *cs; 4344 4345 CPU_FOREACH(cs) { 4346 PowerPCCPU *cpu = POWERPC_CPU(cs); 4347 4348 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4349 return cpu; 4350 } 4351 } 4352 4353 return NULL; 4354 } 4355 4356 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4357 { 4358 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4359 4360 /* These are only called by TCG, KVM maintains dispatch state */ 4361 4362 spapr_cpu->prod = false; 4363 if (spapr_cpu->vpa_addr) { 4364 CPUState *cs = CPU(cpu); 4365 uint32_t dispatch; 4366 4367 dispatch = ldl_be_phys(cs->as, 4368 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4369 dispatch++; 4370 if ((dispatch & 1) != 0) { 4371 qemu_log_mask(LOG_GUEST_ERROR, 4372 "VPA: incorrect dispatch counter value for " 4373 "dispatched partition %u, correcting.\n", dispatch); 4374 dispatch++; 4375 } 4376 stl_be_phys(cs->as, 4377 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4378 } 4379 } 4380 4381 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4382 { 4383 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4384 4385 if (spapr_cpu->vpa_addr) { 4386 CPUState *cs = CPU(cpu); 4387 uint32_t dispatch; 4388 4389 dispatch = ldl_be_phys(cs->as, 4390 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4391 dispatch++; 4392 if ((dispatch & 1) != 1) { 4393 qemu_log_mask(LOG_GUEST_ERROR, 4394 "VPA: incorrect dispatch counter value for " 4395 "preempted partition %u, correcting.\n", dispatch); 4396 dispatch++; 4397 } 4398 stl_be_phys(cs->as, 4399 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4400 } 4401 } 4402 4403 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4404 { 4405 MachineClass *mc = MACHINE_CLASS(oc); 4406 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4407 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4408 NMIClass *nc = NMI_CLASS(oc); 4409 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4410 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4411 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4412 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4413 4414 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4415 mc->ignore_boot_device_suffixes = true; 4416 4417 /* 4418 * We set up the default / latest behaviour here. The class_init 4419 * functions for the specific versioned machine types can override 4420 * these details for backwards compatibility 4421 */ 4422 mc->init = spapr_machine_init; 4423 mc->reset = spapr_machine_reset; 4424 mc->block_default_type = IF_SCSI; 4425 mc->max_cpus = 1024; 4426 mc->no_parallel = 1; 4427 mc->default_boot_order = ""; 4428 mc->default_ram_size = 512 * MiB; 4429 mc->default_display = "std"; 4430 mc->kvm_type = spapr_kvm_type; 4431 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4432 mc->pci_allow_0_address = true; 4433 assert(!mc->get_hotplug_handler); 4434 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4435 hc->pre_plug = spapr_machine_device_pre_plug; 4436 hc->plug = spapr_machine_device_plug; 4437 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4438 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4439 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4440 hc->unplug_request = spapr_machine_device_unplug_request; 4441 hc->unplug = spapr_machine_device_unplug; 4442 4443 smc->dr_lmb_enabled = true; 4444 smc->update_dt_enabled = true; 4445 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4446 mc->has_hotpluggable_cpus = true; 4447 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4448 fwc->get_dev_path = spapr_get_fw_dev_path; 4449 nc->nmi_monitor_handler = spapr_nmi; 4450 smc->phb_placement = spapr_phb_placement; 4451 vhc->hypercall = emulate_spapr_hypercall; 4452 vhc->hpt_mask = spapr_hpt_mask; 4453 vhc->map_hptes = spapr_map_hptes; 4454 vhc->unmap_hptes = spapr_unmap_hptes; 4455 vhc->hpte_set_c = spapr_hpte_set_c; 4456 vhc->hpte_set_r = spapr_hpte_set_r; 4457 vhc->get_pate = spapr_get_pate; 4458 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4459 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4460 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4461 xic->ics_get = spapr_ics_get; 4462 xic->ics_resend = spapr_ics_resend; 4463 xic->icp_get = spapr_icp_get; 4464 ispc->print_info = spapr_pic_print_info; 4465 /* Force NUMA node memory size to be a multiple of 4466 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4467 * in which LMBs are represented and hot-added 4468 */ 4469 mc->numa_mem_align_shift = 28; 4470 mc->numa_mem_supported = true; 4471 4472 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4473 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4474 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4475 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4476 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4477 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4478 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4479 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4480 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4481 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4482 spapr_caps_add_properties(smc, &error_abort); 4483 smc->irq = &spapr_irq_dual; 4484 smc->dr_phb_enabled = true; 4485 smc->linux_pci_probe = true; 4486 } 4487 4488 static const TypeInfo spapr_machine_info = { 4489 .name = TYPE_SPAPR_MACHINE, 4490 .parent = TYPE_MACHINE, 4491 .abstract = true, 4492 .instance_size = sizeof(SpaprMachineState), 4493 .instance_init = spapr_instance_init, 4494 .instance_finalize = spapr_machine_finalizefn, 4495 .class_size = sizeof(SpaprMachineClass), 4496 .class_init = spapr_machine_class_init, 4497 .interfaces = (InterfaceInfo[]) { 4498 { TYPE_FW_PATH_PROVIDER }, 4499 { TYPE_NMI }, 4500 { TYPE_HOTPLUG_HANDLER }, 4501 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4502 { TYPE_XICS_FABRIC }, 4503 { TYPE_INTERRUPT_STATS_PROVIDER }, 4504 { } 4505 }, 4506 }; 4507 4508 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4509 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4510 void *data) \ 4511 { \ 4512 MachineClass *mc = MACHINE_CLASS(oc); \ 4513 spapr_machine_##suffix##_class_options(mc); \ 4514 if (latest) { \ 4515 mc->alias = "pseries"; \ 4516 mc->is_default = 1; \ 4517 } \ 4518 } \ 4519 static const TypeInfo spapr_machine_##suffix##_info = { \ 4520 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4521 .parent = TYPE_SPAPR_MACHINE, \ 4522 .class_init = spapr_machine_##suffix##_class_init, \ 4523 }; \ 4524 static void spapr_machine_register_##suffix(void) \ 4525 { \ 4526 type_register(&spapr_machine_##suffix##_info); \ 4527 } \ 4528 type_init(spapr_machine_register_##suffix) 4529 4530 /* 4531 * pseries-4.2 4532 */ 4533 static void spapr_machine_4_2_class_options(MachineClass *mc) 4534 { 4535 /* Defaults for the latest behaviour inherited from the base class */ 4536 } 4537 4538 DEFINE_SPAPR_MACHINE(4_2, "4.2", true); 4539 4540 /* 4541 * pseries-4.1 4542 */ 4543 static void spapr_machine_4_1_class_options(MachineClass *mc) 4544 { 4545 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4546 static GlobalProperty compat[] = { 4547 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4548 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4549 }; 4550 4551 spapr_machine_4_2_class_options(mc); 4552 smc->linux_pci_probe = false; 4553 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4554 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4555 } 4556 4557 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4558 4559 /* 4560 * pseries-4.0 4561 */ 4562 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4563 uint64_t *buid, hwaddr *pio, 4564 hwaddr *mmio32, hwaddr *mmio64, 4565 unsigned n_dma, uint32_t *liobns, 4566 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4567 { 4568 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4569 nv2gpa, nv2atsd, errp); 4570 *nv2gpa = 0; 4571 *nv2atsd = 0; 4572 } 4573 4574 static void spapr_machine_4_0_class_options(MachineClass *mc) 4575 { 4576 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4577 4578 spapr_machine_4_1_class_options(mc); 4579 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4580 smc->phb_placement = phb_placement_4_0; 4581 smc->irq = &spapr_irq_xics; 4582 smc->pre_4_1_migration = true; 4583 } 4584 4585 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4586 4587 /* 4588 * pseries-3.1 4589 */ 4590 static void spapr_machine_3_1_class_options(MachineClass *mc) 4591 { 4592 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4593 4594 spapr_machine_4_0_class_options(mc); 4595 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4596 4597 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4598 smc->update_dt_enabled = false; 4599 smc->dr_phb_enabled = false; 4600 smc->broken_host_serial_model = true; 4601 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4602 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4603 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4604 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4605 } 4606 4607 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4608 4609 /* 4610 * pseries-3.0 4611 */ 4612 4613 static void spapr_machine_3_0_class_options(MachineClass *mc) 4614 { 4615 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4616 4617 spapr_machine_3_1_class_options(mc); 4618 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4619 4620 smc->legacy_irq_allocation = true; 4621 smc->irq = &spapr_irq_xics_legacy; 4622 } 4623 4624 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4625 4626 /* 4627 * pseries-2.12 4628 */ 4629 static void spapr_machine_2_12_class_options(MachineClass *mc) 4630 { 4631 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4632 static GlobalProperty compat[] = { 4633 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4634 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4635 }; 4636 4637 spapr_machine_3_0_class_options(mc); 4638 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4639 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4640 4641 /* We depend on kvm_enabled() to choose a default value for the 4642 * hpt-max-page-size capability. Of course we can't do it here 4643 * because this is too early and the HW accelerator isn't initialzed 4644 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4645 */ 4646 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4647 } 4648 4649 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4650 4651 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4652 { 4653 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4654 4655 spapr_machine_2_12_class_options(mc); 4656 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4657 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4658 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4659 } 4660 4661 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4662 4663 /* 4664 * pseries-2.11 4665 */ 4666 4667 static void spapr_machine_2_11_class_options(MachineClass *mc) 4668 { 4669 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4670 4671 spapr_machine_2_12_class_options(mc); 4672 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4673 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4674 } 4675 4676 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4677 4678 /* 4679 * pseries-2.10 4680 */ 4681 4682 static void spapr_machine_2_10_class_options(MachineClass *mc) 4683 { 4684 spapr_machine_2_11_class_options(mc); 4685 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4686 } 4687 4688 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4689 4690 /* 4691 * pseries-2.9 4692 */ 4693 4694 static void spapr_machine_2_9_class_options(MachineClass *mc) 4695 { 4696 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4697 static GlobalProperty compat[] = { 4698 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4699 }; 4700 4701 spapr_machine_2_10_class_options(mc); 4702 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4703 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4704 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4705 smc->pre_2_10_has_unused_icps = true; 4706 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4707 } 4708 4709 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4710 4711 /* 4712 * pseries-2.8 4713 */ 4714 4715 static void spapr_machine_2_8_class_options(MachineClass *mc) 4716 { 4717 static GlobalProperty compat[] = { 4718 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4719 }; 4720 4721 spapr_machine_2_9_class_options(mc); 4722 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4723 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4724 mc->numa_mem_align_shift = 23; 4725 } 4726 4727 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4728 4729 /* 4730 * pseries-2.7 4731 */ 4732 4733 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4734 uint64_t *buid, hwaddr *pio, 4735 hwaddr *mmio32, hwaddr *mmio64, 4736 unsigned n_dma, uint32_t *liobns, 4737 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4738 { 4739 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4740 const uint64_t base_buid = 0x800000020000000ULL; 4741 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4742 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4743 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4744 const uint32_t max_index = 255; 4745 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4746 4747 uint64_t ram_top = MACHINE(spapr)->ram_size; 4748 hwaddr phb0_base, phb_base; 4749 int i; 4750 4751 /* Do we have device memory? */ 4752 if (MACHINE(spapr)->maxram_size > ram_top) { 4753 /* Can't just use maxram_size, because there may be an 4754 * alignment gap between normal and device memory regions 4755 */ 4756 ram_top = MACHINE(spapr)->device_memory->base + 4757 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4758 } 4759 4760 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4761 4762 if (index > max_index) { 4763 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4764 max_index); 4765 return; 4766 } 4767 4768 *buid = base_buid + index; 4769 for (i = 0; i < n_dma; ++i) { 4770 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4771 } 4772 4773 phb_base = phb0_base + index * phb_spacing; 4774 *pio = phb_base + pio_offset; 4775 *mmio32 = phb_base + mmio_offset; 4776 /* 4777 * We don't set the 64-bit MMIO window, relying on the PHB's 4778 * fallback behaviour of automatically splitting a large "32-bit" 4779 * window into contiguous 32-bit and 64-bit windows 4780 */ 4781 4782 *nv2gpa = 0; 4783 *nv2atsd = 0; 4784 } 4785 4786 static void spapr_machine_2_7_class_options(MachineClass *mc) 4787 { 4788 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4789 static GlobalProperty compat[] = { 4790 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4791 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4792 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4793 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4794 }; 4795 4796 spapr_machine_2_8_class_options(mc); 4797 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4798 mc->default_machine_opts = "modern-hotplug-events=off"; 4799 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4800 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4801 smc->phb_placement = phb_placement_2_7; 4802 } 4803 4804 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4805 4806 /* 4807 * pseries-2.6 4808 */ 4809 4810 static void spapr_machine_2_6_class_options(MachineClass *mc) 4811 { 4812 static GlobalProperty compat[] = { 4813 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4814 }; 4815 4816 spapr_machine_2_7_class_options(mc); 4817 mc->has_hotpluggable_cpus = false; 4818 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4819 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4820 } 4821 4822 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4823 4824 /* 4825 * pseries-2.5 4826 */ 4827 4828 static void spapr_machine_2_5_class_options(MachineClass *mc) 4829 { 4830 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4831 static GlobalProperty compat[] = { 4832 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4833 }; 4834 4835 spapr_machine_2_6_class_options(mc); 4836 smc->use_ohci_by_default = true; 4837 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4838 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4839 } 4840 4841 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4842 4843 /* 4844 * pseries-2.4 4845 */ 4846 4847 static void spapr_machine_2_4_class_options(MachineClass *mc) 4848 { 4849 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4850 4851 spapr_machine_2_5_class_options(mc); 4852 smc->dr_lmb_enabled = false; 4853 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4854 } 4855 4856 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4857 4858 /* 4859 * pseries-2.3 4860 */ 4861 4862 static void spapr_machine_2_3_class_options(MachineClass *mc) 4863 { 4864 static GlobalProperty compat[] = { 4865 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4866 }; 4867 spapr_machine_2_4_class_options(mc); 4868 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4869 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4870 } 4871 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4872 4873 /* 4874 * pseries-2.2 4875 */ 4876 4877 static void spapr_machine_2_2_class_options(MachineClass *mc) 4878 { 4879 static GlobalProperty compat[] = { 4880 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4881 }; 4882 4883 spapr_machine_2_3_class_options(mc); 4884 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4885 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4886 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4887 } 4888 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4889 4890 /* 4891 * pseries-2.1 4892 */ 4893 4894 static void spapr_machine_2_1_class_options(MachineClass *mc) 4895 { 4896 spapr_machine_2_2_class_options(mc); 4897 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4898 } 4899 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4900 4901 static void spapr_machine_register_types(void) 4902 { 4903 type_register_static(&spapr_machine_info); 4904 } 4905 4906 type_init(spapr_machine_register_types) 4907