xref: /qemu/hw/ppc/spapr.c (revision 6b8a05373bf142fe5fd3839c3675da005bfc9b49)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58 
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61 
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
70 
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
75 
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
83 
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
90 
91 #include "monitor/monitor.h"
92 
93 #include <libfdt.h>
94 
95 /* SLOF memory layout:
96  *
97  * SLOF raw image loaded at 0, copies its romfs right below the flat
98  * device-tree, then position SLOF itself 31M below that
99  *
100  * So we set FW_OVERHEAD to 40MB which should account for all of that
101  * and more
102  *
103  * We load our kernel at 4M, leaving space for SLOF initial image
104  */
105 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE             0x400000
107 #define FW_FILE_NAME            "slof.bin"
108 #define FW_FILE_NAME_VOF        "vof.bin"
109 #define FW_OVERHEAD             0x2800000
110 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
111 
112 #define MIN_RMA_SLOF            (128 * MiB)
113 
114 #define PHANDLE_INTC            0x00001111
115 
116 /* These two functions implement the VCPU id numbering: one to compute them
117  * all and one to identify thread 0 of a VCORE. Any change to the first one
118  * is likely to have an impact on the second one, so let's keep them close.
119  */
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
121 {
122     MachineState *ms = MACHINE(spapr);
123     unsigned int smp_threads = ms->smp.threads;
124 
125     assert(spapr->vsmt);
126     return
127         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
128 }
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130                                       PowerPCCPU *cpu)
131 {
132     assert(spapr->vsmt);
133     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
134 }
135 
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
137 {
138     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139      * and newer QEMUs don't even have them. In both cases, we don't want
140      * to send anything on the wire.
141      */
142     return false;
143 }
144 
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146     .name = "icp/server",
147     .version_id = 1,
148     .minimum_version_id = 1,
149     .needed = pre_2_10_vmstate_dummy_icp_needed,
150     .fields = (VMStateField[]) {
151         VMSTATE_UNUSED(4), /* uint32_t xirr */
152         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
153         VMSTATE_UNUSED(1), /* uint8_t mfrr */
154         VMSTATE_END_OF_LIST()
155     },
156 };
157 
158 static void pre_2_10_vmstate_register_dummy_icp(int i)
159 {
160     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
161                      (void *)(uintptr_t) i);
162 }
163 
164 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
165 {
166     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
167                        (void *)(uintptr_t) i);
168 }
169 
170 int spapr_max_server_number(SpaprMachineState *spapr)
171 {
172     MachineState *ms = MACHINE(spapr);
173 
174     assert(spapr->vsmt);
175     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
176 }
177 
178 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
179                                   int smt_threads)
180 {
181     int i, ret = 0;
182     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
183     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
184     int index = spapr_get_vcpu_id(cpu);
185 
186     if (cpu->compat_pvr) {
187         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
188         if (ret < 0) {
189             return ret;
190         }
191     }
192 
193     /* Build interrupt servers and gservers properties */
194     for (i = 0; i < smt_threads; i++) {
195         servers_prop[i] = cpu_to_be32(index + i);
196         /* Hack, direct the group queues back to cpu 0 */
197         gservers_prop[i*2] = cpu_to_be32(index + i);
198         gservers_prop[i*2 + 1] = 0;
199     }
200     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
201                       servers_prop, sizeof(*servers_prop) * smt_threads);
202     if (ret < 0) {
203         return ret;
204     }
205     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
206                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
207 
208     return ret;
209 }
210 
211 static void spapr_dt_pa_features(SpaprMachineState *spapr,
212                                  PowerPCCPU *cpu,
213                                  void *fdt, int offset)
214 {
215     uint8_t pa_features_206[] = { 6, 0,
216         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
217     uint8_t pa_features_207[] = { 24, 0,
218         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
219         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
220         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
221         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
222     uint8_t pa_features_300[] = { 66, 0,
223         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
224         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
225         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
226         /* 6: DS207 */
227         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
228         /* 16: Vector */
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
230         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
231         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
232         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
234         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
235         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
236         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
238         /* 42: PM, 44: PC RA, 46: SC vec'd */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
240         /* 48: SIMD, 50: QP BFP, 52: String */
241         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
242         /* 54: DecFP, 56: DecI, 58: SHA */
243         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
244         /* 60: NM atomic, 62: RNG */
245         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
246     };
247     uint8_t *pa_features = NULL;
248     size_t pa_size;
249 
250     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
251         pa_features = pa_features_206;
252         pa_size = sizeof(pa_features_206);
253     }
254     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
255         pa_features = pa_features_207;
256         pa_size = sizeof(pa_features_207);
257     }
258     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
259         pa_features = pa_features_300;
260         pa_size = sizeof(pa_features_300);
261     }
262     if (!pa_features) {
263         return;
264     }
265 
266     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
267         /*
268          * Note: we keep CI large pages off by default because a 64K capable
269          * guest provisioned with large pages might otherwise try to map a qemu
270          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
271          * even if that qemu runs on a 4k host.
272          * We dd this bit back here if we are confident this is not an issue
273          */
274         pa_features[3] |= 0x20;
275     }
276     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
277         pa_features[24] |= 0x80;    /* Transactional memory support */
278     }
279     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
280         /* Workaround for broken kernels that attempt (guest) radix
281          * mode when they can't handle it, if they see the radix bit set
282          * in pa-features. So hide it from them. */
283         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
284     }
285 
286     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
287 }
288 
289 static hwaddr spapr_node0_size(MachineState *machine)
290 {
291     if (machine->numa_state->num_nodes) {
292         int i;
293         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
294             if (machine->numa_state->nodes[i].node_mem) {
295                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
296                            machine->ram_size);
297             }
298         }
299     }
300     return machine->ram_size;
301 }
302 
303 static void add_str(GString *s, const gchar *s1)
304 {
305     g_string_append_len(s, s1, strlen(s1) + 1);
306 }
307 
308 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
309                                 hwaddr start, hwaddr size)
310 {
311     char mem_name[32];
312     uint64_t mem_reg_property[2];
313     int off;
314 
315     mem_reg_property[0] = cpu_to_be64(start);
316     mem_reg_property[1] = cpu_to_be64(size);
317 
318     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
319     off = fdt_add_subnode(fdt, 0, mem_name);
320     _FDT(off);
321     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
322     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
323                       sizeof(mem_reg_property))));
324     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
325     return off;
326 }
327 
328 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
329 {
330     MemoryDeviceInfoList *info;
331 
332     for (info = list; info; info = info->next) {
333         MemoryDeviceInfo *value = info->value;
334 
335         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
336             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
337 
338             if (addr >= pcdimm_info->addr &&
339                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
340                 return pcdimm_info->node;
341             }
342         }
343     }
344 
345     return -1;
346 }
347 
348 struct sPAPRDrconfCellV2 {
349      uint32_t seq_lmbs;
350      uint64_t base_addr;
351      uint32_t drc_index;
352      uint32_t aa_index;
353      uint32_t flags;
354 } QEMU_PACKED;
355 
356 typedef struct DrconfCellQueue {
357     struct sPAPRDrconfCellV2 cell;
358     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
359 } DrconfCellQueue;
360 
361 static DrconfCellQueue *
362 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
363                       uint32_t drc_index, uint32_t aa_index,
364                       uint32_t flags)
365 {
366     DrconfCellQueue *elem;
367 
368     elem = g_malloc0(sizeof(*elem));
369     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
370     elem->cell.base_addr = cpu_to_be64(base_addr);
371     elem->cell.drc_index = cpu_to_be32(drc_index);
372     elem->cell.aa_index = cpu_to_be32(aa_index);
373     elem->cell.flags = cpu_to_be32(flags);
374 
375     return elem;
376 }
377 
378 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
379                                       int offset, MemoryDeviceInfoList *dimms)
380 {
381     MachineState *machine = MACHINE(spapr);
382     uint8_t *int_buf, *cur_index;
383     int ret;
384     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
385     uint64_t addr, cur_addr, size;
386     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
387     uint64_t mem_end = machine->device_memory->base +
388                        memory_region_size(&machine->device_memory->mr);
389     uint32_t node, buf_len, nr_entries = 0;
390     SpaprDrc *drc;
391     DrconfCellQueue *elem, *next;
392     MemoryDeviceInfoList *info;
393     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
394         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
395 
396     /* Entry to cover RAM and the gap area */
397     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
398                                  SPAPR_LMB_FLAGS_RESERVED |
399                                  SPAPR_LMB_FLAGS_DRC_INVALID);
400     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
401     nr_entries++;
402 
403     cur_addr = machine->device_memory->base;
404     for (info = dimms; info; info = info->next) {
405         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
406 
407         addr = di->addr;
408         size = di->size;
409         node = di->node;
410 
411         /*
412          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
413          * area is marked hotpluggable in the next iteration for the bigger
414          * chunk including the NVDIMM occupied area.
415          */
416         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
417             continue;
418 
419         /* Entry for hot-pluggable area */
420         if (cur_addr < addr) {
421             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
422             g_assert(drc);
423             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
424                                          cur_addr, spapr_drc_index(drc), -1, 0);
425             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
426             nr_entries++;
427         }
428 
429         /* Entry for DIMM */
430         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
431         g_assert(drc);
432         elem = spapr_get_drconf_cell(size / lmb_size, addr,
433                                      spapr_drc_index(drc), node,
434                                      (SPAPR_LMB_FLAGS_ASSIGNED |
435                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
436         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
437         nr_entries++;
438         cur_addr = addr + size;
439     }
440 
441     /* Entry for remaining hotpluggable area */
442     if (cur_addr < mem_end) {
443         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
444         g_assert(drc);
445         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
446                                      cur_addr, spapr_drc_index(drc), -1, 0);
447         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
448         nr_entries++;
449     }
450 
451     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
452     int_buf = cur_index = g_malloc0(buf_len);
453     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
454     cur_index += sizeof(nr_entries);
455 
456     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
457         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
458         cur_index += sizeof(elem->cell);
459         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
460         g_free(elem);
461     }
462 
463     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
464     g_free(int_buf);
465     if (ret < 0) {
466         return -1;
467     }
468     return 0;
469 }
470 
471 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
472                                    int offset, MemoryDeviceInfoList *dimms)
473 {
474     MachineState *machine = MACHINE(spapr);
475     int i, ret;
476     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
477     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
478     uint32_t nr_lmbs = (machine->device_memory->base +
479                        memory_region_size(&machine->device_memory->mr)) /
480                        lmb_size;
481     uint32_t *int_buf, *cur_index, buf_len;
482 
483     /*
484      * Allocate enough buffer size to fit in ibm,dynamic-memory
485      */
486     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
487     cur_index = int_buf = g_malloc0(buf_len);
488     int_buf[0] = cpu_to_be32(nr_lmbs);
489     cur_index++;
490     for (i = 0; i < nr_lmbs; i++) {
491         uint64_t addr = i * lmb_size;
492         uint32_t *dynamic_memory = cur_index;
493 
494         if (i >= device_lmb_start) {
495             SpaprDrc *drc;
496 
497             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
498             g_assert(drc);
499 
500             dynamic_memory[0] = cpu_to_be32(addr >> 32);
501             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
502             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
503             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
504             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
505             if (memory_region_present(get_system_memory(), addr)) {
506                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
507             } else {
508                 dynamic_memory[5] = cpu_to_be32(0);
509             }
510         } else {
511             /*
512              * LMB information for RMA, boot time RAM and gap b/n RAM and
513              * device memory region -- all these are marked as reserved
514              * and as having no valid DRC.
515              */
516             dynamic_memory[0] = cpu_to_be32(addr >> 32);
517             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
518             dynamic_memory[2] = cpu_to_be32(0);
519             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
520             dynamic_memory[4] = cpu_to_be32(-1);
521             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
522                                             SPAPR_LMB_FLAGS_DRC_INVALID);
523         }
524 
525         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
526     }
527     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
528     g_free(int_buf);
529     if (ret < 0) {
530         return -1;
531     }
532     return 0;
533 }
534 
535 /*
536  * Adds ibm,dynamic-reconfiguration-memory node.
537  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
538  * of this device tree node.
539  */
540 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
541                                                    void *fdt)
542 {
543     MachineState *machine = MACHINE(spapr);
544     int ret, offset;
545     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
546     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
547                                 cpu_to_be32(lmb_size & 0xffffffff)};
548     MemoryDeviceInfoList *dimms = NULL;
549 
550     /*
551      * Don't create the node if there is no device memory
552      */
553     if (machine->ram_size == machine->maxram_size) {
554         return 0;
555     }
556 
557     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
558 
559     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
560                     sizeof(prop_lmb_size));
561     if (ret < 0) {
562         return ret;
563     }
564 
565     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
566     if (ret < 0) {
567         return ret;
568     }
569 
570     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
571     if (ret < 0) {
572         return ret;
573     }
574 
575     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
576     dimms = qmp_memory_device_list();
577     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
578         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
579     } else {
580         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
581     }
582     qapi_free_MemoryDeviceInfoList(dimms);
583 
584     if (ret < 0) {
585         return ret;
586     }
587 
588     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
589 
590     return ret;
591 }
592 
593 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
594 {
595     MachineState *machine = MACHINE(spapr);
596     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
597     hwaddr mem_start, node_size;
598     int i, nb_nodes = machine->numa_state->num_nodes;
599     NodeInfo *nodes = machine->numa_state->nodes;
600 
601     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
602         if (!nodes[i].node_mem) {
603             continue;
604         }
605         if (mem_start >= machine->ram_size) {
606             node_size = 0;
607         } else {
608             node_size = nodes[i].node_mem;
609             if (node_size > machine->ram_size - mem_start) {
610                 node_size = machine->ram_size - mem_start;
611             }
612         }
613         if (!mem_start) {
614             /* spapr_machine_init() checks for rma_size <= node0_size
615              * already */
616             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
617             mem_start += spapr->rma_size;
618             node_size -= spapr->rma_size;
619         }
620         for ( ; node_size; ) {
621             hwaddr sizetmp = pow2floor(node_size);
622 
623             /* mem_start != 0 here */
624             if (ctzl(mem_start) < ctzl(sizetmp)) {
625                 sizetmp = 1ULL << ctzl(mem_start);
626             }
627 
628             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
629             node_size -= sizetmp;
630             mem_start += sizetmp;
631         }
632     }
633 
634     /* Generate ibm,dynamic-reconfiguration-memory node if required */
635     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
636         int ret;
637 
638         g_assert(smc->dr_lmb_enabled);
639         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
640         if (ret) {
641             return ret;
642         }
643     }
644 
645     return 0;
646 }
647 
648 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
649                          SpaprMachineState *spapr)
650 {
651     MachineState *ms = MACHINE(spapr);
652     PowerPCCPU *cpu = POWERPC_CPU(cs);
653     CPUPPCState *env = &cpu->env;
654     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
655     int index = spapr_get_vcpu_id(cpu);
656     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
657                        0xffffffff, 0xffffffff};
658     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
659         : SPAPR_TIMEBASE_FREQ;
660     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
661     uint32_t page_sizes_prop[64];
662     size_t page_sizes_prop_size;
663     unsigned int smp_threads = ms->smp.threads;
664     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
665     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
666     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
667     SpaprDrc *drc;
668     int drc_index;
669     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
670     int i;
671 
672     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
673     if (drc) {
674         drc_index = spapr_drc_index(drc);
675         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
676     }
677 
678     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
679     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
680 
681     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
682     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
683                            env->dcache_line_size)));
684     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
685                            env->dcache_line_size)));
686     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
687                            env->icache_line_size)));
688     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
689                            env->icache_line_size)));
690 
691     if (pcc->l1_dcache_size) {
692         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
693                                pcc->l1_dcache_size)));
694     } else {
695         warn_report("Unknown L1 dcache size for cpu");
696     }
697     if (pcc->l1_icache_size) {
698         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
699                                pcc->l1_icache_size)));
700     } else {
701         warn_report("Unknown L1 icache size for cpu");
702     }
703 
704     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
705     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
706     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
707     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
708     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
709     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
710 
711     if (ppc_has_spr(cpu, SPR_PURR)) {
712         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
713     }
714     if (ppc_has_spr(cpu, SPR_PURR)) {
715         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
716     }
717 
718     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
719         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
720                           segs, sizeof(segs))));
721     }
722 
723     /* Advertise VSX (vector extensions) if available
724      *   1               == VMX / Altivec available
725      *   2               == VSX available
726      *
727      * Only CPUs for which we create core types in spapr_cpu_core.c
728      * are possible, and all of those have VMX */
729     if (env->insns_flags & PPC_ALTIVEC) {
730         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
731             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
732         } else {
733             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
734         }
735     }
736 
737     /* Advertise DFP (Decimal Floating Point) if available
738      *   0 / no property == no DFP
739      *   1               == DFP available */
740     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
741         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
742     }
743 
744     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
745                                                       sizeof(page_sizes_prop));
746     if (page_sizes_prop_size) {
747         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
748                           page_sizes_prop, page_sizes_prop_size)));
749     }
750 
751     spapr_dt_pa_features(spapr, cpu, fdt, offset);
752 
753     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
754                            cs->cpu_index / vcpus_per_socket)));
755 
756     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
757                       pft_size_prop, sizeof(pft_size_prop))));
758 
759     if (ms->numa_state->num_nodes > 1) {
760         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
761     }
762 
763     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
764 
765     if (pcc->radix_page_info) {
766         for (i = 0; i < pcc->radix_page_info->count; i++) {
767             radix_AP_encodings[i] =
768                 cpu_to_be32(pcc->radix_page_info->entries[i]);
769         }
770         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
771                           radix_AP_encodings,
772                           pcc->radix_page_info->count *
773                           sizeof(radix_AP_encodings[0]))));
774     }
775 
776     /*
777      * We set this property to let the guest know that it can use the large
778      * decrementer and its width in bits.
779      */
780     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
781         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
782                               pcc->lrg_decr_bits)));
783 }
784 
785 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
786 {
787     CPUState **rev;
788     CPUState *cs;
789     int n_cpus;
790     int cpus_offset;
791     int i;
792 
793     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
794     _FDT(cpus_offset);
795     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
796     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
797 
798     /*
799      * We walk the CPUs in reverse order to ensure that CPU DT nodes
800      * created by fdt_add_subnode() end up in the right order in FDT
801      * for the guest kernel the enumerate the CPUs correctly.
802      *
803      * The CPU list cannot be traversed in reverse order, so we need
804      * to do extra work.
805      */
806     n_cpus = 0;
807     rev = NULL;
808     CPU_FOREACH(cs) {
809         rev = g_renew(CPUState *, rev, n_cpus + 1);
810         rev[n_cpus++] = cs;
811     }
812 
813     for (i = n_cpus - 1; i >= 0; i--) {
814         CPUState *cs = rev[i];
815         PowerPCCPU *cpu = POWERPC_CPU(cs);
816         int index = spapr_get_vcpu_id(cpu);
817         DeviceClass *dc = DEVICE_GET_CLASS(cs);
818         g_autofree char *nodename = NULL;
819         int offset;
820 
821         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
822             continue;
823         }
824 
825         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
826         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
827         _FDT(offset);
828         spapr_dt_cpu(cs, fdt, offset, spapr);
829     }
830 
831     g_free(rev);
832 }
833 
834 static int spapr_dt_rng(void *fdt)
835 {
836     int node;
837     int ret;
838 
839     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
840     if (node <= 0) {
841         return -1;
842     }
843     ret = fdt_setprop_string(fdt, node, "device_type",
844                              "ibm,platform-facilities");
845     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
846     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
847 
848     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
849     if (node <= 0) {
850         return -1;
851     }
852     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
853 
854     return ret ? -1 : 0;
855 }
856 
857 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
858 {
859     MachineState *ms = MACHINE(spapr);
860     int rtas;
861     GString *hypertas = g_string_sized_new(256);
862     GString *qemu_hypertas = g_string_sized_new(256);
863     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
864         memory_region_size(&MACHINE(spapr)->device_memory->mr);
865     uint32_t lrdr_capacity[] = {
866         cpu_to_be32(max_device_addr >> 32),
867         cpu_to_be32(max_device_addr & 0xffffffff),
868         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
869         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
870         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
871     };
872 
873     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
874 
875     /* hypertas */
876     add_str(hypertas, "hcall-pft");
877     add_str(hypertas, "hcall-term");
878     add_str(hypertas, "hcall-dabr");
879     add_str(hypertas, "hcall-interrupt");
880     add_str(hypertas, "hcall-tce");
881     add_str(hypertas, "hcall-vio");
882     add_str(hypertas, "hcall-splpar");
883     add_str(hypertas, "hcall-join");
884     add_str(hypertas, "hcall-bulk");
885     add_str(hypertas, "hcall-set-mode");
886     add_str(hypertas, "hcall-sprg0");
887     add_str(hypertas, "hcall-copy");
888     add_str(hypertas, "hcall-debug");
889     add_str(hypertas, "hcall-vphn");
890     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
891         add_str(hypertas, "hcall-rpt-invalidate");
892     }
893 
894     add_str(qemu_hypertas, "hcall-memop1");
895 
896     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
897         add_str(hypertas, "hcall-multi-tce");
898     }
899 
900     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
901         add_str(hypertas, "hcall-hpt-resize");
902     }
903 
904     add_str(hypertas, "hcall-watchdog");
905 
906     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
907                      hypertas->str, hypertas->len));
908     g_string_free(hypertas, TRUE);
909     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
910                      qemu_hypertas->str, qemu_hypertas->len));
911     g_string_free(qemu_hypertas, TRUE);
912 
913     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
914 
915     /*
916      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
917      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
918      *
919      * The system reset requirements are driven by existing Linux and PowerVM
920      * implementation which (contrary to PAPR) saves r3 in the error log
921      * structure like machine check, so Linux expects to find the saved r3
922      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
923      * does not look at the error value).
924      *
925      * System reset interrupts are not subject to interlock like machine
926      * check, so this memory area could be corrupted if the sreset is
927      * interrupted by a machine check (or vice versa) if it was shared. To
928      * prevent this, system reset uses per-CPU areas for the sreset save
929      * area. A system reset that interrupts a system reset handler could
930      * still overwrite this area, but Linux doesn't try to recover in that
931      * case anyway.
932      *
933      * The extra 8 bytes is required because Linux's FWNMI error log check
934      * is off-by-one.
935      *
936      * RTAS_MIN_SIZE is required for the RTAS blob itself.
937      */
938     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
939                           RTAS_ERROR_LOG_MAX +
940                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
941                           sizeof(uint64_t)));
942     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
943                           RTAS_ERROR_LOG_MAX));
944     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
945                           RTAS_EVENT_SCAN_RATE));
946 
947     g_assert(msi_nonbroken);
948     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
949 
950     /*
951      * According to PAPR, rtas ibm,os-term does not guarantee a return
952      * back to the guest cpu.
953      *
954      * While an additional ibm,extended-os-term property indicates
955      * that rtas call return will always occur. Set this property.
956      */
957     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
958 
959     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
960                      lrdr_capacity, sizeof(lrdr_capacity)));
961 
962     spapr_dt_rtas_tokens(fdt, rtas);
963 }
964 
965 /*
966  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
967  * and the XIVE features that the guest may request and thus the valid
968  * values for bytes 23..26 of option vector 5:
969  */
970 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
971                                           int chosen)
972 {
973     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
974 
975     char val[2 * 4] = {
976         23, 0x00, /* XICS / XIVE mode */
977         24, 0x00, /* Hash/Radix, filled in below. */
978         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
979         26, 0x40, /* Radix options: GTSE == yes. */
980     };
981 
982     if (spapr->irq->xics && spapr->irq->xive) {
983         val[1] = SPAPR_OV5_XIVE_BOTH;
984     } else if (spapr->irq->xive) {
985         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
986     } else {
987         assert(spapr->irq->xics);
988         val[1] = SPAPR_OV5_XIVE_LEGACY;
989     }
990 
991     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
992                           first_ppc_cpu->compat_pvr)) {
993         /*
994          * If we're in a pre POWER9 compat mode then the guest should
995          * do hash and use the legacy interrupt mode
996          */
997         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
998         val[3] = 0x00; /* Hash */
999         spapr_check_mmu_mode(false);
1000     } else if (kvm_enabled()) {
1001         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1002             val[3] = 0x80; /* OV5_MMU_BOTH */
1003         } else if (kvmppc_has_cap_mmu_radix()) {
1004             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1005         } else {
1006             val[3] = 0x00; /* Hash */
1007         }
1008     } else {
1009         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1010         val[3] = 0xC0;
1011     }
1012     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1013                      val, sizeof(val)));
1014 }
1015 
1016 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1017 {
1018     MachineState *machine = MACHINE(spapr);
1019     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1020     uint8_t rng_seed[32];
1021     int chosen;
1022 
1023     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1024 
1025     if (reset) {
1026         const char *boot_device = spapr->boot_device;
1027         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1028         size_t cb = 0;
1029         g_autofree char *bootlist = get_boot_devices_list(&cb);
1030 
1031         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1032             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1033                                     machine->kernel_cmdline));
1034         }
1035 
1036         if (spapr->initrd_size) {
1037             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1038                                   spapr->initrd_base));
1039             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1040                                   spapr->initrd_base + spapr->initrd_size));
1041         }
1042 
1043         if (spapr->kernel_size) {
1044             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1045                                   cpu_to_be64(spapr->kernel_size) };
1046 
1047             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1048                          &kprop, sizeof(kprop)));
1049             if (spapr->kernel_le) {
1050                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1051             }
1052         }
1053         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1054             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1055         }
1056         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1057         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1058         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1059 
1060         if (cb && bootlist) {
1061             int i;
1062 
1063             for (i = 0; i < cb; i++) {
1064                 if (bootlist[i] == '\n') {
1065                     bootlist[i] = ' ';
1066                 }
1067             }
1068             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1069         }
1070 
1071         if (boot_device && strlen(boot_device)) {
1072             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1073         }
1074 
1075         if (spapr->want_stdout_path && stdout_path) {
1076             /*
1077              * "linux,stdout-path" and "stdout" properties are
1078              * deprecated by linux kernel. New platforms should only
1079              * use the "stdout-path" property. Set the new property
1080              * and continue using older property to remain compatible
1081              * with the existing firmware.
1082              */
1083             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1084             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1085         }
1086 
1087         /*
1088          * We can deal with BAR reallocation just fine, advertise it
1089          * to the guest
1090          */
1091         if (smc->linux_pci_probe) {
1092             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1093         }
1094 
1095         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1096     }
1097 
1098     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
1099     _FDT(fdt_setprop(fdt, chosen, "rng-seed", rng_seed, sizeof(rng_seed)));
1100 
1101     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1102 }
1103 
1104 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1105 {
1106     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1107      * KVM to work under pHyp with some guest co-operation */
1108     int hypervisor;
1109     uint8_t hypercall[16];
1110 
1111     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1112     /* indicate KVM hypercall interface */
1113     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1114     if (kvmppc_has_cap_fixup_hcalls()) {
1115         /*
1116          * Older KVM versions with older guest kernels were broken
1117          * with the magic page, don't allow the guest to map it.
1118          */
1119         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1120                                   sizeof(hypercall))) {
1121             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1122                              hypercall, sizeof(hypercall)));
1123         }
1124     }
1125 }
1126 
1127 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1128 {
1129     MachineState *machine = MACHINE(spapr);
1130     MachineClass *mc = MACHINE_GET_CLASS(machine);
1131     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1132     uint32_t root_drc_type_mask = 0;
1133     int ret;
1134     void *fdt;
1135     SpaprPhbState *phb;
1136     char *buf;
1137 
1138     fdt = g_malloc0(space);
1139     _FDT((fdt_create_empty_tree(fdt, space)));
1140 
1141     /* Root node */
1142     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1143     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1144     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1145 
1146     /* Guest UUID & Name*/
1147     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1148     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1149     if (qemu_uuid_set) {
1150         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1151     }
1152     g_free(buf);
1153 
1154     if (qemu_get_vm_name()) {
1155         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1156                                 qemu_get_vm_name()));
1157     }
1158 
1159     /* Host Model & Serial Number */
1160     if (spapr->host_model) {
1161         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1162     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1163         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1164         g_free(buf);
1165     }
1166 
1167     if (spapr->host_serial) {
1168         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1169     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1170         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1171         g_free(buf);
1172     }
1173 
1174     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1175     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1176 
1177     /* /interrupt controller */
1178     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1179 
1180     ret = spapr_dt_memory(spapr, fdt);
1181     if (ret < 0) {
1182         error_report("couldn't setup memory nodes in fdt");
1183         exit(1);
1184     }
1185 
1186     /* /vdevice */
1187     spapr_dt_vdevice(spapr->vio_bus, fdt);
1188 
1189     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1190         ret = spapr_dt_rng(fdt);
1191         if (ret < 0) {
1192             error_report("could not set up rng device in the fdt");
1193             exit(1);
1194         }
1195     }
1196 
1197     QLIST_FOREACH(phb, &spapr->phbs, list) {
1198         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1199         if (ret < 0) {
1200             error_report("couldn't setup PCI devices in fdt");
1201             exit(1);
1202         }
1203     }
1204 
1205     spapr_dt_cpus(fdt, spapr);
1206 
1207     /* ibm,drc-indexes and friends */
1208     if (smc->dr_lmb_enabled) {
1209         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1210     }
1211     if (smc->dr_phb_enabled) {
1212         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1213     }
1214     if (mc->nvdimm_supported) {
1215         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1216     }
1217     if (root_drc_type_mask) {
1218         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1219     }
1220 
1221     if (mc->has_hotpluggable_cpus) {
1222         int offset = fdt_path_offset(fdt, "/cpus");
1223         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1224         if (ret < 0) {
1225             error_report("Couldn't set up CPU DR device tree properties");
1226             exit(1);
1227         }
1228     }
1229 
1230     /* /event-sources */
1231     spapr_dt_events(spapr, fdt);
1232 
1233     /* /rtas */
1234     spapr_dt_rtas(spapr, fdt);
1235 
1236     /* /chosen */
1237     spapr_dt_chosen(spapr, fdt, reset);
1238 
1239     /* /hypervisor */
1240     if (kvm_enabled()) {
1241         spapr_dt_hypervisor(spapr, fdt);
1242     }
1243 
1244     /* Build memory reserve map */
1245     if (reset) {
1246         if (spapr->kernel_size) {
1247             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1248                                   spapr->kernel_size)));
1249         }
1250         if (spapr->initrd_size) {
1251             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1252                                   spapr->initrd_size)));
1253         }
1254     }
1255 
1256     /* NVDIMM devices */
1257     if (mc->nvdimm_supported) {
1258         spapr_dt_persistent_memory(spapr, fdt);
1259     }
1260 
1261     return fdt;
1262 }
1263 
1264 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1265 {
1266     SpaprMachineState *spapr = opaque;
1267 
1268     return (addr & 0x0fffffff) + spapr->kernel_addr;
1269 }
1270 
1271 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1272                                     PowerPCCPU *cpu)
1273 {
1274     CPUPPCState *env = &cpu->env;
1275 
1276     /* The TCG path should also be holding the BQL at this point */
1277     g_assert(qemu_mutex_iothread_locked());
1278 
1279     g_assert(!vhyp_cpu_in_nested(cpu));
1280 
1281     if (FIELD_EX64(env->msr, MSR, PR)) {
1282         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1283         env->gpr[3] = H_PRIVILEGE;
1284     } else {
1285         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1286     }
1287 }
1288 
1289 struct LPCRSyncState {
1290     target_ulong value;
1291     target_ulong mask;
1292 };
1293 
1294 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1295 {
1296     struct LPCRSyncState *s = arg.host_ptr;
1297     PowerPCCPU *cpu = POWERPC_CPU(cs);
1298     CPUPPCState *env = &cpu->env;
1299     target_ulong lpcr;
1300 
1301     cpu_synchronize_state(cs);
1302     lpcr = env->spr[SPR_LPCR];
1303     lpcr &= ~s->mask;
1304     lpcr |= s->value;
1305     ppc_store_lpcr(cpu, lpcr);
1306 }
1307 
1308 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1309 {
1310     CPUState *cs;
1311     struct LPCRSyncState s = {
1312         .value = value,
1313         .mask = mask
1314     };
1315     CPU_FOREACH(cs) {
1316         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1317     }
1318 }
1319 
1320 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1321                            target_ulong lpid, ppc_v3_pate_t *entry)
1322 {
1323     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1324     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1325 
1326     if (!spapr_cpu->in_nested) {
1327         assert(lpid == 0);
1328 
1329         /* Copy PATE1:GR into PATE0:HR */
1330         entry->dw0 = spapr->patb_entry & PATE0_HR;
1331         entry->dw1 = spapr->patb_entry;
1332 
1333     } else {
1334         uint64_t patb, pats;
1335 
1336         assert(lpid != 0);
1337 
1338         patb = spapr->nested_ptcr & PTCR_PATB;
1339         pats = spapr->nested_ptcr & PTCR_PATS;
1340 
1341         /* Check if partition table is properly aligned */
1342         if (patb & MAKE_64BIT_MASK(0, pats + 12)) {
1343             return false;
1344         }
1345 
1346         /* Calculate number of entries */
1347         pats = 1ull << (pats + 12 - 4);
1348         if (pats <= lpid) {
1349             return false;
1350         }
1351 
1352         /* Grab entry */
1353         patb += 16 * lpid;
1354         entry->dw0 = ldq_phys(CPU(cpu)->as, patb);
1355         entry->dw1 = ldq_phys(CPU(cpu)->as, patb + 8);
1356     }
1357 
1358     return true;
1359 }
1360 
1361 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1362 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1363 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1364 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1365 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1366 
1367 /*
1368  * Get the fd to access the kernel htab, re-opening it if necessary
1369  */
1370 static int get_htab_fd(SpaprMachineState *spapr)
1371 {
1372     Error *local_err = NULL;
1373 
1374     if (spapr->htab_fd >= 0) {
1375         return spapr->htab_fd;
1376     }
1377 
1378     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1379     if (spapr->htab_fd < 0) {
1380         error_report_err(local_err);
1381     }
1382 
1383     return spapr->htab_fd;
1384 }
1385 
1386 void close_htab_fd(SpaprMachineState *spapr)
1387 {
1388     if (spapr->htab_fd >= 0) {
1389         close(spapr->htab_fd);
1390     }
1391     spapr->htab_fd = -1;
1392 }
1393 
1394 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1395 {
1396     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1397 
1398     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1399 }
1400 
1401 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1402 {
1403     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1404 
1405     assert(kvm_enabled());
1406 
1407     if (!spapr->htab) {
1408         return 0;
1409     }
1410 
1411     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1412 }
1413 
1414 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1415                                                 hwaddr ptex, int n)
1416 {
1417     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1418     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1419 
1420     if (!spapr->htab) {
1421         /*
1422          * HTAB is controlled by KVM. Fetch into temporary buffer
1423          */
1424         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1425         kvmppc_read_hptes(hptes, ptex, n);
1426         return hptes;
1427     }
1428 
1429     /*
1430      * HTAB is controlled by QEMU. Just point to the internally
1431      * accessible PTEG.
1432      */
1433     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1434 }
1435 
1436 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1437                               const ppc_hash_pte64_t *hptes,
1438                               hwaddr ptex, int n)
1439 {
1440     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1441 
1442     if (!spapr->htab) {
1443         g_free((void *)hptes);
1444     }
1445 
1446     /* Nothing to do for qemu managed HPT */
1447 }
1448 
1449 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1450                       uint64_t pte0, uint64_t pte1)
1451 {
1452     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1453     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1454 
1455     if (!spapr->htab) {
1456         kvmppc_write_hpte(ptex, pte0, pte1);
1457     } else {
1458         if (pte0 & HPTE64_V_VALID) {
1459             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1460             /*
1461              * When setting valid, we write PTE1 first. This ensures
1462              * proper synchronization with the reading code in
1463              * ppc_hash64_pteg_search()
1464              */
1465             smp_wmb();
1466             stq_p(spapr->htab + offset, pte0);
1467         } else {
1468             stq_p(spapr->htab + offset, pte0);
1469             /*
1470              * When clearing it we set PTE0 first. This ensures proper
1471              * synchronization with the reading code in
1472              * ppc_hash64_pteg_search()
1473              */
1474             smp_wmb();
1475             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1476         }
1477     }
1478 }
1479 
1480 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1481                              uint64_t pte1)
1482 {
1483     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1484     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1485 
1486     if (!spapr->htab) {
1487         /* There should always be a hash table when this is called */
1488         error_report("spapr_hpte_set_c called with no hash table !");
1489         return;
1490     }
1491 
1492     /* The HW performs a non-atomic byte update */
1493     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1494 }
1495 
1496 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1497                              uint64_t pte1)
1498 {
1499     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1500     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1501 
1502     if (!spapr->htab) {
1503         /* There should always be a hash table when this is called */
1504         error_report("spapr_hpte_set_r called with no hash table !");
1505         return;
1506     }
1507 
1508     /* The HW performs a non-atomic byte update */
1509     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1510 }
1511 
1512 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1513 {
1514     int shift;
1515 
1516     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1517      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1518      * that's much more than is needed for Linux guests */
1519     shift = ctz64(pow2ceil(ramsize)) - 7;
1520     shift = MAX(shift, 18); /* Minimum architected size */
1521     shift = MIN(shift, 46); /* Maximum architected size */
1522     return shift;
1523 }
1524 
1525 void spapr_free_hpt(SpaprMachineState *spapr)
1526 {
1527     qemu_vfree(spapr->htab);
1528     spapr->htab = NULL;
1529     spapr->htab_shift = 0;
1530     close_htab_fd(spapr);
1531 }
1532 
1533 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1534 {
1535     ERRP_GUARD();
1536     long rc;
1537 
1538     /* Clean up any HPT info from a previous boot */
1539     spapr_free_hpt(spapr);
1540 
1541     rc = kvmppc_reset_htab(shift);
1542 
1543     if (rc == -EOPNOTSUPP) {
1544         error_setg(errp, "HPT not supported in nested guests");
1545         return -EOPNOTSUPP;
1546     }
1547 
1548     if (rc < 0) {
1549         /* kernel-side HPT needed, but couldn't allocate one */
1550         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1551                          shift);
1552         error_append_hint(errp, "Try smaller maxmem?\n");
1553         return -errno;
1554     } else if (rc > 0) {
1555         /* kernel-side HPT allocated */
1556         if (rc != shift) {
1557             error_setg(errp,
1558                        "Requested order %d HPT, but kernel allocated order %ld",
1559                        shift, rc);
1560             error_append_hint(errp, "Try smaller maxmem?\n");
1561             return -ENOSPC;
1562         }
1563 
1564         spapr->htab_shift = shift;
1565         spapr->htab = NULL;
1566     } else {
1567         /* kernel-side HPT not needed, allocate in userspace instead */
1568         size_t size = 1ULL << shift;
1569         int i;
1570 
1571         spapr->htab = qemu_memalign(size, size);
1572         memset(spapr->htab, 0, size);
1573         spapr->htab_shift = shift;
1574 
1575         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1576             DIRTY_HPTE(HPTE(spapr->htab, i));
1577         }
1578     }
1579     /* We're setting up a hash table, so that means we're not radix */
1580     spapr->patb_entry = 0;
1581     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1582     return 0;
1583 }
1584 
1585 void spapr_setup_hpt(SpaprMachineState *spapr)
1586 {
1587     int hpt_shift;
1588 
1589     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1590         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1591     } else {
1592         uint64_t current_ram_size;
1593 
1594         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1595         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1596     }
1597     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1598 
1599     if (kvm_enabled()) {
1600         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1601 
1602         /* Check our RMA fits in the possible VRMA */
1603         if (vrma_limit < spapr->rma_size) {
1604             error_report("Unable to create %" HWADDR_PRIu
1605                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1606                          spapr->rma_size / MiB, vrma_limit / MiB);
1607             exit(EXIT_FAILURE);
1608         }
1609     }
1610 }
1611 
1612 void spapr_check_mmu_mode(bool guest_radix)
1613 {
1614     if (guest_radix) {
1615         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1616             error_report("Guest requested unavailable MMU mode (radix).");
1617             exit(EXIT_FAILURE);
1618         }
1619     } else {
1620         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1621             && !kvmppc_has_cap_mmu_hash_v3()) {
1622             error_report("Guest requested unavailable MMU mode (hash).");
1623             exit(EXIT_FAILURE);
1624         }
1625     }
1626 }
1627 
1628 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1629 {
1630     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1631     PowerPCCPU *first_ppc_cpu;
1632     hwaddr fdt_addr;
1633     void *fdt;
1634     int rc;
1635 
1636     pef_kvm_reset(machine->cgs, &error_fatal);
1637     spapr_caps_apply(spapr);
1638 
1639     first_ppc_cpu = POWERPC_CPU(first_cpu);
1640     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1641         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1642                               spapr->max_compat_pvr)) {
1643         /*
1644          * If using KVM with radix mode available, VCPUs can be started
1645          * without a HPT because KVM will start them in radix mode.
1646          * Set the GR bit in PATE so that we know there is no HPT.
1647          */
1648         spapr->patb_entry = PATE1_GR;
1649         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1650     } else {
1651         spapr_setup_hpt(spapr);
1652     }
1653 
1654     qemu_devices_reset(reason);
1655 
1656     spapr_ovec_cleanup(spapr->ov5_cas);
1657     spapr->ov5_cas = spapr_ovec_new();
1658 
1659     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1660 
1661     /*
1662      * This is fixing some of the default configuration of the XIVE
1663      * devices. To be called after the reset of the machine devices.
1664      */
1665     spapr_irq_reset(spapr, &error_fatal);
1666 
1667     /*
1668      * There is no CAS under qtest. Simulate one to please the code that
1669      * depends on spapr->ov5_cas. This is especially needed to test device
1670      * unplug, so we do that before resetting the DRCs.
1671      */
1672     if (qtest_enabled()) {
1673         spapr_ovec_cleanup(spapr->ov5_cas);
1674         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1675     }
1676 
1677     spapr_nvdimm_finish_flushes();
1678 
1679     /* DRC reset may cause a device to be unplugged. This will cause troubles
1680      * if this device is used by another device (eg, a running vhost backend
1681      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1682      * situations, we reset DRCs after all devices have been reset.
1683      */
1684     spapr_drc_reset_all(spapr);
1685 
1686     spapr_clear_pending_events(spapr);
1687 
1688     /*
1689      * We place the device tree just below either the top of the RMA,
1690      * or just below 2GB, whichever is lower, so that it can be
1691      * processed with 32-bit real mode code if necessary
1692      */
1693     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1694 
1695     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1696     if (spapr->vof) {
1697         spapr_vof_reset(spapr, fdt, &error_fatal);
1698         /*
1699          * Do not pack the FDT as the client may change properties.
1700          * VOF client does not expect the FDT so we do not load it to the VM.
1701          */
1702     } else {
1703         rc = fdt_pack(fdt);
1704         /* Should only fail if we've built a corrupted tree */
1705         assert(rc == 0);
1706 
1707         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1708                                   0, fdt_addr, 0);
1709         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1710     }
1711     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1712 
1713     g_free(spapr->fdt_blob);
1714     spapr->fdt_size = fdt_totalsize(fdt);
1715     spapr->fdt_initial_size = spapr->fdt_size;
1716     spapr->fdt_blob = fdt;
1717 
1718     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1719     machine->fdt = fdt;
1720 
1721     /* Set up the entry state */
1722     first_ppc_cpu->env.gpr[5] = 0;
1723 
1724     spapr->fwnmi_system_reset_addr = -1;
1725     spapr->fwnmi_machine_check_addr = -1;
1726     spapr->fwnmi_machine_check_interlock = -1;
1727 
1728     /* Signal all vCPUs waiting on this condition */
1729     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1730 
1731     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1732 }
1733 
1734 static void spapr_create_nvram(SpaprMachineState *spapr)
1735 {
1736     DeviceState *dev = qdev_new("spapr-nvram");
1737     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1738 
1739     if (dinfo) {
1740         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1741                                 &error_fatal);
1742     }
1743 
1744     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1745 
1746     spapr->nvram = (struct SpaprNvram *)dev;
1747 }
1748 
1749 static void spapr_rtc_create(SpaprMachineState *spapr)
1750 {
1751     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1752                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1753                                        &error_fatal, NULL);
1754     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1755     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1756                               "date");
1757 }
1758 
1759 /* Returns whether we want to use VGA or not */
1760 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1761 {
1762     vga_interface_created = true;
1763     switch (vga_interface_type) {
1764     case VGA_NONE:
1765         return false;
1766     case VGA_DEVICE:
1767         return true;
1768     case VGA_STD:
1769     case VGA_VIRTIO:
1770     case VGA_CIRRUS:
1771         return pci_vga_init(pci_bus) != NULL;
1772     default:
1773         error_setg(errp,
1774                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1775         return false;
1776     }
1777 }
1778 
1779 static int spapr_pre_load(void *opaque)
1780 {
1781     int rc;
1782 
1783     rc = spapr_caps_pre_load(opaque);
1784     if (rc) {
1785         return rc;
1786     }
1787 
1788     return 0;
1789 }
1790 
1791 static int spapr_post_load(void *opaque, int version_id)
1792 {
1793     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1794     int err = 0;
1795 
1796     err = spapr_caps_post_migration(spapr);
1797     if (err) {
1798         return err;
1799     }
1800 
1801     /*
1802      * In earlier versions, there was no separate qdev for the PAPR
1803      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1804      * So when migrating from those versions, poke the incoming offset
1805      * value into the RTC device
1806      */
1807     if (version_id < 3) {
1808         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1809         if (err) {
1810             return err;
1811         }
1812     }
1813 
1814     if (kvm_enabled() && spapr->patb_entry) {
1815         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1816         bool radix = !!(spapr->patb_entry & PATE1_GR);
1817         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1818 
1819         /*
1820          * Update LPCR:HR and UPRT as they may not be set properly in
1821          * the stream
1822          */
1823         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1824                             LPCR_HR | LPCR_UPRT);
1825 
1826         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1827         if (err) {
1828             error_report("Process table config unsupported by the host");
1829             return -EINVAL;
1830         }
1831     }
1832 
1833     err = spapr_irq_post_load(spapr, version_id);
1834     if (err) {
1835         return err;
1836     }
1837 
1838     return err;
1839 }
1840 
1841 static int spapr_pre_save(void *opaque)
1842 {
1843     int rc;
1844 
1845     rc = spapr_caps_pre_save(opaque);
1846     if (rc) {
1847         return rc;
1848     }
1849 
1850     return 0;
1851 }
1852 
1853 static bool version_before_3(void *opaque, int version_id)
1854 {
1855     return version_id < 3;
1856 }
1857 
1858 static bool spapr_pending_events_needed(void *opaque)
1859 {
1860     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1861     return !QTAILQ_EMPTY(&spapr->pending_events);
1862 }
1863 
1864 static const VMStateDescription vmstate_spapr_event_entry = {
1865     .name = "spapr_event_log_entry",
1866     .version_id = 1,
1867     .minimum_version_id = 1,
1868     .fields = (VMStateField[]) {
1869         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1870         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1871         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1872                                      NULL, extended_length),
1873         VMSTATE_END_OF_LIST()
1874     },
1875 };
1876 
1877 static const VMStateDescription vmstate_spapr_pending_events = {
1878     .name = "spapr_pending_events",
1879     .version_id = 1,
1880     .minimum_version_id = 1,
1881     .needed = spapr_pending_events_needed,
1882     .fields = (VMStateField[]) {
1883         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1884                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1885         VMSTATE_END_OF_LIST()
1886     },
1887 };
1888 
1889 static bool spapr_ov5_cas_needed(void *opaque)
1890 {
1891     SpaprMachineState *spapr = opaque;
1892     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1893     bool cas_needed;
1894 
1895     /* Prior to the introduction of SpaprOptionVector, we had two option
1896      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1897      * Both of these options encode machine topology into the device-tree
1898      * in such a way that the now-booted OS should still be able to interact
1899      * appropriately with QEMU regardless of what options were actually
1900      * negotiatied on the source side.
1901      *
1902      * As such, we can avoid migrating the CAS-negotiated options if these
1903      * are the only options available on the current machine/platform.
1904      * Since these are the only options available for pseries-2.7 and
1905      * earlier, this allows us to maintain old->new/new->old migration
1906      * compatibility.
1907      *
1908      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1909      * via default pseries-2.8 machines and explicit command-line parameters.
1910      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1911      * of the actual CAS-negotiated values to continue working properly. For
1912      * example, availability of memory unplug depends on knowing whether
1913      * OV5_HP_EVT was negotiated via CAS.
1914      *
1915      * Thus, for any cases where the set of available CAS-negotiatable
1916      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1917      * include the CAS-negotiated options in the migration stream, unless
1918      * if they affect boot time behaviour only.
1919      */
1920     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1921     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1922     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1923 
1924     /* We need extra information if we have any bits outside the mask
1925      * defined above */
1926     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1927 
1928     spapr_ovec_cleanup(ov5_mask);
1929 
1930     return cas_needed;
1931 }
1932 
1933 static const VMStateDescription vmstate_spapr_ov5_cas = {
1934     .name = "spapr_option_vector_ov5_cas",
1935     .version_id = 1,
1936     .minimum_version_id = 1,
1937     .needed = spapr_ov5_cas_needed,
1938     .fields = (VMStateField[]) {
1939         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1940                                  vmstate_spapr_ovec, SpaprOptionVector),
1941         VMSTATE_END_OF_LIST()
1942     },
1943 };
1944 
1945 static bool spapr_patb_entry_needed(void *opaque)
1946 {
1947     SpaprMachineState *spapr = opaque;
1948 
1949     return !!spapr->patb_entry;
1950 }
1951 
1952 static const VMStateDescription vmstate_spapr_patb_entry = {
1953     .name = "spapr_patb_entry",
1954     .version_id = 1,
1955     .minimum_version_id = 1,
1956     .needed = spapr_patb_entry_needed,
1957     .fields = (VMStateField[]) {
1958         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1959         VMSTATE_END_OF_LIST()
1960     },
1961 };
1962 
1963 static bool spapr_irq_map_needed(void *opaque)
1964 {
1965     SpaprMachineState *spapr = opaque;
1966 
1967     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1968 }
1969 
1970 static const VMStateDescription vmstate_spapr_irq_map = {
1971     .name = "spapr_irq_map",
1972     .version_id = 1,
1973     .minimum_version_id = 1,
1974     .needed = spapr_irq_map_needed,
1975     .fields = (VMStateField[]) {
1976         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1977         VMSTATE_END_OF_LIST()
1978     },
1979 };
1980 
1981 static bool spapr_dtb_needed(void *opaque)
1982 {
1983     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1984 
1985     return smc->update_dt_enabled;
1986 }
1987 
1988 static int spapr_dtb_pre_load(void *opaque)
1989 {
1990     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1991 
1992     g_free(spapr->fdt_blob);
1993     spapr->fdt_blob = NULL;
1994     spapr->fdt_size = 0;
1995 
1996     return 0;
1997 }
1998 
1999 static const VMStateDescription vmstate_spapr_dtb = {
2000     .name = "spapr_dtb",
2001     .version_id = 1,
2002     .minimum_version_id = 1,
2003     .needed = spapr_dtb_needed,
2004     .pre_load = spapr_dtb_pre_load,
2005     .fields = (VMStateField[]) {
2006         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2007         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2008         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2009                                      fdt_size),
2010         VMSTATE_END_OF_LIST()
2011     },
2012 };
2013 
2014 static bool spapr_fwnmi_needed(void *opaque)
2015 {
2016     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2017 
2018     return spapr->fwnmi_machine_check_addr != -1;
2019 }
2020 
2021 static int spapr_fwnmi_pre_save(void *opaque)
2022 {
2023     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2024 
2025     /*
2026      * Check if machine check handling is in progress and print a
2027      * warning message.
2028      */
2029     if (spapr->fwnmi_machine_check_interlock != -1) {
2030         warn_report("A machine check is being handled during migration. The"
2031                 "handler may run and log hardware error on the destination");
2032     }
2033 
2034     return 0;
2035 }
2036 
2037 static const VMStateDescription vmstate_spapr_fwnmi = {
2038     .name = "spapr_fwnmi",
2039     .version_id = 1,
2040     .minimum_version_id = 1,
2041     .needed = spapr_fwnmi_needed,
2042     .pre_save = spapr_fwnmi_pre_save,
2043     .fields = (VMStateField[]) {
2044         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2045         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2046         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2047         VMSTATE_END_OF_LIST()
2048     },
2049 };
2050 
2051 static const VMStateDescription vmstate_spapr = {
2052     .name = "spapr",
2053     .version_id = 3,
2054     .minimum_version_id = 1,
2055     .pre_load = spapr_pre_load,
2056     .post_load = spapr_post_load,
2057     .pre_save = spapr_pre_save,
2058     .fields = (VMStateField[]) {
2059         /* used to be @next_irq */
2060         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2061 
2062         /* RTC offset */
2063         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2064 
2065         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2066         VMSTATE_END_OF_LIST()
2067     },
2068     .subsections = (const VMStateDescription*[]) {
2069         &vmstate_spapr_ov5_cas,
2070         &vmstate_spapr_patb_entry,
2071         &vmstate_spapr_pending_events,
2072         &vmstate_spapr_cap_htm,
2073         &vmstate_spapr_cap_vsx,
2074         &vmstate_spapr_cap_dfp,
2075         &vmstate_spapr_cap_cfpc,
2076         &vmstate_spapr_cap_sbbc,
2077         &vmstate_spapr_cap_ibs,
2078         &vmstate_spapr_cap_hpt_maxpagesize,
2079         &vmstate_spapr_irq_map,
2080         &vmstate_spapr_cap_nested_kvm_hv,
2081         &vmstate_spapr_dtb,
2082         &vmstate_spapr_cap_large_decr,
2083         &vmstate_spapr_cap_ccf_assist,
2084         &vmstate_spapr_cap_fwnmi,
2085         &vmstate_spapr_fwnmi,
2086         &vmstate_spapr_cap_rpt_invalidate,
2087         NULL
2088     }
2089 };
2090 
2091 static int htab_save_setup(QEMUFile *f, void *opaque)
2092 {
2093     SpaprMachineState *spapr = opaque;
2094 
2095     /* "Iteration" header */
2096     if (!spapr->htab_shift) {
2097         qemu_put_be32(f, -1);
2098     } else {
2099         qemu_put_be32(f, spapr->htab_shift);
2100     }
2101 
2102     if (spapr->htab) {
2103         spapr->htab_save_index = 0;
2104         spapr->htab_first_pass = true;
2105     } else {
2106         if (spapr->htab_shift) {
2107             assert(kvm_enabled());
2108         }
2109     }
2110 
2111 
2112     return 0;
2113 }
2114 
2115 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2116                             int chunkstart, int n_valid, int n_invalid)
2117 {
2118     qemu_put_be32(f, chunkstart);
2119     qemu_put_be16(f, n_valid);
2120     qemu_put_be16(f, n_invalid);
2121     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2122                     HASH_PTE_SIZE_64 * n_valid);
2123 }
2124 
2125 static void htab_save_end_marker(QEMUFile *f)
2126 {
2127     qemu_put_be32(f, 0);
2128     qemu_put_be16(f, 0);
2129     qemu_put_be16(f, 0);
2130 }
2131 
2132 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2133                                  int64_t max_ns)
2134 {
2135     bool has_timeout = max_ns != -1;
2136     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2137     int index = spapr->htab_save_index;
2138     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2139 
2140     assert(spapr->htab_first_pass);
2141 
2142     do {
2143         int chunkstart;
2144 
2145         /* Consume invalid HPTEs */
2146         while ((index < htabslots)
2147                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2148             CLEAN_HPTE(HPTE(spapr->htab, index));
2149             index++;
2150         }
2151 
2152         /* Consume valid HPTEs */
2153         chunkstart = index;
2154         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2155                && HPTE_VALID(HPTE(spapr->htab, index))) {
2156             CLEAN_HPTE(HPTE(spapr->htab, index));
2157             index++;
2158         }
2159 
2160         if (index > chunkstart) {
2161             int n_valid = index - chunkstart;
2162 
2163             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2164 
2165             if (has_timeout &&
2166                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2167                 break;
2168             }
2169         }
2170     } while ((index < htabslots) && !migration_rate_exceeded(f));
2171 
2172     if (index >= htabslots) {
2173         assert(index == htabslots);
2174         index = 0;
2175         spapr->htab_first_pass = false;
2176     }
2177     spapr->htab_save_index = index;
2178 }
2179 
2180 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2181                                 int64_t max_ns)
2182 {
2183     bool final = max_ns < 0;
2184     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2185     int examined = 0, sent = 0;
2186     int index = spapr->htab_save_index;
2187     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2188 
2189     assert(!spapr->htab_first_pass);
2190 
2191     do {
2192         int chunkstart, invalidstart;
2193 
2194         /* Consume non-dirty HPTEs */
2195         while ((index < htabslots)
2196                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2197             index++;
2198             examined++;
2199         }
2200 
2201         chunkstart = index;
2202         /* Consume valid dirty HPTEs */
2203         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2204                && HPTE_DIRTY(HPTE(spapr->htab, index))
2205                && HPTE_VALID(HPTE(spapr->htab, index))) {
2206             CLEAN_HPTE(HPTE(spapr->htab, index));
2207             index++;
2208             examined++;
2209         }
2210 
2211         invalidstart = index;
2212         /* Consume invalid dirty HPTEs */
2213         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2214                && HPTE_DIRTY(HPTE(spapr->htab, index))
2215                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2216             CLEAN_HPTE(HPTE(spapr->htab, index));
2217             index++;
2218             examined++;
2219         }
2220 
2221         if (index > chunkstart) {
2222             int n_valid = invalidstart - chunkstart;
2223             int n_invalid = index - invalidstart;
2224 
2225             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2226             sent += index - chunkstart;
2227 
2228             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2229                 break;
2230             }
2231         }
2232 
2233         if (examined >= htabslots) {
2234             break;
2235         }
2236 
2237         if (index >= htabslots) {
2238             assert(index == htabslots);
2239             index = 0;
2240         }
2241     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2242 
2243     if (index >= htabslots) {
2244         assert(index == htabslots);
2245         index = 0;
2246     }
2247 
2248     spapr->htab_save_index = index;
2249 
2250     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2251 }
2252 
2253 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2254 #define MAX_KVM_BUF_SIZE    2048
2255 
2256 static int htab_save_iterate(QEMUFile *f, void *opaque)
2257 {
2258     SpaprMachineState *spapr = opaque;
2259     int fd;
2260     int rc = 0;
2261 
2262     /* Iteration header */
2263     if (!spapr->htab_shift) {
2264         qemu_put_be32(f, -1);
2265         return 1;
2266     } else {
2267         qemu_put_be32(f, 0);
2268     }
2269 
2270     if (!spapr->htab) {
2271         assert(kvm_enabled());
2272 
2273         fd = get_htab_fd(spapr);
2274         if (fd < 0) {
2275             return fd;
2276         }
2277 
2278         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2279         if (rc < 0) {
2280             return rc;
2281         }
2282     } else  if (spapr->htab_first_pass) {
2283         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2284     } else {
2285         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2286     }
2287 
2288     htab_save_end_marker(f);
2289 
2290     return rc;
2291 }
2292 
2293 static int htab_save_complete(QEMUFile *f, void *opaque)
2294 {
2295     SpaprMachineState *spapr = opaque;
2296     int fd;
2297 
2298     /* Iteration header */
2299     if (!spapr->htab_shift) {
2300         qemu_put_be32(f, -1);
2301         return 0;
2302     } else {
2303         qemu_put_be32(f, 0);
2304     }
2305 
2306     if (!spapr->htab) {
2307         int rc;
2308 
2309         assert(kvm_enabled());
2310 
2311         fd = get_htab_fd(spapr);
2312         if (fd < 0) {
2313             return fd;
2314         }
2315 
2316         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2317         if (rc < 0) {
2318             return rc;
2319         }
2320     } else {
2321         if (spapr->htab_first_pass) {
2322             htab_save_first_pass(f, spapr, -1);
2323         }
2324         htab_save_later_pass(f, spapr, -1);
2325     }
2326 
2327     /* End marker */
2328     htab_save_end_marker(f);
2329 
2330     return 0;
2331 }
2332 
2333 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2334 {
2335     SpaprMachineState *spapr = opaque;
2336     uint32_t section_hdr;
2337     int fd = -1;
2338     Error *local_err = NULL;
2339 
2340     if (version_id < 1 || version_id > 1) {
2341         error_report("htab_load() bad version");
2342         return -EINVAL;
2343     }
2344 
2345     section_hdr = qemu_get_be32(f);
2346 
2347     if (section_hdr == -1) {
2348         spapr_free_hpt(spapr);
2349         return 0;
2350     }
2351 
2352     if (section_hdr) {
2353         int ret;
2354 
2355         /* First section gives the htab size */
2356         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2357         if (ret < 0) {
2358             error_report_err(local_err);
2359             return ret;
2360         }
2361         return 0;
2362     }
2363 
2364     if (!spapr->htab) {
2365         assert(kvm_enabled());
2366 
2367         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2368         if (fd < 0) {
2369             error_report_err(local_err);
2370             return fd;
2371         }
2372     }
2373 
2374     while (true) {
2375         uint32_t index;
2376         uint16_t n_valid, n_invalid;
2377 
2378         index = qemu_get_be32(f);
2379         n_valid = qemu_get_be16(f);
2380         n_invalid = qemu_get_be16(f);
2381 
2382         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2383             /* End of Stream */
2384             break;
2385         }
2386 
2387         if ((index + n_valid + n_invalid) >
2388             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2389             /* Bad index in stream */
2390             error_report(
2391                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2392                 index, n_valid, n_invalid, spapr->htab_shift);
2393             return -EINVAL;
2394         }
2395 
2396         if (spapr->htab) {
2397             if (n_valid) {
2398                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2399                                 HASH_PTE_SIZE_64 * n_valid);
2400             }
2401             if (n_invalid) {
2402                 memset(HPTE(spapr->htab, index + n_valid), 0,
2403                        HASH_PTE_SIZE_64 * n_invalid);
2404             }
2405         } else {
2406             int rc;
2407 
2408             assert(fd >= 0);
2409 
2410             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2411                                         &local_err);
2412             if (rc < 0) {
2413                 error_report_err(local_err);
2414                 return rc;
2415             }
2416         }
2417     }
2418 
2419     if (!spapr->htab) {
2420         assert(fd >= 0);
2421         close(fd);
2422     }
2423 
2424     return 0;
2425 }
2426 
2427 static void htab_save_cleanup(void *opaque)
2428 {
2429     SpaprMachineState *spapr = opaque;
2430 
2431     close_htab_fd(spapr);
2432 }
2433 
2434 static SaveVMHandlers savevm_htab_handlers = {
2435     .save_setup = htab_save_setup,
2436     .save_live_iterate = htab_save_iterate,
2437     .save_live_complete_precopy = htab_save_complete,
2438     .save_cleanup = htab_save_cleanup,
2439     .load_state = htab_load,
2440 };
2441 
2442 static void spapr_boot_set(void *opaque, const char *boot_device,
2443                            Error **errp)
2444 {
2445     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2446 
2447     g_free(spapr->boot_device);
2448     spapr->boot_device = g_strdup(boot_device);
2449 }
2450 
2451 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2452 {
2453     MachineState *machine = MACHINE(spapr);
2454     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2455     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2456     int i;
2457 
2458     for (i = 0; i < nr_lmbs; i++) {
2459         uint64_t addr;
2460 
2461         addr = i * lmb_size + machine->device_memory->base;
2462         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2463                                addr / lmb_size);
2464     }
2465 }
2466 
2467 /*
2468  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2469  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2470  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2471  */
2472 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2473 {
2474     int i;
2475 
2476     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2477         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2478                    " is not aligned to %" PRIu64 " MiB",
2479                    machine->ram_size,
2480                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2481         return;
2482     }
2483 
2484     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2485         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2486                    " is not aligned to %" PRIu64 " MiB",
2487                    machine->ram_size,
2488                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2489         return;
2490     }
2491 
2492     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2493         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2494             error_setg(errp,
2495                        "Node %d memory size 0x%" PRIx64
2496                        " is not aligned to %" PRIu64 " MiB",
2497                        i, machine->numa_state->nodes[i].node_mem,
2498                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2499             return;
2500         }
2501     }
2502 }
2503 
2504 /* find cpu slot in machine->possible_cpus by core_id */
2505 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2506 {
2507     int index = id / ms->smp.threads;
2508 
2509     if (index >= ms->possible_cpus->len) {
2510         return NULL;
2511     }
2512     if (idx) {
2513         *idx = index;
2514     }
2515     return &ms->possible_cpus->cpus[index];
2516 }
2517 
2518 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2519 {
2520     MachineState *ms = MACHINE(spapr);
2521     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2522     Error *local_err = NULL;
2523     bool vsmt_user = !!spapr->vsmt;
2524     int kvm_smt = kvmppc_smt_threads();
2525     int ret;
2526     unsigned int smp_threads = ms->smp.threads;
2527 
2528     if (!kvm_enabled() && (smp_threads > 1)) {
2529         error_setg(errp, "TCG cannot support more than 1 thread/core "
2530                    "on a pseries machine");
2531         return;
2532     }
2533     if (!is_power_of_2(smp_threads)) {
2534         error_setg(errp, "Cannot support %d threads/core on a pseries "
2535                    "machine because it must be a power of 2", smp_threads);
2536         return;
2537     }
2538 
2539     /* Detemine the VSMT mode to use: */
2540     if (vsmt_user) {
2541         if (spapr->vsmt < smp_threads) {
2542             error_setg(errp, "Cannot support VSMT mode %d"
2543                        " because it must be >= threads/core (%d)",
2544                        spapr->vsmt, smp_threads);
2545             return;
2546         }
2547         /* In this case, spapr->vsmt has been set by the command line */
2548     } else if (!smc->smp_threads_vsmt) {
2549         /*
2550          * Default VSMT value is tricky, because we need it to be as
2551          * consistent as possible (for migration), but this requires
2552          * changing it for at least some existing cases.  We pick 8 as
2553          * the value that we'd get with KVM on POWER8, the
2554          * overwhelmingly common case in production systems.
2555          */
2556         spapr->vsmt = MAX(8, smp_threads);
2557     } else {
2558         spapr->vsmt = smp_threads;
2559     }
2560 
2561     /* KVM: If necessary, set the SMT mode: */
2562     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2563         ret = kvmppc_set_smt_threads(spapr->vsmt);
2564         if (ret) {
2565             /* Looks like KVM isn't able to change VSMT mode */
2566             error_setg(&local_err,
2567                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2568                        spapr->vsmt, ret);
2569             /* We can live with that if the default one is big enough
2570              * for the number of threads, and a submultiple of the one
2571              * we want.  In this case we'll waste some vcpu ids, but
2572              * behaviour will be correct */
2573             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2574                 warn_report_err(local_err);
2575             } else {
2576                 if (!vsmt_user) {
2577                     error_append_hint(&local_err,
2578                                       "On PPC, a VM with %d threads/core"
2579                                       " on a host with %d threads/core"
2580                                       " requires the use of VSMT mode %d.\n",
2581                                       smp_threads, kvm_smt, spapr->vsmt);
2582                 }
2583                 kvmppc_error_append_smt_possible_hint(&local_err);
2584                 error_propagate(errp, local_err);
2585             }
2586         }
2587     }
2588     /* else TCG: nothing to do currently */
2589 }
2590 
2591 static void spapr_init_cpus(SpaprMachineState *spapr)
2592 {
2593     MachineState *machine = MACHINE(spapr);
2594     MachineClass *mc = MACHINE_GET_CLASS(machine);
2595     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2596     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2597     const CPUArchIdList *possible_cpus;
2598     unsigned int smp_cpus = machine->smp.cpus;
2599     unsigned int smp_threads = machine->smp.threads;
2600     unsigned int max_cpus = machine->smp.max_cpus;
2601     int boot_cores_nr = smp_cpus / smp_threads;
2602     int i;
2603 
2604     possible_cpus = mc->possible_cpu_arch_ids(machine);
2605     if (mc->has_hotpluggable_cpus) {
2606         if (smp_cpus % smp_threads) {
2607             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2608                          smp_cpus, smp_threads);
2609             exit(1);
2610         }
2611         if (max_cpus % smp_threads) {
2612             error_report("max_cpus (%u) must be multiple of threads (%u)",
2613                          max_cpus, smp_threads);
2614             exit(1);
2615         }
2616     } else {
2617         if (max_cpus != smp_cpus) {
2618             error_report("This machine version does not support CPU hotplug");
2619             exit(1);
2620         }
2621         boot_cores_nr = possible_cpus->len;
2622     }
2623 
2624     if (smc->pre_2_10_has_unused_icps) {
2625         int i;
2626 
2627         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2628             /* Dummy entries get deregistered when real ICPState objects
2629              * are registered during CPU core hotplug.
2630              */
2631             pre_2_10_vmstate_register_dummy_icp(i);
2632         }
2633     }
2634 
2635     for (i = 0; i < possible_cpus->len; i++) {
2636         int core_id = i * smp_threads;
2637 
2638         if (mc->has_hotpluggable_cpus) {
2639             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2640                                    spapr_vcpu_id(spapr, core_id));
2641         }
2642 
2643         if (i < boot_cores_nr) {
2644             Object *core  = object_new(type);
2645             int nr_threads = smp_threads;
2646 
2647             /* Handle the partially filled core for older machine types */
2648             if ((i + 1) * smp_threads >= smp_cpus) {
2649                 nr_threads = smp_cpus - i * smp_threads;
2650             }
2651 
2652             object_property_set_int(core, "nr-threads", nr_threads,
2653                                     &error_fatal);
2654             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2655                                     &error_fatal);
2656             qdev_realize(DEVICE(core), NULL, &error_fatal);
2657 
2658             object_unref(core);
2659         }
2660     }
2661 }
2662 
2663 static PCIHostState *spapr_create_default_phb(void)
2664 {
2665     DeviceState *dev;
2666 
2667     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2668     qdev_prop_set_uint32(dev, "index", 0);
2669     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2670 
2671     return PCI_HOST_BRIDGE(dev);
2672 }
2673 
2674 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2675 {
2676     MachineState *machine = MACHINE(spapr);
2677     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2678     hwaddr rma_size = machine->ram_size;
2679     hwaddr node0_size = spapr_node0_size(machine);
2680 
2681     /* RMA has to fit in the first NUMA node */
2682     rma_size = MIN(rma_size, node0_size);
2683 
2684     /*
2685      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2686      * never exceed that
2687      */
2688     rma_size = MIN(rma_size, 1 * TiB);
2689 
2690     /*
2691      * Clamp the RMA size based on machine type.  This is for
2692      * migration compatibility with older qemu versions, which limited
2693      * the RMA size for complicated and mostly bad reasons.
2694      */
2695     if (smc->rma_limit) {
2696         rma_size = MIN(rma_size, smc->rma_limit);
2697     }
2698 
2699     if (rma_size < MIN_RMA_SLOF) {
2700         error_setg(errp,
2701                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2702                    "ldMiB guest RMA (Real Mode Area memory)",
2703                    MIN_RMA_SLOF / MiB);
2704         return 0;
2705     }
2706 
2707     return rma_size;
2708 }
2709 
2710 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2711 {
2712     MachineState *machine = MACHINE(spapr);
2713     int i;
2714 
2715     for (i = 0; i < machine->ram_slots; i++) {
2716         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2717     }
2718 }
2719 
2720 /* pSeries LPAR / sPAPR hardware init */
2721 static void spapr_machine_init(MachineState *machine)
2722 {
2723     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2724     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2725     MachineClass *mc = MACHINE_GET_CLASS(machine);
2726     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2727     const char *bios_name = machine->firmware ?: bios_default;
2728     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2729     const char *kernel_filename = machine->kernel_filename;
2730     const char *initrd_filename = machine->initrd_filename;
2731     PCIHostState *phb;
2732     bool has_vga;
2733     int i;
2734     MemoryRegion *sysmem = get_system_memory();
2735     long load_limit, fw_size;
2736     Error *resize_hpt_err = NULL;
2737 
2738     if (!filename) {
2739         error_report("Could not find LPAR firmware '%s'", bios_name);
2740         exit(1);
2741     }
2742     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2743     if (fw_size <= 0) {
2744         error_report("Could not load LPAR firmware '%s'", filename);
2745         exit(1);
2746     }
2747 
2748     /*
2749      * if Secure VM (PEF) support is configured, then initialize it
2750      */
2751     pef_kvm_init(machine->cgs, &error_fatal);
2752 
2753     msi_nonbroken = true;
2754 
2755     QLIST_INIT(&spapr->phbs);
2756     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2757 
2758     /* Determine capabilities to run with */
2759     spapr_caps_init(spapr);
2760 
2761     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2762     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2763         /*
2764          * If the user explicitly requested a mode we should either
2765          * supply it, or fail completely (which we do below).  But if
2766          * it's not set explicitly, we reset our mode to something
2767          * that works
2768          */
2769         if (resize_hpt_err) {
2770             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2771             error_free(resize_hpt_err);
2772             resize_hpt_err = NULL;
2773         } else {
2774             spapr->resize_hpt = smc->resize_hpt_default;
2775         }
2776     }
2777 
2778     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2779 
2780     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2781         /*
2782          * User requested HPT resize, but this host can't supply it.  Bail out
2783          */
2784         error_report_err(resize_hpt_err);
2785         exit(1);
2786     }
2787     error_free(resize_hpt_err);
2788 
2789     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2790 
2791     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2792     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2793 
2794     /*
2795      * VSMT must be set in order to be able to compute VCPU ids, ie to
2796      * call spapr_max_server_number() or spapr_vcpu_id().
2797      */
2798     spapr_set_vsmt_mode(spapr, &error_fatal);
2799 
2800     /* Set up Interrupt Controller before we create the VCPUs */
2801     spapr_irq_init(spapr, &error_fatal);
2802 
2803     /* Set up containers for ibm,client-architecture-support negotiated options
2804      */
2805     spapr->ov5 = spapr_ovec_new();
2806     spapr->ov5_cas = spapr_ovec_new();
2807 
2808     if (smc->dr_lmb_enabled) {
2809         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2810         spapr_validate_node_memory(machine, &error_fatal);
2811     }
2812 
2813     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2814 
2815     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2816     if (!smc->pre_6_2_numa_affinity) {
2817         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2818     }
2819 
2820     /* advertise support for dedicated HP event source to guests */
2821     if (spapr->use_hotplug_event_source) {
2822         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2823     }
2824 
2825     /* advertise support for HPT resizing */
2826     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2827         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2828     }
2829 
2830     /* advertise support for ibm,dyamic-memory-v2 */
2831     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2832 
2833     /* advertise XIVE on POWER9 machines */
2834     if (spapr->irq->xive) {
2835         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2836     }
2837 
2838     /* init CPUs */
2839     spapr_init_cpus(spapr);
2840 
2841     spapr->gpu_numa_id = spapr_numa_initial_nvgpu_numa_id(machine);
2842 
2843     /* Init numa_assoc_array */
2844     spapr_numa_associativity_init(spapr, machine);
2845 
2846     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2847         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2848                               spapr->max_compat_pvr)) {
2849         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2850         /* KVM and TCG always allow GTSE with radix... */
2851         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2852     }
2853     /* ... but not with hash (currently). */
2854 
2855     if (kvm_enabled()) {
2856         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2857         kvmppc_enable_logical_ci_hcalls();
2858         kvmppc_enable_set_mode_hcall();
2859 
2860         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2861         kvmppc_enable_clear_ref_mod_hcalls();
2862 
2863         /* Enable H_PAGE_INIT */
2864         kvmppc_enable_h_page_init();
2865     }
2866 
2867     /* map RAM */
2868     memory_region_add_subregion(sysmem, 0, machine->ram);
2869 
2870     /* always allocate the device memory information */
2871     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2872 
2873     /* initialize hotplug memory address space */
2874     if (machine->ram_size < machine->maxram_size) {
2875         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2876         /*
2877          * Limit the number of hotpluggable memory slots to half the number
2878          * slots that KVM supports, leaving the other half for PCI and other
2879          * devices. However ensure that number of slots doesn't drop below 32.
2880          */
2881         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2882                            SPAPR_MAX_RAM_SLOTS;
2883 
2884         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2885             max_memslots = SPAPR_MAX_RAM_SLOTS;
2886         }
2887         if (machine->ram_slots > max_memslots) {
2888             error_report("Specified number of memory slots %"
2889                          PRIu64" exceeds max supported %d",
2890                          machine->ram_slots, max_memslots);
2891             exit(1);
2892         }
2893 
2894         machine->device_memory->base = ROUND_UP(machine->ram_size,
2895                                                 SPAPR_DEVICE_MEM_ALIGN);
2896         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2897                            "device-memory", device_mem_size);
2898         memory_region_add_subregion(sysmem, machine->device_memory->base,
2899                                     &machine->device_memory->mr);
2900     }
2901 
2902     if (smc->dr_lmb_enabled) {
2903         spapr_create_lmb_dr_connectors(spapr);
2904     }
2905 
2906     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2907         /* Create the error string for live migration blocker */
2908         error_setg(&spapr->fwnmi_migration_blocker,
2909             "A machine check is being handled during migration. The handler"
2910             "may run and log hardware error on the destination");
2911     }
2912 
2913     if (mc->nvdimm_supported) {
2914         spapr_create_nvdimm_dr_connectors(spapr);
2915     }
2916 
2917     /* Set up RTAS event infrastructure */
2918     spapr_events_init(spapr);
2919 
2920     /* Set up the RTC RTAS interfaces */
2921     spapr_rtc_create(spapr);
2922 
2923     /* Set up VIO bus */
2924     spapr->vio_bus = spapr_vio_bus_init();
2925 
2926     for (i = 0; serial_hd(i); i++) {
2927         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2928     }
2929 
2930     /* We always have at least the nvram device on VIO */
2931     spapr_create_nvram(spapr);
2932 
2933     /*
2934      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2935      * connectors (described in root DT node's "ibm,drc-types" property)
2936      * are pre-initialized here. additional child connectors (such as
2937      * connectors for a PHBs PCI slots) are added as needed during their
2938      * parent's realization.
2939      */
2940     if (smc->dr_phb_enabled) {
2941         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2942             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2943         }
2944     }
2945 
2946     /* Set up PCI */
2947     spapr_pci_rtas_init();
2948 
2949     phb = spapr_create_default_phb();
2950 
2951     for (i = 0; i < nb_nics; i++) {
2952         NICInfo *nd = &nd_table[i];
2953 
2954         if (!nd->model) {
2955             nd->model = g_strdup("spapr-vlan");
2956         }
2957 
2958         if (g_str_equal(nd->model, "spapr-vlan") ||
2959             g_str_equal(nd->model, "ibmveth")) {
2960             spapr_vlan_create(spapr->vio_bus, nd);
2961         } else {
2962             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2963         }
2964     }
2965 
2966     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2967         spapr_vscsi_create(spapr->vio_bus);
2968     }
2969 
2970     /* Graphics */
2971     has_vga = spapr_vga_init(phb->bus, &error_fatal);
2972     if (has_vga) {
2973         spapr->want_stdout_path = !machine->enable_graphics;
2974         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2975     } else {
2976         spapr->want_stdout_path = true;
2977     }
2978 
2979     if (machine->usb) {
2980         if (smc->use_ohci_by_default) {
2981             pci_create_simple(phb->bus, -1, "pci-ohci");
2982         } else {
2983             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2984         }
2985 
2986         if (has_vga) {
2987             USBBus *usb_bus = usb_bus_find(-1);
2988 
2989             usb_create_simple(usb_bus, "usb-kbd");
2990             usb_create_simple(usb_bus, "usb-mouse");
2991         }
2992     }
2993 
2994     if (kernel_filename) {
2995         uint64_t loaded_addr = 0;
2996 
2997         spapr->kernel_size = load_elf(kernel_filename, NULL,
2998                                       translate_kernel_address, spapr,
2999                                       NULL, &loaded_addr, NULL, NULL, 1,
3000                                       PPC_ELF_MACHINE, 0, 0);
3001         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3002             spapr->kernel_size = load_elf(kernel_filename, NULL,
3003                                           translate_kernel_address, spapr,
3004                                           NULL, &loaded_addr, NULL, NULL, 0,
3005                                           PPC_ELF_MACHINE, 0, 0);
3006             spapr->kernel_le = spapr->kernel_size > 0;
3007         }
3008         if (spapr->kernel_size < 0) {
3009             error_report("error loading %s: %s", kernel_filename,
3010                          load_elf_strerror(spapr->kernel_size));
3011             exit(1);
3012         }
3013 
3014         if (spapr->kernel_addr != loaded_addr) {
3015             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3016                         " to 0x%"PRIx64,
3017                         spapr->kernel_addr, loaded_addr);
3018             spapr->kernel_addr = loaded_addr;
3019         }
3020 
3021         /* load initrd */
3022         if (initrd_filename) {
3023             /* Try to locate the initrd in the gap between the kernel
3024              * and the firmware. Add a bit of space just in case
3025              */
3026             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3027                                   + 0x1ffff) & ~0xffff;
3028             spapr->initrd_size = load_image_targphys(initrd_filename,
3029                                                      spapr->initrd_base,
3030                                                      load_limit
3031                                                      - spapr->initrd_base);
3032             if (spapr->initrd_size < 0) {
3033                 error_report("could not load initial ram disk '%s'",
3034                              initrd_filename);
3035                 exit(1);
3036             }
3037         }
3038     }
3039 
3040     /* FIXME: Should register things through the MachineState's qdev
3041      * interface, this is a legacy from the sPAPREnvironment structure
3042      * which predated MachineState but had a similar function */
3043     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3044     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3045                          &savevm_htab_handlers, spapr);
3046 
3047     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3048 
3049     qemu_register_boot_set(spapr_boot_set, spapr);
3050 
3051     /*
3052      * Nothing needs to be done to resume a suspended guest because
3053      * suspending does not change the machine state, so no need for
3054      * a ->wakeup method.
3055      */
3056     qemu_register_wakeup_support();
3057 
3058     if (kvm_enabled()) {
3059         /* to stop and start vmclock */
3060         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3061                                          &spapr->tb);
3062 
3063         kvmppc_spapr_enable_inkernel_multitce();
3064     }
3065 
3066     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3067     if (spapr->vof) {
3068         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3069         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3070     }
3071 
3072     spapr_watchdog_init(spapr);
3073 }
3074 
3075 #define DEFAULT_KVM_TYPE "auto"
3076 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3077 {
3078     /*
3079      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3080      * accomodate the 'HV' and 'PV' formats that exists in the
3081      * wild. The 'auto' mode is being introduced already as
3082      * lower-case, thus we don't need to bother checking for
3083      * "AUTO".
3084      */
3085     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3086         return 0;
3087     }
3088 
3089     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3090         return 1;
3091     }
3092 
3093     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3094         return 2;
3095     }
3096 
3097     error_report("Unknown kvm-type specified '%s'", vm_type);
3098     exit(1);
3099 }
3100 
3101 /*
3102  * Implementation of an interface to adjust firmware path
3103  * for the bootindex property handling.
3104  */
3105 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3106                                    DeviceState *dev)
3107 {
3108 #define CAST(type, obj, name) \
3109     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3110     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3111     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3112     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3113     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3114 
3115     if (d && bus) {
3116         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3117         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3118         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3119 
3120         if (spapr) {
3121             /*
3122              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3123              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3124              * 0x8000 | (target << 8) | (bus << 5) | lun
3125              * (see the "Logical unit addressing format" table in SAM5)
3126              */
3127             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3128             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3129                                    (uint64_t)id << 48);
3130         } else if (virtio) {
3131             /*
3132              * We use SRP luns of the form 01000000 | (target << 8) | lun
3133              * in the top 32 bits of the 64-bit LUN
3134              * Note: the quote above is from SLOF and it is wrong,
3135              * the actual binding is:
3136              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3137              */
3138             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3139             if (d->lun >= 256) {
3140                 /* Use the LUN "flat space addressing method" */
3141                 id |= 0x4000;
3142             }
3143             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3144                                    (uint64_t)id << 32);
3145         } else if (usb) {
3146             /*
3147              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3148              * in the top 32 bits of the 64-bit LUN
3149              */
3150             unsigned usb_port = atoi(usb->port->path);
3151             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3152             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3153                                    (uint64_t)id << 32);
3154         }
3155     }
3156 
3157     /*
3158      * SLOF probes the USB devices, and if it recognizes that the device is a
3159      * storage device, it changes its name to "storage" instead of "usb-host",
3160      * and additionally adds a child node for the SCSI LUN, so the correct
3161      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3162      */
3163     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3164         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3165         if (usb_device_is_scsi_storage(usbdev)) {
3166             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3167         }
3168     }
3169 
3170     if (phb) {
3171         /* Replace "pci" with "pci@800000020000000" */
3172         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3173     }
3174 
3175     if (vsc) {
3176         /* Same logic as virtio above */
3177         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3178         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3179     }
3180 
3181     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3182         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3183         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3184         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3185     }
3186 
3187     if (pcidev) {
3188         return spapr_pci_fw_dev_name(pcidev);
3189     }
3190 
3191     return NULL;
3192 }
3193 
3194 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3195 {
3196     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3197 
3198     return g_strdup(spapr->kvm_type);
3199 }
3200 
3201 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3202 {
3203     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3204 
3205     g_free(spapr->kvm_type);
3206     spapr->kvm_type = g_strdup(value);
3207 }
3208 
3209 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3210 {
3211     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3212 
3213     return spapr->use_hotplug_event_source;
3214 }
3215 
3216 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3217                                             Error **errp)
3218 {
3219     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3220 
3221     spapr->use_hotplug_event_source = value;
3222 }
3223 
3224 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3225 {
3226     return true;
3227 }
3228 
3229 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3230 {
3231     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3232 
3233     switch (spapr->resize_hpt) {
3234     case SPAPR_RESIZE_HPT_DEFAULT:
3235         return g_strdup("default");
3236     case SPAPR_RESIZE_HPT_DISABLED:
3237         return g_strdup("disabled");
3238     case SPAPR_RESIZE_HPT_ENABLED:
3239         return g_strdup("enabled");
3240     case SPAPR_RESIZE_HPT_REQUIRED:
3241         return g_strdup("required");
3242     }
3243     g_assert_not_reached();
3244 }
3245 
3246 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3247 {
3248     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3249 
3250     if (strcmp(value, "default") == 0) {
3251         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3252     } else if (strcmp(value, "disabled") == 0) {
3253         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3254     } else if (strcmp(value, "enabled") == 0) {
3255         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3256     } else if (strcmp(value, "required") == 0) {
3257         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3258     } else {
3259         error_setg(errp, "Bad value for \"resize-hpt\" property");
3260     }
3261 }
3262 
3263 static bool spapr_get_vof(Object *obj, Error **errp)
3264 {
3265     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3266 
3267     return spapr->vof != NULL;
3268 }
3269 
3270 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3271 {
3272     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3273 
3274     if (spapr->vof) {
3275         vof_cleanup(spapr->vof);
3276         g_free(spapr->vof);
3277         spapr->vof = NULL;
3278     }
3279     if (!value) {
3280         return;
3281     }
3282     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3283 }
3284 
3285 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3286 {
3287     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3288 
3289     if (spapr->irq == &spapr_irq_xics_legacy) {
3290         return g_strdup("legacy");
3291     } else if (spapr->irq == &spapr_irq_xics) {
3292         return g_strdup("xics");
3293     } else if (spapr->irq == &spapr_irq_xive) {
3294         return g_strdup("xive");
3295     } else if (spapr->irq == &spapr_irq_dual) {
3296         return g_strdup("dual");
3297     }
3298     g_assert_not_reached();
3299 }
3300 
3301 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3302 {
3303     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3304 
3305     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3306         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3307         return;
3308     }
3309 
3310     /* The legacy IRQ backend can not be set */
3311     if (strcmp(value, "xics") == 0) {
3312         spapr->irq = &spapr_irq_xics;
3313     } else if (strcmp(value, "xive") == 0) {
3314         spapr->irq = &spapr_irq_xive;
3315     } else if (strcmp(value, "dual") == 0) {
3316         spapr->irq = &spapr_irq_dual;
3317     } else {
3318         error_setg(errp, "Bad value for \"ic-mode\" property");
3319     }
3320 }
3321 
3322 static char *spapr_get_host_model(Object *obj, Error **errp)
3323 {
3324     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3325 
3326     return g_strdup(spapr->host_model);
3327 }
3328 
3329 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3330 {
3331     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3332 
3333     g_free(spapr->host_model);
3334     spapr->host_model = g_strdup(value);
3335 }
3336 
3337 static char *spapr_get_host_serial(Object *obj, Error **errp)
3338 {
3339     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3340 
3341     return g_strdup(spapr->host_serial);
3342 }
3343 
3344 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3345 {
3346     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3347 
3348     g_free(spapr->host_serial);
3349     spapr->host_serial = g_strdup(value);
3350 }
3351 
3352 static void spapr_instance_init(Object *obj)
3353 {
3354     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3355     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3356     MachineState *ms = MACHINE(spapr);
3357     MachineClass *mc = MACHINE_GET_CLASS(ms);
3358 
3359     /*
3360      * NVDIMM support went live in 5.1 without considering that, in
3361      * other archs, the user needs to enable NVDIMM support with the
3362      * 'nvdimm' machine option and the default behavior is NVDIMM
3363      * support disabled. It is too late to roll back to the standard
3364      * behavior without breaking 5.1 guests.
3365      */
3366     if (mc->nvdimm_supported) {
3367         ms->nvdimms_state->is_enabled = true;
3368     }
3369 
3370     spapr->htab_fd = -1;
3371     spapr->use_hotplug_event_source = true;
3372     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3373     object_property_add_str(obj, "kvm-type",
3374                             spapr_get_kvm_type, spapr_set_kvm_type);
3375     object_property_set_description(obj, "kvm-type",
3376                                     "Specifies the KVM virtualization mode (auto,"
3377                                     " hv, pr). Defaults to 'auto'. This mode will use"
3378                                     " any available KVM module loaded in the host,"
3379                                     " where kvm_hv takes precedence if both kvm_hv and"
3380                                     " kvm_pr are loaded.");
3381     object_property_add_bool(obj, "modern-hotplug-events",
3382                             spapr_get_modern_hotplug_events,
3383                             spapr_set_modern_hotplug_events);
3384     object_property_set_description(obj, "modern-hotplug-events",
3385                                     "Use dedicated hotplug event mechanism in"
3386                                     " place of standard EPOW events when possible"
3387                                     " (required for memory hot-unplug support)");
3388     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3389                             "Maximum permitted CPU compatibility mode");
3390 
3391     object_property_add_str(obj, "resize-hpt",
3392                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3393     object_property_set_description(obj, "resize-hpt",
3394                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3395     object_property_add_uint32_ptr(obj, "vsmt",
3396                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3397     object_property_set_description(obj, "vsmt",
3398                                     "Virtual SMT: KVM behaves as if this were"
3399                                     " the host's SMT mode");
3400 
3401     object_property_add_bool(obj, "vfio-no-msix-emulation",
3402                              spapr_get_msix_emulation, NULL);
3403 
3404     object_property_add_uint64_ptr(obj, "kernel-addr",
3405                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3406     object_property_set_description(obj, "kernel-addr",
3407                                     stringify(KERNEL_LOAD_ADDR)
3408                                     " for -kernel is the default");
3409     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3410 
3411     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3412     object_property_set_description(obj, "x-vof",
3413                                     "Enable Virtual Open Firmware (experimental)");
3414 
3415     /* The machine class defines the default interrupt controller mode */
3416     spapr->irq = smc->irq;
3417     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3418                             spapr_set_ic_mode);
3419     object_property_set_description(obj, "ic-mode",
3420                  "Specifies the interrupt controller mode (xics, xive, dual)");
3421 
3422     object_property_add_str(obj, "host-model",
3423         spapr_get_host_model, spapr_set_host_model);
3424     object_property_set_description(obj, "host-model",
3425         "Host model to advertise in guest device tree");
3426     object_property_add_str(obj, "host-serial",
3427         spapr_get_host_serial, spapr_set_host_serial);
3428     object_property_set_description(obj, "host-serial",
3429         "Host serial number to advertise in guest device tree");
3430 }
3431 
3432 static void spapr_machine_finalizefn(Object *obj)
3433 {
3434     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3435 
3436     g_free(spapr->kvm_type);
3437 }
3438 
3439 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3440 {
3441     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3442     PowerPCCPU *cpu = POWERPC_CPU(cs);
3443     CPUPPCState *env = &cpu->env;
3444 
3445     cpu_synchronize_state(cs);
3446     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3447     if (spapr->fwnmi_system_reset_addr != -1) {
3448         uint64_t rtas_addr, addr;
3449 
3450         /* get rtas addr from fdt */
3451         rtas_addr = spapr_get_rtas_addr();
3452         if (!rtas_addr) {
3453             qemu_system_guest_panicked(NULL);
3454             return;
3455         }
3456 
3457         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3458         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3459         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3460         env->gpr[3] = addr;
3461     }
3462     ppc_cpu_do_system_reset(cs);
3463     if (spapr->fwnmi_system_reset_addr != -1) {
3464         env->nip = spapr->fwnmi_system_reset_addr;
3465     }
3466 }
3467 
3468 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3469 {
3470     CPUState *cs;
3471 
3472     CPU_FOREACH(cs) {
3473         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3474     }
3475 }
3476 
3477 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3478                           void *fdt, int *fdt_start_offset, Error **errp)
3479 {
3480     uint64_t addr;
3481     uint32_t node;
3482 
3483     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3484     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3485                                     &error_abort);
3486     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3487                                              SPAPR_MEMORY_BLOCK_SIZE);
3488     return 0;
3489 }
3490 
3491 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3492                            bool dedicated_hp_event_source)
3493 {
3494     SpaprDrc *drc;
3495     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3496     int i;
3497     uint64_t addr = addr_start;
3498     bool hotplugged = spapr_drc_hotplugged(dev);
3499 
3500     for (i = 0; i < nr_lmbs; i++) {
3501         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3502                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3503         g_assert(drc);
3504 
3505         /*
3506          * memory_device_get_free_addr() provided a range of free addresses
3507          * that doesn't overlap with any existing mapping at pre-plug. The
3508          * corresponding LMB DRCs are thus assumed to be all attachable.
3509          */
3510         spapr_drc_attach(drc, dev);
3511         if (!hotplugged) {
3512             spapr_drc_reset(drc);
3513         }
3514         addr += SPAPR_MEMORY_BLOCK_SIZE;
3515     }
3516     /* send hotplug notification to the
3517      * guest only in case of hotplugged memory
3518      */
3519     if (hotplugged) {
3520         if (dedicated_hp_event_source) {
3521             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3522                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3523             g_assert(drc);
3524             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3525                                                    nr_lmbs,
3526                                                    spapr_drc_index(drc));
3527         } else {
3528             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3529                                            nr_lmbs);
3530         }
3531     }
3532 }
3533 
3534 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3535 {
3536     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3537     PCDIMMDevice *dimm = PC_DIMM(dev);
3538     uint64_t size, addr;
3539     int64_t slot;
3540     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3541 
3542     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3543 
3544     pc_dimm_plug(dimm, MACHINE(ms));
3545 
3546     if (!is_nvdimm) {
3547         addr = object_property_get_uint(OBJECT(dimm),
3548                                         PC_DIMM_ADDR_PROP, &error_abort);
3549         spapr_add_lmbs(dev, addr, size,
3550                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3551     } else {
3552         slot = object_property_get_int(OBJECT(dimm),
3553                                        PC_DIMM_SLOT_PROP, &error_abort);
3554         /* We should have valid slot number at this point */
3555         g_assert(slot >= 0);
3556         spapr_add_nvdimm(dev, slot);
3557     }
3558 }
3559 
3560 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3561                                   Error **errp)
3562 {
3563     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3564     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3565     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3566     PCDIMMDevice *dimm = PC_DIMM(dev);
3567     Error *local_err = NULL;
3568     uint64_t size;
3569     Object *memdev;
3570     hwaddr pagesize;
3571 
3572     if (!smc->dr_lmb_enabled) {
3573         error_setg(errp, "Memory hotplug not supported for this machine");
3574         return;
3575     }
3576 
3577     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3578     if (local_err) {
3579         error_propagate(errp, local_err);
3580         return;
3581     }
3582 
3583     if (is_nvdimm) {
3584         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3585             return;
3586         }
3587     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3588         error_setg(errp, "Hotplugged memory size must be a multiple of "
3589                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3590         return;
3591     }
3592 
3593     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3594                                       &error_abort);
3595     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3596     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3597         return;
3598     }
3599 
3600     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3601 }
3602 
3603 struct SpaprDimmState {
3604     PCDIMMDevice *dimm;
3605     uint32_t nr_lmbs;
3606     QTAILQ_ENTRY(SpaprDimmState) next;
3607 };
3608 
3609 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3610                                                        PCDIMMDevice *dimm)
3611 {
3612     SpaprDimmState *dimm_state = NULL;
3613 
3614     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3615         if (dimm_state->dimm == dimm) {
3616             break;
3617         }
3618     }
3619     return dimm_state;
3620 }
3621 
3622 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3623                                                       uint32_t nr_lmbs,
3624                                                       PCDIMMDevice *dimm)
3625 {
3626     SpaprDimmState *ds = NULL;
3627 
3628     /*
3629      * If this request is for a DIMM whose removal had failed earlier
3630      * (due to guest's refusal to remove the LMBs), we would have this
3631      * dimm already in the pending_dimm_unplugs list. In that
3632      * case don't add again.
3633      */
3634     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3635     if (!ds) {
3636         ds = g_new0(SpaprDimmState, 1);
3637         ds->nr_lmbs = nr_lmbs;
3638         ds->dimm = dimm;
3639         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3640     }
3641     return ds;
3642 }
3643 
3644 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3645                                               SpaprDimmState *dimm_state)
3646 {
3647     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3648     g_free(dimm_state);
3649 }
3650 
3651 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3652                                                         PCDIMMDevice *dimm)
3653 {
3654     SpaprDrc *drc;
3655     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3656                                                   &error_abort);
3657     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3658     uint32_t avail_lmbs = 0;
3659     uint64_t addr_start, addr;
3660     int i;
3661 
3662     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3663                                           &error_abort);
3664 
3665     addr = addr_start;
3666     for (i = 0; i < nr_lmbs; i++) {
3667         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3668                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3669         g_assert(drc);
3670         if (drc->dev) {
3671             avail_lmbs++;
3672         }
3673         addr += SPAPR_MEMORY_BLOCK_SIZE;
3674     }
3675 
3676     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3677 }
3678 
3679 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3680 {
3681     SpaprDimmState *ds;
3682     PCDIMMDevice *dimm;
3683     SpaprDrc *drc;
3684     uint32_t nr_lmbs;
3685     uint64_t size, addr_start, addr;
3686     g_autofree char *qapi_error = NULL;
3687     int i;
3688 
3689     if (!dev) {
3690         return;
3691     }
3692 
3693     dimm = PC_DIMM(dev);
3694     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3695 
3696     /*
3697      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3698      * unplug state, but one of its DRC is marked as unplug_requested.
3699      * This is bad and weird enough to g_assert() out.
3700      */
3701     g_assert(ds);
3702 
3703     spapr_pending_dimm_unplugs_remove(spapr, ds);
3704 
3705     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3706     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3707 
3708     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3709                                           &error_abort);
3710 
3711     addr = addr_start;
3712     for (i = 0; i < nr_lmbs; i++) {
3713         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3714                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3715         g_assert(drc);
3716 
3717         drc->unplug_requested = false;
3718         addr += SPAPR_MEMORY_BLOCK_SIZE;
3719     }
3720 
3721     /*
3722      * Tell QAPI that something happened and the memory
3723      * hotunplug wasn't successful. Keep sending
3724      * MEM_UNPLUG_ERROR even while sending
3725      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3726      * MEM_UNPLUG_ERROR is due.
3727      */
3728     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3729                                  "for device %s", dev->id);
3730 
3731     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3732 
3733     qapi_event_send_device_unplug_guest_error(dev->id,
3734                                               dev->canonical_path);
3735 }
3736 
3737 /* Callback to be called during DRC release. */
3738 void spapr_lmb_release(DeviceState *dev)
3739 {
3740     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3741     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3742     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3743 
3744     /* This information will get lost if a migration occurs
3745      * during the unplug process. In this case recover it. */
3746     if (ds == NULL) {
3747         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3748         g_assert(ds);
3749         /* The DRC being examined by the caller at least must be counted */
3750         g_assert(ds->nr_lmbs);
3751     }
3752 
3753     if (--ds->nr_lmbs) {
3754         return;
3755     }
3756 
3757     /*
3758      * Now that all the LMBs have been removed by the guest, call the
3759      * unplug handler chain. This can never fail.
3760      */
3761     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3762     object_unparent(OBJECT(dev));
3763 }
3764 
3765 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3766 {
3767     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3768     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3769 
3770     /* We really shouldn't get this far without anything to unplug */
3771     g_assert(ds);
3772 
3773     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3774     qdev_unrealize(dev);
3775     spapr_pending_dimm_unplugs_remove(spapr, ds);
3776 }
3777 
3778 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3779                                         DeviceState *dev, Error **errp)
3780 {
3781     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3782     PCDIMMDevice *dimm = PC_DIMM(dev);
3783     uint32_t nr_lmbs;
3784     uint64_t size, addr_start, addr;
3785     int i;
3786     SpaprDrc *drc;
3787 
3788     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3789         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3790         return;
3791     }
3792 
3793     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3794     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3795 
3796     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3797                                           &error_abort);
3798 
3799     /*
3800      * An existing pending dimm state for this DIMM means that there is an
3801      * unplug operation in progress, waiting for the spapr_lmb_release
3802      * callback to complete the job (BQL can't cover that far). In this case,
3803      * bail out to avoid detaching DRCs that were already released.
3804      */
3805     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3806         error_setg(errp, "Memory unplug already in progress for device %s",
3807                    dev->id);
3808         return;
3809     }
3810 
3811     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3812 
3813     addr = addr_start;
3814     for (i = 0; i < nr_lmbs; i++) {
3815         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3816                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3817         g_assert(drc);
3818 
3819         spapr_drc_unplug_request(drc);
3820         addr += SPAPR_MEMORY_BLOCK_SIZE;
3821     }
3822 
3823     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3824                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3825     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3826                                               nr_lmbs, spapr_drc_index(drc));
3827 }
3828 
3829 /* Callback to be called during DRC release. */
3830 void spapr_core_release(DeviceState *dev)
3831 {
3832     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3833 
3834     /* Call the unplug handler chain. This can never fail. */
3835     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3836     object_unparent(OBJECT(dev));
3837 }
3838 
3839 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3840 {
3841     MachineState *ms = MACHINE(hotplug_dev);
3842     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3843     CPUCore *cc = CPU_CORE(dev);
3844     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3845 
3846     if (smc->pre_2_10_has_unused_icps) {
3847         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3848         int i;
3849 
3850         for (i = 0; i < cc->nr_threads; i++) {
3851             CPUState *cs = CPU(sc->threads[i]);
3852 
3853             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3854         }
3855     }
3856 
3857     assert(core_slot);
3858     core_slot->cpu = NULL;
3859     qdev_unrealize(dev);
3860 }
3861 
3862 static
3863 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3864                                Error **errp)
3865 {
3866     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3867     int index;
3868     SpaprDrc *drc;
3869     CPUCore *cc = CPU_CORE(dev);
3870 
3871     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3872         error_setg(errp, "Unable to find CPU core with core-id: %d",
3873                    cc->core_id);
3874         return;
3875     }
3876     if (index == 0) {
3877         error_setg(errp, "Boot CPU core may not be unplugged");
3878         return;
3879     }
3880 
3881     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3882                           spapr_vcpu_id(spapr, cc->core_id));
3883     g_assert(drc);
3884 
3885     if (!spapr_drc_unplug_requested(drc)) {
3886         spapr_drc_unplug_request(drc);
3887     }
3888 
3889     /*
3890      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3891      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3892      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3893      * attempt (e.g. the kernel will refuse to remove the last online
3894      * CPU), we will never attempt it again because unplug_requested
3895      * will still be 'true' in that case.
3896      */
3897     spapr_hotplug_req_remove_by_index(drc);
3898 }
3899 
3900 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3901                            void *fdt, int *fdt_start_offset, Error **errp)
3902 {
3903     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3904     CPUState *cs = CPU(core->threads[0]);
3905     PowerPCCPU *cpu = POWERPC_CPU(cs);
3906     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3907     int id = spapr_get_vcpu_id(cpu);
3908     g_autofree char *nodename = NULL;
3909     int offset;
3910 
3911     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3912     offset = fdt_add_subnode(fdt, 0, nodename);
3913 
3914     spapr_dt_cpu(cs, fdt, offset, spapr);
3915 
3916     /*
3917      * spapr_dt_cpu() does not fill the 'name' property in the
3918      * CPU node. The function is called during boot process, before
3919      * and after CAS, and overwriting the 'name' property written
3920      * by SLOF is not allowed.
3921      *
3922      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3923      * CPUs more compatible with the coldplugged ones, which have
3924      * the 'name' property. Linux Kernel also relies on this
3925      * property to identify CPU nodes.
3926      */
3927     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3928 
3929     *fdt_start_offset = offset;
3930     return 0;
3931 }
3932 
3933 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3934 {
3935     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3936     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3937     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3938     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3939     CPUCore *cc = CPU_CORE(dev);
3940     CPUState *cs;
3941     SpaprDrc *drc;
3942     CPUArchId *core_slot;
3943     int index;
3944     bool hotplugged = spapr_drc_hotplugged(dev);
3945     int i;
3946 
3947     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3948     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3949 
3950     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3951                           spapr_vcpu_id(spapr, cc->core_id));
3952 
3953     g_assert(drc || !mc->has_hotpluggable_cpus);
3954 
3955     if (drc) {
3956         /*
3957          * spapr_core_pre_plug() already buys us this is a brand new
3958          * core being plugged into a free slot. Nothing should already
3959          * be attached to the corresponding DRC.
3960          */
3961         spapr_drc_attach(drc, dev);
3962 
3963         if (hotplugged) {
3964             /*
3965              * Send hotplug notification interrupt to the guest only
3966              * in case of hotplugged CPUs.
3967              */
3968             spapr_hotplug_req_add_by_index(drc);
3969         } else {
3970             spapr_drc_reset(drc);
3971         }
3972     }
3973 
3974     core_slot->cpu = OBJECT(dev);
3975 
3976     /*
3977      * Set compatibility mode to match the boot CPU, which was either set
3978      * by the machine reset code or by CAS. This really shouldn't fail at
3979      * this point.
3980      */
3981     if (hotplugged) {
3982         for (i = 0; i < cc->nr_threads; i++) {
3983             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3984                            &error_abort);
3985         }
3986     }
3987 
3988     if (smc->pre_2_10_has_unused_icps) {
3989         for (i = 0; i < cc->nr_threads; i++) {
3990             cs = CPU(core->threads[i]);
3991             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3992         }
3993     }
3994 }
3995 
3996 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3997                                 Error **errp)
3998 {
3999     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4000     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4001     CPUCore *cc = CPU_CORE(dev);
4002     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4003     const char *type = object_get_typename(OBJECT(dev));
4004     CPUArchId *core_slot;
4005     int index;
4006     unsigned int smp_threads = machine->smp.threads;
4007 
4008     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4009         error_setg(errp, "CPU hotplug not supported for this machine");
4010         return;
4011     }
4012 
4013     if (strcmp(base_core_type, type)) {
4014         error_setg(errp, "CPU core type should be %s", base_core_type);
4015         return;
4016     }
4017 
4018     if (cc->core_id % smp_threads) {
4019         error_setg(errp, "invalid core id %d", cc->core_id);
4020         return;
4021     }
4022 
4023     /*
4024      * In general we should have homogeneous threads-per-core, but old
4025      * (pre hotplug support) machine types allow the last core to have
4026      * reduced threads as a compatibility hack for when we allowed
4027      * total vcpus not a multiple of threads-per-core.
4028      */
4029     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4030         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4031                    smp_threads);
4032         return;
4033     }
4034 
4035     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4036     if (!core_slot) {
4037         error_setg(errp, "core id %d out of range", cc->core_id);
4038         return;
4039     }
4040 
4041     if (core_slot->cpu) {
4042         error_setg(errp, "core %d already populated", cc->core_id);
4043         return;
4044     }
4045 
4046     numa_cpu_pre_plug(core_slot, dev, errp);
4047 }
4048 
4049 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4050                           void *fdt, int *fdt_start_offset, Error **errp)
4051 {
4052     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4053     int intc_phandle;
4054 
4055     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4056     if (intc_phandle <= 0) {
4057         return -1;
4058     }
4059 
4060     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4061         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4062         return -1;
4063     }
4064 
4065     /* generally SLOF creates these, for hotplug it's up to QEMU */
4066     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4067 
4068     return 0;
4069 }
4070 
4071 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4072                                Error **errp)
4073 {
4074     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4075     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4076     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4077     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4078     SpaprDrc *drc;
4079 
4080     if (dev->hotplugged && !smc->dr_phb_enabled) {
4081         error_setg(errp, "PHB hotplug not supported for this machine");
4082         return false;
4083     }
4084 
4085     if (sphb->index == (uint32_t)-1) {
4086         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4087         return false;
4088     }
4089 
4090     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4091     if (drc && drc->dev) {
4092         error_setg(errp, "PHB %d already attached", sphb->index);
4093         return false;
4094     }
4095 
4096     /*
4097      * This will check that sphb->index doesn't exceed the maximum number of
4098      * PHBs for the current machine type.
4099      */
4100     return
4101         smc->phb_placement(spapr, sphb->index,
4102                            &sphb->buid, &sphb->io_win_addr,
4103                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4104                            windows_supported, sphb->dma_liobn,
4105                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
4106                            errp);
4107 }
4108 
4109 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4110 {
4111     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4112     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4113     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4114     SpaprDrc *drc;
4115     bool hotplugged = spapr_drc_hotplugged(dev);
4116 
4117     if (!smc->dr_phb_enabled) {
4118         return;
4119     }
4120 
4121     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4122     /* hotplug hooks should check it's enabled before getting this far */
4123     assert(drc);
4124 
4125     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4126     spapr_drc_attach(drc, dev);
4127 
4128     if (hotplugged) {
4129         spapr_hotplug_req_add_by_index(drc);
4130     } else {
4131         spapr_drc_reset(drc);
4132     }
4133 }
4134 
4135 void spapr_phb_release(DeviceState *dev)
4136 {
4137     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4138 
4139     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4140     object_unparent(OBJECT(dev));
4141 }
4142 
4143 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4144 {
4145     qdev_unrealize(dev);
4146 }
4147 
4148 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4149                                      DeviceState *dev, Error **errp)
4150 {
4151     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4152     SpaprDrc *drc;
4153 
4154     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4155     assert(drc);
4156 
4157     if (!spapr_drc_unplug_requested(drc)) {
4158         spapr_drc_unplug_request(drc);
4159         spapr_hotplug_req_remove_by_index(drc);
4160     } else {
4161         error_setg(errp,
4162                    "PCI Host Bridge unplug already in progress for device %s",
4163                    dev->id);
4164     }
4165 }
4166 
4167 static
4168 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4169                               Error **errp)
4170 {
4171     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4172 
4173     if (spapr->tpm_proxy != NULL) {
4174         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4175         return false;
4176     }
4177 
4178     return true;
4179 }
4180 
4181 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4182 {
4183     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4184     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4185 
4186     /* Already checked in spapr_tpm_proxy_pre_plug() */
4187     g_assert(spapr->tpm_proxy == NULL);
4188 
4189     spapr->tpm_proxy = tpm_proxy;
4190 }
4191 
4192 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4193 {
4194     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4195 
4196     qdev_unrealize(dev);
4197     object_unparent(OBJECT(dev));
4198     spapr->tpm_proxy = NULL;
4199 }
4200 
4201 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4202                                       DeviceState *dev, Error **errp)
4203 {
4204     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4205         spapr_memory_plug(hotplug_dev, dev);
4206     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4207         spapr_core_plug(hotplug_dev, dev);
4208     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4209         spapr_phb_plug(hotplug_dev, dev);
4210     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4211         spapr_tpm_proxy_plug(hotplug_dev, dev);
4212     }
4213 }
4214 
4215 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4216                                         DeviceState *dev, Error **errp)
4217 {
4218     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4219         spapr_memory_unplug(hotplug_dev, dev);
4220     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4221         spapr_core_unplug(hotplug_dev, dev);
4222     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4223         spapr_phb_unplug(hotplug_dev, dev);
4224     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4225         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4226     }
4227 }
4228 
4229 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4230 {
4231     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4232         /*
4233          * CAS will process all pending unplug requests.
4234          *
4235          * HACK: a guest could theoretically have cleared all bits in OV5,
4236          * but none of the guests we care for do.
4237          */
4238         spapr_ovec_empty(spapr->ov5_cas);
4239 }
4240 
4241 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4242                                                 DeviceState *dev, Error **errp)
4243 {
4244     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4245     MachineClass *mc = MACHINE_GET_CLASS(sms);
4246     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4247 
4248     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4249         if (spapr_memory_hot_unplug_supported(sms)) {
4250             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4251         } else {
4252             error_setg(errp, "Memory hot unplug not supported for this guest");
4253         }
4254     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4255         if (!mc->has_hotpluggable_cpus) {
4256             error_setg(errp, "CPU hot unplug not supported on this machine");
4257             return;
4258         }
4259         spapr_core_unplug_request(hotplug_dev, dev, errp);
4260     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4261         if (!smc->dr_phb_enabled) {
4262             error_setg(errp, "PHB hot unplug not supported on this machine");
4263             return;
4264         }
4265         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4266     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4267         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4268     }
4269 }
4270 
4271 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4272                                           DeviceState *dev, Error **errp)
4273 {
4274     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4275         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4276     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4277         spapr_core_pre_plug(hotplug_dev, dev, errp);
4278     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4279         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4280     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4281         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4282     }
4283 }
4284 
4285 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4286                                                  DeviceState *dev)
4287 {
4288     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4289         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4290         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4291         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4292         return HOTPLUG_HANDLER(machine);
4293     }
4294     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4295         PCIDevice *pcidev = PCI_DEVICE(dev);
4296         PCIBus *root = pci_device_root_bus(pcidev);
4297         SpaprPhbState *phb =
4298             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4299                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4300 
4301         if (phb) {
4302             return HOTPLUG_HANDLER(phb);
4303         }
4304     }
4305     return NULL;
4306 }
4307 
4308 static CpuInstanceProperties
4309 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4310 {
4311     CPUArchId *core_slot;
4312     MachineClass *mc = MACHINE_GET_CLASS(machine);
4313 
4314     /* make sure possible_cpu are intialized */
4315     mc->possible_cpu_arch_ids(machine);
4316     /* get CPU core slot containing thread that matches cpu_index */
4317     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4318     assert(core_slot);
4319     return core_slot->props;
4320 }
4321 
4322 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4323 {
4324     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4325 }
4326 
4327 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4328 {
4329     int i;
4330     unsigned int smp_threads = machine->smp.threads;
4331     unsigned int smp_cpus = machine->smp.cpus;
4332     const char *core_type;
4333     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4334     MachineClass *mc = MACHINE_GET_CLASS(machine);
4335 
4336     if (!mc->has_hotpluggable_cpus) {
4337         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4338     }
4339     if (machine->possible_cpus) {
4340         assert(machine->possible_cpus->len == spapr_max_cores);
4341         return machine->possible_cpus;
4342     }
4343 
4344     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4345     if (!core_type) {
4346         error_report("Unable to find sPAPR CPU Core definition");
4347         exit(1);
4348     }
4349 
4350     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4351                              sizeof(CPUArchId) * spapr_max_cores);
4352     machine->possible_cpus->len = spapr_max_cores;
4353     for (i = 0; i < machine->possible_cpus->len; i++) {
4354         int core_id = i * smp_threads;
4355 
4356         machine->possible_cpus->cpus[i].type = core_type;
4357         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4358         machine->possible_cpus->cpus[i].arch_id = core_id;
4359         machine->possible_cpus->cpus[i].props.has_core_id = true;
4360         machine->possible_cpus->cpus[i].props.core_id = core_id;
4361     }
4362     return machine->possible_cpus;
4363 }
4364 
4365 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4366                                 uint64_t *buid, hwaddr *pio,
4367                                 hwaddr *mmio32, hwaddr *mmio64,
4368                                 unsigned n_dma, uint32_t *liobns,
4369                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4370 {
4371     /*
4372      * New-style PHB window placement.
4373      *
4374      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4375      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4376      * windows.
4377      *
4378      * Some guest kernels can't work with MMIO windows above 1<<46
4379      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4380      *
4381      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4382      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4383      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4384      * 1TiB 64-bit MMIO windows for each PHB.
4385      */
4386     const uint64_t base_buid = 0x800000020000000ULL;
4387     int i;
4388 
4389     /* Sanity check natural alignments */
4390     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4391     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4392     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4393     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4394     /* Sanity check bounds */
4395     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4396                       SPAPR_PCI_MEM32_WIN_SIZE);
4397     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4398                       SPAPR_PCI_MEM64_WIN_SIZE);
4399 
4400     if (index >= SPAPR_MAX_PHBS) {
4401         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4402                    SPAPR_MAX_PHBS - 1);
4403         return false;
4404     }
4405 
4406     *buid = base_buid + index;
4407     for (i = 0; i < n_dma; ++i) {
4408         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4409     }
4410 
4411     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4412     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4413     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4414 
4415     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4416     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4417     return true;
4418 }
4419 
4420 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4421 {
4422     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4423 
4424     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4425 }
4426 
4427 static void spapr_ics_resend(XICSFabric *dev)
4428 {
4429     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4430 
4431     ics_resend(spapr->ics);
4432 }
4433 
4434 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4435 {
4436     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4437 
4438     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4439 }
4440 
4441 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4442                                  Monitor *mon)
4443 {
4444     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4445 
4446     spapr_irq_print_info(spapr, mon);
4447     monitor_printf(mon, "irqchip: %s\n",
4448                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4449 }
4450 
4451 /*
4452  * This is a XIVE only operation
4453  */
4454 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4455                            uint8_t nvt_blk, uint32_t nvt_idx,
4456                            bool cam_ignore, uint8_t priority,
4457                            uint32_t logic_serv, XiveTCTXMatch *match)
4458 {
4459     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4460     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4461     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4462     int count;
4463 
4464     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4465                            priority, logic_serv, match);
4466     if (count < 0) {
4467         return count;
4468     }
4469 
4470     /*
4471      * When we implement the save and restore of the thread interrupt
4472      * contexts in the enter/exit CPU handlers of the machine and the
4473      * escalations in QEMU, we should be able to handle non dispatched
4474      * vCPUs.
4475      *
4476      * Until this is done, the sPAPR machine should find at least one
4477      * matching context always.
4478      */
4479     if (count == 0) {
4480         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4481                       nvt_blk, nvt_idx);
4482     }
4483 
4484     return count;
4485 }
4486 
4487 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4488 {
4489     return cpu->vcpu_id;
4490 }
4491 
4492 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4493 {
4494     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4495     MachineState *ms = MACHINE(spapr);
4496     int vcpu_id;
4497 
4498     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4499 
4500     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4501         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4502         error_append_hint(errp, "Adjust the number of cpus to %d "
4503                           "or try to raise the number of threads per core\n",
4504                           vcpu_id * ms->smp.threads / spapr->vsmt);
4505         return false;
4506     }
4507 
4508     cpu->vcpu_id = vcpu_id;
4509     return true;
4510 }
4511 
4512 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4513 {
4514     CPUState *cs;
4515 
4516     CPU_FOREACH(cs) {
4517         PowerPCCPU *cpu = POWERPC_CPU(cs);
4518 
4519         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4520             return cpu;
4521         }
4522     }
4523 
4524     return NULL;
4525 }
4526 
4527 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4528 {
4529     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4530 
4531     return spapr_cpu->in_nested;
4532 }
4533 
4534 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4535 {
4536     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4537 
4538     /* These are only called by TCG, KVM maintains dispatch state */
4539 
4540     spapr_cpu->prod = false;
4541     if (spapr_cpu->vpa_addr) {
4542         CPUState *cs = CPU(cpu);
4543         uint32_t dispatch;
4544 
4545         dispatch = ldl_be_phys(cs->as,
4546                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4547         dispatch++;
4548         if ((dispatch & 1) != 0) {
4549             qemu_log_mask(LOG_GUEST_ERROR,
4550                           "VPA: incorrect dispatch counter value for "
4551                           "dispatched partition %u, correcting.\n", dispatch);
4552             dispatch++;
4553         }
4554         stl_be_phys(cs->as,
4555                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4556     }
4557 }
4558 
4559 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4560 {
4561     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4562 
4563     if (spapr_cpu->vpa_addr) {
4564         CPUState *cs = CPU(cpu);
4565         uint32_t dispatch;
4566 
4567         dispatch = ldl_be_phys(cs->as,
4568                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4569         dispatch++;
4570         if ((dispatch & 1) != 1) {
4571             qemu_log_mask(LOG_GUEST_ERROR,
4572                           "VPA: incorrect dispatch counter value for "
4573                           "preempted partition %u, correcting.\n", dispatch);
4574             dispatch++;
4575         }
4576         stl_be_phys(cs->as,
4577                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4578     }
4579 }
4580 
4581 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4582 {
4583     MachineClass *mc = MACHINE_CLASS(oc);
4584     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4585     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4586     NMIClass *nc = NMI_CLASS(oc);
4587     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4588     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4589     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4590     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4591     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4592     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4593 
4594     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4595     mc->ignore_boot_device_suffixes = true;
4596 
4597     /*
4598      * We set up the default / latest behaviour here.  The class_init
4599      * functions for the specific versioned machine types can override
4600      * these details for backwards compatibility
4601      */
4602     mc->init = spapr_machine_init;
4603     mc->reset = spapr_machine_reset;
4604     mc->block_default_type = IF_SCSI;
4605 
4606     /*
4607      * Setting max_cpus to INT32_MAX. Both KVM and TCG max_cpus values
4608      * should be limited by the host capability instead of hardcoded.
4609      * max_cpus for KVM guests will be checked in kvm_init(), and TCG
4610      * guests are welcome to have as many CPUs as the host are capable
4611      * of emulate.
4612      */
4613     mc->max_cpus = INT32_MAX;
4614 
4615     mc->no_parallel = 1;
4616     mc->default_boot_order = "";
4617     mc->default_ram_size = 512 * MiB;
4618     mc->default_ram_id = "ppc_spapr.ram";
4619     mc->default_display = "std";
4620     mc->kvm_type = spapr_kvm_type;
4621     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4622     mc->pci_allow_0_address = true;
4623     assert(!mc->get_hotplug_handler);
4624     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4625     hc->pre_plug = spapr_machine_device_pre_plug;
4626     hc->plug = spapr_machine_device_plug;
4627     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4628     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4629     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4630     hc->unplug_request = spapr_machine_device_unplug_request;
4631     hc->unplug = spapr_machine_device_unplug;
4632 
4633     smc->dr_lmb_enabled = true;
4634     smc->update_dt_enabled = true;
4635     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.2");
4636     mc->has_hotpluggable_cpus = true;
4637     mc->nvdimm_supported = true;
4638     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4639     fwc->get_dev_path = spapr_get_fw_dev_path;
4640     nc->nmi_monitor_handler = spapr_nmi;
4641     smc->phb_placement = spapr_phb_placement;
4642     vhc->cpu_in_nested = spapr_cpu_in_nested;
4643     vhc->deliver_hv_excp = spapr_exit_nested;
4644     vhc->hypercall = emulate_spapr_hypercall;
4645     vhc->hpt_mask = spapr_hpt_mask;
4646     vhc->map_hptes = spapr_map_hptes;
4647     vhc->unmap_hptes = spapr_unmap_hptes;
4648     vhc->hpte_set_c = spapr_hpte_set_c;
4649     vhc->hpte_set_r = spapr_hpte_set_r;
4650     vhc->get_pate = spapr_get_pate;
4651     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4652     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4653     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4654     xic->ics_get = spapr_ics_get;
4655     xic->ics_resend = spapr_ics_resend;
4656     xic->icp_get = spapr_icp_get;
4657     ispc->print_info = spapr_pic_print_info;
4658     /* Force NUMA node memory size to be a multiple of
4659      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4660      * in which LMBs are represented and hot-added
4661      */
4662     mc->numa_mem_align_shift = 28;
4663     mc->auto_enable_numa = true;
4664 
4665     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4666     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4667     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4668     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4669     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4670     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4671     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4672     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4673     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4674     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4675     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4676     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4677 
4678     /*
4679      * This cap specifies whether the AIL 3 mode for
4680      * H_SET_RESOURCE is supported. The default is modified
4681      * by default_caps_with_cpu().
4682      */
4683     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4684     spapr_caps_add_properties(smc);
4685     smc->irq = &spapr_irq_dual;
4686     smc->dr_phb_enabled = true;
4687     smc->linux_pci_probe = true;
4688     smc->smp_threads_vsmt = true;
4689     smc->nr_xirqs = SPAPR_NR_XIRQS;
4690     xfc->match_nvt = spapr_match_nvt;
4691     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4692     vmc->quiesce = spapr_vof_quiesce;
4693     vmc->setprop = spapr_vof_setprop;
4694 }
4695 
4696 static const TypeInfo spapr_machine_info = {
4697     .name          = TYPE_SPAPR_MACHINE,
4698     .parent        = TYPE_MACHINE,
4699     .abstract      = true,
4700     .instance_size = sizeof(SpaprMachineState),
4701     .instance_init = spapr_instance_init,
4702     .instance_finalize = spapr_machine_finalizefn,
4703     .class_size    = sizeof(SpaprMachineClass),
4704     .class_init    = spapr_machine_class_init,
4705     .interfaces = (InterfaceInfo[]) {
4706         { TYPE_FW_PATH_PROVIDER },
4707         { TYPE_NMI },
4708         { TYPE_HOTPLUG_HANDLER },
4709         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4710         { TYPE_XICS_FABRIC },
4711         { TYPE_INTERRUPT_STATS_PROVIDER },
4712         { TYPE_XIVE_FABRIC },
4713         { TYPE_VOF_MACHINE_IF },
4714         { }
4715     },
4716 };
4717 
4718 static void spapr_machine_latest_class_options(MachineClass *mc)
4719 {
4720     mc->alias = "pseries";
4721     mc->is_default = true;
4722 }
4723 
4724 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4725     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4726                                                     void *data)      \
4727     {                                                                \
4728         MachineClass *mc = MACHINE_CLASS(oc);                        \
4729         spapr_machine_##suffix##_class_options(mc);                  \
4730         if (latest) {                                                \
4731             spapr_machine_latest_class_options(mc);                  \
4732         }                                                            \
4733     }                                                                \
4734     static const TypeInfo spapr_machine_##suffix##_info = {          \
4735         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4736         .parent = TYPE_SPAPR_MACHINE,                                \
4737         .class_init = spapr_machine_##suffix##_class_init,           \
4738     };                                                               \
4739     static void spapr_machine_register_##suffix(void)                \
4740     {                                                                \
4741         type_register(&spapr_machine_##suffix##_info);               \
4742     }                                                                \
4743     type_init(spapr_machine_register_##suffix)
4744 
4745 /*
4746  * pseries-8.1
4747  */
4748 static void spapr_machine_8_1_class_options(MachineClass *mc)
4749 {
4750     /* Defaults for the latest behaviour inherited from the base class */
4751 }
4752 
4753 DEFINE_SPAPR_MACHINE(8_1, "8.1", true);
4754 
4755 /*
4756  * pseries-8.0
4757  */
4758 static void spapr_machine_8_0_class_options(MachineClass *mc)
4759 {
4760     spapr_machine_8_1_class_options(mc);
4761     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4762 }
4763 
4764 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4765 
4766 /*
4767  * pseries-7.2
4768  */
4769 static void spapr_machine_7_2_class_options(MachineClass *mc)
4770 {
4771     spapr_machine_8_0_class_options(mc);
4772     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4773 }
4774 
4775 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4776 
4777 /*
4778  * pseries-7.1
4779  */
4780 static void spapr_machine_7_1_class_options(MachineClass *mc)
4781 {
4782     spapr_machine_7_2_class_options(mc);
4783     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4784 }
4785 
4786 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4787 
4788 /*
4789  * pseries-7.0
4790  */
4791 static void spapr_machine_7_0_class_options(MachineClass *mc)
4792 {
4793     spapr_machine_7_1_class_options(mc);
4794     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4795 }
4796 
4797 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4798 
4799 /*
4800  * pseries-6.2
4801  */
4802 static void spapr_machine_6_2_class_options(MachineClass *mc)
4803 {
4804     spapr_machine_7_0_class_options(mc);
4805     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4806 }
4807 
4808 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4809 
4810 /*
4811  * pseries-6.1
4812  */
4813 static void spapr_machine_6_1_class_options(MachineClass *mc)
4814 {
4815     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4816 
4817     spapr_machine_6_2_class_options(mc);
4818     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4819     smc->pre_6_2_numa_affinity = true;
4820     mc->smp_props.prefer_sockets = true;
4821 }
4822 
4823 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4824 
4825 /*
4826  * pseries-6.0
4827  */
4828 static void spapr_machine_6_0_class_options(MachineClass *mc)
4829 {
4830     spapr_machine_6_1_class_options(mc);
4831     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4832 }
4833 
4834 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4835 
4836 /*
4837  * pseries-5.2
4838  */
4839 static void spapr_machine_5_2_class_options(MachineClass *mc)
4840 {
4841     spapr_machine_6_0_class_options(mc);
4842     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4843 }
4844 
4845 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4846 
4847 /*
4848  * pseries-5.1
4849  */
4850 static void spapr_machine_5_1_class_options(MachineClass *mc)
4851 {
4852     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4853 
4854     spapr_machine_5_2_class_options(mc);
4855     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4856     smc->pre_5_2_numa_associativity = true;
4857 }
4858 
4859 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4860 
4861 /*
4862  * pseries-5.0
4863  */
4864 static void spapr_machine_5_0_class_options(MachineClass *mc)
4865 {
4866     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4867     static GlobalProperty compat[] = {
4868         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4869     };
4870 
4871     spapr_machine_5_1_class_options(mc);
4872     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4873     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4874     mc->numa_mem_supported = true;
4875     smc->pre_5_1_assoc_refpoints = true;
4876 }
4877 
4878 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4879 
4880 /*
4881  * pseries-4.2
4882  */
4883 static void spapr_machine_4_2_class_options(MachineClass *mc)
4884 {
4885     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4886 
4887     spapr_machine_5_0_class_options(mc);
4888     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4889     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4890     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4891     smc->rma_limit = 16 * GiB;
4892     mc->nvdimm_supported = false;
4893 }
4894 
4895 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4896 
4897 /*
4898  * pseries-4.1
4899  */
4900 static void spapr_machine_4_1_class_options(MachineClass *mc)
4901 {
4902     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4903     static GlobalProperty compat[] = {
4904         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4905         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4906     };
4907 
4908     spapr_machine_4_2_class_options(mc);
4909     smc->linux_pci_probe = false;
4910     smc->smp_threads_vsmt = false;
4911     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4912     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4913 }
4914 
4915 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4916 
4917 /*
4918  * pseries-4.0
4919  */
4920 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4921                               uint64_t *buid, hwaddr *pio,
4922                               hwaddr *mmio32, hwaddr *mmio64,
4923                               unsigned n_dma, uint32_t *liobns,
4924                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4925 {
4926     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4927                              liobns, nv2gpa, nv2atsd, errp)) {
4928         return false;
4929     }
4930 
4931     *nv2gpa = 0;
4932     *nv2atsd = 0;
4933     return true;
4934 }
4935 static void spapr_machine_4_0_class_options(MachineClass *mc)
4936 {
4937     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4938 
4939     spapr_machine_4_1_class_options(mc);
4940     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4941     smc->phb_placement = phb_placement_4_0;
4942     smc->irq = &spapr_irq_xics;
4943     smc->pre_4_1_migration = true;
4944 }
4945 
4946 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4947 
4948 /*
4949  * pseries-3.1
4950  */
4951 static void spapr_machine_3_1_class_options(MachineClass *mc)
4952 {
4953     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4954 
4955     spapr_machine_4_0_class_options(mc);
4956     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4957 
4958     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4959     smc->update_dt_enabled = false;
4960     smc->dr_phb_enabled = false;
4961     smc->broken_host_serial_model = true;
4962     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4963     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4964     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4965     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4966 }
4967 
4968 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4969 
4970 /*
4971  * pseries-3.0
4972  */
4973 
4974 static void spapr_machine_3_0_class_options(MachineClass *mc)
4975 {
4976     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4977 
4978     spapr_machine_3_1_class_options(mc);
4979     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4980 
4981     smc->legacy_irq_allocation = true;
4982     smc->nr_xirqs = 0x400;
4983     smc->irq = &spapr_irq_xics_legacy;
4984 }
4985 
4986 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4987 
4988 /*
4989  * pseries-2.12
4990  */
4991 static void spapr_machine_2_12_class_options(MachineClass *mc)
4992 {
4993     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4994     static GlobalProperty compat[] = {
4995         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4996         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4997     };
4998 
4999     spapr_machine_3_0_class_options(mc);
5000     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5001     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5002 
5003     /* We depend on kvm_enabled() to choose a default value for the
5004      * hpt-max-page-size capability. Of course we can't do it here
5005      * because this is too early and the HW accelerator isn't initialzed
5006      * yet. Postpone this to machine init (see default_caps_with_cpu()).
5007      */
5008     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5009 }
5010 
5011 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5012 
5013 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5014 {
5015     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5016 
5017     spapr_machine_2_12_class_options(mc);
5018     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5019     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5020     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5021 }
5022 
5023 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5024 
5025 /*
5026  * pseries-2.11
5027  */
5028 
5029 static void spapr_machine_2_11_class_options(MachineClass *mc)
5030 {
5031     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5032 
5033     spapr_machine_2_12_class_options(mc);
5034     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5035     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5036 }
5037 
5038 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5039 
5040 /*
5041  * pseries-2.10
5042  */
5043 
5044 static void spapr_machine_2_10_class_options(MachineClass *mc)
5045 {
5046     spapr_machine_2_11_class_options(mc);
5047     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5048 }
5049 
5050 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5051 
5052 /*
5053  * pseries-2.9
5054  */
5055 
5056 static void spapr_machine_2_9_class_options(MachineClass *mc)
5057 {
5058     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5059     static GlobalProperty compat[] = {
5060         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5061     };
5062 
5063     spapr_machine_2_10_class_options(mc);
5064     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5065     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5066     smc->pre_2_10_has_unused_icps = true;
5067     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5068 }
5069 
5070 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5071 
5072 /*
5073  * pseries-2.8
5074  */
5075 
5076 static void spapr_machine_2_8_class_options(MachineClass *mc)
5077 {
5078     static GlobalProperty compat[] = {
5079         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5080     };
5081 
5082     spapr_machine_2_9_class_options(mc);
5083     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5084     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5085     mc->numa_mem_align_shift = 23;
5086 }
5087 
5088 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5089 
5090 /*
5091  * pseries-2.7
5092  */
5093 
5094 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5095                               uint64_t *buid, hwaddr *pio,
5096                               hwaddr *mmio32, hwaddr *mmio64,
5097                               unsigned n_dma, uint32_t *liobns,
5098                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
5099 {
5100     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5101     const uint64_t base_buid = 0x800000020000000ULL;
5102     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5103     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5104     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5105     const uint32_t max_index = 255;
5106     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5107 
5108     uint64_t ram_top = MACHINE(spapr)->ram_size;
5109     hwaddr phb0_base, phb_base;
5110     int i;
5111 
5112     /* Do we have device memory? */
5113     if (MACHINE(spapr)->maxram_size > ram_top) {
5114         /* Can't just use maxram_size, because there may be an
5115          * alignment gap between normal and device memory regions
5116          */
5117         ram_top = MACHINE(spapr)->device_memory->base +
5118             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5119     }
5120 
5121     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5122 
5123     if (index > max_index) {
5124         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5125                    max_index);
5126         return false;
5127     }
5128 
5129     *buid = base_buid + index;
5130     for (i = 0; i < n_dma; ++i) {
5131         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5132     }
5133 
5134     phb_base = phb0_base + index * phb_spacing;
5135     *pio = phb_base + pio_offset;
5136     *mmio32 = phb_base + mmio_offset;
5137     /*
5138      * We don't set the 64-bit MMIO window, relying on the PHB's
5139      * fallback behaviour of automatically splitting a large "32-bit"
5140      * window into contiguous 32-bit and 64-bit windows
5141      */
5142 
5143     *nv2gpa = 0;
5144     *nv2atsd = 0;
5145     return true;
5146 }
5147 
5148 static void spapr_machine_2_7_class_options(MachineClass *mc)
5149 {
5150     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5151     static GlobalProperty compat[] = {
5152         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5153         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5154         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5155         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5156     };
5157 
5158     spapr_machine_2_8_class_options(mc);
5159     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5160     mc->default_machine_opts = "modern-hotplug-events=off";
5161     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5162     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5163     smc->phb_placement = phb_placement_2_7;
5164 }
5165 
5166 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5167 
5168 /*
5169  * pseries-2.6
5170  */
5171 
5172 static void spapr_machine_2_6_class_options(MachineClass *mc)
5173 {
5174     static GlobalProperty compat[] = {
5175         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5176     };
5177 
5178     spapr_machine_2_7_class_options(mc);
5179     mc->has_hotpluggable_cpus = false;
5180     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5181     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5182 }
5183 
5184 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5185 
5186 /*
5187  * pseries-2.5
5188  */
5189 
5190 static void spapr_machine_2_5_class_options(MachineClass *mc)
5191 {
5192     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5193     static GlobalProperty compat[] = {
5194         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5195     };
5196 
5197     spapr_machine_2_6_class_options(mc);
5198     smc->use_ohci_by_default = true;
5199     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5200     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5201 }
5202 
5203 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5204 
5205 /*
5206  * pseries-2.4
5207  */
5208 
5209 static void spapr_machine_2_4_class_options(MachineClass *mc)
5210 {
5211     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5212 
5213     spapr_machine_2_5_class_options(mc);
5214     smc->dr_lmb_enabled = false;
5215     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5216 }
5217 
5218 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5219 
5220 /*
5221  * pseries-2.3
5222  */
5223 
5224 static void spapr_machine_2_3_class_options(MachineClass *mc)
5225 {
5226     static GlobalProperty compat[] = {
5227         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5228     };
5229     spapr_machine_2_4_class_options(mc);
5230     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5231     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5232 }
5233 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5234 
5235 /*
5236  * pseries-2.2
5237  */
5238 
5239 static void spapr_machine_2_2_class_options(MachineClass *mc)
5240 {
5241     static GlobalProperty compat[] = {
5242         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5243     };
5244 
5245     spapr_machine_2_3_class_options(mc);
5246     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5247     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5248     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5249 }
5250 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5251 
5252 /*
5253  * pseries-2.1
5254  */
5255 
5256 static void spapr_machine_2_1_class_options(MachineClass *mc)
5257 {
5258     spapr_machine_2_2_class_options(mc);
5259     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5260 }
5261 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5262 
5263 static void spapr_machine_register_types(void)
5264 {
5265     type_register_static(&spapr_machine_info);
5266 }
5267 
5268 type_init(spapr_machine_register_types)
5269