xref: /qemu/hw/ppc/spapr.c (revision 4ca656075ddb929ca24d2fe804f2f9f1646d09eb)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/tcg.h"
39 #include "sysemu/qtest.h"
40 #include "sysemu/reset.h"
41 #include "sysemu/runstate.h"
42 #include "qemu/log.h"
43 #include "hw/fw-path-provider.h"
44 #include "elf.h"
45 #include "net/net.h"
46 #include "sysemu/device_tree.h"
47 #include "sysemu/cpus.h"
48 #include "sysemu/hw_accel.h"
49 #include "kvm_ppc.h"
50 #include "migration/misc.h"
51 #include "migration/qemu-file-types.h"
52 #include "migration/global_state.h"
53 #include "migration/register.h"
54 #include "migration/blocker.h"
55 #include "mmu-hash64.h"
56 #include "mmu-book3s-v3.h"
57 #include "cpu-models.h"
58 #include "hw/core/cpu.h"
59 
60 #include "hw/ppc/ppc.h"
61 #include "hw/loader.h"
62 
63 #include "hw/ppc/fdt.h"
64 #include "hw/ppc/spapr.h"
65 #include "hw/ppc/spapr_nested.h"
66 #include "hw/ppc/spapr_vio.h"
67 #include "hw/ppc/vof.h"
68 #include "hw/qdev-properties.h"
69 #include "hw/pci-host/spapr.h"
70 #include "hw/pci/msi.h"
71 
72 #include "hw/pci/pci.h"
73 #include "hw/scsi/scsi.h"
74 #include "hw/virtio/virtio-scsi.h"
75 #include "hw/virtio/vhost-scsi-common.h"
76 
77 #include "exec/ram_addr.h"
78 #include "exec/confidential-guest-support.h"
79 #include "hw/usb.h"
80 #include "qemu/config-file.h"
81 #include "qemu/error-report.h"
82 #include "trace.h"
83 #include "hw/nmi.h"
84 #include "hw/intc/intc.h"
85 
86 #include "hw/ppc/spapr_cpu_core.h"
87 #include "hw/mem/memory-device.h"
88 #include "hw/ppc/spapr_tpm_proxy.h"
89 #include "hw/ppc/spapr_nvdimm.h"
90 #include "hw/ppc/spapr_numa.h"
91 
92 #include <libfdt.h>
93 
94 /* SLOF memory layout:
95  *
96  * SLOF raw image loaded at 0, copies its romfs right below the flat
97  * device-tree, then position SLOF itself 31M below that
98  *
99  * So we set FW_OVERHEAD to 40MB which should account for all of that
100  * and more
101  *
102  * We load our kernel at 4M, leaving space for SLOF initial image
103  */
104 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
105 #define FW_MAX_SIZE             0x400000
106 #define FW_FILE_NAME            "slof.bin"
107 #define FW_FILE_NAME_VOF        "vof.bin"
108 #define FW_OVERHEAD             0x2800000
109 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
110 
111 #define MIN_RMA_SLOF            (128 * MiB)
112 
113 #define PHANDLE_INTC            0x00001111
114 
115 /* These two functions implement the VCPU id numbering: one to compute them
116  * all and one to identify thread 0 of a VCORE. Any change to the first one
117  * is likely to have an impact on the second one, so let's keep them close.
118  */
119 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
120 {
121     MachineState *ms = MACHINE(spapr);
122     unsigned int smp_threads = ms->smp.threads;
123 
124     assert(spapr->vsmt);
125     return
126         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
127 }
128 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
129                                       PowerPCCPU *cpu)
130 {
131     assert(spapr->vsmt);
132     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
133 }
134 
135 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
136 {
137     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
138      * and newer QEMUs don't even have them. In both cases, we don't want
139      * to send anything on the wire.
140      */
141     return false;
142 }
143 
144 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
145     /*
146      * Hack ahead.  We can't have two devices with the same name and
147      * instance id.  So I rename this to pass make check.
148      * Real help from people who knows the hardware is needed.
149      */
150     .name = "icp/server",
151     .version_id = 1,
152     .minimum_version_id = 1,
153     .needed = pre_2_10_vmstate_dummy_icp_needed,
154     .fields = (const VMStateField[]) {
155         VMSTATE_UNUSED(4), /* uint32_t xirr */
156         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
157         VMSTATE_UNUSED(1), /* uint8_t mfrr */
158         VMSTATE_END_OF_LIST()
159     },
160 };
161 
162 /*
163  * See comment in hw/intc/xics.c:icp_realize()
164  *
165  * You have to remove vmstate_replace_hack_for_ppc() when you remove
166  * the machine types that need the following function.
167  */
168 static void pre_2_10_vmstate_register_dummy_icp(int i)
169 {
170     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
171                      (void *)(uintptr_t) i);
172 }
173 
174 /*
175  * See comment in hw/intc/xics.c:icp_realize()
176  *
177  * You have to remove vmstate_replace_hack_for_ppc() when you remove
178  * the machine types that need the following function.
179  */
180 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
181 {
182     /*
183      * This used to be:
184      *
185      *    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
186      *                      (void *)(uintptr_t) i);
187      */
188 }
189 
190 int spapr_max_server_number(SpaprMachineState *spapr)
191 {
192     MachineState *ms = MACHINE(spapr);
193 
194     assert(spapr->vsmt);
195     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
196 }
197 
198 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
199                                   int smt_threads)
200 {
201     int i, ret = 0;
202     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
203     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
204     int index = spapr_get_vcpu_id(cpu);
205 
206     if (cpu->compat_pvr) {
207         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
208         if (ret < 0) {
209             return ret;
210         }
211     }
212 
213     /* Build interrupt servers and gservers properties */
214     for (i = 0; i < smt_threads; i++) {
215         servers_prop[i] = cpu_to_be32(index + i);
216         /* Hack, direct the group queues back to cpu 0 */
217         gservers_prop[i*2] = cpu_to_be32(index + i);
218         gservers_prop[i*2 + 1] = 0;
219     }
220     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
221                       servers_prop, sizeof(*servers_prop) * smt_threads);
222     if (ret < 0) {
223         return ret;
224     }
225     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
226                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
227 
228     return ret;
229 }
230 
231 static void spapr_dt_pa_features(SpaprMachineState *spapr,
232                                  PowerPCCPU *cpu,
233                                  void *fdt, int offset)
234 {
235     /*
236      * SSO (SAO) ordering is supported on KVM and thread=single hosts,
237      * but not MTTCG, so disable it. To advertise it, a cap would have
238      * to be added, or support implemented for MTTCG.
239      *
240      * Copy/paste is not supported by TCG, so it is not advertised. KVM
241      * can execute them but it has no accelerator drivers which are usable,
242      * so there isn't much need for it anyway.
243      */
244 
245     /* These should be kept in sync with pnv */
246     uint8_t pa_features_206[] = { 6, 0,
247         0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 };
248     uint8_t pa_features_207[] = { 24, 0,
249         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0,
250         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
251         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
252         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
253     uint8_t pa_features_300[] = { 66, 0,
254         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
255         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
256         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
257         /* 6: DS207 */
258         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
259         /* 16: Vector */
260         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
261         /* 18: Vec. Scalar, 20: Vec. XOR */
262         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
263         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
264         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
265         /* 32: LE atomic, 34: EBB + ext EBB */
266         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
267         /* 40: Radix MMU */
268         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
269         /* 42: PM, 44: PC RA, 46: SC vec'd */
270         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
271         /* 48: SIMD, 50: QP BFP, 52: String */
272         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
273         /* 54: DecFP, 56: DecI, 58: SHA */
274         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
275         /* 60: NM atomic, 62: RNG */
276         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
277     };
278     /* 3.1 removes SAO, HTM support */
279     uint8_t pa_features_31[] = { 74, 0,
280         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
281         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
282         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
283         /* 6: DS207 */
284         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
285         /* 16: Vector */
286         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
287         /* 18: Vec. Scalar, 20: Vec. XOR */
288         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
289         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
290         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
291         /* 32: LE atomic, 34: EBB + ext EBB */
292         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
293         /* 40: Radix MMU */
294         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
295         /* 42: PM, 44: PC RA, 46: SC vec'd */
296         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
297         /* 48: SIMD, 50: QP BFP, 52: String */
298         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
299         /* 54: DecFP, 56: DecI, 58: SHA */
300         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
301         /* 60: NM atomic, 62: RNG */
302         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
303         /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
304         0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
305         /* 72: [P]HASHST/[P]HASHCHK */
306         0x80, 0x00,                         /* 72 - 73 */
307     };
308     uint8_t *pa_features = NULL;
309     size_t pa_size;
310 
311     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
312         pa_features = pa_features_206;
313         pa_size = sizeof(pa_features_206);
314     }
315     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
316         pa_features = pa_features_207;
317         pa_size = sizeof(pa_features_207);
318     }
319     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
320         pa_features = pa_features_300;
321         pa_size = sizeof(pa_features_300);
322     }
323     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) {
324         pa_features = pa_features_31;
325         pa_size = sizeof(pa_features_31);
326     }
327     if (!pa_features) {
328         return;
329     }
330 
331     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
332         /*
333          * Note: we keep CI large pages off by default because a 64K capable
334          * guest provisioned with large pages might otherwise try to map a qemu
335          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
336          * even if that qemu runs on a 4k host.
337          * We dd this bit back here if we are confident this is not an issue
338          */
339         pa_features[3] |= 0x20;
340     }
341     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
342         pa_features[24] |= 0x80;    /* Transactional memory support */
343     }
344     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
345         /* Workaround for broken kernels that attempt (guest) radix
346          * mode when they can't handle it, if they see the radix bit set
347          * in pa-features. So hide it from them. */
348         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
349     }
350 
351     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
352 }
353 
354 static void spapr_dt_pi_features(SpaprMachineState *spapr,
355                                  PowerPCCPU *cpu,
356                                  void *fdt, int offset)
357 {
358     uint8_t pi_features[] = { 1, 0,
359         0x00 };
360 
361     if (kvm_enabled() && ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00,
362                                           0, cpu->compat_pvr)) {
363         /*
364          * POWER9 and later CPUs with KVM run in LPAR-per-thread mode where
365          * all threads are essentially independent CPUs, and msgsndp does not
366          * work (because it is physically-addressed) and therefore is
367          * emulated by KVM, so disable it here to ensure XIVE will be used.
368          * This is both KVM and CPU implementation-specific behaviour so a KVM
369          * cap would be cleanest, but for now this works. If KVM ever permits
370          * native msgsndp execution by guests, a cap could be added at that
371          * time.
372          */
373         pi_features[2] |= 0x08; /* 4: No msgsndp */
374     }
375 
376     _FDT((fdt_setprop(fdt, offset, "ibm,pi-features", pi_features,
377                       sizeof(pi_features))));
378 }
379 
380 static hwaddr spapr_node0_size(MachineState *machine)
381 {
382     if (machine->numa_state->num_nodes) {
383         int i;
384         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
385             if (machine->numa_state->nodes[i].node_mem) {
386                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
387                            machine->ram_size);
388             }
389         }
390     }
391     return machine->ram_size;
392 }
393 
394 static void add_str(GString *s, const gchar *s1)
395 {
396     g_string_append_len(s, s1, strlen(s1) + 1);
397 }
398 
399 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
400                                 hwaddr start, hwaddr size)
401 {
402     char mem_name[32];
403     uint64_t mem_reg_property[2];
404     int off;
405 
406     mem_reg_property[0] = cpu_to_be64(start);
407     mem_reg_property[1] = cpu_to_be64(size);
408 
409     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
410     off = fdt_add_subnode(fdt, 0, mem_name);
411     _FDT(off);
412     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
413     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
414                       sizeof(mem_reg_property))));
415     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
416     return off;
417 }
418 
419 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
420 {
421     MemoryDeviceInfoList *info;
422 
423     for (info = list; info; info = info->next) {
424         MemoryDeviceInfo *value = info->value;
425 
426         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
427             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
428 
429             if (addr >= pcdimm_info->addr &&
430                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
431                 return pcdimm_info->node;
432             }
433         }
434     }
435 
436     return -1;
437 }
438 
439 struct sPAPRDrconfCellV2 {
440      uint32_t seq_lmbs;
441      uint64_t base_addr;
442      uint32_t drc_index;
443      uint32_t aa_index;
444      uint32_t flags;
445 } QEMU_PACKED;
446 
447 typedef struct DrconfCellQueue {
448     struct sPAPRDrconfCellV2 cell;
449     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
450 } DrconfCellQueue;
451 
452 static DrconfCellQueue *
453 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
454                       uint32_t drc_index, uint32_t aa_index,
455                       uint32_t flags)
456 {
457     DrconfCellQueue *elem;
458 
459     elem = g_malloc0(sizeof(*elem));
460     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
461     elem->cell.base_addr = cpu_to_be64(base_addr);
462     elem->cell.drc_index = cpu_to_be32(drc_index);
463     elem->cell.aa_index = cpu_to_be32(aa_index);
464     elem->cell.flags = cpu_to_be32(flags);
465 
466     return elem;
467 }
468 
469 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
470                                       int offset, MemoryDeviceInfoList *dimms)
471 {
472     MachineState *machine = MACHINE(spapr);
473     uint8_t *int_buf, *cur_index;
474     int ret;
475     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
476     uint64_t addr, cur_addr, size;
477     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
478     uint64_t mem_end = machine->device_memory->base +
479                        memory_region_size(&machine->device_memory->mr);
480     uint32_t node, buf_len, nr_entries = 0;
481     SpaprDrc *drc;
482     DrconfCellQueue *elem, *next;
483     MemoryDeviceInfoList *info;
484     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
485         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
486 
487     /* Entry to cover RAM and the gap area */
488     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
489                                  SPAPR_LMB_FLAGS_RESERVED |
490                                  SPAPR_LMB_FLAGS_DRC_INVALID);
491     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
492     nr_entries++;
493 
494     cur_addr = machine->device_memory->base;
495     for (info = dimms; info; info = info->next) {
496         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
497 
498         addr = di->addr;
499         size = di->size;
500         node = di->node;
501 
502         /*
503          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
504          * area is marked hotpluggable in the next iteration for the bigger
505          * chunk including the NVDIMM occupied area.
506          */
507         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
508             continue;
509 
510         /* Entry for hot-pluggable area */
511         if (cur_addr < addr) {
512             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
513             g_assert(drc);
514             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
515                                          cur_addr, spapr_drc_index(drc), -1, 0);
516             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
517             nr_entries++;
518         }
519 
520         /* Entry for DIMM */
521         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
522         g_assert(drc);
523         elem = spapr_get_drconf_cell(size / lmb_size, addr,
524                                      spapr_drc_index(drc), node,
525                                      (SPAPR_LMB_FLAGS_ASSIGNED |
526                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
527         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
528         nr_entries++;
529         cur_addr = addr + size;
530     }
531 
532     /* Entry for remaining hotpluggable area */
533     if (cur_addr < mem_end) {
534         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
535         g_assert(drc);
536         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
537                                      cur_addr, spapr_drc_index(drc), -1, 0);
538         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
539         nr_entries++;
540     }
541 
542     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
543     int_buf = cur_index = g_malloc0(buf_len);
544     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
545     cur_index += sizeof(nr_entries);
546 
547     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
548         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
549         cur_index += sizeof(elem->cell);
550         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
551         g_free(elem);
552     }
553 
554     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
555     g_free(int_buf);
556     if (ret < 0) {
557         return -1;
558     }
559     return 0;
560 }
561 
562 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
563                                    int offset, MemoryDeviceInfoList *dimms)
564 {
565     MachineState *machine = MACHINE(spapr);
566     int i, ret;
567     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
568     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
569     uint32_t nr_lmbs = (machine->device_memory->base +
570                        memory_region_size(&machine->device_memory->mr)) /
571                        lmb_size;
572     uint32_t *int_buf, *cur_index, buf_len;
573 
574     /*
575      * Allocate enough buffer size to fit in ibm,dynamic-memory
576      */
577     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
578     cur_index = int_buf = g_malloc0(buf_len);
579     int_buf[0] = cpu_to_be32(nr_lmbs);
580     cur_index++;
581     for (i = 0; i < nr_lmbs; i++) {
582         uint64_t addr = i * lmb_size;
583         uint32_t *dynamic_memory = cur_index;
584 
585         if (i >= device_lmb_start) {
586             SpaprDrc *drc;
587 
588             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
589             g_assert(drc);
590 
591             dynamic_memory[0] = cpu_to_be32(addr >> 32);
592             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
593             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
594             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
595             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
596             if (memory_region_present(get_system_memory(), addr)) {
597                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
598             } else {
599                 dynamic_memory[5] = cpu_to_be32(0);
600             }
601         } else {
602             /*
603              * LMB information for RMA, boot time RAM and gap b/n RAM and
604              * device memory region -- all these are marked as reserved
605              * and as having no valid DRC.
606              */
607             dynamic_memory[0] = cpu_to_be32(addr >> 32);
608             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
609             dynamic_memory[2] = cpu_to_be32(0);
610             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
611             dynamic_memory[4] = cpu_to_be32(-1);
612             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
613                                             SPAPR_LMB_FLAGS_DRC_INVALID);
614         }
615 
616         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
617     }
618     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
619     g_free(int_buf);
620     if (ret < 0) {
621         return -1;
622     }
623     return 0;
624 }
625 
626 /*
627  * Adds ibm,dynamic-reconfiguration-memory node.
628  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
629  * of this device tree node.
630  */
631 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
632                                                    void *fdt)
633 {
634     MachineState *machine = MACHINE(spapr);
635     int ret, offset;
636     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
637     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
638                                 cpu_to_be32(lmb_size & 0xffffffff)};
639     MemoryDeviceInfoList *dimms = NULL;
640 
641     /* Don't create the node if there is no device memory. */
642     if (!machine->device_memory) {
643         return 0;
644     }
645 
646     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
647 
648     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
649                     sizeof(prop_lmb_size));
650     if (ret < 0) {
651         return ret;
652     }
653 
654     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
655     if (ret < 0) {
656         return ret;
657     }
658 
659     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
660     if (ret < 0) {
661         return ret;
662     }
663 
664     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
665     dimms = qmp_memory_device_list();
666     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
667         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
668     } else {
669         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
670     }
671     qapi_free_MemoryDeviceInfoList(dimms);
672 
673     if (ret < 0) {
674         return ret;
675     }
676 
677     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
678 
679     return ret;
680 }
681 
682 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
683 {
684     MachineState *machine = MACHINE(spapr);
685     hwaddr mem_start, node_size;
686     int i, nb_nodes = machine->numa_state->num_nodes;
687     NodeInfo *nodes = machine->numa_state->nodes;
688 
689     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
690         if (!nodes[i].node_mem) {
691             continue;
692         }
693         if (mem_start >= machine->ram_size) {
694             node_size = 0;
695         } else {
696             node_size = nodes[i].node_mem;
697             if (node_size > machine->ram_size - mem_start) {
698                 node_size = machine->ram_size - mem_start;
699             }
700         }
701         if (!mem_start) {
702             /* spapr_machine_init() checks for rma_size <= node0_size
703              * already */
704             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
705             mem_start += spapr->rma_size;
706             node_size -= spapr->rma_size;
707         }
708         for ( ; node_size; ) {
709             hwaddr sizetmp = pow2floor(node_size);
710 
711             /* mem_start != 0 here */
712             if (ctzl(mem_start) < ctzl(sizetmp)) {
713                 sizetmp = 1ULL << ctzl(mem_start);
714             }
715 
716             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
717             node_size -= sizetmp;
718             mem_start += sizetmp;
719         }
720     }
721 
722     /* Generate ibm,dynamic-reconfiguration-memory node if required */
723     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
724         int ret;
725 
726         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
727         if (ret) {
728             return ret;
729         }
730     }
731 
732     return 0;
733 }
734 
735 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
736                          SpaprMachineState *spapr)
737 {
738     MachineState *ms = MACHINE(spapr);
739     PowerPCCPU *cpu = POWERPC_CPU(cs);
740     CPUPPCState *env = &cpu->env;
741     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
742     int index = spapr_get_vcpu_id(cpu);
743     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
744                        0xffffffff, 0xffffffff};
745     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
746         : SPAPR_TIMEBASE_FREQ;
747     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
748     uint32_t page_sizes_prop[64];
749     size_t page_sizes_prop_size;
750     unsigned int smp_threads = ms->smp.threads;
751     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
752     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
753     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
754     SpaprDrc *drc;
755     int drc_index;
756     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
757     int i;
758 
759     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
760     if (drc) {
761         drc_index = spapr_drc_index(drc);
762         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
763     }
764 
765     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
766     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
767 
768     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
769     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
770                            env->dcache_line_size)));
771     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
772                            env->dcache_line_size)));
773     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
774                            env->icache_line_size)));
775     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
776                            env->icache_line_size)));
777 
778     if (pcc->l1_dcache_size) {
779         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
780                                pcc->l1_dcache_size)));
781     } else {
782         warn_report("Unknown L1 dcache size for cpu");
783     }
784     if (pcc->l1_icache_size) {
785         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
786                                pcc->l1_icache_size)));
787     } else {
788         warn_report("Unknown L1 icache size for cpu");
789     }
790 
791     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
792     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
793     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
794     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
795     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
796     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
797 
798     if (ppc_has_spr(cpu, SPR_PURR)) {
799         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
800     }
801     if (ppc_has_spr(cpu, SPR_PURR)) {
802         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
803     }
804 
805     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
806         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
807                           segs, sizeof(segs))));
808     }
809 
810     /* Advertise VSX (vector extensions) if available
811      *   1               == VMX / Altivec available
812      *   2               == VSX available
813      *
814      * Only CPUs for which we create core types in spapr_cpu_core.c
815      * are possible, and all of those have VMX */
816     if (env->insns_flags & PPC_ALTIVEC) {
817         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
818             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
819         } else {
820             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
821         }
822     }
823 
824     /* Advertise DFP (Decimal Floating Point) if available
825      *   0 / no property == no DFP
826      *   1               == DFP available */
827     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
828         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
829     }
830 
831     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
832                                                       sizeof(page_sizes_prop));
833     if (page_sizes_prop_size) {
834         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
835                           page_sizes_prop, page_sizes_prop_size)));
836     }
837 
838     spapr_dt_pa_features(spapr, cpu, fdt, offset);
839 
840     spapr_dt_pi_features(spapr, cpu, fdt, offset);
841 
842     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
843                            cs->cpu_index / vcpus_per_socket)));
844 
845     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
846                       pft_size_prop, sizeof(pft_size_prop))));
847 
848     if (ms->numa_state->num_nodes > 1) {
849         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
850     }
851 
852     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
853 
854     if (pcc->radix_page_info) {
855         for (i = 0; i < pcc->radix_page_info->count; i++) {
856             radix_AP_encodings[i] =
857                 cpu_to_be32(pcc->radix_page_info->entries[i]);
858         }
859         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
860                           radix_AP_encodings,
861                           pcc->radix_page_info->count *
862                           sizeof(radix_AP_encodings[0]))));
863     }
864 
865     /*
866      * We set this property to let the guest know that it can use the large
867      * decrementer and its width in bits.
868      */
869     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
870         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
871                               pcc->lrg_decr_bits)));
872 }
873 
874 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs,
875                              int cpus_offset)
876 {
877     PowerPCCPU *cpu = POWERPC_CPU(cs);
878     int index = spapr_get_vcpu_id(cpu);
879     DeviceClass *dc = DEVICE_GET_CLASS(cs);
880     g_autofree char *nodename = NULL;
881     int offset;
882 
883     if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
884         return;
885     }
886 
887     nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
888     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
889     _FDT(offset);
890     spapr_dt_cpu(cs, fdt, offset, spapr);
891 }
892 
893 
894 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
895 {
896     CPUState **rev;
897     CPUState *cs;
898     int n_cpus;
899     int cpus_offset;
900     int i;
901 
902     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
903     _FDT(cpus_offset);
904     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
905     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
906 
907     /*
908      * We walk the CPUs in reverse order to ensure that CPU DT nodes
909      * created by fdt_add_subnode() end up in the right order in FDT
910      * for the guest kernel the enumerate the CPUs correctly.
911      *
912      * The CPU list cannot be traversed in reverse order, so we need
913      * to do extra work.
914      */
915     n_cpus = 0;
916     rev = NULL;
917     CPU_FOREACH(cs) {
918         rev = g_renew(CPUState *, rev, n_cpus + 1);
919         rev[n_cpus++] = cs;
920     }
921 
922     for (i = n_cpus - 1; i >= 0; i--) {
923         spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset);
924     }
925 
926     g_free(rev);
927 }
928 
929 static int spapr_dt_rng(void *fdt)
930 {
931     int node;
932     int ret;
933 
934     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
935     if (node <= 0) {
936         return -1;
937     }
938     ret = fdt_setprop_string(fdt, node, "device_type",
939                              "ibm,platform-facilities");
940     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
941     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
942 
943     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
944     if (node <= 0) {
945         return -1;
946     }
947     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
948 
949     return ret ? -1 : 0;
950 }
951 
952 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
953 {
954     MachineState *ms = MACHINE(spapr);
955     int rtas;
956     GString *hypertas = g_string_sized_new(256);
957     GString *qemu_hypertas = g_string_sized_new(256);
958     uint32_t lrdr_capacity[] = {
959         0,
960         0,
961         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
962         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
963         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
964     };
965 
966     /* Do we have device memory? */
967     if (MACHINE(spapr)->device_memory) {
968         uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
969             memory_region_size(&MACHINE(spapr)->device_memory->mr);
970 
971         lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
972         lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
973     }
974 
975     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
976 
977     /* hypertas */
978     add_str(hypertas, "hcall-pft");
979     add_str(hypertas, "hcall-term");
980     add_str(hypertas, "hcall-dabr");
981     add_str(hypertas, "hcall-interrupt");
982     add_str(hypertas, "hcall-tce");
983     add_str(hypertas, "hcall-vio");
984     add_str(hypertas, "hcall-splpar");
985     add_str(hypertas, "hcall-join");
986     add_str(hypertas, "hcall-bulk");
987     add_str(hypertas, "hcall-set-mode");
988     add_str(hypertas, "hcall-sprg0");
989     add_str(hypertas, "hcall-copy");
990     add_str(hypertas, "hcall-debug");
991     add_str(hypertas, "hcall-vphn");
992     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
993         add_str(hypertas, "hcall-rpt-invalidate");
994     }
995 
996     add_str(qemu_hypertas, "hcall-memop1");
997 
998     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
999         add_str(hypertas, "hcall-multi-tce");
1000     }
1001 
1002     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1003         add_str(hypertas, "hcall-hpt-resize");
1004     }
1005 
1006     add_str(hypertas, "hcall-watchdog");
1007 
1008     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1009                      hypertas->str, hypertas->len));
1010     g_string_free(hypertas, TRUE);
1011     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1012                      qemu_hypertas->str, qemu_hypertas->len));
1013     g_string_free(qemu_hypertas, TRUE);
1014 
1015     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
1016 
1017     /*
1018      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
1019      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
1020      *
1021      * The system reset requirements are driven by existing Linux and PowerVM
1022      * implementation which (contrary to PAPR) saves r3 in the error log
1023      * structure like machine check, so Linux expects to find the saved r3
1024      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
1025      * does not look at the error value).
1026      *
1027      * System reset interrupts are not subject to interlock like machine
1028      * check, so this memory area could be corrupted if the sreset is
1029      * interrupted by a machine check (or vice versa) if it was shared. To
1030      * prevent this, system reset uses per-CPU areas for the sreset save
1031      * area. A system reset that interrupts a system reset handler could
1032      * still overwrite this area, but Linux doesn't try to recover in that
1033      * case anyway.
1034      *
1035      * The extra 8 bytes is required because Linux's FWNMI error log check
1036      * is off-by-one.
1037      *
1038      * RTAS_MIN_SIZE is required for the RTAS blob itself.
1039      */
1040     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
1041                           RTAS_ERROR_LOG_MAX +
1042                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
1043                           sizeof(uint64_t)));
1044     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1045                           RTAS_ERROR_LOG_MAX));
1046     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1047                           RTAS_EVENT_SCAN_RATE));
1048 
1049     g_assert(msi_nonbroken);
1050     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1051 
1052     /*
1053      * According to PAPR, rtas ibm,os-term does not guarantee a return
1054      * back to the guest cpu.
1055      *
1056      * While an additional ibm,extended-os-term property indicates
1057      * that rtas call return will always occur. Set this property.
1058      */
1059     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1060 
1061     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1062                      lrdr_capacity, sizeof(lrdr_capacity)));
1063 
1064     spapr_dt_rtas_tokens(fdt, rtas);
1065 }
1066 
1067 /*
1068  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1069  * and the XIVE features that the guest may request and thus the valid
1070  * values for bytes 23..26 of option vector 5:
1071  */
1072 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1073                                           int chosen)
1074 {
1075     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1076 
1077     char val[2 * 4] = {
1078         23, 0x00, /* XICS / XIVE mode */
1079         24, 0x00, /* Hash/Radix, filled in below. */
1080         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1081         26, 0x40, /* Radix options: GTSE == yes. */
1082     };
1083 
1084     if (spapr->irq->xics && spapr->irq->xive) {
1085         val[1] = SPAPR_OV5_XIVE_BOTH;
1086     } else if (spapr->irq->xive) {
1087         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1088     } else {
1089         assert(spapr->irq->xics);
1090         val[1] = SPAPR_OV5_XIVE_LEGACY;
1091     }
1092 
1093     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1094                           first_ppc_cpu->compat_pvr)) {
1095         /*
1096          * If we're in a pre POWER9 compat mode then the guest should
1097          * do hash and use the legacy interrupt mode
1098          */
1099         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1100         val[3] = 0x00; /* Hash */
1101         spapr_check_mmu_mode(false);
1102     } else if (kvm_enabled()) {
1103         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1104             val[3] = 0x80; /* OV5_MMU_BOTH */
1105         } else if (kvmppc_has_cap_mmu_radix()) {
1106             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1107         } else {
1108             val[3] = 0x00; /* Hash */
1109         }
1110     } else {
1111         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1112         val[3] = 0xC0;
1113     }
1114     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1115                      val, sizeof(val)));
1116 }
1117 
1118 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1119 {
1120     MachineState *machine = MACHINE(spapr);
1121     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1122     int chosen;
1123 
1124     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1125 
1126     if (reset) {
1127         const char *boot_device = spapr->boot_device;
1128         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1129         size_t cb = 0;
1130         g_autofree char *bootlist = get_boot_devices_list(&cb);
1131 
1132         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1133             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1134                                     machine->kernel_cmdline));
1135         }
1136 
1137         if (spapr->initrd_size) {
1138             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1139                                   spapr->initrd_base));
1140             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1141                                   spapr->initrd_base + spapr->initrd_size));
1142         }
1143 
1144         if (spapr->kernel_size) {
1145             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1146                                   cpu_to_be64(spapr->kernel_size) };
1147 
1148             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1149                          &kprop, sizeof(kprop)));
1150             if (spapr->kernel_le) {
1151                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1152             }
1153         }
1154         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1155             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1156         }
1157         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1158         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1159         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1160 
1161         if (cb && bootlist) {
1162             int i;
1163 
1164             for (i = 0; i < cb; i++) {
1165                 if (bootlist[i] == '\n') {
1166                     bootlist[i] = ' ';
1167                 }
1168             }
1169             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1170         }
1171 
1172         if (boot_device && strlen(boot_device)) {
1173             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1174         }
1175 
1176         if (spapr->want_stdout_path && stdout_path) {
1177             /*
1178              * "linux,stdout-path" and "stdout" properties are
1179              * deprecated by linux kernel. New platforms should only
1180              * use the "stdout-path" property. Set the new property
1181              * and continue using older property to remain compatible
1182              * with the existing firmware.
1183              */
1184             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1185             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1186         }
1187 
1188         /*
1189          * We can deal with BAR reallocation just fine, advertise it
1190          * to the guest
1191          */
1192         if (smc->linux_pci_probe) {
1193             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1194         }
1195 
1196         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1197     }
1198 
1199     _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1200 
1201     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1202 }
1203 
1204 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1205 {
1206     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1207      * KVM to work under pHyp with some guest co-operation */
1208     int hypervisor;
1209     uint8_t hypercall[16];
1210 
1211     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1212     /* indicate KVM hypercall interface */
1213     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1214     if (kvmppc_has_cap_fixup_hcalls()) {
1215         /*
1216          * Older KVM versions with older guest kernels were broken
1217          * with the magic page, don't allow the guest to map it.
1218          */
1219         if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall,
1220                                   sizeof(hypercall))) {
1221             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1222                              hypercall, sizeof(hypercall)));
1223         }
1224     }
1225 }
1226 
1227 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1228 {
1229     MachineState *machine = MACHINE(spapr);
1230     MachineClass *mc = MACHINE_GET_CLASS(machine);
1231     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1232     uint32_t root_drc_type_mask = 0;
1233     int ret;
1234     void *fdt;
1235     SpaprPhbState *phb;
1236     char *buf;
1237 
1238     fdt = g_malloc0(space);
1239     _FDT((fdt_create_empty_tree(fdt, space)));
1240 
1241     /* Root node */
1242     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1243     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1244     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1245 
1246     /* Guest UUID & Name*/
1247     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1248     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1249     if (qemu_uuid_set) {
1250         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1251     }
1252     g_free(buf);
1253 
1254     if (qemu_get_vm_name()) {
1255         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1256                                 qemu_get_vm_name()));
1257     }
1258 
1259     /* Host Model & Serial Number */
1260     if (spapr->host_model) {
1261         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1262     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1263         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1264         g_free(buf);
1265     }
1266 
1267     if (spapr->host_serial) {
1268         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1269     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1270         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1271         g_free(buf);
1272     }
1273 
1274     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1275     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1276 
1277     /* /interrupt controller */
1278     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1279 
1280     ret = spapr_dt_memory(spapr, fdt);
1281     if (ret < 0) {
1282         error_report("couldn't setup memory nodes in fdt");
1283         exit(1);
1284     }
1285 
1286     /* /vdevice */
1287     spapr_dt_vdevice(spapr->vio_bus, fdt);
1288 
1289     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1290         ret = spapr_dt_rng(fdt);
1291         if (ret < 0) {
1292             error_report("could not set up rng device in the fdt");
1293             exit(1);
1294         }
1295     }
1296 
1297     QLIST_FOREACH(phb, &spapr->phbs, list) {
1298         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1299         if (ret < 0) {
1300             error_report("couldn't setup PCI devices in fdt");
1301             exit(1);
1302         }
1303     }
1304 
1305     spapr_dt_cpus(fdt, spapr);
1306 
1307     /* ibm,drc-indexes and friends */
1308     root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1309     if (smc->dr_phb_enabled) {
1310         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1311     }
1312     if (mc->nvdimm_supported) {
1313         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1314     }
1315     if (root_drc_type_mask) {
1316         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1317     }
1318 
1319     if (mc->has_hotpluggable_cpus) {
1320         int offset = fdt_path_offset(fdt, "/cpus");
1321         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1322         if (ret < 0) {
1323             error_report("Couldn't set up CPU DR device tree properties");
1324             exit(1);
1325         }
1326     }
1327 
1328     /* /event-sources */
1329     spapr_dt_events(spapr, fdt);
1330 
1331     /* /rtas */
1332     spapr_dt_rtas(spapr, fdt);
1333 
1334     /* /chosen */
1335     spapr_dt_chosen(spapr, fdt, reset);
1336 
1337     /* /hypervisor */
1338     if (kvm_enabled()) {
1339         spapr_dt_hypervisor(spapr, fdt);
1340     }
1341 
1342     /* Build memory reserve map */
1343     if (reset) {
1344         if (spapr->kernel_size) {
1345             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1346                                   spapr->kernel_size)));
1347         }
1348         if (spapr->initrd_size) {
1349             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1350                                   spapr->initrd_size)));
1351         }
1352     }
1353 
1354     /* NVDIMM devices */
1355     if (mc->nvdimm_supported) {
1356         spapr_dt_persistent_memory(spapr, fdt);
1357     }
1358 
1359     return fdt;
1360 }
1361 
1362 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1363 {
1364     SpaprMachineState *spapr = opaque;
1365 
1366     return (addr & 0x0fffffff) + spapr->kernel_addr;
1367 }
1368 
1369 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1370                                     PowerPCCPU *cpu)
1371 {
1372     CPUPPCState *env = &cpu->env;
1373 
1374     /* The TCG path should also be holding the BQL at this point */
1375     g_assert(bql_locked());
1376 
1377     g_assert(!vhyp_cpu_in_nested(cpu));
1378 
1379     if (FIELD_EX64(env->msr, MSR, PR)) {
1380         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1381         env->gpr[3] = H_PRIVILEGE;
1382     } else {
1383         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1384     }
1385 }
1386 
1387 struct LPCRSyncState {
1388     target_ulong value;
1389     target_ulong mask;
1390 };
1391 
1392 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1393 {
1394     struct LPCRSyncState *s = arg.host_ptr;
1395     PowerPCCPU *cpu = POWERPC_CPU(cs);
1396     CPUPPCState *env = &cpu->env;
1397     target_ulong lpcr;
1398 
1399     cpu_synchronize_state(cs);
1400     lpcr = env->spr[SPR_LPCR];
1401     lpcr &= ~s->mask;
1402     lpcr |= s->value;
1403     ppc_store_lpcr(cpu, lpcr);
1404 }
1405 
1406 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1407 {
1408     CPUState *cs;
1409     struct LPCRSyncState s = {
1410         .value = value,
1411         .mask = mask
1412     };
1413     CPU_FOREACH(cs) {
1414         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1415     }
1416 }
1417 
1418 /* May be used when the machine is not running */
1419 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1420 {
1421     CPUState *cs;
1422     CPU_FOREACH(cs) {
1423         PowerPCCPU *cpu = POWERPC_CPU(cs);
1424         CPUPPCState *env = &cpu->env;
1425         target_ulong lpcr;
1426 
1427         lpcr = env->spr[SPR_LPCR];
1428         lpcr &= ~(LPCR_HR | LPCR_UPRT);
1429         ppc_store_lpcr(cpu, lpcr);
1430     }
1431 }
1432 
1433 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1434                            target_ulong lpid, ppc_v3_pate_t *entry)
1435 {
1436     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1437     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1438 
1439     if (!spapr_cpu->in_nested) {
1440         assert(lpid == 0);
1441 
1442         /* Copy PATE1:GR into PATE0:HR */
1443         entry->dw0 = spapr->patb_entry & PATE0_HR;
1444         entry->dw1 = spapr->patb_entry;
1445         return true;
1446     } else {
1447         if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) {
1448             return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry);
1449         } else if (spapr_nested_api(spapr) == NESTED_API_PAPR) {
1450             return spapr_get_pate_nested_papr(spapr, cpu, lpid, entry);
1451         } else {
1452             g_assert_not_reached();
1453         }
1454     }
1455 }
1456 
1457 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1458 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1459 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1460 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1461 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1462 
1463 /*
1464  * Get the fd to access the kernel htab, re-opening it if necessary
1465  */
1466 static int get_htab_fd(SpaprMachineState *spapr)
1467 {
1468     Error *local_err = NULL;
1469 
1470     if (spapr->htab_fd >= 0) {
1471         return spapr->htab_fd;
1472     }
1473 
1474     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1475     if (spapr->htab_fd < 0) {
1476         error_report_err(local_err);
1477     }
1478 
1479     return spapr->htab_fd;
1480 }
1481 
1482 void close_htab_fd(SpaprMachineState *spapr)
1483 {
1484     if (spapr->htab_fd >= 0) {
1485         close(spapr->htab_fd);
1486     }
1487     spapr->htab_fd = -1;
1488 }
1489 
1490 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1491 {
1492     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1493 
1494     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1495 }
1496 
1497 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1498 {
1499     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1500 
1501     assert(kvm_enabled());
1502 
1503     if (!spapr->htab) {
1504         return 0;
1505     }
1506 
1507     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1508 }
1509 
1510 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1511                                                 hwaddr ptex, int n)
1512 {
1513     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1514     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1515 
1516     if (!spapr->htab) {
1517         /*
1518          * HTAB is controlled by KVM. Fetch into temporary buffer
1519          */
1520         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1521         kvmppc_read_hptes(hptes, ptex, n);
1522         return hptes;
1523     }
1524 
1525     /*
1526      * HTAB is controlled by QEMU. Just point to the internally
1527      * accessible PTEG.
1528      */
1529     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1530 }
1531 
1532 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1533                               const ppc_hash_pte64_t *hptes,
1534                               hwaddr ptex, int n)
1535 {
1536     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1537 
1538     if (!spapr->htab) {
1539         g_free((void *)hptes);
1540     }
1541 
1542     /* Nothing to do for qemu managed HPT */
1543 }
1544 
1545 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1546                       uint64_t pte0, uint64_t pte1)
1547 {
1548     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1549     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1550 
1551     if (!spapr->htab) {
1552         kvmppc_write_hpte(ptex, pte0, pte1);
1553     } else {
1554         if (pte0 & HPTE64_V_VALID) {
1555             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1556             /*
1557              * When setting valid, we write PTE1 first. This ensures
1558              * proper synchronization with the reading code in
1559              * ppc_hash64_pteg_search()
1560              */
1561             smp_wmb();
1562             stq_p(spapr->htab + offset, pte0);
1563         } else {
1564             stq_p(spapr->htab + offset, pte0);
1565             /*
1566              * When clearing it we set PTE0 first. This ensures proper
1567              * synchronization with the reading code in
1568              * ppc_hash64_pteg_search()
1569              */
1570             smp_wmb();
1571             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1572         }
1573     }
1574 }
1575 
1576 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1577                              uint64_t pte1)
1578 {
1579     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1580     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1581 
1582     if (!spapr->htab) {
1583         /* There should always be a hash table when this is called */
1584         error_report("spapr_hpte_set_c called with no hash table !");
1585         return;
1586     }
1587 
1588     /* The HW performs a non-atomic byte update */
1589     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1590 }
1591 
1592 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1593                              uint64_t pte1)
1594 {
1595     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1596     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1597 
1598     if (!spapr->htab) {
1599         /* There should always be a hash table when this is called */
1600         error_report("spapr_hpte_set_r called with no hash table !");
1601         return;
1602     }
1603 
1604     /* The HW performs a non-atomic byte update */
1605     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1606 }
1607 
1608 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1609 {
1610     int shift;
1611 
1612     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1613      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1614      * that's much more than is needed for Linux guests */
1615     shift = ctz64(pow2ceil(ramsize)) - 7;
1616     shift = MAX(shift, 18); /* Minimum architected size */
1617     shift = MIN(shift, 46); /* Maximum architected size */
1618     return shift;
1619 }
1620 
1621 void spapr_free_hpt(SpaprMachineState *spapr)
1622 {
1623     qemu_vfree(spapr->htab);
1624     spapr->htab = NULL;
1625     spapr->htab_shift = 0;
1626     close_htab_fd(spapr);
1627 }
1628 
1629 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1630 {
1631     ERRP_GUARD();
1632     long rc;
1633 
1634     /* Clean up any HPT info from a previous boot */
1635     spapr_free_hpt(spapr);
1636 
1637     rc = kvmppc_reset_htab(shift);
1638 
1639     if (rc == -EOPNOTSUPP) {
1640         error_setg(errp, "HPT not supported in nested guests");
1641         return -EOPNOTSUPP;
1642     }
1643 
1644     if (rc < 0) {
1645         /* kernel-side HPT needed, but couldn't allocate one */
1646         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1647                          shift);
1648         error_append_hint(errp, "Try smaller maxmem?\n");
1649         return -errno;
1650     } else if (rc > 0) {
1651         /* kernel-side HPT allocated */
1652         if (rc != shift) {
1653             error_setg(errp,
1654                        "Requested order %d HPT, but kernel allocated order %ld",
1655                        shift, rc);
1656             error_append_hint(errp, "Try smaller maxmem?\n");
1657             return -ENOSPC;
1658         }
1659 
1660         spapr->htab_shift = shift;
1661         spapr->htab = NULL;
1662     } else {
1663         /* kernel-side HPT not needed, allocate in userspace instead */
1664         size_t size = 1ULL << shift;
1665         int i;
1666 
1667         spapr->htab = qemu_memalign(size, size);
1668         memset(spapr->htab, 0, size);
1669         spapr->htab_shift = shift;
1670 
1671         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1672             DIRTY_HPTE(HPTE(spapr->htab, i));
1673         }
1674     }
1675     /* We're setting up a hash table, so that means we're not radix */
1676     spapr->patb_entry = 0;
1677     spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1678     return 0;
1679 }
1680 
1681 void spapr_setup_hpt(SpaprMachineState *spapr)
1682 {
1683     int hpt_shift;
1684 
1685     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1686         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1687     } else {
1688         uint64_t current_ram_size;
1689 
1690         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1691         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1692     }
1693     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1694 
1695     if (kvm_enabled()) {
1696         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1697 
1698         /* Check our RMA fits in the possible VRMA */
1699         if (vrma_limit < spapr->rma_size) {
1700             error_report("Unable to create %" HWADDR_PRIu
1701                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1702                          spapr->rma_size / MiB, vrma_limit / MiB);
1703             exit(EXIT_FAILURE);
1704         }
1705     }
1706 }
1707 
1708 void spapr_check_mmu_mode(bool guest_radix)
1709 {
1710     if (guest_radix) {
1711         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1712             error_report("Guest requested unavailable MMU mode (radix).");
1713             exit(EXIT_FAILURE);
1714         }
1715     } else {
1716         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1717             && !kvmppc_has_cap_mmu_hash_v3()) {
1718             error_report("Guest requested unavailable MMU mode (hash).");
1719             exit(EXIT_FAILURE);
1720         }
1721     }
1722 }
1723 
1724 static void spapr_machine_reset(MachineState *machine, ResetType type)
1725 {
1726     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1727     PowerPCCPU *first_ppc_cpu;
1728     hwaddr fdt_addr;
1729     void *fdt;
1730     int rc;
1731 
1732     if (type != RESET_TYPE_SNAPSHOT_LOAD) {
1733         /*
1734          * Record-replay snapshot load must not consume random, this was
1735          * already replayed from initial machine reset.
1736          */
1737         qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1738     }
1739 
1740     if (machine->cgs) {
1741         confidential_guest_kvm_reset(machine->cgs, &error_fatal);
1742     }
1743     spapr_caps_apply(spapr);
1744     spapr_nested_reset(spapr);
1745 
1746     first_ppc_cpu = POWERPC_CPU(first_cpu);
1747     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1748         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1749                               spapr->max_compat_pvr)) {
1750         /*
1751          * If using KVM with radix mode available, VCPUs can be started
1752          * without a HPT because KVM will start them in radix mode.
1753          * Set the GR bit in PATE so that we know there is no HPT.
1754          */
1755         spapr->patb_entry = PATE1_GR;
1756         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1757     } else {
1758         spapr_setup_hpt(spapr);
1759     }
1760 
1761     qemu_devices_reset(type);
1762 
1763     spapr_ovec_cleanup(spapr->ov5_cas);
1764     spapr->ov5_cas = spapr_ovec_new();
1765 
1766     ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1767 
1768     /*
1769      * This is fixing some of the default configuration of the XIVE
1770      * devices. To be called after the reset of the machine devices.
1771      */
1772     spapr_irq_reset(spapr, &error_fatal);
1773 
1774     /*
1775      * There is no CAS under qtest. Simulate one to please the code that
1776      * depends on spapr->ov5_cas. This is especially needed to test device
1777      * unplug, so we do that before resetting the DRCs.
1778      */
1779     if (qtest_enabled()) {
1780         spapr_ovec_cleanup(spapr->ov5_cas);
1781         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1782     }
1783 
1784     spapr_nvdimm_finish_flushes();
1785 
1786     /* DRC reset may cause a device to be unplugged. This will cause troubles
1787      * if this device is used by another device (eg, a running vhost backend
1788      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1789      * situations, we reset DRCs after all devices have been reset.
1790      */
1791     spapr_drc_reset_all(spapr);
1792 
1793     spapr_clear_pending_events(spapr);
1794 
1795     /*
1796      * We place the device tree just below either the top of the RMA,
1797      * or just below 2GB, whichever is lower, so that it can be
1798      * processed with 32-bit real mode code if necessary
1799      */
1800     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1801 
1802     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1803     if (spapr->vof) {
1804         spapr_vof_reset(spapr, fdt, &error_fatal);
1805         /*
1806          * Do not pack the FDT as the client may change properties.
1807          * VOF client does not expect the FDT so we do not load it to the VM.
1808          */
1809     } else {
1810         rc = fdt_pack(fdt);
1811         /* Should only fail if we've built a corrupted tree */
1812         assert(rc == 0);
1813 
1814         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1815                                   0, fdt_addr, 0);
1816         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1817     }
1818     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1819 
1820     g_free(spapr->fdt_blob);
1821     spapr->fdt_size = fdt_totalsize(fdt);
1822     spapr->fdt_initial_size = spapr->fdt_size;
1823     spapr->fdt_blob = fdt;
1824 
1825     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1826     machine->fdt = fdt;
1827 
1828     /* Set up the entry state */
1829     first_ppc_cpu->env.gpr[5] = 0;
1830 
1831     spapr->fwnmi_system_reset_addr = -1;
1832     spapr->fwnmi_machine_check_addr = -1;
1833     spapr->fwnmi_machine_check_interlock = -1;
1834 
1835     /* Signal all vCPUs waiting on this condition */
1836     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1837 
1838     migrate_del_blocker(&spapr->fwnmi_migration_blocker);
1839 }
1840 
1841 static void spapr_create_nvram(SpaprMachineState *spapr)
1842 {
1843     DeviceState *dev = qdev_new("spapr-nvram");
1844     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1845 
1846     if (dinfo) {
1847         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1848                                 &error_fatal);
1849     }
1850 
1851     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1852 
1853     spapr->nvram = (struct SpaprNvram *)dev;
1854 }
1855 
1856 static void spapr_rtc_create(SpaprMachineState *spapr)
1857 {
1858     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1859                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1860                                        &error_fatal, NULL);
1861     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1862     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1863                               "date");
1864 }
1865 
1866 /* Returns whether we want to use VGA or not */
1867 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1868 {
1869     vga_interface_created = true;
1870     switch (vga_interface_type) {
1871     case VGA_NONE:
1872         return false;
1873     case VGA_DEVICE:
1874         return true;
1875     case VGA_STD:
1876     case VGA_VIRTIO:
1877     case VGA_CIRRUS:
1878         return pci_vga_init(pci_bus) != NULL;
1879     default:
1880         error_setg(errp,
1881                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1882         return false;
1883     }
1884 }
1885 
1886 static int spapr_pre_load(void *opaque)
1887 {
1888     int rc;
1889 
1890     rc = spapr_caps_pre_load(opaque);
1891     if (rc) {
1892         return rc;
1893     }
1894 
1895     return 0;
1896 }
1897 
1898 static int spapr_post_load(void *opaque, int version_id)
1899 {
1900     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1901     int err = 0;
1902 
1903     err = spapr_caps_post_migration(spapr);
1904     if (err) {
1905         return err;
1906     }
1907 
1908     /*
1909      * In earlier versions, there was no separate qdev for the PAPR
1910      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1911      * So when migrating from those versions, poke the incoming offset
1912      * value into the RTC device
1913      */
1914     if (version_id < 3) {
1915         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1916         if (err) {
1917             return err;
1918         }
1919     }
1920 
1921     if (kvm_enabled() && spapr->patb_entry) {
1922         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1923         bool radix = !!(spapr->patb_entry & PATE1_GR);
1924         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1925 
1926         /*
1927          * Update LPCR:HR and UPRT as they may not be set properly in
1928          * the stream
1929          */
1930         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1931                             LPCR_HR | LPCR_UPRT);
1932 
1933         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1934         if (err) {
1935             error_report("Process table config unsupported by the host");
1936             return -EINVAL;
1937         }
1938     }
1939 
1940     err = spapr_irq_post_load(spapr, version_id);
1941     if (err) {
1942         return err;
1943     }
1944 
1945     return err;
1946 }
1947 
1948 static int spapr_pre_save(void *opaque)
1949 {
1950     int rc;
1951 
1952     rc = spapr_caps_pre_save(opaque);
1953     if (rc) {
1954         return rc;
1955     }
1956 
1957     return 0;
1958 }
1959 
1960 static bool version_before_3(void *opaque, int version_id)
1961 {
1962     return version_id < 3;
1963 }
1964 
1965 static bool spapr_pending_events_needed(void *opaque)
1966 {
1967     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1968     return !QTAILQ_EMPTY(&spapr->pending_events);
1969 }
1970 
1971 static const VMStateDescription vmstate_spapr_event_entry = {
1972     .name = "spapr_event_log_entry",
1973     .version_id = 1,
1974     .minimum_version_id = 1,
1975     .fields = (const VMStateField[]) {
1976         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1977         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1978         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1979                                      NULL, extended_length),
1980         VMSTATE_END_OF_LIST()
1981     },
1982 };
1983 
1984 static const VMStateDescription vmstate_spapr_pending_events = {
1985     .name = "spapr_pending_events",
1986     .version_id = 1,
1987     .minimum_version_id = 1,
1988     .needed = spapr_pending_events_needed,
1989     .fields = (const VMStateField[]) {
1990         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1991                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1992         VMSTATE_END_OF_LIST()
1993     },
1994 };
1995 
1996 static bool spapr_ov5_cas_needed(void *opaque)
1997 {
1998     SpaprMachineState *spapr = opaque;
1999     SpaprOptionVector *ov5_mask = spapr_ovec_new();
2000     bool cas_needed;
2001 
2002     /* Prior to the introduction of SpaprOptionVector, we had two option
2003      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
2004      * Both of these options encode machine topology into the device-tree
2005      * in such a way that the now-booted OS should still be able to interact
2006      * appropriately with QEMU regardless of what options were actually
2007      * negotiatied on the source side.
2008      *
2009      * As such, we can avoid migrating the CAS-negotiated options if these
2010      * are the only options available on the current machine/platform.
2011      * Since these are the only options available for pseries-2.7 and
2012      * earlier, this allows us to maintain old->new/new->old migration
2013      * compatibility.
2014      *
2015      * For QEMU 2.8+, there are additional CAS-negotiatable options available
2016      * via default pseries-2.8 machines and explicit command-line parameters.
2017      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2018      * of the actual CAS-negotiated values to continue working properly. For
2019      * example, availability of memory unplug depends on knowing whether
2020      * OV5_HP_EVT was negotiated via CAS.
2021      *
2022      * Thus, for any cases where the set of available CAS-negotiatable
2023      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2024      * include the CAS-negotiated options in the migration stream, unless
2025      * if they affect boot time behaviour only.
2026      */
2027     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2028     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2029     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2030 
2031     /* We need extra information if we have any bits outside the mask
2032      * defined above */
2033     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
2034 
2035     spapr_ovec_cleanup(ov5_mask);
2036 
2037     return cas_needed;
2038 }
2039 
2040 static const VMStateDescription vmstate_spapr_ov5_cas = {
2041     .name = "spapr_option_vector_ov5_cas",
2042     .version_id = 1,
2043     .minimum_version_id = 1,
2044     .needed = spapr_ov5_cas_needed,
2045     .fields = (const VMStateField[]) {
2046         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2047                                  vmstate_spapr_ovec, SpaprOptionVector),
2048         VMSTATE_END_OF_LIST()
2049     },
2050 };
2051 
2052 static bool spapr_patb_entry_needed(void *opaque)
2053 {
2054     SpaprMachineState *spapr = opaque;
2055 
2056     return !!spapr->patb_entry;
2057 }
2058 
2059 static const VMStateDescription vmstate_spapr_patb_entry = {
2060     .name = "spapr_patb_entry",
2061     .version_id = 1,
2062     .minimum_version_id = 1,
2063     .needed = spapr_patb_entry_needed,
2064     .fields = (const VMStateField[]) {
2065         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2066         VMSTATE_END_OF_LIST()
2067     },
2068 };
2069 
2070 static bool spapr_irq_map_needed(void *opaque)
2071 {
2072     SpaprMachineState *spapr = opaque;
2073 
2074     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2075 }
2076 
2077 static const VMStateDescription vmstate_spapr_irq_map = {
2078     .name = "spapr_irq_map",
2079     .version_id = 1,
2080     .minimum_version_id = 1,
2081     .needed = spapr_irq_map_needed,
2082     .fields = (const VMStateField[]) {
2083         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2084         VMSTATE_END_OF_LIST()
2085     },
2086 };
2087 
2088 static bool spapr_dtb_needed(void *opaque)
2089 {
2090     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2091 
2092     return smc->update_dt_enabled;
2093 }
2094 
2095 static int spapr_dtb_pre_load(void *opaque)
2096 {
2097     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2098 
2099     g_free(spapr->fdt_blob);
2100     spapr->fdt_blob = NULL;
2101     spapr->fdt_size = 0;
2102 
2103     return 0;
2104 }
2105 
2106 static const VMStateDescription vmstate_spapr_dtb = {
2107     .name = "spapr_dtb",
2108     .version_id = 1,
2109     .minimum_version_id = 1,
2110     .needed = spapr_dtb_needed,
2111     .pre_load = spapr_dtb_pre_load,
2112     .fields = (const VMStateField[]) {
2113         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2114         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2115         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2116                                      fdt_size),
2117         VMSTATE_END_OF_LIST()
2118     },
2119 };
2120 
2121 static bool spapr_fwnmi_needed(void *opaque)
2122 {
2123     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2124 
2125     return spapr->fwnmi_machine_check_addr != -1;
2126 }
2127 
2128 static int spapr_fwnmi_pre_save(void *opaque)
2129 {
2130     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2131 
2132     /*
2133      * Check if machine check handling is in progress and print a
2134      * warning message.
2135      */
2136     if (spapr->fwnmi_machine_check_interlock != -1) {
2137         warn_report("A machine check is being handled during migration. The"
2138                 "handler may run and log hardware error on the destination");
2139     }
2140 
2141     return 0;
2142 }
2143 
2144 static const VMStateDescription vmstate_spapr_fwnmi = {
2145     .name = "spapr_fwnmi",
2146     .version_id = 1,
2147     .minimum_version_id = 1,
2148     .needed = spapr_fwnmi_needed,
2149     .pre_save = spapr_fwnmi_pre_save,
2150     .fields = (const VMStateField[]) {
2151         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2152         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2153         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2154         VMSTATE_END_OF_LIST()
2155     },
2156 };
2157 
2158 static const VMStateDescription vmstate_spapr = {
2159     .name = "spapr",
2160     .version_id = 3,
2161     .minimum_version_id = 1,
2162     .pre_load = spapr_pre_load,
2163     .post_load = spapr_post_load,
2164     .pre_save = spapr_pre_save,
2165     .fields = (const VMStateField[]) {
2166         /* used to be @next_irq */
2167         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2168 
2169         /* RTC offset */
2170         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2171 
2172         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2173         VMSTATE_END_OF_LIST()
2174     },
2175     .subsections = (const VMStateDescription * const []) {
2176         &vmstate_spapr_ov5_cas,
2177         &vmstate_spapr_patb_entry,
2178         &vmstate_spapr_pending_events,
2179         &vmstate_spapr_cap_htm,
2180         &vmstate_spapr_cap_vsx,
2181         &vmstate_spapr_cap_dfp,
2182         &vmstate_spapr_cap_cfpc,
2183         &vmstate_spapr_cap_sbbc,
2184         &vmstate_spapr_cap_ibs,
2185         &vmstate_spapr_cap_hpt_maxpagesize,
2186         &vmstate_spapr_irq_map,
2187         &vmstate_spapr_cap_nested_kvm_hv,
2188         &vmstate_spapr_dtb,
2189         &vmstate_spapr_cap_large_decr,
2190         &vmstate_spapr_cap_ccf_assist,
2191         &vmstate_spapr_cap_fwnmi,
2192         &vmstate_spapr_fwnmi,
2193         &vmstate_spapr_cap_rpt_invalidate,
2194         &vmstate_spapr_cap_ail_mode_3,
2195         &vmstate_spapr_cap_nested_papr,
2196         NULL
2197     }
2198 };
2199 
2200 static int htab_save_setup(QEMUFile *f, void *opaque, Error **errp)
2201 {
2202     SpaprMachineState *spapr = opaque;
2203 
2204     /* "Iteration" header */
2205     if (!spapr->htab_shift) {
2206         qemu_put_be32(f, -1);
2207     } else {
2208         qemu_put_be32(f, spapr->htab_shift);
2209     }
2210 
2211     if (spapr->htab) {
2212         spapr->htab_save_index = 0;
2213         spapr->htab_first_pass = true;
2214     } else {
2215         if (spapr->htab_shift) {
2216             assert(kvm_enabled());
2217         }
2218     }
2219 
2220 
2221     return 0;
2222 }
2223 
2224 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2225                             int chunkstart, int n_valid, int n_invalid)
2226 {
2227     qemu_put_be32(f, chunkstart);
2228     qemu_put_be16(f, n_valid);
2229     qemu_put_be16(f, n_invalid);
2230     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2231                     HASH_PTE_SIZE_64 * n_valid);
2232 }
2233 
2234 static void htab_save_end_marker(QEMUFile *f)
2235 {
2236     qemu_put_be32(f, 0);
2237     qemu_put_be16(f, 0);
2238     qemu_put_be16(f, 0);
2239 }
2240 
2241 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2242                                  int64_t max_ns)
2243 {
2244     bool has_timeout = max_ns != -1;
2245     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2246     int index = spapr->htab_save_index;
2247     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2248 
2249     assert(spapr->htab_first_pass);
2250 
2251     do {
2252         int chunkstart;
2253 
2254         /* Consume invalid HPTEs */
2255         while ((index < htabslots)
2256                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2257             CLEAN_HPTE(HPTE(spapr->htab, index));
2258             index++;
2259         }
2260 
2261         /* Consume valid HPTEs */
2262         chunkstart = index;
2263         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2264                && HPTE_VALID(HPTE(spapr->htab, index))) {
2265             CLEAN_HPTE(HPTE(spapr->htab, index));
2266             index++;
2267         }
2268 
2269         if (index > chunkstart) {
2270             int n_valid = index - chunkstart;
2271 
2272             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2273 
2274             if (has_timeout &&
2275                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2276                 break;
2277             }
2278         }
2279     } while ((index < htabslots) && !migration_rate_exceeded(f));
2280 
2281     if (index >= htabslots) {
2282         assert(index == htabslots);
2283         index = 0;
2284         spapr->htab_first_pass = false;
2285     }
2286     spapr->htab_save_index = index;
2287 }
2288 
2289 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2290                                 int64_t max_ns)
2291 {
2292     bool final = max_ns < 0;
2293     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2294     int examined = 0, sent = 0;
2295     int index = spapr->htab_save_index;
2296     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2297 
2298     assert(!spapr->htab_first_pass);
2299 
2300     do {
2301         int chunkstart, invalidstart;
2302 
2303         /* Consume non-dirty HPTEs */
2304         while ((index < htabslots)
2305                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2306             index++;
2307             examined++;
2308         }
2309 
2310         chunkstart = index;
2311         /* Consume valid dirty HPTEs */
2312         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2313                && HPTE_DIRTY(HPTE(spapr->htab, index))
2314                && HPTE_VALID(HPTE(spapr->htab, index))) {
2315             CLEAN_HPTE(HPTE(spapr->htab, index));
2316             index++;
2317             examined++;
2318         }
2319 
2320         invalidstart = index;
2321         /* Consume invalid dirty HPTEs */
2322         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2323                && HPTE_DIRTY(HPTE(spapr->htab, index))
2324                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2325             CLEAN_HPTE(HPTE(spapr->htab, index));
2326             index++;
2327             examined++;
2328         }
2329 
2330         if (index > chunkstart) {
2331             int n_valid = invalidstart - chunkstart;
2332             int n_invalid = index - invalidstart;
2333 
2334             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2335             sent += index - chunkstart;
2336 
2337             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2338                 break;
2339             }
2340         }
2341 
2342         if (examined >= htabslots) {
2343             break;
2344         }
2345 
2346         if (index >= htabslots) {
2347             assert(index == htabslots);
2348             index = 0;
2349         }
2350     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2351 
2352     if (index >= htabslots) {
2353         assert(index == htabslots);
2354         index = 0;
2355     }
2356 
2357     spapr->htab_save_index = index;
2358 
2359     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2360 }
2361 
2362 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2363 #define MAX_KVM_BUF_SIZE    2048
2364 
2365 static int htab_save_iterate(QEMUFile *f, void *opaque)
2366 {
2367     SpaprMachineState *spapr = opaque;
2368     int fd;
2369     int rc = 0;
2370 
2371     /* Iteration header */
2372     if (!spapr->htab_shift) {
2373         qemu_put_be32(f, -1);
2374         return 1;
2375     } else {
2376         qemu_put_be32(f, 0);
2377     }
2378 
2379     if (!spapr->htab) {
2380         assert(kvm_enabled());
2381 
2382         fd = get_htab_fd(spapr);
2383         if (fd < 0) {
2384             return fd;
2385         }
2386 
2387         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2388         if (rc < 0) {
2389             return rc;
2390         }
2391     } else  if (spapr->htab_first_pass) {
2392         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2393     } else {
2394         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2395     }
2396 
2397     htab_save_end_marker(f);
2398 
2399     return rc;
2400 }
2401 
2402 static int htab_save_complete(QEMUFile *f, void *opaque)
2403 {
2404     SpaprMachineState *spapr = opaque;
2405     int fd;
2406 
2407     /* Iteration header */
2408     if (!spapr->htab_shift) {
2409         qemu_put_be32(f, -1);
2410         return 0;
2411     } else {
2412         qemu_put_be32(f, 0);
2413     }
2414 
2415     if (!spapr->htab) {
2416         int rc;
2417 
2418         assert(kvm_enabled());
2419 
2420         fd = get_htab_fd(spapr);
2421         if (fd < 0) {
2422             return fd;
2423         }
2424 
2425         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2426         if (rc < 0) {
2427             return rc;
2428         }
2429     } else {
2430         if (spapr->htab_first_pass) {
2431             htab_save_first_pass(f, spapr, -1);
2432         }
2433         htab_save_later_pass(f, spapr, -1);
2434     }
2435 
2436     /* End marker */
2437     htab_save_end_marker(f);
2438 
2439     return 0;
2440 }
2441 
2442 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2443 {
2444     SpaprMachineState *spapr = opaque;
2445     uint32_t section_hdr;
2446     int fd = -1;
2447     Error *local_err = NULL;
2448 
2449     if (version_id < 1 || version_id > 1) {
2450         error_report("htab_load() bad version");
2451         return -EINVAL;
2452     }
2453 
2454     section_hdr = qemu_get_be32(f);
2455 
2456     if (section_hdr == -1) {
2457         spapr_free_hpt(spapr);
2458         return 0;
2459     }
2460 
2461     if (section_hdr) {
2462         int ret;
2463 
2464         /* First section gives the htab size */
2465         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2466         if (ret < 0) {
2467             error_report_err(local_err);
2468             return ret;
2469         }
2470         return 0;
2471     }
2472 
2473     if (!spapr->htab) {
2474         assert(kvm_enabled());
2475 
2476         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2477         if (fd < 0) {
2478             error_report_err(local_err);
2479             return fd;
2480         }
2481     }
2482 
2483     while (true) {
2484         uint32_t index;
2485         uint16_t n_valid, n_invalid;
2486 
2487         index = qemu_get_be32(f);
2488         n_valid = qemu_get_be16(f);
2489         n_invalid = qemu_get_be16(f);
2490 
2491         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2492             /* End of Stream */
2493             break;
2494         }
2495 
2496         if ((index + n_valid + n_invalid) >
2497             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2498             /* Bad index in stream */
2499             error_report(
2500                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2501                 index, n_valid, n_invalid, spapr->htab_shift);
2502             return -EINVAL;
2503         }
2504 
2505         if (spapr->htab) {
2506             if (n_valid) {
2507                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2508                                 HASH_PTE_SIZE_64 * n_valid);
2509             }
2510             if (n_invalid) {
2511                 memset(HPTE(spapr->htab, index + n_valid), 0,
2512                        HASH_PTE_SIZE_64 * n_invalid);
2513             }
2514         } else {
2515             int rc;
2516 
2517             assert(fd >= 0);
2518 
2519             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2520                                         &local_err);
2521             if (rc < 0) {
2522                 error_report_err(local_err);
2523                 return rc;
2524             }
2525         }
2526     }
2527 
2528     if (!spapr->htab) {
2529         assert(fd >= 0);
2530         close(fd);
2531     }
2532 
2533     return 0;
2534 }
2535 
2536 static void htab_save_cleanup(void *opaque)
2537 {
2538     SpaprMachineState *spapr = opaque;
2539 
2540     close_htab_fd(spapr);
2541 }
2542 
2543 static SaveVMHandlers savevm_htab_handlers = {
2544     .save_setup = htab_save_setup,
2545     .save_live_iterate = htab_save_iterate,
2546     .save_live_complete_precopy = htab_save_complete,
2547     .save_cleanup = htab_save_cleanup,
2548     .load_state = htab_load,
2549 };
2550 
2551 static void spapr_boot_set(void *opaque, const char *boot_device,
2552                            Error **errp)
2553 {
2554     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2555 
2556     g_free(spapr->boot_device);
2557     spapr->boot_device = g_strdup(boot_device);
2558 }
2559 
2560 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2561 {
2562     MachineState *machine = MACHINE(spapr);
2563     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2564     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2565     int i;
2566 
2567     g_assert(!nr_lmbs || machine->device_memory);
2568     for (i = 0; i < nr_lmbs; i++) {
2569         uint64_t addr;
2570 
2571         addr = i * lmb_size + machine->device_memory->base;
2572         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2573                                addr / lmb_size);
2574     }
2575 }
2576 
2577 /*
2578  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2579  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2580  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2581  */
2582 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2583 {
2584     int i;
2585 
2586     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2587         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2588                    " is not aligned to %" PRIu64 " MiB",
2589                    machine->ram_size,
2590                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2591         return;
2592     }
2593 
2594     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2595         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2596                    " is not aligned to %" PRIu64 " MiB",
2597                    machine->ram_size,
2598                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2599         return;
2600     }
2601 
2602     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2603         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2604             error_setg(errp,
2605                        "Node %d memory size 0x%" PRIx64
2606                        " is not aligned to %" PRIu64 " MiB",
2607                        i, machine->numa_state->nodes[i].node_mem,
2608                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2609             return;
2610         }
2611     }
2612 }
2613 
2614 /* find cpu slot in machine->possible_cpus by core_id */
2615 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2616 {
2617     int index = id / ms->smp.threads;
2618 
2619     if (index >= ms->possible_cpus->len) {
2620         return NULL;
2621     }
2622     if (idx) {
2623         *idx = index;
2624     }
2625     return &ms->possible_cpus->cpus[index];
2626 }
2627 
2628 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2629 {
2630     MachineState *ms = MACHINE(spapr);
2631     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2632     Error *local_err = NULL;
2633     bool vsmt_user = !!spapr->vsmt;
2634     int kvm_smt = kvmppc_smt_threads();
2635     int ret;
2636     unsigned int smp_threads = ms->smp.threads;
2637 
2638     if (tcg_enabled()) {
2639         if (smp_threads > 1 &&
2640             !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2641                                    spapr->max_compat_pvr)) {
2642             error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2643             return;
2644         }
2645 
2646         if (smp_threads > 8) {
2647             error_setg(errp, "TCG cannot support more than 8 threads/core "
2648                        "on a pseries machine");
2649             return;
2650         }
2651     }
2652     if (!is_power_of_2(smp_threads)) {
2653         error_setg(errp, "Cannot support %d threads/core on a pseries "
2654                    "machine because it must be a power of 2", smp_threads);
2655         return;
2656     }
2657 
2658     /* Determine the VSMT mode to use: */
2659     if (vsmt_user) {
2660         if (spapr->vsmt < smp_threads) {
2661             error_setg(errp, "Cannot support VSMT mode %d"
2662                        " because it must be >= threads/core (%d)",
2663                        spapr->vsmt, smp_threads);
2664             return;
2665         }
2666         /* In this case, spapr->vsmt has been set by the command line */
2667     } else if (!smc->smp_threads_vsmt) {
2668         /*
2669          * Default VSMT value is tricky, because we need it to be as
2670          * consistent as possible (for migration), but this requires
2671          * changing it for at least some existing cases.  We pick 8 as
2672          * the value that we'd get with KVM on POWER8, the
2673          * overwhelmingly common case in production systems.
2674          */
2675         spapr->vsmt = MAX(8, smp_threads);
2676     } else {
2677         spapr->vsmt = smp_threads;
2678     }
2679 
2680     /* KVM: If necessary, set the SMT mode: */
2681     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2682         ret = kvmppc_set_smt_threads(spapr->vsmt);
2683         if (ret) {
2684             /* Looks like KVM isn't able to change VSMT mode */
2685             error_setg(&local_err,
2686                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2687                        spapr->vsmt, ret);
2688             /* We can live with that if the default one is big enough
2689              * for the number of threads, and a submultiple of the one
2690              * we want.  In this case we'll waste some vcpu ids, but
2691              * behaviour will be correct */
2692             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2693                 warn_report_err(local_err);
2694             } else {
2695                 if (!vsmt_user) {
2696                     error_append_hint(&local_err,
2697                                       "On PPC, a VM with %d threads/core"
2698                                       " on a host with %d threads/core"
2699                                       " requires the use of VSMT mode %d.\n",
2700                                       smp_threads, kvm_smt, spapr->vsmt);
2701                 }
2702                 kvmppc_error_append_smt_possible_hint(&local_err);
2703                 error_propagate(errp, local_err);
2704             }
2705         }
2706     }
2707     /* else TCG: nothing to do currently */
2708 }
2709 
2710 static void spapr_init_cpus(SpaprMachineState *spapr)
2711 {
2712     MachineState *machine = MACHINE(spapr);
2713     MachineClass *mc = MACHINE_GET_CLASS(machine);
2714     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2715     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2716     const CPUArchIdList *possible_cpus;
2717     unsigned int smp_cpus = machine->smp.cpus;
2718     unsigned int smp_threads = machine->smp.threads;
2719     unsigned int max_cpus = machine->smp.max_cpus;
2720     int boot_cores_nr = smp_cpus / smp_threads;
2721     int i;
2722 
2723     possible_cpus = mc->possible_cpu_arch_ids(machine);
2724     if (mc->has_hotpluggable_cpus) {
2725         if (smp_cpus % smp_threads) {
2726             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2727                          smp_cpus, smp_threads);
2728             exit(1);
2729         }
2730         if (max_cpus % smp_threads) {
2731             error_report("max_cpus (%u) must be multiple of threads (%u)",
2732                          max_cpus, smp_threads);
2733             exit(1);
2734         }
2735     } else {
2736         if (max_cpus != smp_cpus) {
2737             error_report("This machine version does not support CPU hotplug");
2738             exit(1);
2739         }
2740         boot_cores_nr = possible_cpus->len;
2741     }
2742 
2743     if (smc->pre_2_10_has_unused_icps) {
2744         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2745             /* Dummy entries get deregistered when real ICPState objects
2746              * are registered during CPU core hotplug.
2747              */
2748             pre_2_10_vmstate_register_dummy_icp(i);
2749         }
2750     }
2751 
2752     for (i = 0; i < possible_cpus->len; i++) {
2753         int core_id = i * smp_threads;
2754 
2755         if (mc->has_hotpluggable_cpus) {
2756             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2757                                    spapr_vcpu_id(spapr, core_id));
2758         }
2759 
2760         if (i < boot_cores_nr) {
2761             Object *core  = object_new(type);
2762             int nr_threads = smp_threads;
2763 
2764             /* Handle the partially filled core for older machine types */
2765             if ((i + 1) * smp_threads >= smp_cpus) {
2766                 nr_threads = smp_cpus - i * smp_threads;
2767             }
2768 
2769             object_property_set_int(core, "nr-threads", nr_threads,
2770                                     &error_fatal);
2771             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2772                                     &error_fatal);
2773             qdev_realize(DEVICE(core), NULL, &error_fatal);
2774 
2775             object_unref(core);
2776         }
2777     }
2778 }
2779 
2780 static PCIHostState *spapr_create_default_phb(void)
2781 {
2782     DeviceState *dev;
2783 
2784     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2785     qdev_prop_set_uint32(dev, "index", 0);
2786     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2787 
2788     return PCI_HOST_BRIDGE(dev);
2789 }
2790 
2791 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2792 {
2793     MachineState *machine = MACHINE(spapr);
2794     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2795     hwaddr rma_size = machine->ram_size;
2796     hwaddr node0_size = spapr_node0_size(machine);
2797 
2798     /* RMA has to fit in the first NUMA node */
2799     rma_size = MIN(rma_size, node0_size);
2800 
2801     /*
2802      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2803      * never exceed that
2804      */
2805     rma_size = MIN(rma_size, 1 * TiB);
2806 
2807     /*
2808      * Clamp the RMA size based on machine type.  This is for
2809      * migration compatibility with older qemu versions, which limited
2810      * the RMA size for complicated and mostly bad reasons.
2811      */
2812     if (smc->rma_limit) {
2813         rma_size = MIN(rma_size, smc->rma_limit);
2814     }
2815 
2816     if (rma_size < MIN_RMA_SLOF) {
2817         error_setg(errp,
2818                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2819                    "ldMiB guest RMA (Real Mode Area memory)",
2820                    MIN_RMA_SLOF / MiB);
2821         return 0;
2822     }
2823 
2824     return rma_size;
2825 }
2826 
2827 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2828 {
2829     MachineState *machine = MACHINE(spapr);
2830     int i;
2831 
2832     for (i = 0; i < machine->ram_slots; i++) {
2833         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2834     }
2835 }
2836 
2837 /* pSeries LPAR / sPAPR hardware init */
2838 static void spapr_machine_init(MachineState *machine)
2839 {
2840     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2841     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2842     MachineClass *mc = MACHINE_GET_CLASS(machine);
2843     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2844     const char *bios_name = machine->firmware ?: bios_default;
2845     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2846     const char *kernel_filename = machine->kernel_filename;
2847     const char *initrd_filename = machine->initrd_filename;
2848     PCIHostState *phb;
2849     bool has_vga;
2850     int i;
2851     MemoryRegion *sysmem = get_system_memory();
2852     long load_limit, fw_size;
2853     Error *resize_hpt_err = NULL;
2854     NICInfo *nd;
2855 
2856     if (!filename) {
2857         error_report("Could not find LPAR firmware '%s'", bios_name);
2858         exit(1);
2859     }
2860     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2861     if (fw_size <= 0) {
2862         error_report("Could not load LPAR firmware '%s'", filename);
2863         exit(1);
2864     }
2865 
2866     /*
2867      * if Secure VM (PEF) support is configured, then initialize it
2868      */
2869     if (machine->cgs) {
2870         confidential_guest_kvm_init(machine->cgs, &error_fatal);
2871     }
2872 
2873     msi_nonbroken = true;
2874 
2875     QLIST_INIT(&spapr->phbs);
2876     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2877 
2878     /* Determine capabilities to run with */
2879     spapr_caps_init(spapr);
2880 
2881     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2882     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2883         /*
2884          * If the user explicitly requested a mode we should either
2885          * supply it, or fail completely (which we do below).  But if
2886          * it's not set explicitly, we reset our mode to something
2887          * that works
2888          */
2889         if (resize_hpt_err) {
2890             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2891             error_free(resize_hpt_err);
2892             resize_hpt_err = NULL;
2893         } else {
2894             spapr->resize_hpt = smc->resize_hpt_default;
2895         }
2896     }
2897 
2898     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2899 
2900     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2901         /*
2902          * User requested HPT resize, but this host can't supply it.  Bail out
2903          */
2904         error_report_err(resize_hpt_err);
2905         exit(1);
2906     }
2907     error_free(resize_hpt_err);
2908 
2909     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2910 
2911     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2912     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2913 
2914     /*
2915      * VSMT must be set in order to be able to compute VCPU ids, ie to
2916      * call spapr_max_server_number() or spapr_vcpu_id().
2917      */
2918     spapr_set_vsmt_mode(spapr, &error_fatal);
2919 
2920     /* Set up Interrupt Controller before we create the VCPUs */
2921     spapr_irq_init(spapr, &error_fatal);
2922 
2923     /* Set up containers for ibm,client-architecture-support negotiated options
2924      */
2925     spapr->ov5 = spapr_ovec_new();
2926     spapr->ov5_cas = spapr_ovec_new();
2927 
2928     spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2929     spapr_validate_node_memory(machine, &error_fatal);
2930 
2931     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2932 
2933     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2934     if (!smc->pre_6_2_numa_affinity) {
2935         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2936     }
2937 
2938     /* advertise support for dedicated HP event source to guests */
2939     if (spapr->use_hotplug_event_source) {
2940         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2941     }
2942 
2943     /* advertise support for HPT resizing */
2944     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2945         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2946     }
2947 
2948     /* advertise support for ibm,dyamic-memory-v2 */
2949     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2950 
2951     /* advertise XIVE on POWER9 machines */
2952     if (spapr->irq->xive) {
2953         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2954     }
2955 
2956     /* init CPUs */
2957     spapr_init_cpus(spapr);
2958 
2959     /* Init numa_assoc_array */
2960     spapr_numa_associativity_init(spapr, machine);
2961 
2962     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2963         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2964                               spapr->max_compat_pvr)) {
2965         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2966         /* KVM and TCG always allow GTSE with radix... */
2967         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2968     }
2969     /* ... but not with hash (currently). */
2970 
2971     if (kvm_enabled()) {
2972         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2973         kvmppc_enable_logical_ci_hcalls();
2974         kvmppc_enable_set_mode_hcall();
2975 
2976         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2977         kvmppc_enable_clear_ref_mod_hcalls();
2978 
2979         /* Enable H_PAGE_INIT */
2980         kvmppc_enable_h_page_init();
2981     }
2982 
2983     /* map RAM */
2984     memory_region_add_subregion(sysmem, 0, machine->ram);
2985 
2986     /* initialize hotplug memory address space */
2987     if (machine->ram_size < machine->maxram_size) {
2988         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2989         hwaddr device_mem_base;
2990 
2991         /*
2992          * Limit the number of hotpluggable memory slots to half the number
2993          * slots that KVM supports, leaving the other half for PCI and other
2994          * devices. However ensure that number of slots doesn't drop below 32.
2995          */
2996         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2997                            SPAPR_MAX_RAM_SLOTS;
2998 
2999         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
3000             max_memslots = SPAPR_MAX_RAM_SLOTS;
3001         }
3002         if (machine->ram_slots > max_memslots) {
3003             error_report("Specified number of memory slots %"
3004                          PRIu64" exceeds max supported %d",
3005                          machine->ram_slots, max_memslots);
3006             exit(1);
3007         }
3008 
3009         device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
3010         machine_memory_devices_init(machine, device_mem_base, device_mem_size);
3011     }
3012 
3013     spapr_create_lmb_dr_connectors(spapr);
3014 
3015     if (mc->nvdimm_supported) {
3016         spapr_create_nvdimm_dr_connectors(spapr);
3017     }
3018 
3019     /* Set up RTAS event infrastructure */
3020     spapr_events_init(spapr);
3021 
3022     /* Set up the RTC RTAS interfaces */
3023     spapr_rtc_create(spapr);
3024 
3025     /* Set up VIO bus */
3026     spapr->vio_bus = spapr_vio_bus_init();
3027 
3028     for (i = 0; serial_hd(i); i++) {
3029         spapr_vty_create(spapr->vio_bus, serial_hd(i));
3030     }
3031 
3032     /* We always have at least the nvram device on VIO */
3033     spapr_create_nvram(spapr);
3034 
3035     /*
3036      * Setup hotplug / dynamic-reconfiguration connectors. top-level
3037      * connectors (described in root DT node's "ibm,drc-types" property)
3038      * are pre-initialized here. additional child connectors (such as
3039      * connectors for a PHBs PCI slots) are added as needed during their
3040      * parent's realization.
3041      */
3042     if (smc->dr_phb_enabled) {
3043         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3044             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3045         }
3046     }
3047 
3048     /* Set up PCI */
3049     spapr_pci_rtas_init();
3050 
3051     phb = spapr_create_default_phb();
3052 
3053     while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) {
3054         spapr_vlan_create(spapr->vio_bus, nd);
3055     }
3056 
3057     pci_init_nic_devices(phb->bus, NULL);
3058 
3059     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3060         spapr_vscsi_create(spapr->vio_bus);
3061     }
3062 
3063     /* Graphics */
3064     has_vga = spapr_vga_init(phb->bus, &error_fatal);
3065     if (has_vga) {
3066         spapr->want_stdout_path = !machine->enable_graphics;
3067         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3068     } else {
3069         spapr->want_stdout_path = true;
3070     }
3071 
3072     if (machine->usb) {
3073         pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3074 
3075         if (has_vga) {
3076             USBBus *usb_bus;
3077 
3078             usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS,
3079                                                               &error_abort));
3080             usb_create_simple(usb_bus, "usb-kbd");
3081             usb_create_simple(usb_bus, "usb-mouse");
3082         }
3083     }
3084 
3085     if (kernel_filename) {
3086         uint64_t loaded_addr = 0;
3087 
3088         spapr->kernel_size = load_elf(kernel_filename, NULL,
3089                                       translate_kernel_address, spapr,
3090                                       NULL, &loaded_addr, NULL, NULL, 1,
3091                                       PPC_ELF_MACHINE, 0, 0);
3092         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3093             spapr->kernel_size = load_elf(kernel_filename, NULL,
3094                                           translate_kernel_address, spapr,
3095                                           NULL, &loaded_addr, NULL, NULL, 0,
3096                                           PPC_ELF_MACHINE, 0, 0);
3097             spapr->kernel_le = spapr->kernel_size > 0;
3098         }
3099         if (spapr->kernel_size < 0) {
3100             error_report("error loading %s: %s", kernel_filename,
3101                          load_elf_strerror(spapr->kernel_size));
3102             exit(1);
3103         }
3104 
3105         if (spapr->kernel_addr != loaded_addr) {
3106             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3107                         " to 0x%"PRIx64,
3108                         spapr->kernel_addr, loaded_addr);
3109             spapr->kernel_addr = loaded_addr;
3110         }
3111 
3112         /* load initrd */
3113         if (initrd_filename) {
3114             /* Try to locate the initrd in the gap between the kernel
3115              * and the firmware. Add a bit of space just in case
3116              */
3117             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3118                                   + 0x1ffff) & ~0xffff;
3119             spapr->initrd_size = load_image_targphys(initrd_filename,
3120                                                      spapr->initrd_base,
3121                                                      load_limit
3122                                                      - spapr->initrd_base);
3123             if (spapr->initrd_size < 0) {
3124                 error_report("could not load initial ram disk '%s'",
3125                              initrd_filename);
3126                 exit(1);
3127             }
3128         }
3129     }
3130 
3131     /* FIXME: Should register things through the MachineState's qdev
3132      * interface, this is a legacy from the sPAPREnvironment structure
3133      * which predated MachineState but had a similar function */
3134     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3135     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3136                          &savevm_htab_handlers, spapr);
3137 
3138     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3139 
3140     qemu_register_boot_set(spapr_boot_set, spapr);
3141 
3142     /*
3143      * Nothing needs to be done to resume a suspended guest because
3144      * suspending does not change the machine state, so no need for
3145      * a ->wakeup method.
3146      */
3147     qemu_register_wakeup_support();
3148 
3149     if (kvm_enabled()) {
3150         /* to stop and start vmclock */
3151         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3152                                          &spapr->tb);
3153 
3154         kvmppc_spapr_enable_inkernel_multitce();
3155     }
3156 
3157     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3158     if (spapr->vof) {
3159         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3160         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3161     }
3162 
3163     spapr_watchdog_init(spapr);
3164 }
3165 
3166 #define DEFAULT_KVM_TYPE "auto"
3167 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3168 {
3169     /*
3170      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3171      * accommodate the 'HV' and 'PV' formats that exists in the
3172      * wild. The 'auto' mode is being introduced already as
3173      * lower-case, thus we don't need to bother checking for
3174      * "AUTO".
3175      */
3176     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3177         return 0;
3178     }
3179 
3180     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3181         return 1;
3182     }
3183 
3184     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3185         return 2;
3186     }
3187 
3188     error_report("Unknown kvm-type specified '%s'", vm_type);
3189     return -1;
3190 }
3191 
3192 /*
3193  * Implementation of an interface to adjust firmware path
3194  * for the bootindex property handling.
3195  */
3196 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3197                                    DeviceState *dev)
3198 {
3199 #define CAST(type, obj, name) \
3200     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3201     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3202     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3203     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3204     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3205 
3206     if (d && bus) {
3207         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3208         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3209         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3210 
3211         if (spapr) {
3212             /*
3213              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3214              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3215              * 0x8000 | (target << 8) | (bus << 5) | lun
3216              * (see the "Logical unit addressing format" table in SAM5)
3217              */
3218             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3219             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3220                                    (uint64_t)id << 48);
3221         } else if (virtio) {
3222             /*
3223              * We use SRP luns of the form 01000000 | (target << 8) | lun
3224              * in the top 32 bits of the 64-bit LUN
3225              * Note: the quote above is from SLOF and it is wrong,
3226              * the actual binding is:
3227              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3228              */
3229             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3230             if (d->lun >= 256) {
3231                 /* Use the LUN "flat space addressing method" */
3232                 id |= 0x4000;
3233             }
3234             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3235                                    (uint64_t)id << 32);
3236         } else if (usb) {
3237             /*
3238              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3239              * in the top 32 bits of the 64-bit LUN
3240              */
3241             unsigned usb_port = atoi(usb->port->path);
3242             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3243             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3244                                    (uint64_t)id << 32);
3245         }
3246     }
3247 
3248     /*
3249      * SLOF probes the USB devices, and if it recognizes that the device is a
3250      * storage device, it changes its name to "storage" instead of "usb-host",
3251      * and additionally adds a child node for the SCSI LUN, so the correct
3252      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3253      */
3254     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3255         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3256         if (usb_device_is_scsi_storage(usbdev)) {
3257             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3258         }
3259     }
3260 
3261     if (phb) {
3262         /* Replace "pci" with "pci@800000020000000" */
3263         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3264     }
3265 
3266     if (vsc) {
3267         /* Same logic as virtio above */
3268         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3269         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3270     }
3271 
3272     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3273         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3274         PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3275         return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn));
3276     }
3277 
3278     if (pcidev) {
3279         return spapr_pci_fw_dev_name(pcidev);
3280     }
3281 
3282     return NULL;
3283 }
3284 
3285 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3286 {
3287     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3288 
3289     return g_strdup(spapr->kvm_type);
3290 }
3291 
3292 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3293 {
3294     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3295 
3296     g_free(spapr->kvm_type);
3297     spapr->kvm_type = g_strdup(value);
3298 }
3299 
3300 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3301 {
3302     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3303 
3304     return spapr->use_hotplug_event_source;
3305 }
3306 
3307 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3308                                             Error **errp)
3309 {
3310     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3311 
3312     spapr->use_hotplug_event_source = value;
3313 }
3314 
3315 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3316 {
3317     return true;
3318 }
3319 
3320 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3321 {
3322     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3323 
3324     switch (spapr->resize_hpt) {
3325     case SPAPR_RESIZE_HPT_DEFAULT:
3326         return g_strdup("default");
3327     case SPAPR_RESIZE_HPT_DISABLED:
3328         return g_strdup("disabled");
3329     case SPAPR_RESIZE_HPT_ENABLED:
3330         return g_strdup("enabled");
3331     case SPAPR_RESIZE_HPT_REQUIRED:
3332         return g_strdup("required");
3333     }
3334     g_assert_not_reached();
3335 }
3336 
3337 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3338 {
3339     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3340 
3341     if (strcmp(value, "default") == 0) {
3342         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3343     } else if (strcmp(value, "disabled") == 0) {
3344         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3345     } else if (strcmp(value, "enabled") == 0) {
3346         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3347     } else if (strcmp(value, "required") == 0) {
3348         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3349     } else {
3350         error_setg(errp, "Bad value for \"resize-hpt\" property");
3351     }
3352 }
3353 
3354 static bool spapr_get_vof(Object *obj, Error **errp)
3355 {
3356     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3357 
3358     return spapr->vof != NULL;
3359 }
3360 
3361 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3362 {
3363     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3364 
3365     if (spapr->vof) {
3366         vof_cleanup(spapr->vof);
3367         g_free(spapr->vof);
3368         spapr->vof = NULL;
3369     }
3370     if (!value) {
3371         return;
3372     }
3373     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3374 }
3375 
3376 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3377 {
3378     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3379 
3380     if (spapr->irq == &spapr_irq_xics_legacy) {
3381         return g_strdup("legacy");
3382     } else if (spapr->irq == &spapr_irq_xics) {
3383         return g_strdup("xics");
3384     } else if (spapr->irq == &spapr_irq_xive) {
3385         return g_strdup("xive");
3386     } else if (spapr->irq == &spapr_irq_dual) {
3387         return g_strdup("dual");
3388     }
3389     g_assert_not_reached();
3390 }
3391 
3392 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3393 {
3394     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3395 
3396     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3397         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3398         return;
3399     }
3400 
3401     /* The legacy IRQ backend can not be set */
3402     if (strcmp(value, "xics") == 0) {
3403         spapr->irq = &spapr_irq_xics;
3404     } else if (strcmp(value, "xive") == 0) {
3405         spapr->irq = &spapr_irq_xive;
3406     } else if (strcmp(value, "dual") == 0) {
3407         spapr->irq = &spapr_irq_dual;
3408     } else {
3409         error_setg(errp, "Bad value for \"ic-mode\" property");
3410     }
3411 }
3412 
3413 static char *spapr_get_host_model(Object *obj, Error **errp)
3414 {
3415     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3416 
3417     return g_strdup(spapr->host_model);
3418 }
3419 
3420 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3421 {
3422     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3423 
3424     g_free(spapr->host_model);
3425     spapr->host_model = g_strdup(value);
3426 }
3427 
3428 static char *spapr_get_host_serial(Object *obj, Error **errp)
3429 {
3430     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3431 
3432     return g_strdup(spapr->host_serial);
3433 }
3434 
3435 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3436 {
3437     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3438 
3439     g_free(spapr->host_serial);
3440     spapr->host_serial = g_strdup(value);
3441 }
3442 
3443 static void spapr_instance_init(Object *obj)
3444 {
3445     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3446     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3447     MachineState *ms = MACHINE(spapr);
3448     MachineClass *mc = MACHINE_GET_CLASS(ms);
3449 
3450     /*
3451      * NVDIMM support went live in 5.1 without considering that, in
3452      * other archs, the user needs to enable NVDIMM support with the
3453      * 'nvdimm' machine option and the default behavior is NVDIMM
3454      * support disabled. It is too late to roll back to the standard
3455      * behavior without breaking 5.1 guests.
3456      */
3457     if (mc->nvdimm_supported) {
3458         ms->nvdimms_state->is_enabled = true;
3459     }
3460 
3461     spapr->htab_fd = -1;
3462     spapr->use_hotplug_event_source = true;
3463     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3464     object_property_add_str(obj, "kvm-type",
3465                             spapr_get_kvm_type, spapr_set_kvm_type);
3466     object_property_set_description(obj, "kvm-type",
3467                                     "Specifies the KVM virtualization mode (auto,"
3468                                     " hv, pr). Defaults to 'auto'. This mode will use"
3469                                     " any available KVM module loaded in the host,"
3470                                     " where kvm_hv takes precedence if both kvm_hv and"
3471                                     " kvm_pr are loaded.");
3472     object_property_add_bool(obj, "modern-hotplug-events",
3473                             spapr_get_modern_hotplug_events,
3474                             spapr_set_modern_hotplug_events);
3475     object_property_set_description(obj, "modern-hotplug-events",
3476                                     "Use dedicated hotplug event mechanism in"
3477                                     " place of standard EPOW events when possible"
3478                                     " (required for memory hot-unplug support)");
3479     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3480                             "Maximum permitted CPU compatibility mode");
3481 
3482     object_property_add_str(obj, "resize-hpt",
3483                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3484     object_property_set_description(obj, "resize-hpt",
3485                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3486     object_property_add_uint32_ptr(obj, "vsmt",
3487                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3488     object_property_set_description(obj, "vsmt",
3489                                     "Virtual SMT: KVM behaves as if this were"
3490                                     " the host's SMT mode");
3491 
3492     object_property_add_bool(obj, "vfio-no-msix-emulation",
3493                              spapr_get_msix_emulation, NULL);
3494 
3495     object_property_add_uint64_ptr(obj, "kernel-addr",
3496                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3497     object_property_set_description(obj, "kernel-addr",
3498                                     stringify(KERNEL_LOAD_ADDR)
3499                                     " for -kernel is the default");
3500     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3501 
3502     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3503     object_property_set_description(obj, "x-vof",
3504                                     "Enable Virtual Open Firmware (experimental)");
3505 
3506     /* The machine class defines the default interrupt controller mode */
3507     spapr->irq = smc->irq;
3508     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3509                             spapr_set_ic_mode);
3510     object_property_set_description(obj, "ic-mode",
3511                  "Specifies the interrupt controller mode (xics, xive, dual)");
3512 
3513     object_property_add_str(obj, "host-model",
3514         spapr_get_host_model, spapr_set_host_model);
3515     object_property_set_description(obj, "host-model",
3516         "Host model to advertise in guest device tree");
3517     object_property_add_str(obj, "host-serial",
3518         spapr_get_host_serial, spapr_set_host_serial);
3519     object_property_set_description(obj, "host-serial",
3520         "Host serial number to advertise in guest device tree");
3521 }
3522 
3523 static void spapr_machine_finalizefn(Object *obj)
3524 {
3525     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3526 
3527     g_free(spapr->kvm_type);
3528 }
3529 
3530 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3531 {
3532     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3533     CPUPPCState *env = cpu_env(cs);
3534 
3535     cpu_synchronize_state(cs);
3536     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3537     if (spapr->fwnmi_system_reset_addr != -1) {
3538         uint64_t rtas_addr, addr;
3539 
3540         /* get rtas addr from fdt */
3541         rtas_addr = spapr_get_rtas_addr();
3542         if (!rtas_addr) {
3543             qemu_system_guest_panicked(NULL);
3544             return;
3545         }
3546 
3547         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3548         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3549         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3550         env->gpr[3] = addr;
3551     }
3552     ppc_cpu_do_system_reset(cs);
3553     if (spapr->fwnmi_system_reset_addr != -1) {
3554         env->nip = spapr->fwnmi_system_reset_addr;
3555     }
3556 }
3557 
3558 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3559 {
3560     CPUState *cs;
3561 
3562     CPU_FOREACH(cs) {
3563         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3564     }
3565 }
3566 
3567 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3568                           void *fdt, int *fdt_start_offset, Error **errp)
3569 {
3570     uint64_t addr;
3571     uint32_t node;
3572 
3573     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3574     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3575                                     &error_abort);
3576     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3577                                              SPAPR_MEMORY_BLOCK_SIZE);
3578     return 0;
3579 }
3580 
3581 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3582                            bool dedicated_hp_event_source)
3583 {
3584     SpaprDrc *drc;
3585     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3586     int i;
3587     uint64_t addr = addr_start;
3588     bool hotplugged = spapr_drc_hotplugged(dev);
3589 
3590     for (i = 0; i < nr_lmbs; i++) {
3591         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3592                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3593         g_assert(drc);
3594 
3595         /*
3596          * memory_device_get_free_addr() provided a range of free addresses
3597          * that doesn't overlap with any existing mapping at pre-plug. The
3598          * corresponding LMB DRCs are thus assumed to be all attachable.
3599          */
3600         spapr_drc_attach(drc, dev);
3601         if (!hotplugged) {
3602             spapr_drc_reset(drc);
3603         }
3604         addr += SPAPR_MEMORY_BLOCK_SIZE;
3605     }
3606     /* send hotplug notification to the
3607      * guest only in case of hotplugged memory
3608      */
3609     if (hotplugged) {
3610         if (dedicated_hp_event_source) {
3611             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3612                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3613             g_assert(drc);
3614             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3615                                                    nr_lmbs,
3616                                                    spapr_drc_index(drc));
3617         } else {
3618             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3619                                            nr_lmbs);
3620         }
3621     }
3622 }
3623 
3624 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3625 {
3626     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3627     PCDIMMDevice *dimm = PC_DIMM(dev);
3628     uint64_t size, addr;
3629     int64_t slot;
3630     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3631 
3632     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3633 
3634     pc_dimm_plug(dimm, MACHINE(ms));
3635 
3636     if (!is_nvdimm) {
3637         addr = object_property_get_uint(OBJECT(dimm),
3638                                         PC_DIMM_ADDR_PROP, &error_abort);
3639         spapr_add_lmbs(dev, addr, size,
3640                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3641     } else {
3642         slot = object_property_get_int(OBJECT(dimm),
3643                                        PC_DIMM_SLOT_PROP, &error_abort);
3644         /* We should have valid slot number at this point */
3645         g_assert(slot >= 0);
3646         spapr_add_nvdimm(dev, slot);
3647     }
3648 }
3649 
3650 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3651                                   Error **errp)
3652 {
3653     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3654     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3655     PCDIMMDevice *dimm = PC_DIMM(dev);
3656     Error *local_err = NULL;
3657     uint64_t size;
3658     Object *memdev;
3659     hwaddr pagesize;
3660 
3661     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3662     if (local_err) {
3663         error_propagate(errp, local_err);
3664         return;
3665     }
3666 
3667     if (is_nvdimm) {
3668         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3669             return;
3670         }
3671     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3672         error_setg(errp, "Hotplugged memory size must be a multiple of "
3673                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3674         return;
3675     }
3676 
3677     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3678                                       &error_abort);
3679     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3680     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3681         return;
3682     }
3683 
3684     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), errp);
3685 }
3686 
3687 struct SpaprDimmState {
3688     PCDIMMDevice *dimm;
3689     uint32_t nr_lmbs;
3690     QTAILQ_ENTRY(SpaprDimmState) next;
3691 };
3692 
3693 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3694                                                        PCDIMMDevice *dimm)
3695 {
3696     SpaprDimmState *dimm_state = NULL;
3697 
3698     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3699         if (dimm_state->dimm == dimm) {
3700             break;
3701         }
3702     }
3703     return dimm_state;
3704 }
3705 
3706 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3707                                                       uint32_t nr_lmbs,
3708                                                       PCDIMMDevice *dimm)
3709 {
3710     SpaprDimmState *ds = NULL;
3711 
3712     /*
3713      * If this request is for a DIMM whose removal had failed earlier
3714      * (due to guest's refusal to remove the LMBs), we would have this
3715      * dimm already in the pending_dimm_unplugs list. In that
3716      * case don't add again.
3717      */
3718     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3719     if (!ds) {
3720         ds = g_new0(SpaprDimmState, 1);
3721         ds->nr_lmbs = nr_lmbs;
3722         ds->dimm = dimm;
3723         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3724     }
3725     return ds;
3726 }
3727 
3728 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3729                                               SpaprDimmState *dimm_state)
3730 {
3731     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3732     g_free(dimm_state);
3733 }
3734 
3735 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3736                                                         PCDIMMDevice *dimm)
3737 {
3738     SpaprDrc *drc;
3739     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3740                                                   &error_abort);
3741     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3742     uint32_t avail_lmbs = 0;
3743     uint64_t addr_start, addr;
3744     int i;
3745 
3746     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3747                                           &error_abort);
3748 
3749     addr = addr_start;
3750     for (i = 0; i < nr_lmbs; i++) {
3751         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3752                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3753         g_assert(drc);
3754         if (drc->dev) {
3755             avail_lmbs++;
3756         }
3757         addr += SPAPR_MEMORY_BLOCK_SIZE;
3758     }
3759 
3760     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3761 }
3762 
3763 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3764 {
3765     SpaprDimmState *ds;
3766     PCDIMMDevice *dimm;
3767     SpaprDrc *drc;
3768     uint32_t nr_lmbs;
3769     uint64_t size, addr_start, addr;
3770     int i;
3771 
3772     if (!dev) {
3773         return;
3774     }
3775 
3776     dimm = PC_DIMM(dev);
3777     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3778 
3779     /*
3780      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3781      * unplug state, but one of its DRC is marked as unplug_requested.
3782      * This is bad and weird enough to g_assert() out.
3783      */
3784     g_assert(ds);
3785 
3786     spapr_pending_dimm_unplugs_remove(spapr, ds);
3787 
3788     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3789     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3790 
3791     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3792                                           &error_abort);
3793 
3794     addr = addr_start;
3795     for (i = 0; i < nr_lmbs; i++) {
3796         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3797                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3798         g_assert(drc);
3799 
3800         drc->unplug_requested = false;
3801         addr += SPAPR_MEMORY_BLOCK_SIZE;
3802     }
3803 
3804     /*
3805      * Tell QAPI that something happened and the memory
3806      * hotunplug wasn't successful.
3807      */
3808     qapi_event_send_device_unplug_guest_error(dev->id,
3809                                               dev->canonical_path);
3810 }
3811 
3812 /* Callback to be called during DRC release. */
3813 void spapr_lmb_release(DeviceState *dev)
3814 {
3815     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3816     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3817     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3818 
3819     /* This information will get lost if a migration occurs
3820      * during the unplug process. In this case recover it. */
3821     if (ds == NULL) {
3822         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3823         g_assert(ds);
3824         /* The DRC being examined by the caller at least must be counted */
3825         g_assert(ds->nr_lmbs);
3826     }
3827 
3828     if (--ds->nr_lmbs) {
3829         return;
3830     }
3831 
3832     /*
3833      * Now that all the LMBs have been removed by the guest, call the
3834      * unplug handler chain. This can never fail.
3835      */
3836     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3837     object_unparent(OBJECT(dev));
3838 }
3839 
3840 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3841 {
3842     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3843     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3844 
3845     /* We really shouldn't get this far without anything to unplug */
3846     g_assert(ds);
3847 
3848     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3849     qdev_unrealize(dev);
3850     spapr_pending_dimm_unplugs_remove(spapr, ds);
3851 }
3852 
3853 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3854                                         DeviceState *dev, Error **errp)
3855 {
3856     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3857     PCDIMMDevice *dimm = PC_DIMM(dev);
3858     uint32_t nr_lmbs;
3859     uint64_t size, addr_start, addr;
3860     int i;
3861     SpaprDrc *drc;
3862 
3863     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3864         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3865         return;
3866     }
3867 
3868     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3869     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3870 
3871     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3872                                           &error_abort);
3873 
3874     /*
3875      * An existing pending dimm state for this DIMM means that there is an
3876      * unplug operation in progress, waiting for the spapr_lmb_release
3877      * callback to complete the job (BQL can't cover that far). In this case,
3878      * bail out to avoid detaching DRCs that were already released.
3879      */
3880     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3881         error_setg(errp, "Memory unplug already in progress for device %s",
3882                    dev->id);
3883         return;
3884     }
3885 
3886     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3887 
3888     addr = addr_start;
3889     for (i = 0; i < nr_lmbs; i++) {
3890         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3891                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3892         g_assert(drc);
3893 
3894         spapr_drc_unplug_request(drc);
3895         addr += SPAPR_MEMORY_BLOCK_SIZE;
3896     }
3897 
3898     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3899                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3900     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3901                                               nr_lmbs, spapr_drc_index(drc));
3902 }
3903 
3904 /* Callback to be called during DRC release. */
3905 void spapr_core_release(DeviceState *dev)
3906 {
3907     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3908 
3909     /* Call the unplug handler chain. This can never fail. */
3910     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3911     object_unparent(OBJECT(dev));
3912 }
3913 
3914 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3915 {
3916     MachineState *ms = MACHINE(hotplug_dev);
3917     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3918     CPUCore *cc = CPU_CORE(dev);
3919     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3920 
3921     if (smc->pre_2_10_has_unused_icps) {
3922         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3923         int i;
3924 
3925         for (i = 0; i < cc->nr_threads; i++) {
3926             CPUState *cs = CPU(sc->threads[i]);
3927 
3928             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3929         }
3930     }
3931 
3932     assert(core_slot);
3933     core_slot->cpu = NULL;
3934     qdev_unrealize(dev);
3935 }
3936 
3937 static
3938 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3939                                Error **errp)
3940 {
3941     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3942     int index;
3943     SpaprDrc *drc;
3944     CPUCore *cc = CPU_CORE(dev);
3945 
3946     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3947         error_setg(errp, "Unable to find CPU core with core-id: %d",
3948                    cc->core_id);
3949         return;
3950     }
3951     if (index == 0) {
3952         error_setg(errp, "Boot CPU core may not be unplugged");
3953         return;
3954     }
3955 
3956     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3957                           spapr_vcpu_id(spapr, cc->core_id));
3958     g_assert(drc);
3959 
3960     if (!spapr_drc_unplug_requested(drc)) {
3961         spapr_drc_unplug_request(drc);
3962     }
3963 
3964     /*
3965      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3966      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3967      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3968      * attempt (e.g. the kernel will refuse to remove the last online
3969      * CPU), we will never attempt it again because unplug_requested
3970      * will still be 'true' in that case.
3971      */
3972     spapr_hotplug_req_remove_by_index(drc);
3973 }
3974 
3975 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3976                            void *fdt, int *fdt_start_offset, Error **errp)
3977 {
3978     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3979     CPUState *cs = CPU(core->threads[0]);
3980     PowerPCCPU *cpu = POWERPC_CPU(cs);
3981     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3982     int id = spapr_get_vcpu_id(cpu);
3983     g_autofree char *nodename = NULL;
3984     int offset;
3985 
3986     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3987     offset = fdt_add_subnode(fdt, 0, nodename);
3988 
3989     spapr_dt_cpu(cs, fdt, offset, spapr);
3990 
3991     /*
3992      * spapr_dt_cpu() does not fill the 'name' property in the
3993      * CPU node. The function is called during boot process, before
3994      * and after CAS, and overwriting the 'name' property written
3995      * by SLOF is not allowed.
3996      *
3997      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3998      * CPUs more compatible with the coldplugged ones, which have
3999      * the 'name' property. Linux Kernel also relies on this
4000      * property to identify CPU nodes.
4001      */
4002     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
4003 
4004     *fdt_start_offset = offset;
4005     return 0;
4006 }
4007 
4008 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4009 {
4010     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4011     MachineClass *mc = MACHINE_GET_CLASS(spapr);
4012     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4013     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
4014     CPUCore *cc = CPU_CORE(dev);
4015     SpaprDrc *drc;
4016     CPUArchId *core_slot;
4017     int index;
4018     bool hotplugged = spapr_drc_hotplugged(dev);
4019     int i;
4020 
4021     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4022     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
4023 
4024     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
4025                           spapr_vcpu_id(spapr, cc->core_id));
4026 
4027     g_assert(drc || !mc->has_hotpluggable_cpus);
4028 
4029     if (drc) {
4030         /*
4031          * spapr_core_pre_plug() already buys us this is a brand new
4032          * core being plugged into a free slot. Nothing should already
4033          * be attached to the corresponding DRC.
4034          */
4035         spapr_drc_attach(drc, dev);
4036 
4037         if (hotplugged) {
4038             /*
4039              * Send hotplug notification interrupt to the guest only
4040              * in case of hotplugged CPUs.
4041              */
4042             spapr_hotplug_req_add_by_index(drc);
4043         } else {
4044             spapr_drc_reset(drc);
4045         }
4046     }
4047 
4048     core_slot->cpu = CPU(dev);
4049 
4050     /*
4051      * Set compatibility mode to match the boot CPU, which was either set
4052      * by the machine reset code or by CAS. This really shouldn't fail at
4053      * this point.
4054      */
4055     if (hotplugged) {
4056         for (i = 0; i < cc->nr_threads; i++) {
4057             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4058                            &error_abort);
4059         }
4060     }
4061 
4062     if (smc->pre_2_10_has_unused_icps) {
4063         for (i = 0; i < cc->nr_threads; i++) {
4064             CPUState *cs = CPU(core->threads[i]);
4065             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4066         }
4067     }
4068 }
4069 
4070 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4071                                 Error **errp)
4072 {
4073     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4074     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4075     CPUCore *cc = CPU_CORE(dev);
4076     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4077     const char *type = object_get_typename(OBJECT(dev));
4078     CPUArchId *core_slot;
4079     int index;
4080     unsigned int smp_threads = machine->smp.threads;
4081 
4082     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4083         error_setg(errp, "CPU hotplug not supported for this machine");
4084         return;
4085     }
4086 
4087     if (strcmp(base_core_type, type)) {
4088         error_setg(errp, "CPU core type should be %s", base_core_type);
4089         return;
4090     }
4091 
4092     if (cc->core_id % smp_threads) {
4093         error_setg(errp, "invalid core id %d", cc->core_id);
4094         return;
4095     }
4096 
4097     /*
4098      * In general we should have homogeneous threads-per-core, but old
4099      * (pre hotplug support) machine types allow the last core to have
4100      * reduced threads as a compatibility hack for when we allowed
4101      * total vcpus not a multiple of threads-per-core.
4102      */
4103     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4104         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4105                    smp_threads);
4106         return;
4107     }
4108 
4109     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4110     if (!core_slot) {
4111         error_setg(errp, "core id %d out of range", cc->core_id);
4112         return;
4113     }
4114 
4115     if (core_slot->cpu) {
4116         error_setg(errp, "core %d already populated", cc->core_id);
4117         return;
4118     }
4119 
4120     numa_cpu_pre_plug(core_slot, dev, errp);
4121 }
4122 
4123 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4124                           void *fdt, int *fdt_start_offset, Error **errp)
4125 {
4126     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4127     int intc_phandle;
4128 
4129     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4130     if (intc_phandle <= 0) {
4131         return -1;
4132     }
4133 
4134     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4135         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4136         return -1;
4137     }
4138 
4139     /* generally SLOF creates these, for hotplug it's up to QEMU */
4140     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4141 
4142     return 0;
4143 }
4144 
4145 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4146                                Error **errp)
4147 {
4148     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4149     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4150     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4151     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4152     SpaprDrc *drc;
4153 
4154     if (dev->hotplugged && !smc->dr_phb_enabled) {
4155         error_setg(errp, "PHB hotplug not supported for this machine");
4156         return false;
4157     }
4158 
4159     if (sphb->index == (uint32_t)-1) {
4160         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4161         return false;
4162     }
4163 
4164     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4165     if (drc && drc->dev) {
4166         error_setg(errp, "PHB %d already attached", sphb->index);
4167         return false;
4168     }
4169 
4170     /*
4171      * This will check that sphb->index doesn't exceed the maximum number of
4172      * PHBs for the current machine type.
4173      */
4174     return
4175         smc->phb_placement(spapr, sphb->index,
4176                            &sphb->buid, &sphb->io_win_addr,
4177                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4178                            windows_supported, sphb->dma_liobn,
4179                            errp);
4180 }
4181 
4182 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4183 {
4184     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4185     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4186     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4187     SpaprDrc *drc;
4188     bool hotplugged = spapr_drc_hotplugged(dev);
4189 
4190     if (!smc->dr_phb_enabled) {
4191         return;
4192     }
4193 
4194     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4195     /* hotplug hooks should check it's enabled before getting this far */
4196     assert(drc);
4197 
4198     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4199     spapr_drc_attach(drc, dev);
4200 
4201     if (hotplugged) {
4202         spapr_hotplug_req_add_by_index(drc);
4203     } else {
4204         spapr_drc_reset(drc);
4205     }
4206 }
4207 
4208 void spapr_phb_release(DeviceState *dev)
4209 {
4210     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4211 
4212     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4213     object_unparent(OBJECT(dev));
4214 }
4215 
4216 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4217 {
4218     qdev_unrealize(dev);
4219 }
4220 
4221 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4222                                      DeviceState *dev, Error **errp)
4223 {
4224     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4225     SpaprDrc *drc;
4226 
4227     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4228     assert(drc);
4229 
4230     if (!spapr_drc_unplug_requested(drc)) {
4231         spapr_drc_unplug_request(drc);
4232         spapr_hotplug_req_remove_by_index(drc);
4233     } else {
4234         error_setg(errp,
4235                    "PCI Host Bridge unplug already in progress for device %s",
4236                    dev->id);
4237     }
4238 }
4239 
4240 static
4241 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4242                               Error **errp)
4243 {
4244     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4245 
4246     if (spapr->tpm_proxy != NULL) {
4247         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4248         return false;
4249     }
4250 
4251     return true;
4252 }
4253 
4254 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4255 {
4256     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4257     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4258 
4259     /* Already checked in spapr_tpm_proxy_pre_plug() */
4260     g_assert(spapr->tpm_proxy == NULL);
4261 
4262     spapr->tpm_proxy = tpm_proxy;
4263 }
4264 
4265 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4266 {
4267     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4268 
4269     qdev_unrealize(dev);
4270     object_unparent(OBJECT(dev));
4271     spapr->tpm_proxy = NULL;
4272 }
4273 
4274 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4275                                       DeviceState *dev, Error **errp)
4276 {
4277     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4278         spapr_memory_plug(hotplug_dev, dev);
4279     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4280         spapr_core_plug(hotplug_dev, dev);
4281     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4282         spapr_phb_plug(hotplug_dev, dev);
4283     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4284         spapr_tpm_proxy_plug(hotplug_dev, dev);
4285     }
4286 }
4287 
4288 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4289                                         DeviceState *dev, Error **errp)
4290 {
4291     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4292         spapr_memory_unplug(hotplug_dev, dev);
4293     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4294         spapr_core_unplug(hotplug_dev, dev);
4295     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4296         spapr_phb_unplug(hotplug_dev, dev);
4297     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4298         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4299     }
4300 }
4301 
4302 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4303 {
4304     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4305         /*
4306          * CAS will process all pending unplug requests.
4307          *
4308          * HACK: a guest could theoretically have cleared all bits in OV5,
4309          * but none of the guests we care for do.
4310          */
4311         spapr_ovec_empty(spapr->ov5_cas);
4312 }
4313 
4314 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4315                                                 DeviceState *dev, Error **errp)
4316 {
4317     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4318     MachineClass *mc = MACHINE_GET_CLASS(sms);
4319     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4320 
4321     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4322         if (spapr_memory_hot_unplug_supported(sms)) {
4323             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4324         } else {
4325             error_setg(errp, "Memory hot unplug not supported for this guest");
4326         }
4327     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4328         if (!mc->has_hotpluggable_cpus) {
4329             error_setg(errp, "CPU hot unplug not supported on this machine");
4330             return;
4331         }
4332         spapr_core_unplug_request(hotplug_dev, dev, errp);
4333     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4334         if (!smc->dr_phb_enabled) {
4335             error_setg(errp, "PHB hot unplug not supported on this machine");
4336             return;
4337         }
4338         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4339     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4340         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4341     }
4342 }
4343 
4344 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4345                                           DeviceState *dev, Error **errp)
4346 {
4347     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4348         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4349     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4350         spapr_core_pre_plug(hotplug_dev, dev, errp);
4351     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4352         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4353     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4354         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4355     }
4356 }
4357 
4358 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4359                                                  DeviceState *dev)
4360 {
4361     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4362         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4363         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4364         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4365         return HOTPLUG_HANDLER(machine);
4366     }
4367     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4368         PCIDevice *pcidev = PCI_DEVICE(dev);
4369         PCIBus *root = pci_device_root_bus(pcidev);
4370         SpaprPhbState *phb =
4371             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4372                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4373 
4374         if (phb) {
4375             return HOTPLUG_HANDLER(phb);
4376         }
4377     }
4378     return NULL;
4379 }
4380 
4381 static CpuInstanceProperties
4382 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4383 {
4384     CPUArchId *core_slot;
4385     MachineClass *mc = MACHINE_GET_CLASS(machine);
4386 
4387     /* make sure possible_cpu are initialized */
4388     mc->possible_cpu_arch_ids(machine);
4389     /* get CPU core slot containing thread that matches cpu_index */
4390     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4391     assert(core_slot);
4392     return core_slot->props;
4393 }
4394 
4395 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4396 {
4397     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4398 }
4399 
4400 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4401 {
4402     int i;
4403     unsigned int smp_threads = machine->smp.threads;
4404     unsigned int smp_cpus = machine->smp.cpus;
4405     const char *core_type;
4406     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4407     MachineClass *mc = MACHINE_GET_CLASS(machine);
4408 
4409     if (!mc->has_hotpluggable_cpus) {
4410         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4411     }
4412     if (machine->possible_cpus) {
4413         assert(machine->possible_cpus->len == spapr_max_cores);
4414         return machine->possible_cpus;
4415     }
4416 
4417     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4418     if (!core_type) {
4419         error_report("Unable to find sPAPR CPU Core definition");
4420         exit(1);
4421     }
4422 
4423     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4424                              sizeof(CPUArchId) * spapr_max_cores);
4425     machine->possible_cpus->len = spapr_max_cores;
4426     for (i = 0; i < machine->possible_cpus->len; i++) {
4427         int core_id = i * smp_threads;
4428 
4429         machine->possible_cpus->cpus[i].type = core_type;
4430         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4431         machine->possible_cpus->cpus[i].arch_id = core_id;
4432         machine->possible_cpus->cpus[i].props.has_core_id = true;
4433         machine->possible_cpus->cpus[i].props.core_id = core_id;
4434     }
4435     return machine->possible_cpus;
4436 }
4437 
4438 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4439                                 uint64_t *buid, hwaddr *pio,
4440                                 hwaddr *mmio32, hwaddr *mmio64,
4441                                 unsigned n_dma, uint32_t *liobns, Error **errp)
4442 {
4443     /*
4444      * New-style PHB window placement.
4445      *
4446      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4447      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4448      * windows.
4449      *
4450      * Some guest kernels can't work with MMIO windows above 1<<46
4451      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4452      *
4453      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4454      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4455      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4456      * 1TiB 64-bit MMIO windows for each PHB.
4457      */
4458     const uint64_t base_buid = 0x800000020000000ULL;
4459     int i;
4460 
4461     /* Sanity check natural alignments */
4462     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4463     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4464     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4465     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4466     /* Sanity check bounds */
4467     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4468                       SPAPR_PCI_MEM32_WIN_SIZE);
4469     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4470                       SPAPR_PCI_MEM64_WIN_SIZE);
4471 
4472     if (index >= SPAPR_MAX_PHBS) {
4473         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4474                    SPAPR_MAX_PHBS - 1);
4475         return false;
4476     }
4477 
4478     *buid = base_buid + index;
4479     for (i = 0; i < n_dma; ++i) {
4480         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4481     }
4482 
4483     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4484     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4485     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4486     return true;
4487 }
4488 
4489 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4490 {
4491     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4492 
4493     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4494 }
4495 
4496 static void spapr_ics_resend(XICSFabric *dev)
4497 {
4498     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4499 
4500     ics_resend(spapr->ics);
4501 }
4502 
4503 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4504 {
4505     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4506 
4507     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4508 }
4509 
4510 static void spapr_pic_print_info(InterruptStatsProvider *obj, GString *buf)
4511 {
4512     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4513 
4514     spapr_irq_print_info(spapr, buf);
4515     g_string_append_printf(buf, "irqchip: %s\n",
4516                            kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4517 }
4518 
4519 /*
4520  * This is a XIVE only operation
4521  */
4522 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4523                            uint8_t nvt_blk, uint32_t nvt_idx,
4524                            bool cam_ignore, uint8_t priority,
4525                            uint32_t logic_serv, XiveTCTXMatch *match)
4526 {
4527     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4528     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4529     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4530     int count;
4531 
4532     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4533                            priority, logic_serv, match);
4534     if (count < 0) {
4535         return count;
4536     }
4537 
4538     /*
4539      * When we implement the save and restore of the thread interrupt
4540      * contexts in the enter/exit CPU handlers of the machine and the
4541      * escalations in QEMU, we should be able to handle non dispatched
4542      * vCPUs.
4543      *
4544      * Until this is done, the sPAPR machine should find at least one
4545      * matching context always.
4546      */
4547     if (count == 0) {
4548         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4549                       nvt_blk, nvt_idx);
4550     }
4551 
4552     return count;
4553 }
4554 
4555 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4556 {
4557     return cpu->vcpu_id;
4558 }
4559 
4560 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4561 {
4562     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4563     MachineState *ms = MACHINE(spapr);
4564     int vcpu_id;
4565 
4566     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4567 
4568     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4569         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4570         error_append_hint(errp, "Adjust the number of cpus to %d "
4571                           "or try to raise the number of threads per core\n",
4572                           vcpu_id * ms->smp.threads / spapr->vsmt);
4573         return false;
4574     }
4575 
4576     cpu->vcpu_id = vcpu_id;
4577     return true;
4578 }
4579 
4580 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4581 {
4582     CPUState *cs;
4583 
4584     CPU_FOREACH(cs) {
4585         PowerPCCPU *cpu = POWERPC_CPU(cs);
4586 
4587         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4588             return cpu;
4589         }
4590     }
4591 
4592     return NULL;
4593 }
4594 
4595 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4596 {
4597     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4598 
4599     return spapr_cpu->in_nested;
4600 }
4601 
4602 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4603 {
4604     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4605 
4606     /* These are only called by TCG, KVM maintains dispatch state */
4607 
4608     spapr_cpu->prod = false;
4609     if (spapr_cpu->vpa_addr) {
4610         CPUState *cs = CPU(cpu);
4611         uint32_t dispatch;
4612 
4613         dispatch = ldl_be_phys(cs->as,
4614                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4615         dispatch++;
4616         if ((dispatch & 1) != 0) {
4617             qemu_log_mask(LOG_GUEST_ERROR,
4618                           "VPA: incorrect dispatch counter value for "
4619                           "dispatched partition %u, correcting.\n", dispatch);
4620             dispatch++;
4621         }
4622         stl_be_phys(cs->as,
4623                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4624     }
4625 }
4626 
4627 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4628 {
4629     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4630 
4631     if (spapr_cpu->vpa_addr) {
4632         CPUState *cs = CPU(cpu);
4633         uint32_t dispatch;
4634 
4635         dispatch = ldl_be_phys(cs->as,
4636                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4637         dispatch++;
4638         if ((dispatch & 1) != 1) {
4639             qemu_log_mask(LOG_GUEST_ERROR,
4640                           "VPA: incorrect dispatch counter value for "
4641                           "preempted partition %u, correcting.\n", dispatch);
4642             dispatch++;
4643         }
4644         stl_be_phys(cs->as,
4645                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4646     }
4647 }
4648 
4649 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4650 {
4651     MachineClass *mc = MACHINE_CLASS(oc);
4652     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4653     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4654     NMIClass *nc = NMI_CLASS(oc);
4655     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4656     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4657     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4658     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4659     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4660     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4661 
4662     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4663     mc->ignore_boot_device_suffixes = true;
4664 
4665     /*
4666      * We set up the default / latest behaviour here.  The class_init
4667      * functions for the specific versioned machine types can override
4668      * these details for backwards compatibility
4669      */
4670     mc->init = spapr_machine_init;
4671     mc->reset = spapr_machine_reset;
4672     mc->block_default_type = IF_SCSI;
4673 
4674     /*
4675      * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(),
4676      * In TCG the limit is restricted by the range of CPU IPIs available.
4677      */
4678     mc->max_cpus = SPAPR_IRQ_NR_IPIS;
4679 
4680     mc->no_parallel = 1;
4681     mc->default_boot_order = "";
4682     mc->default_ram_size = 512 * MiB;
4683     mc->default_ram_id = "ppc_spapr.ram";
4684     mc->default_display = "std";
4685     mc->kvm_type = spapr_kvm_type;
4686     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4687     mc->pci_allow_0_address = true;
4688     assert(!mc->get_hotplug_handler);
4689     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4690     hc->pre_plug = spapr_machine_device_pre_plug;
4691     hc->plug = spapr_machine_device_plug;
4692     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4693     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4694     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4695     hc->unplug_request = spapr_machine_device_unplug_request;
4696     hc->unplug = spapr_machine_device_unplug;
4697 
4698     smc->update_dt_enabled = true;
4699     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
4700     mc->has_hotpluggable_cpus = true;
4701     mc->nvdimm_supported = true;
4702     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4703     fwc->get_dev_path = spapr_get_fw_dev_path;
4704     nc->nmi_monitor_handler = spapr_nmi;
4705     smc->phb_placement = spapr_phb_placement;
4706     vhc->cpu_in_nested = spapr_cpu_in_nested;
4707     vhc->deliver_hv_excp = spapr_exit_nested;
4708     vhc->hypercall = emulate_spapr_hypercall;
4709     vhc->hpt_mask = spapr_hpt_mask;
4710     vhc->map_hptes = spapr_map_hptes;
4711     vhc->unmap_hptes = spapr_unmap_hptes;
4712     vhc->hpte_set_c = spapr_hpte_set_c;
4713     vhc->hpte_set_r = spapr_hpte_set_r;
4714     vhc->get_pate = spapr_get_pate;
4715     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4716     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4717     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4718     xic->ics_get = spapr_ics_get;
4719     xic->ics_resend = spapr_ics_resend;
4720     xic->icp_get = spapr_icp_get;
4721     ispc->print_info = spapr_pic_print_info;
4722     /* Force NUMA node memory size to be a multiple of
4723      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4724      * in which LMBs are represented and hot-added
4725      */
4726     mc->numa_mem_align_shift = 28;
4727     mc->auto_enable_numa = true;
4728 
4729     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4730     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4731     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4732     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4733     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4734     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4735     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4736     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4737     smc->default_caps.caps[SPAPR_CAP_NESTED_PAPR] = SPAPR_CAP_OFF;
4738     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4739     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4740     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4741     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4742 
4743     /*
4744      * This cap specifies whether the AIL 3 mode for
4745      * H_SET_RESOURCE is supported. The default is modified
4746      * by default_caps_with_cpu().
4747      */
4748     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4749     spapr_caps_add_properties(smc);
4750     smc->irq = &spapr_irq_dual;
4751     smc->dr_phb_enabled = true;
4752     smc->linux_pci_probe = true;
4753     smc->smp_threads_vsmt = true;
4754     smc->nr_xirqs = SPAPR_NR_XIRQS;
4755     xfc->match_nvt = spapr_match_nvt;
4756     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4757     vmc->quiesce = spapr_vof_quiesce;
4758     vmc->setprop = spapr_vof_setprop;
4759 }
4760 
4761 static const TypeInfo spapr_machine_info = {
4762     .name          = TYPE_SPAPR_MACHINE,
4763     .parent        = TYPE_MACHINE,
4764     .abstract      = true,
4765     .instance_size = sizeof(SpaprMachineState),
4766     .instance_init = spapr_instance_init,
4767     .instance_finalize = spapr_machine_finalizefn,
4768     .class_size    = sizeof(SpaprMachineClass),
4769     .class_init    = spapr_machine_class_init,
4770     .interfaces = (InterfaceInfo[]) {
4771         { TYPE_FW_PATH_PROVIDER },
4772         { TYPE_NMI },
4773         { TYPE_HOTPLUG_HANDLER },
4774         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4775         { TYPE_XICS_FABRIC },
4776         { TYPE_INTERRUPT_STATS_PROVIDER },
4777         { TYPE_XIVE_FABRIC },
4778         { TYPE_VOF_MACHINE_IF },
4779         { }
4780     },
4781 };
4782 
4783 static void spapr_machine_latest_class_options(MachineClass *mc)
4784 {
4785     mc->alias = "pseries";
4786     mc->is_default = true;
4787 }
4788 
4789 #define DEFINE_SPAPR_MACHINE_IMPL(latest, ...)                       \
4790     static void MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__)(     \
4791         ObjectClass *oc,                                             \
4792         void *data)                                                  \
4793     {                                                                \
4794         MachineClass *mc = MACHINE_CLASS(oc);                        \
4795         MACHINE_VER_SYM(class_options, spapr, __VA_ARGS__)(mc);      \
4796         MACHINE_VER_DEPRECATION(__VA_ARGS__);                        \
4797         if (latest) {                                                \
4798             spapr_machine_latest_class_options(mc);                  \
4799         }                                                            \
4800     }                                                                \
4801     static const TypeInfo MACHINE_VER_SYM(info, spapr, __VA_ARGS__) = \
4802     {                                                                \
4803         .name = MACHINE_VER_TYPE_NAME("pseries", __VA_ARGS__),       \
4804         .parent = TYPE_SPAPR_MACHINE,                                \
4805         .class_init = MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__), \
4806     };                                                               \
4807     static void MACHINE_VER_SYM(register, spapr, __VA_ARGS__)(void)  \
4808     {                                                                \
4809         MACHINE_VER_DELETION(__VA_ARGS__);                           \
4810         type_register(&MACHINE_VER_SYM(info, spapr, __VA_ARGS__));   \
4811     }                                                                \
4812     type_init(MACHINE_VER_SYM(register, spapr, __VA_ARGS__))
4813 
4814 #define DEFINE_SPAPR_MACHINE_AS_LATEST(major, minor) \
4815     DEFINE_SPAPR_MACHINE_IMPL(true, major, minor)
4816 #define DEFINE_SPAPR_MACHINE(major, minor) \
4817     DEFINE_SPAPR_MACHINE_IMPL(false, major, minor)
4818 #define DEFINE_SPAPR_MACHINE_TAGGED(major, minor, tag) \
4819     DEFINE_SPAPR_MACHINE_IMPL(false, major, minor, _, tag)
4820 
4821 /*
4822  * pseries-9.2
4823  */
4824 static void spapr_machine_9_2_class_options(MachineClass *mc)
4825 {
4826     /* Defaults for the latest behaviour inherited from the base class */
4827 }
4828 
4829 DEFINE_SPAPR_MACHINE_AS_LATEST(9, 2);
4830 
4831 /*
4832  * pseries-9.1
4833  */
4834 static void spapr_machine_9_1_class_options(MachineClass *mc)
4835 {
4836     spapr_machine_9_2_class_options(mc);
4837     compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len);
4838 }
4839 
4840 DEFINE_SPAPR_MACHINE(9, 1);
4841 
4842 /*
4843  * pseries-9.0
4844  */
4845 static void spapr_machine_9_0_class_options(MachineClass *mc)
4846 {
4847     spapr_machine_9_1_class_options(mc);
4848     compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len);
4849 }
4850 
4851 DEFINE_SPAPR_MACHINE(9, 0);
4852 
4853 /*
4854  * pseries-8.2
4855  */
4856 static void spapr_machine_8_2_class_options(MachineClass *mc)
4857 {
4858     spapr_machine_9_0_class_options(mc);
4859     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
4860 }
4861 
4862 DEFINE_SPAPR_MACHINE(8, 2);
4863 
4864 /*
4865  * pseries-8.1
4866  */
4867 static void spapr_machine_8_1_class_options(MachineClass *mc)
4868 {
4869     spapr_machine_8_2_class_options(mc);
4870     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4871 }
4872 
4873 DEFINE_SPAPR_MACHINE(8, 1);
4874 
4875 /*
4876  * pseries-8.0
4877  */
4878 static void spapr_machine_8_0_class_options(MachineClass *mc)
4879 {
4880     spapr_machine_8_1_class_options(mc);
4881     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4882 }
4883 
4884 DEFINE_SPAPR_MACHINE(8, 0);
4885 
4886 /*
4887  * pseries-7.2
4888  */
4889 static void spapr_machine_7_2_class_options(MachineClass *mc)
4890 {
4891     spapr_machine_8_0_class_options(mc);
4892     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4893 }
4894 
4895 DEFINE_SPAPR_MACHINE(7, 2);
4896 
4897 /*
4898  * pseries-7.1
4899  */
4900 static void spapr_machine_7_1_class_options(MachineClass *mc)
4901 {
4902     spapr_machine_7_2_class_options(mc);
4903     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4904 }
4905 
4906 DEFINE_SPAPR_MACHINE(7, 1);
4907 
4908 /*
4909  * pseries-7.0
4910  */
4911 static void spapr_machine_7_0_class_options(MachineClass *mc)
4912 {
4913     spapr_machine_7_1_class_options(mc);
4914     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4915 }
4916 
4917 DEFINE_SPAPR_MACHINE(7, 0);
4918 
4919 /*
4920  * pseries-6.2
4921  */
4922 static void spapr_machine_6_2_class_options(MachineClass *mc)
4923 {
4924     spapr_machine_7_0_class_options(mc);
4925     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4926 }
4927 
4928 DEFINE_SPAPR_MACHINE(6, 2);
4929 
4930 /*
4931  * pseries-6.1
4932  */
4933 static void spapr_machine_6_1_class_options(MachineClass *mc)
4934 {
4935     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4936 
4937     spapr_machine_6_2_class_options(mc);
4938     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4939     smc->pre_6_2_numa_affinity = true;
4940     mc->smp_props.prefer_sockets = true;
4941 }
4942 
4943 DEFINE_SPAPR_MACHINE(6, 1);
4944 
4945 /*
4946  * pseries-6.0
4947  */
4948 static void spapr_machine_6_0_class_options(MachineClass *mc)
4949 {
4950     spapr_machine_6_1_class_options(mc);
4951     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4952 }
4953 
4954 DEFINE_SPAPR_MACHINE(6, 0);
4955 
4956 /*
4957  * pseries-5.2
4958  */
4959 static void spapr_machine_5_2_class_options(MachineClass *mc)
4960 {
4961     spapr_machine_6_0_class_options(mc);
4962     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4963 }
4964 
4965 DEFINE_SPAPR_MACHINE(5, 2);
4966 
4967 /*
4968  * pseries-5.1
4969  */
4970 static void spapr_machine_5_1_class_options(MachineClass *mc)
4971 {
4972     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4973 
4974     spapr_machine_5_2_class_options(mc);
4975     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4976     smc->pre_5_2_numa_associativity = true;
4977 }
4978 
4979 DEFINE_SPAPR_MACHINE(5, 1);
4980 
4981 /*
4982  * pseries-5.0
4983  */
4984 static void spapr_machine_5_0_class_options(MachineClass *mc)
4985 {
4986     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4987     static GlobalProperty compat[] = {
4988         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4989     };
4990 
4991     spapr_machine_5_1_class_options(mc);
4992     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4993     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4994     mc->numa_mem_supported = true;
4995     smc->pre_5_1_assoc_refpoints = true;
4996 }
4997 
4998 DEFINE_SPAPR_MACHINE(5, 0);
4999 
5000 /*
5001  * pseries-4.2
5002  */
5003 static void spapr_machine_4_2_class_options(MachineClass *mc)
5004 {
5005     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5006 
5007     spapr_machine_5_0_class_options(mc);
5008     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
5009     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
5010     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
5011     smc->rma_limit = 16 * GiB;
5012     mc->nvdimm_supported = false;
5013 }
5014 
5015 DEFINE_SPAPR_MACHINE(4, 2);
5016 
5017 /*
5018  * pseries-4.1
5019  */
5020 static void spapr_machine_4_1_class_options(MachineClass *mc)
5021 {
5022     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5023     static GlobalProperty compat[] = {
5024         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
5025         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
5026     };
5027 
5028     spapr_machine_4_2_class_options(mc);
5029     smc->linux_pci_probe = false;
5030     smc->smp_threads_vsmt = false;
5031     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
5032     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5033 }
5034 
5035 DEFINE_SPAPR_MACHINE(4, 1);
5036 
5037 /*
5038  * pseries-4.0
5039  */
5040 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
5041                               uint64_t *buid, hwaddr *pio,
5042                               hwaddr *mmio32, hwaddr *mmio64,
5043                               unsigned n_dma, uint32_t *liobns, Error **errp)
5044 {
5045     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
5046                              liobns, errp)) {
5047         return false;
5048     }
5049     return true;
5050 }
5051 static void spapr_machine_4_0_class_options(MachineClass *mc)
5052 {
5053     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5054 
5055     spapr_machine_4_1_class_options(mc);
5056     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
5057     smc->phb_placement = phb_placement_4_0;
5058     smc->irq = &spapr_irq_xics;
5059     smc->pre_4_1_migration = true;
5060 }
5061 
5062 DEFINE_SPAPR_MACHINE(4, 0);
5063 
5064 /*
5065  * pseries-3.1
5066  */
5067 static void spapr_machine_3_1_class_options(MachineClass *mc)
5068 {
5069     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5070 
5071     spapr_machine_4_0_class_options(mc);
5072     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
5073 
5074     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
5075     smc->update_dt_enabled = false;
5076     smc->dr_phb_enabled = false;
5077     smc->broken_host_serial_model = true;
5078     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
5079     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
5080     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
5081     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
5082 }
5083 
5084 DEFINE_SPAPR_MACHINE(3, 1);
5085 
5086 /*
5087  * pseries-3.0
5088  */
5089 
5090 static void spapr_machine_3_0_class_options(MachineClass *mc)
5091 {
5092     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5093 
5094     spapr_machine_3_1_class_options(mc);
5095     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5096 
5097     smc->legacy_irq_allocation = true;
5098     smc->nr_xirqs = 0x400;
5099     smc->irq = &spapr_irq_xics_legacy;
5100 }
5101 
5102 DEFINE_SPAPR_MACHINE(3, 0);
5103 
5104 /*
5105  * pseries-2.12
5106  */
5107 static void spapr_machine_2_12_class_options(MachineClass *mc)
5108 {
5109     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5110     static GlobalProperty compat[] = {
5111         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5112         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5113     };
5114 
5115     spapr_machine_3_0_class_options(mc);
5116     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5117     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5118 
5119     /* We depend on kvm_enabled() to choose a default value for the
5120      * hpt-max-page-size capability. Of course we can't do it here
5121      * because this is too early and the HW accelerator isn't initialized
5122      * yet. Postpone this to machine init (see default_caps_with_cpu()).
5123      */
5124     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5125 }
5126 
5127 DEFINE_SPAPR_MACHINE(2, 12);
5128 
5129 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5130 {
5131     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5132 
5133     spapr_machine_2_12_class_options(mc);
5134     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5135     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5136     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5137 }
5138 
5139 DEFINE_SPAPR_MACHINE_TAGGED(2, 12, sxxm);
5140 
5141 /*
5142  * pseries-2.11
5143  */
5144 
5145 static void spapr_machine_2_11_class_options(MachineClass *mc)
5146 {
5147     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5148 
5149     spapr_machine_2_12_class_options(mc);
5150     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5151     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5152 }
5153 
5154 DEFINE_SPAPR_MACHINE(2, 11);
5155 
5156 /*
5157  * pseries-2.10
5158  */
5159 
5160 static void spapr_machine_2_10_class_options(MachineClass *mc)
5161 {
5162     spapr_machine_2_11_class_options(mc);
5163     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5164 }
5165 
5166 DEFINE_SPAPR_MACHINE(2, 10);
5167 
5168 /*
5169  * pseries-2.9
5170  */
5171 
5172 static void spapr_machine_2_9_class_options(MachineClass *mc)
5173 {
5174     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5175     static GlobalProperty compat[] = {
5176         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5177     };
5178 
5179     spapr_machine_2_10_class_options(mc);
5180     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5181     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5182     smc->pre_2_10_has_unused_icps = true;
5183     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5184 }
5185 
5186 DEFINE_SPAPR_MACHINE(2, 9);
5187 
5188 static void spapr_machine_register_types(void)
5189 {
5190     type_register_static(&spapr_machine_info);
5191 }
5192 
5193 type_init(spapr_machine_register_types)
5194