1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "sysemu/qtest.h" 33 #include "hw/hw.h" 34 #include "qemu/log.h" 35 #include "hw/fw-path-provider.h" 36 #include "elf.h" 37 #include "net/net.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/cpus.h" 40 #include "sysemu/hw_accel.h" 41 #include "kvm_ppc.h" 42 #include "migration/misc.h" 43 #include "migration/global_state.h" 44 #include "migration/register.h" 45 #include "mmu-hash64.h" 46 #include "mmu-book3s-v3.h" 47 #include "cpu-models.h" 48 #include "qom/cpu.h" 49 50 #include "hw/boards.h" 51 #include "hw/ppc/ppc.h" 52 #include "hw/loader.h" 53 54 #include "hw/ppc/fdt.h" 55 #include "hw/ppc/spapr.h" 56 #include "hw/ppc/spapr_vio.h" 57 #include "hw/pci-host/spapr.h" 58 #include "hw/pci/msi.h" 59 60 #include "hw/pci/pci.h" 61 #include "hw/scsi/scsi.h" 62 #include "hw/virtio/virtio-scsi.h" 63 #include "hw/virtio/vhost-scsi-common.h" 64 65 #include "exec/address-spaces.h" 66 #include "exec/ram_addr.h" 67 #include "hw/usb.h" 68 #include "qemu/config-file.h" 69 #include "qemu/error-report.h" 70 #include "trace.h" 71 #include "hw/nmi.h" 72 #include "hw/intc/intc.h" 73 74 #include "qemu/cutils.h" 75 #include "hw/ppc/spapr_cpu_core.h" 76 #include "hw/mem/memory-device.h" 77 78 #include <libfdt.h> 79 80 /* SLOF memory layout: 81 * 82 * SLOF raw image loaded at 0, copies its romfs right below the flat 83 * device-tree, then position SLOF itself 31M below that 84 * 85 * So we set FW_OVERHEAD to 40MB which should account for all of that 86 * and more 87 * 88 * We load our kernel at 4M, leaving space for SLOF initial image 89 */ 90 #define FDT_MAX_SIZE 0x100000 91 #define RTAS_MAX_SIZE 0x10000 92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 93 #define FW_MAX_SIZE 0x400000 94 #define FW_FILE_NAME "slof.bin" 95 #define FW_OVERHEAD 0x2800000 96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 97 98 #define MIN_RMA_SLOF 128UL 99 100 #define PHANDLE_INTC 0x00001111 101 102 /* These two functions implement the VCPU id numbering: one to compute them 103 * all and one to identify thread 0 of a VCORE. Any change to the first one 104 * is likely to have an impact on the second one, so let's keep them close. 105 */ 106 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 107 { 108 assert(spapr->vsmt); 109 return 110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 111 } 112 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 113 PowerPCCPU *cpu) 114 { 115 assert(spapr->vsmt); 116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 117 } 118 119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 120 { 121 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 122 * and newer QEMUs don't even have them. In both cases, we don't want 123 * to send anything on the wire. 124 */ 125 return false; 126 } 127 128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 129 .name = "icp/server", 130 .version_id = 1, 131 .minimum_version_id = 1, 132 .needed = pre_2_10_vmstate_dummy_icp_needed, 133 .fields = (VMStateField[]) { 134 VMSTATE_UNUSED(4), /* uint32_t xirr */ 135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 136 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 137 VMSTATE_END_OF_LIST() 138 }, 139 }; 140 141 static void pre_2_10_vmstate_register_dummy_icp(int i) 142 { 143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 144 (void *)(uintptr_t) i); 145 } 146 147 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 148 { 149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 150 (void *)(uintptr_t) i); 151 } 152 153 int spapr_max_server_number(SpaprMachineState *spapr) 154 { 155 assert(spapr->vsmt); 156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 157 } 158 159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 160 int smt_threads) 161 { 162 int i, ret = 0; 163 uint32_t servers_prop[smt_threads]; 164 uint32_t gservers_prop[smt_threads * 2]; 165 int index = spapr_get_vcpu_id(cpu); 166 167 if (cpu->compat_pvr) { 168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 169 if (ret < 0) { 170 return ret; 171 } 172 } 173 174 /* Build interrupt servers and gservers properties */ 175 for (i = 0; i < smt_threads; i++) { 176 servers_prop[i] = cpu_to_be32(index + i); 177 /* Hack, direct the group queues back to cpu 0 */ 178 gservers_prop[i*2] = cpu_to_be32(index + i); 179 gservers_prop[i*2 + 1] = 0; 180 } 181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 182 servers_prop, sizeof(servers_prop)); 183 if (ret < 0) { 184 return ret; 185 } 186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 187 gservers_prop, sizeof(gservers_prop)); 188 189 return ret; 190 } 191 192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 193 { 194 int index = spapr_get_vcpu_id(cpu); 195 uint32_t associativity[] = {cpu_to_be32(0x5), 196 cpu_to_be32(0x0), 197 cpu_to_be32(0x0), 198 cpu_to_be32(0x0), 199 cpu_to_be32(cpu->node_id), 200 cpu_to_be32(index)}; 201 202 /* Advertise NUMA via ibm,associativity */ 203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 204 sizeof(associativity)); 205 } 206 207 /* Populate the "ibm,pa-features" property */ 208 static void spapr_populate_pa_features(SpaprMachineState *spapr, 209 PowerPCCPU *cpu, 210 void *fdt, int offset, 211 bool legacy_guest) 212 { 213 uint8_t pa_features_206[] = { 6, 0, 214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 215 uint8_t pa_features_207[] = { 24, 0, 216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 220 uint8_t pa_features_300[] = { 66, 0, 221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 224 /* 6: DS207 */ 225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 226 /* 16: Vector */ 227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 236 /* 42: PM, 44: PC RA, 46: SC vec'd */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 238 /* 48: SIMD, 50: QP BFP, 52: String */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 240 /* 54: DecFP, 56: DecI, 58: SHA */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 242 /* 60: NM atomic, 62: RNG */ 243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 244 }; 245 uint8_t *pa_features = NULL; 246 size_t pa_size; 247 248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 249 pa_features = pa_features_206; 250 pa_size = sizeof(pa_features_206); 251 } 252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 253 pa_features = pa_features_207; 254 pa_size = sizeof(pa_features_207); 255 } 256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 257 pa_features = pa_features_300; 258 pa_size = sizeof(pa_features_300); 259 } 260 if (!pa_features) { 261 return; 262 } 263 264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 265 /* 266 * Note: we keep CI large pages off by default because a 64K capable 267 * guest provisioned with large pages might otherwise try to map a qemu 268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 269 * even if that qemu runs on a 4k host. 270 * We dd this bit back here if we are confident this is not an issue 271 */ 272 pa_features[3] |= 0x20; 273 } 274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 275 pa_features[24] |= 0x80; /* Transactional memory support */ 276 } 277 if (legacy_guest && pa_size > 40) { 278 /* Workaround for broken kernels that attempt (guest) radix 279 * mode when they can't handle it, if they see the radix bit set 280 * in pa-features. So hide it from them. */ 281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 282 } 283 284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 285 } 286 287 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 288 { 289 int ret = 0, offset, cpus_offset; 290 CPUState *cs; 291 char cpu_model[32]; 292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 293 294 CPU_FOREACH(cs) { 295 PowerPCCPU *cpu = POWERPC_CPU(cs); 296 DeviceClass *dc = DEVICE_GET_CLASS(cs); 297 int index = spapr_get_vcpu_id(cpu); 298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 299 300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 301 continue; 302 } 303 304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 305 306 cpus_offset = fdt_path_offset(fdt, "/cpus"); 307 if (cpus_offset < 0) { 308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 309 if (cpus_offset < 0) { 310 return cpus_offset; 311 } 312 } 313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 314 if (offset < 0) { 315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 316 if (offset < 0) { 317 return offset; 318 } 319 } 320 321 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 322 pft_size_prop, sizeof(pft_size_prop)); 323 if (ret < 0) { 324 return ret; 325 } 326 327 if (nb_numa_nodes > 1) { 328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 329 if (ret < 0) { 330 return ret; 331 } 332 } 333 334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 335 if (ret < 0) { 336 return ret; 337 } 338 339 spapr_populate_pa_features(spapr, cpu, fdt, offset, 340 spapr->cas_legacy_guest_workaround); 341 } 342 return ret; 343 } 344 345 static hwaddr spapr_node0_size(MachineState *machine) 346 { 347 if (nb_numa_nodes) { 348 int i; 349 for (i = 0; i < nb_numa_nodes; ++i) { 350 if (numa_info[i].node_mem) { 351 return MIN(pow2floor(numa_info[i].node_mem), 352 machine->ram_size); 353 } 354 } 355 } 356 return machine->ram_size; 357 } 358 359 static void add_str(GString *s, const gchar *s1) 360 { 361 g_string_append_len(s, s1, strlen(s1) + 1); 362 } 363 364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 365 hwaddr size) 366 { 367 uint32_t associativity[] = { 368 cpu_to_be32(0x4), /* length */ 369 cpu_to_be32(0x0), cpu_to_be32(0x0), 370 cpu_to_be32(0x0), cpu_to_be32(nodeid) 371 }; 372 char mem_name[32]; 373 uint64_t mem_reg_property[2]; 374 int off; 375 376 mem_reg_property[0] = cpu_to_be64(start); 377 mem_reg_property[1] = cpu_to_be64(size); 378 379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 380 off = fdt_add_subnode(fdt, 0, mem_name); 381 _FDT(off); 382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 384 sizeof(mem_reg_property)))); 385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 386 sizeof(associativity)))); 387 return off; 388 } 389 390 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 391 { 392 MachineState *machine = MACHINE(spapr); 393 hwaddr mem_start, node_size; 394 int i, nb_nodes = nb_numa_nodes; 395 NodeInfo *nodes = numa_info; 396 NodeInfo ramnode; 397 398 /* No NUMA nodes, assume there is just one node with whole RAM */ 399 if (!nb_numa_nodes) { 400 nb_nodes = 1; 401 ramnode.node_mem = machine->ram_size; 402 nodes = &ramnode; 403 } 404 405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 406 if (!nodes[i].node_mem) { 407 continue; 408 } 409 if (mem_start >= machine->ram_size) { 410 node_size = 0; 411 } else { 412 node_size = nodes[i].node_mem; 413 if (node_size > machine->ram_size - mem_start) { 414 node_size = machine->ram_size - mem_start; 415 } 416 } 417 if (!mem_start) { 418 /* spapr_machine_init() checks for rma_size <= node0_size 419 * already */ 420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 421 mem_start += spapr->rma_size; 422 node_size -= spapr->rma_size; 423 } 424 for ( ; node_size; ) { 425 hwaddr sizetmp = pow2floor(node_size); 426 427 /* mem_start != 0 here */ 428 if (ctzl(mem_start) < ctzl(sizetmp)) { 429 sizetmp = 1ULL << ctzl(mem_start); 430 } 431 432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 433 node_size -= sizetmp; 434 mem_start += sizetmp; 435 } 436 } 437 438 return 0; 439 } 440 441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 442 SpaprMachineState *spapr) 443 { 444 PowerPCCPU *cpu = POWERPC_CPU(cs); 445 CPUPPCState *env = &cpu->env; 446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 447 int index = spapr_get_vcpu_id(cpu); 448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 449 0xffffffff, 0xffffffff}; 450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 451 : SPAPR_TIMEBASE_FREQ; 452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 453 uint32_t page_sizes_prop[64]; 454 size_t page_sizes_prop_size; 455 uint32_t vcpus_per_socket = smp_threads * smp_cores; 456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 458 SpaprDrc *drc; 459 int drc_index; 460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 461 int i; 462 463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 464 if (drc) { 465 drc_index = spapr_drc_index(drc); 466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 467 } 468 469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 471 472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 474 env->dcache_line_size))); 475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 476 env->dcache_line_size))); 477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 478 env->icache_line_size))); 479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 480 env->icache_line_size))); 481 482 if (pcc->l1_dcache_size) { 483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 484 pcc->l1_dcache_size))); 485 } else { 486 warn_report("Unknown L1 dcache size for cpu"); 487 } 488 if (pcc->l1_icache_size) { 489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 490 pcc->l1_icache_size))); 491 } else { 492 warn_report("Unknown L1 icache size for cpu"); 493 } 494 495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 501 502 if (env->spr_cb[SPR_PURR].oea_read) { 503 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 504 } 505 if (env->spr_cb[SPR_SPURR].oea_read) { 506 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 507 } 508 509 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 510 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 511 segs, sizeof(segs)))); 512 } 513 514 /* Advertise VSX (vector extensions) if available 515 * 1 == VMX / Altivec available 516 * 2 == VSX available 517 * 518 * Only CPUs for which we create core types in spapr_cpu_core.c 519 * are possible, and all of those have VMX */ 520 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 521 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 522 } else { 523 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 524 } 525 526 /* Advertise DFP (Decimal Floating Point) if available 527 * 0 / no property == no DFP 528 * 1 == DFP available */ 529 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 530 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 531 } 532 533 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 534 sizeof(page_sizes_prop)); 535 if (page_sizes_prop_size) { 536 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 537 page_sizes_prop, page_sizes_prop_size))); 538 } 539 540 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 541 542 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 543 cs->cpu_index / vcpus_per_socket))); 544 545 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 546 pft_size_prop, sizeof(pft_size_prop)))); 547 548 if (nb_numa_nodes > 1) { 549 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 550 } 551 552 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 553 554 if (pcc->radix_page_info) { 555 for (i = 0; i < pcc->radix_page_info->count; i++) { 556 radix_AP_encodings[i] = 557 cpu_to_be32(pcc->radix_page_info->entries[i]); 558 } 559 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 560 radix_AP_encodings, 561 pcc->radix_page_info->count * 562 sizeof(radix_AP_encodings[0])))); 563 } 564 565 /* 566 * We set this property to let the guest know that it can use the large 567 * decrementer and its width in bits. 568 */ 569 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 570 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 571 pcc->lrg_decr_bits))); 572 } 573 574 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 575 { 576 CPUState **rev; 577 CPUState *cs; 578 int n_cpus; 579 int cpus_offset; 580 char *nodename; 581 int i; 582 583 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 584 _FDT(cpus_offset); 585 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 586 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 587 588 /* 589 * We walk the CPUs in reverse order to ensure that CPU DT nodes 590 * created by fdt_add_subnode() end up in the right order in FDT 591 * for the guest kernel the enumerate the CPUs correctly. 592 * 593 * The CPU list cannot be traversed in reverse order, so we need 594 * to do extra work. 595 */ 596 n_cpus = 0; 597 rev = NULL; 598 CPU_FOREACH(cs) { 599 rev = g_renew(CPUState *, rev, n_cpus + 1); 600 rev[n_cpus++] = cs; 601 } 602 603 for (i = n_cpus - 1; i >= 0; i--) { 604 CPUState *cs = rev[i]; 605 PowerPCCPU *cpu = POWERPC_CPU(cs); 606 int index = spapr_get_vcpu_id(cpu); 607 DeviceClass *dc = DEVICE_GET_CLASS(cs); 608 int offset; 609 610 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 611 continue; 612 } 613 614 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 615 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 616 g_free(nodename); 617 _FDT(offset); 618 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 619 } 620 621 g_free(rev); 622 } 623 624 static int spapr_rng_populate_dt(void *fdt) 625 { 626 int node; 627 int ret; 628 629 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 630 if (node <= 0) { 631 return -1; 632 } 633 ret = fdt_setprop_string(fdt, node, "device_type", 634 "ibm,platform-facilities"); 635 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 636 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 637 638 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 639 if (node <= 0) { 640 return -1; 641 } 642 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 643 644 return ret ? -1 : 0; 645 } 646 647 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 648 { 649 MemoryDeviceInfoList *info; 650 651 for (info = list; info; info = info->next) { 652 MemoryDeviceInfo *value = info->value; 653 654 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 655 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 656 657 if (addr >= pcdimm_info->addr && 658 addr < (pcdimm_info->addr + pcdimm_info->size)) { 659 return pcdimm_info->node; 660 } 661 } 662 } 663 664 return -1; 665 } 666 667 struct sPAPRDrconfCellV2 { 668 uint32_t seq_lmbs; 669 uint64_t base_addr; 670 uint32_t drc_index; 671 uint32_t aa_index; 672 uint32_t flags; 673 } QEMU_PACKED; 674 675 typedef struct DrconfCellQueue { 676 struct sPAPRDrconfCellV2 cell; 677 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 678 } DrconfCellQueue; 679 680 static DrconfCellQueue * 681 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 682 uint32_t drc_index, uint32_t aa_index, 683 uint32_t flags) 684 { 685 DrconfCellQueue *elem; 686 687 elem = g_malloc0(sizeof(*elem)); 688 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 689 elem->cell.base_addr = cpu_to_be64(base_addr); 690 elem->cell.drc_index = cpu_to_be32(drc_index); 691 elem->cell.aa_index = cpu_to_be32(aa_index); 692 elem->cell.flags = cpu_to_be32(flags); 693 694 return elem; 695 } 696 697 /* ibm,dynamic-memory-v2 */ 698 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 699 int offset, MemoryDeviceInfoList *dimms) 700 { 701 MachineState *machine = MACHINE(spapr); 702 uint8_t *int_buf, *cur_index; 703 int ret; 704 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 705 uint64_t addr, cur_addr, size; 706 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 707 uint64_t mem_end = machine->device_memory->base + 708 memory_region_size(&machine->device_memory->mr); 709 uint32_t node, buf_len, nr_entries = 0; 710 SpaprDrc *drc; 711 DrconfCellQueue *elem, *next; 712 MemoryDeviceInfoList *info; 713 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 714 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 715 716 /* Entry to cover RAM and the gap area */ 717 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 718 SPAPR_LMB_FLAGS_RESERVED | 719 SPAPR_LMB_FLAGS_DRC_INVALID); 720 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 721 nr_entries++; 722 723 cur_addr = machine->device_memory->base; 724 for (info = dimms; info; info = info->next) { 725 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 726 727 addr = di->addr; 728 size = di->size; 729 node = di->node; 730 731 /* Entry for hot-pluggable area */ 732 if (cur_addr < addr) { 733 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 734 g_assert(drc); 735 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 736 cur_addr, spapr_drc_index(drc), -1, 0); 737 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 738 nr_entries++; 739 } 740 741 /* Entry for DIMM */ 742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 743 g_assert(drc); 744 elem = spapr_get_drconf_cell(size / lmb_size, addr, 745 spapr_drc_index(drc), node, 746 SPAPR_LMB_FLAGS_ASSIGNED); 747 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 748 nr_entries++; 749 cur_addr = addr + size; 750 } 751 752 /* Entry for remaining hotpluggable area */ 753 if (cur_addr < mem_end) { 754 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 755 g_assert(drc); 756 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 757 cur_addr, spapr_drc_index(drc), -1, 0); 758 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 759 nr_entries++; 760 } 761 762 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 763 int_buf = cur_index = g_malloc0(buf_len); 764 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 765 cur_index += sizeof(nr_entries); 766 767 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 768 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 769 cur_index += sizeof(elem->cell); 770 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 771 g_free(elem); 772 } 773 774 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 775 g_free(int_buf); 776 if (ret < 0) { 777 return -1; 778 } 779 return 0; 780 } 781 782 /* ibm,dynamic-memory */ 783 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 784 int offset, MemoryDeviceInfoList *dimms) 785 { 786 MachineState *machine = MACHINE(spapr); 787 int i, ret; 788 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 789 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 790 uint32_t nr_lmbs = (machine->device_memory->base + 791 memory_region_size(&machine->device_memory->mr)) / 792 lmb_size; 793 uint32_t *int_buf, *cur_index, buf_len; 794 795 /* 796 * Allocate enough buffer size to fit in ibm,dynamic-memory 797 */ 798 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 799 cur_index = int_buf = g_malloc0(buf_len); 800 int_buf[0] = cpu_to_be32(nr_lmbs); 801 cur_index++; 802 for (i = 0; i < nr_lmbs; i++) { 803 uint64_t addr = i * lmb_size; 804 uint32_t *dynamic_memory = cur_index; 805 806 if (i >= device_lmb_start) { 807 SpaprDrc *drc; 808 809 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 810 g_assert(drc); 811 812 dynamic_memory[0] = cpu_to_be32(addr >> 32); 813 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 814 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 815 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 816 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 817 if (memory_region_present(get_system_memory(), addr)) { 818 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 819 } else { 820 dynamic_memory[5] = cpu_to_be32(0); 821 } 822 } else { 823 /* 824 * LMB information for RMA, boot time RAM and gap b/n RAM and 825 * device memory region -- all these are marked as reserved 826 * and as having no valid DRC. 827 */ 828 dynamic_memory[0] = cpu_to_be32(addr >> 32); 829 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 830 dynamic_memory[2] = cpu_to_be32(0); 831 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 832 dynamic_memory[4] = cpu_to_be32(-1); 833 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 834 SPAPR_LMB_FLAGS_DRC_INVALID); 835 } 836 837 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 838 } 839 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 840 g_free(int_buf); 841 if (ret < 0) { 842 return -1; 843 } 844 return 0; 845 } 846 847 /* 848 * Adds ibm,dynamic-reconfiguration-memory node. 849 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 850 * of this device tree node. 851 */ 852 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 853 { 854 MachineState *machine = MACHINE(spapr); 855 int ret, i, offset; 856 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 857 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 858 uint32_t *int_buf, *cur_index, buf_len; 859 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 860 MemoryDeviceInfoList *dimms = NULL; 861 862 /* 863 * Don't create the node if there is no device memory 864 */ 865 if (machine->ram_size == machine->maxram_size) { 866 return 0; 867 } 868 869 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 870 871 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 872 sizeof(prop_lmb_size)); 873 if (ret < 0) { 874 return ret; 875 } 876 877 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 878 if (ret < 0) { 879 return ret; 880 } 881 882 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 883 if (ret < 0) { 884 return ret; 885 } 886 887 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 888 dimms = qmp_memory_device_list(); 889 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 890 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 891 } else { 892 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 893 } 894 qapi_free_MemoryDeviceInfoList(dimms); 895 896 if (ret < 0) { 897 return ret; 898 } 899 900 /* ibm,associativity-lookup-arrays */ 901 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 902 cur_index = int_buf = g_malloc0(buf_len); 903 int_buf[0] = cpu_to_be32(nr_nodes); 904 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 905 cur_index += 2; 906 for (i = 0; i < nr_nodes; i++) { 907 uint32_t associativity[] = { 908 cpu_to_be32(0x0), 909 cpu_to_be32(0x0), 910 cpu_to_be32(0x0), 911 cpu_to_be32(i) 912 }; 913 memcpy(cur_index, associativity, sizeof(associativity)); 914 cur_index += 4; 915 } 916 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 917 (cur_index - int_buf) * sizeof(uint32_t)); 918 g_free(int_buf); 919 920 return ret; 921 } 922 923 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 924 SpaprOptionVector *ov5_updates) 925 { 926 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 927 int ret = 0, offset; 928 929 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 930 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 931 g_assert(smc->dr_lmb_enabled); 932 ret = spapr_populate_drconf_memory(spapr, fdt); 933 if (ret) { 934 goto out; 935 } 936 } 937 938 offset = fdt_path_offset(fdt, "/chosen"); 939 if (offset < 0) { 940 offset = fdt_add_subnode(fdt, 0, "chosen"); 941 if (offset < 0) { 942 return offset; 943 } 944 } 945 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 946 "ibm,architecture-vec-5"); 947 948 out: 949 return ret; 950 } 951 952 static bool spapr_hotplugged_dev_before_cas(void) 953 { 954 Object *drc_container, *obj; 955 ObjectProperty *prop; 956 ObjectPropertyIterator iter; 957 958 drc_container = container_get(object_get_root(), "/dr-connector"); 959 object_property_iter_init(&iter, drc_container); 960 while ((prop = object_property_iter_next(&iter))) { 961 if (!strstart(prop->type, "link<", NULL)) { 962 continue; 963 } 964 obj = object_property_get_link(drc_container, prop->name, NULL); 965 if (spapr_drc_needed(obj)) { 966 return true; 967 } 968 } 969 return false; 970 } 971 972 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 973 target_ulong addr, target_ulong size, 974 SpaprOptionVector *ov5_updates) 975 { 976 void *fdt, *fdt_skel; 977 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 978 979 if (spapr_hotplugged_dev_before_cas()) { 980 return 1; 981 } 982 983 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 984 error_report("SLOF provided an unexpected CAS buffer size " 985 TARGET_FMT_lu " (min: %zu, max: %u)", 986 size, sizeof(hdr), FW_MAX_SIZE); 987 exit(EXIT_FAILURE); 988 } 989 990 size -= sizeof(hdr); 991 992 /* Create skeleton */ 993 fdt_skel = g_malloc0(size); 994 _FDT((fdt_create(fdt_skel, size))); 995 _FDT((fdt_finish_reservemap(fdt_skel))); 996 _FDT((fdt_begin_node(fdt_skel, ""))); 997 _FDT((fdt_end_node(fdt_skel))); 998 _FDT((fdt_finish(fdt_skel))); 999 fdt = g_malloc0(size); 1000 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1001 g_free(fdt_skel); 1002 1003 /* Fixup cpu nodes */ 1004 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1005 1006 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1007 return -1; 1008 } 1009 1010 /* Pack resulting tree */ 1011 _FDT((fdt_pack(fdt))); 1012 1013 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1014 trace_spapr_cas_failed(size); 1015 return -1; 1016 } 1017 1018 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1019 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1020 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1021 g_free(fdt); 1022 1023 return 0; 1024 } 1025 1026 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1027 { 1028 int rtas; 1029 GString *hypertas = g_string_sized_new(256); 1030 GString *qemu_hypertas = g_string_sized_new(256); 1031 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1032 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1033 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1034 uint32_t lrdr_capacity[] = { 1035 cpu_to_be32(max_device_addr >> 32), 1036 cpu_to_be32(max_device_addr & 0xffffffff), 1037 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1038 cpu_to_be32(max_cpus / smp_threads), 1039 }; 1040 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1041 uint32_t maxdomains[] = { 1042 cpu_to_be32(4), 1043 maxdomain, 1044 maxdomain, 1045 maxdomain, 1046 cpu_to_be32(spapr->gpu_numa_id), 1047 }; 1048 1049 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1050 1051 /* hypertas */ 1052 add_str(hypertas, "hcall-pft"); 1053 add_str(hypertas, "hcall-term"); 1054 add_str(hypertas, "hcall-dabr"); 1055 add_str(hypertas, "hcall-interrupt"); 1056 add_str(hypertas, "hcall-tce"); 1057 add_str(hypertas, "hcall-vio"); 1058 add_str(hypertas, "hcall-splpar"); 1059 add_str(hypertas, "hcall-bulk"); 1060 add_str(hypertas, "hcall-set-mode"); 1061 add_str(hypertas, "hcall-sprg0"); 1062 add_str(hypertas, "hcall-copy"); 1063 add_str(hypertas, "hcall-debug"); 1064 add_str(hypertas, "hcall-vphn"); 1065 add_str(qemu_hypertas, "hcall-memop1"); 1066 1067 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1068 add_str(hypertas, "hcall-multi-tce"); 1069 } 1070 1071 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1072 add_str(hypertas, "hcall-hpt-resize"); 1073 } 1074 1075 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1076 hypertas->str, hypertas->len)); 1077 g_string_free(hypertas, TRUE); 1078 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1079 qemu_hypertas->str, qemu_hypertas->len)); 1080 g_string_free(qemu_hypertas, TRUE); 1081 1082 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1083 refpoints, sizeof(refpoints))); 1084 1085 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1086 maxdomains, sizeof(maxdomains))); 1087 1088 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1089 RTAS_ERROR_LOG_MAX)); 1090 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1091 RTAS_EVENT_SCAN_RATE)); 1092 1093 g_assert(msi_nonbroken); 1094 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1095 1096 /* 1097 * According to PAPR, rtas ibm,os-term does not guarantee a return 1098 * back to the guest cpu. 1099 * 1100 * While an additional ibm,extended-os-term property indicates 1101 * that rtas call return will always occur. Set this property. 1102 */ 1103 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1104 1105 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1106 lrdr_capacity, sizeof(lrdr_capacity))); 1107 1108 spapr_dt_rtas_tokens(fdt, rtas); 1109 } 1110 1111 /* 1112 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1113 * and the XIVE features that the guest may request and thus the valid 1114 * values for bytes 23..26 of option vector 5: 1115 */ 1116 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1117 int chosen) 1118 { 1119 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1120 1121 char val[2 * 4] = { 1122 23, spapr->irq->ov5, /* Xive mode. */ 1123 24, 0x00, /* Hash/Radix, filled in below. */ 1124 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1125 26, 0x40, /* Radix options: GTSE == yes. */ 1126 }; 1127 1128 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1129 first_ppc_cpu->compat_pvr)) { 1130 /* 1131 * If we're in a pre POWER9 compat mode then the guest should 1132 * do hash and use the legacy interrupt mode 1133 */ 1134 val[1] = 0x00; /* XICS */ 1135 val[3] = 0x00; /* Hash */ 1136 } else if (kvm_enabled()) { 1137 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1138 val[3] = 0x80; /* OV5_MMU_BOTH */ 1139 } else if (kvmppc_has_cap_mmu_radix()) { 1140 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1141 } else { 1142 val[3] = 0x00; /* Hash */ 1143 } 1144 } else { 1145 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1146 val[3] = 0xC0; 1147 } 1148 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1149 val, sizeof(val))); 1150 } 1151 1152 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1153 { 1154 MachineState *machine = MACHINE(spapr); 1155 int chosen; 1156 const char *boot_device = machine->boot_order; 1157 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1158 size_t cb = 0; 1159 char *bootlist = get_boot_devices_list(&cb); 1160 1161 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1162 1163 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1164 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1165 spapr->initrd_base)); 1166 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1167 spapr->initrd_base + spapr->initrd_size)); 1168 1169 if (spapr->kernel_size) { 1170 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1171 cpu_to_be64(spapr->kernel_size) }; 1172 1173 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1174 &kprop, sizeof(kprop))); 1175 if (spapr->kernel_le) { 1176 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1177 } 1178 } 1179 if (boot_menu) { 1180 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1181 } 1182 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1183 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1184 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1185 1186 if (cb && bootlist) { 1187 int i; 1188 1189 for (i = 0; i < cb; i++) { 1190 if (bootlist[i] == '\n') { 1191 bootlist[i] = ' '; 1192 } 1193 } 1194 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1195 } 1196 1197 if (boot_device && strlen(boot_device)) { 1198 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1199 } 1200 1201 if (!spapr->has_graphics && stdout_path) { 1202 /* 1203 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1204 * kernel. New platforms should only use the "stdout-path" property. Set 1205 * the new property and continue using older property to remain 1206 * compatible with the existing firmware. 1207 */ 1208 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1209 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1210 } 1211 1212 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1213 1214 g_free(stdout_path); 1215 g_free(bootlist); 1216 } 1217 1218 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1219 { 1220 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1221 * KVM to work under pHyp with some guest co-operation */ 1222 int hypervisor; 1223 uint8_t hypercall[16]; 1224 1225 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1226 /* indicate KVM hypercall interface */ 1227 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1228 if (kvmppc_has_cap_fixup_hcalls()) { 1229 /* 1230 * Older KVM versions with older guest kernels were broken 1231 * with the magic page, don't allow the guest to map it. 1232 */ 1233 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1234 sizeof(hypercall))) { 1235 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1236 hypercall, sizeof(hypercall))); 1237 } 1238 } 1239 } 1240 1241 static void *spapr_build_fdt(SpaprMachineState *spapr) 1242 { 1243 MachineState *machine = MACHINE(spapr); 1244 MachineClass *mc = MACHINE_GET_CLASS(machine); 1245 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1246 int ret; 1247 void *fdt; 1248 SpaprPhbState *phb; 1249 char *buf; 1250 1251 fdt = g_malloc0(FDT_MAX_SIZE); 1252 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1253 1254 /* Root node */ 1255 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1256 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1257 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1258 1259 /* Guest UUID & Name*/ 1260 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1261 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1262 if (qemu_uuid_set) { 1263 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1264 } 1265 g_free(buf); 1266 1267 if (qemu_get_vm_name()) { 1268 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1269 qemu_get_vm_name())); 1270 } 1271 1272 /* Host Model & Serial Number */ 1273 if (spapr->host_model) { 1274 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1275 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1276 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1277 g_free(buf); 1278 } 1279 1280 if (spapr->host_serial) { 1281 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1282 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1283 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1284 g_free(buf); 1285 } 1286 1287 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1288 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1289 1290 /* /interrupt controller */ 1291 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1292 PHANDLE_INTC); 1293 1294 ret = spapr_populate_memory(spapr, fdt); 1295 if (ret < 0) { 1296 error_report("couldn't setup memory nodes in fdt"); 1297 exit(1); 1298 } 1299 1300 /* /vdevice */ 1301 spapr_dt_vdevice(spapr->vio_bus, fdt); 1302 1303 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1304 ret = spapr_rng_populate_dt(fdt); 1305 if (ret < 0) { 1306 error_report("could not set up rng device in the fdt"); 1307 exit(1); 1308 } 1309 } 1310 1311 QLIST_FOREACH(phb, &spapr->phbs, list) { 1312 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1313 if (ret < 0) { 1314 error_report("couldn't setup PCI devices in fdt"); 1315 exit(1); 1316 } 1317 } 1318 1319 /* cpus */ 1320 spapr_populate_cpus_dt_node(fdt, spapr); 1321 1322 if (smc->dr_lmb_enabled) { 1323 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1324 } 1325 1326 if (mc->has_hotpluggable_cpus) { 1327 int offset = fdt_path_offset(fdt, "/cpus"); 1328 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1329 SPAPR_DR_CONNECTOR_TYPE_CPU); 1330 if (ret < 0) { 1331 error_report("Couldn't set up CPU DR device tree properties"); 1332 exit(1); 1333 } 1334 } 1335 1336 /* /event-sources */ 1337 spapr_dt_events(spapr, fdt); 1338 1339 /* /rtas */ 1340 spapr_dt_rtas(spapr, fdt); 1341 1342 /* /chosen */ 1343 spapr_dt_chosen(spapr, fdt); 1344 1345 /* /hypervisor */ 1346 if (kvm_enabled()) { 1347 spapr_dt_hypervisor(spapr, fdt); 1348 } 1349 1350 /* Build memory reserve map */ 1351 if (spapr->kernel_size) { 1352 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1353 } 1354 if (spapr->initrd_size) { 1355 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1356 } 1357 1358 /* ibm,client-architecture-support updates */ 1359 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1360 if (ret < 0) { 1361 error_report("couldn't setup CAS properties fdt"); 1362 exit(1); 1363 } 1364 1365 if (smc->dr_phb_enabled) { 1366 ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1367 if (ret < 0) { 1368 error_report("Couldn't set up PHB DR device tree properties"); 1369 exit(1); 1370 } 1371 } 1372 1373 return fdt; 1374 } 1375 1376 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1377 { 1378 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1379 } 1380 1381 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1382 PowerPCCPU *cpu) 1383 { 1384 CPUPPCState *env = &cpu->env; 1385 1386 /* The TCG path should also be holding the BQL at this point */ 1387 g_assert(qemu_mutex_iothread_locked()); 1388 1389 if (msr_pr) { 1390 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1391 env->gpr[3] = H_PRIVILEGE; 1392 } else { 1393 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1394 } 1395 } 1396 1397 struct LPCRSyncState { 1398 target_ulong value; 1399 target_ulong mask; 1400 }; 1401 1402 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1403 { 1404 struct LPCRSyncState *s = arg.host_ptr; 1405 PowerPCCPU *cpu = POWERPC_CPU(cs); 1406 CPUPPCState *env = &cpu->env; 1407 target_ulong lpcr; 1408 1409 cpu_synchronize_state(cs); 1410 lpcr = env->spr[SPR_LPCR]; 1411 lpcr &= ~s->mask; 1412 lpcr |= s->value; 1413 ppc_store_lpcr(cpu, lpcr); 1414 } 1415 1416 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1417 { 1418 CPUState *cs; 1419 struct LPCRSyncState s = { 1420 .value = value, 1421 .mask = mask 1422 }; 1423 CPU_FOREACH(cs) { 1424 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1425 } 1426 } 1427 1428 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1429 { 1430 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1431 1432 /* Copy PATE1:GR into PATE0:HR */ 1433 entry->dw0 = spapr->patb_entry & PATE0_HR; 1434 entry->dw1 = spapr->patb_entry; 1435 } 1436 1437 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1438 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1439 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1440 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1441 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1442 1443 /* 1444 * Get the fd to access the kernel htab, re-opening it if necessary 1445 */ 1446 static int get_htab_fd(SpaprMachineState *spapr) 1447 { 1448 Error *local_err = NULL; 1449 1450 if (spapr->htab_fd >= 0) { 1451 return spapr->htab_fd; 1452 } 1453 1454 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1455 if (spapr->htab_fd < 0) { 1456 error_report_err(local_err); 1457 } 1458 1459 return spapr->htab_fd; 1460 } 1461 1462 void close_htab_fd(SpaprMachineState *spapr) 1463 { 1464 if (spapr->htab_fd >= 0) { 1465 close(spapr->htab_fd); 1466 } 1467 spapr->htab_fd = -1; 1468 } 1469 1470 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1471 { 1472 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1473 1474 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1475 } 1476 1477 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1478 { 1479 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1480 1481 assert(kvm_enabled()); 1482 1483 if (!spapr->htab) { 1484 return 0; 1485 } 1486 1487 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1488 } 1489 1490 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1491 hwaddr ptex, int n) 1492 { 1493 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1494 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1495 1496 if (!spapr->htab) { 1497 /* 1498 * HTAB is controlled by KVM. Fetch into temporary buffer 1499 */ 1500 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1501 kvmppc_read_hptes(hptes, ptex, n); 1502 return hptes; 1503 } 1504 1505 /* 1506 * HTAB is controlled by QEMU. Just point to the internally 1507 * accessible PTEG. 1508 */ 1509 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1510 } 1511 1512 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1513 const ppc_hash_pte64_t *hptes, 1514 hwaddr ptex, int n) 1515 { 1516 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1517 1518 if (!spapr->htab) { 1519 g_free((void *)hptes); 1520 } 1521 1522 /* Nothing to do for qemu managed HPT */ 1523 } 1524 1525 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1526 uint64_t pte0, uint64_t pte1) 1527 { 1528 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1529 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1530 1531 if (!spapr->htab) { 1532 kvmppc_write_hpte(ptex, pte0, pte1); 1533 } else { 1534 if (pte0 & HPTE64_V_VALID) { 1535 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1536 /* 1537 * When setting valid, we write PTE1 first. This ensures 1538 * proper synchronization with the reading code in 1539 * ppc_hash64_pteg_search() 1540 */ 1541 smp_wmb(); 1542 stq_p(spapr->htab + offset, pte0); 1543 } else { 1544 stq_p(spapr->htab + offset, pte0); 1545 /* 1546 * When clearing it we set PTE0 first. This ensures proper 1547 * synchronization with the reading code in 1548 * ppc_hash64_pteg_search() 1549 */ 1550 smp_wmb(); 1551 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1552 } 1553 } 1554 } 1555 1556 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1557 uint64_t pte1) 1558 { 1559 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1560 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1561 1562 if (!spapr->htab) { 1563 /* There should always be a hash table when this is called */ 1564 error_report("spapr_hpte_set_c called with no hash table !"); 1565 return; 1566 } 1567 1568 /* The HW performs a non-atomic byte update */ 1569 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1570 } 1571 1572 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1573 uint64_t pte1) 1574 { 1575 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1576 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1577 1578 if (!spapr->htab) { 1579 /* There should always be a hash table when this is called */ 1580 error_report("spapr_hpte_set_r called with no hash table !"); 1581 return; 1582 } 1583 1584 /* The HW performs a non-atomic byte update */ 1585 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1586 } 1587 1588 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1589 { 1590 int shift; 1591 1592 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1593 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1594 * that's much more than is needed for Linux guests */ 1595 shift = ctz64(pow2ceil(ramsize)) - 7; 1596 shift = MAX(shift, 18); /* Minimum architected size */ 1597 shift = MIN(shift, 46); /* Maximum architected size */ 1598 return shift; 1599 } 1600 1601 void spapr_free_hpt(SpaprMachineState *spapr) 1602 { 1603 g_free(spapr->htab); 1604 spapr->htab = NULL; 1605 spapr->htab_shift = 0; 1606 close_htab_fd(spapr); 1607 } 1608 1609 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1610 Error **errp) 1611 { 1612 long rc; 1613 1614 /* Clean up any HPT info from a previous boot */ 1615 spapr_free_hpt(spapr); 1616 1617 rc = kvmppc_reset_htab(shift); 1618 if (rc < 0) { 1619 /* kernel-side HPT needed, but couldn't allocate one */ 1620 error_setg_errno(errp, errno, 1621 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1622 shift); 1623 /* This is almost certainly fatal, but if the caller really 1624 * wants to carry on with shift == 0, it's welcome to try */ 1625 } else if (rc > 0) { 1626 /* kernel-side HPT allocated */ 1627 if (rc != shift) { 1628 error_setg(errp, 1629 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1630 shift, rc); 1631 } 1632 1633 spapr->htab_shift = shift; 1634 spapr->htab = NULL; 1635 } else { 1636 /* kernel-side HPT not needed, allocate in userspace instead */ 1637 size_t size = 1ULL << shift; 1638 int i; 1639 1640 spapr->htab = qemu_memalign(size, size); 1641 if (!spapr->htab) { 1642 error_setg_errno(errp, errno, 1643 "Could not allocate HPT of order %d", shift); 1644 return; 1645 } 1646 1647 memset(spapr->htab, 0, size); 1648 spapr->htab_shift = shift; 1649 1650 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1651 DIRTY_HPTE(HPTE(spapr->htab, i)); 1652 } 1653 } 1654 /* We're setting up a hash table, so that means we're not radix */ 1655 spapr->patb_entry = 0; 1656 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1657 } 1658 1659 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1660 { 1661 int hpt_shift; 1662 1663 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1664 || (spapr->cas_reboot 1665 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1666 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1667 } else { 1668 uint64_t current_ram_size; 1669 1670 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1671 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1672 } 1673 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1674 1675 if (spapr->vrma_adjust) { 1676 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1677 spapr->htab_shift); 1678 } 1679 } 1680 1681 static int spapr_reset_drcs(Object *child, void *opaque) 1682 { 1683 SpaprDrc *drc = 1684 (SpaprDrc *) object_dynamic_cast(child, 1685 TYPE_SPAPR_DR_CONNECTOR); 1686 1687 if (drc) { 1688 spapr_drc_reset(drc); 1689 } 1690 1691 return 0; 1692 } 1693 1694 static void spapr_machine_reset(void) 1695 { 1696 MachineState *machine = MACHINE(qdev_get_machine()); 1697 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1698 PowerPCCPU *first_ppc_cpu; 1699 uint32_t rtas_limit; 1700 hwaddr rtas_addr, fdt_addr; 1701 void *fdt; 1702 int rc; 1703 1704 spapr_caps_apply(spapr); 1705 1706 first_ppc_cpu = POWERPC_CPU(first_cpu); 1707 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1708 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1709 spapr->max_compat_pvr)) { 1710 /* 1711 * If using KVM with radix mode available, VCPUs can be started 1712 * without a HPT because KVM will start them in radix mode. 1713 * Set the GR bit in PATE so that we know there is no HPT. 1714 */ 1715 spapr->patb_entry = PATE1_GR; 1716 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1717 } else { 1718 spapr_setup_hpt_and_vrma(spapr); 1719 } 1720 1721 /* 1722 * If this reset wasn't generated by CAS, we should reset our 1723 * negotiated options and start from scratch 1724 */ 1725 if (!spapr->cas_reboot) { 1726 spapr_ovec_cleanup(spapr->ov5_cas); 1727 spapr->ov5_cas = spapr_ovec_new(); 1728 1729 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1730 } 1731 1732 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1733 spapr_irq_msi_reset(spapr); 1734 } 1735 1736 /* 1737 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1738 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1739 * called from vPHB reset handler so we initialize the counter here. 1740 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1741 * must be equally distant from any other node. 1742 * The final value of spapr->gpu_numa_id is going to be written to 1743 * max-associativity-domains in spapr_build_fdt(). 1744 */ 1745 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1746 qemu_devices_reset(); 1747 1748 /* 1749 * This is fixing some of the default configuration of the XIVE 1750 * devices. To be called after the reset of the machine devices. 1751 */ 1752 spapr_irq_reset(spapr, &error_fatal); 1753 1754 /* 1755 * There is no CAS under qtest. Simulate one to please the code that 1756 * depends on spapr->ov5_cas. This is especially needed to test device 1757 * unplug, so we do that before resetting the DRCs. 1758 */ 1759 if (qtest_enabled()) { 1760 spapr_ovec_cleanup(spapr->ov5_cas); 1761 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1762 } 1763 1764 /* DRC reset may cause a device to be unplugged. This will cause troubles 1765 * if this device is used by another device (eg, a running vhost backend 1766 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1767 * situations, we reset DRCs after all devices have been reset. 1768 */ 1769 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1770 1771 spapr_clear_pending_events(spapr); 1772 1773 /* 1774 * We place the device tree and RTAS just below either the top of the RMA, 1775 * or just below 2GB, whichever is lower, so that it can be 1776 * processed with 32-bit real mode code if necessary 1777 */ 1778 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1779 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1780 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1781 1782 fdt = spapr_build_fdt(spapr); 1783 1784 spapr_load_rtas(spapr, fdt, rtas_addr); 1785 1786 rc = fdt_pack(fdt); 1787 1788 /* Should only fail if we've built a corrupted tree */ 1789 assert(rc == 0); 1790 1791 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1792 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1793 fdt_totalsize(fdt), FDT_MAX_SIZE); 1794 exit(1); 1795 } 1796 1797 /* Load the fdt */ 1798 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1799 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1800 g_free(spapr->fdt_blob); 1801 spapr->fdt_size = fdt_totalsize(fdt); 1802 spapr->fdt_initial_size = spapr->fdt_size; 1803 spapr->fdt_blob = fdt; 1804 1805 /* Set up the entry state */ 1806 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1807 first_ppc_cpu->env.gpr[5] = 0; 1808 1809 spapr->cas_reboot = false; 1810 } 1811 1812 static void spapr_create_nvram(SpaprMachineState *spapr) 1813 { 1814 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1815 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1816 1817 if (dinfo) { 1818 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1819 &error_fatal); 1820 } 1821 1822 qdev_init_nofail(dev); 1823 1824 spapr->nvram = (struct SpaprNvram *)dev; 1825 } 1826 1827 static void spapr_rtc_create(SpaprMachineState *spapr) 1828 { 1829 object_initialize_child(OBJECT(spapr), "rtc", 1830 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1831 &error_fatal, NULL); 1832 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1833 &error_fatal); 1834 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1835 "date", &error_fatal); 1836 } 1837 1838 /* Returns whether we want to use VGA or not */ 1839 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1840 { 1841 switch (vga_interface_type) { 1842 case VGA_NONE: 1843 return false; 1844 case VGA_DEVICE: 1845 return true; 1846 case VGA_STD: 1847 case VGA_VIRTIO: 1848 case VGA_CIRRUS: 1849 return pci_vga_init(pci_bus) != NULL; 1850 default: 1851 error_setg(errp, 1852 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1853 return false; 1854 } 1855 } 1856 1857 static int spapr_pre_load(void *opaque) 1858 { 1859 int rc; 1860 1861 rc = spapr_caps_pre_load(opaque); 1862 if (rc) { 1863 return rc; 1864 } 1865 1866 return 0; 1867 } 1868 1869 static int spapr_post_load(void *opaque, int version_id) 1870 { 1871 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1872 int err = 0; 1873 1874 err = spapr_caps_post_migration(spapr); 1875 if (err) { 1876 return err; 1877 } 1878 1879 /* 1880 * In earlier versions, there was no separate qdev for the PAPR 1881 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1882 * So when migrating from those versions, poke the incoming offset 1883 * value into the RTC device 1884 */ 1885 if (version_id < 3) { 1886 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1887 if (err) { 1888 return err; 1889 } 1890 } 1891 1892 if (kvm_enabled() && spapr->patb_entry) { 1893 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1894 bool radix = !!(spapr->patb_entry & PATE1_GR); 1895 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1896 1897 /* 1898 * Update LPCR:HR and UPRT as they may not be set properly in 1899 * the stream 1900 */ 1901 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1902 LPCR_HR | LPCR_UPRT); 1903 1904 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1905 if (err) { 1906 error_report("Process table config unsupported by the host"); 1907 return -EINVAL; 1908 } 1909 } 1910 1911 err = spapr_irq_post_load(spapr, version_id); 1912 if (err) { 1913 return err; 1914 } 1915 1916 return err; 1917 } 1918 1919 static int spapr_pre_save(void *opaque) 1920 { 1921 int rc; 1922 1923 rc = spapr_caps_pre_save(opaque); 1924 if (rc) { 1925 return rc; 1926 } 1927 1928 return 0; 1929 } 1930 1931 static bool version_before_3(void *opaque, int version_id) 1932 { 1933 return version_id < 3; 1934 } 1935 1936 static bool spapr_pending_events_needed(void *opaque) 1937 { 1938 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1939 return !QTAILQ_EMPTY(&spapr->pending_events); 1940 } 1941 1942 static const VMStateDescription vmstate_spapr_event_entry = { 1943 .name = "spapr_event_log_entry", 1944 .version_id = 1, 1945 .minimum_version_id = 1, 1946 .fields = (VMStateField[]) { 1947 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1948 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1949 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1950 NULL, extended_length), 1951 VMSTATE_END_OF_LIST() 1952 }, 1953 }; 1954 1955 static const VMStateDescription vmstate_spapr_pending_events = { 1956 .name = "spapr_pending_events", 1957 .version_id = 1, 1958 .minimum_version_id = 1, 1959 .needed = spapr_pending_events_needed, 1960 .fields = (VMStateField[]) { 1961 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1962 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1963 VMSTATE_END_OF_LIST() 1964 }, 1965 }; 1966 1967 static bool spapr_ov5_cas_needed(void *opaque) 1968 { 1969 SpaprMachineState *spapr = opaque; 1970 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1971 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1972 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1973 bool cas_needed; 1974 1975 /* Prior to the introduction of SpaprOptionVector, we had two option 1976 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1977 * Both of these options encode machine topology into the device-tree 1978 * in such a way that the now-booted OS should still be able to interact 1979 * appropriately with QEMU regardless of what options were actually 1980 * negotiatied on the source side. 1981 * 1982 * As such, we can avoid migrating the CAS-negotiated options if these 1983 * are the only options available on the current machine/platform. 1984 * Since these are the only options available for pseries-2.7 and 1985 * earlier, this allows us to maintain old->new/new->old migration 1986 * compatibility. 1987 * 1988 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1989 * via default pseries-2.8 machines and explicit command-line parameters. 1990 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1991 * of the actual CAS-negotiated values to continue working properly. For 1992 * example, availability of memory unplug depends on knowing whether 1993 * OV5_HP_EVT was negotiated via CAS. 1994 * 1995 * Thus, for any cases where the set of available CAS-negotiatable 1996 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1997 * include the CAS-negotiated options in the migration stream, unless 1998 * if they affect boot time behaviour only. 1999 */ 2000 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2001 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2002 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2003 2004 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2005 * the mask itself since in the future it's possible "legacy" bits may be 2006 * removed via machine options, which could generate a false positive 2007 * that breaks migration. 2008 */ 2009 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2010 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2011 2012 spapr_ovec_cleanup(ov5_mask); 2013 spapr_ovec_cleanup(ov5_legacy); 2014 spapr_ovec_cleanup(ov5_removed); 2015 2016 return cas_needed; 2017 } 2018 2019 static const VMStateDescription vmstate_spapr_ov5_cas = { 2020 .name = "spapr_option_vector_ov5_cas", 2021 .version_id = 1, 2022 .minimum_version_id = 1, 2023 .needed = spapr_ov5_cas_needed, 2024 .fields = (VMStateField[]) { 2025 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2026 vmstate_spapr_ovec, SpaprOptionVector), 2027 VMSTATE_END_OF_LIST() 2028 }, 2029 }; 2030 2031 static bool spapr_patb_entry_needed(void *opaque) 2032 { 2033 SpaprMachineState *spapr = opaque; 2034 2035 return !!spapr->patb_entry; 2036 } 2037 2038 static const VMStateDescription vmstate_spapr_patb_entry = { 2039 .name = "spapr_patb_entry", 2040 .version_id = 1, 2041 .minimum_version_id = 1, 2042 .needed = spapr_patb_entry_needed, 2043 .fields = (VMStateField[]) { 2044 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2045 VMSTATE_END_OF_LIST() 2046 }, 2047 }; 2048 2049 static bool spapr_irq_map_needed(void *opaque) 2050 { 2051 SpaprMachineState *spapr = opaque; 2052 2053 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2054 } 2055 2056 static const VMStateDescription vmstate_spapr_irq_map = { 2057 .name = "spapr_irq_map", 2058 .version_id = 1, 2059 .minimum_version_id = 1, 2060 .needed = spapr_irq_map_needed, 2061 .fields = (VMStateField[]) { 2062 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2063 VMSTATE_END_OF_LIST() 2064 }, 2065 }; 2066 2067 static bool spapr_dtb_needed(void *opaque) 2068 { 2069 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2070 2071 return smc->update_dt_enabled; 2072 } 2073 2074 static int spapr_dtb_pre_load(void *opaque) 2075 { 2076 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2077 2078 g_free(spapr->fdt_blob); 2079 spapr->fdt_blob = NULL; 2080 spapr->fdt_size = 0; 2081 2082 return 0; 2083 } 2084 2085 static const VMStateDescription vmstate_spapr_dtb = { 2086 .name = "spapr_dtb", 2087 .version_id = 1, 2088 .minimum_version_id = 1, 2089 .needed = spapr_dtb_needed, 2090 .pre_load = spapr_dtb_pre_load, 2091 .fields = (VMStateField[]) { 2092 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2093 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2094 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2095 fdt_size), 2096 VMSTATE_END_OF_LIST() 2097 }, 2098 }; 2099 2100 static const VMStateDescription vmstate_spapr = { 2101 .name = "spapr", 2102 .version_id = 3, 2103 .minimum_version_id = 1, 2104 .pre_load = spapr_pre_load, 2105 .post_load = spapr_post_load, 2106 .pre_save = spapr_pre_save, 2107 .fields = (VMStateField[]) { 2108 /* used to be @next_irq */ 2109 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2110 2111 /* RTC offset */ 2112 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2113 2114 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2115 VMSTATE_END_OF_LIST() 2116 }, 2117 .subsections = (const VMStateDescription*[]) { 2118 &vmstate_spapr_ov5_cas, 2119 &vmstate_spapr_patb_entry, 2120 &vmstate_spapr_pending_events, 2121 &vmstate_spapr_cap_htm, 2122 &vmstate_spapr_cap_vsx, 2123 &vmstate_spapr_cap_dfp, 2124 &vmstate_spapr_cap_cfpc, 2125 &vmstate_spapr_cap_sbbc, 2126 &vmstate_spapr_cap_ibs, 2127 &vmstate_spapr_cap_hpt_maxpagesize, 2128 &vmstate_spapr_irq_map, 2129 &vmstate_spapr_cap_nested_kvm_hv, 2130 &vmstate_spapr_dtb, 2131 &vmstate_spapr_cap_large_decr, 2132 &vmstate_spapr_cap_ccf_assist, 2133 NULL 2134 } 2135 }; 2136 2137 static int htab_save_setup(QEMUFile *f, void *opaque) 2138 { 2139 SpaprMachineState *spapr = opaque; 2140 2141 /* "Iteration" header */ 2142 if (!spapr->htab_shift) { 2143 qemu_put_be32(f, -1); 2144 } else { 2145 qemu_put_be32(f, spapr->htab_shift); 2146 } 2147 2148 if (spapr->htab) { 2149 spapr->htab_save_index = 0; 2150 spapr->htab_first_pass = true; 2151 } else { 2152 if (spapr->htab_shift) { 2153 assert(kvm_enabled()); 2154 } 2155 } 2156 2157 2158 return 0; 2159 } 2160 2161 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2162 int chunkstart, int n_valid, int n_invalid) 2163 { 2164 qemu_put_be32(f, chunkstart); 2165 qemu_put_be16(f, n_valid); 2166 qemu_put_be16(f, n_invalid); 2167 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2168 HASH_PTE_SIZE_64 * n_valid); 2169 } 2170 2171 static void htab_save_end_marker(QEMUFile *f) 2172 { 2173 qemu_put_be32(f, 0); 2174 qemu_put_be16(f, 0); 2175 qemu_put_be16(f, 0); 2176 } 2177 2178 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2179 int64_t max_ns) 2180 { 2181 bool has_timeout = max_ns != -1; 2182 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2183 int index = spapr->htab_save_index; 2184 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2185 2186 assert(spapr->htab_first_pass); 2187 2188 do { 2189 int chunkstart; 2190 2191 /* Consume invalid HPTEs */ 2192 while ((index < htabslots) 2193 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2194 CLEAN_HPTE(HPTE(spapr->htab, index)); 2195 index++; 2196 } 2197 2198 /* Consume valid HPTEs */ 2199 chunkstart = index; 2200 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2201 && HPTE_VALID(HPTE(spapr->htab, index))) { 2202 CLEAN_HPTE(HPTE(spapr->htab, index)); 2203 index++; 2204 } 2205 2206 if (index > chunkstart) { 2207 int n_valid = index - chunkstart; 2208 2209 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2210 2211 if (has_timeout && 2212 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2213 break; 2214 } 2215 } 2216 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2217 2218 if (index >= htabslots) { 2219 assert(index == htabslots); 2220 index = 0; 2221 spapr->htab_first_pass = false; 2222 } 2223 spapr->htab_save_index = index; 2224 } 2225 2226 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2227 int64_t max_ns) 2228 { 2229 bool final = max_ns < 0; 2230 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2231 int examined = 0, sent = 0; 2232 int index = spapr->htab_save_index; 2233 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2234 2235 assert(!spapr->htab_first_pass); 2236 2237 do { 2238 int chunkstart, invalidstart; 2239 2240 /* Consume non-dirty HPTEs */ 2241 while ((index < htabslots) 2242 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2243 index++; 2244 examined++; 2245 } 2246 2247 chunkstart = index; 2248 /* Consume valid dirty HPTEs */ 2249 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2250 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2251 && HPTE_VALID(HPTE(spapr->htab, index))) { 2252 CLEAN_HPTE(HPTE(spapr->htab, index)); 2253 index++; 2254 examined++; 2255 } 2256 2257 invalidstart = index; 2258 /* Consume invalid dirty HPTEs */ 2259 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2260 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2261 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2262 CLEAN_HPTE(HPTE(spapr->htab, index)); 2263 index++; 2264 examined++; 2265 } 2266 2267 if (index > chunkstart) { 2268 int n_valid = invalidstart - chunkstart; 2269 int n_invalid = index - invalidstart; 2270 2271 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2272 sent += index - chunkstart; 2273 2274 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2275 break; 2276 } 2277 } 2278 2279 if (examined >= htabslots) { 2280 break; 2281 } 2282 2283 if (index >= htabslots) { 2284 assert(index == htabslots); 2285 index = 0; 2286 } 2287 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2288 2289 if (index >= htabslots) { 2290 assert(index == htabslots); 2291 index = 0; 2292 } 2293 2294 spapr->htab_save_index = index; 2295 2296 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2297 } 2298 2299 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2300 #define MAX_KVM_BUF_SIZE 2048 2301 2302 static int htab_save_iterate(QEMUFile *f, void *opaque) 2303 { 2304 SpaprMachineState *spapr = opaque; 2305 int fd; 2306 int rc = 0; 2307 2308 /* Iteration header */ 2309 if (!spapr->htab_shift) { 2310 qemu_put_be32(f, -1); 2311 return 1; 2312 } else { 2313 qemu_put_be32(f, 0); 2314 } 2315 2316 if (!spapr->htab) { 2317 assert(kvm_enabled()); 2318 2319 fd = get_htab_fd(spapr); 2320 if (fd < 0) { 2321 return fd; 2322 } 2323 2324 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2325 if (rc < 0) { 2326 return rc; 2327 } 2328 } else if (spapr->htab_first_pass) { 2329 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2330 } else { 2331 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2332 } 2333 2334 htab_save_end_marker(f); 2335 2336 return rc; 2337 } 2338 2339 static int htab_save_complete(QEMUFile *f, void *opaque) 2340 { 2341 SpaprMachineState *spapr = opaque; 2342 int fd; 2343 2344 /* Iteration header */ 2345 if (!spapr->htab_shift) { 2346 qemu_put_be32(f, -1); 2347 return 0; 2348 } else { 2349 qemu_put_be32(f, 0); 2350 } 2351 2352 if (!spapr->htab) { 2353 int rc; 2354 2355 assert(kvm_enabled()); 2356 2357 fd = get_htab_fd(spapr); 2358 if (fd < 0) { 2359 return fd; 2360 } 2361 2362 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2363 if (rc < 0) { 2364 return rc; 2365 } 2366 } else { 2367 if (spapr->htab_first_pass) { 2368 htab_save_first_pass(f, spapr, -1); 2369 } 2370 htab_save_later_pass(f, spapr, -1); 2371 } 2372 2373 /* End marker */ 2374 htab_save_end_marker(f); 2375 2376 return 0; 2377 } 2378 2379 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2380 { 2381 SpaprMachineState *spapr = opaque; 2382 uint32_t section_hdr; 2383 int fd = -1; 2384 Error *local_err = NULL; 2385 2386 if (version_id < 1 || version_id > 1) { 2387 error_report("htab_load() bad version"); 2388 return -EINVAL; 2389 } 2390 2391 section_hdr = qemu_get_be32(f); 2392 2393 if (section_hdr == -1) { 2394 spapr_free_hpt(spapr); 2395 return 0; 2396 } 2397 2398 if (section_hdr) { 2399 /* First section gives the htab size */ 2400 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2401 if (local_err) { 2402 error_report_err(local_err); 2403 return -EINVAL; 2404 } 2405 return 0; 2406 } 2407 2408 if (!spapr->htab) { 2409 assert(kvm_enabled()); 2410 2411 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2412 if (fd < 0) { 2413 error_report_err(local_err); 2414 return fd; 2415 } 2416 } 2417 2418 while (true) { 2419 uint32_t index; 2420 uint16_t n_valid, n_invalid; 2421 2422 index = qemu_get_be32(f); 2423 n_valid = qemu_get_be16(f); 2424 n_invalid = qemu_get_be16(f); 2425 2426 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2427 /* End of Stream */ 2428 break; 2429 } 2430 2431 if ((index + n_valid + n_invalid) > 2432 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2433 /* Bad index in stream */ 2434 error_report( 2435 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2436 index, n_valid, n_invalid, spapr->htab_shift); 2437 return -EINVAL; 2438 } 2439 2440 if (spapr->htab) { 2441 if (n_valid) { 2442 qemu_get_buffer(f, HPTE(spapr->htab, index), 2443 HASH_PTE_SIZE_64 * n_valid); 2444 } 2445 if (n_invalid) { 2446 memset(HPTE(spapr->htab, index + n_valid), 0, 2447 HASH_PTE_SIZE_64 * n_invalid); 2448 } 2449 } else { 2450 int rc; 2451 2452 assert(fd >= 0); 2453 2454 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2455 if (rc < 0) { 2456 return rc; 2457 } 2458 } 2459 } 2460 2461 if (!spapr->htab) { 2462 assert(fd >= 0); 2463 close(fd); 2464 } 2465 2466 return 0; 2467 } 2468 2469 static void htab_save_cleanup(void *opaque) 2470 { 2471 SpaprMachineState *spapr = opaque; 2472 2473 close_htab_fd(spapr); 2474 } 2475 2476 static SaveVMHandlers savevm_htab_handlers = { 2477 .save_setup = htab_save_setup, 2478 .save_live_iterate = htab_save_iterate, 2479 .save_live_complete_precopy = htab_save_complete, 2480 .save_cleanup = htab_save_cleanup, 2481 .load_state = htab_load, 2482 }; 2483 2484 static void spapr_boot_set(void *opaque, const char *boot_device, 2485 Error **errp) 2486 { 2487 MachineState *machine = MACHINE(opaque); 2488 machine->boot_order = g_strdup(boot_device); 2489 } 2490 2491 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2492 { 2493 MachineState *machine = MACHINE(spapr); 2494 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2495 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2496 int i; 2497 2498 for (i = 0; i < nr_lmbs; i++) { 2499 uint64_t addr; 2500 2501 addr = i * lmb_size + machine->device_memory->base; 2502 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2503 addr / lmb_size); 2504 } 2505 } 2506 2507 /* 2508 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2509 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2510 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2511 */ 2512 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2513 { 2514 int i; 2515 2516 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2517 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2518 " is not aligned to %" PRIu64 " MiB", 2519 machine->ram_size, 2520 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2521 return; 2522 } 2523 2524 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2525 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2526 " is not aligned to %" PRIu64 " MiB", 2527 machine->ram_size, 2528 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2529 return; 2530 } 2531 2532 for (i = 0; i < nb_numa_nodes; i++) { 2533 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2534 error_setg(errp, 2535 "Node %d memory size 0x%" PRIx64 2536 " is not aligned to %" PRIu64 " MiB", 2537 i, numa_info[i].node_mem, 2538 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2539 return; 2540 } 2541 } 2542 } 2543 2544 /* find cpu slot in machine->possible_cpus by core_id */ 2545 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2546 { 2547 int index = id / smp_threads; 2548 2549 if (index >= ms->possible_cpus->len) { 2550 return NULL; 2551 } 2552 if (idx) { 2553 *idx = index; 2554 } 2555 return &ms->possible_cpus->cpus[index]; 2556 } 2557 2558 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2559 { 2560 Error *local_err = NULL; 2561 bool vsmt_user = !!spapr->vsmt; 2562 int kvm_smt = kvmppc_smt_threads(); 2563 int ret; 2564 2565 if (!kvm_enabled() && (smp_threads > 1)) { 2566 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2567 "on a pseries machine"); 2568 goto out; 2569 } 2570 if (!is_power_of_2(smp_threads)) { 2571 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2572 "machine because it must be a power of 2", smp_threads); 2573 goto out; 2574 } 2575 2576 /* Detemine the VSMT mode to use: */ 2577 if (vsmt_user) { 2578 if (spapr->vsmt < smp_threads) { 2579 error_setg(&local_err, "Cannot support VSMT mode %d" 2580 " because it must be >= threads/core (%d)", 2581 spapr->vsmt, smp_threads); 2582 goto out; 2583 } 2584 /* In this case, spapr->vsmt has been set by the command line */ 2585 } else { 2586 /* 2587 * Default VSMT value is tricky, because we need it to be as 2588 * consistent as possible (for migration), but this requires 2589 * changing it for at least some existing cases. We pick 8 as 2590 * the value that we'd get with KVM on POWER8, the 2591 * overwhelmingly common case in production systems. 2592 */ 2593 spapr->vsmt = MAX(8, smp_threads); 2594 } 2595 2596 /* KVM: If necessary, set the SMT mode: */ 2597 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2598 ret = kvmppc_set_smt_threads(spapr->vsmt); 2599 if (ret) { 2600 /* Looks like KVM isn't able to change VSMT mode */ 2601 error_setg(&local_err, 2602 "Failed to set KVM's VSMT mode to %d (errno %d)", 2603 spapr->vsmt, ret); 2604 /* We can live with that if the default one is big enough 2605 * for the number of threads, and a submultiple of the one 2606 * we want. In this case we'll waste some vcpu ids, but 2607 * behaviour will be correct */ 2608 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2609 warn_report_err(local_err); 2610 local_err = NULL; 2611 goto out; 2612 } else { 2613 if (!vsmt_user) { 2614 error_append_hint(&local_err, 2615 "On PPC, a VM with %d threads/core" 2616 " on a host with %d threads/core" 2617 " requires the use of VSMT mode %d.\n", 2618 smp_threads, kvm_smt, spapr->vsmt); 2619 } 2620 kvmppc_hint_smt_possible(&local_err); 2621 goto out; 2622 } 2623 } 2624 } 2625 /* else TCG: nothing to do currently */ 2626 out: 2627 error_propagate(errp, local_err); 2628 } 2629 2630 static void spapr_init_cpus(SpaprMachineState *spapr) 2631 { 2632 MachineState *machine = MACHINE(spapr); 2633 MachineClass *mc = MACHINE_GET_CLASS(machine); 2634 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2635 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2636 const CPUArchIdList *possible_cpus; 2637 int boot_cores_nr = smp_cpus / smp_threads; 2638 int i; 2639 2640 possible_cpus = mc->possible_cpu_arch_ids(machine); 2641 if (mc->has_hotpluggable_cpus) { 2642 if (smp_cpus % smp_threads) { 2643 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2644 smp_cpus, smp_threads); 2645 exit(1); 2646 } 2647 if (max_cpus % smp_threads) { 2648 error_report("max_cpus (%u) must be multiple of threads (%u)", 2649 max_cpus, smp_threads); 2650 exit(1); 2651 } 2652 } else { 2653 if (max_cpus != smp_cpus) { 2654 error_report("This machine version does not support CPU hotplug"); 2655 exit(1); 2656 } 2657 boot_cores_nr = possible_cpus->len; 2658 } 2659 2660 if (smc->pre_2_10_has_unused_icps) { 2661 int i; 2662 2663 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2664 /* Dummy entries get deregistered when real ICPState objects 2665 * are registered during CPU core hotplug. 2666 */ 2667 pre_2_10_vmstate_register_dummy_icp(i); 2668 } 2669 } 2670 2671 for (i = 0; i < possible_cpus->len; i++) { 2672 int core_id = i * smp_threads; 2673 2674 if (mc->has_hotpluggable_cpus) { 2675 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2676 spapr_vcpu_id(spapr, core_id)); 2677 } 2678 2679 if (i < boot_cores_nr) { 2680 Object *core = object_new(type); 2681 int nr_threads = smp_threads; 2682 2683 /* Handle the partially filled core for older machine types */ 2684 if ((i + 1) * smp_threads >= smp_cpus) { 2685 nr_threads = smp_cpus - i * smp_threads; 2686 } 2687 2688 object_property_set_int(core, nr_threads, "nr-threads", 2689 &error_fatal); 2690 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2691 &error_fatal); 2692 object_property_set_bool(core, true, "realized", &error_fatal); 2693 2694 object_unref(core); 2695 } 2696 } 2697 } 2698 2699 static PCIHostState *spapr_create_default_phb(void) 2700 { 2701 DeviceState *dev; 2702 2703 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2704 qdev_prop_set_uint32(dev, "index", 0); 2705 qdev_init_nofail(dev); 2706 2707 return PCI_HOST_BRIDGE(dev); 2708 } 2709 2710 /* pSeries LPAR / sPAPR hardware init */ 2711 static void spapr_machine_init(MachineState *machine) 2712 { 2713 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2714 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2715 const char *kernel_filename = machine->kernel_filename; 2716 const char *initrd_filename = machine->initrd_filename; 2717 PCIHostState *phb; 2718 int i; 2719 MemoryRegion *sysmem = get_system_memory(); 2720 MemoryRegion *ram = g_new(MemoryRegion, 1); 2721 hwaddr node0_size = spapr_node0_size(machine); 2722 long load_limit, fw_size; 2723 char *filename; 2724 Error *resize_hpt_err = NULL; 2725 2726 msi_nonbroken = true; 2727 2728 QLIST_INIT(&spapr->phbs); 2729 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2730 2731 /* Determine capabilities to run with */ 2732 spapr_caps_init(spapr); 2733 2734 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2735 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2736 /* 2737 * If the user explicitly requested a mode we should either 2738 * supply it, or fail completely (which we do below). But if 2739 * it's not set explicitly, we reset our mode to something 2740 * that works 2741 */ 2742 if (resize_hpt_err) { 2743 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2744 error_free(resize_hpt_err); 2745 resize_hpt_err = NULL; 2746 } else { 2747 spapr->resize_hpt = smc->resize_hpt_default; 2748 } 2749 } 2750 2751 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2752 2753 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2754 /* 2755 * User requested HPT resize, but this host can't supply it. Bail out 2756 */ 2757 error_report_err(resize_hpt_err); 2758 exit(1); 2759 } 2760 2761 spapr->rma_size = node0_size; 2762 2763 /* With KVM, we don't actually know whether KVM supports an 2764 * unbounded RMA (PR KVM) or is limited by the hash table size 2765 * (HV KVM using VRMA), so we always assume the latter 2766 * 2767 * In that case, we also limit the initial allocations for RTAS 2768 * etc... to 256M since we have no way to know what the VRMA size 2769 * is going to be as it depends on the size of the hash table 2770 * which isn't determined yet. 2771 */ 2772 if (kvm_enabled()) { 2773 spapr->vrma_adjust = 1; 2774 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2775 } 2776 2777 /* Actually we don't support unbounded RMA anymore since we added 2778 * proper emulation of HV mode. The max we can get is 16G which 2779 * also happens to be what we configure for PAPR mode so make sure 2780 * we don't do anything bigger than that 2781 */ 2782 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2783 2784 if (spapr->rma_size > node0_size) { 2785 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2786 spapr->rma_size); 2787 exit(1); 2788 } 2789 2790 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2791 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2792 2793 /* 2794 * VSMT must be set in order to be able to compute VCPU ids, ie to 2795 * call spapr_max_server_number() or spapr_vcpu_id(). 2796 */ 2797 spapr_set_vsmt_mode(spapr, &error_fatal); 2798 2799 /* Set up Interrupt Controller before we create the VCPUs */ 2800 spapr_irq_init(spapr, &error_fatal); 2801 2802 /* Set up containers for ibm,client-architecture-support negotiated options 2803 */ 2804 spapr->ov5 = spapr_ovec_new(); 2805 spapr->ov5_cas = spapr_ovec_new(); 2806 2807 if (smc->dr_lmb_enabled) { 2808 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2809 spapr_validate_node_memory(machine, &error_fatal); 2810 } 2811 2812 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2813 2814 /* advertise support for dedicated HP event source to guests */ 2815 if (spapr->use_hotplug_event_source) { 2816 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2817 } 2818 2819 /* advertise support for HPT resizing */ 2820 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2821 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2822 } 2823 2824 /* advertise support for ibm,dyamic-memory-v2 */ 2825 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2826 2827 /* advertise XIVE on POWER9 machines */ 2828 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2829 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2830 } 2831 2832 /* init CPUs */ 2833 spapr_init_cpus(spapr); 2834 2835 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2836 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2837 spapr->max_compat_pvr)) { 2838 /* KVM and TCG always allow GTSE with radix... */ 2839 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2840 } 2841 /* ... but not with hash (currently). */ 2842 2843 if (kvm_enabled()) { 2844 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2845 kvmppc_enable_logical_ci_hcalls(); 2846 kvmppc_enable_set_mode_hcall(); 2847 2848 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2849 kvmppc_enable_clear_ref_mod_hcalls(); 2850 2851 /* Enable H_PAGE_INIT */ 2852 kvmppc_enable_h_page_init(); 2853 } 2854 2855 /* allocate RAM */ 2856 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2857 machine->ram_size); 2858 memory_region_add_subregion(sysmem, 0, ram); 2859 2860 /* always allocate the device memory information */ 2861 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2862 2863 /* initialize hotplug memory address space */ 2864 if (machine->ram_size < machine->maxram_size) { 2865 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2866 /* 2867 * Limit the number of hotpluggable memory slots to half the number 2868 * slots that KVM supports, leaving the other half for PCI and other 2869 * devices. However ensure that number of slots doesn't drop below 32. 2870 */ 2871 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2872 SPAPR_MAX_RAM_SLOTS; 2873 2874 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2875 max_memslots = SPAPR_MAX_RAM_SLOTS; 2876 } 2877 if (machine->ram_slots > max_memslots) { 2878 error_report("Specified number of memory slots %" 2879 PRIu64" exceeds max supported %d", 2880 machine->ram_slots, max_memslots); 2881 exit(1); 2882 } 2883 2884 machine->device_memory->base = ROUND_UP(machine->ram_size, 2885 SPAPR_DEVICE_MEM_ALIGN); 2886 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2887 "device-memory", device_mem_size); 2888 memory_region_add_subregion(sysmem, machine->device_memory->base, 2889 &machine->device_memory->mr); 2890 } 2891 2892 if (smc->dr_lmb_enabled) { 2893 spapr_create_lmb_dr_connectors(spapr); 2894 } 2895 2896 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2897 if (!filename) { 2898 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2899 exit(1); 2900 } 2901 spapr->rtas_size = get_image_size(filename); 2902 if (spapr->rtas_size < 0) { 2903 error_report("Could not get size of LPAR rtas '%s'", filename); 2904 exit(1); 2905 } 2906 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2907 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2908 error_report("Could not load LPAR rtas '%s'", filename); 2909 exit(1); 2910 } 2911 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2912 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2913 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2914 exit(1); 2915 } 2916 g_free(filename); 2917 2918 /* Set up RTAS event infrastructure */ 2919 spapr_events_init(spapr); 2920 2921 /* Set up the RTC RTAS interfaces */ 2922 spapr_rtc_create(spapr); 2923 2924 /* Set up VIO bus */ 2925 spapr->vio_bus = spapr_vio_bus_init(); 2926 2927 for (i = 0; i < serial_max_hds(); i++) { 2928 if (serial_hd(i)) { 2929 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2930 } 2931 } 2932 2933 /* We always have at least the nvram device on VIO */ 2934 spapr_create_nvram(spapr); 2935 2936 /* 2937 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2938 * connectors (described in root DT node's "ibm,drc-types" property) 2939 * are pre-initialized here. additional child connectors (such as 2940 * connectors for a PHBs PCI slots) are added as needed during their 2941 * parent's realization. 2942 */ 2943 if (smc->dr_phb_enabled) { 2944 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2945 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2946 } 2947 } 2948 2949 /* Set up PCI */ 2950 spapr_pci_rtas_init(); 2951 2952 phb = spapr_create_default_phb(); 2953 2954 for (i = 0; i < nb_nics; i++) { 2955 NICInfo *nd = &nd_table[i]; 2956 2957 if (!nd->model) { 2958 nd->model = g_strdup("spapr-vlan"); 2959 } 2960 2961 if (g_str_equal(nd->model, "spapr-vlan") || 2962 g_str_equal(nd->model, "ibmveth")) { 2963 spapr_vlan_create(spapr->vio_bus, nd); 2964 } else { 2965 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2966 } 2967 } 2968 2969 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2970 spapr_vscsi_create(spapr->vio_bus); 2971 } 2972 2973 /* Graphics */ 2974 if (spapr_vga_init(phb->bus, &error_fatal)) { 2975 spapr->has_graphics = true; 2976 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2977 } 2978 2979 if (machine->usb) { 2980 if (smc->use_ohci_by_default) { 2981 pci_create_simple(phb->bus, -1, "pci-ohci"); 2982 } else { 2983 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2984 } 2985 2986 if (spapr->has_graphics) { 2987 USBBus *usb_bus = usb_bus_find(-1); 2988 2989 usb_create_simple(usb_bus, "usb-kbd"); 2990 usb_create_simple(usb_bus, "usb-mouse"); 2991 } 2992 } 2993 2994 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2995 error_report( 2996 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2997 MIN_RMA_SLOF); 2998 exit(1); 2999 } 3000 3001 if (kernel_filename) { 3002 uint64_t lowaddr = 0; 3003 3004 spapr->kernel_size = load_elf(kernel_filename, NULL, 3005 translate_kernel_address, NULL, 3006 NULL, &lowaddr, NULL, 1, 3007 PPC_ELF_MACHINE, 0, 0); 3008 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3009 spapr->kernel_size = load_elf(kernel_filename, NULL, 3010 translate_kernel_address, NULL, NULL, 3011 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3012 0, 0); 3013 spapr->kernel_le = spapr->kernel_size > 0; 3014 } 3015 if (spapr->kernel_size < 0) { 3016 error_report("error loading %s: %s", kernel_filename, 3017 load_elf_strerror(spapr->kernel_size)); 3018 exit(1); 3019 } 3020 3021 /* load initrd */ 3022 if (initrd_filename) { 3023 /* Try to locate the initrd in the gap between the kernel 3024 * and the firmware. Add a bit of space just in case 3025 */ 3026 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3027 + 0x1ffff) & ~0xffff; 3028 spapr->initrd_size = load_image_targphys(initrd_filename, 3029 spapr->initrd_base, 3030 load_limit 3031 - spapr->initrd_base); 3032 if (spapr->initrd_size < 0) { 3033 error_report("could not load initial ram disk '%s'", 3034 initrd_filename); 3035 exit(1); 3036 } 3037 } 3038 } 3039 3040 if (bios_name == NULL) { 3041 bios_name = FW_FILE_NAME; 3042 } 3043 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3044 if (!filename) { 3045 error_report("Could not find LPAR firmware '%s'", bios_name); 3046 exit(1); 3047 } 3048 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3049 if (fw_size <= 0) { 3050 error_report("Could not load LPAR firmware '%s'", filename); 3051 exit(1); 3052 } 3053 g_free(filename); 3054 3055 /* FIXME: Should register things through the MachineState's qdev 3056 * interface, this is a legacy from the sPAPREnvironment structure 3057 * which predated MachineState but had a similar function */ 3058 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3059 register_savevm_live(NULL, "spapr/htab", -1, 1, 3060 &savevm_htab_handlers, spapr); 3061 3062 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3063 &error_fatal); 3064 3065 qemu_register_boot_set(spapr_boot_set, spapr); 3066 3067 if (kvm_enabled()) { 3068 /* to stop and start vmclock */ 3069 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3070 &spapr->tb); 3071 3072 kvmppc_spapr_enable_inkernel_multitce(); 3073 } 3074 } 3075 3076 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3077 { 3078 if (!vm_type) { 3079 return 0; 3080 } 3081 3082 if (!strcmp(vm_type, "HV")) { 3083 return 1; 3084 } 3085 3086 if (!strcmp(vm_type, "PR")) { 3087 return 2; 3088 } 3089 3090 error_report("Unknown kvm-type specified '%s'", vm_type); 3091 exit(1); 3092 } 3093 3094 /* 3095 * Implementation of an interface to adjust firmware path 3096 * for the bootindex property handling. 3097 */ 3098 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3099 DeviceState *dev) 3100 { 3101 #define CAST(type, obj, name) \ 3102 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3103 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3104 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3105 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3106 3107 if (d) { 3108 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3109 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3110 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3111 3112 if (spapr) { 3113 /* 3114 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3115 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3116 * 0x8000 | (target << 8) | (bus << 5) | lun 3117 * (see the "Logical unit addressing format" table in SAM5) 3118 */ 3119 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3120 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3121 (uint64_t)id << 48); 3122 } else if (virtio) { 3123 /* 3124 * We use SRP luns of the form 01000000 | (target << 8) | lun 3125 * in the top 32 bits of the 64-bit LUN 3126 * Note: the quote above is from SLOF and it is wrong, 3127 * the actual binding is: 3128 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3129 */ 3130 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3131 if (d->lun >= 256) { 3132 /* Use the LUN "flat space addressing method" */ 3133 id |= 0x4000; 3134 } 3135 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3136 (uint64_t)id << 32); 3137 } else if (usb) { 3138 /* 3139 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3140 * in the top 32 bits of the 64-bit LUN 3141 */ 3142 unsigned usb_port = atoi(usb->port->path); 3143 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3144 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3145 (uint64_t)id << 32); 3146 } 3147 } 3148 3149 /* 3150 * SLOF probes the USB devices, and if it recognizes that the device is a 3151 * storage device, it changes its name to "storage" instead of "usb-host", 3152 * and additionally adds a child node for the SCSI LUN, so the correct 3153 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3154 */ 3155 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3156 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3157 if (usb_host_dev_is_scsi_storage(usbdev)) { 3158 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3159 } 3160 } 3161 3162 if (phb) { 3163 /* Replace "pci" with "pci@800000020000000" */ 3164 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3165 } 3166 3167 if (vsc) { 3168 /* Same logic as virtio above */ 3169 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3170 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3171 } 3172 3173 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3174 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3175 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3176 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3177 } 3178 3179 return NULL; 3180 } 3181 3182 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3183 { 3184 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3185 3186 return g_strdup(spapr->kvm_type); 3187 } 3188 3189 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3190 { 3191 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3192 3193 g_free(spapr->kvm_type); 3194 spapr->kvm_type = g_strdup(value); 3195 } 3196 3197 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3198 { 3199 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3200 3201 return spapr->use_hotplug_event_source; 3202 } 3203 3204 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3205 Error **errp) 3206 { 3207 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3208 3209 spapr->use_hotplug_event_source = value; 3210 } 3211 3212 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3213 { 3214 return true; 3215 } 3216 3217 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3218 { 3219 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3220 3221 switch (spapr->resize_hpt) { 3222 case SPAPR_RESIZE_HPT_DEFAULT: 3223 return g_strdup("default"); 3224 case SPAPR_RESIZE_HPT_DISABLED: 3225 return g_strdup("disabled"); 3226 case SPAPR_RESIZE_HPT_ENABLED: 3227 return g_strdup("enabled"); 3228 case SPAPR_RESIZE_HPT_REQUIRED: 3229 return g_strdup("required"); 3230 } 3231 g_assert_not_reached(); 3232 } 3233 3234 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3235 { 3236 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3237 3238 if (strcmp(value, "default") == 0) { 3239 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3240 } else if (strcmp(value, "disabled") == 0) { 3241 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3242 } else if (strcmp(value, "enabled") == 0) { 3243 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3244 } else if (strcmp(value, "required") == 0) { 3245 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3246 } else { 3247 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3248 } 3249 } 3250 3251 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3252 void *opaque, Error **errp) 3253 { 3254 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3255 } 3256 3257 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3258 void *opaque, Error **errp) 3259 { 3260 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3261 } 3262 3263 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3264 { 3265 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3266 3267 if (spapr->irq == &spapr_irq_xics_legacy) { 3268 return g_strdup("legacy"); 3269 } else if (spapr->irq == &spapr_irq_xics) { 3270 return g_strdup("xics"); 3271 } else if (spapr->irq == &spapr_irq_xive) { 3272 return g_strdup("xive"); 3273 } else if (spapr->irq == &spapr_irq_dual) { 3274 return g_strdup("dual"); 3275 } 3276 g_assert_not_reached(); 3277 } 3278 3279 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3280 { 3281 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3282 3283 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3284 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3285 return; 3286 } 3287 3288 /* The legacy IRQ backend can not be set */ 3289 if (strcmp(value, "xics") == 0) { 3290 spapr->irq = &spapr_irq_xics; 3291 } else if (strcmp(value, "xive") == 0) { 3292 spapr->irq = &spapr_irq_xive; 3293 } else if (strcmp(value, "dual") == 0) { 3294 spapr->irq = &spapr_irq_dual; 3295 } else { 3296 error_setg(errp, "Bad value for \"ic-mode\" property"); 3297 } 3298 } 3299 3300 static char *spapr_get_host_model(Object *obj, Error **errp) 3301 { 3302 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3303 3304 return g_strdup(spapr->host_model); 3305 } 3306 3307 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3308 { 3309 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3310 3311 g_free(spapr->host_model); 3312 spapr->host_model = g_strdup(value); 3313 } 3314 3315 static char *spapr_get_host_serial(Object *obj, Error **errp) 3316 { 3317 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3318 3319 return g_strdup(spapr->host_serial); 3320 } 3321 3322 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3323 { 3324 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3325 3326 g_free(spapr->host_serial); 3327 spapr->host_serial = g_strdup(value); 3328 } 3329 3330 static void spapr_instance_init(Object *obj) 3331 { 3332 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3333 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3334 3335 spapr->htab_fd = -1; 3336 spapr->use_hotplug_event_source = true; 3337 object_property_add_str(obj, "kvm-type", 3338 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3339 object_property_set_description(obj, "kvm-type", 3340 "Specifies the KVM virtualization mode (HV, PR)", 3341 NULL); 3342 object_property_add_bool(obj, "modern-hotplug-events", 3343 spapr_get_modern_hotplug_events, 3344 spapr_set_modern_hotplug_events, 3345 NULL); 3346 object_property_set_description(obj, "modern-hotplug-events", 3347 "Use dedicated hotplug event mechanism in" 3348 " place of standard EPOW events when possible" 3349 " (required for memory hot-unplug support)", 3350 NULL); 3351 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3352 "Maximum permitted CPU compatibility mode", 3353 &error_fatal); 3354 3355 object_property_add_str(obj, "resize-hpt", 3356 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3357 object_property_set_description(obj, "resize-hpt", 3358 "Resizing of the Hash Page Table (enabled, disabled, required)", 3359 NULL); 3360 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3361 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3362 object_property_set_description(obj, "vsmt", 3363 "Virtual SMT: KVM behaves as if this were" 3364 " the host's SMT mode", &error_abort); 3365 object_property_add_bool(obj, "vfio-no-msix-emulation", 3366 spapr_get_msix_emulation, NULL, NULL); 3367 3368 /* The machine class defines the default interrupt controller mode */ 3369 spapr->irq = smc->irq; 3370 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3371 spapr_set_ic_mode, NULL); 3372 object_property_set_description(obj, "ic-mode", 3373 "Specifies the interrupt controller mode (xics, xive, dual)", 3374 NULL); 3375 3376 object_property_add_str(obj, "host-model", 3377 spapr_get_host_model, spapr_set_host_model, 3378 &error_abort); 3379 object_property_set_description(obj, "host-model", 3380 "Host model to advertise in guest device tree", &error_abort); 3381 object_property_add_str(obj, "host-serial", 3382 spapr_get_host_serial, spapr_set_host_serial, 3383 &error_abort); 3384 object_property_set_description(obj, "host-serial", 3385 "Host serial number to advertise in guest device tree", &error_abort); 3386 } 3387 3388 static void spapr_machine_finalizefn(Object *obj) 3389 { 3390 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3391 3392 g_free(spapr->kvm_type); 3393 } 3394 3395 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3396 { 3397 cpu_synchronize_state(cs); 3398 ppc_cpu_do_system_reset(cs); 3399 } 3400 3401 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3402 { 3403 CPUState *cs; 3404 3405 CPU_FOREACH(cs) { 3406 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3407 } 3408 } 3409 3410 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3411 void *fdt, int *fdt_start_offset, Error **errp) 3412 { 3413 uint64_t addr; 3414 uint32_t node; 3415 3416 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3417 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3418 &error_abort); 3419 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3420 SPAPR_MEMORY_BLOCK_SIZE); 3421 return 0; 3422 } 3423 3424 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3425 bool dedicated_hp_event_source, Error **errp) 3426 { 3427 SpaprDrc *drc; 3428 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3429 int i; 3430 uint64_t addr = addr_start; 3431 bool hotplugged = spapr_drc_hotplugged(dev); 3432 Error *local_err = NULL; 3433 3434 for (i = 0; i < nr_lmbs; i++) { 3435 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3436 addr / SPAPR_MEMORY_BLOCK_SIZE); 3437 g_assert(drc); 3438 3439 spapr_drc_attach(drc, dev, &local_err); 3440 if (local_err) { 3441 while (addr > addr_start) { 3442 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3443 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3444 addr / SPAPR_MEMORY_BLOCK_SIZE); 3445 spapr_drc_detach(drc); 3446 } 3447 error_propagate(errp, local_err); 3448 return; 3449 } 3450 if (!hotplugged) { 3451 spapr_drc_reset(drc); 3452 } 3453 addr += SPAPR_MEMORY_BLOCK_SIZE; 3454 } 3455 /* send hotplug notification to the 3456 * guest only in case of hotplugged memory 3457 */ 3458 if (hotplugged) { 3459 if (dedicated_hp_event_source) { 3460 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3461 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3462 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3463 nr_lmbs, 3464 spapr_drc_index(drc)); 3465 } else { 3466 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3467 nr_lmbs); 3468 } 3469 } 3470 } 3471 3472 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3473 Error **errp) 3474 { 3475 Error *local_err = NULL; 3476 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3477 PCDIMMDevice *dimm = PC_DIMM(dev); 3478 uint64_t size, addr; 3479 3480 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3481 3482 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3483 if (local_err) { 3484 goto out; 3485 } 3486 3487 addr = object_property_get_uint(OBJECT(dimm), 3488 PC_DIMM_ADDR_PROP, &local_err); 3489 if (local_err) { 3490 goto out_unplug; 3491 } 3492 3493 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3494 &local_err); 3495 if (local_err) { 3496 goto out_unplug; 3497 } 3498 3499 return; 3500 3501 out_unplug: 3502 pc_dimm_unplug(dimm, MACHINE(ms)); 3503 out: 3504 error_propagate(errp, local_err); 3505 } 3506 3507 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3508 Error **errp) 3509 { 3510 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3511 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3512 PCDIMMDevice *dimm = PC_DIMM(dev); 3513 Error *local_err = NULL; 3514 uint64_t size; 3515 Object *memdev; 3516 hwaddr pagesize; 3517 3518 if (!smc->dr_lmb_enabled) { 3519 error_setg(errp, "Memory hotplug not supported for this machine"); 3520 return; 3521 } 3522 3523 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3524 if (local_err) { 3525 error_propagate(errp, local_err); 3526 return; 3527 } 3528 3529 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3530 error_setg(errp, "Hotplugged memory size must be a multiple of " 3531 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3532 return; 3533 } 3534 3535 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3536 &error_abort); 3537 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3538 spapr_check_pagesize(spapr, pagesize, &local_err); 3539 if (local_err) { 3540 error_propagate(errp, local_err); 3541 return; 3542 } 3543 3544 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3545 } 3546 3547 struct SpaprDimmState { 3548 PCDIMMDevice *dimm; 3549 uint32_t nr_lmbs; 3550 QTAILQ_ENTRY(SpaprDimmState) next; 3551 }; 3552 3553 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3554 PCDIMMDevice *dimm) 3555 { 3556 SpaprDimmState *dimm_state = NULL; 3557 3558 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3559 if (dimm_state->dimm == dimm) { 3560 break; 3561 } 3562 } 3563 return dimm_state; 3564 } 3565 3566 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3567 uint32_t nr_lmbs, 3568 PCDIMMDevice *dimm) 3569 { 3570 SpaprDimmState *ds = NULL; 3571 3572 /* 3573 * If this request is for a DIMM whose removal had failed earlier 3574 * (due to guest's refusal to remove the LMBs), we would have this 3575 * dimm already in the pending_dimm_unplugs list. In that 3576 * case don't add again. 3577 */ 3578 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3579 if (!ds) { 3580 ds = g_malloc0(sizeof(SpaprDimmState)); 3581 ds->nr_lmbs = nr_lmbs; 3582 ds->dimm = dimm; 3583 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3584 } 3585 return ds; 3586 } 3587 3588 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3589 SpaprDimmState *dimm_state) 3590 { 3591 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3592 g_free(dimm_state); 3593 } 3594 3595 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3596 PCDIMMDevice *dimm) 3597 { 3598 SpaprDrc *drc; 3599 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3600 &error_abort); 3601 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3602 uint32_t avail_lmbs = 0; 3603 uint64_t addr_start, addr; 3604 int i; 3605 3606 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3607 &error_abort); 3608 3609 addr = addr_start; 3610 for (i = 0; i < nr_lmbs; i++) { 3611 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3612 addr / SPAPR_MEMORY_BLOCK_SIZE); 3613 g_assert(drc); 3614 if (drc->dev) { 3615 avail_lmbs++; 3616 } 3617 addr += SPAPR_MEMORY_BLOCK_SIZE; 3618 } 3619 3620 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3621 } 3622 3623 /* Callback to be called during DRC release. */ 3624 void spapr_lmb_release(DeviceState *dev) 3625 { 3626 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3627 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3628 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3629 3630 /* This information will get lost if a migration occurs 3631 * during the unplug process. In this case recover it. */ 3632 if (ds == NULL) { 3633 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3634 g_assert(ds); 3635 /* The DRC being examined by the caller at least must be counted */ 3636 g_assert(ds->nr_lmbs); 3637 } 3638 3639 if (--ds->nr_lmbs) { 3640 return; 3641 } 3642 3643 /* 3644 * Now that all the LMBs have been removed by the guest, call the 3645 * unplug handler chain. This can never fail. 3646 */ 3647 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3648 object_unparent(OBJECT(dev)); 3649 } 3650 3651 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3652 { 3653 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3654 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3655 3656 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3657 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3658 spapr_pending_dimm_unplugs_remove(spapr, ds); 3659 } 3660 3661 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3662 DeviceState *dev, Error **errp) 3663 { 3664 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3665 Error *local_err = NULL; 3666 PCDIMMDevice *dimm = PC_DIMM(dev); 3667 uint32_t nr_lmbs; 3668 uint64_t size, addr_start, addr; 3669 int i; 3670 SpaprDrc *drc; 3671 3672 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3673 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3674 3675 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3676 &local_err); 3677 if (local_err) { 3678 goto out; 3679 } 3680 3681 /* 3682 * An existing pending dimm state for this DIMM means that there is an 3683 * unplug operation in progress, waiting for the spapr_lmb_release 3684 * callback to complete the job (BQL can't cover that far). In this case, 3685 * bail out to avoid detaching DRCs that were already released. 3686 */ 3687 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3688 error_setg(&local_err, 3689 "Memory unplug already in progress for device %s", 3690 dev->id); 3691 goto out; 3692 } 3693 3694 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3695 3696 addr = addr_start; 3697 for (i = 0; i < nr_lmbs; i++) { 3698 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3699 addr / SPAPR_MEMORY_BLOCK_SIZE); 3700 g_assert(drc); 3701 3702 spapr_drc_detach(drc); 3703 addr += SPAPR_MEMORY_BLOCK_SIZE; 3704 } 3705 3706 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3707 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3708 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3709 nr_lmbs, spapr_drc_index(drc)); 3710 out: 3711 error_propagate(errp, local_err); 3712 } 3713 3714 /* Callback to be called during DRC release. */ 3715 void spapr_core_release(DeviceState *dev) 3716 { 3717 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3718 3719 /* Call the unplug handler chain. This can never fail. */ 3720 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3721 object_unparent(OBJECT(dev)); 3722 } 3723 3724 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3725 { 3726 MachineState *ms = MACHINE(hotplug_dev); 3727 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3728 CPUCore *cc = CPU_CORE(dev); 3729 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3730 3731 if (smc->pre_2_10_has_unused_icps) { 3732 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3733 int i; 3734 3735 for (i = 0; i < cc->nr_threads; i++) { 3736 CPUState *cs = CPU(sc->threads[i]); 3737 3738 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3739 } 3740 } 3741 3742 assert(core_slot); 3743 core_slot->cpu = NULL; 3744 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3745 } 3746 3747 static 3748 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3749 Error **errp) 3750 { 3751 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3752 int index; 3753 SpaprDrc *drc; 3754 CPUCore *cc = CPU_CORE(dev); 3755 3756 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3757 error_setg(errp, "Unable to find CPU core with core-id: %d", 3758 cc->core_id); 3759 return; 3760 } 3761 if (index == 0) { 3762 error_setg(errp, "Boot CPU core may not be unplugged"); 3763 return; 3764 } 3765 3766 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3767 spapr_vcpu_id(spapr, cc->core_id)); 3768 g_assert(drc); 3769 3770 spapr_drc_detach(drc); 3771 3772 spapr_hotplug_req_remove_by_index(drc); 3773 } 3774 3775 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3776 void *fdt, int *fdt_start_offset, Error **errp) 3777 { 3778 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3779 CPUState *cs = CPU(core->threads[0]); 3780 PowerPCCPU *cpu = POWERPC_CPU(cs); 3781 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3782 int id = spapr_get_vcpu_id(cpu); 3783 char *nodename; 3784 int offset; 3785 3786 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3787 offset = fdt_add_subnode(fdt, 0, nodename); 3788 g_free(nodename); 3789 3790 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3791 3792 *fdt_start_offset = offset; 3793 return 0; 3794 } 3795 3796 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3797 Error **errp) 3798 { 3799 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3800 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3801 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3802 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3803 CPUCore *cc = CPU_CORE(dev); 3804 CPUState *cs; 3805 SpaprDrc *drc; 3806 Error *local_err = NULL; 3807 CPUArchId *core_slot; 3808 int index; 3809 bool hotplugged = spapr_drc_hotplugged(dev); 3810 3811 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3812 if (!core_slot) { 3813 error_setg(errp, "Unable to find CPU core with core-id: %d", 3814 cc->core_id); 3815 return; 3816 } 3817 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3818 spapr_vcpu_id(spapr, cc->core_id)); 3819 3820 g_assert(drc || !mc->has_hotpluggable_cpus); 3821 3822 if (drc) { 3823 spapr_drc_attach(drc, dev, &local_err); 3824 if (local_err) { 3825 error_propagate(errp, local_err); 3826 return; 3827 } 3828 3829 if (hotplugged) { 3830 /* 3831 * Send hotplug notification interrupt to the guest only 3832 * in case of hotplugged CPUs. 3833 */ 3834 spapr_hotplug_req_add_by_index(drc); 3835 } else { 3836 spapr_drc_reset(drc); 3837 } 3838 } 3839 3840 core_slot->cpu = OBJECT(dev); 3841 3842 if (smc->pre_2_10_has_unused_icps) { 3843 int i; 3844 3845 for (i = 0; i < cc->nr_threads; i++) { 3846 cs = CPU(core->threads[i]); 3847 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3848 } 3849 } 3850 } 3851 3852 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3853 Error **errp) 3854 { 3855 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3856 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3857 Error *local_err = NULL; 3858 CPUCore *cc = CPU_CORE(dev); 3859 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3860 const char *type = object_get_typename(OBJECT(dev)); 3861 CPUArchId *core_slot; 3862 int index; 3863 3864 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3865 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3866 goto out; 3867 } 3868 3869 if (strcmp(base_core_type, type)) { 3870 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3871 goto out; 3872 } 3873 3874 if (cc->core_id % smp_threads) { 3875 error_setg(&local_err, "invalid core id %d", cc->core_id); 3876 goto out; 3877 } 3878 3879 /* 3880 * In general we should have homogeneous threads-per-core, but old 3881 * (pre hotplug support) machine types allow the last core to have 3882 * reduced threads as a compatibility hack for when we allowed 3883 * total vcpus not a multiple of threads-per-core. 3884 */ 3885 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3886 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3887 cc->nr_threads, smp_threads); 3888 goto out; 3889 } 3890 3891 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3892 if (!core_slot) { 3893 error_setg(&local_err, "core id %d out of range", cc->core_id); 3894 goto out; 3895 } 3896 3897 if (core_slot->cpu) { 3898 error_setg(&local_err, "core %d already populated", cc->core_id); 3899 goto out; 3900 } 3901 3902 numa_cpu_pre_plug(core_slot, dev, &local_err); 3903 3904 out: 3905 error_propagate(errp, local_err); 3906 } 3907 3908 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3909 void *fdt, int *fdt_start_offset, Error **errp) 3910 { 3911 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3912 int intc_phandle; 3913 3914 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3915 if (intc_phandle <= 0) { 3916 return -1; 3917 } 3918 3919 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3920 fdt_start_offset)) { 3921 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3922 return -1; 3923 } 3924 3925 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3926 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3927 3928 return 0; 3929 } 3930 3931 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3932 Error **errp) 3933 { 3934 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3935 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3936 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3937 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3938 3939 if (dev->hotplugged && !smc->dr_phb_enabled) { 3940 error_setg(errp, "PHB hotplug not supported for this machine"); 3941 return; 3942 } 3943 3944 if (sphb->index == (uint32_t)-1) { 3945 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3946 return; 3947 } 3948 3949 /* 3950 * This will check that sphb->index doesn't exceed the maximum number of 3951 * PHBs for the current machine type. 3952 */ 3953 smc->phb_placement(spapr, sphb->index, 3954 &sphb->buid, &sphb->io_win_addr, 3955 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3956 windows_supported, sphb->dma_liobn, 3957 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 3958 errp); 3959 } 3960 3961 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3962 Error **errp) 3963 { 3964 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3965 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3966 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3967 SpaprDrc *drc; 3968 bool hotplugged = spapr_drc_hotplugged(dev); 3969 Error *local_err = NULL; 3970 3971 if (!smc->dr_phb_enabled) { 3972 return; 3973 } 3974 3975 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3976 /* hotplug hooks should check it's enabled before getting this far */ 3977 assert(drc); 3978 3979 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3980 if (local_err) { 3981 error_propagate(errp, local_err); 3982 return; 3983 } 3984 3985 if (hotplugged) { 3986 spapr_hotplug_req_add_by_index(drc); 3987 } else { 3988 spapr_drc_reset(drc); 3989 } 3990 } 3991 3992 void spapr_phb_release(DeviceState *dev) 3993 { 3994 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3995 3996 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3997 object_unparent(OBJECT(dev)); 3998 } 3999 4000 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4001 { 4002 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4003 } 4004 4005 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4006 DeviceState *dev, Error **errp) 4007 { 4008 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4009 SpaprDrc *drc; 4010 4011 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4012 assert(drc); 4013 4014 if (!spapr_drc_unplug_requested(drc)) { 4015 spapr_drc_detach(drc); 4016 spapr_hotplug_req_remove_by_index(drc); 4017 } 4018 } 4019 4020 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4021 DeviceState *dev, Error **errp) 4022 { 4023 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4024 spapr_memory_plug(hotplug_dev, dev, errp); 4025 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4026 spapr_core_plug(hotplug_dev, dev, errp); 4027 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4028 spapr_phb_plug(hotplug_dev, dev, errp); 4029 } 4030 } 4031 4032 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4033 DeviceState *dev, Error **errp) 4034 { 4035 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4036 spapr_memory_unplug(hotplug_dev, dev); 4037 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4038 spapr_core_unplug(hotplug_dev, dev); 4039 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4040 spapr_phb_unplug(hotplug_dev, dev); 4041 } 4042 } 4043 4044 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4045 DeviceState *dev, Error **errp) 4046 { 4047 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4048 MachineClass *mc = MACHINE_GET_CLASS(sms); 4049 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4050 4051 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4052 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4053 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4054 } else { 4055 /* NOTE: this means there is a window after guest reset, prior to 4056 * CAS negotiation, where unplug requests will fail due to the 4057 * capability not being detected yet. This is a bit different than 4058 * the case with PCI unplug, where the events will be queued and 4059 * eventually handled by the guest after boot 4060 */ 4061 error_setg(errp, "Memory hot unplug not supported for this guest"); 4062 } 4063 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4064 if (!mc->has_hotpluggable_cpus) { 4065 error_setg(errp, "CPU hot unplug not supported on this machine"); 4066 return; 4067 } 4068 spapr_core_unplug_request(hotplug_dev, dev, errp); 4069 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4070 if (!smc->dr_phb_enabled) { 4071 error_setg(errp, "PHB hot unplug not supported on this machine"); 4072 return; 4073 } 4074 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4075 } 4076 } 4077 4078 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4079 DeviceState *dev, Error **errp) 4080 { 4081 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4082 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4083 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4084 spapr_core_pre_plug(hotplug_dev, dev, errp); 4085 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4086 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4087 } 4088 } 4089 4090 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4091 DeviceState *dev) 4092 { 4093 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4094 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4095 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4096 return HOTPLUG_HANDLER(machine); 4097 } 4098 return NULL; 4099 } 4100 4101 static CpuInstanceProperties 4102 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4103 { 4104 CPUArchId *core_slot; 4105 MachineClass *mc = MACHINE_GET_CLASS(machine); 4106 4107 /* make sure possible_cpu are intialized */ 4108 mc->possible_cpu_arch_ids(machine); 4109 /* get CPU core slot containing thread that matches cpu_index */ 4110 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4111 assert(core_slot); 4112 return core_slot->props; 4113 } 4114 4115 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4116 { 4117 return idx / smp_cores % nb_numa_nodes; 4118 } 4119 4120 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4121 { 4122 int i; 4123 const char *core_type; 4124 int spapr_max_cores = max_cpus / smp_threads; 4125 MachineClass *mc = MACHINE_GET_CLASS(machine); 4126 4127 if (!mc->has_hotpluggable_cpus) { 4128 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4129 } 4130 if (machine->possible_cpus) { 4131 assert(machine->possible_cpus->len == spapr_max_cores); 4132 return machine->possible_cpus; 4133 } 4134 4135 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4136 if (!core_type) { 4137 error_report("Unable to find sPAPR CPU Core definition"); 4138 exit(1); 4139 } 4140 4141 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4142 sizeof(CPUArchId) * spapr_max_cores); 4143 machine->possible_cpus->len = spapr_max_cores; 4144 for (i = 0; i < machine->possible_cpus->len; i++) { 4145 int core_id = i * smp_threads; 4146 4147 machine->possible_cpus->cpus[i].type = core_type; 4148 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4149 machine->possible_cpus->cpus[i].arch_id = core_id; 4150 machine->possible_cpus->cpus[i].props.has_core_id = true; 4151 machine->possible_cpus->cpus[i].props.core_id = core_id; 4152 } 4153 return machine->possible_cpus; 4154 } 4155 4156 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4157 uint64_t *buid, hwaddr *pio, 4158 hwaddr *mmio32, hwaddr *mmio64, 4159 unsigned n_dma, uint32_t *liobns, 4160 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4161 { 4162 /* 4163 * New-style PHB window placement. 4164 * 4165 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4166 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4167 * windows. 4168 * 4169 * Some guest kernels can't work with MMIO windows above 1<<46 4170 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4171 * 4172 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4173 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4174 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4175 * 1TiB 64-bit MMIO windows for each PHB. 4176 */ 4177 const uint64_t base_buid = 0x800000020000000ULL; 4178 int i; 4179 4180 /* Sanity check natural alignments */ 4181 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4182 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4183 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4184 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4185 /* Sanity check bounds */ 4186 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4187 SPAPR_PCI_MEM32_WIN_SIZE); 4188 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4189 SPAPR_PCI_MEM64_WIN_SIZE); 4190 4191 if (index >= SPAPR_MAX_PHBS) { 4192 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4193 SPAPR_MAX_PHBS - 1); 4194 return; 4195 } 4196 4197 *buid = base_buid + index; 4198 for (i = 0; i < n_dma; ++i) { 4199 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4200 } 4201 4202 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4203 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4204 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4205 4206 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4207 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4208 } 4209 4210 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4211 { 4212 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4213 4214 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4215 } 4216 4217 static void spapr_ics_resend(XICSFabric *dev) 4218 { 4219 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4220 4221 ics_resend(spapr->ics); 4222 } 4223 4224 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4225 { 4226 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4227 4228 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4229 } 4230 4231 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4232 Monitor *mon) 4233 { 4234 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4235 4236 spapr->irq->print_info(spapr, mon); 4237 } 4238 4239 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4240 { 4241 return cpu->vcpu_id; 4242 } 4243 4244 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4245 { 4246 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4247 int vcpu_id; 4248 4249 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4250 4251 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4252 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4253 error_append_hint(errp, "Adjust the number of cpus to %d " 4254 "or try to raise the number of threads per core\n", 4255 vcpu_id * smp_threads / spapr->vsmt); 4256 return; 4257 } 4258 4259 cpu->vcpu_id = vcpu_id; 4260 } 4261 4262 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4263 { 4264 CPUState *cs; 4265 4266 CPU_FOREACH(cs) { 4267 PowerPCCPU *cpu = POWERPC_CPU(cs); 4268 4269 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4270 return cpu; 4271 } 4272 } 4273 4274 return NULL; 4275 } 4276 4277 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4278 { 4279 MachineClass *mc = MACHINE_CLASS(oc); 4280 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4281 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4282 NMIClass *nc = NMI_CLASS(oc); 4283 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4284 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4285 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4286 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4287 4288 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4289 mc->ignore_boot_device_suffixes = true; 4290 4291 /* 4292 * We set up the default / latest behaviour here. The class_init 4293 * functions for the specific versioned machine types can override 4294 * these details for backwards compatibility 4295 */ 4296 mc->init = spapr_machine_init; 4297 mc->reset = spapr_machine_reset; 4298 mc->block_default_type = IF_SCSI; 4299 mc->max_cpus = 1024; 4300 mc->no_parallel = 1; 4301 mc->default_boot_order = ""; 4302 mc->default_ram_size = 512 * MiB; 4303 mc->default_display = "std"; 4304 mc->kvm_type = spapr_kvm_type; 4305 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4306 mc->pci_allow_0_address = true; 4307 assert(!mc->get_hotplug_handler); 4308 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4309 hc->pre_plug = spapr_machine_device_pre_plug; 4310 hc->plug = spapr_machine_device_plug; 4311 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4312 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4313 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4314 hc->unplug_request = spapr_machine_device_unplug_request; 4315 hc->unplug = spapr_machine_device_unplug; 4316 4317 smc->dr_lmb_enabled = true; 4318 smc->update_dt_enabled = true; 4319 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4320 mc->has_hotpluggable_cpus = true; 4321 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4322 fwc->get_dev_path = spapr_get_fw_dev_path; 4323 nc->nmi_monitor_handler = spapr_nmi; 4324 smc->phb_placement = spapr_phb_placement; 4325 vhc->hypercall = emulate_spapr_hypercall; 4326 vhc->hpt_mask = spapr_hpt_mask; 4327 vhc->map_hptes = spapr_map_hptes; 4328 vhc->unmap_hptes = spapr_unmap_hptes; 4329 vhc->hpte_set_c = spapr_hpte_set_c; 4330 vhc->hpte_set_r = spapr_hpte_set_r; 4331 vhc->get_pate = spapr_get_pate; 4332 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4333 xic->ics_get = spapr_ics_get; 4334 xic->ics_resend = spapr_ics_resend; 4335 xic->icp_get = spapr_icp_get; 4336 ispc->print_info = spapr_pic_print_info; 4337 /* Force NUMA node memory size to be a multiple of 4338 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4339 * in which LMBs are represented and hot-added 4340 */ 4341 mc->numa_mem_align_shift = 28; 4342 4343 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4344 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4345 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4346 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4347 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4348 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4349 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4350 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4351 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4352 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4353 spapr_caps_add_properties(smc, &error_abort); 4354 smc->irq = &spapr_irq_dual; 4355 smc->dr_phb_enabled = true; 4356 } 4357 4358 static const TypeInfo spapr_machine_info = { 4359 .name = TYPE_SPAPR_MACHINE, 4360 .parent = TYPE_MACHINE, 4361 .abstract = true, 4362 .instance_size = sizeof(SpaprMachineState), 4363 .instance_init = spapr_instance_init, 4364 .instance_finalize = spapr_machine_finalizefn, 4365 .class_size = sizeof(SpaprMachineClass), 4366 .class_init = spapr_machine_class_init, 4367 .interfaces = (InterfaceInfo[]) { 4368 { TYPE_FW_PATH_PROVIDER }, 4369 { TYPE_NMI }, 4370 { TYPE_HOTPLUG_HANDLER }, 4371 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4372 { TYPE_XICS_FABRIC }, 4373 { TYPE_INTERRUPT_STATS_PROVIDER }, 4374 { } 4375 }, 4376 }; 4377 4378 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4379 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4380 void *data) \ 4381 { \ 4382 MachineClass *mc = MACHINE_CLASS(oc); \ 4383 spapr_machine_##suffix##_class_options(mc); \ 4384 if (latest) { \ 4385 mc->alias = "pseries"; \ 4386 mc->is_default = 1; \ 4387 } \ 4388 } \ 4389 static const TypeInfo spapr_machine_##suffix##_info = { \ 4390 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4391 .parent = TYPE_SPAPR_MACHINE, \ 4392 .class_init = spapr_machine_##suffix##_class_init, \ 4393 }; \ 4394 static void spapr_machine_register_##suffix(void) \ 4395 { \ 4396 type_register(&spapr_machine_##suffix##_info); \ 4397 } \ 4398 type_init(spapr_machine_register_##suffix) 4399 4400 /* 4401 * pseries-4.1 4402 */ 4403 static void spapr_machine_4_1_class_options(MachineClass *mc) 4404 { 4405 /* Defaults for the latest behaviour inherited from the base class */ 4406 } 4407 4408 DEFINE_SPAPR_MACHINE(4_1, "4.1", true); 4409 4410 /* 4411 * pseries-4.0 4412 */ 4413 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4414 uint64_t *buid, hwaddr *pio, 4415 hwaddr *mmio32, hwaddr *mmio64, 4416 unsigned n_dma, uint32_t *liobns, 4417 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4418 { 4419 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4420 nv2gpa, nv2atsd, errp); 4421 *nv2gpa = 0; 4422 *nv2atsd = 0; 4423 } 4424 4425 static void spapr_machine_4_0_class_options(MachineClass *mc) 4426 { 4427 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4428 4429 spapr_machine_4_1_class_options(mc); 4430 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4431 smc->phb_placement = phb_placement_4_0; 4432 smc->irq = &spapr_irq_xics; 4433 smc->pre_4_1_migration = true; 4434 } 4435 4436 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4437 4438 /* 4439 * pseries-3.1 4440 */ 4441 static void spapr_machine_3_1_class_options(MachineClass *mc) 4442 { 4443 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4444 4445 spapr_machine_4_0_class_options(mc); 4446 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4447 4448 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4449 smc->update_dt_enabled = false; 4450 smc->dr_phb_enabled = false; 4451 smc->broken_host_serial_model = true; 4452 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4453 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4454 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4455 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4456 } 4457 4458 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4459 4460 /* 4461 * pseries-3.0 4462 */ 4463 4464 static void spapr_machine_3_0_class_options(MachineClass *mc) 4465 { 4466 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4467 4468 spapr_machine_3_1_class_options(mc); 4469 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4470 4471 smc->legacy_irq_allocation = true; 4472 smc->irq = &spapr_irq_xics_legacy; 4473 } 4474 4475 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4476 4477 /* 4478 * pseries-2.12 4479 */ 4480 static void spapr_machine_2_12_class_options(MachineClass *mc) 4481 { 4482 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4483 static GlobalProperty compat[] = { 4484 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4485 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4486 }; 4487 4488 spapr_machine_3_0_class_options(mc); 4489 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4490 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4491 4492 /* We depend on kvm_enabled() to choose a default value for the 4493 * hpt-max-page-size capability. Of course we can't do it here 4494 * because this is too early and the HW accelerator isn't initialzed 4495 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4496 */ 4497 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4498 } 4499 4500 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4501 4502 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4503 { 4504 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4505 4506 spapr_machine_2_12_class_options(mc); 4507 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4508 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4509 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4510 } 4511 4512 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4513 4514 /* 4515 * pseries-2.11 4516 */ 4517 4518 static void spapr_machine_2_11_class_options(MachineClass *mc) 4519 { 4520 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4521 4522 spapr_machine_2_12_class_options(mc); 4523 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4524 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4525 } 4526 4527 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4528 4529 /* 4530 * pseries-2.10 4531 */ 4532 4533 static void spapr_machine_2_10_class_options(MachineClass *mc) 4534 { 4535 spapr_machine_2_11_class_options(mc); 4536 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4537 } 4538 4539 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4540 4541 /* 4542 * pseries-2.9 4543 */ 4544 4545 static void spapr_machine_2_9_class_options(MachineClass *mc) 4546 { 4547 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4548 static GlobalProperty compat[] = { 4549 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4550 }; 4551 4552 spapr_machine_2_10_class_options(mc); 4553 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4554 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4555 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4556 smc->pre_2_10_has_unused_icps = true; 4557 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4558 } 4559 4560 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4561 4562 /* 4563 * pseries-2.8 4564 */ 4565 4566 static void spapr_machine_2_8_class_options(MachineClass *mc) 4567 { 4568 static GlobalProperty compat[] = { 4569 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4570 }; 4571 4572 spapr_machine_2_9_class_options(mc); 4573 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4574 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4575 mc->numa_mem_align_shift = 23; 4576 } 4577 4578 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4579 4580 /* 4581 * pseries-2.7 4582 */ 4583 4584 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4585 uint64_t *buid, hwaddr *pio, 4586 hwaddr *mmio32, hwaddr *mmio64, 4587 unsigned n_dma, uint32_t *liobns, 4588 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4589 { 4590 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4591 const uint64_t base_buid = 0x800000020000000ULL; 4592 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4593 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4594 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4595 const uint32_t max_index = 255; 4596 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4597 4598 uint64_t ram_top = MACHINE(spapr)->ram_size; 4599 hwaddr phb0_base, phb_base; 4600 int i; 4601 4602 /* Do we have device memory? */ 4603 if (MACHINE(spapr)->maxram_size > ram_top) { 4604 /* Can't just use maxram_size, because there may be an 4605 * alignment gap between normal and device memory regions 4606 */ 4607 ram_top = MACHINE(spapr)->device_memory->base + 4608 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4609 } 4610 4611 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4612 4613 if (index > max_index) { 4614 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4615 max_index); 4616 return; 4617 } 4618 4619 *buid = base_buid + index; 4620 for (i = 0; i < n_dma; ++i) { 4621 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4622 } 4623 4624 phb_base = phb0_base + index * phb_spacing; 4625 *pio = phb_base + pio_offset; 4626 *mmio32 = phb_base + mmio_offset; 4627 /* 4628 * We don't set the 64-bit MMIO window, relying on the PHB's 4629 * fallback behaviour of automatically splitting a large "32-bit" 4630 * window into contiguous 32-bit and 64-bit windows 4631 */ 4632 4633 *nv2gpa = 0; 4634 *nv2atsd = 0; 4635 } 4636 4637 static void spapr_machine_2_7_class_options(MachineClass *mc) 4638 { 4639 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4640 static GlobalProperty compat[] = { 4641 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4642 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4643 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4644 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4645 }; 4646 4647 spapr_machine_2_8_class_options(mc); 4648 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4649 mc->default_machine_opts = "modern-hotplug-events=off"; 4650 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4651 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4652 smc->phb_placement = phb_placement_2_7; 4653 } 4654 4655 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4656 4657 /* 4658 * pseries-2.6 4659 */ 4660 4661 static void spapr_machine_2_6_class_options(MachineClass *mc) 4662 { 4663 static GlobalProperty compat[] = { 4664 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4665 }; 4666 4667 spapr_machine_2_7_class_options(mc); 4668 mc->has_hotpluggable_cpus = false; 4669 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4670 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4671 } 4672 4673 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4674 4675 /* 4676 * pseries-2.5 4677 */ 4678 4679 static void spapr_machine_2_5_class_options(MachineClass *mc) 4680 { 4681 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4682 static GlobalProperty compat[] = { 4683 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4684 }; 4685 4686 spapr_machine_2_6_class_options(mc); 4687 smc->use_ohci_by_default = true; 4688 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4689 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4690 } 4691 4692 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4693 4694 /* 4695 * pseries-2.4 4696 */ 4697 4698 static void spapr_machine_2_4_class_options(MachineClass *mc) 4699 { 4700 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4701 4702 spapr_machine_2_5_class_options(mc); 4703 smc->dr_lmb_enabled = false; 4704 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4705 } 4706 4707 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4708 4709 /* 4710 * pseries-2.3 4711 */ 4712 4713 static void spapr_machine_2_3_class_options(MachineClass *mc) 4714 { 4715 static GlobalProperty compat[] = { 4716 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4717 }; 4718 spapr_machine_2_4_class_options(mc); 4719 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4720 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4721 } 4722 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4723 4724 /* 4725 * pseries-2.2 4726 */ 4727 4728 static void spapr_machine_2_2_class_options(MachineClass *mc) 4729 { 4730 static GlobalProperty compat[] = { 4731 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4732 }; 4733 4734 spapr_machine_2_3_class_options(mc); 4735 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4736 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4737 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4738 } 4739 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4740 4741 /* 4742 * pseries-2.1 4743 */ 4744 4745 static void spapr_machine_2_1_class_options(MachineClass *mc) 4746 { 4747 spapr_machine_2_2_class_options(mc); 4748 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4749 } 4750 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4751 4752 static void spapr_machine_register_types(void) 4753 { 4754 type_register_static(&spapr_machine_info); 4755 } 4756 4757 type_init(spapr_machine_register_types) 4758