xref: /qemu/hw/ppc/spapr.c (revision 3b880445e61b6509a9a5b4236eaf07718ae4a51a)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/visitor.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/hostmem.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
38 #include "qemu/log.h"
39 #include "hw/fw-path-provider.h"
40 #include "elf.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/cpus.h"
44 #include "sysemu/hw_accel.h"
45 #include "kvm_ppc.h"
46 #include "migration/misc.h"
47 #include "migration/qemu-file-types.h"
48 #include "migration/global_state.h"
49 #include "migration/register.h"
50 #include "migration/blocker.h"
51 #include "mmu-hash64.h"
52 #include "mmu-book3s-v3.h"
53 #include "cpu-models.h"
54 #include "hw/core/cpu.h"
55 
56 #include "hw/boards.h"
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
59 
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
66 
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
71 
72 #include "exec/address-spaces.h"
73 #include "exec/ram_addr.h"
74 #include "hw/usb.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
77 #include "trace.h"
78 #include "hw/nmi.h"
79 #include "hw/intc/intc.h"
80 
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 #include "hw/ppc/pef.h"
87 
88 #include "monitor/monitor.h"
89 
90 #include <libfdt.h>
91 
92 /* SLOF memory layout:
93  *
94  * SLOF raw image loaded at 0, copies its romfs right below the flat
95  * device-tree, then position SLOF itself 31M below that
96  *
97  * So we set FW_OVERHEAD to 40MB which should account for all of that
98  * and more
99  *
100  * We load our kernel at 4M, leaving space for SLOF initial image
101  */
102 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
103 #define FW_MAX_SIZE             0x400000
104 #define FW_FILE_NAME            "slof.bin"
105 #define FW_OVERHEAD             0x2800000
106 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
107 
108 #define MIN_RMA_SLOF            (128 * MiB)
109 
110 #define PHANDLE_INTC            0x00001111
111 
112 /* These two functions implement the VCPU id numbering: one to compute them
113  * all and one to identify thread 0 of a VCORE. Any change to the first one
114  * is likely to have an impact on the second one, so let's keep them close.
115  */
116 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
117 {
118     MachineState *ms = MACHINE(spapr);
119     unsigned int smp_threads = ms->smp.threads;
120 
121     assert(spapr->vsmt);
122     return
123         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
124 }
125 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
126                                       PowerPCCPU *cpu)
127 {
128     assert(spapr->vsmt);
129     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
130 }
131 
132 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
133 {
134     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
135      * and newer QEMUs don't even have them. In both cases, we don't want
136      * to send anything on the wire.
137      */
138     return false;
139 }
140 
141 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
142     .name = "icp/server",
143     .version_id = 1,
144     .minimum_version_id = 1,
145     .needed = pre_2_10_vmstate_dummy_icp_needed,
146     .fields = (VMStateField[]) {
147         VMSTATE_UNUSED(4), /* uint32_t xirr */
148         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
149         VMSTATE_UNUSED(1), /* uint8_t mfrr */
150         VMSTATE_END_OF_LIST()
151     },
152 };
153 
154 static void pre_2_10_vmstate_register_dummy_icp(int i)
155 {
156     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
157                      (void *)(uintptr_t) i);
158 }
159 
160 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
161 {
162     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
163                        (void *)(uintptr_t) i);
164 }
165 
166 int spapr_max_server_number(SpaprMachineState *spapr)
167 {
168     MachineState *ms = MACHINE(spapr);
169 
170     assert(spapr->vsmt);
171     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
172 }
173 
174 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
175                                   int smt_threads)
176 {
177     int i, ret = 0;
178     uint32_t servers_prop[smt_threads];
179     uint32_t gservers_prop[smt_threads * 2];
180     int index = spapr_get_vcpu_id(cpu);
181 
182     if (cpu->compat_pvr) {
183         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
184         if (ret < 0) {
185             return ret;
186         }
187     }
188 
189     /* Build interrupt servers and gservers properties */
190     for (i = 0; i < smt_threads; i++) {
191         servers_prop[i] = cpu_to_be32(index + i);
192         /* Hack, direct the group queues back to cpu 0 */
193         gservers_prop[i*2] = cpu_to_be32(index + i);
194         gservers_prop[i*2 + 1] = 0;
195     }
196     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
197                       servers_prop, sizeof(servers_prop));
198     if (ret < 0) {
199         return ret;
200     }
201     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
202                       gservers_prop, sizeof(gservers_prop));
203 
204     return ret;
205 }
206 
207 static void spapr_dt_pa_features(SpaprMachineState *spapr,
208                                  PowerPCCPU *cpu,
209                                  void *fdt, int offset)
210 {
211     uint8_t pa_features_206[] = { 6, 0,
212         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
213     uint8_t pa_features_207[] = { 24, 0,
214         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
215         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
216         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
217         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
218     uint8_t pa_features_300[] = { 66, 0,
219         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
220         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
221         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
222         /* 6: DS207 */
223         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
224         /* 16: Vector */
225         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
226         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
227         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
228         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
229         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
230         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
231         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
232         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
234         /* 42: PM, 44: PC RA, 46: SC vec'd */
235         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
236         /* 48: SIMD, 50: QP BFP, 52: String */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
238         /* 54: DecFP, 56: DecI, 58: SHA */
239         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
240         /* 60: NM atomic, 62: RNG */
241         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
242     };
243     uint8_t *pa_features = NULL;
244     size_t pa_size;
245 
246     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
247         pa_features = pa_features_206;
248         pa_size = sizeof(pa_features_206);
249     }
250     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
251         pa_features = pa_features_207;
252         pa_size = sizeof(pa_features_207);
253     }
254     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
255         pa_features = pa_features_300;
256         pa_size = sizeof(pa_features_300);
257     }
258     if (!pa_features) {
259         return;
260     }
261 
262     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
263         /*
264          * Note: we keep CI large pages off by default because a 64K capable
265          * guest provisioned with large pages might otherwise try to map a qemu
266          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
267          * even if that qemu runs on a 4k host.
268          * We dd this bit back here if we are confident this is not an issue
269          */
270         pa_features[3] |= 0x20;
271     }
272     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
273         pa_features[24] |= 0x80;    /* Transactional memory support */
274     }
275     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
276         /* Workaround for broken kernels that attempt (guest) radix
277          * mode when they can't handle it, if they see the radix bit set
278          * in pa-features. So hide it from them. */
279         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
280     }
281 
282     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
283 }
284 
285 static hwaddr spapr_node0_size(MachineState *machine)
286 {
287     if (machine->numa_state->num_nodes) {
288         int i;
289         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
290             if (machine->numa_state->nodes[i].node_mem) {
291                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
292                            machine->ram_size);
293             }
294         }
295     }
296     return machine->ram_size;
297 }
298 
299 static void add_str(GString *s, const gchar *s1)
300 {
301     g_string_append_len(s, s1, strlen(s1) + 1);
302 }
303 
304 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
305                                 hwaddr start, hwaddr size)
306 {
307     char mem_name[32];
308     uint64_t mem_reg_property[2];
309     int off;
310 
311     mem_reg_property[0] = cpu_to_be64(start);
312     mem_reg_property[1] = cpu_to_be64(size);
313 
314     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
315     off = fdt_add_subnode(fdt, 0, mem_name);
316     _FDT(off);
317     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
318     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
319                       sizeof(mem_reg_property))));
320     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
321     return off;
322 }
323 
324 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
325 {
326     MemoryDeviceInfoList *info;
327 
328     for (info = list; info; info = info->next) {
329         MemoryDeviceInfo *value = info->value;
330 
331         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
332             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
333 
334             if (addr >= pcdimm_info->addr &&
335                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
336                 return pcdimm_info->node;
337             }
338         }
339     }
340 
341     return -1;
342 }
343 
344 struct sPAPRDrconfCellV2 {
345      uint32_t seq_lmbs;
346      uint64_t base_addr;
347      uint32_t drc_index;
348      uint32_t aa_index;
349      uint32_t flags;
350 } QEMU_PACKED;
351 
352 typedef struct DrconfCellQueue {
353     struct sPAPRDrconfCellV2 cell;
354     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
355 } DrconfCellQueue;
356 
357 static DrconfCellQueue *
358 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
359                       uint32_t drc_index, uint32_t aa_index,
360                       uint32_t flags)
361 {
362     DrconfCellQueue *elem;
363 
364     elem = g_malloc0(sizeof(*elem));
365     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
366     elem->cell.base_addr = cpu_to_be64(base_addr);
367     elem->cell.drc_index = cpu_to_be32(drc_index);
368     elem->cell.aa_index = cpu_to_be32(aa_index);
369     elem->cell.flags = cpu_to_be32(flags);
370 
371     return elem;
372 }
373 
374 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
375                                       int offset, MemoryDeviceInfoList *dimms)
376 {
377     MachineState *machine = MACHINE(spapr);
378     uint8_t *int_buf, *cur_index;
379     int ret;
380     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
381     uint64_t addr, cur_addr, size;
382     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
383     uint64_t mem_end = machine->device_memory->base +
384                        memory_region_size(&machine->device_memory->mr);
385     uint32_t node, buf_len, nr_entries = 0;
386     SpaprDrc *drc;
387     DrconfCellQueue *elem, *next;
388     MemoryDeviceInfoList *info;
389     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
390         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
391 
392     /* Entry to cover RAM and the gap area */
393     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
394                                  SPAPR_LMB_FLAGS_RESERVED |
395                                  SPAPR_LMB_FLAGS_DRC_INVALID);
396     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
397     nr_entries++;
398 
399     cur_addr = machine->device_memory->base;
400     for (info = dimms; info; info = info->next) {
401         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
402 
403         addr = di->addr;
404         size = di->size;
405         node = di->node;
406 
407         /*
408          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
409          * area is marked hotpluggable in the next iteration for the bigger
410          * chunk including the NVDIMM occupied area.
411          */
412         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
413             continue;
414 
415         /* Entry for hot-pluggable area */
416         if (cur_addr < addr) {
417             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
418             g_assert(drc);
419             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
420                                          cur_addr, spapr_drc_index(drc), -1, 0);
421             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
422             nr_entries++;
423         }
424 
425         /* Entry for DIMM */
426         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
427         g_assert(drc);
428         elem = spapr_get_drconf_cell(size / lmb_size, addr,
429                                      spapr_drc_index(drc), node,
430                                      (SPAPR_LMB_FLAGS_ASSIGNED |
431                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
432         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
433         nr_entries++;
434         cur_addr = addr + size;
435     }
436 
437     /* Entry for remaining hotpluggable area */
438     if (cur_addr < mem_end) {
439         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
440         g_assert(drc);
441         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
442                                      cur_addr, spapr_drc_index(drc), -1, 0);
443         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
444         nr_entries++;
445     }
446 
447     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
448     int_buf = cur_index = g_malloc0(buf_len);
449     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
450     cur_index += sizeof(nr_entries);
451 
452     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
453         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
454         cur_index += sizeof(elem->cell);
455         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
456         g_free(elem);
457     }
458 
459     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
460     g_free(int_buf);
461     if (ret < 0) {
462         return -1;
463     }
464     return 0;
465 }
466 
467 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
468                                    int offset, MemoryDeviceInfoList *dimms)
469 {
470     MachineState *machine = MACHINE(spapr);
471     int i, ret;
472     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
473     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
474     uint32_t nr_lmbs = (machine->device_memory->base +
475                        memory_region_size(&machine->device_memory->mr)) /
476                        lmb_size;
477     uint32_t *int_buf, *cur_index, buf_len;
478 
479     /*
480      * Allocate enough buffer size to fit in ibm,dynamic-memory
481      */
482     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
483     cur_index = int_buf = g_malloc0(buf_len);
484     int_buf[0] = cpu_to_be32(nr_lmbs);
485     cur_index++;
486     for (i = 0; i < nr_lmbs; i++) {
487         uint64_t addr = i * lmb_size;
488         uint32_t *dynamic_memory = cur_index;
489 
490         if (i >= device_lmb_start) {
491             SpaprDrc *drc;
492 
493             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
494             g_assert(drc);
495 
496             dynamic_memory[0] = cpu_to_be32(addr >> 32);
497             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
498             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
499             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
500             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
501             if (memory_region_present(get_system_memory(), addr)) {
502                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
503             } else {
504                 dynamic_memory[5] = cpu_to_be32(0);
505             }
506         } else {
507             /*
508              * LMB information for RMA, boot time RAM and gap b/n RAM and
509              * device memory region -- all these are marked as reserved
510              * and as having no valid DRC.
511              */
512             dynamic_memory[0] = cpu_to_be32(addr >> 32);
513             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
514             dynamic_memory[2] = cpu_to_be32(0);
515             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
516             dynamic_memory[4] = cpu_to_be32(-1);
517             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
518                                             SPAPR_LMB_FLAGS_DRC_INVALID);
519         }
520 
521         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
522     }
523     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
524     g_free(int_buf);
525     if (ret < 0) {
526         return -1;
527     }
528     return 0;
529 }
530 
531 /*
532  * Adds ibm,dynamic-reconfiguration-memory node.
533  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
534  * of this device tree node.
535  */
536 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
537                                                    void *fdt)
538 {
539     MachineState *machine = MACHINE(spapr);
540     int ret, offset;
541     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
542     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
543                                 cpu_to_be32(lmb_size & 0xffffffff)};
544     MemoryDeviceInfoList *dimms = NULL;
545 
546     /*
547      * Don't create the node if there is no device memory
548      */
549     if (machine->ram_size == machine->maxram_size) {
550         return 0;
551     }
552 
553     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
554 
555     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
556                     sizeof(prop_lmb_size));
557     if (ret < 0) {
558         return ret;
559     }
560 
561     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
562     if (ret < 0) {
563         return ret;
564     }
565 
566     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
567     if (ret < 0) {
568         return ret;
569     }
570 
571     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
572     dimms = qmp_memory_device_list();
573     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
574         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
575     } else {
576         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
577     }
578     qapi_free_MemoryDeviceInfoList(dimms);
579 
580     if (ret < 0) {
581         return ret;
582     }
583 
584     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
585 
586     return ret;
587 }
588 
589 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
590 {
591     MachineState *machine = MACHINE(spapr);
592     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
593     hwaddr mem_start, node_size;
594     int i, nb_nodes = machine->numa_state->num_nodes;
595     NodeInfo *nodes = machine->numa_state->nodes;
596 
597     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
598         if (!nodes[i].node_mem) {
599             continue;
600         }
601         if (mem_start >= machine->ram_size) {
602             node_size = 0;
603         } else {
604             node_size = nodes[i].node_mem;
605             if (node_size > machine->ram_size - mem_start) {
606                 node_size = machine->ram_size - mem_start;
607             }
608         }
609         if (!mem_start) {
610             /* spapr_machine_init() checks for rma_size <= node0_size
611              * already */
612             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
613             mem_start += spapr->rma_size;
614             node_size -= spapr->rma_size;
615         }
616         for ( ; node_size; ) {
617             hwaddr sizetmp = pow2floor(node_size);
618 
619             /* mem_start != 0 here */
620             if (ctzl(mem_start) < ctzl(sizetmp)) {
621                 sizetmp = 1ULL << ctzl(mem_start);
622             }
623 
624             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
625             node_size -= sizetmp;
626             mem_start += sizetmp;
627         }
628     }
629 
630     /* Generate ibm,dynamic-reconfiguration-memory node if required */
631     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
632         int ret;
633 
634         g_assert(smc->dr_lmb_enabled);
635         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
636         if (ret) {
637             return ret;
638         }
639     }
640 
641     return 0;
642 }
643 
644 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
645                          SpaprMachineState *spapr)
646 {
647     MachineState *ms = MACHINE(spapr);
648     PowerPCCPU *cpu = POWERPC_CPU(cs);
649     CPUPPCState *env = &cpu->env;
650     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
651     int index = spapr_get_vcpu_id(cpu);
652     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
653                        0xffffffff, 0xffffffff};
654     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
655         : SPAPR_TIMEBASE_FREQ;
656     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
657     uint32_t page_sizes_prop[64];
658     size_t page_sizes_prop_size;
659     unsigned int smp_threads = ms->smp.threads;
660     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
661     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
662     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
663     SpaprDrc *drc;
664     int drc_index;
665     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
666     int i;
667 
668     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
669     if (drc) {
670         drc_index = spapr_drc_index(drc);
671         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
672     }
673 
674     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
675     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
676 
677     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
678     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
679                            env->dcache_line_size)));
680     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
681                            env->dcache_line_size)));
682     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
683                            env->icache_line_size)));
684     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
685                            env->icache_line_size)));
686 
687     if (pcc->l1_dcache_size) {
688         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
689                                pcc->l1_dcache_size)));
690     } else {
691         warn_report("Unknown L1 dcache size for cpu");
692     }
693     if (pcc->l1_icache_size) {
694         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
695                                pcc->l1_icache_size)));
696     } else {
697         warn_report("Unknown L1 icache size for cpu");
698     }
699 
700     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
701     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
702     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
703     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
704     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
705     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
706 
707     if (env->spr_cb[SPR_PURR].oea_read) {
708         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
709     }
710     if (env->spr_cb[SPR_SPURR].oea_read) {
711         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
712     }
713 
714     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
715         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
716                           segs, sizeof(segs))));
717     }
718 
719     /* Advertise VSX (vector extensions) if available
720      *   1               == VMX / Altivec available
721      *   2               == VSX available
722      *
723      * Only CPUs for which we create core types in spapr_cpu_core.c
724      * are possible, and all of those have VMX */
725     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
726         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
727     } else {
728         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
729     }
730 
731     /* Advertise DFP (Decimal Floating Point) if available
732      *   0 / no property == no DFP
733      *   1               == DFP available */
734     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
735         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
736     }
737 
738     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
739                                                       sizeof(page_sizes_prop));
740     if (page_sizes_prop_size) {
741         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
742                           page_sizes_prop, page_sizes_prop_size)));
743     }
744 
745     spapr_dt_pa_features(spapr, cpu, fdt, offset);
746 
747     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
748                            cs->cpu_index / vcpus_per_socket)));
749 
750     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
751                       pft_size_prop, sizeof(pft_size_prop))));
752 
753     if (ms->numa_state->num_nodes > 1) {
754         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
755     }
756 
757     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
758 
759     if (pcc->radix_page_info) {
760         for (i = 0; i < pcc->radix_page_info->count; i++) {
761             radix_AP_encodings[i] =
762                 cpu_to_be32(pcc->radix_page_info->entries[i]);
763         }
764         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
765                           radix_AP_encodings,
766                           pcc->radix_page_info->count *
767                           sizeof(radix_AP_encodings[0]))));
768     }
769 
770     /*
771      * We set this property to let the guest know that it can use the large
772      * decrementer and its width in bits.
773      */
774     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
775         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
776                               pcc->lrg_decr_bits)));
777 }
778 
779 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
780 {
781     CPUState **rev;
782     CPUState *cs;
783     int n_cpus;
784     int cpus_offset;
785     int i;
786 
787     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
788     _FDT(cpus_offset);
789     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
790     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
791 
792     /*
793      * We walk the CPUs in reverse order to ensure that CPU DT nodes
794      * created by fdt_add_subnode() end up in the right order in FDT
795      * for the guest kernel the enumerate the CPUs correctly.
796      *
797      * The CPU list cannot be traversed in reverse order, so we need
798      * to do extra work.
799      */
800     n_cpus = 0;
801     rev = NULL;
802     CPU_FOREACH(cs) {
803         rev = g_renew(CPUState *, rev, n_cpus + 1);
804         rev[n_cpus++] = cs;
805     }
806 
807     for (i = n_cpus - 1; i >= 0; i--) {
808         CPUState *cs = rev[i];
809         PowerPCCPU *cpu = POWERPC_CPU(cs);
810         int index = spapr_get_vcpu_id(cpu);
811         DeviceClass *dc = DEVICE_GET_CLASS(cs);
812         g_autofree char *nodename = NULL;
813         int offset;
814 
815         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
816             continue;
817         }
818 
819         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
820         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
821         _FDT(offset);
822         spapr_dt_cpu(cs, fdt, offset, spapr);
823     }
824 
825     g_free(rev);
826 }
827 
828 static int spapr_dt_rng(void *fdt)
829 {
830     int node;
831     int ret;
832 
833     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
834     if (node <= 0) {
835         return -1;
836     }
837     ret = fdt_setprop_string(fdt, node, "device_type",
838                              "ibm,platform-facilities");
839     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
840     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
841 
842     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
843     if (node <= 0) {
844         return -1;
845     }
846     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
847 
848     return ret ? -1 : 0;
849 }
850 
851 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
852 {
853     MachineState *ms = MACHINE(spapr);
854     int rtas;
855     GString *hypertas = g_string_sized_new(256);
856     GString *qemu_hypertas = g_string_sized_new(256);
857     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
858         memory_region_size(&MACHINE(spapr)->device_memory->mr);
859     uint32_t lrdr_capacity[] = {
860         cpu_to_be32(max_device_addr >> 32),
861         cpu_to_be32(max_device_addr & 0xffffffff),
862         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
863         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
864         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
865     };
866 
867     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
868 
869     /* hypertas */
870     add_str(hypertas, "hcall-pft");
871     add_str(hypertas, "hcall-term");
872     add_str(hypertas, "hcall-dabr");
873     add_str(hypertas, "hcall-interrupt");
874     add_str(hypertas, "hcall-tce");
875     add_str(hypertas, "hcall-vio");
876     add_str(hypertas, "hcall-splpar");
877     add_str(hypertas, "hcall-join");
878     add_str(hypertas, "hcall-bulk");
879     add_str(hypertas, "hcall-set-mode");
880     add_str(hypertas, "hcall-sprg0");
881     add_str(hypertas, "hcall-copy");
882     add_str(hypertas, "hcall-debug");
883     add_str(hypertas, "hcall-vphn");
884     add_str(qemu_hypertas, "hcall-memop1");
885 
886     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
887         add_str(hypertas, "hcall-multi-tce");
888     }
889 
890     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
891         add_str(hypertas, "hcall-hpt-resize");
892     }
893 
894     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
895                      hypertas->str, hypertas->len));
896     g_string_free(hypertas, TRUE);
897     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
898                      qemu_hypertas->str, qemu_hypertas->len));
899     g_string_free(qemu_hypertas, TRUE);
900 
901     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
902 
903     /*
904      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
905      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
906      *
907      * The system reset requirements are driven by existing Linux and PowerVM
908      * implementation which (contrary to PAPR) saves r3 in the error log
909      * structure like machine check, so Linux expects to find the saved r3
910      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
911      * does not look at the error value).
912      *
913      * System reset interrupts are not subject to interlock like machine
914      * check, so this memory area could be corrupted if the sreset is
915      * interrupted by a machine check (or vice versa) if it was shared. To
916      * prevent this, system reset uses per-CPU areas for the sreset save
917      * area. A system reset that interrupts a system reset handler could
918      * still overwrite this area, but Linux doesn't try to recover in that
919      * case anyway.
920      *
921      * The extra 8 bytes is required because Linux's FWNMI error log check
922      * is off-by-one.
923      */
924     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
925 			  ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
926     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
927                           RTAS_ERROR_LOG_MAX));
928     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
929                           RTAS_EVENT_SCAN_RATE));
930 
931     g_assert(msi_nonbroken);
932     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
933 
934     /*
935      * According to PAPR, rtas ibm,os-term does not guarantee a return
936      * back to the guest cpu.
937      *
938      * While an additional ibm,extended-os-term property indicates
939      * that rtas call return will always occur. Set this property.
940      */
941     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
942 
943     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
944                      lrdr_capacity, sizeof(lrdr_capacity)));
945 
946     spapr_dt_rtas_tokens(fdt, rtas);
947 }
948 
949 /*
950  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
951  * and the XIVE features that the guest may request and thus the valid
952  * values for bytes 23..26 of option vector 5:
953  */
954 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
955                                           int chosen)
956 {
957     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
958 
959     char val[2 * 4] = {
960         23, 0x00, /* XICS / XIVE mode */
961         24, 0x00, /* Hash/Radix, filled in below. */
962         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
963         26, 0x40, /* Radix options: GTSE == yes. */
964     };
965 
966     if (spapr->irq->xics && spapr->irq->xive) {
967         val[1] = SPAPR_OV5_XIVE_BOTH;
968     } else if (spapr->irq->xive) {
969         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
970     } else {
971         assert(spapr->irq->xics);
972         val[1] = SPAPR_OV5_XIVE_LEGACY;
973     }
974 
975     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
976                           first_ppc_cpu->compat_pvr)) {
977         /*
978          * If we're in a pre POWER9 compat mode then the guest should
979          * do hash and use the legacy interrupt mode
980          */
981         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
982         val[3] = 0x00; /* Hash */
983     } else if (kvm_enabled()) {
984         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
985             val[3] = 0x80; /* OV5_MMU_BOTH */
986         } else if (kvmppc_has_cap_mmu_radix()) {
987             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
988         } else {
989             val[3] = 0x00; /* Hash */
990         }
991     } else {
992         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
993         val[3] = 0xC0;
994     }
995     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
996                      val, sizeof(val)));
997 }
998 
999 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1000 {
1001     MachineState *machine = MACHINE(spapr);
1002     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1003     int chosen;
1004 
1005     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1006 
1007     if (reset) {
1008         const char *boot_device = machine->boot_order;
1009         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1010         size_t cb = 0;
1011         char *bootlist = get_boot_devices_list(&cb);
1012 
1013         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1014             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1015                                     machine->kernel_cmdline));
1016         }
1017 
1018         if (spapr->initrd_size) {
1019             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1020                                   spapr->initrd_base));
1021             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1022                                   spapr->initrd_base + spapr->initrd_size));
1023         }
1024 
1025         if (spapr->kernel_size) {
1026             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1027                                   cpu_to_be64(spapr->kernel_size) };
1028 
1029             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1030                          &kprop, sizeof(kprop)));
1031             if (spapr->kernel_le) {
1032                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1033             }
1034         }
1035         if (boot_menu) {
1036             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1037         }
1038         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1039         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1040         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1041 
1042         if (cb && bootlist) {
1043             int i;
1044 
1045             for (i = 0; i < cb; i++) {
1046                 if (bootlist[i] == '\n') {
1047                     bootlist[i] = ' ';
1048                 }
1049             }
1050             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1051         }
1052 
1053         if (boot_device && strlen(boot_device)) {
1054             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1055         }
1056 
1057         if (!spapr->has_graphics && stdout_path) {
1058             /*
1059              * "linux,stdout-path" and "stdout" properties are
1060              * deprecated by linux kernel. New platforms should only
1061              * use the "stdout-path" property. Set the new property
1062              * and continue using older property to remain compatible
1063              * with the existing firmware.
1064              */
1065             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1066             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1067         }
1068 
1069         /*
1070          * We can deal with BAR reallocation just fine, advertise it
1071          * to the guest
1072          */
1073         if (smc->linux_pci_probe) {
1074             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1075         }
1076 
1077         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1078 
1079         g_free(stdout_path);
1080         g_free(bootlist);
1081     }
1082 
1083     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1084 }
1085 
1086 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1087 {
1088     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1089      * KVM to work under pHyp with some guest co-operation */
1090     int hypervisor;
1091     uint8_t hypercall[16];
1092 
1093     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1094     /* indicate KVM hypercall interface */
1095     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1096     if (kvmppc_has_cap_fixup_hcalls()) {
1097         /*
1098          * Older KVM versions with older guest kernels were broken
1099          * with the magic page, don't allow the guest to map it.
1100          */
1101         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1102                                   sizeof(hypercall))) {
1103             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1104                              hypercall, sizeof(hypercall)));
1105         }
1106     }
1107 }
1108 
1109 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1110 {
1111     MachineState *machine = MACHINE(spapr);
1112     MachineClass *mc = MACHINE_GET_CLASS(machine);
1113     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1114     uint32_t root_drc_type_mask = 0;
1115     int ret;
1116     void *fdt;
1117     SpaprPhbState *phb;
1118     char *buf;
1119 
1120     fdt = g_malloc0(space);
1121     _FDT((fdt_create_empty_tree(fdt, space)));
1122 
1123     /* Root node */
1124     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1125     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1126     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1127 
1128     /* Guest UUID & Name*/
1129     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1130     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1131     if (qemu_uuid_set) {
1132         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1133     }
1134     g_free(buf);
1135 
1136     if (qemu_get_vm_name()) {
1137         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1138                                 qemu_get_vm_name()));
1139     }
1140 
1141     /* Host Model & Serial Number */
1142     if (spapr->host_model) {
1143         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1144     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1145         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1146         g_free(buf);
1147     }
1148 
1149     if (spapr->host_serial) {
1150         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1151     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1152         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1153         g_free(buf);
1154     }
1155 
1156     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1157     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1158 
1159     /* /interrupt controller */
1160     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1161 
1162     ret = spapr_dt_memory(spapr, fdt);
1163     if (ret < 0) {
1164         error_report("couldn't setup memory nodes in fdt");
1165         exit(1);
1166     }
1167 
1168     /* /vdevice */
1169     spapr_dt_vdevice(spapr->vio_bus, fdt);
1170 
1171     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1172         ret = spapr_dt_rng(fdt);
1173         if (ret < 0) {
1174             error_report("could not set up rng device in the fdt");
1175             exit(1);
1176         }
1177     }
1178 
1179     QLIST_FOREACH(phb, &spapr->phbs, list) {
1180         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1181         if (ret < 0) {
1182             error_report("couldn't setup PCI devices in fdt");
1183             exit(1);
1184         }
1185     }
1186 
1187     spapr_dt_cpus(fdt, spapr);
1188 
1189     /* ibm,drc-indexes and friends */
1190     if (smc->dr_lmb_enabled) {
1191         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1192     }
1193     if (smc->dr_phb_enabled) {
1194         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1195     }
1196     if (mc->nvdimm_supported) {
1197         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1198     }
1199     if (root_drc_type_mask) {
1200         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1201     }
1202 
1203     if (mc->has_hotpluggable_cpus) {
1204         int offset = fdt_path_offset(fdt, "/cpus");
1205         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1206         if (ret < 0) {
1207             error_report("Couldn't set up CPU DR device tree properties");
1208             exit(1);
1209         }
1210     }
1211 
1212     /* /event-sources */
1213     spapr_dt_events(spapr, fdt);
1214 
1215     /* /rtas */
1216     spapr_dt_rtas(spapr, fdt);
1217 
1218     /* /chosen */
1219     spapr_dt_chosen(spapr, fdt, reset);
1220 
1221     /* /hypervisor */
1222     if (kvm_enabled()) {
1223         spapr_dt_hypervisor(spapr, fdt);
1224     }
1225 
1226     /* Build memory reserve map */
1227     if (reset) {
1228         if (spapr->kernel_size) {
1229             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1230                                   spapr->kernel_size)));
1231         }
1232         if (spapr->initrd_size) {
1233             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1234                                   spapr->initrd_size)));
1235         }
1236     }
1237 
1238     /* NVDIMM devices */
1239     if (mc->nvdimm_supported) {
1240         spapr_dt_persistent_memory(spapr, fdt);
1241     }
1242 
1243     return fdt;
1244 }
1245 
1246 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1247 {
1248     SpaprMachineState *spapr = opaque;
1249 
1250     return (addr & 0x0fffffff) + spapr->kernel_addr;
1251 }
1252 
1253 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1254                                     PowerPCCPU *cpu)
1255 {
1256     CPUPPCState *env = &cpu->env;
1257 
1258     /* The TCG path should also be holding the BQL at this point */
1259     g_assert(qemu_mutex_iothread_locked());
1260 
1261     if (msr_pr) {
1262         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1263         env->gpr[3] = H_PRIVILEGE;
1264     } else {
1265         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1266     }
1267 }
1268 
1269 struct LPCRSyncState {
1270     target_ulong value;
1271     target_ulong mask;
1272 };
1273 
1274 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1275 {
1276     struct LPCRSyncState *s = arg.host_ptr;
1277     PowerPCCPU *cpu = POWERPC_CPU(cs);
1278     CPUPPCState *env = &cpu->env;
1279     target_ulong lpcr;
1280 
1281     cpu_synchronize_state(cs);
1282     lpcr = env->spr[SPR_LPCR];
1283     lpcr &= ~s->mask;
1284     lpcr |= s->value;
1285     ppc_store_lpcr(cpu, lpcr);
1286 }
1287 
1288 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1289 {
1290     CPUState *cs;
1291     struct LPCRSyncState s = {
1292         .value = value,
1293         .mask = mask
1294     };
1295     CPU_FOREACH(cs) {
1296         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1297     }
1298 }
1299 
1300 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1301 {
1302     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1303 
1304     /* Copy PATE1:GR into PATE0:HR */
1305     entry->dw0 = spapr->patb_entry & PATE0_HR;
1306     entry->dw1 = spapr->patb_entry;
1307 }
1308 
1309 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1310 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1311 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1312 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1313 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1314 
1315 /*
1316  * Get the fd to access the kernel htab, re-opening it if necessary
1317  */
1318 static int get_htab_fd(SpaprMachineState *spapr)
1319 {
1320     Error *local_err = NULL;
1321 
1322     if (spapr->htab_fd >= 0) {
1323         return spapr->htab_fd;
1324     }
1325 
1326     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1327     if (spapr->htab_fd < 0) {
1328         error_report_err(local_err);
1329     }
1330 
1331     return spapr->htab_fd;
1332 }
1333 
1334 void close_htab_fd(SpaprMachineState *spapr)
1335 {
1336     if (spapr->htab_fd >= 0) {
1337         close(spapr->htab_fd);
1338     }
1339     spapr->htab_fd = -1;
1340 }
1341 
1342 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1343 {
1344     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1345 
1346     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1347 }
1348 
1349 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1350 {
1351     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1352 
1353     assert(kvm_enabled());
1354 
1355     if (!spapr->htab) {
1356         return 0;
1357     }
1358 
1359     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1360 }
1361 
1362 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1363                                                 hwaddr ptex, int n)
1364 {
1365     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1366     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1367 
1368     if (!spapr->htab) {
1369         /*
1370          * HTAB is controlled by KVM. Fetch into temporary buffer
1371          */
1372         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1373         kvmppc_read_hptes(hptes, ptex, n);
1374         return hptes;
1375     }
1376 
1377     /*
1378      * HTAB is controlled by QEMU. Just point to the internally
1379      * accessible PTEG.
1380      */
1381     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1382 }
1383 
1384 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1385                               const ppc_hash_pte64_t *hptes,
1386                               hwaddr ptex, int n)
1387 {
1388     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1389 
1390     if (!spapr->htab) {
1391         g_free((void *)hptes);
1392     }
1393 
1394     /* Nothing to do for qemu managed HPT */
1395 }
1396 
1397 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1398                       uint64_t pte0, uint64_t pte1)
1399 {
1400     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1401     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1402 
1403     if (!spapr->htab) {
1404         kvmppc_write_hpte(ptex, pte0, pte1);
1405     } else {
1406         if (pte0 & HPTE64_V_VALID) {
1407             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1408             /*
1409              * When setting valid, we write PTE1 first. This ensures
1410              * proper synchronization with the reading code in
1411              * ppc_hash64_pteg_search()
1412              */
1413             smp_wmb();
1414             stq_p(spapr->htab + offset, pte0);
1415         } else {
1416             stq_p(spapr->htab + offset, pte0);
1417             /*
1418              * When clearing it we set PTE0 first. This ensures proper
1419              * synchronization with the reading code in
1420              * ppc_hash64_pteg_search()
1421              */
1422             smp_wmb();
1423             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1424         }
1425     }
1426 }
1427 
1428 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1429                              uint64_t pte1)
1430 {
1431     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1432     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1433 
1434     if (!spapr->htab) {
1435         /* There should always be a hash table when this is called */
1436         error_report("spapr_hpte_set_c called with no hash table !");
1437         return;
1438     }
1439 
1440     /* The HW performs a non-atomic byte update */
1441     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1442 }
1443 
1444 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1445                              uint64_t pte1)
1446 {
1447     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1448     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1449 
1450     if (!spapr->htab) {
1451         /* There should always be a hash table when this is called */
1452         error_report("spapr_hpte_set_r called with no hash table !");
1453         return;
1454     }
1455 
1456     /* The HW performs a non-atomic byte update */
1457     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1458 }
1459 
1460 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1461 {
1462     int shift;
1463 
1464     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1465      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1466      * that's much more than is needed for Linux guests */
1467     shift = ctz64(pow2ceil(ramsize)) - 7;
1468     shift = MAX(shift, 18); /* Minimum architected size */
1469     shift = MIN(shift, 46); /* Maximum architected size */
1470     return shift;
1471 }
1472 
1473 void spapr_free_hpt(SpaprMachineState *spapr)
1474 {
1475     g_free(spapr->htab);
1476     spapr->htab = NULL;
1477     spapr->htab_shift = 0;
1478     close_htab_fd(spapr);
1479 }
1480 
1481 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1482 {
1483     ERRP_GUARD();
1484     long rc;
1485 
1486     /* Clean up any HPT info from a previous boot */
1487     spapr_free_hpt(spapr);
1488 
1489     rc = kvmppc_reset_htab(shift);
1490 
1491     if (rc == -EOPNOTSUPP) {
1492         error_setg(errp, "HPT not supported in nested guests");
1493         return -EOPNOTSUPP;
1494     }
1495 
1496     if (rc < 0) {
1497         /* kernel-side HPT needed, but couldn't allocate one */
1498         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1499                          shift);
1500         error_append_hint(errp, "Try smaller maxmem?\n");
1501         return -errno;
1502     } else if (rc > 0) {
1503         /* kernel-side HPT allocated */
1504         if (rc != shift) {
1505             error_setg(errp,
1506                        "Requested order %d HPT, but kernel allocated order %ld",
1507                        shift, rc);
1508             error_append_hint(errp, "Try smaller maxmem?\n");
1509             return -ENOSPC;
1510         }
1511 
1512         spapr->htab_shift = shift;
1513         spapr->htab = NULL;
1514     } else {
1515         /* kernel-side HPT not needed, allocate in userspace instead */
1516         size_t size = 1ULL << shift;
1517         int i;
1518 
1519         spapr->htab = qemu_memalign(size, size);
1520         memset(spapr->htab, 0, size);
1521         spapr->htab_shift = shift;
1522 
1523         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1524             DIRTY_HPTE(HPTE(spapr->htab, i));
1525         }
1526     }
1527     /* We're setting up a hash table, so that means we're not radix */
1528     spapr->patb_entry = 0;
1529     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1530     return 0;
1531 }
1532 
1533 void spapr_setup_hpt(SpaprMachineState *spapr)
1534 {
1535     int hpt_shift;
1536 
1537     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1538         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1539     } else {
1540         uint64_t current_ram_size;
1541 
1542         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1543         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1544     }
1545     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1546 
1547     if (kvm_enabled()) {
1548         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1549 
1550         /* Check our RMA fits in the possible VRMA */
1551         if (vrma_limit < spapr->rma_size) {
1552             error_report("Unable to create %" HWADDR_PRIu
1553                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1554                          spapr->rma_size / MiB, vrma_limit / MiB);
1555             exit(EXIT_FAILURE);
1556         }
1557     }
1558 }
1559 
1560 static void spapr_machine_reset(MachineState *machine)
1561 {
1562     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1563     PowerPCCPU *first_ppc_cpu;
1564     hwaddr fdt_addr;
1565     void *fdt;
1566     int rc;
1567 
1568     pef_kvm_reset(machine->cgs, &error_fatal);
1569     spapr_caps_apply(spapr);
1570 
1571     first_ppc_cpu = POWERPC_CPU(first_cpu);
1572     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1573         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1574                               spapr->max_compat_pvr)) {
1575         /*
1576          * If using KVM with radix mode available, VCPUs can be started
1577          * without a HPT because KVM will start them in radix mode.
1578          * Set the GR bit in PATE so that we know there is no HPT.
1579          */
1580         spapr->patb_entry = PATE1_GR;
1581         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1582     } else {
1583         spapr_setup_hpt(spapr);
1584     }
1585 
1586     qemu_devices_reset();
1587 
1588     spapr_ovec_cleanup(spapr->ov5_cas);
1589     spapr->ov5_cas = spapr_ovec_new();
1590 
1591     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1592 
1593     /*
1594      * This is fixing some of the default configuration of the XIVE
1595      * devices. To be called after the reset of the machine devices.
1596      */
1597     spapr_irq_reset(spapr, &error_fatal);
1598 
1599     /*
1600      * There is no CAS under qtest. Simulate one to please the code that
1601      * depends on spapr->ov5_cas. This is especially needed to test device
1602      * unplug, so we do that before resetting the DRCs.
1603      */
1604     if (qtest_enabled()) {
1605         spapr_ovec_cleanup(spapr->ov5_cas);
1606         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1607     }
1608 
1609     /* DRC reset may cause a device to be unplugged. This will cause troubles
1610      * if this device is used by another device (eg, a running vhost backend
1611      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1612      * situations, we reset DRCs after all devices have been reset.
1613      */
1614     spapr_drc_reset_all(spapr);
1615 
1616     spapr_clear_pending_events(spapr);
1617 
1618     /*
1619      * We place the device tree and RTAS just below either the top of the RMA,
1620      * or just below 2GB, whichever is lower, so that it can be
1621      * processed with 32-bit real mode code if necessary
1622      */
1623     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1624 
1625     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1626 
1627     rc = fdt_pack(fdt);
1628 
1629     /* Should only fail if we've built a corrupted tree */
1630     assert(rc == 0);
1631 
1632     /* Load the fdt */
1633     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1634     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1635     g_free(spapr->fdt_blob);
1636     spapr->fdt_size = fdt_totalsize(fdt);
1637     spapr->fdt_initial_size = spapr->fdt_size;
1638     spapr->fdt_blob = fdt;
1639 
1640     /* Set up the entry state */
1641     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1642     first_ppc_cpu->env.gpr[5] = 0;
1643 
1644     spapr->fwnmi_system_reset_addr = -1;
1645     spapr->fwnmi_machine_check_addr = -1;
1646     spapr->fwnmi_machine_check_interlock = -1;
1647 
1648     /* Signal all vCPUs waiting on this condition */
1649     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1650 
1651     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1652 }
1653 
1654 static void spapr_create_nvram(SpaprMachineState *spapr)
1655 {
1656     DeviceState *dev = qdev_new("spapr-nvram");
1657     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1658 
1659     if (dinfo) {
1660         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1661                                 &error_fatal);
1662     }
1663 
1664     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1665 
1666     spapr->nvram = (struct SpaprNvram *)dev;
1667 }
1668 
1669 static void spapr_rtc_create(SpaprMachineState *spapr)
1670 {
1671     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1672                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1673                                        &error_fatal, NULL);
1674     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1675     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1676                               "date");
1677 }
1678 
1679 /* Returns whether we want to use VGA or not */
1680 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1681 {
1682     switch (vga_interface_type) {
1683     case VGA_NONE:
1684         return false;
1685     case VGA_DEVICE:
1686         return true;
1687     case VGA_STD:
1688     case VGA_VIRTIO:
1689     case VGA_CIRRUS:
1690         return pci_vga_init(pci_bus) != NULL;
1691     default:
1692         error_setg(errp,
1693                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1694         return false;
1695     }
1696 }
1697 
1698 static int spapr_pre_load(void *opaque)
1699 {
1700     int rc;
1701 
1702     rc = spapr_caps_pre_load(opaque);
1703     if (rc) {
1704         return rc;
1705     }
1706 
1707     return 0;
1708 }
1709 
1710 static int spapr_post_load(void *opaque, int version_id)
1711 {
1712     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1713     int err = 0;
1714 
1715     err = spapr_caps_post_migration(spapr);
1716     if (err) {
1717         return err;
1718     }
1719 
1720     /*
1721      * In earlier versions, there was no separate qdev for the PAPR
1722      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1723      * So when migrating from those versions, poke the incoming offset
1724      * value into the RTC device
1725      */
1726     if (version_id < 3) {
1727         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1728         if (err) {
1729             return err;
1730         }
1731     }
1732 
1733     if (kvm_enabled() && spapr->patb_entry) {
1734         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1735         bool radix = !!(spapr->patb_entry & PATE1_GR);
1736         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1737 
1738         /*
1739          * Update LPCR:HR and UPRT as they may not be set properly in
1740          * the stream
1741          */
1742         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1743                             LPCR_HR | LPCR_UPRT);
1744 
1745         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1746         if (err) {
1747             error_report("Process table config unsupported by the host");
1748             return -EINVAL;
1749         }
1750     }
1751 
1752     err = spapr_irq_post_load(spapr, version_id);
1753     if (err) {
1754         return err;
1755     }
1756 
1757     return err;
1758 }
1759 
1760 static int spapr_pre_save(void *opaque)
1761 {
1762     int rc;
1763 
1764     rc = spapr_caps_pre_save(opaque);
1765     if (rc) {
1766         return rc;
1767     }
1768 
1769     return 0;
1770 }
1771 
1772 static bool version_before_3(void *opaque, int version_id)
1773 {
1774     return version_id < 3;
1775 }
1776 
1777 static bool spapr_pending_events_needed(void *opaque)
1778 {
1779     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1780     return !QTAILQ_EMPTY(&spapr->pending_events);
1781 }
1782 
1783 static const VMStateDescription vmstate_spapr_event_entry = {
1784     .name = "spapr_event_log_entry",
1785     .version_id = 1,
1786     .minimum_version_id = 1,
1787     .fields = (VMStateField[]) {
1788         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1789         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1790         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1791                                      NULL, extended_length),
1792         VMSTATE_END_OF_LIST()
1793     },
1794 };
1795 
1796 static const VMStateDescription vmstate_spapr_pending_events = {
1797     .name = "spapr_pending_events",
1798     .version_id = 1,
1799     .minimum_version_id = 1,
1800     .needed = spapr_pending_events_needed,
1801     .fields = (VMStateField[]) {
1802         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1803                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1804         VMSTATE_END_OF_LIST()
1805     },
1806 };
1807 
1808 static bool spapr_ov5_cas_needed(void *opaque)
1809 {
1810     SpaprMachineState *spapr = opaque;
1811     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1812     bool cas_needed;
1813 
1814     /* Prior to the introduction of SpaprOptionVector, we had two option
1815      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1816      * Both of these options encode machine topology into the device-tree
1817      * in such a way that the now-booted OS should still be able to interact
1818      * appropriately with QEMU regardless of what options were actually
1819      * negotiatied on the source side.
1820      *
1821      * As such, we can avoid migrating the CAS-negotiated options if these
1822      * are the only options available on the current machine/platform.
1823      * Since these are the only options available for pseries-2.7 and
1824      * earlier, this allows us to maintain old->new/new->old migration
1825      * compatibility.
1826      *
1827      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1828      * via default pseries-2.8 machines and explicit command-line parameters.
1829      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1830      * of the actual CAS-negotiated values to continue working properly. For
1831      * example, availability of memory unplug depends on knowing whether
1832      * OV5_HP_EVT was negotiated via CAS.
1833      *
1834      * Thus, for any cases where the set of available CAS-negotiatable
1835      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1836      * include the CAS-negotiated options in the migration stream, unless
1837      * if they affect boot time behaviour only.
1838      */
1839     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1840     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1841     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1842 
1843     /* We need extra information if we have any bits outside the mask
1844      * defined above */
1845     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1846 
1847     spapr_ovec_cleanup(ov5_mask);
1848 
1849     return cas_needed;
1850 }
1851 
1852 static const VMStateDescription vmstate_spapr_ov5_cas = {
1853     .name = "spapr_option_vector_ov5_cas",
1854     .version_id = 1,
1855     .minimum_version_id = 1,
1856     .needed = spapr_ov5_cas_needed,
1857     .fields = (VMStateField[]) {
1858         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1859                                  vmstate_spapr_ovec, SpaprOptionVector),
1860         VMSTATE_END_OF_LIST()
1861     },
1862 };
1863 
1864 static bool spapr_patb_entry_needed(void *opaque)
1865 {
1866     SpaprMachineState *spapr = opaque;
1867 
1868     return !!spapr->patb_entry;
1869 }
1870 
1871 static const VMStateDescription vmstate_spapr_patb_entry = {
1872     .name = "spapr_patb_entry",
1873     .version_id = 1,
1874     .minimum_version_id = 1,
1875     .needed = spapr_patb_entry_needed,
1876     .fields = (VMStateField[]) {
1877         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1878         VMSTATE_END_OF_LIST()
1879     },
1880 };
1881 
1882 static bool spapr_irq_map_needed(void *opaque)
1883 {
1884     SpaprMachineState *spapr = opaque;
1885 
1886     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1887 }
1888 
1889 static const VMStateDescription vmstate_spapr_irq_map = {
1890     .name = "spapr_irq_map",
1891     .version_id = 1,
1892     .minimum_version_id = 1,
1893     .needed = spapr_irq_map_needed,
1894     .fields = (VMStateField[]) {
1895         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1896         VMSTATE_END_OF_LIST()
1897     },
1898 };
1899 
1900 static bool spapr_dtb_needed(void *opaque)
1901 {
1902     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1903 
1904     return smc->update_dt_enabled;
1905 }
1906 
1907 static int spapr_dtb_pre_load(void *opaque)
1908 {
1909     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1910 
1911     g_free(spapr->fdt_blob);
1912     spapr->fdt_blob = NULL;
1913     spapr->fdt_size = 0;
1914 
1915     return 0;
1916 }
1917 
1918 static const VMStateDescription vmstate_spapr_dtb = {
1919     .name = "spapr_dtb",
1920     .version_id = 1,
1921     .minimum_version_id = 1,
1922     .needed = spapr_dtb_needed,
1923     .pre_load = spapr_dtb_pre_load,
1924     .fields = (VMStateField[]) {
1925         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1926         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1927         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1928                                      fdt_size),
1929         VMSTATE_END_OF_LIST()
1930     },
1931 };
1932 
1933 static bool spapr_fwnmi_needed(void *opaque)
1934 {
1935     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1936 
1937     return spapr->fwnmi_machine_check_addr != -1;
1938 }
1939 
1940 static int spapr_fwnmi_pre_save(void *opaque)
1941 {
1942     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1943 
1944     /*
1945      * Check if machine check handling is in progress and print a
1946      * warning message.
1947      */
1948     if (spapr->fwnmi_machine_check_interlock != -1) {
1949         warn_report("A machine check is being handled during migration. The"
1950                 "handler may run and log hardware error on the destination");
1951     }
1952 
1953     return 0;
1954 }
1955 
1956 static const VMStateDescription vmstate_spapr_fwnmi = {
1957     .name = "spapr_fwnmi",
1958     .version_id = 1,
1959     .minimum_version_id = 1,
1960     .needed = spapr_fwnmi_needed,
1961     .pre_save = spapr_fwnmi_pre_save,
1962     .fields = (VMStateField[]) {
1963         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1964         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1965         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1966         VMSTATE_END_OF_LIST()
1967     },
1968 };
1969 
1970 static const VMStateDescription vmstate_spapr = {
1971     .name = "spapr",
1972     .version_id = 3,
1973     .minimum_version_id = 1,
1974     .pre_load = spapr_pre_load,
1975     .post_load = spapr_post_load,
1976     .pre_save = spapr_pre_save,
1977     .fields = (VMStateField[]) {
1978         /* used to be @next_irq */
1979         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1980 
1981         /* RTC offset */
1982         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
1983 
1984         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
1985         VMSTATE_END_OF_LIST()
1986     },
1987     .subsections = (const VMStateDescription*[]) {
1988         &vmstate_spapr_ov5_cas,
1989         &vmstate_spapr_patb_entry,
1990         &vmstate_spapr_pending_events,
1991         &vmstate_spapr_cap_htm,
1992         &vmstate_spapr_cap_vsx,
1993         &vmstate_spapr_cap_dfp,
1994         &vmstate_spapr_cap_cfpc,
1995         &vmstate_spapr_cap_sbbc,
1996         &vmstate_spapr_cap_ibs,
1997         &vmstate_spapr_cap_hpt_maxpagesize,
1998         &vmstate_spapr_irq_map,
1999         &vmstate_spapr_cap_nested_kvm_hv,
2000         &vmstate_spapr_dtb,
2001         &vmstate_spapr_cap_large_decr,
2002         &vmstate_spapr_cap_ccf_assist,
2003         &vmstate_spapr_cap_fwnmi,
2004         &vmstate_spapr_fwnmi,
2005         NULL
2006     }
2007 };
2008 
2009 static int htab_save_setup(QEMUFile *f, void *opaque)
2010 {
2011     SpaprMachineState *spapr = opaque;
2012 
2013     /* "Iteration" header */
2014     if (!spapr->htab_shift) {
2015         qemu_put_be32(f, -1);
2016     } else {
2017         qemu_put_be32(f, spapr->htab_shift);
2018     }
2019 
2020     if (spapr->htab) {
2021         spapr->htab_save_index = 0;
2022         spapr->htab_first_pass = true;
2023     } else {
2024         if (spapr->htab_shift) {
2025             assert(kvm_enabled());
2026         }
2027     }
2028 
2029 
2030     return 0;
2031 }
2032 
2033 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2034                             int chunkstart, int n_valid, int n_invalid)
2035 {
2036     qemu_put_be32(f, chunkstart);
2037     qemu_put_be16(f, n_valid);
2038     qemu_put_be16(f, n_invalid);
2039     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2040                     HASH_PTE_SIZE_64 * n_valid);
2041 }
2042 
2043 static void htab_save_end_marker(QEMUFile *f)
2044 {
2045     qemu_put_be32(f, 0);
2046     qemu_put_be16(f, 0);
2047     qemu_put_be16(f, 0);
2048 }
2049 
2050 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2051                                  int64_t max_ns)
2052 {
2053     bool has_timeout = max_ns != -1;
2054     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2055     int index = spapr->htab_save_index;
2056     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2057 
2058     assert(spapr->htab_first_pass);
2059 
2060     do {
2061         int chunkstart;
2062 
2063         /* Consume invalid HPTEs */
2064         while ((index < htabslots)
2065                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2066             CLEAN_HPTE(HPTE(spapr->htab, index));
2067             index++;
2068         }
2069 
2070         /* Consume valid HPTEs */
2071         chunkstart = index;
2072         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2073                && HPTE_VALID(HPTE(spapr->htab, index))) {
2074             CLEAN_HPTE(HPTE(spapr->htab, index));
2075             index++;
2076         }
2077 
2078         if (index > chunkstart) {
2079             int n_valid = index - chunkstart;
2080 
2081             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2082 
2083             if (has_timeout &&
2084                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2085                 break;
2086             }
2087         }
2088     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2089 
2090     if (index >= htabslots) {
2091         assert(index == htabslots);
2092         index = 0;
2093         spapr->htab_first_pass = false;
2094     }
2095     spapr->htab_save_index = index;
2096 }
2097 
2098 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2099                                 int64_t max_ns)
2100 {
2101     bool final = max_ns < 0;
2102     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2103     int examined = 0, sent = 0;
2104     int index = spapr->htab_save_index;
2105     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2106 
2107     assert(!spapr->htab_first_pass);
2108 
2109     do {
2110         int chunkstart, invalidstart;
2111 
2112         /* Consume non-dirty HPTEs */
2113         while ((index < htabslots)
2114                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2115             index++;
2116             examined++;
2117         }
2118 
2119         chunkstart = index;
2120         /* Consume valid dirty HPTEs */
2121         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2122                && HPTE_DIRTY(HPTE(spapr->htab, index))
2123                && HPTE_VALID(HPTE(spapr->htab, index))) {
2124             CLEAN_HPTE(HPTE(spapr->htab, index));
2125             index++;
2126             examined++;
2127         }
2128 
2129         invalidstart = index;
2130         /* Consume invalid dirty HPTEs */
2131         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2132                && HPTE_DIRTY(HPTE(spapr->htab, index))
2133                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2134             CLEAN_HPTE(HPTE(spapr->htab, index));
2135             index++;
2136             examined++;
2137         }
2138 
2139         if (index > chunkstart) {
2140             int n_valid = invalidstart - chunkstart;
2141             int n_invalid = index - invalidstart;
2142 
2143             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2144             sent += index - chunkstart;
2145 
2146             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2147                 break;
2148             }
2149         }
2150 
2151         if (examined >= htabslots) {
2152             break;
2153         }
2154 
2155         if (index >= htabslots) {
2156             assert(index == htabslots);
2157             index = 0;
2158         }
2159     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2160 
2161     if (index >= htabslots) {
2162         assert(index == htabslots);
2163         index = 0;
2164     }
2165 
2166     spapr->htab_save_index = index;
2167 
2168     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2169 }
2170 
2171 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2172 #define MAX_KVM_BUF_SIZE    2048
2173 
2174 static int htab_save_iterate(QEMUFile *f, void *opaque)
2175 {
2176     SpaprMachineState *spapr = opaque;
2177     int fd;
2178     int rc = 0;
2179 
2180     /* Iteration header */
2181     if (!spapr->htab_shift) {
2182         qemu_put_be32(f, -1);
2183         return 1;
2184     } else {
2185         qemu_put_be32(f, 0);
2186     }
2187 
2188     if (!spapr->htab) {
2189         assert(kvm_enabled());
2190 
2191         fd = get_htab_fd(spapr);
2192         if (fd < 0) {
2193             return fd;
2194         }
2195 
2196         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2197         if (rc < 0) {
2198             return rc;
2199         }
2200     } else  if (spapr->htab_first_pass) {
2201         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2202     } else {
2203         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2204     }
2205 
2206     htab_save_end_marker(f);
2207 
2208     return rc;
2209 }
2210 
2211 static int htab_save_complete(QEMUFile *f, void *opaque)
2212 {
2213     SpaprMachineState *spapr = opaque;
2214     int fd;
2215 
2216     /* Iteration header */
2217     if (!spapr->htab_shift) {
2218         qemu_put_be32(f, -1);
2219         return 0;
2220     } else {
2221         qemu_put_be32(f, 0);
2222     }
2223 
2224     if (!spapr->htab) {
2225         int rc;
2226 
2227         assert(kvm_enabled());
2228 
2229         fd = get_htab_fd(spapr);
2230         if (fd < 0) {
2231             return fd;
2232         }
2233 
2234         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2235         if (rc < 0) {
2236             return rc;
2237         }
2238     } else {
2239         if (spapr->htab_first_pass) {
2240             htab_save_first_pass(f, spapr, -1);
2241         }
2242         htab_save_later_pass(f, spapr, -1);
2243     }
2244 
2245     /* End marker */
2246     htab_save_end_marker(f);
2247 
2248     return 0;
2249 }
2250 
2251 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2252 {
2253     SpaprMachineState *spapr = opaque;
2254     uint32_t section_hdr;
2255     int fd = -1;
2256     Error *local_err = NULL;
2257 
2258     if (version_id < 1 || version_id > 1) {
2259         error_report("htab_load() bad version");
2260         return -EINVAL;
2261     }
2262 
2263     section_hdr = qemu_get_be32(f);
2264 
2265     if (section_hdr == -1) {
2266         spapr_free_hpt(spapr);
2267         return 0;
2268     }
2269 
2270     if (section_hdr) {
2271         int ret;
2272 
2273         /* First section gives the htab size */
2274         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2275         if (ret < 0) {
2276             error_report_err(local_err);
2277             return ret;
2278         }
2279         return 0;
2280     }
2281 
2282     if (!spapr->htab) {
2283         assert(kvm_enabled());
2284 
2285         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2286         if (fd < 0) {
2287             error_report_err(local_err);
2288             return fd;
2289         }
2290     }
2291 
2292     while (true) {
2293         uint32_t index;
2294         uint16_t n_valid, n_invalid;
2295 
2296         index = qemu_get_be32(f);
2297         n_valid = qemu_get_be16(f);
2298         n_invalid = qemu_get_be16(f);
2299 
2300         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2301             /* End of Stream */
2302             break;
2303         }
2304 
2305         if ((index + n_valid + n_invalid) >
2306             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2307             /* Bad index in stream */
2308             error_report(
2309                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2310                 index, n_valid, n_invalid, spapr->htab_shift);
2311             return -EINVAL;
2312         }
2313 
2314         if (spapr->htab) {
2315             if (n_valid) {
2316                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2317                                 HASH_PTE_SIZE_64 * n_valid);
2318             }
2319             if (n_invalid) {
2320                 memset(HPTE(spapr->htab, index + n_valid), 0,
2321                        HASH_PTE_SIZE_64 * n_invalid);
2322             }
2323         } else {
2324             int rc;
2325 
2326             assert(fd >= 0);
2327 
2328             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2329                                         &local_err);
2330             if (rc < 0) {
2331                 error_report_err(local_err);
2332                 return rc;
2333             }
2334         }
2335     }
2336 
2337     if (!spapr->htab) {
2338         assert(fd >= 0);
2339         close(fd);
2340     }
2341 
2342     return 0;
2343 }
2344 
2345 static void htab_save_cleanup(void *opaque)
2346 {
2347     SpaprMachineState *spapr = opaque;
2348 
2349     close_htab_fd(spapr);
2350 }
2351 
2352 static SaveVMHandlers savevm_htab_handlers = {
2353     .save_setup = htab_save_setup,
2354     .save_live_iterate = htab_save_iterate,
2355     .save_live_complete_precopy = htab_save_complete,
2356     .save_cleanup = htab_save_cleanup,
2357     .load_state = htab_load,
2358 };
2359 
2360 static void spapr_boot_set(void *opaque, const char *boot_device,
2361                            Error **errp)
2362 {
2363     MachineState *machine = MACHINE(opaque);
2364     machine->boot_order = g_strdup(boot_device);
2365 }
2366 
2367 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2368 {
2369     MachineState *machine = MACHINE(spapr);
2370     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2371     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2372     int i;
2373 
2374     for (i = 0; i < nr_lmbs; i++) {
2375         uint64_t addr;
2376 
2377         addr = i * lmb_size + machine->device_memory->base;
2378         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2379                                addr / lmb_size);
2380     }
2381 }
2382 
2383 /*
2384  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2385  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2386  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2387  */
2388 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2389 {
2390     int i;
2391 
2392     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2393         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2394                    " is not aligned to %" PRIu64 " MiB",
2395                    machine->ram_size,
2396                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2397         return;
2398     }
2399 
2400     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2401         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2402                    " is not aligned to %" PRIu64 " MiB",
2403                    machine->ram_size,
2404                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2405         return;
2406     }
2407 
2408     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2409         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2410             error_setg(errp,
2411                        "Node %d memory size 0x%" PRIx64
2412                        " is not aligned to %" PRIu64 " MiB",
2413                        i, machine->numa_state->nodes[i].node_mem,
2414                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2415             return;
2416         }
2417     }
2418 }
2419 
2420 /* find cpu slot in machine->possible_cpus by core_id */
2421 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2422 {
2423     int index = id / ms->smp.threads;
2424 
2425     if (index >= ms->possible_cpus->len) {
2426         return NULL;
2427     }
2428     if (idx) {
2429         *idx = index;
2430     }
2431     return &ms->possible_cpus->cpus[index];
2432 }
2433 
2434 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2435 {
2436     MachineState *ms = MACHINE(spapr);
2437     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2438     Error *local_err = NULL;
2439     bool vsmt_user = !!spapr->vsmt;
2440     int kvm_smt = kvmppc_smt_threads();
2441     int ret;
2442     unsigned int smp_threads = ms->smp.threads;
2443 
2444     if (!kvm_enabled() && (smp_threads > 1)) {
2445         error_setg(errp, "TCG cannot support more than 1 thread/core "
2446                    "on a pseries machine");
2447         return;
2448     }
2449     if (!is_power_of_2(smp_threads)) {
2450         error_setg(errp, "Cannot support %d threads/core on a pseries "
2451                    "machine because it must be a power of 2", smp_threads);
2452         return;
2453     }
2454 
2455     /* Detemine the VSMT mode to use: */
2456     if (vsmt_user) {
2457         if (spapr->vsmt < smp_threads) {
2458             error_setg(errp, "Cannot support VSMT mode %d"
2459                        " because it must be >= threads/core (%d)",
2460                        spapr->vsmt, smp_threads);
2461             return;
2462         }
2463         /* In this case, spapr->vsmt has been set by the command line */
2464     } else if (!smc->smp_threads_vsmt) {
2465         /*
2466          * Default VSMT value is tricky, because we need it to be as
2467          * consistent as possible (for migration), but this requires
2468          * changing it for at least some existing cases.  We pick 8 as
2469          * the value that we'd get with KVM on POWER8, the
2470          * overwhelmingly common case in production systems.
2471          */
2472         spapr->vsmt = MAX(8, smp_threads);
2473     } else {
2474         spapr->vsmt = smp_threads;
2475     }
2476 
2477     /* KVM: If necessary, set the SMT mode: */
2478     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2479         ret = kvmppc_set_smt_threads(spapr->vsmt);
2480         if (ret) {
2481             /* Looks like KVM isn't able to change VSMT mode */
2482             error_setg(&local_err,
2483                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2484                        spapr->vsmt, ret);
2485             /* We can live with that if the default one is big enough
2486              * for the number of threads, and a submultiple of the one
2487              * we want.  In this case we'll waste some vcpu ids, but
2488              * behaviour will be correct */
2489             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2490                 warn_report_err(local_err);
2491             } else {
2492                 if (!vsmt_user) {
2493                     error_append_hint(&local_err,
2494                                       "On PPC, a VM with %d threads/core"
2495                                       " on a host with %d threads/core"
2496                                       " requires the use of VSMT mode %d.\n",
2497                                       smp_threads, kvm_smt, spapr->vsmt);
2498                 }
2499                 kvmppc_error_append_smt_possible_hint(&local_err);
2500                 error_propagate(errp, local_err);
2501             }
2502         }
2503     }
2504     /* else TCG: nothing to do currently */
2505 }
2506 
2507 static void spapr_init_cpus(SpaprMachineState *spapr)
2508 {
2509     MachineState *machine = MACHINE(spapr);
2510     MachineClass *mc = MACHINE_GET_CLASS(machine);
2511     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2512     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2513     const CPUArchIdList *possible_cpus;
2514     unsigned int smp_cpus = machine->smp.cpus;
2515     unsigned int smp_threads = machine->smp.threads;
2516     unsigned int max_cpus = machine->smp.max_cpus;
2517     int boot_cores_nr = smp_cpus / smp_threads;
2518     int i;
2519 
2520     possible_cpus = mc->possible_cpu_arch_ids(machine);
2521     if (mc->has_hotpluggable_cpus) {
2522         if (smp_cpus % smp_threads) {
2523             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2524                          smp_cpus, smp_threads);
2525             exit(1);
2526         }
2527         if (max_cpus % smp_threads) {
2528             error_report("max_cpus (%u) must be multiple of threads (%u)",
2529                          max_cpus, smp_threads);
2530             exit(1);
2531         }
2532     } else {
2533         if (max_cpus != smp_cpus) {
2534             error_report("This machine version does not support CPU hotplug");
2535             exit(1);
2536         }
2537         boot_cores_nr = possible_cpus->len;
2538     }
2539 
2540     if (smc->pre_2_10_has_unused_icps) {
2541         int i;
2542 
2543         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2544             /* Dummy entries get deregistered when real ICPState objects
2545              * are registered during CPU core hotplug.
2546              */
2547             pre_2_10_vmstate_register_dummy_icp(i);
2548         }
2549     }
2550 
2551     for (i = 0; i < possible_cpus->len; i++) {
2552         int core_id = i * smp_threads;
2553 
2554         if (mc->has_hotpluggable_cpus) {
2555             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2556                                    spapr_vcpu_id(spapr, core_id));
2557         }
2558 
2559         if (i < boot_cores_nr) {
2560             Object *core  = object_new(type);
2561             int nr_threads = smp_threads;
2562 
2563             /* Handle the partially filled core for older machine types */
2564             if ((i + 1) * smp_threads >= smp_cpus) {
2565                 nr_threads = smp_cpus - i * smp_threads;
2566             }
2567 
2568             object_property_set_int(core, "nr-threads", nr_threads,
2569                                     &error_fatal);
2570             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2571                                     &error_fatal);
2572             qdev_realize(DEVICE(core), NULL, &error_fatal);
2573 
2574             object_unref(core);
2575         }
2576     }
2577 }
2578 
2579 static PCIHostState *spapr_create_default_phb(void)
2580 {
2581     DeviceState *dev;
2582 
2583     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2584     qdev_prop_set_uint32(dev, "index", 0);
2585     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2586 
2587     return PCI_HOST_BRIDGE(dev);
2588 }
2589 
2590 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2591 {
2592     MachineState *machine = MACHINE(spapr);
2593     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2594     hwaddr rma_size = machine->ram_size;
2595     hwaddr node0_size = spapr_node0_size(machine);
2596 
2597     /* RMA has to fit in the first NUMA node */
2598     rma_size = MIN(rma_size, node0_size);
2599 
2600     /*
2601      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2602      * never exceed that
2603      */
2604     rma_size = MIN(rma_size, 1 * TiB);
2605 
2606     /*
2607      * Clamp the RMA size based on machine type.  This is for
2608      * migration compatibility with older qemu versions, which limited
2609      * the RMA size for complicated and mostly bad reasons.
2610      */
2611     if (smc->rma_limit) {
2612         rma_size = MIN(rma_size, smc->rma_limit);
2613     }
2614 
2615     if (rma_size < MIN_RMA_SLOF) {
2616         error_setg(errp,
2617                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2618                    "ldMiB guest RMA (Real Mode Area memory)",
2619                    MIN_RMA_SLOF / MiB);
2620         return 0;
2621     }
2622 
2623     return rma_size;
2624 }
2625 
2626 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2627 {
2628     MachineState *machine = MACHINE(spapr);
2629     int i;
2630 
2631     for (i = 0; i < machine->ram_slots; i++) {
2632         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2633     }
2634 }
2635 
2636 /* pSeries LPAR / sPAPR hardware init */
2637 static void spapr_machine_init(MachineState *machine)
2638 {
2639     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2640     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2641     MachineClass *mc = MACHINE_GET_CLASS(machine);
2642     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
2643     const char *kernel_filename = machine->kernel_filename;
2644     const char *initrd_filename = machine->initrd_filename;
2645     PCIHostState *phb;
2646     int i;
2647     MemoryRegion *sysmem = get_system_memory();
2648     long load_limit, fw_size;
2649     char *filename;
2650     Error *resize_hpt_err = NULL;
2651 
2652     /*
2653      * if Secure VM (PEF) support is configured, then initialize it
2654      */
2655     pef_kvm_init(machine->cgs, &error_fatal);
2656 
2657     msi_nonbroken = true;
2658 
2659     QLIST_INIT(&spapr->phbs);
2660     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2661 
2662     /* Determine capabilities to run with */
2663     spapr_caps_init(spapr);
2664 
2665     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2666     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2667         /*
2668          * If the user explicitly requested a mode we should either
2669          * supply it, or fail completely (which we do below).  But if
2670          * it's not set explicitly, we reset our mode to something
2671          * that works
2672          */
2673         if (resize_hpt_err) {
2674             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2675             error_free(resize_hpt_err);
2676             resize_hpt_err = NULL;
2677         } else {
2678             spapr->resize_hpt = smc->resize_hpt_default;
2679         }
2680     }
2681 
2682     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2683 
2684     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2685         /*
2686          * User requested HPT resize, but this host can't supply it.  Bail out
2687          */
2688         error_report_err(resize_hpt_err);
2689         exit(1);
2690     }
2691     error_free(resize_hpt_err);
2692 
2693     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2694 
2695     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2696     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2697 
2698     /*
2699      * VSMT must be set in order to be able to compute VCPU ids, ie to
2700      * call spapr_max_server_number() or spapr_vcpu_id().
2701      */
2702     spapr_set_vsmt_mode(spapr, &error_fatal);
2703 
2704     /* Set up Interrupt Controller before we create the VCPUs */
2705     spapr_irq_init(spapr, &error_fatal);
2706 
2707     /* Set up containers for ibm,client-architecture-support negotiated options
2708      */
2709     spapr->ov5 = spapr_ovec_new();
2710     spapr->ov5_cas = spapr_ovec_new();
2711 
2712     if (smc->dr_lmb_enabled) {
2713         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2714         spapr_validate_node_memory(machine, &error_fatal);
2715     }
2716 
2717     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2718 
2719     /* advertise support for dedicated HP event source to guests */
2720     if (spapr->use_hotplug_event_source) {
2721         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2722     }
2723 
2724     /* advertise support for HPT resizing */
2725     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2726         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2727     }
2728 
2729     /* advertise support for ibm,dyamic-memory-v2 */
2730     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2731 
2732     /* advertise XIVE on POWER9 machines */
2733     if (spapr->irq->xive) {
2734         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2735     }
2736 
2737     /* init CPUs */
2738     spapr_init_cpus(spapr);
2739 
2740     /*
2741      * check we don't have a memory-less/cpu-less NUMA node
2742      * Firmware relies on the existing memory/cpu topology to provide the
2743      * NUMA topology to the kernel.
2744      * And the linux kernel needs to know the NUMA topology at start
2745      * to be able to hotplug CPUs later.
2746      */
2747     if (machine->numa_state->num_nodes) {
2748         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2749             /* check for memory-less node */
2750             if (machine->numa_state->nodes[i].node_mem == 0) {
2751                 CPUState *cs;
2752                 int found = 0;
2753                 /* check for cpu-less node */
2754                 CPU_FOREACH(cs) {
2755                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2756                     if (cpu->node_id == i) {
2757                         found = 1;
2758                         break;
2759                     }
2760                 }
2761                 /* memory-less and cpu-less node */
2762                 if (!found) {
2763                     error_report(
2764                        "Memory-less/cpu-less nodes are not supported (node %d)",
2765                                  i);
2766                     exit(1);
2767                 }
2768             }
2769         }
2770 
2771     }
2772 
2773     /*
2774      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2775      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2776      * called from vPHB reset handler so we initialize the counter here.
2777      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2778      * must be equally distant from any other node.
2779      * The final value of spapr->gpu_numa_id is going to be written to
2780      * max-associativity-domains in spapr_build_fdt().
2781      */
2782     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2783 
2784     /* Init numa_assoc_array */
2785     spapr_numa_associativity_init(spapr, machine);
2786 
2787     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2788         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2789                               spapr->max_compat_pvr)) {
2790         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2791         /* KVM and TCG always allow GTSE with radix... */
2792         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2793     }
2794     /* ... but not with hash (currently). */
2795 
2796     if (kvm_enabled()) {
2797         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2798         kvmppc_enable_logical_ci_hcalls();
2799         kvmppc_enable_set_mode_hcall();
2800 
2801         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2802         kvmppc_enable_clear_ref_mod_hcalls();
2803 
2804         /* Enable H_PAGE_INIT */
2805         kvmppc_enable_h_page_init();
2806     }
2807 
2808     /* map RAM */
2809     memory_region_add_subregion(sysmem, 0, machine->ram);
2810 
2811     /* always allocate the device memory information */
2812     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2813 
2814     /* initialize hotplug memory address space */
2815     if (machine->ram_size < machine->maxram_size) {
2816         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2817         /*
2818          * Limit the number of hotpluggable memory slots to half the number
2819          * slots that KVM supports, leaving the other half for PCI and other
2820          * devices. However ensure that number of slots doesn't drop below 32.
2821          */
2822         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2823                            SPAPR_MAX_RAM_SLOTS;
2824 
2825         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2826             max_memslots = SPAPR_MAX_RAM_SLOTS;
2827         }
2828         if (machine->ram_slots > max_memslots) {
2829             error_report("Specified number of memory slots %"
2830                          PRIu64" exceeds max supported %d",
2831                          machine->ram_slots, max_memslots);
2832             exit(1);
2833         }
2834 
2835         machine->device_memory->base = ROUND_UP(machine->ram_size,
2836                                                 SPAPR_DEVICE_MEM_ALIGN);
2837         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2838                            "device-memory", device_mem_size);
2839         memory_region_add_subregion(sysmem, machine->device_memory->base,
2840                                     &machine->device_memory->mr);
2841     }
2842 
2843     if (smc->dr_lmb_enabled) {
2844         spapr_create_lmb_dr_connectors(spapr);
2845     }
2846 
2847     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2848         /* Create the error string for live migration blocker */
2849         error_setg(&spapr->fwnmi_migration_blocker,
2850             "A machine check is being handled during migration. The handler"
2851             "may run and log hardware error on the destination");
2852     }
2853 
2854     if (mc->nvdimm_supported) {
2855         spapr_create_nvdimm_dr_connectors(spapr);
2856     }
2857 
2858     /* Set up RTAS event infrastructure */
2859     spapr_events_init(spapr);
2860 
2861     /* Set up the RTC RTAS interfaces */
2862     spapr_rtc_create(spapr);
2863 
2864     /* Set up VIO bus */
2865     spapr->vio_bus = spapr_vio_bus_init();
2866 
2867     for (i = 0; serial_hd(i); i++) {
2868         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2869     }
2870 
2871     /* We always have at least the nvram device on VIO */
2872     spapr_create_nvram(spapr);
2873 
2874     /*
2875      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2876      * connectors (described in root DT node's "ibm,drc-types" property)
2877      * are pre-initialized here. additional child connectors (such as
2878      * connectors for a PHBs PCI slots) are added as needed during their
2879      * parent's realization.
2880      */
2881     if (smc->dr_phb_enabled) {
2882         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2883             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2884         }
2885     }
2886 
2887     /* Set up PCI */
2888     spapr_pci_rtas_init();
2889 
2890     phb = spapr_create_default_phb();
2891 
2892     for (i = 0; i < nb_nics; i++) {
2893         NICInfo *nd = &nd_table[i];
2894 
2895         if (!nd->model) {
2896             nd->model = g_strdup("spapr-vlan");
2897         }
2898 
2899         if (g_str_equal(nd->model, "spapr-vlan") ||
2900             g_str_equal(nd->model, "ibmveth")) {
2901             spapr_vlan_create(spapr->vio_bus, nd);
2902         } else {
2903             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2904         }
2905     }
2906 
2907     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2908         spapr_vscsi_create(spapr->vio_bus);
2909     }
2910 
2911     /* Graphics */
2912     if (spapr_vga_init(phb->bus, &error_fatal)) {
2913         spapr->has_graphics = true;
2914         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2915     }
2916 
2917     if (machine->usb) {
2918         if (smc->use_ohci_by_default) {
2919             pci_create_simple(phb->bus, -1, "pci-ohci");
2920         } else {
2921             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2922         }
2923 
2924         if (spapr->has_graphics) {
2925             USBBus *usb_bus = usb_bus_find(-1);
2926 
2927             usb_create_simple(usb_bus, "usb-kbd");
2928             usb_create_simple(usb_bus, "usb-mouse");
2929         }
2930     }
2931 
2932     if (kernel_filename) {
2933         spapr->kernel_size = load_elf(kernel_filename, NULL,
2934                                       translate_kernel_address, spapr,
2935                                       NULL, NULL, NULL, NULL, 1,
2936                                       PPC_ELF_MACHINE, 0, 0);
2937         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2938             spapr->kernel_size = load_elf(kernel_filename, NULL,
2939                                           translate_kernel_address, spapr,
2940                                           NULL, NULL, NULL, NULL, 0,
2941                                           PPC_ELF_MACHINE, 0, 0);
2942             spapr->kernel_le = spapr->kernel_size > 0;
2943         }
2944         if (spapr->kernel_size < 0) {
2945             error_report("error loading %s: %s", kernel_filename,
2946                          load_elf_strerror(spapr->kernel_size));
2947             exit(1);
2948         }
2949 
2950         /* load initrd */
2951         if (initrd_filename) {
2952             /* Try to locate the initrd in the gap between the kernel
2953              * and the firmware. Add a bit of space just in case
2954              */
2955             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2956                                   + 0x1ffff) & ~0xffff;
2957             spapr->initrd_size = load_image_targphys(initrd_filename,
2958                                                      spapr->initrd_base,
2959                                                      load_limit
2960                                                      - spapr->initrd_base);
2961             if (spapr->initrd_size < 0) {
2962                 error_report("could not load initial ram disk '%s'",
2963                              initrd_filename);
2964                 exit(1);
2965             }
2966         }
2967     }
2968 
2969     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2970     if (!filename) {
2971         error_report("Could not find LPAR firmware '%s'", bios_name);
2972         exit(1);
2973     }
2974     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2975     if (fw_size <= 0) {
2976         error_report("Could not load LPAR firmware '%s'", filename);
2977         exit(1);
2978     }
2979     g_free(filename);
2980 
2981     /* FIXME: Should register things through the MachineState's qdev
2982      * interface, this is a legacy from the sPAPREnvironment structure
2983      * which predated MachineState but had a similar function */
2984     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2985     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
2986                          &savevm_htab_handlers, spapr);
2987 
2988     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
2989 
2990     qemu_register_boot_set(spapr_boot_set, spapr);
2991 
2992     /*
2993      * Nothing needs to be done to resume a suspended guest because
2994      * suspending does not change the machine state, so no need for
2995      * a ->wakeup method.
2996      */
2997     qemu_register_wakeup_support();
2998 
2999     if (kvm_enabled()) {
3000         /* to stop and start vmclock */
3001         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3002                                          &spapr->tb);
3003 
3004         kvmppc_spapr_enable_inkernel_multitce();
3005     }
3006 
3007     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3008 }
3009 
3010 #define DEFAULT_KVM_TYPE "auto"
3011 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3012 {
3013     /*
3014      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3015      * accomodate the 'HV' and 'PV' formats that exists in the
3016      * wild. The 'auto' mode is being introduced already as
3017      * lower-case, thus we don't need to bother checking for
3018      * "AUTO".
3019      */
3020     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3021         return 0;
3022     }
3023 
3024     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3025         return 1;
3026     }
3027 
3028     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3029         return 2;
3030     }
3031 
3032     error_report("Unknown kvm-type specified '%s'", vm_type);
3033     exit(1);
3034 }
3035 
3036 /*
3037  * Implementation of an interface to adjust firmware path
3038  * for the bootindex property handling.
3039  */
3040 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3041                                    DeviceState *dev)
3042 {
3043 #define CAST(type, obj, name) \
3044     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3045     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3046     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3047     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3048     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3049 
3050     if (d) {
3051         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3052         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3053         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3054 
3055         if (spapr) {
3056             /*
3057              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3058              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3059              * 0x8000 | (target << 8) | (bus << 5) | lun
3060              * (see the "Logical unit addressing format" table in SAM5)
3061              */
3062             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3063             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3064                                    (uint64_t)id << 48);
3065         } else if (virtio) {
3066             /*
3067              * We use SRP luns of the form 01000000 | (target << 8) | lun
3068              * in the top 32 bits of the 64-bit LUN
3069              * Note: the quote above is from SLOF and it is wrong,
3070              * the actual binding is:
3071              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3072              */
3073             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3074             if (d->lun >= 256) {
3075                 /* Use the LUN "flat space addressing method" */
3076                 id |= 0x4000;
3077             }
3078             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3079                                    (uint64_t)id << 32);
3080         } else if (usb) {
3081             /*
3082              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3083              * in the top 32 bits of the 64-bit LUN
3084              */
3085             unsigned usb_port = atoi(usb->port->path);
3086             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3087             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3088                                    (uint64_t)id << 32);
3089         }
3090     }
3091 
3092     /*
3093      * SLOF probes the USB devices, and if it recognizes that the device is a
3094      * storage device, it changes its name to "storage" instead of "usb-host",
3095      * and additionally adds a child node for the SCSI LUN, so the correct
3096      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3097      */
3098     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3099         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3100         if (usb_host_dev_is_scsi_storage(usbdev)) {
3101             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3102         }
3103     }
3104 
3105     if (phb) {
3106         /* Replace "pci" with "pci@800000020000000" */
3107         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3108     }
3109 
3110     if (vsc) {
3111         /* Same logic as virtio above */
3112         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3113         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3114     }
3115 
3116     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3117         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3118         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3119         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3120     }
3121 
3122     if (pcidev) {
3123         return spapr_pci_fw_dev_name(pcidev);
3124     }
3125 
3126     return NULL;
3127 }
3128 
3129 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3130 {
3131     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3132 
3133     return g_strdup(spapr->kvm_type);
3134 }
3135 
3136 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3137 {
3138     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3139 
3140     g_free(spapr->kvm_type);
3141     spapr->kvm_type = g_strdup(value);
3142 }
3143 
3144 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3145 {
3146     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3147 
3148     return spapr->use_hotplug_event_source;
3149 }
3150 
3151 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3152                                             Error **errp)
3153 {
3154     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3155 
3156     spapr->use_hotplug_event_source = value;
3157 }
3158 
3159 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3160 {
3161     return true;
3162 }
3163 
3164 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3165 {
3166     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3167 
3168     switch (spapr->resize_hpt) {
3169     case SPAPR_RESIZE_HPT_DEFAULT:
3170         return g_strdup("default");
3171     case SPAPR_RESIZE_HPT_DISABLED:
3172         return g_strdup("disabled");
3173     case SPAPR_RESIZE_HPT_ENABLED:
3174         return g_strdup("enabled");
3175     case SPAPR_RESIZE_HPT_REQUIRED:
3176         return g_strdup("required");
3177     }
3178     g_assert_not_reached();
3179 }
3180 
3181 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3182 {
3183     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3184 
3185     if (strcmp(value, "default") == 0) {
3186         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3187     } else if (strcmp(value, "disabled") == 0) {
3188         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3189     } else if (strcmp(value, "enabled") == 0) {
3190         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3191     } else if (strcmp(value, "required") == 0) {
3192         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3193     } else {
3194         error_setg(errp, "Bad value for \"resize-hpt\" property");
3195     }
3196 }
3197 
3198 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3199 {
3200     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3201 
3202     if (spapr->irq == &spapr_irq_xics_legacy) {
3203         return g_strdup("legacy");
3204     } else if (spapr->irq == &spapr_irq_xics) {
3205         return g_strdup("xics");
3206     } else if (spapr->irq == &spapr_irq_xive) {
3207         return g_strdup("xive");
3208     } else if (spapr->irq == &spapr_irq_dual) {
3209         return g_strdup("dual");
3210     }
3211     g_assert_not_reached();
3212 }
3213 
3214 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3215 {
3216     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3217 
3218     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3219         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3220         return;
3221     }
3222 
3223     /* The legacy IRQ backend can not be set */
3224     if (strcmp(value, "xics") == 0) {
3225         spapr->irq = &spapr_irq_xics;
3226     } else if (strcmp(value, "xive") == 0) {
3227         spapr->irq = &spapr_irq_xive;
3228     } else if (strcmp(value, "dual") == 0) {
3229         spapr->irq = &spapr_irq_dual;
3230     } else {
3231         error_setg(errp, "Bad value for \"ic-mode\" property");
3232     }
3233 }
3234 
3235 static char *spapr_get_host_model(Object *obj, Error **errp)
3236 {
3237     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3238 
3239     return g_strdup(spapr->host_model);
3240 }
3241 
3242 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3243 {
3244     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3245 
3246     g_free(spapr->host_model);
3247     spapr->host_model = g_strdup(value);
3248 }
3249 
3250 static char *spapr_get_host_serial(Object *obj, Error **errp)
3251 {
3252     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3253 
3254     return g_strdup(spapr->host_serial);
3255 }
3256 
3257 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3258 {
3259     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3260 
3261     g_free(spapr->host_serial);
3262     spapr->host_serial = g_strdup(value);
3263 }
3264 
3265 static void spapr_instance_init(Object *obj)
3266 {
3267     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3268     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3269     MachineState *ms = MACHINE(spapr);
3270     MachineClass *mc = MACHINE_GET_CLASS(ms);
3271 
3272     /*
3273      * NVDIMM support went live in 5.1 without considering that, in
3274      * other archs, the user needs to enable NVDIMM support with the
3275      * 'nvdimm' machine option and the default behavior is NVDIMM
3276      * support disabled. It is too late to roll back to the standard
3277      * behavior without breaking 5.1 guests.
3278      */
3279     if (mc->nvdimm_supported) {
3280         ms->nvdimms_state->is_enabled = true;
3281     }
3282 
3283     spapr->htab_fd = -1;
3284     spapr->use_hotplug_event_source = true;
3285     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3286     object_property_add_str(obj, "kvm-type",
3287                             spapr_get_kvm_type, spapr_set_kvm_type);
3288     object_property_set_description(obj, "kvm-type",
3289                                     "Specifies the KVM virtualization mode (auto,"
3290                                     " hv, pr). Defaults to 'auto'. This mode will use"
3291                                     " any available KVM module loaded in the host,"
3292                                     " where kvm_hv takes precedence if both kvm_hv and"
3293                                     " kvm_pr are loaded.");
3294     object_property_add_bool(obj, "modern-hotplug-events",
3295                             spapr_get_modern_hotplug_events,
3296                             spapr_set_modern_hotplug_events);
3297     object_property_set_description(obj, "modern-hotplug-events",
3298                                     "Use dedicated hotplug event mechanism in"
3299                                     " place of standard EPOW events when possible"
3300                                     " (required for memory hot-unplug support)");
3301     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3302                             "Maximum permitted CPU compatibility mode");
3303 
3304     object_property_add_str(obj, "resize-hpt",
3305                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3306     object_property_set_description(obj, "resize-hpt",
3307                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3308     object_property_add_uint32_ptr(obj, "vsmt",
3309                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3310     object_property_set_description(obj, "vsmt",
3311                                     "Virtual SMT: KVM behaves as if this were"
3312                                     " the host's SMT mode");
3313 
3314     object_property_add_bool(obj, "vfio-no-msix-emulation",
3315                              spapr_get_msix_emulation, NULL);
3316 
3317     object_property_add_uint64_ptr(obj, "kernel-addr",
3318                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3319     object_property_set_description(obj, "kernel-addr",
3320                                     stringify(KERNEL_LOAD_ADDR)
3321                                     " for -kernel is the default");
3322     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3323     /* The machine class defines the default interrupt controller mode */
3324     spapr->irq = smc->irq;
3325     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3326                             spapr_set_ic_mode);
3327     object_property_set_description(obj, "ic-mode",
3328                  "Specifies the interrupt controller mode (xics, xive, dual)");
3329 
3330     object_property_add_str(obj, "host-model",
3331         spapr_get_host_model, spapr_set_host_model);
3332     object_property_set_description(obj, "host-model",
3333         "Host model to advertise in guest device tree");
3334     object_property_add_str(obj, "host-serial",
3335         spapr_get_host_serial, spapr_set_host_serial);
3336     object_property_set_description(obj, "host-serial",
3337         "Host serial number to advertise in guest device tree");
3338 }
3339 
3340 static void spapr_machine_finalizefn(Object *obj)
3341 {
3342     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3343 
3344     g_free(spapr->kvm_type);
3345 }
3346 
3347 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3348 {
3349     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3350     PowerPCCPU *cpu = POWERPC_CPU(cs);
3351     CPUPPCState *env = &cpu->env;
3352 
3353     cpu_synchronize_state(cs);
3354     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3355     if (spapr->fwnmi_system_reset_addr != -1) {
3356         uint64_t rtas_addr, addr;
3357 
3358         /* get rtas addr from fdt */
3359         rtas_addr = spapr_get_rtas_addr();
3360         if (!rtas_addr) {
3361             qemu_system_guest_panicked(NULL);
3362             return;
3363         }
3364 
3365         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3366         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3367         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3368         env->gpr[3] = addr;
3369     }
3370     ppc_cpu_do_system_reset(cs);
3371     if (spapr->fwnmi_system_reset_addr != -1) {
3372         env->nip = spapr->fwnmi_system_reset_addr;
3373     }
3374 }
3375 
3376 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3377 {
3378     CPUState *cs;
3379 
3380     CPU_FOREACH(cs) {
3381         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3382     }
3383 }
3384 
3385 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3386                           void *fdt, int *fdt_start_offset, Error **errp)
3387 {
3388     uint64_t addr;
3389     uint32_t node;
3390 
3391     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3392     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3393                                     &error_abort);
3394     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3395                                              SPAPR_MEMORY_BLOCK_SIZE);
3396     return 0;
3397 }
3398 
3399 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3400                            bool dedicated_hp_event_source)
3401 {
3402     SpaprDrc *drc;
3403     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3404     int i;
3405     uint64_t addr = addr_start;
3406     bool hotplugged = spapr_drc_hotplugged(dev);
3407 
3408     for (i = 0; i < nr_lmbs; i++) {
3409         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3410                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3411         g_assert(drc);
3412 
3413         /*
3414          * memory_device_get_free_addr() provided a range of free addresses
3415          * that doesn't overlap with any existing mapping at pre-plug. The
3416          * corresponding LMB DRCs are thus assumed to be all attachable.
3417          */
3418         spapr_drc_attach(drc, dev);
3419         if (!hotplugged) {
3420             spapr_drc_reset(drc);
3421         }
3422         addr += SPAPR_MEMORY_BLOCK_SIZE;
3423     }
3424     /* send hotplug notification to the
3425      * guest only in case of hotplugged memory
3426      */
3427     if (hotplugged) {
3428         if (dedicated_hp_event_source) {
3429             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3430                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3431             g_assert(drc);
3432             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3433                                                    nr_lmbs,
3434                                                    spapr_drc_index(drc));
3435         } else {
3436             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3437                                            nr_lmbs);
3438         }
3439     }
3440 }
3441 
3442 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3443 {
3444     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3445     PCDIMMDevice *dimm = PC_DIMM(dev);
3446     uint64_t size, addr;
3447     int64_t slot;
3448     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3449 
3450     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3451 
3452     pc_dimm_plug(dimm, MACHINE(ms));
3453 
3454     if (!is_nvdimm) {
3455         addr = object_property_get_uint(OBJECT(dimm),
3456                                         PC_DIMM_ADDR_PROP, &error_abort);
3457         spapr_add_lmbs(dev, addr, size,
3458                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3459     } else {
3460         slot = object_property_get_int(OBJECT(dimm),
3461                                        PC_DIMM_SLOT_PROP, &error_abort);
3462         /* We should have valid slot number at this point */
3463         g_assert(slot >= 0);
3464         spapr_add_nvdimm(dev, slot);
3465     }
3466 }
3467 
3468 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3469                                   Error **errp)
3470 {
3471     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3472     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3473     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3474     PCDIMMDevice *dimm = PC_DIMM(dev);
3475     Error *local_err = NULL;
3476     uint64_t size;
3477     Object *memdev;
3478     hwaddr pagesize;
3479 
3480     if (!smc->dr_lmb_enabled) {
3481         error_setg(errp, "Memory hotplug not supported for this machine");
3482         return;
3483     }
3484 
3485     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3486     if (local_err) {
3487         error_propagate(errp, local_err);
3488         return;
3489     }
3490 
3491     if (is_nvdimm) {
3492         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3493             return;
3494         }
3495     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3496         error_setg(errp, "Hotplugged memory size must be a multiple of "
3497                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3498         return;
3499     }
3500 
3501     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3502                                       &error_abort);
3503     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3504     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3505         return;
3506     }
3507 
3508     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3509 }
3510 
3511 struct SpaprDimmState {
3512     PCDIMMDevice *dimm;
3513     uint32_t nr_lmbs;
3514     QTAILQ_ENTRY(SpaprDimmState) next;
3515 };
3516 
3517 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3518                                                        PCDIMMDevice *dimm)
3519 {
3520     SpaprDimmState *dimm_state = NULL;
3521 
3522     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3523         if (dimm_state->dimm == dimm) {
3524             break;
3525         }
3526     }
3527     return dimm_state;
3528 }
3529 
3530 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3531                                                       uint32_t nr_lmbs,
3532                                                       PCDIMMDevice *dimm)
3533 {
3534     SpaprDimmState *ds = NULL;
3535 
3536     /*
3537      * If this request is for a DIMM whose removal had failed earlier
3538      * (due to guest's refusal to remove the LMBs), we would have this
3539      * dimm already in the pending_dimm_unplugs list. In that
3540      * case don't add again.
3541      */
3542     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3543     if (!ds) {
3544         ds = g_malloc0(sizeof(SpaprDimmState));
3545         ds->nr_lmbs = nr_lmbs;
3546         ds->dimm = dimm;
3547         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3548     }
3549     return ds;
3550 }
3551 
3552 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3553                                               SpaprDimmState *dimm_state)
3554 {
3555     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3556     g_free(dimm_state);
3557 }
3558 
3559 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3560                                                         PCDIMMDevice *dimm)
3561 {
3562     SpaprDrc *drc;
3563     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3564                                                   &error_abort);
3565     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3566     uint32_t avail_lmbs = 0;
3567     uint64_t addr_start, addr;
3568     int i;
3569 
3570     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3571                                           &error_abort);
3572 
3573     addr = addr_start;
3574     for (i = 0; i < nr_lmbs; i++) {
3575         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3576                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3577         g_assert(drc);
3578         if (drc->dev) {
3579             avail_lmbs++;
3580         }
3581         addr += SPAPR_MEMORY_BLOCK_SIZE;
3582     }
3583 
3584     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3585 }
3586 
3587 /* Callback to be called during DRC release. */
3588 void spapr_lmb_release(DeviceState *dev)
3589 {
3590     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3591     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3592     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3593 
3594     /* This information will get lost if a migration occurs
3595      * during the unplug process. In this case recover it. */
3596     if (ds == NULL) {
3597         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3598         g_assert(ds);
3599         /* The DRC being examined by the caller at least must be counted */
3600         g_assert(ds->nr_lmbs);
3601     }
3602 
3603     if (--ds->nr_lmbs) {
3604         return;
3605     }
3606 
3607     /*
3608      * Now that all the LMBs have been removed by the guest, call the
3609      * unplug handler chain. This can never fail.
3610      */
3611     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3612     object_unparent(OBJECT(dev));
3613 }
3614 
3615 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3616 {
3617     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3618     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3619 
3620     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3621     qdev_unrealize(dev);
3622     spapr_pending_dimm_unplugs_remove(spapr, ds);
3623 }
3624 
3625 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3626                                         DeviceState *dev, Error **errp)
3627 {
3628     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3629     PCDIMMDevice *dimm = PC_DIMM(dev);
3630     uint32_t nr_lmbs;
3631     uint64_t size, addr_start, addr;
3632     int i;
3633     SpaprDrc *drc;
3634 
3635     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3636         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3637         return;
3638     }
3639 
3640     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3641     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3642 
3643     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3644                                           &error_abort);
3645 
3646     /*
3647      * An existing pending dimm state for this DIMM means that there is an
3648      * unplug operation in progress, waiting for the spapr_lmb_release
3649      * callback to complete the job (BQL can't cover that far). In this case,
3650      * bail out to avoid detaching DRCs that were already released.
3651      */
3652     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3653         error_setg(errp, "Memory unplug already in progress for device %s",
3654                    dev->id);
3655         return;
3656     }
3657 
3658     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3659 
3660     addr = addr_start;
3661     for (i = 0; i < nr_lmbs; i++) {
3662         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3663                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3664         g_assert(drc);
3665 
3666         spapr_drc_detach(drc);
3667         addr += SPAPR_MEMORY_BLOCK_SIZE;
3668     }
3669 
3670     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3671                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3672     g_assert(drc);
3673     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3674                                               nr_lmbs, spapr_drc_index(drc));
3675 }
3676 
3677 /* Callback to be called during DRC release. */
3678 void spapr_core_release(DeviceState *dev)
3679 {
3680     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3681 
3682     /* Call the unplug handler chain. This can never fail. */
3683     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3684     object_unparent(OBJECT(dev));
3685 }
3686 
3687 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3688 {
3689     MachineState *ms = MACHINE(hotplug_dev);
3690     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3691     CPUCore *cc = CPU_CORE(dev);
3692     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3693 
3694     if (smc->pre_2_10_has_unused_icps) {
3695         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3696         int i;
3697 
3698         for (i = 0; i < cc->nr_threads; i++) {
3699             CPUState *cs = CPU(sc->threads[i]);
3700 
3701             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3702         }
3703     }
3704 
3705     assert(core_slot);
3706     core_slot->cpu = NULL;
3707     qdev_unrealize(dev);
3708 }
3709 
3710 static
3711 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3712                                Error **errp)
3713 {
3714     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3715     int index;
3716     SpaprDrc *drc;
3717     CPUCore *cc = CPU_CORE(dev);
3718 
3719     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3720         error_setg(errp, "Unable to find CPU core with core-id: %d",
3721                    cc->core_id);
3722         return;
3723     }
3724     if (index == 0) {
3725         error_setg(errp, "Boot CPU core may not be unplugged");
3726         return;
3727     }
3728 
3729     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3730                           spapr_vcpu_id(spapr, cc->core_id));
3731     g_assert(drc);
3732 
3733     if (!spapr_drc_unplug_requested(drc)) {
3734         spapr_drc_detach(drc);
3735         spapr_hotplug_req_remove_by_index(drc);
3736     }
3737 }
3738 
3739 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3740                            void *fdt, int *fdt_start_offset, Error **errp)
3741 {
3742     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3743     CPUState *cs = CPU(core->threads[0]);
3744     PowerPCCPU *cpu = POWERPC_CPU(cs);
3745     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3746     int id = spapr_get_vcpu_id(cpu);
3747     g_autofree char *nodename = NULL;
3748     int offset;
3749 
3750     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3751     offset = fdt_add_subnode(fdt, 0, nodename);
3752 
3753     spapr_dt_cpu(cs, fdt, offset, spapr);
3754 
3755     /*
3756      * spapr_dt_cpu() does not fill the 'name' property in the
3757      * CPU node. The function is called during boot process, before
3758      * and after CAS, and overwriting the 'name' property written
3759      * by SLOF is not allowed.
3760      *
3761      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3762      * CPUs more compatible with the coldplugged ones, which have
3763      * the 'name' property. Linux Kernel also relies on this
3764      * property to identify CPU nodes.
3765      */
3766     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3767 
3768     *fdt_start_offset = offset;
3769     return 0;
3770 }
3771 
3772 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3773 {
3774     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3775     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3776     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3777     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3778     CPUCore *cc = CPU_CORE(dev);
3779     CPUState *cs;
3780     SpaprDrc *drc;
3781     CPUArchId *core_slot;
3782     int index;
3783     bool hotplugged = spapr_drc_hotplugged(dev);
3784     int i;
3785 
3786     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3787     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3788 
3789     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3790                           spapr_vcpu_id(spapr, cc->core_id));
3791 
3792     g_assert(drc || !mc->has_hotpluggable_cpus);
3793 
3794     if (drc) {
3795         /*
3796          * spapr_core_pre_plug() already buys us this is a brand new
3797          * core being plugged into a free slot. Nothing should already
3798          * be attached to the corresponding DRC.
3799          */
3800         spapr_drc_attach(drc, dev);
3801 
3802         if (hotplugged) {
3803             /*
3804              * Send hotplug notification interrupt to the guest only
3805              * in case of hotplugged CPUs.
3806              */
3807             spapr_hotplug_req_add_by_index(drc);
3808         } else {
3809             spapr_drc_reset(drc);
3810         }
3811     }
3812 
3813     core_slot->cpu = OBJECT(dev);
3814 
3815     /*
3816      * Set compatibility mode to match the boot CPU, which was either set
3817      * by the machine reset code or by CAS. This really shouldn't fail at
3818      * this point.
3819      */
3820     if (hotplugged) {
3821         for (i = 0; i < cc->nr_threads; i++) {
3822             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3823                            &error_abort);
3824         }
3825     }
3826 
3827     if (smc->pre_2_10_has_unused_icps) {
3828         for (i = 0; i < cc->nr_threads; i++) {
3829             cs = CPU(core->threads[i]);
3830             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3831         }
3832     }
3833 }
3834 
3835 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3836                                 Error **errp)
3837 {
3838     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3839     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3840     CPUCore *cc = CPU_CORE(dev);
3841     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3842     const char *type = object_get_typename(OBJECT(dev));
3843     CPUArchId *core_slot;
3844     int index;
3845     unsigned int smp_threads = machine->smp.threads;
3846 
3847     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3848         error_setg(errp, "CPU hotplug not supported for this machine");
3849         return;
3850     }
3851 
3852     if (strcmp(base_core_type, type)) {
3853         error_setg(errp, "CPU core type should be %s", base_core_type);
3854         return;
3855     }
3856 
3857     if (cc->core_id % smp_threads) {
3858         error_setg(errp, "invalid core id %d", cc->core_id);
3859         return;
3860     }
3861 
3862     /*
3863      * In general we should have homogeneous threads-per-core, but old
3864      * (pre hotplug support) machine types allow the last core to have
3865      * reduced threads as a compatibility hack for when we allowed
3866      * total vcpus not a multiple of threads-per-core.
3867      */
3868     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3869         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3870                    smp_threads);
3871         return;
3872     }
3873 
3874     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3875     if (!core_slot) {
3876         error_setg(errp, "core id %d out of range", cc->core_id);
3877         return;
3878     }
3879 
3880     if (core_slot->cpu) {
3881         error_setg(errp, "core %d already populated", cc->core_id);
3882         return;
3883     }
3884 
3885     numa_cpu_pre_plug(core_slot, dev, errp);
3886 }
3887 
3888 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3889                           void *fdt, int *fdt_start_offset, Error **errp)
3890 {
3891     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3892     int intc_phandle;
3893 
3894     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3895     if (intc_phandle <= 0) {
3896         return -1;
3897     }
3898 
3899     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3900         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3901         return -1;
3902     }
3903 
3904     /* generally SLOF creates these, for hotplug it's up to QEMU */
3905     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3906 
3907     return 0;
3908 }
3909 
3910 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3911                                Error **errp)
3912 {
3913     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3914     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3915     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3916     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3917     SpaprDrc *drc;
3918 
3919     if (dev->hotplugged && !smc->dr_phb_enabled) {
3920         error_setg(errp, "PHB hotplug not supported for this machine");
3921         return false;
3922     }
3923 
3924     if (sphb->index == (uint32_t)-1) {
3925         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3926         return false;
3927     }
3928 
3929     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3930     if (drc && drc->dev) {
3931         error_setg(errp, "PHB %d already attached", sphb->index);
3932         return false;
3933     }
3934 
3935     /*
3936      * This will check that sphb->index doesn't exceed the maximum number of
3937      * PHBs for the current machine type.
3938      */
3939     return
3940         smc->phb_placement(spapr, sphb->index,
3941                            &sphb->buid, &sphb->io_win_addr,
3942                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
3943                            windows_supported, sphb->dma_liobn,
3944                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3945                            errp);
3946 }
3947 
3948 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3949 {
3950     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3951     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3952     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3953     SpaprDrc *drc;
3954     bool hotplugged = spapr_drc_hotplugged(dev);
3955 
3956     if (!smc->dr_phb_enabled) {
3957         return;
3958     }
3959 
3960     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3961     /* hotplug hooks should check it's enabled before getting this far */
3962     assert(drc);
3963 
3964     /* spapr_phb_pre_plug() already checked the DRC is attachable */
3965     spapr_drc_attach(drc, dev);
3966 
3967     if (hotplugged) {
3968         spapr_hotplug_req_add_by_index(drc);
3969     } else {
3970         spapr_drc_reset(drc);
3971     }
3972 }
3973 
3974 void spapr_phb_release(DeviceState *dev)
3975 {
3976     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3977 
3978     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3979     object_unparent(OBJECT(dev));
3980 }
3981 
3982 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3983 {
3984     qdev_unrealize(dev);
3985 }
3986 
3987 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3988                                      DeviceState *dev, Error **errp)
3989 {
3990     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3991     SpaprDrc *drc;
3992 
3993     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3994     assert(drc);
3995 
3996     if (!spapr_drc_unplug_requested(drc)) {
3997         spapr_drc_detach(drc);
3998         spapr_hotplug_req_remove_by_index(drc);
3999     }
4000 }
4001 
4002 static
4003 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4004                               Error **errp)
4005 {
4006     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4007 
4008     if (spapr->tpm_proxy != NULL) {
4009         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4010         return false;
4011     }
4012 
4013     return true;
4014 }
4015 
4016 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4017 {
4018     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4019     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4020 
4021     /* Already checked in spapr_tpm_proxy_pre_plug() */
4022     g_assert(spapr->tpm_proxy == NULL);
4023 
4024     spapr->tpm_proxy = tpm_proxy;
4025 }
4026 
4027 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4028 {
4029     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4030 
4031     qdev_unrealize(dev);
4032     object_unparent(OBJECT(dev));
4033     spapr->tpm_proxy = NULL;
4034 }
4035 
4036 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4037                                       DeviceState *dev, Error **errp)
4038 {
4039     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4040         spapr_memory_plug(hotplug_dev, dev);
4041     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4042         spapr_core_plug(hotplug_dev, dev);
4043     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4044         spapr_phb_plug(hotplug_dev, dev);
4045     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4046         spapr_tpm_proxy_plug(hotplug_dev, dev);
4047     }
4048 }
4049 
4050 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4051                                         DeviceState *dev, Error **errp)
4052 {
4053     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4054         spapr_memory_unplug(hotplug_dev, dev);
4055     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4056         spapr_core_unplug(hotplug_dev, dev);
4057     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4058         spapr_phb_unplug(hotplug_dev, dev);
4059     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4060         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4061     }
4062 }
4063 
4064 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4065 {
4066     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4067         /*
4068          * CAS will process all pending unplug requests.
4069          *
4070          * HACK: a guest could theoretically have cleared all bits in OV5,
4071          * but none of the guests we care for do.
4072          */
4073         spapr_ovec_empty(spapr->ov5_cas);
4074 }
4075 
4076 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4077                                                 DeviceState *dev, Error **errp)
4078 {
4079     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4080     MachineClass *mc = MACHINE_GET_CLASS(sms);
4081     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4082 
4083     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4084         if (spapr_memory_hot_unplug_supported(sms)) {
4085             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4086         } else {
4087             error_setg(errp, "Memory hot unplug not supported for this guest");
4088         }
4089     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4090         if (!mc->has_hotpluggable_cpus) {
4091             error_setg(errp, "CPU hot unplug not supported on this machine");
4092             return;
4093         }
4094         spapr_core_unplug_request(hotplug_dev, dev, errp);
4095     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4096         if (!smc->dr_phb_enabled) {
4097             error_setg(errp, "PHB hot unplug not supported on this machine");
4098             return;
4099         }
4100         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4101     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4102         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4103     }
4104 }
4105 
4106 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4107                                           DeviceState *dev, Error **errp)
4108 {
4109     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4110         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4111     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4112         spapr_core_pre_plug(hotplug_dev, dev, errp);
4113     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4114         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4115     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4116         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4117     }
4118 }
4119 
4120 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4121                                                  DeviceState *dev)
4122 {
4123     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4124         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4125         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4126         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4127         return HOTPLUG_HANDLER(machine);
4128     }
4129     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4130         PCIDevice *pcidev = PCI_DEVICE(dev);
4131         PCIBus *root = pci_device_root_bus(pcidev);
4132         SpaprPhbState *phb =
4133             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4134                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4135 
4136         if (phb) {
4137             return HOTPLUG_HANDLER(phb);
4138         }
4139     }
4140     return NULL;
4141 }
4142 
4143 static CpuInstanceProperties
4144 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4145 {
4146     CPUArchId *core_slot;
4147     MachineClass *mc = MACHINE_GET_CLASS(machine);
4148 
4149     /* make sure possible_cpu are intialized */
4150     mc->possible_cpu_arch_ids(machine);
4151     /* get CPU core slot containing thread that matches cpu_index */
4152     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4153     assert(core_slot);
4154     return core_slot->props;
4155 }
4156 
4157 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4158 {
4159     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4160 }
4161 
4162 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4163 {
4164     int i;
4165     unsigned int smp_threads = machine->smp.threads;
4166     unsigned int smp_cpus = machine->smp.cpus;
4167     const char *core_type;
4168     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4169     MachineClass *mc = MACHINE_GET_CLASS(machine);
4170 
4171     if (!mc->has_hotpluggable_cpus) {
4172         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4173     }
4174     if (machine->possible_cpus) {
4175         assert(machine->possible_cpus->len == spapr_max_cores);
4176         return machine->possible_cpus;
4177     }
4178 
4179     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4180     if (!core_type) {
4181         error_report("Unable to find sPAPR CPU Core definition");
4182         exit(1);
4183     }
4184 
4185     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4186                              sizeof(CPUArchId) * spapr_max_cores);
4187     machine->possible_cpus->len = spapr_max_cores;
4188     for (i = 0; i < machine->possible_cpus->len; i++) {
4189         int core_id = i * smp_threads;
4190 
4191         machine->possible_cpus->cpus[i].type = core_type;
4192         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4193         machine->possible_cpus->cpus[i].arch_id = core_id;
4194         machine->possible_cpus->cpus[i].props.has_core_id = true;
4195         machine->possible_cpus->cpus[i].props.core_id = core_id;
4196     }
4197     return machine->possible_cpus;
4198 }
4199 
4200 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4201                                 uint64_t *buid, hwaddr *pio,
4202                                 hwaddr *mmio32, hwaddr *mmio64,
4203                                 unsigned n_dma, uint32_t *liobns,
4204                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4205 {
4206     /*
4207      * New-style PHB window placement.
4208      *
4209      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4210      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4211      * windows.
4212      *
4213      * Some guest kernels can't work with MMIO windows above 1<<46
4214      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4215      *
4216      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4217      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4218      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4219      * 1TiB 64-bit MMIO windows for each PHB.
4220      */
4221     const uint64_t base_buid = 0x800000020000000ULL;
4222     int i;
4223 
4224     /* Sanity check natural alignments */
4225     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4226     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4227     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4228     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4229     /* Sanity check bounds */
4230     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4231                       SPAPR_PCI_MEM32_WIN_SIZE);
4232     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4233                       SPAPR_PCI_MEM64_WIN_SIZE);
4234 
4235     if (index >= SPAPR_MAX_PHBS) {
4236         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4237                    SPAPR_MAX_PHBS - 1);
4238         return false;
4239     }
4240 
4241     *buid = base_buid + index;
4242     for (i = 0; i < n_dma; ++i) {
4243         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4244     }
4245 
4246     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4247     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4248     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4249 
4250     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4251     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4252     return true;
4253 }
4254 
4255 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4256 {
4257     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4258 
4259     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4260 }
4261 
4262 static void spapr_ics_resend(XICSFabric *dev)
4263 {
4264     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4265 
4266     ics_resend(spapr->ics);
4267 }
4268 
4269 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4270 {
4271     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4272 
4273     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4274 }
4275 
4276 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4277                                  Monitor *mon)
4278 {
4279     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4280 
4281     spapr_irq_print_info(spapr, mon);
4282     monitor_printf(mon, "irqchip: %s\n",
4283                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4284 }
4285 
4286 /*
4287  * This is a XIVE only operation
4288  */
4289 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4290                            uint8_t nvt_blk, uint32_t nvt_idx,
4291                            bool cam_ignore, uint8_t priority,
4292                            uint32_t logic_serv, XiveTCTXMatch *match)
4293 {
4294     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4295     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4296     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4297     int count;
4298 
4299     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4300                            priority, logic_serv, match);
4301     if (count < 0) {
4302         return count;
4303     }
4304 
4305     /*
4306      * When we implement the save and restore of the thread interrupt
4307      * contexts in the enter/exit CPU handlers of the machine and the
4308      * escalations in QEMU, we should be able to handle non dispatched
4309      * vCPUs.
4310      *
4311      * Until this is done, the sPAPR machine should find at least one
4312      * matching context always.
4313      */
4314     if (count == 0) {
4315         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4316                       nvt_blk, nvt_idx);
4317     }
4318 
4319     return count;
4320 }
4321 
4322 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4323 {
4324     return cpu->vcpu_id;
4325 }
4326 
4327 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4328 {
4329     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4330     MachineState *ms = MACHINE(spapr);
4331     int vcpu_id;
4332 
4333     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4334 
4335     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4336         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4337         error_append_hint(errp, "Adjust the number of cpus to %d "
4338                           "or try to raise the number of threads per core\n",
4339                           vcpu_id * ms->smp.threads / spapr->vsmt);
4340         return false;
4341     }
4342 
4343     cpu->vcpu_id = vcpu_id;
4344     return true;
4345 }
4346 
4347 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4348 {
4349     CPUState *cs;
4350 
4351     CPU_FOREACH(cs) {
4352         PowerPCCPU *cpu = POWERPC_CPU(cs);
4353 
4354         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4355             return cpu;
4356         }
4357     }
4358 
4359     return NULL;
4360 }
4361 
4362 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4363 {
4364     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4365 
4366     /* These are only called by TCG, KVM maintains dispatch state */
4367 
4368     spapr_cpu->prod = false;
4369     if (spapr_cpu->vpa_addr) {
4370         CPUState *cs = CPU(cpu);
4371         uint32_t dispatch;
4372 
4373         dispatch = ldl_be_phys(cs->as,
4374                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4375         dispatch++;
4376         if ((dispatch & 1) != 0) {
4377             qemu_log_mask(LOG_GUEST_ERROR,
4378                           "VPA: incorrect dispatch counter value for "
4379                           "dispatched partition %u, correcting.\n", dispatch);
4380             dispatch++;
4381         }
4382         stl_be_phys(cs->as,
4383                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4384     }
4385 }
4386 
4387 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4388 {
4389     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4390 
4391     if (spapr_cpu->vpa_addr) {
4392         CPUState *cs = CPU(cpu);
4393         uint32_t dispatch;
4394 
4395         dispatch = ldl_be_phys(cs->as,
4396                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4397         dispatch++;
4398         if ((dispatch & 1) != 1) {
4399             qemu_log_mask(LOG_GUEST_ERROR,
4400                           "VPA: incorrect dispatch counter value for "
4401                           "preempted partition %u, correcting.\n", dispatch);
4402             dispatch++;
4403         }
4404         stl_be_phys(cs->as,
4405                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4406     }
4407 }
4408 
4409 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4410 {
4411     MachineClass *mc = MACHINE_CLASS(oc);
4412     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4413     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4414     NMIClass *nc = NMI_CLASS(oc);
4415     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4416     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4417     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4418     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4419     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4420 
4421     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4422     mc->ignore_boot_device_suffixes = true;
4423 
4424     /*
4425      * We set up the default / latest behaviour here.  The class_init
4426      * functions for the specific versioned machine types can override
4427      * these details for backwards compatibility
4428      */
4429     mc->init = spapr_machine_init;
4430     mc->reset = spapr_machine_reset;
4431     mc->block_default_type = IF_SCSI;
4432     mc->max_cpus = 1024;
4433     mc->no_parallel = 1;
4434     mc->default_boot_order = "";
4435     mc->default_ram_size = 512 * MiB;
4436     mc->default_ram_id = "ppc_spapr.ram";
4437     mc->default_display = "std";
4438     mc->kvm_type = spapr_kvm_type;
4439     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4440     mc->pci_allow_0_address = true;
4441     assert(!mc->get_hotplug_handler);
4442     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4443     hc->pre_plug = spapr_machine_device_pre_plug;
4444     hc->plug = spapr_machine_device_plug;
4445     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4446     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4447     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4448     hc->unplug_request = spapr_machine_device_unplug_request;
4449     hc->unplug = spapr_machine_device_unplug;
4450 
4451     smc->dr_lmb_enabled = true;
4452     smc->update_dt_enabled = true;
4453     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4454     mc->has_hotpluggable_cpus = true;
4455     mc->nvdimm_supported = true;
4456     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4457     fwc->get_dev_path = spapr_get_fw_dev_path;
4458     nc->nmi_monitor_handler = spapr_nmi;
4459     smc->phb_placement = spapr_phb_placement;
4460     vhc->hypercall = emulate_spapr_hypercall;
4461     vhc->hpt_mask = spapr_hpt_mask;
4462     vhc->map_hptes = spapr_map_hptes;
4463     vhc->unmap_hptes = spapr_unmap_hptes;
4464     vhc->hpte_set_c = spapr_hpte_set_c;
4465     vhc->hpte_set_r = spapr_hpte_set_r;
4466     vhc->get_pate = spapr_get_pate;
4467     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4468     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4469     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4470     xic->ics_get = spapr_ics_get;
4471     xic->ics_resend = spapr_ics_resend;
4472     xic->icp_get = spapr_icp_get;
4473     ispc->print_info = spapr_pic_print_info;
4474     /* Force NUMA node memory size to be a multiple of
4475      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4476      * in which LMBs are represented and hot-added
4477      */
4478     mc->numa_mem_align_shift = 28;
4479     mc->auto_enable_numa = true;
4480 
4481     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4482     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4483     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4484     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4485     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4486     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4487     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4488     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4489     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4490     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4491     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4492     spapr_caps_add_properties(smc);
4493     smc->irq = &spapr_irq_dual;
4494     smc->dr_phb_enabled = true;
4495     smc->linux_pci_probe = true;
4496     smc->smp_threads_vsmt = true;
4497     smc->nr_xirqs = SPAPR_NR_XIRQS;
4498     xfc->match_nvt = spapr_match_nvt;
4499 }
4500 
4501 static const TypeInfo spapr_machine_info = {
4502     .name          = TYPE_SPAPR_MACHINE,
4503     .parent        = TYPE_MACHINE,
4504     .abstract      = true,
4505     .instance_size = sizeof(SpaprMachineState),
4506     .instance_init = spapr_instance_init,
4507     .instance_finalize = spapr_machine_finalizefn,
4508     .class_size    = sizeof(SpaprMachineClass),
4509     .class_init    = spapr_machine_class_init,
4510     .interfaces = (InterfaceInfo[]) {
4511         { TYPE_FW_PATH_PROVIDER },
4512         { TYPE_NMI },
4513         { TYPE_HOTPLUG_HANDLER },
4514         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4515         { TYPE_XICS_FABRIC },
4516         { TYPE_INTERRUPT_STATS_PROVIDER },
4517         { TYPE_XIVE_FABRIC },
4518         { }
4519     },
4520 };
4521 
4522 static void spapr_machine_latest_class_options(MachineClass *mc)
4523 {
4524     mc->alias = "pseries";
4525     mc->is_default = true;
4526 }
4527 
4528 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4529     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4530                                                     void *data)      \
4531     {                                                                \
4532         MachineClass *mc = MACHINE_CLASS(oc);                        \
4533         spapr_machine_##suffix##_class_options(mc);                  \
4534         if (latest) {                                                \
4535             spapr_machine_latest_class_options(mc);                  \
4536         }                                                            \
4537     }                                                                \
4538     static const TypeInfo spapr_machine_##suffix##_info = {          \
4539         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4540         .parent = TYPE_SPAPR_MACHINE,                                \
4541         .class_init = spapr_machine_##suffix##_class_init,           \
4542     };                                                               \
4543     static void spapr_machine_register_##suffix(void)                \
4544     {                                                                \
4545         type_register(&spapr_machine_##suffix##_info);               \
4546     }                                                                \
4547     type_init(spapr_machine_register_##suffix)
4548 
4549 /*
4550  * pseries-6.0
4551  */
4552 static void spapr_machine_6_0_class_options(MachineClass *mc)
4553 {
4554     /* Defaults for the latest behaviour inherited from the base class */
4555 }
4556 
4557 DEFINE_SPAPR_MACHINE(6_0, "6.0", true);
4558 
4559 /*
4560  * pseries-5.2
4561  */
4562 static void spapr_machine_5_2_class_options(MachineClass *mc)
4563 {
4564     spapr_machine_6_0_class_options(mc);
4565     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4566 }
4567 
4568 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4569 
4570 /*
4571  * pseries-5.1
4572  */
4573 static void spapr_machine_5_1_class_options(MachineClass *mc)
4574 {
4575     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4576 
4577     spapr_machine_5_2_class_options(mc);
4578     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4579     smc->pre_5_2_numa_associativity = true;
4580 }
4581 
4582 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4583 
4584 /*
4585  * pseries-5.0
4586  */
4587 static void spapr_machine_5_0_class_options(MachineClass *mc)
4588 {
4589     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4590     static GlobalProperty compat[] = {
4591         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4592     };
4593 
4594     spapr_machine_5_1_class_options(mc);
4595     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4596     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4597     mc->numa_mem_supported = true;
4598     smc->pre_5_1_assoc_refpoints = true;
4599 }
4600 
4601 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4602 
4603 /*
4604  * pseries-4.2
4605  */
4606 static void spapr_machine_4_2_class_options(MachineClass *mc)
4607 {
4608     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4609 
4610     spapr_machine_5_0_class_options(mc);
4611     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4612     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4613     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4614     smc->rma_limit = 16 * GiB;
4615     mc->nvdimm_supported = false;
4616 }
4617 
4618 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4619 
4620 /*
4621  * pseries-4.1
4622  */
4623 static void spapr_machine_4_1_class_options(MachineClass *mc)
4624 {
4625     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4626     static GlobalProperty compat[] = {
4627         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4628         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4629     };
4630 
4631     spapr_machine_4_2_class_options(mc);
4632     smc->linux_pci_probe = false;
4633     smc->smp_threads_vsmt = false;
4634     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4635     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4636 }
4637 
4638 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4639 
4640 /*
4641  * pseries-4.0
4642  */
4643 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4644                               uint64_t *buid, hwaddr *pio,
4645                               hwaddr *mmio32, hwaddr *mmio64,
4646                               unsigned n_dma, uint32_t *liobns,
4647                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4648 {
4649     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4650                              liobns, nv2gpa, nv2atsd, errp)) {
4651         return false;
4652     }
4653 
4654     *nv2gpa = 0;
4655     *nv2atsd = 0;
4656     return true;
4657 }
4658 static void spapr_machine_4_0_class_options(MachineClass *mc)
4659 {
4660     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4661 
4662     spapr_machine_4_1_class_options(mc);
4663     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4664     smc->phb_placement = phb_placement_4_0;
4665     smc->irq = &spapr_irq_xics;
4666     smc->pre_4_1_migration = true;
4667 }
4668 
4669 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4670 
4671 /*
4672  * pseries-3.1
4673  */
4674 static void spapr_machine_3_1_class_options(MachineClass *mc)
4675 {
4676     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4677 
4678     spapr_machine_4_0_class_options(mc);
4679     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4680 
4681     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4682     smc->update_dt_enabled = false;
4683     smc->dr_phb_enabled = false;
4684     smc->broken_host_serial_model = true;
4685     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4686     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4687     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4688     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4689 }
4690 
4691 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4692 
4693 /*
4694  * pseries-3.0
4695  */
4696 
4697 static void spapr_machine_3_0_class_options(MachineClass *mc)
4698 {
4699     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4700 
4701     spapr_machine_3_1_class_options(mc);
4702     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4703 
4704     smc->legacy_irq_allocation = true;
4705     smc->nr_xirqs = 0x400;
4706     smc->irq = &spapr_irq_xics_legacy;
4707 }
4708 
4709 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4710 
4711 /*
4712  * pseries-2.12
4713  */
4714 static void spapr_machine_2_12_class_options(MachineClass *mc)
4715 {
4716     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4717     static GlobalProperty compat[] = {
4718         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4719         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4720     };
4721 
4722     spapr_machine_3_0_class_options(mc);
4723     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4724     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4725 
4726     /* We depend on kvm_enabled() to choose a default value for the
4727      * hpt-max-page-size capability. Of course we can't do it here
4728      * because this is too early and the HW accelerator isn't initialzed
4729      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4730      */
4731     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4732 }
4733 
4734 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4735 
4736 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4737 {
4738     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4739 
4740     spapr_machine_2_12_class_options(mc);
4741     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4742     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4743     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4744 }
4745 
4746 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4747 
4748 /*
4749  * pseries-2.11
4750  */
4751 
4752 static void spapr_machine_2_11_class_options(MachineClass *mc)
4753 {
4754     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4755 
4756     spapr_machine_2_12_class_options(mc);
4757     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4758     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4759 }
4760 
4761 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4762 
4763 /*
4764  * pseries-2.10
4765  */
4766 
4767 static void spapr_machine_2_10_class_options(MachineClass *mc)
4768 {
4769     spapr_machine_2_11_class_options(mc);
4770     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4771 }
4772 
4773 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4774 
4775 /*
4776  * pseries-2.9
4777  */
4778 
4779 static void spapr_machine_2_9_class_options(MachineClass *mc)
4780 {
4781     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4782     static GlobalProperty compat[] = {
4783         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4784     };
4785 
4786     spapr_machine_2_10_class_options(mc);
4787     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4788     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4789     smc->pre_2_10_has_unused_icps = true;
4790     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4791 }
4792 
4793 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4794 
4795 /*
4796  * pseries-2.8
4797  */
4798 
4799 static void spapr_machine_2_8_class_options(MachineClass *mc)
4800 {
4801     static GlobalProperty compat[] = {
4802         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4803     };
4804 
4805     spapr_machine_2_9_class_options(mc);
4806     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4807     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4808     mc->numa_mem_align_shift = 23;
4809 }
4810 
4811 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4812 
4813 /*
4814  * pseries-2.7
4815  */
4816 
4817 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4818                               uint64_t *buid, hwaddr *pio,
4819                               hwaddr *mmio32, hwaddr *mmio64,
4820                               unsigned n_dma, uint32_t *liobns,
4821                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4822 {
4823     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4824     const uint64_t base_buid = 0x800000020000000ULL;
4825     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4826     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4827     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4828     const uint32_t max_index = 255;
4829     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4830 
4831     uint64_t ram_top = MACHINE(spapr)->ram_size;
4832     hwaddr phb0_base, phb_base;
4833     int i;
4834 
4835     /* Do we have device memory? */
4836     if (MACHINE(spapr)->maxram_size > ram_top) {
4837         /* Can't just use maxram_size, because there may be an
4838          * alignment gap between normal and device memory regions
4839          */
4840         ram_top = MACHINE(spapr)->device_memory->base +
4841             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4842     }
4843 
4844     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4845 
4846     if (index > max_index) {
4847         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4848                    max_index);
4849         return false;
4850     }
4851 
4852     *buid = base_buid + index;
4853     for (i = 0; i < n_dma; ++i) {
4854         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4855     }
4856 
4857     phb_base = phb0_base + index * phb_spacing;
4858     *pio = phb_base + pio_offset;
4859     *mmio32 = phb_base + mmio_offset;
4860     /*
4861      * We don't set the 64-bit MMIO window, relying on the PHB's
4862      * fallback behaviour of automatically splitting a large "32-bit"
4863      * window into contiguous 32-bit and 64-bit windows
4864      */
4865 
4866     *nv2gpa = 0;
4867     *nv2atsd = 0;
4868     return true;
4869 }
4870 
4871 static void spapr_machine_2_7_class_options(MachineClass *mc)
4872 {
4873     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4874     static GlobalProperty compat[] = {
4875         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4876         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4877         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4878         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4879     };
4880 
4881     spapr_machine_2_8_class_options(mc);
4882     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4883     mc->default_machine_opts = "modern-hotplug-events=off";
4884     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4885     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4886     smc->phb_placement = phb_placement_2_7;
4887 }
4888 
4889 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4890 
4891 /*
4892  * pseries-2.6
4893  */
4894 
4895 static void spapr_machine_2_6_class_options(MachineClass *mc)
4896 {
4897     static GlobalProperty compat[] = {
4898         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4899     };
4900 
4901     spapr_machine_2_7_class_options(mc);
4902     mc->has_hotpluggable_cpus = false;
4903     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4904     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4905 }
4906 
4907 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4908 
4909 /*
4910  * pseries-2.5
4911  */
4912 
4913 static void spapr_machine_2_5_class_options(MachineClass *mc)
4914 {
4915     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4916     static GlobalProperty compat[] = {
4917         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4918     };
4919 
4920     spapr_machine_2_6_class_options(mc);
4921     smc->use_ohci_by_default = true;
4922     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4923     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4924 }
4925 
4926 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4927 
4928 /*
4929  * pseries-2.4
4930  */
4931 
4932 static void spapr_machine_2_4_class_options(MachineClass *mc)
4933 {
4934     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4935 
4936     spapr_machine_2_5_class_options(mc);
4937     smc->dr_lmb_enabled = false;
4938     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4939 }
4940 
4941 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4942 
4943 /*
4944  * pseries-2.3
4945  */
4946 
4947 static void spapr_machine_2_3_class_options(MachineClass *mc)
4948 {
4949     static GlobalProperty compat[] = {
4950         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4951     };
4952     spapr_machine_2_4_class_options(mc);
4953     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4954     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4955 }
4956 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4957 
4958 /*
4959  * pseries-2.2
4960  */
4961 
4962 static void spapr_machine_2_2_class_options(MachineClass *mc)
4963 {
4964     static GlobalProperty compat[] = {
4965         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4966     };
4967 
4968     spapr_machine_2_3_class_options(mc);
4969     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4970     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4971     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4972 }
4973 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4974 
4975 /*
4976  * pseries-2.1
4977  */
4978 
4979 static void spapr_machine_2_1_class_options(MachineClass *mc)
4980 {
4981     spapr_machine_2_2_class_options(mc);
4982     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4983 }
4984 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4985 
4986 static void spapr_machine_register_types(void)
4987 {
4988     type_register_static(&spapr_machine_info);
4989 }
4990 
4991 type_init(spapr_machine_register_types)
4992