1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "hw/core/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "qemu/cutils.h" 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 #include "hw/ppc/spapr_tpm_proxy.h" 83 84 #include <libfdt.h> 85 86 /* SLOF memory layout: 87 * 88 * SLOF raw image loaded at 0, copies its romfs right below the flat 89 * device-tree, then position SLOF itself 31M below that 90 * 91 * So we set FW_OVERHEAD to 40MB which should account for all of that 92 * and more 93 * 94 * We load our kernel at 4M, leaving space for SLOF initial image 95 */ 96 #define FDT_MAX_SIZE 0x100000 97 #define RTAS_MAX_SIZE 0x10000 98 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 99 #define FW_MAX_SIZE 0x400000 100 #define FW_FILE_NAME "slof.bin" 101 #define FW_OVERHEAD 0x2800000 102 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 103 104 #define MIN_RMA_SLOF 128UL 105 106 #define PHANDLE_INTC 0x00001111 107 108 /* These two functions implement the VCPU id numbering: one to compute them 109 * all and one to identify thread 0 of a VCORE. Any change to the first one 110 * is likely to have an impact on the second one, so let's keep them close. 111 */ 112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 113 { 114 MachineState *ms = MACHINE(spapr); 115 unsigned int smp_threads = ms->smp.threads; 116 117 assert(spapr->vsmt); 118 return 119 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 120 } 121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 122 PowerPCCPU *cpu) 123 { 124 assert(spapr->vsmt); 125 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 126 } 127 128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 129 { 130 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 131 * and newer QEMUs don't even have them. In both cases, we don't want 132 * to send anything on the wire. 133 */ 134 return false; 135 } 136 137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 138 .name = "icp/server", 139 .version_id = 1, 140 .minimum_version_id = 1, 141 .needed = pre_2_10_vmstate_dummy_icp_needed, 142 .fields = (VMStateField[]) { 143 VMSTATE_UNUSED(4), /* uint32_t xirr */ 144 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 145 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 146 VMSTATE_END_OF_LIST() 147 }, 148 }; 149 150 static void pre_2_10_vmstate_register_dummy_icp(int i) 151 { 152 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 153 (void *)(uintptr_t) i); 154 } 155 156 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 157 { 158 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 159 (void *)(uintptr_t) i); 160 } 161 162 int spapr_max_server_number(SpaprMachineState *spapr) 163 { 164 MachineState *ms = MACHINE(spapr); 165 166 assert(spapr->vsmt); 167 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 168 } 169 170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 171 int smt_threads) 172 { 173 int i, ret = 0; 174 uint32_t servers_prop[smt_threads]; 175 uint32_t gservers_prop[smt_threads * 2]; 176 int index = spapr_get_vcpu_id(cpu); 177 178 if (cpu->compat_pvr) { 179 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 180 if (ret < 0) { 181 return ret; 182 } 183 } 184 185 /* Build interrupt servers and gservers properties */ 186 for (i = 0; i < smt_threads; i++) { 187 servers_prop[i] = cpu_to_be32(index + i); 188 /* Hack, direct the group queues back to cpu 0 */ 189 gservers_prop[i*2] = cpu_to_be32(index + i); 190 gservers_prop[i*2 + 1] = 0; 191 } 192 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 193 servers_prop, sizeof(servers_prop)); 194 if (ret < 0) { 195 return ret; 196 } 197 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 198 gservers_prop, sizeof(gservers_prop)); 199 200 return ret; 201 } 202 203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 204 { 205 int index = spapr_get_vcpu_id(cpu); 206 uint32_t associativity[] = {cpu_to_be32(0x5), 207 cpu_to_be32(0x0), 208 cpu_to_be32(0x0), 209 cpu_to_be32(0x0), 210 cpu_to_be32(cpu->node_id), 211 cpu_to_be32(index)}; 212 213 /* Advertise NUMA via ibm,associativity */ 214 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 215 sizeof(associativity)); 216 } 217 218 /* Populate the "ibm,pa-features" property */ 219 static void spapr_populate_pa_features(SpaprMachineState *spapr, 220 PowerPCCPU *cpu, 221 void *fdt, int offset, 222 bool legacy_guest) 223 { 224 uint8_t pa_features_206[] = { 6, 0, 225 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 226 uint8_t pa_features_207[] = { 24, 0, 227 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 228 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 229 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 230 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 231 uint8_t pa_features_300[] = { 66, 0, 232 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 233 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 234 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 235 /* 6: DS207 */ 236 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 237 /* 16: Vector */ 238 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 239 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 240 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 241 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 242 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 243 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 244 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 245 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 246 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 247 /* 42: PM, 44: PC RA, 46: SC vec'd */ 248 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 249 /* 48: SIMD, 50: QP BFP, 52: String */ 250 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 251 /* 54: DecFP, 56: DecI, 58: SHA */ 252 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 253 /* 60: NM atomic, 62: RNG */ 254 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 255 }; 256 uint8_t *pa_features = NULL; 257 size_t pa_size; 258 259 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 260 pa_features = pa_features_206; 261 pa_size = sizeof(pa_features_206); 262 } 263 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 264 pa_features = pa_features_207; 265 pa_size = sizeof(pa_features_207); 266 } 267 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 268 pa_features = pa_features_300; 269 pa_size = sizeof(pa_features_300); 270 } 271 if (!pa_features) { 272 return; 273 } 274 275 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 276 /* 277 * Note: we keep CI large pages off by default because a 64K capable 278 * guest provisioned with large pages might otherwise try to map a qemu 279 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 280 * even if that qemu runs on a 4k host. 281 * We dd this bit back here if we are confident this is not an issue 282 */ 283 pa_features[3] |= 0x20; 284 } 285 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 286 pa_features[24] |= 0x80; /* Transactional memory support */ 287 } 288 if (legacy_guest && pa_size > 40) { 289 /* Workaround for broken kernels that attempt (guest) radix 290 * mode when they can't handle it, if they see the radix bit set 291 * in pa-features. So hide it from them. */ 292 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 293 } 294 295 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 296 } 297 298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 299 { 300 MachineState *ms = MACHINE(spapr); 301 int ret = 0, offset, cpus_offset; 302 CPUState *cs; 303 char cpu_model[32]; 304 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 305 306 CPU_FOREACH(cs) { 307 PowerPCCPU *cpu = POWERPC_CPU(cs); 308 DeviceClass *dc = DEVICE_GET_CLASS(cs); 309 int index = spapr_get_vcpu_id(cpu); 310 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu)); 311 312 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 313 continue; 314 } 315 316 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 317 318 cpus_offset = fdt_path_offset(fdt, "/cpus"); 319 if (cpus_offset < 0) { 320 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 321 if (cpus_offset < 0) { 322 return cpus_offset; 323 } 324 } 325 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 326 if (offset < 0) { 327 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 328 if (offset < 0) { 329 return offset; 330 } 331 } 332 333 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 334 pft_size_prop, sizeof(pft_size_prop)); 335 if (ret < 0) { 336 return ret; 337 } 338 339 if (nb_numa_nodes > 1) { 340 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 341 if (ret < 0) { 342 return ret; 343 } 344 } 345 346 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 347 if (ret < 0) { 348 return ret; 349 } 350 351 spapr_populate_pa_features(spapr, cpu, fdt, offset, 352 spapr->cas_legacy_guest_workaround); 353 } 354 return ret; 355 } 356 357 static hwaddr spapr_node0_size(MachineState *machine) 358 { 359 if (nb_numa_nodes) { 360 int i; 361 for (i = 0; i < nb_numa_nodes; ++i) { 362 if (numa_info[i].node_mem) { 363 return MIN(pow2floor(numa_info[i].node_mem), 364 machine->ram_size); 365 } 366 } 367 } 368 return machine->ram_size; 369 } 370 371 static void add_str(GString *s, const gchar *s1) 372 { 373 g_string_append_len(s, s1, strlen(s1) + 1); 374 } 375 376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 377 hwaddr size) 378 { 379 uint32_t associativity[] = { 380 cpu_to_be32(0x4), /* length */ 381 cpu_to_be32(0x0), cpu_to_be32(0x0), 382 cpu_to_be32(0x0), cpu_to_be32(nodeid) 383 }; 384 char mem_name[32]; 385 uint64_t mem_reg_property[2]; 386 int off; 387 388 mem_reg_property[0] = cpu_to_be64(start); 389 mem_reg_property[1] = cpu_to_be64(size); 390 391 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 392 off = fdt_add_subnode(fdt, 0, mem_name); 393 _FDT(off); 394 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 395 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 396 sizeof(mem_reg_property)))); 397 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 398 sizeof(associativity)))); 399 return off; 400 } 401 402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 403 { 404 MachineState *machine = MACHINE(spapr); 405 hwaddr mem_start, node_size; 406 int i, nb_nodes = nb_numa_nodes; 407 NodeInfo *nodes = numa_info; 408 NodeInfo ramnode; 409 410 /* No NUMA nodes, assume there is just one node with whole RAM */ 411 if (!nb_numa_nodes) { 412 nb_nodes = 1; 413 ramnode.node_mem = machine->ram_size; 414 nodes = &ramnode; 415 } 416 417 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 418 if (!nodes[i].node_mem) { 419 continue; 420 } 421 if (mem_start >= machine->ram_size) { 422 node_size = 0; 423 } else { 424 node_size = nodes[i].node_mem; 425 if (node_size > machine->ram_size - mem_start) { 426 node_size = machine->ram_size - mem_start; 427 } 428 } 429 if (!mem_start) { 430 /* spapr_machine_init() checks for rma_size <= node0_size 431 * already */ 432 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 433 mem_start += spapr->rma_size; 434 node_size -= spapr->rma_size; 435 } 436 for ( ; node_size; ) { 437 hwaddr sizetmp = pow2floor(node_size); 438 439 /* mem_start != 0 here */ 440 if (ctzl(mem_start) < ctzl(sizetmp)) { 441 sizetmp = 1ULL << ctzl(mem_start); 442 } 443 444 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 445 node_size -= sizetmp; 446 mem_start += sizetmp; 447 } 448 } 449 450 return 0; 451 } 452 453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 454 SpaprMachineState *spapr) 455 { 456 MachineState *ms = MACHINE(spapr); 457 PowerPCCPU *cpu = POWERPC_CPU(cs); 458 CPUPPCState *env = &cpu->env; 459 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 460 int index = spapr_get_vcpu_id(cpu); 461 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 462 0xffffffff, 0xffffffff}; 463 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 464 : SPAPR_TIMEBASE_FREQ; 465 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 466 uint32_t page_sizes_prop[64]; 467 size_t page_sizes_prop_size; 468 unsigned int smp_threads = ms->smp.threads; 469 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 470 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 471 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 472 SpaprDrc *drc; 473 int drc_index; 474 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 475 int i; 476 477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 478 if (drc) { 479 drc_index = spapr_drc_index(drc); 480 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 481 } 482 483 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 484 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 485 486 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 488 env->dcache_line_size))); 489 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 490 env->dcache_line_size))); 491 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 492 env->icache_line_size))); 493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 494 env->icache_line_size))); 495 496 if (pcc->l1_dcache_size) { 497 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 498 pcc->l1_dcache_size))); 499 } else { 500 warn_report("Unknown L1 dcache size for cpu"); 501 } 502 if (pcc->l1_icache_size) { 503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 504 pcc->l1_icache_size))); 505 } else { 506 warn_report("Unknown L1 icache size for cpu"); 507 } 508 509 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 510 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 511 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 513 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 514 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 515 516 if (env->spr_cb[SPR_PURR].oea_read) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 518 } 519 if (env->spr_cb[SPR_SPURR].oea_read) { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 521 } 522 523 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 524 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 525 segs, sizeof(segs)))); 526 } 527 528 /* Advertise VSX (vector extensions) if available 529 * 1 == VMX / Altivec available 530 * 2 == VSX available 531 * 532 * Only CPUs for which we create core types in spapr_cpu_core.c 533 * are possible, and all of those have VMX */ 534 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 536 } else { 537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 538 } 539 540 /* Advertise DFP (Decimal Floating Point) if available 541 * 0 / no property == no DFP 542 * 1 == DFP available */ 543 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 545 } 546 547 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 548 sizeof(page_sizes_prop)); 549 if (page_sizes_prop_size) { 550 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 551 page_sizes_prop, page_sizes_prop_size))); 552 } 553 554 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 555 556 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 557 cs->cpu_index / vcpus_per_socket))); 558 559 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 560 pft_size_prop, sizeof(pft_size_prop)))); 561 562 if (nb_numa_nodes > 1) { 563 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 564 } 565 566 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 567 568 if (pcc->radix_page_info) { 569 for (i = 0; i < pcc->radix_page_info->count; i++) { 570 radix_AP_encodings[i] = 571 cpu_to_be32(pcc->radix_page_info->entries[i]); 572 } 573 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 574 radix_AP_encodings, 575 pcc->radix_page_info->count * 576 sizeof(radix_AP_encodings[0])))); 577 } 578 579 /* 580 * We set this property to let the guest know that it can use the large 581 * decrementer and its width in bits. 582 */ 583 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 584 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 585 pcc->lrg_decr_bits))); 586 } 587 588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 589 { 590 CPUState **rev; 591 CPUState *cs; 592 int n_cpus; 593 int cpus_offset; 594 char *nodename; 595 int i; 596 597 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 598 _FDT(cpus_offset); 599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 600 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 601 602 /* 603 * We walk the CPUs in reverse order to ensure that CPU DT nodes 604 * created by fdt_add_subnode() end up in the right order in FDT 605 * for the guest kernel the enumerate the CPUs correctly. 606 * 607 * The CPU list cannot be traversed in reverse order, so we need 608 * to do extra work. 609 */ 610 n_cpus = 0; 611 rev = NULL; 612 CPU_FOREACH(cs) { 613 rev = g_renew(CPUState *, rev, n_cpus + 1); 614 rev[n_cpus++] = cs; 615 } 616 617 for (i = n_cpus - 1; i >= 0; i--) { 618 CPUState *cs = rev[i]; 619 PowerPCCPU *cpu = POWERPC_CPU(cs); 620 int index = spapr_get_vcpu_id(cpu); 621 DeviceClass *dc = DEVICE_GET_CLASS(cs); 622 int offset; 623 624 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 625 continue; 626 } 627 628 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 629 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 630 g_free(nodename); 631 _FDT(offset); 632 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 633 } 634 635 g_free(rev); 636 } 637 638 static int spapr_rng_populate_dt(void *fdt) 639 { 640 int node; 641 int ret; 642 643 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 644 if (node <= 0) { 645 return -1; 646 } 647 ret = fdt_setprop_string(fdt, node, "device_type", 648 "ibm,platform-facilities"); 649 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 650 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 651 652 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 653 if (node <= 0) { 654 return -1; 655 } 656 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 657 658 return ret ? -1 : 0; 659 } 660 661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 662 { 663 MemoryDeviceInfoList *info; 664 665 for (info = list; info; info = info->next) { 666 MemoryDeviceInfo *value = info->value; 667 668 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 669 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 670 671 if (addr >= pcdimm_info->addr && 672 addr < (pcdimm_info->addr + pcdimm_info->size)) { 673 return pcdimm_info->node; 674 } 675 } 676 } 677 678 return -1; 679 } 680 681 struct sPAPRDrconfCellV2 { 682 uint32_t seq_lmbs; 683 uint64_t base_addr; 684 uint32_t drc_index; 685 uint32_t aa_index; 686 uint32_t flags; 687 } QEMU_PACKED; 688 689 typedef struct DrconfCellQueue { 690 struct sPAPRDrconfCellV2 cell; 691 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 692 } DrconfCellQueue; 693 694 static DrconfCellQueue * 695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 696 uint32_t drc_index, uint32_t aa_index, 697 uint32_t flags) 698 { 699 DrconfCellQueue *elem; 700 701 elem = g_malloc0(sizeof(*elem)); 702 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 703 elem->cell.base_addr = cpu_to_be64(base_addr); 704 elem->cell.drc_index = cpu_to_be32(drc_index); 705 elem->cell.aa_index = cpu_to_be32(aa_index); 706 elem->cell.flags = cpu_to_be32(flags); 707 708 return elem; 709 } 710 711 /* ibm,dynamic-memory-v2 */ 712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 713 int offset, MemoryDeviceInfoList *dimms) 714 { 715 MachineState *machine = MACHINE(spapr); 716 uint8_t *int_buf, *cur_index; 717 int ret; 718 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 719 uint64_t addr, cur_addr, size; 720 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 721 uint64_t mem_end = machine->device_memory->base + 722 memory_region_size(&machine->device_memory->mr); 723 uint32_t node, buf_len, nr_entries = 0; 724 SpaprDrc *drc; 725 DrconfCellQueue *elem, *next; 726 MemoryDeviceInfoList *info; 727 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 728 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 729 730 /* Entry to cover RAM and the gap area */ 731 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 732 SPAPR_LMB_FLAGS_RESERVED | 733 SPAPR_LMB_FLAGS_DRC_INVALID); 734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 735 nr_entries++; 736 737 cur_addr = machine->device_memory->base; 738 for (info = dimms; info; info = info->next) { 739 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 740 741 addr = di->addr; 742 size = di->size; 743 node = di->node; 744 745 /* Entry for hot-pluggable area */ 746 if (cur_addr < addr) { 747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 748 g_assert(drc); 749 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 750 cur_addr, spapr_drc_index(drc), -1, 0); 751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 752 nr_entries++; 753 } 754 755 /* Entry for DIMM */ 756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 757 g_assert(drc); 758 elem = spapr_get_drconf_cell(size / lmb_size, addr, 759 spapr_drc_index(drc), node, 760 SPAPR_LMB_FLAGS_ASSIGNED); 761 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 762 nr_entries++; 763 cur_addr = addr + size; 764 } 765 766 /* Entry for remaining hotpluggable area */ 767 if (cur_addr < mem_end) { 768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 769 g_assert(drc); 770 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 771 cur_addr, spapr_drc_index(drc), -1, 0); 772 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 773 nr_entries++; 774 } 775 776 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 777 int_buf = cur_index = g_malloc0(buf_len); 778 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 779 cur_index += sizeof(nr_entries); 780 781 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 782 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 783 cur_index += sizeof(elem->cell); 784 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 785 g_free(elem); 786 } 787 788 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 789 g_free(int_buf); 790 if (ret < 0) { 791 return -1; 792 } 793 return 0; 794 } 795 796 /* ibm,dynamic-memory */ 797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 798 int offset, MemoryDeviceInfoList *dimms) 799 { 800 MachineState *machine = MACHINE(spapr); 801 int i, ret; 802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 803 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 804 uint32_t nr_lmbs = (machine->device_memory->base + 805 memory_region_size(&machine->device_memory->mr)) / 806 lmb_size; 807 uint32_t *int_buf, *cur_index, buf_len; 808 809 /* 810 * Allocate enough buffer size to fit in ibm,dynamic-memory 811 */ 812 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 813 cur_index = int_buf = g_malloc0(buf_len); 814 int_buf[0] = cpu_to_be32(nr_lmbs); 815 cur_index++; 816 for (i = 0; i < nr_lmbs; i++) { 817 uint64_t addr = i * lmb_size; 818 uint32_t *dynamic_memory = cur_index; 819 820 if (i >= device_lmb_start) { 821 SpaprDrc *drc; 822 823 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 824 g_assert(drc); 825 826 dynamic_memory[0] = cpu_to_be32(addr >> 32); 827 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 828 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 829 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 830 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 831 if (memory_region_present(get_system_memory(), addr)) { 832 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 833 } else { 834 dynamic_memory[5] = cpu_to_be32(0); 835 } 836 } else { 837 /* 838 * LMB information for RMA, boot time RAM and gap b/n RAM and 839 * device memory region -- all these are marked as reserved 840 * and as having no valid DRC. 841 */ 842 dynamic_memory[0] = cpu_to_be32(addr >> 32); 843 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 844 dynamic_memory[2] = cpu_to_be32(0); 845 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 846 dynamic_memory[4] = cpu_to_be32(-1); 847 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 848 SPAPR_LMB_FLAGS_DRC_INVALID); 849 } 850 851 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 852 } 853 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 854 g_free(int_buf); 855 if (ret < 0) { 856 return -1; 857 } 858 return 0; 859 } 860 861 /* 862 * Adds ibm,dynamic-reconfiguration-memory node. 863 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 864 * of this device tree node. 865 */ 866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 867 { 868 MachineState *machine = MACHINE(spapr); 869 int ret, i, offset; 870 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 871 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 872 uint32_t *int_buf, *cur_index, buf_len; 873 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 874 MemoryDeviceInfoList *dimms = NULL; 875 876 /* 877 * Don't create the node if there is no device memory 878 */ 879 if (machine->ram_size == machine->maxram_size) { 880 return 0; 881 } 882 883 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 884 885 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 886 sizeof(prop_lmb_size)); 887 if (ret < 0) { 888 return ret; 889 } 890 891 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 892 if (ret < 0) { 893 return ret; 894 } 895 896 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 897 if (ret < 0) { 898 return ret; 899 } 900 901 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 902 dimms = qmp_memory_device_list(); 903 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 904 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 905 } else { 906 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 907 } 908 qapi_free_MemoryDeviceInfoList(dimms); 909 910 if (ret < 0) { 911 return ret; 912 } 913 914 /* ibm,associativity-lookup-arrays */ 915 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 916 cur_index = int_buf = g_malloc0(buf_len); 917 int_buf[0] = cpu_to_be32(nr_nodes); 918 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 919 cur_index += 2; 920 for (i = 0; i < nr_nodes; i++) { 921 uint32_t associativity[] = { 922 cpu_to_be32(0x0), 923 cpu_to_be32(0x0), 924 cpu_to_be32(0x0), 925 cpu_to_be32(i) 926 }; 927 memcpy(cur_index, associativity, sizeof(associativity)); 928 cur_index += 4; 929 } 930 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 931 (cur_index - int_buf) * sizeof(uint32_t)); 932 g_free(int_buf); 933 934 return ret; 935 } 936 937 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 938 SpaprOptionVector *ov5_updates) 939 { 940 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 941 int ret = 0, offset; 942 943 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 944 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 945 g_assert(smc->dr_lmb_enabled); 946 ret = spapr_populate_drconf_memory(spapr, fdt); 947 if (ret) { 948 goto out; 949 } 950 } 951 952 offset = fdt_path_offset(fdt, "/chosen"); 953 if (offset < 0) { 954 offset = fdt_add_subnode(fdt, 0, "chosen"); 955 if (offset < 0) { 956 return offset; 957 } 958 } 959 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 960 "ibm,architecture-vec-5"); 961 962 out: 963 return ret; 964 } 965 966 static bool spapr_hotplugged_dev_before_cas(void) 967 { 968 Object *drc_container, *obj; 969 ObjectProperty *prop; 970 ObjectPropertyIterator iter; 971 972 drc_container = container_get(object_get_root(), "/dr-connector"); 973 object_property_iter_init(&iter, drc_container); 974 while ((prop = object_property_iter_next(&iter))) { 975 if (!strstart(prop->type, "link<", NULL)) { 976 continue; 977 } 978 obj = object_property_get_link(drc_container, prop->name, NULL); 979 if (spapr_drc_needed(obj)) { 980 return true; 981 } 982 } 983 return false; 984 } 985 986 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 987 target_ulong addr, target_ulong size, 988 SpaprOptionVector *ov5_updates) 989 { 990 void *fdt, *fdt_skel; 991 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 992 993 if (spapr_hotplugged_dev_before_cas()) { 994 return 1; 995 } 996 997 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 998 error_report("SLOF provided an unexpected CAS buffer size " 999 TARGET_FMT_lu " (min: %zu, max: %u)", 1000 size, sizeof(hdr), FW_MAX_SIZE); 1001 exit(EXIT_FAILURE); 1002 } 1003 1004 size -= sizeof(hdr); 1005 1006 /* Create skeleton */ 1007 fdt_skel = g_malloc0(size); 1008 _FDT((fdt_create(fdt_skel, size))); 1009 _FDT((fdt_finish_reservemap(fdt_skel))); 1010 _FDT((fdt_begin_node(fdt_skel, ""))); 1011 _FDT((fdt_end_node(fdt_skel))); 1012 _FDT((fdt_finish(fdt_skel))); 1013 fdt = g_malloc0(size); 1014 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1015 g_free(fdt_skel); 1016 1017 /* Fixup cpu nodes */ 1018 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1019 1020 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1021 return -1; 1022 } 1023 1024 /* Pack resulting tree */ 1025 _FDT((fdt_pack(fdt))); 1026 1027 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1028 trace_spapr_cas_failed(size); 1029 return -1; 1030 } 1031 1032 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1033 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1034 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1035 g_free(fdt); 1036 1037 return 0; 1038 } 1039 1040 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1041 { 1042 MachineState *ms = MACHINE(spapr); 1043 int rtas; 1044 GString *hypertas = g_string_sized_new(256); 1045 GString *qemu_hypertas = g_string_sized_new(256); 1046 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1047 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1048 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1049 uint32_t lrdr_capacity[] = { 1050 cpu_to_be32(max_device_addr >> 32), 1051 cpu_to_be32(max_device_addr & 0xffffffff), 1052 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1053 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 1054 }; 1055 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1056 uint32_t maxdomains[] = { 1057 cpu_to_be32(4), 1058 maxdomain, 1059 maxdomain, 1060 maxdomain, 1061 cpu_to_be32(spapr->gpu_numa_id), 1062 }; 1063 1064 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1065 1066 /* hypertas */ 1067 add_str(hypertas, "hcall-pft"); 1068 add_str(hypertas, "hcall-term"); 1069 add_str(hypertas, "hcall-dabr"); 1070 add_str(hypertas, "hcall-interrupt"); 1071 add_str(hypertas, "hcall-tce"); 1072 add_str(hypertas, "hcall-vio"); 1073 add_str(hypertas, "hcall-splpar"); 1074 add_str(hypertas, "hcall-join"); 1075 add_str(hypertas, "hcall-bulk"); 1076 add_str(hypertas, "hcall-set-mode"); 1077 add_str(hypertas, "hcall-sprg0"); 1078 add_str(hypertas, "hcall-copy"); 1079 add_str(hypertas, "hcall-debug"); 1080 add_str(hypertas, "hcall-vphn"); 1081 add_str(qemu_hypertas, "hcall-memop1"); 1082 1083 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1084 add_str(hypertas, "hcall-multi-tce"); 1085 } 1086 1087 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1088 add_str(hypertas, "hcall-hpt-resize"); 1089 } 1090 1091 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1092 hypertas->str, hypertas->len)); 1093 g_string_free(hypertas, TRUE); 1094 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1095 qemu_hypertas->str, qemu_hypertas->len)); 1096 g_string_free(qemu_hypertas, TRUE); 1097 1098 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1099 refpoints, sizeof(refpoints))); 1100 1101 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1102 maxdomains, sizeof(maxdomains))); 1103 1104 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1105 RTAS_ERROR_LOG_MAX)); 1106 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1107 RTAS_EVENT_SCAN_RATE)); 1108 1109 g_assert(msi_nonbroken); 1110 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1111 1112 /* 1113 * According to PAPR, rtas ibm,os-term does not guarantee a return 1114 * back to the guest cpu. 1115 * 1116 * While an additional ibm,extended-os-term property indicates 1117 * that rtas call return will always occur. Set this property. 1118 */ 1119 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1120 1121 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1122 lrdr_capacity, sizeof(lrdr_capacity))); 1123 1124 spapr_dt_rtas_tokens(fdt, rtas); 1125 } 1126 1127 /* 1128 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1129 * and the XIVE features that the guest may request and thus the valid 1130 * values for bytes 23..26 of option vector 5: 1131 */ 1132 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1133 int chosen) 1134 { 1135 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1136 1137 char val[2 * 4] = { 1138 23, spapr->irq->ov5, /* Xive mode. */ 1139 24, 0x00, /* Hash/Radix, filled in below. */ 1140 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1141 26, 0x40, /* Radix options: GTSE == yes. */ 1142 }; 1143 1144 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1145 first_ppc_cpu->compat_pvr)) { 1146 /* 1147 * If we're in a pre POWER9 compat mode then the guest should 1148 * do hash and use the legacy interrupt mode 1149 */ 1150 val[1] = 0x00; /* XICS */ 1151 val[3] = 0x00; /* Hash */ 1152 } else if (kvm_enabled()) { 1153 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1154 val[3] = 0x80; /* OV5_MMU_BOTH */ 1155 } else if (kvmppc_has_cap_mmu_radix()) { 1156 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1157 } else { 1158 val[3] = 0x00; /* Hash */ 1159 } 1160 } else { 1161 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1162 val[3] = 0xC0; 1163 } 1164 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1165 val, sizeof(val))); 1166 } 1167 1168 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1169 { 1170 MachineState *machine = MACHINE(spapr); 1171 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1172 int chosen; 1173 const char *boot_device = machine->boot_order; 1174 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1175 size_t cb = 0; 1176 char *bootlist = get_boot_devices_list(&cb); 1177 1178 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1179 1180 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1181 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1182 spapr->initrd_base)); 1183 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1184 spapr->initrd_base + spapr->initrd_size)); 1185 1186 if (spapr->kernel_size) { 1187 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1188 cpu_to_be64(spapr->kernel_size) }; 1189 1190 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1191 &kprop, sizeof(kprop))); 1192 if (spapr->kernel_le) { 1193 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1194 } 1195 } 1196 if (boot_menu) { 1197 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1198 } 1199 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1200 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1201 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1202 1203 if (cb && bootlist) { 1204 int i; 1205 1206 for (i = 0; i < cb; i++) { 1207 if (bootlist[i] == '\n') { 1208 bootlist[i] = ' '; 1209 } 1210 } 1211 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1212 } 1213 1214 if (boot_device && strlen(boot_device)) { 1215 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1216 } 1217 1218 if (!spapr->has_graphics && stdout_path) { 1219 /* 1220 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1221 * kernel. New platforms should only use the "stdout-path" property. Set 1222 * the new property and continue using older property to remain 1223 * compatible with the existing firmware. 1224 */ 1225 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1226 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1227 } 1228 1229 /* We can deal with BAR reallocation just fine, advertise it to the guest */ 1230 if (smc->linux_pci_probe) { 1231 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1232 } 1233 1234 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1235 1236 g_free(stdout_path); 1237 g_free(bootlist); 1238 } 1239 1240 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1241 { 1242 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1243 * KVM to work under pHyp with some guest co-operation */ 1244 int hypervisor; 1245 uint8_t hypercall[16]; 1246 1247 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1248 /* indicate KVM hypercall interface */ 1249 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1250 if (kvmppc_has_cap_fixup_hcalls()) { 1251 /* 1252 * Older KVM versions with older guest kernels were broken 1253 * with the magic page, don't allow the guest to map it. 1254 */ 1255 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1256 sizeof(hypercall))) { 1257 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1258 hypercall, sizeof(hypercall))); 1259 } 1260 } 1261 } 1262 1263 static void *spapr_build_fdt(SpaprMachineState *spapr) 1264 { 1265 MachineState *machine = MACHINE(spapr); 1266 MachineClass *mc = MACHINE_GET_CLASS(machine); 1267 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1268 int ret; 1269 void *fdt; 1270 SpaprPhbState *phb; 1271 char *buf; 1272 1273 fdt = g_malloc0(FDT_MAX_SIZE); 1274 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1275 1276 /* Root node */ 1277 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1278 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1279 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1280 1281 /* Guest UUID & Name*/ 1282 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1283 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1284 if (qemu_uuid_set) { 1285 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1286 } 1287 g_free(buf); 1288 1289 if (qemu_get_vm_name()) { 1290 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1291 qemu_get_vm_name())); 1292 } 1293 1294 /* Host Model & Serial Number */ 1295 if (spapr->host_model) { 1296 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1297 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1298 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1299 g_free(buf); 1300 } 1301 1302 if (spapr->host_serial) { 1303 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1304 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1305 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1306 g_free(buf); 1307 } 1308 1309 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1310 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1311 1312 /* /interrupt controller */ 1313 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1314 PHANDLE_INTC); 1315 1316 ret = spapr_populate_memory(spapr, fdt); 1317 if (ret < 0) { 1318 error_report("couldn't setup memory nodes in fdt"); 1319 exit(1); 1320 } 1321 1322 /* /vdevice */ 1323 spapr_dt_vdevice(spapr->vio_bus, fdt); 1324 1325 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1326 ret = spapr_rng_populate_dt(fdt); 1327 if (ret < 0) { 1328 error_report("could not set up rng device in the fdt"); 1329 exit(1); 1330 } 1331 } 1332 1333 QLIST_FOREACH(phb, &spapr->phbs, list) { 1334 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1335 if (ret < 0) { 1336 error_report("couldn't setup PCI devices in fdt"); 1337 exit(1); 1338 } 1339 } 1340 1341 /* cpus */ 1342 spapr_populate_cpus_dt_node(fdt, spapr); 1343 1344 if (smc->dr_lmb_enabled) { 1345 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1346 } 1347 1348 if (mc->has_hotpluggable_cpus) { 1349 int offset = fdt_path_offset(fdt, "/cpus"); 1350 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1351 if (ret < 0) { 1352 error_report("Couldn't set up CPU DR device tree properties"); 1353 exit(1); 1354 } 1355 } 1356 1357 /* /event-sources */ 1358 spapr_dt_events(spapr, fdt); 1359 1360 /* /rtas */ 1361 spapr_dt_rtas(spapr, fdt); 1362 1363 /* /chosen */ 1364 spapr_dt_chosen(spapr, fdt); 1365 1366 /* /hypervisor */ 1367 if (kvm_enabled()) { 1368 spapr_dt_hypervisor(spapr, fdt); 1369 } 1370 1371 /* Build memory reserve map */ 1372 if (spapr->kernel_size) { 1373 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1374 } 1375 if (spapr->initrd_size) { 1376 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1377 } 1378 1379 /* ibm,client-architecture-support updates */ 1380 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1381 if (ret < 0) { 1382 error_report("couldn't setup CAS properties fdt"); 1383 exit(1); 1384 } 1385 1386 if (smc->dr_phb_enabled) { 1387 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1388 if (ret < 0) { 1389 error_report("Couldn't set up PHB DR device tree properties"); 1390 exit(1); 1391 } 1392 } 1393 1394 return fdt; 1395 } 1396 1397 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1398 { 1399 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1400 } 1401 1402 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1403 PowerPCCPU *cpu) 1404 { 1405 CPUPPCState *env = &cpu->env; 1406 1407 /* The TCG path should also be holding the BQL at this point */ 1408 g_assert(qemu_mutex_iothread_locked()); 1409 1410 if (msr_pr) { 1411 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1412 env->gpr[3] = H_PRIVILEGE; 1413 } else { 1414 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1415 } 1416 } 1417 1418 struct LPCRSyncState { 1419 target_ulong value; 1420 target_ulong mask; 1421 }; 1422 1423 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1424 { 1425 struct LPCRSyncState *s = arg.host_ptr; 1426 PowerPCCPU *cpu = POWERPC_CPU(cs); 1427 CPUPPCState *env = &cpu->env; 1428 target_ulong lpcr; 1429 1430 cpu_synchronize_state(cs); 1431 lpcr = env->spr[SPR_LPCR]; 1432 lpcr &= ~s->mask; 1433 lpcr |= s->value; 1434 ppc_store_lpcr(cpu, lpcr); 1435 } 1436 1437 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1438 { 1439 CPUState *cs; 1440 struct LPCRSyncState s = { 1441 .value = value, 1442 .mask = mask 1443 }; 1444 CPU_FOREACH(cs) { 1445 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1446 } 1447 } 1448 1449 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1450 { 1451 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1452 1453 /* Copy PATE1:GR into PATE0:HR */ 1454 entry->dw0 = spapr->patb_entry & PATE0_HR; 1455 entry->dw1 = spapr->patb_entry; 1456 } 1457 1458 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1459 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1460 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1461 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1462 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1463 1464 /* 1465 * Get the fd to access the kernel htab, re-opening it if necessary 1466 */ 1467 static int get_htab_fd(SpaprMachineState *spapr) 1468 { 1469 Error *local_err = NULL; 1470 1471 if (spapr->htab_fd >= 0) { 1472 return spapr->htab_fd; 1473 } 1474 1475 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1476 if (spapr->htab_fd < 0) { 1477 error_report_err(local_err); 1478 } 1479 1480 return spapr->htab_fd; 1481 } 1482 1483 void close_htab_fd(SpaprMachineState *spapr) 1484 { 1485 if (spapr->htab_fd >= 0) { 1486 close(spapr->htab_fd); 1487 } 1488 spapr->htab_fd = -1; 1489 } 1490 1491 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1492 { 1493 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1494 1495 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1496 } 1497 1498 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1499 { 1500 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1501 1502 assert(kvm_enabled()); 1503 1504 if (!spapr->htab) { 1505 return 0; 1506 } 1507 1508 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1509 } 1510 1511 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1512 hwaddr ptex, int n) 1513 { 1514 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1515 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1516 1517 if (!spapr->htab) { 1518 /* 1519 * HTAB is controlled by KVM. Fetch into temporary buffer 1520 */ 1521 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1522 kvmppc_read_hptes(hptes, ptex, n); 1523 return hptes; 1524 } 1525 1526 /* 1527 * HTAB is controlled by QEMU. Just point to the internally 1528 * accessible PTEG. 1529 */ 1530 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1531 } 1532 1533 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1534 const ppc_hash_pte64_t *hptes, 1535 hwaddr ptex, int n) 1536 { 1537 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1538 1539 if (!spapr->htab) { 1540 g_free((void *)hptes); 1541 } 1542 1543 /* Nothing to do for qemu managed HPT */ 1544 } 1545 1546 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1547 uint64_t pte0, uint64_t pte1) 1548 { 1549 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1550 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1551 1552 if (!spapr->htab) { 1553 kvmppc_write_hpte(ptex, pte0, pte1); 1554 } else { 1555 if (pte0 & HPTE64_V_VALID) { 1556 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1557 /* 1558 * When setting valid, we write PTE1 first. This ensures 1559 * proper synchronization with the reading code in 1560 * ppc_hash64_pteg_search() 1561 */ 1562 smp_wmb(); 1563 stq_p(spapr->htab + offset, pte0); 1564 } else { 1565 stq_p(spapr->htab + offset, pte0); 1566 /* 1567 * When clearing it we set PTE0 first. This ensures proper 1568 * synchronization with the reading code in 1569 * ppc_hash64_pteg_search() 1570 */ 1571 smp_wmb(); 1572 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1573 } 1574 } 1575 } 1576 1577 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1578 uint64_t pte1) 1579 { 1580 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1581 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1582 1583 if (!spapr->htab) { 1584 /* There should always be a hash table when this is called */ 1585 error_report("spapr_hpte_set_c called with no hash table !"); 1586 return; 1587 } 1588 1589 /* The HW performs a non-atomic byte update */ 1590 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1591 } 1592 1593 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1594 uint64_t pte1) 1595 { 1596 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1597 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1598 1599 if (!spapr->htab) { 1600 /* There should always be a hash table when this is called */ 1601 error_report("spapr_hpte_set_r called with no hash table !"); 1602 return; 1603 } 1604 1605 /* The HW performs a non-atomic byte update */ 1606 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1607 } 1608 1609 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1610 { 1611 int shift; 1612 1613 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1614 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1615 * that's much more than is needed for Linux guests */ 1616 shift = ctz64(pow2ceil(ramsize)) - 7; 1617 shift = MAX(shift, 18); /* Minimum architected size */ 1618 shift = MIN(shift, 46); /* Maximum architected size */ 1619 return shift; 1620 } 1621 1622 void spapr_free_hpt(SpaprMachineState *spapr) 1623 { 1624 g_free(spapr->htab); 1625 spapr->htab = NULL; 1626 spapr->htab_shift = 0; 1627 close_htab_fd(spapr); 1628 } 1629 1630 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1631 Error **errp) 1632 { 1633 long rc; 1634 1635 /* Clean up any HPT info from a previous boot */ 1636 spapr_free_hpt(spapr); 1637 1638 rc = kvmppc_reset_htab(shift); 1639 if (rc < 0) { 1640 /* kernel-side HPT needed, but couldn't allocate one */ 1641 error_setg_errno(errp, errno, 1642 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1643 shift); 1644 /* This is almost certainly fatal, but if the caller really 1645 * wants to carry on with shift == 0, it's welcome to try */ 1646 } else if (rc > 0) { 1647 /* kernel-side HPT allocated */ 1648 if (rc != shift) { 1649 error_setg(errp, 1650 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1651 shift, rc); 1652 } 1653 1654 spapr->htab_shift = shift; 1655 spapr->htab = NULL; 1656 } else { 1657 /* kernel-side HPT not needed, allocate in userspace instead */ 1658 size_t size = 1ULL << shift; 1659 int i; 1660 1661 spapr->htab = qemu_memalign(size, size); 1662 if (!spapr->htab) { 1663 error_setg_errno(errp, errno, 1664 "Could not allocate HPT of order %d", shift); 1665 return; 1666 } 1667 1668 memset(spapr->htab, 0, size); 1669 spapr->htab_shift = shift; 1670 1671 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1672 DIRTY_HPTE(HPTE(spapr->htab, i)); 1673 } 1674 } 1675 /* We're setting up a hash table, so that means we're not radix */ 1676 spapr->patb_entry = 0; 1677 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1678 } 1679 1680 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1681 { 1682 int hpt_shift; 1683 1684 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1685 || (spapr->cas_reboot 1686 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1687 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1688 } else { 1689 uint64_t current_ram_size; 1690 1691 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1692 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1693 } 1694 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1695 1696 if (spapr->vrma_adjust) { 1697 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1698 spapr->htab_shift); 1699 } 1700 } 1701 1702 static int spapr_reset_drcs(Object *child, void *opaque) 1703 { 1704 SpaprDrc *drc = 1705 (SpaprDrc *) object_dynamic_cast(child, 1706 TYPE_SPAPR_DR_CONNECTOR); 1707 1708 if (drc) { 1709 spapr_drc_reset(drc); 1710 } 1711 1712 return 0; 1713 } 1714 1715 static void spapr_machine_reset(MachineState *machine) 1716 { 1717 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1718 PowerPCCPU *first_ppc_cpu; 1719 uint32_t rtas_limit; 1720 hwaddr rtas_addr, fdt_addr; 1721 void *fdt; 1722 int rc; 1723 1724 spapr_caps_apply(spapr); 1725 1726 first_ppc_cpu = POWERPC_CPU(first_cpu); 1727 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1728 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1729 spapr->max_compat_pvr)) { 1730 /* 1731 * If using KVM with radix mode available, VCPUs can be started 1732 * without a HPT because KVM will start them in radix mode. 1733 * Set the GR bit in PATE so that we know there is no HPT. 1734 */ 1735 spapr->patb_entry = PATE1_GR; 1736 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1737 } else { 1738 spapr_setup_hpt_and_vrma(spapr); 1739 } 1740 1741 /* 1742 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 1743 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 1744 * called from vPHB reset handler so we initialize the counter here. 1745 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 1746 * must be equally distant from any other node. 1747 * The final value of spapr->gpu_numa_id is going to be written to 1748 * max-associativity-domains in spapr_build_fdt(). 1749 */ 1750 spapr->gpu_numa_id = MAX(1, nb_numa_nodes); 1751 qemu_devices_reset(); 1752 1753 /* 1754 * If this reset wasn't generated by CAS, we should reset our 1755 * negotiated options and start from scratch 1756 */ 1757 if (!spapr->cas_reboot) { 1758 spapr_ovec_cleanup(spapr->ov5_cas); 1759 spapr->ov5_cas = spapr_ovec_new(); 1760 1761 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1762 } 1763 1764 /* 1765 * This is fixing some of the default configuration of the XIVE 1766 * devices. To be called after the reset of the machine devices. 1767 */ 1768 spapr_irq_reset(spapr, &error_fatal); 1769 1770 /* 1771 * There is no CAS under qtest. Simulate one to please the code that 1772 * depends on spapr->ov5_cas. This is especially needed to test device 1773 * unplug, so we do that before resetting the DRCs. 1774 */ 1775 if (qtest_enabled()) { 1776 spapr_ovec_cleanup(spapr->ov5_cas); 1777 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1778 } 1779 1780 /* DRC reset may cause a device to be unplugged. This will cause troubles 1781 * if this device is used by another device (eg, a running vhost backend 1782 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1783 * situations, we reset DRCs after all devices have been reset. 1784 */ 1785 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1786 1787 spapr_clear_pending_events(spapr); 1788 1789 /* 1790 * We place the device tree and RTAS just below either the top of the RMA, 1791 * or just below 2GB, whichever is lower, so that it can be 1792 * processed with 32-bit real mode code if necessary 1793 */ 1794 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1795 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1796 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1797 1798 fdt = spapr_build_fdt(spapr); 1799 1800 spapr_load_rtas(spapr, fdt, rtas_addr); 1801 1802 rc = fdt_pack(fdt); 1803 1804 /* Should only fail if we've built a corrupted tree */ 1805 assert(rc == 0); 1806 1807 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1808 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1809 fdt_totalsize(fdt), FDT_MAX_SIZE); 1810 exit(1); 1811 } 1812 1813 /* Load the fdt */ 1814 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1815 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1816 g_free(spapr->fdt_blob); 1817 spapr->fdt_size = fdt_totalsize(fdt); 1818 spapr->fdt_initial_size = spapr->fdt_size; 1819 spapr->fdt_blob = fdt; 1820 1821 /* Set up the entry state */ 1822 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1823 first_ppc_cpu->env.gpr[5] = 0; 1824 1825 spapr->cas_reboot = false; 1826 } 1827 1828 static void spapr_create_nvram(SpaprMachineState *spapr) 1829 { 1830 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1831 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1832 1833 if (dinfo) { 1834 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1835 &error_fatal); 1836 } 1837 1838 qdev_init_nofail(dev); 1839 1840 spapr->nvram = (struct SpaprNvram *)dev; 1841 } 1842 1843 static void spapr_rtc_create(SpaprMachineState *spapr) 1844 { 1845 object_initialize_child(OBJECT(spapr), "rtc", 1846 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1847 &error_fatal, NULL); 1848 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1849 &error_fatal); 1850 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1851 "date", &error_fatal); 1852 } 1853 1854 /* Returns whether we want to use VGA or not */ 1855 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1856 { 1857 switch (vga_interface_type) { 1858 case VGA_NONE: 1859 return false; 1860 case VGA_DEVICE: 1861 return true; 1862 case VGA_STD: 1863 case VGA_VIRTIO: 1864 case VGA_CIRRUS: 1865 return pci_vga_init(pci_bus) != NULL; 1866 default: 1867 error_setg(errp, 1868 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1869 return false; 1870 } 1871 } 1872 1873 static int spapr_pre_load(void *opaque) 1874 { 1875 int rc; 1876 1877 rc = spapr_caps_pre_load(opaque); 1878 if (rc) { 1879 return rc; 1880 } 1881 1882 return 0; 1883 } 1884 1885 static int spapr_post_load(void *opaque, int version_id) 1886 { 1887 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1888 int err = 0; 1889 1890 err = spapr_caps_post_migration(spapr); 1891 if (err) { 1892 return err; 1893 } 1894 1895 /* 1896 * In earlier versions, there was no separate qdev for the PAPR 1897 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1898 * So when migrating from those versions, poke the incoming offset 1899 * value into the RTC device 1900 */ 1901 if (version_id < 3) { 1902 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1903 if (err) { 1904 return err; 1905 } 1906 } 1907 1908 if (kvm_enabled() && spapr->patb_entry) { 1909 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1910 bool radix = !!(spapr->patb_entry & PATE1_GR); 1911 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1912 1913 /* 1914 * Update LPCR:HR and UPRT as they may not be set properly in 1915 * the stream 1916 */ 1917 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1918 LPCR_HR | LPCR_UPRT); 1919 1920 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1921 if (err) { 1922 error_report("Process table config unsupported by the host"); 1923 return -EINVAL; 1924 } 1925 } 1926 1927 err = spapr_irq_post_load(spapr, version_id); 1928 if (err) { 1929 return err; 1930 } 1931 1932 return err; 1933 } 1934 1935 static int spapr_pre_save(void *opaque) 1936 { 1937 int rc; 1938 1939 rc = spapr_caps_pre_save(opaque); 1940 if (rc) { 1941 return rc; 1942 } 1943 1944 return 0; 1945 } 1946 1947 static bool version_before_3(void *opaque, int version_id) 1948 { 1949 return version_id < 3; 1950 } 1951 1952 static bool spapr_pending_events_needed(void *opaque) 1953 { 1954 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1955 return !QTAILQ_EMPTY(&spapr->pending_events); 1956 } 1957 1958 static const VMStateDescription vmstate_spapr_event_entry = { 1959 .name = "spapr_event_log_entry", 1960 .version_id = 1, 1961 .minimum_version_id = 1, 1962 .fields = (VMStateField[]) { 1963 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1964 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1965 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1966 NULL, extended_length), 1967 VMSTATE_END_OF_LIST() 1968 }, 1969 }; 1970 1971 static const VMStateDescription vmstate_spapr_pending_events = { 1972 .name = "spapr_pending_events", 1973 .version_id = 1, 1974 .minimum_version_id = 1, 1975 .needed = spapr_pending_events_needed, 1976 .fields = (VMStateField[]) { 1977 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1978 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1979 VMSTATE_END_OF_LIST() 1980 }, 1981 }; 1982 1983 static bool spapr_ov5_cas_needed(void *opaque) 1984 { 1985 SpaprMachineState *spapr = opaque; 1986 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1987 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1988 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1989 bool cas_needed; 1990 1991 /* Prior to the introduction of SpaprOptionVector, we had two option 1992 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1993 * Both of these options encode machine topology into the device-tree 1994 * in such a way that the now-booted OS should still be able to interact 1995 * appropriately with QEMU regardless of what options were actually 1996 * negotiatied on the source side. 1997 * 1998 * As such, we can avoid migrating the CAS-negotiated options if these 1999 * are the only options available on the current machine/platform. 2000 * Since these are the only options available for pseries-2.7 and 2001 * earlier, this allows us to maintain old->new/new->old migration 2002 * compatibility. 2003 * 2004 * For QEMU 2.8+, there are additional CAS-negotiatable options available 2005 * via default pseries-2.8 machines and explicit command-line parameters. 2006 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 2007 * of the actual CAS-negotiated values to continue working properly. For 2008 * example, availability of memory unplug depends on knowing whether 2009 * OV5_HP_EVT was negotiated via CAS. 2010 * 2011 * Thus, for any cases where the set of available CAS-negotiatable 2012 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2013 * include the CAS-negotiated options in the migration stream, unless 2014 * if they affect boot time behaviour only. 2015 */ 2016 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2017 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2018 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2019 2020 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2021 * the mask itself since in the future it's possible "legacy" bits may be 2022 * removed via machine options, which could generate a false positive 2023 * that breaks migration. 2024 */ 2025 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2026 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2027 2028 spapr_ovec_cleanup(ov5_mask); 2029 spapr_ovec_cleanup(ov5_legacy); 2030 spapr_ovec_cleanup(ov5_removed); 2031 2032 return cas_needed; 2033 } 2034 2035 static const VMStateDescription vmstate_spapr_ov5_cas = { 2036 .name = "spapr_option_vector_ov5_cas", 2037 .version_id = 1, 2038 .minimum_version_id = 1, 2039 .needed = spapr_ov5_cas_needed, 2040 .fields = (VMStateField[]) { 2041 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2042 vmstate_spapr_ovec, SpaprOptionVector), 2043 VMSTATE_END_OF_LIST() 2044 }, 2045 }; 2046 2047 static bool spapr_patb_entry_needed(void *opaque) 2048 { 2049 SpaprMachineState *spapr = opaque; 2050 2051 return !!spapr->patb_entry; 2052 } 2053 2054 static const VMStateDescription vmstate_spapr_patb_entry = { 2055 .name = "spapr_patb_entry", 2056 .version_id = 1, 2057 .minimum_version_id = 1, 2058 .needed = spapr_patb_entry_needed, 2059 .fields = (VMStateField[]) { 2060 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2061 VMSTATE_END_OF_LIST() 2062 }, 2063 }; 2064 2065 static bool spapr_irq_map_needed(void *opaque) 2066 { 2067 SpaprMachineState *spapr = opaque; 2068 2069 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2070 } 2071 2072 static const VMStateDescription vmstate_spapr_irq_map = { 2073 .name = "spapr_irq_map", 2074 .version_id = 1, 2075 .minimum_version_id = 1, 2076 .needed = spapr_irq_map_needed, 2077 .fields = (VMStateField[]) { 2078 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2079 VMSTATE_END_OF_LIST() 2080 }, 2081 }; 2082 2083 static bool spapr_dtb_needed(void *opaque) 2084 { 2085 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2086 2087 return smc->update_dt_enabled; 2088 } 2089 2090 static int spapr_dtb_pre_load(void *opaque) 2091 { 2092 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2093 2094 g_free(spapr->fdt_blob); 2095 spapr->fdt_blob = NULL; 2096 spapr->fdt_size = 0; 2097 2098 return 0; 2099 } 2100 2101 static const VMStateDescription vmstate_spapr_dtb = { 2102 .name = "spapr_dtb", 2103 .version_id = 1, 2104 .minimum_version_id = 1, 2105 .needed = spapr_dtb_needed, 2106 .pre_load = spapr_dtb_pre_load, 2107 .fields = (VMStateField[]) { 2108 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2109 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2110 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2111 fdt_size), 2112 VMSTATE_END_OF_LIST() 2113 }, 2114 }; 2115 2116 static const VMStateDescription vmstate_spapr = { 2117 .name = "spapr", 2118 .version_id = 3, 2119 .minimum_version_id = 1, 2120 .pre_load = spapr_pre_load, 2121 .post_load = spapr_post_load, 2122 .pre_save = spapr_pre_save, 2123 .fields = (VMStateField[]) { 2124 /* used to be @next_irq */ 2125 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2126 2127 /* RTC offset */ 2128 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2129 2130 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2131 VMSTATE_END_OF_LIST() 2132 }, 2133 .subsections = (const VMStateDescription*[]) { 2134 &vmstate_spapr_ov5_cas, 2135 &vmstate_spapr_patb_entry, 2136 &vmstate_spapr_pending_events, 2137 &vmstate_spapr_cap_htm, 2138 &vmstate_spapr_cap_vsx, 2139 &vmstate_spapr_cap_dfp, 2140 &vmstate_spapr_cap_cfpc, 2141 &vmstate_spapr_cap_sbbc, 2142 &vmstate_spapr_cap_ibs, 2143 &vmstate_spapr_cap_hpt_maxpagesize, 2144 &vmstate_spapr_irq_map, 2145 &vmstate_spapr_cap_nested_kvm_hv, 2146 &vmstate_spapr_dtb, 2147 &vmstate_spapr_cap_large_decr, 2148 &vmstate_spapr_cap_ccf_assist, 2149 NULL 2150 } 2151 }; 2152 2153 static int htab_save_setup(QEMUFile *f, void *opaque) 2154 { 2155 SpaprMachineState *spapr = opaque; 2156 2157 /* "Iteration" header */ 2158 if (!spapr->htab_shift) { 2159 qemu_put_be32(f, -1); 2160 } else { 2161 qemu_put_be32(f, spapr->htab_shift); 2162 } 2163 2164 if (spapr->htab) { 2165 spapr->htab_save_index = 0; 2166 spapr->htab_first_pass = true; 2167 } else { 2168 if (spapr->htab_shift) { 2169 assert(kvm_enabled()); 2170 } 2171 } 2172 2173 2174 return 0; 2175 } 2176 2177 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2178 int chunkstart, int n_valid, int n_invalid) 2179 { 2180 qemu_put_be32(f, chunkstart); 2181 qemu_put_be16(f, n_valid); 2182 qemu_put_be16(f, n_invalid); 2183 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2184 HASH_PTE_SIZE_64 * n_valid); 2185 } 2186 2187 static void htab_save_end_marker(QEMUFile *f) 2188 { 2189 qemu_put_be32(f, 0); 2190 qemu_put_be16(f, 0); 2191 qemu_put_be16(f, 0); 2192 } 2193 2194 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2195 int64_t max_ns) 2196 { 2197 bool has_timeout = max_ns != -1; 2198 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2199 int index = spapr->htab_save_index; 2200 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2201 2202 assert(spapr->htab_first_pass); 2203 2204 do { 2205 int chunkstart; 2206 2207 /* Consume invalid HPTEs */ 2208 while ((index < htabslots) 2209 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2210 CLEAN_HPTE(HPTE(spapr->htab, index)); 2211 index++; 2212 } 2213 2214 /* Consume valid HPTEs */ 2215 chunkstart = index; 2216 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2217 && HPTE_VALID(HPTE(spapr->htab, index))) { 2218 CLEAN_HPTE(HPTE(spapr->htab, index)); 2219 index++; 2220 } 2221 2222 if (index > chunkstart) { 2223 int n_valid = index - chunkstart; 2224 2225 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2226 2227 if (has_timeout && 2228 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2229 break; 2230 } 2231 } 2232 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2233 2234 if (index >= htabslots) { 2235 assert(index == htabslots); 2236 index = 0; 2237 spapr->htab_first_pass = false; 2238 } 2239 spapr->htab_save_index = index; 2240 } 2241 2242 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2243 int64_t max_ns) 2244 { 2245 bool final = max_ns < 0; 2246 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2247 int examined = 0, sent = 0; 2248 int index = spapr->htab_save_index; 2249 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2250 2251 assert(!spapr->htab_first_pass); 2252 2253 do { 2254 int chunkstart, invalidstart; 2255 2256 /* Consume non-dirty HPTEs */ 2257 while ((index < htabslots) 2258 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2259 index++; 2260 examined++; 2261 } 2262 2263 chunkstart = index; 2264 /* Consume valid dirty HPTEs */ 2265 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2266 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2267 && HPTE_VALID(HPTE(spapr->htab, index))) { 2268 CLEAN_HPTE(HPTE(spapr->htab, index)); 2269 index++; 2270 examined++; 2271 } 2272 2273 invalidstart = index; 2274 /* Consume invalid dirty HPTEs */ 2275 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2276 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2277 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2278 CLEAN_HPTE(HPTE(spapr->htab, index)); 2279 index++; 2280 examined++; 2281 } 2282 2283 if (index > chunkstart) { 2284 int n_valid = invalidstart - chunkstart; 2285 int n_invalid = index - invalidstart; 2286 2287 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2288 sent += index - chunkstart; 2289 2290 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2291 break; 2292 } 2293 } 2294 2295 if (examined >= htabslots) { 2296 break; 2297 } 2298 2299 if (index >= htabslots) { 2300 assert(index == htabslots); 2301 index = 0; 2302 } 2303 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2304 2305 if (index >= htabslots) { 2306 assert(index == htabslots); 2307 index = 0; 2308 } 2309 2310 spapr->htab_save_index = index; 2311 2312 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2313 } 2314 2315 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2316 #define MAX_KVM_BUF_SIZE 2048 2317 2318 static int htab_save_iterate(QEMUFile *f, void *opaque) 2319 { 2320 SpaprMachineState *spapr = opaque; 2321 int fd; 2322 int rc = 0; 2323 2324 /* Iteration header */ 2325 if (!spapr->htab_shift) { 2326 qemu_put_be32(f, -1); 2327 return 1; 2328 } else { 2329 qemu_put_be32(f, 0); 2330 } 2331 2332 if (!spapr->htab) { 2333 assert(kvm_enabled()); 2334 2335 fd = get_htab_fd(spapr); 2336 if (fd < 0) { 2337 return fd; 2338 } 2339 2340 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2341 if (rc < 0) { 2342 return rc; 2343 } 2344 } else if (spapr->htab_first_pass) { 2345 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2346 } else { 2347 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2348 } 2349 2350 htab_save_end_marker(f); 2351 2352 return rc; 2353 } 2354 2355 static int htab_save_complete(QEMUFile *f, void *opaque) 2356 { 2357 SpaprMachineState *spapr = opaque; 2358 int fd; 2359 2360 /* Iteration header */ 2361 if (!spapr->htab_shift) { 2362 qemu_put_be32(f, -1); 2363 return 0; 2364 } else { 2365 qemu_put_be32(f, 0); 2366 } 2367 2368 if (!spapr->htab) { 2369 int rc; 2370 2371 assert(kvm_enabled()); 2372 2373 fd = get_htab_fd(spapr); 2374 if (fd < 0) { 2375 return fd; 2376 } 2377 2378 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2379 if (rc < 0) { 2380 return rc; 2381 } 2382 } else { 2383 if (spapr->htab_first_pass) { 2384 htab_save_first_pass(f, spapr, -1); 2385 } 2386 htab_save_later_pass(f, spapr, -1); 2387 } 2388 2389 /* End marker */ 2390 htab_save_end_marker(f); 2391 2392 return 0; 2393 } 2394 2395 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2396 { 2397 SpaprMachineState *spapr = opaque; 2398 uint32_t section_hdr; 2399 int fd = -1; 2400 Error *local_err = NULL; 2401 2402 if (version_id < 1 || version_id > 1) { 2403 error_report("htab_load() bad version"); 2404 return -EINVAL; 2405 } 2406 2407 section_hdr = qemu_get_be32(f); 2408 2409 if (section_hdr == -1) { 2410 spapr_free_hpt(spapr); 2411 return 0; 2412 } 2413 2414 if (section_hdr) { 2415 /* First section gives the htab size */ 2416 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2417 if (local_err) { 2418 error_report_err(local_err); 2419 return -EINVAL; 2420 } 2421 return 0; 2422 } 2423 2424 if (!spapr->htab) { 2425 assert(kvm_enabled()); 2426 2427 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2428 if (fd < 0) { 2429 error_report_err(local_err); 2430 return fd; 2431 } 2432 } 2433 2434 while (true) { 2435 uint32_t index; 2436 uint16_t n_valid, n_invalid; 2437 2438 index = qemu_get_be32(f); 2439 n_valid = qemu_get_be16(f); 2440 n_invalid = qemu_get_be16(f); 2441 2442 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2443 /* End of Stream */ 2444 break; 2445 } 2446 2447 if ((index + n_valid + n_invalid) > 2448 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2449 /* Bad index in stream */ 2450 error_report( 2451 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2452 index, n_valid, n_invalid, spapr->htab_shift); 2453 return -EINVAL; 2454 } 2455 2456 if (spapr->htab) { 2457 if (n_valid) { 2458 qemu_get_buffer(f, HPTE(spapr->htab, index), 2459 HASH_PTE_SIZE_64 * n_valid); 2460 } 2461 if (n_invalid) { 2462 memset(HPTE(spapr->htab, index + n_valid), 0, 2463 HASH_PTE_SIZE_64 * n_invalid); 2464 } 2465 } else { 2466 int rc; 2467 2468 assert(fd >= 0); 2469 2470 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2471 if (rc < 0) { 2472 return rc; 2473 } 2474 } 2475 } 2476 2477 if (!spapr->htab) { 2478 assert(fd >= 0); 2479 close(fd); 2480 } 2481 2482 return 0; 2483 } 2484 2485 static void htab_save_cleanup(void *opaque) 2486 { 2487 SpaprMachineState *spapr = opaque; 2488 2489 close_htab_fd(spapr); 2490 } 2491 2492 static SaveVMHandlers savevm_htab_handlers = { 2493 .save_setup = htab_save_setup, 2494 .save_live_iterate = htab_save_iterate, 2495 .save_live_complete_precopy = htab_save_complete, 2496 .save_cleanup = htab_save_cleanup, 2497 .load_state = htab_load, 2498 }; 2499 2500 static void spapr_boot_set(void *opaque, const char *boot_device, 2501 Error **errp) 2502 { 2503 MachineState *machine = MACHINE(opaque); 2504 machine->boot_order = g_strdup(boot_device); 2505 } 2506 2507 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2508 { 2509 MachineState *machine = MACHINE(spapr); 2510 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2511 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2512 int i; 2513 2514 for (i = 0; i < nr_lmbs; i++) { 2515 uint64_t addr; 2516 2517 addr = i * lmb_size + machine->device_memory->base; 2518 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2519 addr / lmb_size); 2520 } 2521 } 2522 2523 /* 2524 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2525 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2526 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2527 */ 2528 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2529 { 2530 int i; 2531 2532 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2533 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2534 " is not aligned to %" PRIu64 " MiB", 2535 machine->ram_size, 2536 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2537 return; 2538 } 2539 2540 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2541 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2542 " is not aligned to %" PRIu64 " MiB", 2543 machine->ram_size, 2544 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2545 return; 2546 } 2547 2548 for (i = 0; i < nb_numa_nodes; i++) { 2549 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2550 error_setg(errp, 2551 "Node %d memory size 0x%" PRIx64 2552 " is not aligned to %" PRIu64 " MiB", 2553 i, numa_info[i].node_mem, 2554 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2555 return; 2556 } 2557 } 2558 } 2559 2560 /* find cpu slot in machine->possible_cpus by core_id */ 2561 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2562 { 2563 int index = id / ms->smp.threads; 2564 2565 if (index >= ms->possible_cpus->len) { 2566 return NULL; 2567 } 2568 if (idx) { 2569 *idx = index; 2570 } 2571 return &ms->possible_cpus->cpus[index]; 2572 } 2573 2574 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2575 { 2576 MachineState *ms = MACHINE(spapr); 2577 Error *local_err = NULL; 2578 bool vsmt_user = !!spapr->vsmt; 2579 int kvm_smt = kvmppc_smt_threads(); 2580 int ret; 2581 unsigned int smp_threads = ms->smp.threads; 2582 2583 if (!kvm_enabled() && (smp_threads > 1)) { 2584 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2585 "on a pseries machine"); 2586 goto out; 2587 } 2588 if (!is_power_of_2(smp_threads)) { 2589 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2590 "machine because it must be a power of 2", smp_threads); 2591 goto out; 2592 } 2593 2594 /* Detemine the VSMT mode to use: */ 2595 if (vsmt_user) { 2596 if (spapr->vsmt < smp_threads) { 2597 error_setg(&local_err, "Cannot support VSMT mode %d" 2598 " because it must be >= threads/core (%d)", 2599 spapr->vsmt, smp_threads); 2600 goto out; 2601 } 2602 /* In this case, spapr->vsmt has been set by the command line */ 2603 } else { 2604 /* 2605 * Default VSMT value is tricky, because we need it to be as 2606 * consistent as possible (for migration), but this requires 2607 * changing it for at least some existing cases. We pick 8 as 2608 * the value that we'd get with KVM on POWER8, the 2609 * overwhelmingly common case in production systems. 2610 */ 2611 spapr->vsmt = MAX(8, smp_threads); 2612 } 2613 2614 /* KVM: If necessary, set the SMT mode: */ 2615 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2616 ret = kvmppc_set_smt_threads(spapr->vsmt); 2617 if (ret) { 2618 /* Looks like KVM isn't able to change VSMT mode */ 2619 error_setg(&local_err, 2620 "Failed to set KVM's VSMT mode to %d (errno %d)", 2621 spapr->vsmt, ret); 2622 /* We can live with that if the default one is big enough 2623 * for the number of threads, and a submultiple of the one 2624 * we want. In this case we'll waste some vcpu ids, but 2625 * behaviour will be correct */ 2626 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2627 warn_report_err(local_err); 2628 local_err = NULL; 2629 goto out; 2630 } else { 2631 if (!vsmt_user) { 2632 error_append_hint(&local_err, 2633 "On PPC, a VM with %d threads/core" 2634 " on a host with %d threads/core" 2635 " requires the use of VSMT mode %d.\n", 2636 smp_threads, kvm_smt, spapr->vsmt); 2637 } 2638 kvmppc_hint_smt_possible(&local_err); 2639 goto out; 2640 } 2641 } 2642 } 2643 /* else TCG: nothing to do currently */ 2644 out: 2645 error_propagate(errp, local_err); 2646 } 2647 2648 static void spapr_init_cpus(SpaprMachineState *spapr) 2649 { 2650 MachineState *machine = MACHINE(spapr); 2651 MachineClass *mc = MACHINE_GET_CLASS(machine); 2652 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2653 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2654 const CPUArchIdList *possible_cpus; 2655 unsigned int smp_cpus = machine->smp.cpus; 2656 unsigned int smp_threads = machine->smp.threads; 2657 unsigned int max_cpus = machine->smp.max_cpus; 2658 int boot_cores_nr = smp_cpus / smp_threads; 2659 int i; 2660 2661 possible_cpus = mc->possible_cpu_arch_ids(machine); 2662 if (mc->has_hotpluggable_cpus) { 2663 if (smp_cpus % smp_threads) { 2664 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2665 smp_cpus, smp_threads); 2666 exit(1); 2667 } 2668 if (max_cpus % smp_threads) { 2669 error_report("max_cpus (%u) must be multiple of threads (%u)", 2670 max_cpus, smp_threads); 2671 exit(1); 2672 } 2673 } else { 2674 if (max_cpus != smp_cpus) { 2675 error_report("This machine version does not support CPU hotplug"); 2676 exit(1); 2677 } 2678 boot_cores_nr = possible_cpus->len; 2679 } 2680 2681 if (smc->pre_2_10_has_unused_icps) { 2682 int i; 2683 2684 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2685 /* Dummy entries get deregistered when real ICPState objects 2686 * are registered during CPU core hotplug. 2687 */ 2688 pre_2_10_vmstate_register_dummy_icp(i); 2689 } 2690 } 2691 2692 for (i = 0; i < possible_cpus->len; i++) { 2693 int core_id = i * smp_threads; 2694 2695 if (mc->has_hotpluggable_cpus) { 2696 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2697 spapr_vcpu_id(spapr, core_id)); 2698 } 2699 2700 if (i < boot_cores_nr) { 2701 Object *core = object_new(type); 2702 int nr_threads = smp_threads; 2703 2704 /* Handle the partially filled core for older machine types */ 2705 if ((i + 1) * smp_threads >= smp_cpus) { 2706 nr_threads = smp_cpus - i * smp_threads; 2707 } 2708 2709 object_property_set_int(core, nr_threads, "nr-threads", 2710 &error_fatal); 2711 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2712 &error_fatal); 2713 object_property_set_bool(core, true, "realized", &error_fatal); 2714 2715 object_unref(core); 2716 } 2717 } 2718 } 2719 2720 static PCIHostState *spapr_create_default_phb(void) 2721 { 2722 DeviceState *dev; 2723 2724 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2725 qdev_prop_set_uint32(dev, "index", 0); 2726 qdev_init_nofail(dev); 2727 2728 return PCI_HOST_BRIDGE(dev); 2729 } 2730 2731 /* pSeries LPAR / sPAPR hardware init */ 2732 static void spapr_machine_init(MachineState *machine) 2733 { 2734 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2735 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2736 const char *kernel_filename = machine->kernel_filename; 2737 const char *initrd_filename = machine->initrd_filename; 2738 PCIHostState *phb; 2739 int i; 2740 MemoryRegion *sysmem = get_system_memory(); 2741 MemoryRegion *ram = g_new(MemoryRegion, 1); 2742 hwaddr node0_size = spapr_node0_size(machine); 2743 long load_limit, fw_size; 2744 char *filename; 2745 Error *resize_hpt_err = NULL; 2746 2747 msi_nonbroken = true; 2748 2749 QLIST_INIT(&spapr->phbs); 2750 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2751 2752 /* Determine capabilities to run with */ 2753 spapr_caps_init(spapr); 2754 2755 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2756 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2757 /* 2758 * If the user explicitly requested a mode we should either 2759 * supply it, or fail completely (which we do below). But if 2760 * it's not set explicitly, we reset our mode to something 2761 * that works 2762 */ 2763 if (resize_hpt_err) { 2764 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2765 error_free(resize_hpt_err); 2766 resize_hpt_err = NULL; 2767 } else { 2768 spapr->resize_hpt = smc->resize_hpt_default; 2769 } 2770 } 2771 2772 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2773 2774 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2775 /* 2776 * User requested HPT resize, but this host can't supply it. Bail out 2777 */ 2778 error_report_err(resize_hpt_err); 2779 exit(1); 2780 } 2781 2782 spapr->rma_size = node0_size; 2783 2784 /* With KVM, we don't actually know whether KVM supports an 2785 * unbounded RMA (PR KVM) or is limited by the hash table size 2786 * (HV KVM using VRMA), so we always assume the latter 2787 * 2788 * In that case, we also limit the initial allocations for RTAS 2789 * etc... to 256M since we have no way to know what the VRMA size 2790 * is going to be as it depends on the size of the hash table 2791 * which isn't determined yet. 2792 */ 2793 if (kvm_enabled()) { 2794 spapr->vrma_adjust = 1; 2795 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2796 } 2797 2798 /* Actually we don't support unbounded RMA anymore since we added 2799 * proper emulation of HV mode. The max we can get is 16G which 2800 * also happens to be what we configure for PAPR mode so make sure 2801 * we don't do anything bigger than that 2802 */ 2803 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2804 2805 if (spapr->rma_size > node0_size) { 2806 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2807 spapr->rma_size); 2808 exit(1); 2809 } 2810 2811 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2812 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2813 2814 /* 2815 * VSMT must be set in order to be able to compute VCPU ids, ie to 2816 * call spapr_max_server_number() or spapr_vcpu_id(). 2817 */ 2818 spapr_set_vsmt_mode(spapr, &error_fatal); 2819 2820 /* Set up Interrupt Controller before we create the VCPUs */ 2821 spapr_irq_init(spapr, &error_fatal); 2822 2823 /* Set up containers for ibm,client-architecture-support negotiated options 2824 */ 2825 spapr->ov5 = spapr_ovec_new(); 2826 spapr->ov5_cas = spapr_ovec_new(); 2827 2828 if (smc->dr_lmb_enabled) { 2829 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2830 spapr_validate_node_memory(machine, &error_fatal); 2831 } 2832 2833 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2834 2835 /* advertise support for dedicated HP event source to guests */ 2836 if (spapr->use_hotplug_event_source) { 2837 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2838 } 2839 2840 /* advertise support for HPT resizing */ 2841 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2842 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2843 } 2844 2845 /* advertise support for ibm,dyamic-memory-v2 */ 2846 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2847 2848 /* advertise XIVE on POWER9 machines */ 2849 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2850 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2851 } 2852 2853 /* init CPUs */ 2854 spapr_init_cpus(spapr); 2855 2856 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2857 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2858 spapr->max_compat_pvr)) { 2859 /* KVM and TCG always allow GTSE with radix... */ 2860 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2861 } 2862 /* ... but not with hash (currently). */ 2863 2864 if (kvm_enabled()) { 2865 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2866 kvmppc_enable_logical_ci_hcalls(); 2867 kvmppc_enable_set_mode_hcall(); 2868 2869 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2870 kvmppc_enable_clear_ref_mod_hcalls(); 2871 2872 /* Enable H_PAGE_INIT */ 2873 kvmppc_enable_h_page_init(); 2874 } 2875 2876 /* allocate RAM */ 2877 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2878 machine->ram_size); 2879 memory_region_add_subregion(sysmem, 0, ram); 2880 2881 /* always allocate the device memory information */ 2882 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2883 2884 /* initialize hotplug memory address space */ 2885 if (machine->ram_size < machine->maxram_size) { 2886 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2887 /* 2888 * Limit the number of hotpluggable memory slots to half the number 2889 * slots that KVM supports, leaving the other half for PCI and other 2890 * devices. However ensure that number of slots doesn't drop below 32. 2891 */ 2892 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2893 SPAPR_MAX_RAM_SLOTS; 2894 2895 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2896 max_memslots = SPAPR_MAX_RAM_SLOTS; 2897 } 2898 if (machine->ram_slots > max_memslots) { 2899 error_report("Specified number of memory slots %" 2900 PRIu64" exceeds max supported %d", 2901 machine->ram_slots, max_memslots); 2902 exit(1); 2903 } 2904 2905 machine->device_memory->base = ROUND_UP(machine->ram_size, 2906 SPAPR_DEVICE_MEM_ALIGN); 2907 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2908 "device-memory", device_mem_size); 2909 memory_region_add_subregion(sysmem, machine->device_memory->base, 2910 &machine->device_memory->mr); 2911 } 2912 2913 if (smc->dr_lmb_enabled) { 2914 spapr_create_lmb_dr_connectors(spapr); 2915 } 2916 2917 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2918 if (!filename) { 2919 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2920 exit(1); 2921 } 2922 spapr->rtas_size = get_image_size(filename); 2923 if (spapr->rtas_size < 0) { 2924 error_report("Could not get size of LPAR rtas '%s'", filename); 2925 exit(1); 2926 } 2927 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2928 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2929 error_report("Could not load LPAR rtas '%s'", filename); 2930 exit(1); 2931 } 2932 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2933 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2934 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2935 exit(1); 2936 } 2937 g_free(filename); 2938 2939 /* Set up RTAS event infrastructure */ 2940 spapr_events_init(spapr); 2941 2942 /* Set up the RTC RTAS interfaces */ 2943 spapr_rtc_create(spapr); 2944 2945 /* Set up VIO bus */ 2946 spapr->vio_bus = spapr_vio_bus_init(); 2947 2948 for (i = 0; i < serial_max_hds(); i++) { 2949 if (serial_hd(i)) { 2950 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2951 } 2952 } 2953 2954 /* We always have at least the nvram device on VIO */ 2955 spapr_create_nvram(spapr); 2956 2957 /* 2958 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2959 * connectors (described in root DT node's "ibm,drc-types" property) 2960 * are pre-initialized here. additional child connectors (such as 2961 * connectors for a PHBs PCI slots) are added as needed during their 2962 * parent's realization. 2963 */ 2964 if (smc->dr_phb_enabled) { 2965 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2966 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2967 } 2968 } 2969 2970 /* Set up PCI */ 2971 spapr_pci_rtas_init(); 2972 2973 phb = spapr_create_default_phb(); 2974 2975 for (i = 0; i < nb_nics; i++) { 2976 NICInfo *nd = &nd_table[i]; 2977 2978 if (!nd->model) { 2979 nd->model = g_strdup("spapr-vlan"); 2980 } 2981 2982 if (g_str_equal(nd->model, "spapr-vlan") || 2983 g_str_equal(nd->model, "ibmveth")) { 2984 spapr_vlan_create(spapr->vio_bus, nd); 2985 } else { 2986 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2987 } 2988 } 2989 2990 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2991 spapr_vscsi_create(spapr->vio_bus); 2992 } 2993 2994 /* Graphics */ 2995 if (spapr_vga_init(phb->bus, &error_fatal)) { 2996 spapr->has_graphics = true; 2997 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2998 } 2999 3000 if (machine->usb) { 3001 if (smc->use_ohci_by_default) { 3002 pci_create_simple(phb->bus, -1, "pci-ohci"); 3003 } else { 3004 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3005 } 3006 3007 if (spapr->has_graphics) { 3008 USBBus *usb_bus = usb_bus_find(-1); 3009 3010 usb_create_simple(usb_bus, "usb-kbd"); 3011 usb_create_simple(usb_bus, "usb-mouse"); 3012 } 3013 } 3014 3015 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 3016 error_report( 3017 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 3018 MIN_RMA_SLOF); 3019 exit(1); 3020 } 3021 3022 if (kernel_filename) { 3023 uint64_t lowaddr = 0; 3024 3025 spapr->kernel_size = load_elf(kernel_filename, NULL, 3026 translate_kernel_address, NULL, 3027 NULL, &lowaddr, NULL, 1, 3028 PPC_ELF_MACHINE, 0, 0); 3029 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3030 spapr->kernel_size = load_elf(kernel_filename, NULL, 3031 translate_kernel_address, NULL, NULL, 3032 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3033 0, 0); 3034 spapr->kernel_le = spapr->kernel_size > 0; 3035 } 3036 if (spapr->kernel_size < 0) { 3037 error_report("error loading %s: %s", kernel_filename, 3038 load_elf_strerror(spapr->kernel_size)); 3039 exit(1); 3040 } 3041 3042 /* load initrd */ 3043 if (initrd_filename) { 3044 /* Try to locate the initrd in the gap between the kernel 3045 * and the firmware. Add a bit of space just in case 3046 */ 3047 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3048 + 0x1ffff) & ~0xffff; 3049 spapr->initrd_size = load_image_targphys(initrd_filename, 3050 spapr->initrd_base, 3051 load_limit 3052 - spapr->initrd_base); 3053 if (spapr->initrd_size < 0) { 3054 error_report("could not load initial ram disk '%s'", 3055 initrd_filename); 3056 exit(1); 3057 } 3058 } 3059 } 3060 3061 if (bios_name == NULL) { 3062 bios_name = FW_FILE_NAME; 3063 } 3064 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3065 if (!filename) { 3066 error_report("Could not find LPAR firmware '%s'", bios_name); 3067 exit(1); 3068 } 3069 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3070 if (fw_size <= 0) { 3071 error_report("Could not load LPAR firmware '%s'", filename); 3072 exit(1); 3073 } 3074 g_free(filename); 3075 3076 /* FIXME: Should register things through the MachineState's qdev 3077 * interface, this is a legacy from the sPAPREnvironment structure 3078 * which predated MachineState but had a similar function */ 3079 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3080 register_savevm_live(NULL, "spapr/htab", -1, 1, 3081 &savevm_htab_handlers, spapr); 3082 3083 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3084 &error_fatal); 3085 3086 qemu_register_boot_set(spapr_boot_set, spapr); 3087 3088 /* 3089 * Nothing needs to be done to resume a suspended guest because 3090 * suspending does not change the machine state, so no need for 3091 * a ->wakeup method. 3092 */ 3093 qemu_register_wakeup_support(); 3094 3095 if (kvm_enabled()) { 3096 /* to stop and start vmclock */ 3097 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3098 &spapr->tb); 3099 3100 kvmppc_spapr_enable_inkernel_multitce(); 3101 } 3102 } 3103 3104 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3105 { 3106 if (!vm_type) { 3107 return 0; 3108 } 3109 3110 if (!strcmp(vm_type, "HV")) { 3111 return 1; 3112 } 3113 3114 if (!strcmp(vm_type, "PR")) { 3115 return 2; 3116 } 3117 3118 error_report("Unknown kvm-type specified '%s'", vm_type); 3119 exit(1); 3120 } 3121 3122 /* 3123 * Implementation of an interface to adjust firmware path 3124 * for the bootindex property handling. 3125 */ 3126 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3127 DeviceState *dev) 3128 { 3129 #define CAST(type, obj, name) \ 3130 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3131 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3132 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3133 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3134 3135 if (d) { 3136 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3137 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3138 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3139 3140 if (spapr) { 3141 /* 3142 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3143 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3144 * 0x8000 | (target << 8) | (bus << 5) | lun 3145 * (see the "Logical unit addressing format" table in SAM5) 3146 */ 3147 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3148 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3149 (uint64_t)id << 48); 3150 } else if (virtio) { 3151 /* 3152 * We use SRP luns of the form 01000000 | (target << 8) | lun 3153 * in the top 32 bits of the 64-bit LUN 3154 * Note: the quote above is from SLOF and it is wrong, 3155 * the actual binding is: 3156 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3157 */ 3158 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3159 if (d->lun >= 256) { 3160 /* Use the LUN "flat space addressing method" */ 3161 id |= 0x4000; 3162 } 3163 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3164 (uint64_t)id << 32); 3165 } else if (usb) { 3166 /* 3167 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3168 * in the top 32 bits of the 64-bit LUN 3169 */ 3170 unsigned usb_port = atoi(usb->port->path); 3171 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3172 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3173 (uint64_t)id << 32); 3174 } 3175 } 3176 3177 /* 3178 * SLOF probes the USB devices, and if it recognizes that the device is a 3179 * storage device, it changes its name to "storage" instead of "usb-host", 3180 * and additionally adds a child node for the SCSI LUN, so the correct 3181 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3182 */ 3183 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3184 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3185 if (usb_host_dev_is_scsi_storage(usbdev)) { 3186 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3187 } 3188 } 3189 3190 if (phb) { 3191 /* Replace "pci" with "pci@800000020000000" */ 3192 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3193 } 3194 3195 if (vsc) { 3196 /* Same logic as virtio above */ 3197 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3198 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3199 } 3200 3201 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3202 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3203 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3204 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3205 } 3206 3207 return NULL; 3208 } 3209 3210 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3211 { 3212 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3213 3214 return g_strdup(spapr->kvm_type); 3215 } 3216 3217 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3218 { 3219 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3220 3221 g_free(spapr->kvm_type); 3222 spapr->kvm_type = g_strdup(value); 3223 } 3224 3225 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3226 { 3227 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3228 3229 return spapr->use_hotplug_event_source; 3230 } 3231 3232 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3233 Error **errp) 3234 { 3235 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3236 3237 spapr->use_hotplug_event_source = value; 3238 } 3239 3240 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3241 { 3242 return true; 3243 } 3244 3245 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3246 { 3247 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3248 3249 switch (spapr->resize_hpt) { 3250 case SPAPR_RESIZE_HPT_DEFAULT: 3251 return g_strdup("default"); 3252 case SPAPR_RESIZE_HPT_DISABLED: 3253 return g_strdup("disabled"); 3254 case SPAPR_RESIZE_HPT_ENABLED: 3255 return g_strdup("enabled"); 3256 case SPAPR_RESIZE_HPT_REQUIRED: 3257 return g_strdup("required"); 3258 } 3259 g_assert_not_reached(); 3260 } 3261 3262 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3263 { 3264 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3265 3266 if (strcmp(value, "default") == 0) { 3267 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3268 } else if (strcmp(value, "disabled") == 0) { 3269 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3270 } else if (strcmp(value, "enabled") == 0) { 3271 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3272 } else if (strcmp(value, "required") == 0) { 3273 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3274 } else { 3275 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3276 } 3277 } 3278 3279 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3280 void *opaque, Error **errp) 3281 { 3282 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3283 } 3284 3285 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3286 void *opaque, Error **errp) 3287 { 3288 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3289 } 3290 3291 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3292 { 3293 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3294 3295 if (spapr->irq == &spapr_irq_xics_legacy) { 3296 return g_strdup("legacy"); 3297 } else if (spapr->irq == &spapr_irq_xics) { 3298 return g_strdup("xics"); 3299 } else if (spapr->irq == &spapr_irq_xive) { 3300 return g_strdup("xive"); 3301 } else if (spapr->irq == &spapr_irq_dual) { 3302 return g_strdup("dual"); 3303 } 3304 g_assert_not_reached(); 3305 } 3306 3307 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3308 { 3309 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3310 3311 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3312 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3313 return; 3314 } 3315 3316 /* The legacy IRQ backend can not be set */ 3317 if (strcmp(value, "xics") == 0) { 3318 spapr->irq = &spapr_irq_xics; 3319 } else if (strcmp(value, "xive") == 0) { 3320 spapr->irq = &spapr_irq_xive; 3321 } else if (strcmp(value, "dual") == 0) { 3322 spapr->irq = &spapr_irq_dual; 3323 } else { 3324 error_setg(errp, "Bad value for \"ic-mode\" property"); 3325 } 3326 } 3327 3328 static char *spapr_get_host_model(Object *obj, Error **errp) 3329 { 3330 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3331 3332 return g_strdup(spapr->host_model); 3333 } 3334 3335 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3336 { 3337 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3338 3339 g_free(spapr->host_model); 3340 spapr->host_model = g_strdup(value); 3341 } 3342 3343 static char *spapr_get_host_serial(Object *obj, Error **errp) 3344 { 3345 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3346 3347 return g_strdup(spapr->host_serial); 3348 } 3349 3350 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3351 { 3352 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3353 3354 g_free(spapr->host_serial); 3355 spapr->host_serial = g_strdup(value); 3356 } 3357 3358 static void spapr_instance_init(Object *obj) 3359 { 3360 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3361 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3362 3363 spapr->htab_fd = -1; 3364 spapr->use_hotplug_event_source = true; 3365 object_property_add_str(obj, "kvm-type", 3366 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3367 object_property_set_description(obj, "kvm-type", 3368 "Specifies the KVM virtualization mode (HV, PR)", 3369 NULL); 3370 object_property_add_bool(obj, "modern-hotplug-events", 3371 spapr_get_modern_hotplug_events, 3372 spapr_set_modern_hotplug_events, 3373 NULL); 3374 object_property_set_description(obj, "modern-hotplug-events", 3375 "Use dedicated hotplug event mechanism in" 3376 " place of standard EPOW events when possible" 3377 " (required for memory hot-unplug support)", 3378 NULL); 3379 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3380 "Maximum permitted CPU compatibility mode", 3381 &error_fatal); 3382 3383 object_property_add_str(obj, "resize-hpt", 3384 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3385 object_property_set_description(obj, "resize-hpt", 3386 "Resizing of the Hash Page Table (enabled, disabled, required)", 3387 NULL); 3388 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3389 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3390 object_property_set_description(obj, "vsmt", 3391 "Virtual SMT: KVM behaves as if this were" 3392 " the host's SMT mode", &error_abort); 3393 object_property_add_bool(obj, "vfio-no-msix-emulation", 3394 spapr_get_msix_emulation, NULL, NULL); 3395 3396 /* The machine class defines the default interrupt controller mode */ 3397 spapr->irq = smc->irq; 3398 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3399 spapr_set_ic_mode, NULL); 3400 object_property_set_description(obj, "ic-mode", 3401 "Specifies the interrupt controller mode (xics, xive, dual)", 3402 NULL); 3403 3404 object_property_add_str(obj, "host-model", 3405 spapr_get_host_model, spapr_set_host_model, 3406 &error_abort); 3407 object_property_set_description(obj, "host-model", 3408 "Host model to advertise in guest device tree", &error_abort); 3409 object_property_add_str(obj, "host-serial", 3410 spapr_get_host_serial, spapr_set_host_serial, 3411 &error_abort); 3412 object_property_set_description(obj, "host-serial", 3413 "Host serial number to advertise in guest device tree", &error_abort); 3414 } 3415 3416 static void spapr_machine_finalizefn(Object *obj) 3417 { 3418 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3419 3420 g_free(spapr->kvm_type); 3421 } 3422 3423 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3424 { 3425 cpu_synchronize_state(cs); 3426 ppc_cpu_do_system_reset(cs); 3427 } 3428 3429 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3430 { 3431 CPUState *cs; 3432 3433 CPU_FOREACH(cs) { 3434 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3435 } 3436 } 3437 3438 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3439 void *fdt, int *fdt_start_offset, Error **errp) 3440 { 3441 uint64_t addr; 3442 uint32_t node; 3443 3444 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3445 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3446 &error_abort); 3447 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3448 SPAPR_MEMORY_BLOCK_SIZE); 3449 return 0; 3450 } 3451 3452 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3453 bool dedicated_hp_event_source, Error **errp) 3454 { 3455 SpaprDrc *drc; 3456 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3457 int i; 3458 uint64_t addr = addr_start; 3459 bool hotplugged = spapr_drc_hotplugged(dev); 3460 Error *local_err = NULL; 3461 3462 for (i = 0; i < nr_lmbs; i++) { 3463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3464 addr / SPAPR_MEMORY_BLOCK_SIZE); 3465 g_assert(drc); 3466 3467 spapr_drc_attach(drc, dev, &local_err); 3468 if (local_err) { 3469 while (addr > addr_start) { 3470 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3471 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3472 addr / SPAPR_MEMORY_BLOCK_SIZE); 3473 spapr_drc_detach(drc); 3474 } 3475 error_propagate(errp, local_err); 3476 return; 3477 } 3478 if (!hotplugged) { 3479 spapr_drc_reset(drc); 3480 } 3481 addr += SPAPR_MEMORY_BLOCK_SIZE; 3482 } 3483 /* send hotplug notification to the 3484 * guest only in case of hotplugged memory 3485 */ 3486 if (hotplugged) { 3487 if (dedicated_hp_event_source) { 3488 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3489 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3490 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3491 nr_lmbs, 3492 spapr_drc_index(drc)); 3493 } else { 3494 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3495 nr_lmbs); 3496 } 3497 } 3498 } 3499 3500 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3501 Error **errp) 3502 { 3503 Error *local_err = NULL; 3504 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3505 PCDIMMDevice *dimm = PC_DIMM(dev); 3506 uint64_t size, addr; 3507 3508 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3509 3510 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3511 if (local_err) { 3512 goto out; 3513 } 3514 3515 addr = object_property_get_uint(OBJECT(dimm), 3516 PC_DIMM_ADDR_PROP, &local_err); 3517 if (local_err) { 3518 goto out_unplug; 3519 } 3520 3521 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3522 &local_err); 3523 if (local_err) { 3524 goto out_unplug; 3525 } 3526 3527 return; 3528 3529 out_unplug: 3530 pc_dimm_unplug(dimm, MACHINE(ms)); 3531 out: 3532 error_propagate(errp, local_err); 3533 } 3534 3535 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3536 Error **errp) 3537 { 3538 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3539 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3540 PCDIMMDevice *dimm = PC_DIMM(dev); 3541 Error *local_err = NULL; 3542 uint64_t size; 3543 Object *memdev; 3544 hwaddr pagesize; 3545 3546 if (!smc->dr_lmb_enabled) { 3547 error_setg(errp, "Memory hotplug not supported for this machine"); 3548 return; 3549 } 3550 3551 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3552 if (local_err) { 3553 error_propagate(errp, local_err); 3554 return; 3555 } 3556 3557 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3558 error_setg(errp, "Hotplugged memory size must be a multiple of " 3559 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3560 return; 3561 } 3562 3563 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3564 &error_abort); 3565 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3566 spapr_check_pagesize(spapr, pagesize, &local_err); 3567 if (local_err) { 3568 error_propagate(errp, local_err); 3569 return; 3570 } 3571 3572 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3573 } 3574 3575 struct SpaprDimmState { 3576 PCDIMMDevice *dimm; 3577 uint32_t nr_lmbs; 3578 QTAILQ_ENTRY(SpaprDimmState) next; 3579 }; 3580 3581 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3582 PCDIMMDevice *dimm) 3583 { 3584 SpaprDimmState *dimm_state = NULL; 3585 3586 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3587 if (dimm_state->dimm == dimm) { 3588 break; 3589 } 3590 } 3591 return dimm_state; 3592 } 3593 3594 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3595 uint32_t nr_lmbs, 3596 PCDIMMDevice *dimm) 3597 { 3598 SpaprDimmState *ds = NULL; 3599 3600 /* 3601 * If this request is for a DIMM whose removal had failed earlier 3602 * (due to guest's refusal to remove the LMBs), we would have this 3603 * dimm already in the pending_dimm_unplugs list. In that 3604 * case don't add again. 3605 */ 3606 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3607 if (!ds) { 3608 ds = g_malloc0(sizeof(SpaprDimmState)); 3609 ds->nr_lmbs = nr_lmbs; 3610 ds->dimm = dimm; 3611 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3612 } 3613 return ds; 3614 } 3615 3616 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3617 SpaprDimmState *dimm_state) 3618 { 3619 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3620 g_free(dimm_state); 3621 } 3622 3623 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3624 PCDIMMDevice *dimm) 3625 { 3626 SpaprDrc *drc; 3627 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3628 &error_abort); 3629 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3630 uint32_t avail_lmbs = 0; 3631 uint64_t addr_start, addr; 3632 int i; 3633 3634 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3635 &error_abort); 3636 3637 addr = addr_start; 3638 for (i = 0; i < nr_lmbs; i++) { 3639 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3640 addr / SPAPR_MEMORY_BLOCK_SIZE); 3641 g_assert(drc); 3642 if (drc->dev) { 3643 avail_lmbs++; 3644 } 3645 addr += SPAPR_MEMORY_BLOCK_SIZE; 3646 } 3647 3648 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3649 } 3650 3651 /* Callback to be called during DRC release. */ 3652 void spapr_lmb_release(DeviceState *dev) 3653 { 3654 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3655 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3656 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3657 3658 /* This information will get lost if a migration occurs 3659 * during the unplug process. In this case recover it. */ 3660 if (ds == NULL) { 3661 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3662 g_assert(ds); 3663 /* The DRC being examined by the caller at least must be counted */ 3664 g_assert(ds->nr_lmbs); 3665 } 3666 3667 if (--ds->nr_lmbs) { 3668 return; 3669 } 3670 3671 /* 3672 * Now that all the LMBs have been removed by the guest, call the 3673 * unplug handler chain. This can never fail. 3674 */ 3675 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3676 object_unparent(OBJECT(dev)); 3677 } 3678 3679 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3680 { 3681 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3682 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3683 3684 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3685 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3686 spapr_pending_dimm_unplugs_remove(spapr, ds); 3687 } 3688 3689 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3690 DeviceState *dev, Error **errp) 3691 { 3692 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3693 Error *local_err = NULL; 3694 PCDIMMDevice *dimm = PC_DIMM(dev); 3695 uint32_t nr_lmbs; 3696 uint64_t size, addr_start, addr; 3697 int i; 3698 SpaprDrc *drc; 3699 3700 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3701 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3702 3703 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3704 &local_err); 3705 if (local_err) { 3706 goto out; 3707 } 3708 3709 /* 3710 * An existing pending dimm state for this DIMM means that there is an 3711 * unplug operation in progress, waiting for the spapr_lmb_release 3712 * callback to complete the job (BQL can't cover that far). In this case, 3713 * bail out to avoid detaching DRCs that were already released. 3714 */ 3715 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3716 error_setg(&local_err, 3717 "Memory unplug already in progress for device %s", 3718 dev->id); 3719 goto out; 3720 } 3721 3722 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3723 3724 addr = addr_start; 3725 for (i = 0; i < nr_lmbs; i++) { 3726 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3727 addr / SPAPR_MEMORY_BLOCK_SIZE); 3728 g_assert(drc); 3729 3730 spapr_drc_detach(drc); 3731 addr += SPAPR_MEMORY_BLOCK_SIZE; 3732 } 3733 3734 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3735 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3736 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3737 nr_lmbs, spapr_drc_index(drc)); 3738 out: 3739 error_propagate(errp, local_err); 3740 } 3741 3742 /* Callback to be called during DRC release. */ 3743 void spapr_core_release(DeviceState *dev) 3744 { 3745 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3746 3747 /* Call the unplug handler chain. This can never fail. */ 3748 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3749 object_unparent(OBJECT(dev)); 3750 } 3751 3752 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3753 { 3754 MachineState *ms = MACHINE(hotplug_dev); 3755 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3756 CPUCore *cc = CPU_CORE(dev); 3757 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3758 3759 if (smc->pre_2_10_has_unused_icps) { 3760 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3761 int i; 3762 3763 for (i = 0; i < cc->nr_threads; i++) { 3764 CPUState *cs = CPU(sc->threads[i]); 3765 3766 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3767 } 3768 } 3769 3770 assert(core_slot); 3771 core_slot->cpu = NULL; 3772 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3773 } 3774 3775 static 3776 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3777 Error **errp) 3778 { 3779 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3780 int index; 3781 SpaprDrc *drc; 3782 CPUCore *cc = CPU_CORE(dev); 3783 3784 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3785 error_setg(errp, "Unable to find CPU core with core-id: %d", 3786 cc->core_id); 3787 return; 3788 } 3789 if (index == 0) { 3790 error_setg(errp, "Boot CPU core may not be unplugged"); 3791 return; 3792 } 3793 3794 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3795 spapr_vcpu_id(spapr, cc->core_id)); 3796 g_assert(drc); 3797 3798 spapr_drc_detach(drc); 3799 3800 spapr_hotplug_req_remove_by_index(drc); 3801 } 3802 3803 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3804 void *fdt, int *fdt_start_offset, Error **errp) 3805 { 3806 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3807 CPUState *cs = CPU(core->threads[0]); 3808 PowerPCCPU *cpu = POWERPC_CPU(cs); 3809 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3810 int id = spapr_get_vcpu_id(cpu); 3811 char *nodename; 3812 int offset; 3813 3814 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3815 offset = fdt_add_subnode(fdt, 0, nodename); 3816 g_free(nodename); 3817 3818 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3819 3820 *fdt_start_offset = offset; 3821 return 0; 3822 } 3823 3824 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3825 Error **errp) 3826 { 3827 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3828 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3829 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3830 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3831 CPUCore *cc = CPU_CORE(dev); 3832 CPUState *cs; 3833 SpaprDrc *drc; 3834 Error *local_err = NULL; 3835 CPUArchId *core_slot; 3836 int index; 3837 bool hotplugged = spapr_drc_hotplugged(dev); 3838 int i; 3839 3840 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3841 if (!core_slot) { 3842 error_setg(errp, "Unable to find CPU core with core-id: %d", 3843 cc->core_id); 3844 return; 3845 } 3846 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3847 spapr_vcpu_id(spapr, cc->core_id)); 3848 3849 g_assert(drc || !mc->has_hotpluggable_cpus); 3850 3851 if (drc) { 3852 spapr_drc_attach(drc, dev, &local_err); 3853 if (local_err) { 3854 error_propagate(errp, local_err); 3855 return; 3856 } 3857 3858 if (hotplugged) { 3859 /* 3860 * Send hotplug notification interrupt to the guest only 3861 * in case of hotplugged CPUs. 3862 */ 3863 spapr_hotplug_req_add_by_index(drc); 3864 } else { 3865 spapr_drc_reset(drc); 3866 } 3867 } 3868 3869 core_slot->cpu = OBJECT(dev); 3870 3871 if (smc->pre_2_10_has_unused_icps) { 3872 for (i = 0; i < cc->nr_threads; i++) { 3873 cs = CPU(core->threads[i]); 3874 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3875 } 3876 } 3877 3878 /* 3879 * Set compatibility mode to match the boot CPU, which was either set 3880 * by the machine reset code or by CAS. 3881 */ 3882 if (hotplugged) { 3883 for (i = 0; i < cc->nr_threads; i++) { 3884 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3885 &local_err); 3886 if (local_err) { 3887 error_propagate(errp, local_err); 3888 return; 3889 } 3890 } 3891 } 3892 } 3893 3894 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3895 Error **errp) 3896 { 3897 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3898 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3899 Error *local_err = NULL; 3900 CPUCore *cc = CPU_CORE(dev); 3901 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3902 const char *type = object_get_typename(OBJECT(dev)); 3903 CPUArchId *core_slot; 3904 int index; 3905 unsigned int smp_threads = machine->smp.threads; 3906 3907 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3908 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3909 goto out; 3910 } 3911 3912 if (strcmp(base_core_type, type)) { 3913 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3914 goto out; 3915 } 3916 3917 if (cc->core_id % smp_threads) { 3918 error_setg(&local_err, "invalid core id %d", cc->core_id); 3919 goto out; 3920 } 3921 3922 /* 3923 * In general we should have homogeneous threads-per-core, but old 3924 * (pre hotplug support) machine types allow the last core to have 3925 * reduced threads as a compatibility hack for when we allowed 3926 * total vcpus not a multiple of threads-per-core. 3927 */ 3928 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3929 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3930 cc->nr_threads, smp_threads); 3931 goto out; 3932 } 3933 3934 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3935 if (!core_slot) { 3936 error_setg(&local_err, "core id %d out of range", cc->core_id); 3937 goto out; 3938 } 3939 3940 if (core_slot->cpu) { 3941 error_setg(&local_err, "core %d already populated", cc->core_id); 3942 goto out; 3943 } 3944 3945 numa_cpu_pre_plug(core_slot, dev, &local_err); 3946 3947 out: 3948 error_propagate(errp, local_err); 3949 } 3950 3951 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3952 void *fdt, int *fdt_start_offset, Error **errp) 3953 { 3954 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3955 int intc_phandle; 3956 3957 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3958 if (intc_phandle <= 0) { 3959 return -1; 3960 } 3961 3962 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3963 fdt_start_offset)) { 3964 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3965 return -1; 3966 } 3967 3968 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3969 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3970 3971 return 0; 3972 } 3973 3974 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3975 Error **errp) 3976 { 3977 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3978 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3979 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3980 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3981 3982 if (dev->hotplugged && !smc->dr_phb_enabled) { 3983 error_setg(errp, "PHB hotplug not supported for this machine"); 3984 return; 3985 } 3986 3987 if (sphb->index == (uint32_t)-1) { 3988 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3989 return; 3990 } 3991 3992 /* 3993 * This will check that sphb->index doesn't exceed the maximum number of 3994 * PHBs for the current machine type. 3995 */ 3996 smc->phb_placement(spapr, sphb->index, 3997 &sphb->buid, &sphb->io_win_addr, 3998 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3999 windows_supported, sphb->dma_liobn, 4000 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 4001 errp); 4002 } 4003 4004 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4005 Error **errp) 4006 { 4007 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4008 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4009 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4010 SpaprDrc *drc; 4011 bool hotplugged = spapr_drc_hotplugged(dev); 4012 Error *local_err = NULL; 4013 4014 if (!smc->dr_phb_enabled) { 4015 return; 4016 } 4017 4018 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4019 /* hotplug hooks should check it's enabled before getting this far */ 4020 assert(drc); 4021 4022 spapr_drc_attach(drc, DEVICE(dev), &local_err); 4023 if (local_err) { 4024 error_propagate(errp, local_err); 4025 return; 4026 } 4027 4028 if (hotplugged) { 4029 spapr_hotplug_req_add_by_index(drc); 4030 } else { 4031 spapr_drc_reset(drc); 4032 } 4033 } 4034 4035 void spapr_phb_release(DeviceState *dev) 4036 { 4037 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4038 4039 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4040 object_unparent(OBJECT(dev)); 4041 } 4042 4043 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4044 { 4045 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4046 } 4047 4048 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4049 DeviceState *dev, Error **errp) 4050 { 4051 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4052 SpaprDrc *drc; 4053 4054 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4055 assert(drc); 4056 4057 if (!spapr_drc_unplug_requested(drc)) { 4058 spapr_drc_detach(drc); 4059 spapr_hotplug_req_remove_by_index(drc); 4060 } 4061 } 4062 4063 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4064 Error **errp) 4065 { 4066 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4067 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4068 4069 if (spapr->tpm_proxy != NULL) { 4070 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4071 return; 4072 } 4073 4074 spapr->tpm_proxy = tpm_proxy; 4075 } 4076 4077 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4078 { 4079 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4080 4081 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4082 object_unparent(OBJECT(dev)); 4083 spapr->tpm_proxy = NULL; 4084 } 4085 4086 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4087 DeviceState *dev, Error **errp) 4088 { 4089 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4090 spapr_memory_plug(hotplug_dev, dev, errp); 4091 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4092 spapr_core_plug(hotplug_dev, dev, errp); 4093 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4094 spapr_phb_plug(hotplug_dev, dev, errp); 4095 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4096 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 4097 } 4098 } 4099 4100 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4101 DeviceState *dev, Error **errp) 4102 { 4103 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4104 spapr_memory_unplug(hotplug_dev, dev); 4105 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4106 spapr_core_unplug(hotplug_dev, dev); 4107 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4108 spapr_phb_unplug(hotplug_dev, dev); 4109 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4110 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4111 } 4112 } 4113 4114 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4115 DeviceState *dev, Error **errp) 4116 { 4117 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4118 MachineClass *mc = MACHINE_GET_CLASS(sms); 4119 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4120 4121 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4122 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4123 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4124 } else { 4125 /* NOTE: this means there is a window after guest reset, prior to 4126 * CAS negotiation, where unplug requests will fail due to the 4127 * capability not being detected yet. This is a bit different than 4128 * the case with PCI unplug, where the events will be queued and 4129 * eventually handled by the guest after boot 4130 */ 4131 error_setg(errp, "Memory hot unplug not supported for this guest"); 4132 } 4133 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4134 if (!mc->has_hotpluggable_cpus) { 4135 error_setg(errp, "CPU hot unplug not supported on this machine"); 4136 return; 4137 } 4138 spapr_core_unplug_request(hotplug_dev, dev, errp); 4139 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4140 if (!smc->dr_phb_enabled) { 4141 error_setg(errp, "PHB hot unplug not supported on this machine"); 4142 return; 4143 } 4144 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4145 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4146 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4147 } 4148 } 4149 4150 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4151 DeviceState *dev, Error **errp) 4152 { 4153 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4154 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4155 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4156 spapr_core_pre_plug(hotplug_dev, dev, errp); 4157 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4158 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4159 } 4160 } 4161 4162 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4163 DeviceState *dev) 4164 { 4165 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4166 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4167 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4168 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4169 return HOTPLUG_HANDLER(machine); 4170 } 4171 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4172 PCIDevice *pcidev = PCI_DEVICE(dev); 4173 PCIBus *root = pci_device_root_bus(pcidev); 4174 SpaprPhbState *phb = 4175 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4176 TYPE_SPAPR_PCI_HOST_BRIDGE); 4177 4178 if (phb) { 4179 return HOTPLUG_HANDLER(phb); 4180 } 4181 } 4182 return NULL; 4183 } 4184 4185 static CpuInstanceProperties 4186 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4187 { 4188 CPUArchId *core_slot; 4189 MachineClass *mc = MACHINE_GET_CLASS(machine); 4190 4191 /* make sure possible_cpu are intialized */ 4192 mc->possible_cpu_arch_ids(machine); 4193 /* get CPU core slot containing thread that matches cpu_index */ 4194 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4195 assert(core_slot); 4196 return core_slot->props; 4197 } 4198 4199 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4200 { 4201 return idx / ms->smp.cores % nb_numa_nodes; 4202 } 4203 4204 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4205 { 4206 int i; 4207 unsigned int smp_threads = machine->smp.threads; 4208 unsigned int smp_cpus = machine->smp.cpus; 4209 const char *core_type; 4210 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4211 MachineClass *mc = MACHINE_GET_CLASS(machine); 4212 4213 if (!mc->has_hotpluggable_cpus) { 4214 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4215 } 4216 if (machine->possible_cpus) { 4217 assert(machine->possible_cpus->len == spapr_max_cores); 4218 return machine->possible_cpus; 4219 } 4220 4221 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4222 if (!core_type) { 4223 error_report("Unable to find sPAPR CPU Core definition"); 4224 exit(1); 4225 } 4226 4227 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4228 sizeof(CPUArchId) * spapr_max_cores); 4229 machine->possible_cpus->len = spapr_max_cores; 4230 for (i = 0; i < machine->possible_cpus->len; i++) { 4231 int core_id = i * smp_threads; 4232 4233 machine->possible_cpus->cpus[i].type = core_type; 4234 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4235 machine->possible_cpus->cpus[i].arch_id = core_id; 4236 machine->possible_cpus->cpus[i].props.has_core_id = true; 4237 machine->possible_cpus->cpus[i].props.core_id = core_id; 4238 } 4239 return machine->possible_cpus; 4240 } 4241 4242 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4243 uint64_t *buid, hwaddr *pio, 4244 hwaddr *mmio32, hwaddr *mmio64, 4245 unsigned n_dma, uint32_t *liobns, 4246 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4247 { 4248 /* 4249 * New-style PHB window placement. 4250 * 4251 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4252 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4253 * windows. 4254 * 4255 * Some guest kernels can't work with MMIO windows above 1<<46 4256 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4257 * 4258 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4259 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4260 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4261 * 1TiB 64-bit MMIO windows for each PHB. 4262 */ 4263 const uint64_t base_buid = 0x800000020000000ULL; 4264 int i; 4265 4266 /* Sanity check natural alignments */ 4267 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4268 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4269 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4270 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4271 /* Sanity check bounds */ 4272 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4273 SPAPR_PCI_MEM32_WIN_SIZE); 4274 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4275 SPAPR_PCI_MEM64_WIN_SIZE); 4276 4277 if (index >= SPAPR_MAX_PHBS) { 4278 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4279 SPAPR_MAX_PHBS - 1); 4280 return; 4281 } 4282 4283 *buid = base_buid + index; 4284 for (i = 0; i < n_dma; ++i) { 4285 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4286 } 4287 4288 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4289 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4290 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4291 4292 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4293 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4294 } 4295 4296 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4297 { 4298 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4299 4300 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4301 } 4302 4303 static void spapr_ics_resend(XICSFabric *dev) 4304 { 4305 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4306 4307 ics_resend(spapr->ics); 4308 } 4309 4310 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4311 { 4312 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4313 4314 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4315 } 4316 4317 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4318 Monitor *mon) 4319 { 4320 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4321 4322 spapr->irq->print_info(spapr, mon); 4323 } 4324 4325 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4326 { 4327 return cpu->vcpu_id; 4328 } 4329 4330 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4331 { 4332 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4333 MachineState *ms = MACHINE(spapr); 4334 int vcpu_id; 4335 4336 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4337 4338 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4339 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4340 error_append_hint(errp, "Adjust the number of cpus to %d " 4341 "or try to raise the number of threads per core\n", 4342 vcpu_id * ms->smp.threads / spapr->vsmt); 4343 return; 4344 } 4345 4346 cpu->vcpu_id = vcpu_id; 4347 } 4348 4349 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4350 { 4351 CPUState *cs; 4352 4353 CPU_FOREACH(cs) { 4354 PowerPCCPU *cpu = POWERPC_CPU(cs); 4355 4356 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4357 return cpu; 4358 } 4359 } 4360 4361 return NULL; 4362 } 4363 4364 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4365 { 4366 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4367 4368 /* These are only called by TCG, KVM maintains dispatch state */ 4369 4370 spapr_cpu->prod = false; 4371 if (spapr_cpu->vpa_addr) { 4372 CPUState *cs = CPU(cpu); 4373 uint32_t dispatch; 4374 4375 dispatch = ldl_be_phys(cs->as, 4376 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4377 dispatch++; 4378 if ((dispatch & 1) != 0) { 4379 qemu_log_mask(LOG_GUEST_ERROR, 4380 "VPA: incorrect dispatch counter value for " 4381 "dispatched partition %u, correcting.\n", dispatch); 4382 dispatch++; 4383 } 4384 stl_be_phys(cs->as, 4385 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4386 } 4387 } 4388 4389 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4390 { 4391 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4392 4393 if (spapr_cpu->vpa_addr) { 4394 CPUState *cs = CPU(cpu); 4395 uint32_t dispatch; 4396 4397 dispatch = ldl_be_phys(cs->as, 4398 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4399 dispatch++; 4400 if ((dispatch & 1) != 1) { 4401 qemu_log_mask(LOG_GUEST_ERROR, 4402 "VPA: incorrect dispatch counter value for " 4403 "preempted partition %u, correcting.\n", dispatch); 4404 dispatch++; 4405 } 4406 stl_be_phys(cs->as, 4407 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4408 } 4409 } 4410 4411 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4412 { 4413 MachineClass *mc = MACHINE_CLASS(oc); 4414 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4415 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4416 NMIClass *nc = NMI_CLASS(oc); 4417 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4418 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4419 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4420 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4421 4422 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4423 mc->ignore_boot_device_suffixes = true; 4424 4425 /* 4426 * We set up the default / latest behaviour here. The class_init 4427 * functions for the specific versioned machine types can override 4428 * these details for backwards compatibility 4429 */ 4430 mc->init = spapr_machine_init; 4431 mc->reset = spapr_machine_reset; 4432 mc->block_default_type = IF_SCSI; 4433 mc->max_cpus = 1024; 4434 mc->no_parallel = 1; 4435 mc->default_boot_order = ""; 4436 mc->default_ram_size = 512 * MiB; 4437 mc->default_display = "std"; 4438 mc->kvm_type = spapr_kvm_type; 4439 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4440 mc->pci_allow_0_address = true; 4441 assert(!mc->get_hotplug_handler); 4442 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4443 hc->pre_plug = spapr_machine_device_pre_plug; 4444 hc->plug = spapr_machine_device_plug; 4445 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4446 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4447 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4448 hc->unplug_request = spapr_machine_device_unplug_request; 4449 hc->unplug = spapr_machine_device_unplug; 4450 4451 smc->dr_lmb_enabled = true; 4452 smc->update_dt_enabled = true; 4453 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4454 mc->has_hotpluggable_cpus = true; 4455 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4456 fwc->get_dev_path = spapr_get_fw_dev_path; 4457 nc->nmi_monitor_handler = spapr_nmi; 4458 smc->phb_placement = spapr_phb_placement; 4459 vhc->hypercall = emulate_spapr_hypercall; 4460 vhc->hpt_mask = spapr_hpt_mask; 4461 vhc->map_hptes = spapr_map_hptes; 4462 vhc->unmap_hptes = spapr_unmap_hptes; 4463 vhc->hpte_set_c = spapr_hpte_set_c; 4464 vhc->hpte_set_r = spapr_hpte_set_r; 4465 vhc->get_pate = spapr_get_pate; 4466 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4467 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4468 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4469 xic->ics_get = spapr_ics_get; 4470 xic->ics_resend = spapr_ics_resend; 4471 xic->icp_get = spapr_icp_get; 4472 ispc->print_info = spapr_pic_print_info; 4473 /* Force NUMA node memory size to be a multiple of 4474 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4475 * in which LMBs are represented and hot-added 4476 */ 4477 mc->numa_mem_align_shift = 28; 4478 mc->numa_mem_supported = true; 4479 4480 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4481 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4482 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4483 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4484 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4485 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4486 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4487 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4488 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4489 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4490 spapr_caps_add_properties(smc, &error_abort); 4491 smc->irq = &spapr_irq_dual; 4492 smc->dr_phb_enabled = true; 4493 smc->linux_pci_probe = true; 4494 } 4495 4496 static const TypeInfo spapr_machine_info = { 4497 .name = TYPE_SPAPR_MACHINE, 4498 .parent = TYPE_MACHINE, 4499 .abstract = true, 4500 .instance_size = sizeof(SpaprMachineState), 4501 .instance_init = spapr_instance_init, 4502 .instance_finalize = spapr_machine_finalizefn, 4503 .class_size = sizeof(SpaprMachineClass), 4504 .class_init = spapr_machine_class_init, 4505 .interfaces = (InterfaceInfo[]) { 4506 { TYPE_FW_PATH_PROVIDER }, 4507 { TYPE_NMI }, 4508 { TYPE_HOTPLUG_HANDLER }, 4509 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4510 { TYPE_XICS_FABRIC }, 4511 { TYPE_INTERRUPT_STATS_PROVIDER }, 4512 { } 4513 }, 4514 }; 4515 4516 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4517 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4518 void *data) \ 4519 { \ 4520 MachineClass *mc = MACHINE_CLASS(oc); \ 4521 spapr_machine_##suffix##_class_options(mc); \ 4522 if (latest) { \ 4523 mc->alias = "pseries"; \ 4524 mc->is_default = 1; \ 4525 } \ 4526 } \ 4527 static const TypeInfo spapr_machine_##suffix##_info = { \ 4528 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4529 .parent = TYPE_SPAPR_MACHINE, \ 4530 .class_init = spapr_machine_##suffix##_class_init, \ 4531 }; \ 4532 static void spapr_machine_register_##suffix(void) \ 4533 { \ 4534 type_register(&spapr_machine_##suffix##_info); \ 4535 } \ 4536 type_init(spapr_machine_register_##suffix) 4537 4538 /* 4539 * pseries-4.2 4540 */ 4541 static void spapr_machine_4_2_class_options(MachineClass *mc) 4542 { 4543 /* Defaults for the latest behaviour inherited from the base class */ 4544 } 4545 4546 DEFINE_SPAPR_MACHINE(4_2, "4.2", true); 4547 4548 /* 4549 * pseries-4.1 4550 */ 4551 static void spapr_machine_4_1_class_options(MachineClass *mc) 4552 { 4553 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4554 static GlobalProperty compat[] = { 4555 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4556 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4557 }; 4558 4559 spapr_machine_4_2_class_options(mc); 4560 smc->linux_pci_probe = false; 4561 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4562 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4563 } 4564 4565 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4566 4567 /* 4568 * pseries-4.0 4569 */ 4570 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4571 uint64_t *buid, hwaddr *pio, 4572 hwaddr *mmio32, hwaddr *mmio64, 4573 unsigned n_dma, uint32_t *liobns, 4574 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4575 { 4576 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4577 nv2gpa, nv2atsd, errp); 4578 *nv2gpa = 0; 4579 *nv2atsd = 0; 4580 } 4581 4582 static void spapr_machine_4_0_class_options(MachineClass *mc) 4583 { 4584 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4585 4586 spapr_machine_4_1_class_options(mc); 4587 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4588 smc->phb_placement = phb_placement_4_0; 4589 smc->irq = &spapr_irq_xics; 4590 smc->pre_4_1_migration = true; 4591 } 4592 4593 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4594 4595 /* 4596 * pseries-3.1 4597 */ 4598 static void spapr_machine_3_1_class_options(MachineClass *mc) 4599 { 4600 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4601 4602 spapr_machine_4_0_class_options(mc); 4603 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4604 4605 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4606 smc->update_dt_enabled = false; 4607 smc->dr_phb_enabled = false; 4608 smc->broken_host_serial_model = true; 4609 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4610 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4611 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4612 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4613 } 4614 4615 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4616 4617 /* 4618 * pseries-3.0 4619 */ 4620 4621 static void spapr_machine_3_0_class_options(MachineClass *mc) 4622 { 4623 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4624 4625 spapr_machine_3_1_class_options(mc); 4626 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4627 4628 smc->legacy_irq_allocation = true; 4629 smc->irq = &spapr_irq_xics_legacy; 4630 } 4631 4632 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4633 4634 /* 4635 * pseries-2.12 4636 */ 4637 static void spapr_machine_2_12_class_options(MachineClass *mc) 4638 { 4639 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4640 static GlobalProperty compat[] = { 4641 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4642 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4643 }; 4644 4645 spapr_machine_3_0_class_options(mc); 4646 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4647 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4648 4649 /* We depend on kvm_enabled() to choose a default value for the 4650 * hpt-max-page-size capability. Of course we can't do it here 4651 * because this is too early and the HW accelerator isn't initialzed 4652 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4653 */ 4654 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4655 } 4656 4657 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4658 4659 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4660 { 4661 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4662 4663 spapr_machine_2_12_class_options(mc); 4664 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4665 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4666 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4667 } 4668 4669 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4670 4671 /* 4672 * pseries-2.11 4673 */ 4674 4675 static void spapr_machine_2_11_class_options(MachineClass *mc) 4676 { 4677 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4678 4679 spapr_machine_2_12_class_options(mc); 4680 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4681 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4682 } 4683 4684 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4685 4686 /* 4687 * pseries-2.10 4688 */ 4689 4690 static void spapr_machine_2_10_class_options(MachineClass *mc) 4691 { 4692 spapr_machine_2_11_class_options(mc); 4693 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4694 } 4695 4696 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4697 4698 /* 4699 * pseries-2.9 4700 */ 4701 4702 static void spapr_machine_2_9_class_options(MachineClass *mc) 4703 { 4704 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4705 static GlobalProperty compat[] = { 4706 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4707 }; 4708 4709 spapr_machine_2_10_class_options(mc); 4710 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4711 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4712 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4713 smc->pre_2_10_has_unused_icps = true; 4714 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4715 } 4716 4717 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4718 4719 /* 4720 * pseries-2.8 4721 */ 4722 4723 static void spapr_machine_2_8_class_options(MachineClass *mc) 4724 { 4725 static GlobalProperty compat[] = { 4726 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4727 }; 4728 4729 spapr_machine_2_9_class_options(mc); 4730 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4731 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4732 mc->numa_mem_align_shift = 23; 4733 } 4734 4735 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4736 4737 /* 4738 * pseries-2.7 4739 */ 4740 4741 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4742 uint64_t *buid, hwaddr *pio, 4743 hwaddr *mmio32, hwaddr *mmio64, 4744 unsigned n_dma, uint32_t *liobns, 4745 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4746 { 4747 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4748 const uint64_t base_buid = 0x800000020000000ULL; 4749 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4750 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4751 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4752 const uint32_t max_index = 255; 4753 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4754 4755 uint64_t ram_top = MACHINE(spapr)->ram_size; 4756 hwaddr phb0_base, phb_base; 4757 int i; 4758 4759 /* Do we have device memory? */ 4760 if (MACHINE(spapr)->maxram_size > ram_top) { 4761 /* Can't just use maxram_size, because there may be an 4762 * alignment gap between normal and device memory regions 4763 */ 4764 ram_top = MACHINE(spapr)->device_memory->base + 4765 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4766 } 4767 4768 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4769 4770 if (index > max_index) { 4771 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4772 max_index); 4773 return; 4774 } 4775 4776 *buid = base_buid + index; 4777 for (i = 0; i < n_dma; ++i) { 4778 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4779 } 4780 4781 phb_base = phb0_base + index * phb_spacing; 4782 *pio = phb_base + pio_offset; 4783 *mmio32 = phb_base + mmio_offset; 4784 /* 4785 * We don't set the 64-bit MMIO window, relying on the PHB's 4786 * fallback behaviour of automatically splitting a large "32-bit" 4787 * window into contiguous 32-bit and 64-bit windows 4788 */ 4789 4790 *nv2gpa = 0; 4791 *nv2atsd = 0; 4792 } 4793 4794 static void spapr_machine_2_7_class_options(MachineClass *mc) 4795 { 4796 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4797 static GlobalProperty compat[] = { 4798 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4799 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4800 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4801 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4802 }; 4803 4804 spapr_machine_2_8_class_options(mc); 4805 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4806 mc->default_machine_opts = "modern-hotplug-events=off"; 4807 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4808 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4809 smc->phb_placement = phb_placement_2_7; 4810 } 4811 4812 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4813 4814 /* 4815 * pseries-2.6 4816 */ 4817 4818 static void spapr_machine_2_6_class_options(MachineClass *mc) 4819 { 4820 static GlobalProperty compat[] = { 4821 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4822 }; 4823 4824 spapr_machine_2_7_class_options(mc); 4825 mc->has_hotpluggable_cpus = false; 4826 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4827 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4828 } 4829 4830 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4831 4832 /* 4833 * pseries-2.5 4834 */ 4835 4836 static void spapr_machine_2_5_class_options(MachineClass *mc) 4837 { 4838 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4839 static GlobalProperty compat[] = { 4840 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4841 }; 4842 4843 spapr_machine_2_6_class_options(mc); 4844 smc->use_ohci_by_default = true; 4845 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4846 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4847 } 4848 4849 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4850 4851 /* 4852 * pseries-2.4 4853 */ 4854 4855 static void spapr_machine_2_4_class_options(MachineClass *mc) 4856 { 4857 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4858 4859 spapr_machine_2_5_class_options(mc); 4860 smc->dr_lmb_enabled = false; 4861 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4862 } 4863 4864 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4865 4866 /* 4867 * pseries-2.3 4868 */ 4869 4870 static void spapr_machine_2_3_class_options(MachineClass *mc) 4871 { 4872 static GlobalProperty compat[] = { 4873 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4874 }; 4875 spapr_machine_2_4_class_options(mc); 4876 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4877 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4878 } 4879 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4880 4881 /* 4882 * pseries-2.2 4883 */ 4884 4885 static void spapr_machine_2_2_class_options(MachineClass *mc) 4886 { 4887 static GlobalProperty compat[] = { 4888 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4889 }; 4890 4891 spapr_machine_2_3_class_options(mc); 4892 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4893 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4894 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4895 } 4896 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4897 4898 /* 4899 * pseries-2.1 4900 */ 4901 4902 static void spapr_machine_2_1_class_options(MachineClass *mc) 4903 { 4904 spapr_machine_2_2_class_options(mc); 4905 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4906 } 4907 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4908 4909 static void spapr_machine_register_types(void) 4910 { 4911 type_register_static(&spapr_machine_info); 4912 } 4913 4914 type_init(spapr_machine_register_types) 4915