1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu-common.h" 29 #include "qapi/error.h" 30 #include "qapi/visitor.h" 31 #include "sysemu/sysemu.h" 32 #include "sysemu/hostmem.h" 33 #include "sysemu/numa.h" 34 #include "sysemu/qtest.h" 35 #include "sysemu/reset.h" 36 #include "sysemu/runstate.h" 37 #include "qemu/log.h" 38 #include "hw/fw-path-provider.h" 39 #include "elf.h" 40 #include "net/net.h" 41 #include "sysemu/device_tree.h" 42 #include "sysemu/cpus.h" 43 #include "sysemu/hw_accel.h" 44 #include "kvm_ppc.h" 45 #include "migration/misc.h" 46 #include "migration/qemu-file-types.h" 47 #include "migration/global_state.h" 48 #include "migration/register.h" 49 #include "mmu-hash64.h" 50 #include "mmu-book3s-v3.h" 51 #include "cpu-models.h" 52 #include "hw/core/cpu.h" 53 54 #include "hw/boards.h" 55 #include "hw/ppc/ppc.h" 56 #include "hw/loader.h" 57 58 #include "hw/ppc/fdt.h" 59 #include "hw/ppc/spapr.h" 60 #include "hw/ppc/spapr_vio.h" 61 #include "hw/qdev-properties.h" 62 #include "hw/pci-host/spapr.h" 63 #include "hw/pci/msi.h" 64 65 #include "hw/pci/pci.h" 66 #include "hw/scsi/scsi.h" 67 #include "hw/virtio/virtio-scsi.h" 68 #include "hw/virtio/vhost-scsi-common.h" 69 70 #include "exec/address-spaces.h" 71 #include "exec/ram_addr.h" 72 #include "hw/usb.h" 73 #include "qemu/config-file.h" 74 #include "qemu/error-report.h" 75 #include "trace.h" 76 #include "hw/nmi.h" 77 #include "hw/intc/intc.h" 78 79 #include "qemu/cutils.h" 80 #include "hw/ppc/spapr_cpu_core.h" 81 #include "hw/mem/memory-device.h" 82 #include "hw/ppc/spapr_tpm_proxy.h" 83 84 #include "monitor/monitor.h" 85 86 #include <libfdt.h> 87 88 /* SLOF memory layout: 89 * 90 * SLOF raw image loaded at 0, copies its romfs right below the flat 91 * device-tree, then position SLOF itself 31M below that 92 * 93 * So we set FW_OVERHEAD to 40MB which should account for all of that 94 * and more 95 * 96 * We load our kernel at 4M, leaving space for SLOF initial image 97 */ 98 #define FDT_MAX_SIZE 0x100000 99 #define RTAS_MAX_SIZE 0x10000 100 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 101 #define FW_MAX_SIZE 0x400000 102 #define FW_FILE_NAME "slof.bin" 103 #define FW_OVERHEAD 0x2800000 104 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 105 106 #define MIN_RMA_SLOF 128UL 107 108 #define PHANDLE_INTC 0x00001111 109 110 /* These two functions implement the VCPU id numbering: one to compute them 111 * all and one to identify thread 0 of a VCORE. Any change to the first one 112 * is likely to have an impact on the second one, so let's keep them close. 113 */ 114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 115 { 116 MachineState *ms = MACHINE(spapr); 117 unsigned int smp_threads = ms->smp.threads; 118 119 assert(spapr->vsmt); 120 return 121 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 122 } 123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 124 PowerPCCPU *cpu) 125 { 126 assert(spapr->vsmt); 127 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 128 } 129 130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 131 { 132 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 133 * and newer QEMUs don't even have them. In both cases, we don't want 134 * to send anything on the wire. 135 */ 136 return false; 137 } 138 139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 140 .name = "icp/server", 141 .version_id = 1, 142 .minimum_version_id = 1, 143 .needed = pre_2_10_vmstate_dummy_icp_needed, 144 .fields = (VMStateField[]) { 145 VMSTATE_UNUSED(4), /* uint32_t xirr */ 146 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 147 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 148 VMSTATE_END_OF_LIST() 149 }, 150 }; 151 152 static void pre_2_10_vmstate_register_dummy_icp(int i) 153 { 154 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 155 (void *)(uintptr_t) i); 156 } 157 158 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 159 { 160 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 161 (void *)(uintptr_t) i); 162 } 163 164 int spapr_max_server_number(SpaprMachineState *spapr) 165 { 166 MachineState *ms = MACHINE(spapr); 167 168 assert(spapr->vsmt); 169 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 170 } 171 172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 173 int smt_threads) 174 { 175 int i, ret = 0; 176 uint32_t servers_prop[smt_threads]; 177 uint32_t gservers_prop[smt_threads * 2]; 178 int index = spapr_get_vcpu_id(cpu); 179 180 if (cpu->compat_pvr) { 181 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 182 if (ret < 0) { 183 return ret; 184 } 185 } 186 187 /* Build interrupt servers and gservers properties */ 188 for (i = 0; i < smt_threads; i++) { 189 servers_prop[i] = cpu_to_be32(index + i); 190 /* Hack, direct the group queues back to cpu 0 */ 191 gservers_prop[i*2] = cpu_to_be32(index + i); 192 gservers_prop[i*2 + 1] = 0; 193 } 194 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 195 servers_prop, sizeof(servers_prop)); 196 if (ret < 0) { 197 return ret; 198 } 199 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 200 gservers_prop, sizeof(gservers_prop)); 201 202 return ret; 203 } 204 205 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 206 { 207 int index = spapr_get_vcpu_id(cpu); 208 uint32_t associativity[] = {cpu_to_be32(0x5), 209 cpu_to_be32(0x0), 210 cpu_to_be32(0x0), 211 cpu_to_be32(0x0), 212 cpu_to_be32(cpu->node_id), 213 cpu_to_be32(index)}; 214 215 /* Advertise NUMA via ibm,associativity */ 216 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 217 sizeof(associativity)); 218 } 219 220 /* Populate the "ibm,pa-features" property */ 221 static void spapr_populate_pa_features(SpaprMachineState *spapr, 222 PowerPCCPU *cpu, 223 void *fdt, int offset) 224 { 225 uint8_t pa_features_206[] = { 6, 0, 226 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 227 uint8_t pa_features_207[] = { 24, 0, 228 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 229 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 230 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 231 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 232 uint8_t pa_features_300[] = { 66, 0, 233 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 234 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 235 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 236 /* 6: DS207 */ 237 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 238 /* 16: Vector */ 239 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 240 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 241 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 242 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 243 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 244 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 245 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 246 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 247 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 248 /* 42: PM, 44: PC RA, 46: SC vec'd */ 249 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 250 /* 48: SIMD, 50: QP BFP, 52: String */ 251 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 252 /* 54: DecFP, 56: DecI, 58: SHA */ 253 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 254 /* 60: NM atomic, 62: RNG */ 255 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 256 }; 257 uint8_t *pa_features = NULL; 258 size_t pa_size; 259 260 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 261 pa_features = pa_features_206; 262 pa_size = sizeof(pa_features_206); 263 } 264 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 265 pa_features = pa_features_207; 266 pa_size = sizeof(pa_features_207); 267 } 268 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 269 pa_features = pa_features_300; 270 pa_size = sizeof(pa_features_300); 271 } 272 if (!pa_features) { 273 return; 274 } 275 276 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 277 /* 278 * Note: we keep CI large pages off by default because a 64K capable 279 * guest provisioned with large pages might otherwise try to map a qemu 280 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 281 * even if that qemu runs on a 4k host. 282 * We dd this bit back here if we are confident this is not an issue 283 */ 284 pa_features[3] |= 0x20; 285 } 286 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 287 pa_features[24] |= 0x80; /* Transactional memory support */ 288 } 289 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 290 /* Workaround for broken kernels that attempt (guest) radix 291 * mode when they can't handle it, if they see the radix bit set 292 * in pa-features. So hide it from them. */ 293 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 294 } 295 296 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 297 } 298 299 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 300 { 301 MachineState *ms = MACHINE(spapr); 302 int ret = 0, offset, cpus_offset; 303 CPUState *cs; 304 char cpu_model[32]; 305 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 306 307 CPU_FOREACH(cs) { 308 PowerPCCPU *cpu = POWERPC_CPU(cs); 309 DeviceClass *dc = DEVICE_GET_CLASS(cs); 310 int index = spapr_get_vcpu_id(cpu); 311 int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu)); 312 313 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 314 continue; 315 } 316 317 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 318 319 cpus_offset = fdt_path_offset(fdt, "/cpus"); 320 if (cpus_offset < 0) { 321 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 322 if (cpus_offset < 0) { 323 return cpus_offset; 324 } 325 } 326 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 327 if (offset < 0) { 328 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 329 if (offset < 0) { 330 return offset; 331 } 332 } 333 334 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 335 pft_size_prop, sizeof(pft_size_prop)); 336 if (ret < 0) { 337 return ret; 338 } 339 340 if (ms->numa_state->num_nodes > 1) { 341 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 342 if (ret < 0) { 343 return ret; 344 } 345 } 346 347 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 348 if (ret < 0) { 349 return ret; 350 } 351 352 spapr_populate_pa_features(spapr, cpu, fdt, offset); 353 } 354 return ret; 355 } 356 357 static hwaddr spapr_node0_size(MachineState *machine) 358 { 359 if (machine->numa_state->num_nodes) { 360 int i; 361 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 362 if (machine->numa_state->nodes[i].node_mem) { 363 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 364 machine->ram_size); 365 } 366 } 367 } 368 return machine->ram_size; 369 } 370 371 static void add_str(GString *s, const gchar *s1) 372 { 373 g_string_append_len(s, s1, strlen(s1) + 1); 374 } 375 376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 377 hwaddr size) 378 { 379 uint32_t associativity[] = { 380 cpu_to_be32(0x4), /* length */ 381 cpu_to_be32(0x0), cpu_to_be32(0x0), 382 cpu_to_be32(0x0), cpu_to_be32(nodeid) 383 }; 384 char mem_name[32]; 385 uint64_t mem_reg_property[2]; 386 int off; 387 388 mem_reg_property[0] = cpu_to_be64(start); 389 mem_reg_property[1] = cpu_to_be64(size); 390 391 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 392 off = fdt_add_subnode(fdt, 0, mem_name); 393 _FDT(off); 394 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 395 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 396 sizeof(mem_reg_property)))); 397 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 398 sizeof(associativity)))); 399 return off; 400 } 401 402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 403 { 404 MachineState *machine = MACHINE(spapr); 405 hwaddr mem_start, node_size; 406 int i, nb_nodes = machine->numa_state->num_nodes; 407 NodeInfo *nodes = machine->numa_state->nodes; 408 NodeInfo ramnode; 409 410 /* No NUMA nodes, assume there is just one node with whole RAM */ 411 if (!nb_nodes) { 412 nb_nodes = 1; 413 ramnode.node_mem = machine->ram_size; 414 nodes = &ramnode; 415 } 416 417 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 418 if (!nodes[i].node_mem) { 419 continue; 420 } 421 if (mem_start >= machine->ram_size) { 422 node_size = 0; 423 } else { 424 node_size = nodes[i].node_mem; 425 if (node_size > machine->ram_size - mem_start) { 426 node_size = machine->ram_size - mem_start; 427 } 428 } 429 if (!mem_start) { 430 /* spapr_machine_init() checks for rma_size <= node0_size 431 * already */ 432 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 433 mem_start += spapr->rma_size; 434 node_size -= spapr->rma_size; 435 } 436 for ( ; node_size; ) { 437 hwaddr sizetmp = pow2floor(node_size); 438 439 /* mem_start != 0 here */ 440 if (ctzl(mem_start) < ctzl(sizetmp)) { 441 sizetmp = 1ULL << ctzl(mem_start); 442 } 443 444 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 445 node_size -= sizetmp; 446 mem_start += sizetmp; 447 } 448 } 449 450 return 0; 451 } 452 453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 454 SpaprMachineState *spapr) 455 { 456 MachineState *ms = MACHINE(spapr); 457 PowerPCCPU *cpu = POWERPC_CPU(cs); 458 CPUPPCState *env = &cpu->env; 459 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 460 int index = spapr_get_vcpu_id(cpu); 461 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 462 0xffffffff, 0xffffffff}; 463 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 464 : SPAPR_TIMEBASE_FREQ; 465 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 466 uint32_t page_sizes_prop[64]; 467 size_t page_sizes_prop_size; 468 unsigned int smp_threads = ms->smp.threads; 469 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 470 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 471 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 472 SpaprDrc *drc; 473 int drc_index; 474 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 475 int i; 476 477 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 478 if (drc) { 479 drc_index = spapr_drc_index(drc); 480 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 481 } 482 483 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 484 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 485 486 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 487 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 488 env->dcache_line_size))); 489 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 490 env->dcache_line_size))); 491 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 492 env->icache_line_size))); 493 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 494 env->icache_line_size))); 495 496 if (pcc->l1_dcache_size) { 497 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 498 pcc->l1_dcache_size))); 499 } else { 500 warn_report("Unknown L1 dcache size for cpu"); 501 } 502 if (pcc->l1_icache_size) { 503 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 504 pcc->l1_icache_size))); 505 } else { 506 warn_report("Unknown L1 icache size for cpu"); 507 } 508 509 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 510 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 511 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 512 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 513 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 514 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 515 516 if (env->spr_cb[SPR_PURR].oea_read) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 518 } 519 if (env->spr_cb[SPR_SPURR].oea_read) { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 521 } 522 523 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 524 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 525 segs, sizeof(segs)))); 526 } 527 528 /* Advertise VSX (vector extensions) if available 529 * 1 == VMX / Altivec available 530 * 2 == VSX available 531 * 532 * Only CPUs for which we create core types in spapr_cpu_core.c 533 * are possible, and all of those have VMX */ 534 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 535 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 536 } else { 537 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 538 } 539 540 /* Advertise DFP (Decimal Floating Point) if available 541 * 0 / no property == no DFP 542 * 1 == DFP available */ 543 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 544 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 545 } 546 547 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 548 sizeof(page_sizes_prop)); 549 if (page_sizes_prop_size) { 550 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 551 page_sizes_prop, page_sizes_prop_size))); 552 } 553 554 spapr_populate_pa_features(spapr, cpu, fdt, offset); 555 556 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 557 cs->cpu_index / vcpus_per_socket))); 558 559 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 560 pft_size_prop, sizeof(pft_size_prop)))); 561 562 if (ms->numa_state->num_nodes > 1) { 563 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 564 } 565 566 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 567 568 if (pcc->radix_page_info) { 569 for (i = 0; i < pcc->radix_page_info->count; i++) { 570 radix_AP_encodings[i] = 571 cpu_to_be32(pcc->radix_page_info->entries[i]); 572 } 573 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 574 radix_AP_encodings, 575 pcc->radix_page_info->count * 576 sizeof(radix_AP_encodings[0])))); 577 } 578 579 /* 580 * We set this property to let the guest know that it can use the large 581 * decrementer and its width in bits. 582 */ 583 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 584 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 585 pcc->lrg_decr_bits))); 586 } 587 588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 589 { 590 CPUState **rev; 591 CPUState *cs; 592 int n_cpus; 593 int cpus_offset; 594 char *nodename; 595 int i; 596 597 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 598 _FDT(cpus_offset); 599 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 600 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 601 602 /* 603 * We walk the CPUs in reverse order to ensure that CPU DT nodes 604 * created by fdt_add_subnode() end up in the right order in FDT 605 * for the guest kernel the enumerate the CPUs correctly. 606 * 607 * The CPU list cannot be traversed in reverse order, so we need 608 * to do extra work. 609 */ 610 n_cpus = 0; 611 rev = NULL; 612 CPU_FOREACH(cs) { 613 rev = g_renew(CPUState *, rev, n_cpus + 1); 614 rev[n_cpus++] = cs; 615 } 616 617 for (i = n_cpus - 1; i >= 0; i--) { 618 CPUState *cs = rev[i]; 619 PowerPCCPU *cpu = POWERPC_CPU(cs); 620 int index = spapr_get_vcpu_id(cpu); 621 DeviceClass *dc = DEVICE_GET_CLASS(cs); 622 int offset; 623 624 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 625 continue; 626 } 627 628 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 629 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 630 g_free(nodename); 631 _FDT(offset); 632 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 633 } 634 635 g_free(rev); 636 } 637 638 static int spapr_rng_populate_dt(void *fdt) 639 { 640 int node; 641 int ret; 642 643 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 644 if (node <= 0) { 645 return -1; 646 } 647 ret = fdt_setprop_string(fdt, node, "device_type", 648 "ibm,platform-facilities"); 649 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 650 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 651 652 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 653 if (node <= 0) { 654 return -1; 655 } 656 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 657 658 return ret ? -1 : 0; 659 } 660 661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 662 { 663 MemoryDeviceInfoList *info; 664 665 for (info = list; info; info = info->next) { 666 MemoryDeviceInfo *value = info->value; 667 668 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 669 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 670 671 if (addr >= pcdimm_info->addr && 672 addr < (pcdimm_info->addr + pcdimm_info->size)) { 673 return pcdimm_info->node; 674 } 675 } 676 } 677 678 return -1; 679 } 680 681 struct sPAPRDrconfCellV2 { 682 uint32_t seq_lmbs; 683 uint64_t base_addr; 684 uint32_t drc_index; 685 uint32_t aa_index; 686 uint32_t flags; 687 } QEMU_PACKED; 688 689 typedef struct DrconfCellQueue { 690 struct sPAPRDrconfCellV2 cell; 691 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 692 } DrconfCellQueue; 693 694 static DrconfCellQueue * 695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 696 uint32_t drc_index, uint32_t aa_index, 697 uint32_t flags) 698 { 699 DrconfCellQueue *elem; 700 701 elem = g_malloc0(sizeof(*elem)); 702 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 703 elem->cell.base_addr = cpu_to_be64(base_addr); 704 elem->cell.drc_index = cpu_to_be32(drc_index); 705 elem->cell.aa_index = cpu_to_be32(aa_index); 706 elem->cell.flags = cpu_to_be32(flags); 707 708 return elem; 709 } 710 711 /* ibm,dynamic-memory-v2 */ 712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 713 int offset, MemoryDeviceInfoList *dimms) 714 { 715 MachineState *machine = MACHINE(spapr); 716 uint8_t *int_buf, *cur_index; 717 int ret; 718 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 719 uint64_t addr, cur_addr, size; 720 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 721 uint64_t mem_end = machine->device_memory->base + 722 memory_region_size(&machine->device_memory->mr); 723 uint32_t node, buf_len, nr_entries = 0; 724 SpaprDrc *drc; 725 DrconfCellQueue *elem, *next; 726 MemoryDeviceInfoList *info; 727 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 728 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 729 730 /* Entry to cover RAM and the gap area */ 731 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 732 SPAPR_LMB_FLAGS_RESERVED | 733 SPAPR_LMB_FLAGS_DRC_INVALID); 734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 735 nr_entries++; 736 737 cur_addr = machine->device_memory->base; 738 for (info = dimms; info; info = info->next) { 739 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 740 741 addr = di->addr; 742 size = di->size; 743 node = di->node; 744 745 /* Entry for hot-pluggable area */ 746 if (cur_addr < addr) { 747 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 748 g_assert(drc); 749 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 750 cur_addr, spapr_drc_index(drc), -1, 0); 751 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 752 nr_entries++; 753 } 754 755 /* Entry for DIMM */ 756 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 757 g_assert(drc); 758 elem = spapr_get_drconf_cell(size / lmb_size, addr, 759 spapr_drc_index(drc), node, 760 SPAPR_LMB_FLAGS_ASSIGNED); 761 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 762 nr_entries++; 763 cur_addr = addr + size; 764 } 765 766 /* Entry for remaining hotpluggable area */ 767 if (cur_addr < mem_end) { 768 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 769 g_assert(drc); 770 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 771 cur_addr, spapr_drc_index(drc), -1, 0); 772 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 773 nr_entries++; 774 } 775 776 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 777 int_buf = cur_index = g_malloc0(buf_len); 778 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 779 cur_index += sizeof(nr_entries); 780 781 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 782 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 783 cur_index += sizeof(elem->cell); 784 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 785 g_free(elem); 786 } 787 788 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 789 g_free(int_buf); 790 if (ret < 0) { 791 return -1; 792 } 793 return 0; 794 } 795 796 /* ibm,dynamic-memory */ 797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 798 int offset, MemoryDeviceInfoList *dimms) 799 { 800 MachineState *machine = MACHINE(spapr); 801 int i, ret; 802 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 803 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 804 uint32_t nr_lmbs = (machine->device_memory->base + 805 memory_region_size(&machine->device_memory->mr)) / 806 lmb_size; 807 uint32_t *int_buf, *cur_index, buf_len; 808 809 /* 810 * Allocate enough buffer size to fit in ibm,dynamic-memory 811 */ 812 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 813 cur_index = int_buf = g_malloc0(buf_len); 814 int_buf[0] = cpu_to_be32(nr_lmbs); 815 cur_index++; 816 for (i = 0; i < nr_lmbs; i++) { 817 uint64_t addr = i * lmb_size; 818 uint32_t *dynamic_memory = cur_index; 819 820 if (i >= device_lmb_start) { 821 SpaprDrc *drc; 822 823 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 824 g_assert(drc); 825 826 dynamic_memory[0] = cpu_to_be32(addr >> 32); 827 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 828 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 829 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 830 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 831 if (memory_region_present(get_system_memory(), addr)) { 832 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 833 } else { 834 dynamic_memory[5] = cpu_to_be32(0); 835 } 836 } else { 837 /* 838 * LMB information for RMA, boot time RAM and gap b/n RAM and 839 * device memory region -- all these are marked as reserved 840 * and as having no valid DRC. 841 */ 842 dynamic_memory[0] = cpu_to_be32(addr >> 32); 843 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 844 dynamic_memory[2] = cpu_to_be32(0); 845 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 846 dynamic_memory[4] = cpu_to_be32(-1); 847 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 848 SPAPR_LMB_FLAGS_DRC_INVALID); 849 } 850 851 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 852 } 853 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 854 g_free(int_buf); 855 if (ret < 0) { 856 return -1; 857 } 858 return 0; 859 } 860 861 /* 862 * Adds ibm,dynamic-reconfiguration-memory node. 863 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 864 * of this device tree node. 865 */ 866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 867 { 868 MachineState *machine = MACHINE(spapr); 869 int nb_numa_nodes = machine->numa_state->num_nodes; 870 int ret, i, offset; 871 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 872 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 873 uint32_t *int_buf, *cur_index, buf_len; 874 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 875 MemoryDeviceInfoList *dimms = NULL; 876 877 /* 878 * Don't create the node if there is no device memory 879 */ 880 if (machine->ram_size == machine->maxram_size) { 881 return 0; 882 } 883 884 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 885 886 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 887 sizeof(prop_lmb_size)); 888 if (ret < 0) { 889 return ret; 890 } 891 892 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 893 if (ret < 0) { 894 return ret; 895 } 896 897 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 898 if (ret < 0) { 899 return ret; 900 } 901 902 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 903 dimms = qmp_memory_device_list(); 904 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 905 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 906 } else { 907 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 908 } 909 qapi_free_MemoryDeviceInfoList(dimms); 910 911 if (ret < 0) { 912 return ret; 913 } 914 915 /* ibm,associativity-lookup-arrays */ 916 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 917 cur_index = int_buf = g_malloc0(buf_len); 918 int_buf[0] = cpu_to_be32(nr_nodes); 919 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 920 cur_index += 2; 921 for (i = 0; i < nr_nodes; i++) { 922 uint32_t associativity[] = { 923 cpu_to_be32(0x0), 924 cpu_to_be32(0x0), 925 cpu_to_be32(0x0), 926 cpu_to_be32(i) 927 }; 928 memcpy(cur_index, associativity, sizeof(associativity)); 929 cur_index += 4; 930 } 931 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 932 (cur_index - int_buf) * sizeof(uint32_t)); 933 g_free(int_buf); 934 935 return ret; 936 } 937 938 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 939 SpaprOptionVector *ov5_updates) 940 { 941 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 942 int ret = 0, offset; 943 944 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 945 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 946 g_assert(smc->dr_lmb_enabled); 947 ret = spapr_populate_drconf_memory(spapr, fdt); 948 if (ret) { 949 goto out; 950 } 951 } 952 953 offset = fdt_path_offset(fdt, "/chosen"); 954 if (offset < 0) { 955 offset = fdt_add_subnode(fdt, 0, "chosen"); 956 if (offset < 0) { 957 return offset; 958 } 959 } 960 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 961 "ibm,architecture-vec-5"); 962 963 out: 964 return ret; 965 } 966 967 static bool spapr_hotplugged_dev_before_cas(void) 968 { 969 Object *drc_container, *obj; 970 ObjectProperty *prop; 971 ObjectPropertyIterator iter; 972 973 drc_container = container_get(object_get_root(), "/dr-connector"); 974 object_property_iter_init(&iter, drc_container); 975 while ((prop = object_property_iter_next(&iter))) { 976 if (!strstart(prop->type, "link<", NULL)) { 977 continue; 978 } 979 obj = object_property_get_link(drc_container, prop->name, NULL); 980 if (spapr_drc_needed(obj)) { 981 return true; 982 } 983 } 984 return false; 985 } 986 987 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 988 target_ulong addr, target_ulong size, 989 SpaprOptionVector *ov5_updates) 990 { 991 void *fdt, *fdt_skel; 992 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 993 994 if (spapr_hotplugged_dev_before_cas()) { 995 return 1; 996 } 997 998 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 999 error_report("SLOF provided an unexpected CAS buffer size " 1000 TARGET_FMT_lu " (min: %zu, max: %u)", 1001 size, sizeof(hdr), FW_MAX_SIZE); 1002 exit(EXIT_FAILURE); 1003 } 1004 1005 size -= sizeof(hdr); 1006 1007 /* Create skeleton */ 1008 fdt_skel = g_malloc0(size); 1009 _FDT((fdt_create(fdt_skel, size))); 1010 _FDT((fdt_finish_reservemap(fdt_skel))); 1011 _FDT((fdt_begin_node(fdt_skel, ""))); 1012 _FDT((fdt_end_node(fdt_skel))); 1013 _FDT((fdt_finish(fdt_skel))); 1014 fdt = g_malloc0(size); 1015 _FDT((fdt_open_into(fdt_skel, fdt, size))); 1016 g_free(fdt_skel); 1017 1018 /* Fixup cpu nodes */ 1019 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1020 1021 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1022 return -1; 1023 } 1024 1025 /* Pack resulting tree */ 1026 _FDT((fdt_pack(fdt))); 1027 1028 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1029 g_free(fdt); 1030 trace_spapr_cas_failed(size); 1031 return -1; 1032 } 1033 1034 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1035 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1036 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1037 g_free(fdt); 1038 1039 return 0; 1040 } 1041 1042 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1043 { 1044 MachineState *ms = MACHINE(spapr); 1045 int rtas; 1046 GString *hypertas = g_string_sized_new(256); 1047 GString *qemu_hypertas = g_string_sized_new(256); 1048 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1049 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1050 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1051 uint32_t lrdr_capacity[] = { 1052 cpu_to_be32(max_device_addr >> 32), 1053 cpu_to_be32(max_device_addr & 0xffffffff), 1054 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1055 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 1056 }; 1057 uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0); 1058 uint32_t maxdomains[] = { 1059 cpu_to_be32(4), 1060 maxdomain, 1061 maxdomain, 1062 maxdomain, 1063 cpu_to_be32(spapr->gpu_numa_id), 1064 }; 1065 1066 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1067 1068 /* hypertas */ 1069 add_str(hypertas, "hcall-pft"); 1070 add_str(hypertas, "hcall-term"); 1071 add_str(hypertas, "hcall-dabr"); 1072 add_str(hypertas, "hcall-interrupt"); 1073 add_str(hypertas, "hcall-tce"); 1074 add_str(hypertas, "hcall-vio"); 1075 add_str(hypertas, "hcall-splpar"); 1076 add_str(hypertas, "hcall-join"); 1077 add_str(hypertas, "hcall-bulk"); 1078 add_str(hypertas, "hcall-set-mode"); 1079 add_str(hypertas, "hcall-sprg0"); 1080 add_str(hypertas, "hcall-copy"); 1081 add_str(hypertas, "hcall-debug"); 1082 add_str(hypertas, "hcall-vphn"); 1083 add_str(qemu_hypertas, "hcall-memop1"); 1084 1085 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1086 add_str(hypertas, "hcall-multi-tce"); 1087 } 1088 1089 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1090 add_str(hypertas, "hcall-hpt-resize"); 1091 } 1092 1093 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1094 hypertas->str, hypertas->len)); 1095 g_string_free(hypertas, TRUE); 1096 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1097 qemu_hypertas->str, qemu_hypertas->len)); 1098 g_string_free(qemu_hypertas, TRUE); 1099 1100 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1101 refpoints, sizeof(refpoints))); 1102 1103 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1104 maxdomains, sizeof(maxdomains))); 1105 1106 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1107 RTAS_ERROR_LOG_MAX)); 1108 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1109 RTAS_EVENT_SCAN_RATE)); 1110 1111 g_assert(msi_nonbroken); 1112 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1113 1114 /* 1115 * According to PAPR, rtas ibm,os-term does not guarantee a return 1116 * back to the guest cpu. 1117 * 1118 * While an additional ibm,extended-os-term property indicates 1119 * that rtas call return will always occur. Set this property. 1120 */ 1121 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1122 1123 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1124 lrdr_capacity, sizeof(lrdr_capacity))); 1125 1126 spapr_dt_rtas_tokens(fdt, rtas); 1127 } 1128 1129 /* 1130 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1131 * and the XIVE features that the guest may request and thus the valid 1132 * values for bytes 23..26 of option vector 5: 1133 */ 1134 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1135 int chosen) 1136 { 1137 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1138 1139 char val[2 * 4] = { 1140 23, spapr->irq->ov5, /* Xive mode. */ 1141 24, 0x00, /* Hash/Radix, filled in below. */ 1142 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1143 26, 0x40, /* Radix options: GTSE == yes. */ 1144 }; 1145 1146 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1147 first_ppc_cpu->compat_pvr)) { 1148 /* 1149 * If we're in a pre POWER9 compat mode then the guest should 1150 * do hash and use the legacy interrupt mode 1151 */ 1152 val[1] = 0x00; /* XICS */ 1153 val[3] = 0x00; /* Hash */ 1154 } else if (kvm_enabled()) { 1155 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1156 val[3] = 0x80; /* OV5_MMU_BOTH */ 1157 } else if (kvmppc_has_cap_mmu_radix()) { 1158 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1159 } else { 1160 val[3] = 0x00; /* Hash */ 1161 } 1162 } else { 1163 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1164 val[3] = 0xC0; 1165 } 1166 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1167 val, sizeof(val))); 1168 } 1169 1170 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1171 { 1172 MachineState *machine = MACHINE(spapr); 1173 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1174 int chosen; 1175 const char *boot_device = machine->boot_order; 1176 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1177 size_t cb = 0; 1178 char *bootlist = get_boot_devices_list(&cb); 1179 1180 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1181 1182 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1183 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1184 spapr->initrd_base)); 1185 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1186 spapr->initrd_base + spapr->initrd_size)); 1187 1188 if (spapr->kernel_size) { 1189 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1190 cpu_to_be64(spapr->kernel_size) }; 1191 1192 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1193 &kprop, sizeof(kprop))); 1194 if (spapr->kernel_le) { 1195 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1196 } 1197 } 1198 if (boot_menu) { 1199 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1200 } 1201 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1202 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1203 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1204 1205 if (cb && bootlist) { 1206 int i; 1207 1208 for (i = 0; i < cb; i++) { 1209 if (bootlist[i] == '\n') { 1210 bootlist[i] = ' '; 1211 } 1212 } 1213 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1214 } 1215 1216 if (boot_device && strlen(boot_device)) { 1217 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1218 } 1219 1220 if (!spapr->has_graphics && stdout_path) { 1221 /* 1222 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1223 * kernel. New platforms should only use the "stdout-path" property. Set 1224 * the new property and continue using older property to remain 1225 * compatible with the existing firmware. 1226 */ 1227 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1228 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1229 } 1230 1231 /* We can deal with BAR reallocation just fine, advertise it to the guest */ 1232 if (smc->linux_pci_probe) { 1233 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1234 } 1235 1236 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1237 1238 g_free(stdout_path); 1239 g_free(bootlist); 1240 } 1241 1242 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1243 { 1244 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1245 * KVM to work under pHyp with some guest co-operation */ 1246 int hypervisor; 1247 uint8_t hypercall[16]; 1248 1249 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1250 /* indicate KVM hypercall interface */ 1251 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1252 if (kvmppc_has_cap_fixup_hcalls()) { 1253 /* 1254 * Older KVM versions with older guest kernels were broken 1255 * with the magic page, don't allow the guest to map it. 1256 */ 1257 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1258 sizeof(hypercall))) { 1259 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1260 hypercall, sizeof(hypercall))); 1261 } 1262 } 1263 } 1264 1265 static void *spapr_build_fdt(SpaprMachineState *spapr) 1266 { 1267 MachineState *machine = MACHINE(spapr); 1268 MachineClass *mc = MACHINE_GET_CLASS(machine); 1269 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1270 int ret; 1271 void *fdt; 1272 SpaprPhbState *phb; 1273 char *buf; 1274 1275 fdt = g_malloc0(FDT_MAX_SIZE); 1276 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1277 1278 /* Root node */ 1279 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1280 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1281 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1282 1283 /* Guest UUID & Name*/ 1284 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1285 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1286 if (qemu_uuid_set) { 1287 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1288 } 1289 g_free(buf); 1290 1291 if (qemu_get_vm_name()) { 1292 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1293 qemu_get_vm_name())); 1294 } 1295 1296 /* Host Model & Serial Number */ 1297 if (spapr->host_model) { 1298 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1299 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1300 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1301 g_free(buf); 1302 } 1303 1304 if (spapr->host_serial) { 1305 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1306 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1307 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1308 g_free(buf); 1309 } 1310 1311 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1312 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1313 1314 /* /interrupt controller */ 1315 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1316 PHANDLE_INTC); 1317 1318 ret = spapr_populate_memory(spapr, fdt); 1319 if (ret < 0) { 1320 error_report("couldn't setup memory nodes in fdt"); 1321 exit(1); 1322 } 1323 1324 /* /vdevice */ 1325 spapr_dt_vdevice(spapr->vio_bus, fdt); 1326 1327 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1328 ret = spapr_rng_populate_dt(fdt); 1329 if (ret < 0) { 1330 error_report("could not set up rng device in the fdt"); 1331 exit(1); 1332 } 1333 } 1334 1335 QLIST_FOREACH(phb, &spapr->phbs, list) { 1336 ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL); 1337 if (ret < 0) { 1338 error_report("couldn't setup PCI devices in fdt"); 1339 exit(1); 1340 } 1341 } 1342 1343 /* cpus */ 1344 spapr_populate_cpus_dt_node(fdt, spapr); 1345 1346 if (smc->dr_lmb_enabled) { 1347 _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1348 } 1349 1350 if (mc->has_hotpluggable_cpus) { 1351 int offset = fdt_path_offset(fdt, "/cpus"); 1352 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1353 if (ret < 0) { 1354 error_report("Couldn't set up CPU DR device tree properties"); 1355 exit(1); 1356 } 1357 } 1358 1359 /* /event-sources */ 1360 spapr_dt_events(spapr, fdt); 1361 1362 /* /rtas */ 1363 spapr_dt_rtas(spapr, fdt); 1364 1365 /* /chosen */ 1366 spapr_dt_chosen(spapr, fdt); 1367 1368 /* /hypervisor */ 1369 if (kvm_enabled()) { 1370 spapr_dt_hypervisor(spapr, fdt); 1371 } 1372 1373 /* Build memory reserve map */ 1374 if (spapr->kernel_size) { 1375 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1376 } 1377 if (spapr->initrd_size) { 1378 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1379 } 1380 1381 /* ibm,client-architecture-support updates */ 1382 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1383 if (ret < 0) { 1384 error_report("couldn't setup CAS properties fdt"); 1385 exit(1); 1386 } 1387 1388 if (smc->dr_phb_enabled) { 1389 ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1390 if (ret < 0) { 1391 error_report("Couldn't set up PHB DR device tree properties"); 1392 exit(1); 1393 } 1394 } 1395 1396 return fdt; 1397 } 1398 1399 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1400 { 1401 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1402 } 1403 1404 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1405 PowerPCCPU *cpu) 1406 { 1407 CPUPPCState *env = &cpu->env; 1408 1409 /* The TCG path should also be holding the BQL at this point */ 1410 g_assert(qemu_mutex_iothread_locked()); 1411 1412 if (msr_pr) { 1413 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1414 env->gpr[3] = H_PRIVILEGE; 1415 } else { 1416 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1417 } 1418 } 1419 1420 struct LPCRSyncState { 1421 target_ulong value; 1422 target_ulong mask; 1423 }; 1424 1425 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1426 { 1427 struct LPCRSyncState *s = arg.host_ptr; 1428 PowerPCCPU *cpu = POWERPC_CPU(cs); 1429 CPUPPCState *env = &cpu->env; 1430 target_ulong lpcr; 1431 1432 cpu_synchronize_state(cs); 1433 lpcr = env->spr[SPR_LPCR]; 1434 lpcr &= ~s->mask; 1435 lpcr |= s->value; 1436 ppc_store_lpcr(cpu, lpcr); 1437 } 1438 1439 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1440 { 1441 CPUState *cs; 1442 struct LPCRSyncState s = { 1443 .value = value, 1444 .mask = mask 1445 }; 1446 CPU_FOREACH(cs) { 1447 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1448 } 1449 } 1450 1451 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1452 { 1453 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1454 1455 /* Copy PATE1:GR into PATE0:HR */ 1456 entry->dw0 = spapr->patb_entry & PATE0_HR; 1457 entry->dw1 = spapr->patb_entry; 1458 } 1459 1460 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1461 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1462 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1463 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1464 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1465 1466 /* 1467 * Get the fd to access the kernel htab, re-opening it if necessary 1468 */ 1469 static int get_htab_fd(SpaprMachineState *spapr) 1470 { 1471 Error *local_err = NULL; 1472 1473 if (spapr->htab_fd >= 0) { 1474 return spapr->htab_fd; 1475 } 1476 1477 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1478 if (spapr->htab_fd < 0) { 1479 error_report_err(local_err); 1480 } 1481 1482 return spapr->htab_fd; 1483 } 1484 1485 void close_htab_fd(SpaprMachineState *spapr) 1486 { 1487 if (spapr->htab_fd >= 0) { 1488 close(spapr->htab_fd); 1489 } 1490 spapr->htab_fd = -1; 1491 } 1492 1493 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1494 { 1495 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1496 1497 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1498 } 1499 1500 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1501 { 1502 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1503 1504 assert(kvm_enabled()); 1505 1506 if (!spapr->htab) { 1507 return 0; 1508 } 1509 1510 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1511 } 1512 1513 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1514 hwaddr ptex, int n) 1515 { 1516 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1517 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1518 1519 if (!spapr->htab) { 1520 /* 1521 * HTAB is controlled by KVM. Fetch into temporary buffer 1522 */ 1523 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1524 kvmppc_read_hptes(hptes, ptex, n); 1525 return hptes; 1526 } 1527 1528 /* 1529 * HTAB is controlled by QEMU. Just point to the internally 1530 * accessible PTEG. 1531 */ 1532 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1533 } 1534 1535 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1536 const ppc_hash_pte64_t *hptes, 1537 hwaddr ptex, int n) 1538 { 1539 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1540 1541 if (!spapr->htab) { 1542 g_free((void *)hptes); 1543 } 1544 1545 /* Nothing to do for qemu managed HPT */ 1546 } 1547 1548 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1549 uint64_t pte0, uint64_t pte1) 1550 { 1551 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1552 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1553 1554 if (!spapr->htab) { 1555 kvmppc_write_hpte(ptex, pte0, pte1); 1556 } else { 1557 if (pte0 & HPTE64_V_VALID) { 1558 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1559 /* 1560 * When setting valid, we write PTE1 first. This ensures 1561 * proper synchronization with the reading code in 1562 * ppc_hash64_pteg_search() 1563 */ 1564 smp_wmb(); 1565 stq_p(spapr->htab + offset, pte0); 1566 } else { 1567 stq_p(spapr->htab + offset, pte0); 1568 /* 1569 * When clearing it we set PTE0 first. This ensures proper 1570 * synchronization with the reading code in 1571 * ppc_hash64_pteg_search() 1572 */ 1573 smp_wmb(); 1574 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1575 } 1576 } 1577 } 1578 1579 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1580 uint64_t pte1) 1581 { 1582 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15; 1583 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1584 1585 if (!spapr->htab) { 1586 /* There should always be a hash table when this is called */ 1587 error_report("spapr_hpte_set_c called with no hash table !"); 1588 return; 1589 } 1590 1591 /* The HW performs a non-atomic byte update */ 1592 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1593 } 1594 1595 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1596 uint64_t pte1) 1597 { 1598 hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14; 1599 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1600 1601 if (!spapr->htab) { 1602 /* There should always be a hash table when this is called */ 1603 error_report("spapr_hpte_set_r called with no hash table !"); 1604 return; 1605 } 1606 1607 /* The HW performs a non-atomic byte update */ 1608 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1609 } 1610 1611 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1612 { 1613 int shift; 1614 1615 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1616 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1617 * that's much more than is needed for Linux guests */ 1618 shift = ctz64(pow2ceil(ramsize)) - 7; 1619 shift = MAX(shift, 18); /* Minimum architected size */ 1620 shift = MIN(shift, 46); /* Maximum architected size */ 1621 return shift; 1622 } 1623 1624 void spapr_free_hpt(SpaprMachineState *spapr) 1625 { 1626 g_free(spapr->htab); 1627 spapr->htab = NULL; 1628 spapr->htab_shift = 0; 1629 close_htab_fd(spapr); 1630 } 1631 1632 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1633 Error **errp) 1634 { 1635 long rc; 1636 1637 /* Clean up any HPT info from a previous boot */ 1638 spapr_free_hpt(spapr); 1639 1640 rc = kvmppc_reset_htab(shift); 1641 if (rc < 0) { 1642 /* kernel-side HPT needed, but couldn't allocate one */ 1643 error_setg_errno(errp, errno, 1644 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1645 shift); 1646 /* This is almost certainly fatal, but if the caller really 1647 * wants to carry on with shift == 0, it's welcome to try */ 1648 } else if (rc > 0) { 1649 /* kernel-side HPT allocated */ 1650 if (rc != shift) { 1651 error_setg(errp, 1652 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1653 shift, rc); 1654 } 1655 1656 spapr->htab_shift = shift; 1657 spapr->htab = NULL; 1658 } else { 1659 /* kernel-side HPT not needed, allocate in userspace instead */ 1660 size_t size = 1ULL << shift; 1661 int i; 1662 1663 spapr->htab = qemu_memalign(size, size); 1664 if (!spapr->htab) { 1665 error_setg_errno(errp, errno, 1666 "Could not allocate HPT of order %d", shift); 1667 return; 1668 } 1669 1670 memset(spapr->htab, 0, size); 1671 spapr->htab_shift = shift; 1672 1673 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1674 DIRTY_HPTE(HPTE(spapr->htab, i)); 1675 } 1676 } 1677 /* We're setting up a hash table, so that means we're not radix */ 1678 spapr->patb_entry = 0; 1679 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1680 } 1681 1682 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1683 { 1684 int hpt_shift; 1685 1686 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1687 || (spapr->cas_reboot 1688 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1689 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1690 } else { 1691 uint64_t current_ram_size; 1692 1693 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1694 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1695 } 1696 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1697 1698 if (spapr->vrma_adjust) { 1699 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1700 spapr->htab_shift); 1701 } 1702 } 1703 1704 static int spapr_reset_drcs(Object *child, void *opaque) 1705 { 1706 SpaprDrc *drc = 1707 (SpaprDrc *) object_dynamic_cast(child, 1708 TYPE_SPAPR_DR_CONNECTOR); 1709 1710 if (drc) { 1711 spapr_drc_reset(drc); 1712 } 1713 1714 return 0; 1715 } 1716 1717 static void spapr_machine_reset(MachineState *machine) 1718 { 1719 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1720 PowerPCCPU *first_ppc_cpu; 1721 uint32_t rtas_limit; 1722 hwaddr rtas_addr, fdt_addr; 1723 void *fdt; 1724 int rc; 1725 1726 spapr_caps_apply(spapr); 1727 1728 first_ppc_cpu = POWERPC_CPU(first_cpu); 1729 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1730 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1731 spapr->max_compat_pvr)) { 1732 /* 1733 * If using KVM with radix mode available, VCPUs can be started 1734 * without a HPT because KVM will start them in radix mode. 1735 * Set the GR bit in PATE so that we know there is no HPT. 1736 */ 1737 spapr->patb_entry = PATE1_GR; 1738 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1739 } else { 1740 spapr_setup_hpt_and_vrma(spapr); 1741 } 1742 1743 qemu_devices_reset(); 1744 1745 /* 1746 * If this reset wasn't generated by CAS, we should reset our 1747 * negotiated options and start from scratch 1748 */ 1749 if (!spapr->cas_reboot) { 1750 spapr_ovec_cleanup(spapr->ov5_cas); 1751 spapr->ov5_cas = spapr_ovec_new(); 1752 1753 ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal); 1754 } 1755 1756 /* 1757 * This is fixing some of the default configuration of the XIVE 1758 * devices. To be called after the reset of the machine devices. 1759 */ 1760 spapr_irq_reset(spapr, &error_fatal); 1761 1762 /* 1763 * There is no CAS under qtest. Simulate one to please the code that 1764 * depends on spapr->ov5_cas. This is especially needed to test device 1765 * unplug, so we do that before resetting the DRCs. 1766 */ 1767 if (qtest_enabled()) { 1768 spapr_ovec_cleanup(spapr->ov5_cas); 1769 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1770 } 1771 1772 /* DRC reset may cause a device to be unplugged. This will cause troubles 1773 * if this device is used by another device (eg, a running vhost backend 1774 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1775 * situations, we reset DRCs after all devices have been reset. 1776 */ 1777 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1778 1779 spapr_clear_pending_events(spapr); 1780 1781 /* 1782 * We place the device tree and RTAS just below either the top of the RMA, 1783 * or just below 2GB, whichever is lower, so that it can be 1784 * processed with 32-bit real mode code if necessary 1785 */ 1786 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1787 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1788 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1789 1790 fdt = spapr_build_fdt(spapr); 1791 1792 spapr_load_rtas(spapr, fdt, rtas_addr); 1793 1794 rc = fdt_pack(fdt); 1795 1796 /* Should only fail if we've built a corrupted tree */ 1797 assert(rc == 0); 1798 1799 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1800 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1801 fdt_totalsize(fdt), FDT_MAX_SIZE); 1802 exit(1); 1803 } 1804 1805 /* Load the fdt */ 1806 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1807 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1808 g_free(spapr->fdt_blob); 1809 spapr->fdt_size = fdt_totalsize(fdt); 1810 spapr->fdt_initial_size = spapr->fdt_size; 1811 spapr->fdt_blob = fdt; 1812 1813 /* Set up the entry state */ 1814 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1815 first_ppc_cpu->env.gpr[5] = 0; 1816 1817 spapr->cas_reboot = false; 1818 } 1819 1820 static void spapr_create_nvram(SpaprMachineState *spapr) 1821 { 1822 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1823 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1824 1825 if (dinfo) { 1826 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1827 &error_fatal); 1828 } 1829 1830 qdev_init_nofail(dev); 1831 1832 spapr->nvram = (struct SpaprNvram *)dev; 1833 } 1834 1835 static void spapr_rtc_create(SpaprMachineState *spapr) 1836 { 1837 object_initialize_child(OBJECT(spapr), "rtc", 1838 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1839 &error_fatal, NULL); 1840 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1841 &error_fatal); 1842 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1843 "date", &error_fatal); 1844 } 1845 1846 /* Returns whether we want to use VGA or not */ 1847 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1848 { 1849 switch (vga_interface_type) { 1850 case VGA_NONE: 1851 return false; 1852 case VGA_DEVICE: 1853 return true; 1854 case VGA_STD: 1855 case VGA_VIRTIO: 1856 case VGA_CIRRUS: 1857 return pci_vga_init(pci_bus) != NULL; 1858 default: 1859 error_setg(errp, 1860 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1861 return false; 1862 } 1863 } 1864 1865 static int spapr_pre_load(void *opaque) 1866 { 1867 int rc; 1868 1869 rc = spapr_caps_pre_load(opaque); 1870 if (rc) { 1871 return rc; 1872 } 1873 1874 return 0; 1875 } 1876 1877 static int spapr_post_load(void *opaque, int version_id) 1878 { 1879 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1880 int err = 0; 1881 1882 err = spapr_caps_post_migration(spapr); 1883 if (err) { 1884 return err; 1885 } 1886 1887 /* 1888 * In earlier versions, there was no separate qdev for the PAPR 1889 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1890 * So when migrating from those versions, poke the incoming offset 1891 * value into the RTC device 1892 */ 1893 if (version_id < 3) { 1894 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1895 if (err) { 1896 return err; 1897 } 1898 } 1899 1900 if (kvm_enabled() && spapr->patb_entry) { 1901 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1902 bool radix = !!(spapr->patb_entry & PATE1_GR); 1903 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1904 1905 /* 1906 * Update LPCR:HR and UPRT as they may not be set properly in 1907 * the stream 1908 */ 1909 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1910 LPCR_HR | LPCR_UPRT); 1911 1912 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1913 if (err) { 1914 error_report("Process table config unsupported by the host"); 1915 return -EINVAL; 1916 } 1917 } 1918 1919 err = spapr_irq_post_load(spapr, version_id); 1920 if (err) { 1921 return err; 1922 } 1923 1924 return err; 1925 } 1926 1927 static int spapr_pre_save(void *opaque) 1928 { 1929 int rc; 1930 1931 rc = spapr_caps_pre_save(opaque); 1932 if (rc) { 1933 return rc; 1934 } 1935 1936 return 0; 1937 } 1938 1939 static bool version_before_3(void *opaque, int version_id) 1940 { 1941 return version_id < 3; 1942 } 1943 1944 static bool spapr_pending_events_needed(void *opaque) 1945 { 1946 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1947 return !QTAILQ_EMPTY(&spapr->pending_events); 1948 } 1949 1950 static const VMStateDescription vmstate_spapr_event_entry = { 1951 .name = "spapr_event_log_entry", 1952 .version_id = 1, 1953 .minimum_version_id = 1, 1954 .fields = (VMStateField[]) { 1955 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1956 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1957 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1958 NULL, extended_length), 1959 VMSTATE_END_OF_LIST() 1960 }, 1961 }; 1962 1963 static const VMStateDescription vmstate_spapr_pending_events = { 1964 .name = "spapr_pending_events", 1965 .version_id = 1, 1966 .minimum_version_id = 1, 1967 .needed = spapr_pending_events_needed, 1968 .fields = (VMStateField[]) { 1969 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1970 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1971 VMSTATE_END_OF_LIST() 1972 }, 1973 }; 1974 1975 static bool spapr_ov5_cas_needed(void *opaque) 1976 { 1977 SpaprMachineState *spapr = opaque; 1978 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1979 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1980 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1981 bool cas_needed; 1982 1983 /* Prior to the introduction of SpaprOptionVector, we had two option 1984 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1985 * Both of these options encode machine topology into the device-tree 1986 * in such a way that the now-booted OS should still be able to interact 1987 * appropriately with QEMU regardless of what options were actually 1988 * negotiatied on the source side. 1989 * 1990 * As such, we can avoid migrating the CAS-negotiated options if these 1991 * are the only options available on the current machine/platform. 1992 * Since these are the only options available for pseries-2.7 and 1993 * earlier, this allows us to maintain old->new/new->old migration 1994 * compatibility. 1995 * 1996 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1997 * via default pseries-2.8 machines and explicit command-line parameters. 1998 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1999 * of the actual CAS-negotiated values to continue working properly. For 2000 * example, availability of memory unplug depends on knowing whether 2001 * OV5_HP_EVT was negotiated via CAS. 2002 * 2003 * Thus, for any cases where the set of available CAS-negotiatable 2004 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 2005 * include the CAS-negotiated options in the migration stream, unless 2006 * if they affect boot time behaviour only. 2007 */ 2008 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2009 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2010 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2011 2012 /* spapr_ovec_diff returns true if bits were removed. we avoid using 2013 * the mask itself since in the future it's possible "legacy" bits may be 2014 * removed via machine options, which could generate a false positive 2015 * that breaks migration. 2016 */ 2017 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 2018 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 2019 2020 spapr_ovec_cleanup(ov5_mask); 2021 spapr_ovec_cleanup(ov5_legacy); 2022 spapr_ovec_cleanup(ov5_removed); 2023 2024 return cas_needed; 2025 } 2026 2027 static const VMStateDescription vmstate_spapr_ov5_cas = { 2028 .name = "spapr_option_vector_ov5_cas", 2029 .version_id = 1, 2030 .minimum_version_id = 1, 2031 .needed = spapr_ov5_cas_needed, 2032 .fields = (VMStateField[]) { 2033 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2034 vmstate_spapr_ovec, SpaprOptionVector), 2035 VMSTATE_END_OF_LIST() 2036 }, 2037 }; 2038 2039 static bool spapr_patb_entry_needed(void *opaque) 2040 { 2041 SpaprMachineState *spapr = opaque; 2042 2043 return !!spapr->patb_entry; 2044 } 2045 2046 static const VMStateDescription vmstate_spapr_patb_entry = { 2047 .name = "spapr_patb_entry", 2048 .version_id = 1, 2049 .minimum_version_id = 1, 2050 .needed = spapr_patb_entry_needed, 2051 .fields = (VMStateField[]) { 2052 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2053 VMSTATE_END_OF_LIST() 2054 }, 2055 }; 2056 2057 static bool spapr_irq_map_needed(void *opaque) 2058 { 2059 SpaprMachineState *spapr = opaque; 2060 2061 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2062 } 2063 2064 static const VMStateDescription vmstate_spapr_irq_map = { 2065 .name = "spapr_irq_map", 2066 .version_id = 1, 2067 .minimum_version_id = 1, 2068 .needed = spapr_irq_map_needed, 2069 .fields = (VMStateField[]) { 2070 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2071 VMSTATE_END_OF_LIST() 2072 }, 2073 }; 2074 2075 static bool spapr_dtb_needed(void *opaque) 2076 { 2077 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2078 2079 return smc->update_dt_enabled; 2080 } 2081 2082 static int spapr_dtb_pre_load(void *opaque) 2083 { 2084 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2085 2086 g_free(spapr->fdt_blob); 2087 spapr->fdt_blob = NULL; 2088 spapr->fdt_size = 0; 2089 2090 return 0; 2091 } 2092 2093 static const VMStateDescription vmstate_spapr_dtb = { 2094 .name = "spapr_dtb", 2095 .version_id = 1, 2096 .minimum_version_id = 1, 2097 .needed = spapr_dtb_needed, 2098 .pre_load = spapr_dtb_pre_load, 2099 .fields = (VMStateField[]) { 2100 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2101 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2102 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2103 fdt_size), 2104 VMSTATE_END_OF_LIST() 2105 }, 2106 }; 2107 2108 static const VMStateDescription vmstate_spapr = { 2109 .name = "spapr", 2110 .version_id = 3, 2111 .minimum_version_id = 1, 2112 .pre_load = spapr_pre_load, 2113 .post_load = spapr_post_load, 2114 .pre_save = spapr_pre_save, 2115 .fields = (VMStateField[]) { 2116 /* used to be @next_irq */ 2117 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2118 2119 /* RTC offset */ 2120 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2121 2122 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2123 VMSTATE_END_OF_LIST() 2124 }, 2125 .subsections = (const VMStateDescription*[]) { 2126 &vmstate_spapr_ov5_cas, 2127 &vmstate_spapr_patb_entry, 2128 &vmstate_spapr_pending_events, 2129 &vmstate_spapr_cap_htm, 2130 &vmstate_spapr_cap_vsx, 2131 &vmstate_spapr_cap_dfp, 2132 &vmstate_spapr_cap_cfpc, 2133 &vmstate_spapr_cap_sbbc, 2134 &vmstate_spapr_cap_ibs, 2135 &vmstate_spapr_cap_hpt_maxpagesize, 2136 &vmstate_spapr_irq_map, 2137 &vmstate_spapr_cap_nested_kvm_hv, 2138 &vmstate_spapr_dtb, 2139 &vmstate_spapr_cap_large_decr, 2140 &vmstate_spapr_cap_ccf_assist, 2141 NULL 2142 } 2143 }; 2144 2145 static int htab_save_setup(QEMUFile *f, void *opaque) 2146 { 2147 SpaprMachineState *spapr = opaque; 2148 2149 /* "Iteration" header */ 2150 if (!spapr->htab_shift) { 2151 qemu_put_be32(f, -1); 2152 } else { 2153 qemu_put_be32(f, spapr->htab_shift); 2154 } 2155 2156 if (spapr->htab) { 2157 spapr->htab_save_index = 0; 2158 spapr->htab_first_pass = true; 2159 } else { 2160 if (spapr->htab_shift) { 2161 assert(kvm_enabled()); 2162 } 2163 } 2164 2165 2166 return 0; 2167 } 2168 2169 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2170 int chunkstart, int n_valid, int n_invalid) 2171 { 2172 qemu_put_be32(f, chunkstart); 2173 qemu_put_be16(f, n_valid); 2174 qemu_put_be16(f, n_invalid); 2175 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2176 HASH_PTE_SIZE_64 * n_valid); 2177 } 2178 2179 static void htab_save_end_marker(QEMUFile *f) 2180 { 2181 qemu_put_be32(f, 0); 2182 qemu_put_be16(f, 0); 2183 qemu_put_be16(f, 0); 2184 } 2185 2186 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2187 int64_t max_ns) 2188 { 2189 bool has_timeout = max_ns != -1; 2190 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2191 int index = spapr->htab_save_index; 2192 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2193 2194 assert(spapr->htab_first_pass); 2195 2196 do { 2197 int chunkstart; 2198 2199 /* Consume invalid HPTEs */ 2200 while ((index < htabslots) 2201 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2202 CLEAN_HPTE(HPTE(spapr->htab, index)); 2203 index++; 2204 } 2205 2206 /* Consume valid HPTEs */ 2207 chunkstart = index; 2208 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2209 && HPTE_VALID(HPTE(spapr->htab, index))) { 2210 CLEAN_HPTE(HPTE(spapr->htab, index)); 2211 index++; 2212 } 2213 2214 if (index > chunkstart) { 2215 int n_valid = index - chunkstart; 2216 2217 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2218 2219 if (has_timeout && 2220 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2221 break; 2222 } 2223 } 2224 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2225 2226 if (index >= htabslots) { 2227 assert(index == htabslots); 2228 index = 0; 2229 spapr->htab_first_pass = false; 2230 } 2231 spapr->htab_save_index = index; 2232 } 2233 2234 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2235 int64_t max_ns) 2236 { 2237 bool final = max_ns < 0; 2238 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2239 int examined = 0, sent = 0; 2240 int index = spapr->htab_save_index; 2241 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2242 2243 assert(!spapr->htab_first_pass); 2244 2245 do { 2246 int chunkstart, invalidstart; 2247 2248 /* Consume non-dirty HPTEs */ 2249 while ((index < htabslots) 2250 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2251 index++; 2252 examined++; 2253 } 2254 2255 chunkstart = index; 2256 /* Consume valid dirty HPTEs */ 2257 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2258 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2259 && HPTE_VALID(HPTE(spapr->htab, index))) { 2260 CLEAN_HPTE(HPTE(spapr->htab, index)); 2261 index++; 2262 examined++; 2263 } 2264 2265 invalidstart = index; 2266 /* Consume invalid dirty HPTEs */ 2267 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2268 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2269 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2270 CLEAN_HPTE(HPTE(spapr->htab, index)); 2271 index++; 2272 examined++; 2273 } 2274 2275 if (index > chunkstart) { 2276 int n_valid = invalidstart - chunkstart; 2277 int n_invalid = index - invalidstart; 2278 2279 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2280 sent += index - chunkstart; 2281 2282 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2283 break; 2284 } 2285 } 2286 2287 if (examined >= htabslots) { 2288 break; 2289 } 2290 2291 if (index >= htabslots) { 2292 assert(index == htabslots); 2293 index = 0; 2294 } 2295 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2296 2297 if (index >= htabslots) { 2298 assert(index == htabslots); 2299 index = 0; 2300 } 2301 2302 spapr->htab_save_index = index; 2303 2304 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2305 } 2306 2307 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2308 #define MAX_KVM_BUF_SIZE 2048 2309 2310 static int htab_save_iterate(QEMUFile *f, void *opaque) 2311 { 2312 SpaprMachineState *spapr = opaque; 2313 int fd; 2314 int rc = 0; 2315 2316 /* Iteration header */ 2317 if (!spapr->htab_shift) { 2318 qemu_put_be32(f, -1); 2319 return 1; 2320 } else { 2321 qemu_put_be32(f, 0); 2322 } 2323 2324 if (!spapr->htab) { 2325 assert(kvm_enabled()); 2326 2327 fd = get_htab_fd(spapr); 2328 if (fd < 0) { 2329 return fd; 2330 } 2331 2332 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2333 if (rc < 0) { 2334 return rc; 2335 } 2336 } else if (spapr->htab_first_pass) { 2337 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2338 } else { 2339 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2340 } 2341 2342 htab_save_end_marker(f); 2343 2344 return rc; 2345 } 2346 2347 static int htab_save_complete(QEMUFile *f, void *opaque) 2348 { 2349 SpaprMachineState *spapr = opaque; 2350 int fd; 2351 2352 /* Iteration header */ 2353 if (!spapr->htab_shift) { 2354 qemu_put_be32(f, -1); 2355 return 0; 2356 } else { 2357 qemu_put_be32(f, 0); 2358 } 2359 2360 if (!spapr->htab) { 2361 int rc; 2362 2363 assert(kvm_enabled()); 2364 2365 fd = get_htab_fd(spapr); 2366 if (fd < 0) { 2367 return fd; 2368 } 2369 2370 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2371 if (rc < 0) { 2372 return rc; 2373 } 2374 } else { 2375 if (spapr->htab_first_pass) { 2376 htab_save_first_pass(f, spapr, -1); 2377 } 2378 htab_save_later_pass(f, spapr, -1); 2379 } 2380 2381 /* End marker */ 2382 htab_save_end_marker(f); 2383 2384 return 0; 2385 } 2386 2387 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2388 { 2389 SpaprMachineState *spapr = opaque; 2390 uint32_t section_hdr; 2391 int fd = -1; 2392 Error *local_err = NULL; 2393 2394 if (version_id < 1 || version_id > 1) { 2395 error_report("htab_load() bad version"); 2396 return -EINVAL; 2397 } 2398 2399 section_hdr = qemu_get_be32(f); 2400 2401 if (section_hdr == -1) { 2402 spapr_free_hpt(spapr); 2403 return 0; 2404 } 2405 2406 if (section_hdr) { 2407 /* First section gives the htab size */ 2408 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2409 if (local_err) { 2410 error_report_err(local_err); 2411 return -EINVAL; 2412 } 2413 return 0; 2414 } 2415 2416 if (!spapr->htab) { 2417 assert(kvm_enabled()); 2418 2419 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2420 if (fd < 0) { 2421 error_report_err(local_err); 2422 return fd; 2423 } 2424 } 2425 2426 while (true) { 2427 uint32_t index; 2428 uint16_t n_valid, n_invalid; 2429 2430 index = qemu_get_be32(f); 2431 n_valid = qemu_get_be16(f); 2432 n_invalid = qemu_get_be16(f); 2433 2434 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2435 /* End of Stream */ 2436 break; 2437 } 2438 2439 if ((index + n_valid + n_invalid) > 2440 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2441 /* Bad index in stream */ 2442 error_report( 2443 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2444 index, n_valid, n_invalid, spapr->htab_shift); 2445 return -EINVAL; 2446 } 2447 2448 if (spapr->htab) { 2449 if (n_valid) { 2450 qemu_get_buffer(f, HPTE(spapr->htab, index), 2451 HASH_PTE_SIZE_64 * n_valid); 2452 } 2453 if (n_invalid) { 2454 memset(HPTE(spapr->htab, index + n_valid), 0, 2455 HASH_PTE_SIZE_64 * n_invalid); 2456 } 2457 } else { 2458 int rc; 2459 2460 assert(fd >= 0); 2461 2462 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2463 if (rc < 0) { 2464 return rc; 2465 } 2466 } 2467 } 2468 2469 if (!spapr->htab) { 2470 assert(fd >= 0); 2471 close(fd); 2472 } 2473 2474 return 0; 2475 } 2476 2477 static void htab_save_cleanup(void *opaque) 2478 { 2479 SpaprMachineState *spapr = opaque; 2480 2481 close_htab_fd(spapr); 2482 } 2483 2484 static SaveVMHandlers savevm_htab_handlers = { 2485 .save_setup = htab_save_setup, 2486 .save_live_iterate = htab_save_iterate, 2487 .save_live_complete_precopy = htab_save_complete, 2488 .save_cleanup = htab_save_cleanup, 2489 .load_state = htab_load, 2490 }; 2491 2492 static void spapr_boot_set(void *opaque, const char *boot_device, 2493 Error **errp) 2494 { 2495 MachineState *machine = MACHINE(opaque); 2496 machine->boot_order = g_strdup(boot_device); 2497 } 2498 2499 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2500 { 2501 MachineState *machine = MACHINE(spapr); 2502 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2503 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2504 int i; 2505 2506 for (i = 0; i < nr_lmbs; i++) { 2507 uint64_t addr; 2508 2509 addr = i * lmb_size + machine->device_memory->base; 2510 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2511 addr / lmb_size); 2512 } 2513 } 2514 2515 /* 2516 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2517 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2518 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2519 */ 2520 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2521 { 2522 int i; 2523 2524 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2525 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2526 " is not aligned to %" PRIu64 " MiB", 2527 machine->ram_size, 2528 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2529 return; 2530 } 2531 2532 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2533 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2534 " is not aligned to %" PRIu64 " MiB", 2535 machine->ram_size, 2536 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2537 return; 2538 } 2539 2540 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2541 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2542 error_setg(errp, 2543 "Node %d memory size 0x%" PRIx64 2544 " is not aligned to %" PRIu64 " MiB", 2545 i, machine->numa_state->nodes[i].node_mem, 2546 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2547 return; 2548 } 2549 } 2550 } 2551 2552 /* find cpu slot in machine->possible_cpus by core_id */ 2553 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2554 { 2555 int index = id / ms->smp.threads; 2556 2557 if (index >= ms->possible_cpus->len) { 2558 return NULL; 2559 } 2560 if (idx) { 2561 *idx = index; 2562 } 2563 return &ms->possible_cpus->cpus[index]; 2564 } 2565 2566 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2567 { 2568 MachineState *ms = MACHINE(spapr); 2569 Error *local_err = NULL; 2570 bool vsmt_user = !!spapr->vsmt; 2571 int kvm_smt = kvmppc_smt_threads(); 2572 int ret; 2573 unsigned int smp_threads = ms->smp.threads; 2574 2575 if (!kvm_enabled() && (smp_threads > 1)) { 2576 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2577 "on a pseries machine"); 2578 goto out; 2579 } 2580 if (!is_power_of_2(smp_threads)) { 2581 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2582 "machine because it must be a power of 2", smp_threads); 2583 goto out; 2584 } 2585 2586 /* Detemine the VSMT mode to use: */ 2587 if (vsmt_user) { 2588 if (spapr->vsmt < smp_threads) { 2589 error_setg(&local_err, "Cannot support VSMT mode %d" 2590 " because it must be >= threads/core (%d)", 2591 spapr->vsmt, smp_threads); 2592 goto out; 2593 } 2594 /* In this case, spapr->vsmt has been set by the command line */ 2595 } else { 2596 /* 2597 * Default VSMT value is tricky, because we need it to be as 2598 * consistent as possible (for migration), but this requires 2599 * changing it for at least some existing cases. We pick 8 as 2600 * the value that we'd get with KVM on POWER8, the 2601 * overwhelmingly common case in production systems. 2602 */ 2603 spapr->vsmt = MAX(8, smp_threads); 2604 } 2605 2606 /* KVM: If necessary, set the SMT mode: */ 2607 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2608 ret = kvmppc_set_smt_threads(spapr->vsmt); 2609 if (ret) { 2610 /* Looks like KVM isn't able to change VSMT mode */ 2611 error_setg(&local_err, 2612 "Failed to set KVM's VSMT mode to %d (errno %d)", 2613 spapr->vsmt, ret); 2614 /* We can live with that if the default one is big enough 2615 * for the number of threads, and a submultiple of the one 2616 * we want. In this case we'll waste some vcpu ids, but 2617 * behaviour will be correct */ 2618 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2619 warn_report_err(local_err); 2620 local_err = NULL; 2621 goto out; 2622 } else { 2623 if (!vsmt_user) { 2624 error_append_hint(&local_err, 2625 "On PPC, a VM with %d threads/core" 2626 " on a host with %d threads/core" 2627 " requires the use of VSMT mode %d.\n", 2628 smp_threads, kvm_smt, spapr->vsmt); 2629 } 2630 kvmppc_hint_smt_possible(&local_err); 2631 goto out; 2632 } 2633 } 2634 } 2635 /* else TCG: nothing to do currently */ 2636 out: 2637 error_propagate(errp, local_err); 2638 } 2639 2640 static void spapr_init_cpus(SpaprMachineState *spapr) 2641 { 2642 MachineState *machine = MACHINE(spapr); 2643 MachineClass *mc = MACHINE_GET_CLASS(machine); 2644 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2645 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2646 const CPUArchIdList *possible_cpus; 2647 unsigned int smp_cpus = machine->smp.cpus; 2648 unsigned int smp_threads = machine->smp.threads; 2649 unsigned int max_cpus = machine->smp.max_cpus; 2650 int boot_cores_nr = smp_cpus / smp_threads; 2651 int i; 2652 2653 possible_cpus = mc->possible_cpu_arch_ids(machine); 2654 if (mc->has_hotpluggable_cpus) { 2655 if (smp_cpus % smp_threads) { 2656 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2657 smp_cpus, smp_threads); 2658 exit(1); 2659 } 2660 if (max_cpus % smp_threads) { 2661 error_report("max_cpus (%u) must be multiple of threads (%u)", 2662 max_cpus, smp_threads); 2663 exit(1); 2664 } 2665 } else { 2666 if (max_cpus != smp_cpus) { 2667 error_report("This machine version does not support CPU hotplug"); 2668 exit(1); 2669 } 2670 boot_cores_nr = possible_cpus->len; 2671 } 2672 2673 if (smc->pre_2_10_has_unused_icps) { 2674 int i; 2675 2676 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2677 /* Dummy entries get deregistered when real ICPState objects 2678 * are registered during CPU core hotplug. 2679 */ 2680 pre_2_10_vmstate_register_dummy_icp(i); 2681 } 2682 } 2683 2684 for (i = 0; i < possible_cpus->len; i++) { 2685 int core_id = i * smp_threads; 2686 2687 if (mc->has_hotpluggable_cpus) { 2688 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2689 spapr_vcpu_id(spapr, core_id)); 2690 } 2691 2692 if (i < boot_cores_nr) { 2693 Object *core = object_new(type); 2694 int nr_threads = smp_threads; 2695 2696 /* Handle the partially filled core for older machine types */ 2697 if ((i + 1) * smp_threads >= smp_cpus) { 2698 nr_threads = smp_cpus - i * smp_threads; 2699 } 2700 2701 object_property_set_int(core, nr_threads, "nr-threads", 2702 &error_fatal); 2703 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2704 &error_fatal); 2705 object_property_set_bool(core, true, "realized", &error_fatal); 2706 2707 object_unref(core); 2708 } 2709 } 2710 } 2711 2712 static PCIHostState *spapr_create_default_phb(void) 2713 { 2714 DeviceState *dev; 2715 2716 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2717 qdev_prop_set_uint32(dev, "index", 0); 2718 qdev_init_nofail(dev); 2719 2720 return PCI_HOST_BRIDGE(dev); 2721 } 2722 2723 /* pSeries LPAR / sPAPR hardware init */ 2724 static void spapr_machine_init(MachineState *machine) 2725 { 2726 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2727 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2728 const char *kernel_filename = machine->kernel_filename; 2729 const char *initrd_filename = machine->initrd_filename; 2730 PCIHostState *phb; 2731 int i; 2732 MemoryRegion *sysmem = get_system_memory(); 2733 MemoryRegion *ram = g_new(MemoryRegion, 1); 2734 hwaddr node0_size = spapr_node0_size(machine); 2735 long load_limit, fw_size; 2736 char *filename; 2737 Error *resize_hpt_err = NULL; 2738 2739 msi_nonbroken = true; 2740 2741 QLIST_INIT(&spapr->phbs); 2742 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2743 2744 /* Determine capabilities to run with */ 2745 spapr_caps_init(spapr); 2746 2747 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2748 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2749 /* 2750 * If the user explicitly requested a mode we should either 2751 * supply it, or fail completely (which we do below). But if 2752 * it's not set explicitly, we reset our mode to something 2753 * that works 2754 */ 2755 if (resize_hpt_err) { 2756 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2757 error_free(resize_hpt_err); 2758 resize_hpt_err = NULL; 2759 } else { 2760 spapr->resize_hpt = smc->resize_hpt_default; 2761 } 2762 } 2763 2764 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2765 2766 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2767 /* 2768 * User requested HPT resize, but this host can't supply it. Bail out 2769 */ 2770 error_report_err(resize_hpt_err); 2771 exit(1); 2772 } 2773 2774 spapr->rma_size = node0_size; 2775 2776 /* With KVM, we don't actually know whether KVM supports an 2777 * unbounded RMA (PR KVM) or is limited by the hash table size 2778 * (HV KVM using VRMA), so we always assume the latter 2779 * 2780 * In that case, we also limit the initial allocations for RTAS 2781 * etc... to 256M since we have no way to know what the VRMA size 2782 * is going to be as it depends on the size of the hash table 2783 * which isn't determined yet. 2784 */ 2785 if (kvm_enabled()) { 2786 spapr->vrma_adjust = 1; 2787 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2788 } 2789 2790 /* Actually we don't support unbounded RMA anymore since we added 2791 * proper emulation of HV mode. The max we can get is 16G which 2792 * also happens to be what we configure for PAPR mode so make sure 2793 * we don't do anything bigger than that 2794 */ 2795 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2796 2797 if (spapr->rma_size > node0_size) { 2798 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2799 spapr->rma_size); 2800 exit(1); 2801 } 2802 2803 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2804 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2805 2806 /* 2807 * VSMT must be set in order to be able to compute VCPU ids, ie to 2808 * call spapr_max_server_number() or spapr_vcpu_id(). 2809 */ 2810 spapr_set_vsmt_mode(spapr, &error_fatal); 2811 2812 /* Set up Interrupt Controller before we create the VCPUs */ 2813 spapr_irq_init(spapr, &error_fatal); 2814 2815 /* Set up containers for ibm,client-architecture-support negotiated options 2816 */ 2817 spapr->ov5 = spapr_ovec_new(); 2818 spapr->ov5_cas = spapr_ovec_new(); 2819 2820 if (smc->dr_lmb_enabled) { 2821 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2822 spapr_validate_node_memory(machine, &error_fatal); 2823 } 2824 2825 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2826 2827 /* advertise support for dedicated HP event source to guests */ 2828 if (spapr->use_hotplug_event_source) { 2829 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2830 } 2831 2832 /* advertise support for HPT resizing */ 2833 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2834 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2835 } 2836 2837 /* advertise support for ibm,dyamic-memory-v2 */ 2838 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2839 2840 /* advertise XIVE on POWER9 machines */ 2841 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2842 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2843 } 2844 2845 /* init CPUs */ 2846 spapr_init_cpus(spapr); 2847 2848 /* 2849 * check we don't have a memory-less/cpu-less NUMA node 2850 * Firmware relies on the existing memory/cpu topology to provide the 2851 * NUMA topology to the kernel. 2852 * And the linux kernel needs to know the NUMA topology at start 2853 * to be able to hotplug CPUs later. 2854 */ 2855 if (machine->numa_state->num_nodes) { 2856 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 2857 /* check for memory-less node */ 2858 if (machine->numa_state->nodes[i].node_mem == 0) { 2859 CPUState *cs; 2860 int found = 0; 2861 /* check for cpu-less node */ 2862 CPU_FOREACH(cs) { 2863 PowerPCCPU *cpu = POWERPC_CPU(cs); 2864 if (cpu->node_id == i) { 2865 found = 1; 2866 break; 2867 } 2868 } 2869 /* memory-less and cpu-less node */ 2870 if (!found) { 2871 error_report( 2872 "Memory-less/cpu-less nodes are not supported (node %d)", 2873 i); 2874 exit(1); 2875 } 2876 } 2877 } 2878 2879 } 2880 2881 /* 2882 * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node. 2883 * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is 2884 * called from vPHB reset handler so we initialize the counter here. 2885 * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM 2886 * must be equally distant from any other node. 2887 * The final value of spapr->gpu_numa_id is going to be written to 2888 * max-associativity-domains in spapr_build_fdt(). 2889 */ 2890 spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes); 2891 2892 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2893 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2894 spapr->max_compat_pvr)) { 2895 /* KVM and TCG always allow GTSE with radix... */ 2896 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2897 } 2898 /* ... but not with hash (currently). */ 2899 2900 if (kvm_enabled()) { 2901 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2902 kvmppc_enable_logical_ci_hcalls(); 2903 kvmppc_enable_set_mode_hcall(); 2904 2905 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2906 kvmppc_enable_clear_ref_mod_hcalls(); 2907 2908 /* Enable H_PAGE_INIT */ 2909 kvmppc_enable_h_page_init(); 2910 } 2911 2912 /* allocate RAM */ 2913 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2914 machine->ram_size); 2915 memory_region_add_subregion(sysmem, 0, ram); 2916 2917 /* always allocate the device memory information */ 2918 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2919 2920 /* initialize hotplug memory address space */ 2921 if (machine->ram_size < machine->maxram_size) { 2922 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2923 /* 2924 * Limit the number of hotpluggable memory slots to half the number 2925 * slots that KVM supports, leaving the other half for PCI and other 2926 * devices. However ensure that number of slots doesn't drop below 32. 2927 */ 2928 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2929 SPAPR_MAX_RAM_SLOTS; 2930 2931 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2932 max_memslots = SPAPR_MAX_RAM_SLOTS; 2933 } 2934 if (machine->ram_slots > max_memslots) { 2935 error_report("Specified number of memory slots %" 2936 PRIu64" exceeds max supported %d", 2937 machine->ram_slots, max_memslots); 2938 exit(1); 2939 } 2940 2941 machine->device_memory->base = ROUND_UP(machine->ram_size, 2942 SPAPR_DEVICE_MEM_ALIGN); 2943 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2944 "device-memory", device_mem_size); 2945 memory_region_add_subregion(sysmem, machine->device_memory->base, 2946 &machine->device_memory->mr); 2947 } 2948 2949 if (smc->dr_lmb_enabled) { 2950 spapr_create_lmb_dr_connectors(spapr); 2951 } 2952 2953 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2954 if (!filename) { 2955 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2956 exit(1); 2957 } 2958 spapr->rtas_size = get_image_size(filename); 2959 if (spapr->rtas_size < 0) { 2960 error_report("Could not get size of LPAR rtas '%s'", filename); 2961 exit(1); 2962 } 2963 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2964 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2965 error_report("Could not load LPAR rtas '%s'", filename); 2966 exit(1); 2967 } 2968 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2969 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2970 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2971 exit(1); 2972 } 2973 g_free(filename); 2974 2975 /* Set up RTAS event infrastructure */ 2976 spapr_events_init(spapr); 2977 2978 /* Set up the RTC RTAS interfaces */ 2979 spapr_rtc_create(spapr); 2980 2981 /* Set up VIO bus */ 2982 spapr->vio_bus = spapr_vio_bus_init(); 2983 2984 for (i = 0; i < serial_max_hds(); i++) { 2985 if (serial_hd(i)) { 2986 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2987 } 2988 } 2989 2990 /* We always have at least the nvram device on VIO */ 2991 spapr_create_nvram(spapr); 2992 2993 /* 2994 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2995 * connectors (described in root DT node's "ibm,drc-types" property) 2996 * are pre-initialized here. additional child connectors (such as 2997 * connectors for a PHBs PCI slots) are added as needed during their 2998 * parent's realization. 2999 */ 3000 if (smc->dr_phb_enabled) { 3001 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 3002 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 3003 } 3004 } 3005 3006 /* Set up PCI */ 3007 spapr_pci_rtas_init(); 3008 3009 phb = spapr_create_default_phb(); 3010 3011 for (i = 0; i < nb_nics; i++) { 3012 NICInfo *nd = &nd_table[i]; 3013 3014 if (!nd->model) { 3015 nd->model = g_strdup("spapr-vlan"); 3016 } 3017 3018 if (g_str_equal(nd->model, "spapr-vlan") || 3019 g_str_equal(nd->model, "ibmveth")) { 3020 spapr_vlan_create(spapr->vio_bus, nd); 3021 } else { 3022 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 3023 } 3024 } 3025 3026 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 3027 spapr_vscsi_create(spapr->vio_bus); 3028 } 3029 3030 /* Graphics */ 3031 if (spapr_vga_init(phb->bus, &error_fatal)) { 3032 spapr->has_graphics = true; 3033 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3034 } 3035 3036 if (machine->usb) { 3037 if (smc->use_ohci_by_default) { 3038 pci_create_simple(phb->bus, -1, "pci-ohci"); 3039 } else { 3040 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3041 } 3042 3043 if (spapr->has_graphics) { 3044 USBBus *usb_bus = usb_bus_find(-1); 3045 3046 usb_create_simple(usb_bus, "usb-kbd"); 3047 usb_create_simple(usb_bus, "usb-mouse"); 3048 } 3049 } 3050 3051 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 3052 error_report( 3053 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 3054 MIN_RMA_SLOF); 3055 exit(1); 3056 } 3057 3058 if (kernel_filename) { 3059 uint64_t lowaddr = 0; 3060 3061 spapr->kernel_size = load_elf(kernel_filename, NULL, 3062 translate_kernel_address, NULL, 3063 NULL, &lowaddr, NULL, 1, 3064 PPC_ELF_MACHINE, 0, 0); 3065 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3066 spapr->kernel_size = load_elf(kernel_filename, NULL, 3067 translate_kernel_address, NULL, NULL, 3068 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 3069 0, 0); 3070 spapr->kernel_le = spapr->kernel_size > 0; 3071 } 3072 if (spapr->kernel_size < 0) { 3073 error_report("error loading %s: %s", kernel_filename, 3074 load_elf_strerror(spapr->kernel_size)); 3075 exit(1); 3076 } 3077 3078 /* load initrd */ 3079 if (initrd_filename) { 3080 /* Try to locate the initrd in the gap between the kernel 3081 * and the firmware. Add a bit of space just in case 3082 */ 3083 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 3084 + 0x1ffff) & ~0xffff; 3085 spapr->initrd_size = load_image_targphys(initrd_filename, 3086 spapr->initrd_base, 3087 load_limit 3088 - spapr->initrd_base); 3089 if (spapr->initrd_size < 0) { 3090 error_report("could not load initial ram disk '%s'", 3091 initrd_filename); 3092 exit(1); 3093 } 3094 } 3095 } 3096 3097 if (bios_name == NULL) { 3098 bios_name = FW_FILE_NAME; 3099 } 3100 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3101 if (!filename) { 3102 error_report("Could not find LPAR firmware '%s'", bios_name); 3103 exit(1); 3104 } 3105 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3106 if (fw_size <= 0) { 3107 error_report("Could not load LPAR firmware '%s'", filename); 3108 exit(1); 3109 } 3110 g_free(filename); 3111 3112 /* FIXME: Should register things through the MachineState's qdev 3113 * interface, this is a legacy from the sPAPREnvironment structure 3114 * which predated MachineState but had a similar function */ 3115 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3116 register_savevm_live("spapr/htab", -1, 1, 3117 &savevm_htab_handlers, spapr); 3118 3119 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3120 &error_fatal); 3121 3122 qemu_register_boot_set(spapr_boot_set, spapr); 3123 3124 /* 3125 * Nothing needs to be done to resume a suspended guest because 3126 * suspending does not change the machine state, so no need for 3127 * a ->wakeup method. 3128 */ 3129 qemu_register_wakeup_support(); 3130 3131 if (kvm_enabled()) { 3132 /* to stop and start vmclock */ 3133 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3134 &spapr->tb); 3135 3136 kvmppc_spapr_enable_inkernel_multitce(); 3137 } 3138 } 3139 3140 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3141 { 3142 if (!vm_type) { 3143 return 0; 3144 } 3145 3146 if (!strcmp(vm_type, "HV")) { 3147 return 1; 3148 } 3149 3150 if (!strcmp(vm_type, "PR")) { 3151 return 2; 3152 } 3153 3154 error_report("Unknown kvm-type specified '%s'", vm_type); 3155 exit(1); 3156 } 3157 3158 /* 3159 * Implementation of an interface to adjust firmware path 3160 * for the bootindex property handling. 3161 */ 3162 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3163 DeviceState *dev) 3164 { 3165 #define CAST(type, obj, name) \ 3166 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3167 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3168 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3169 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3170 3171 if (d) { 3172 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3173 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3174 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3175 3176 if (spapr) { 3177 /* 3178 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3179 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3180 * 0x8000 | (target << 8) | (bus << 5) | lun 3181 * (see the "Logical unit addressing format" table in SAM5) 3182 */ 3183 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3184 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3185 (uint64_t)id << 48); 3186 } else if (virtio) { 3187 /* 3188 * We use SRP luns of the form 01000000 | (target << 8) | lun 3189 * in the top 32 bits of the 64-bit LUN 3190 * Note: the quote above is from SLOF and it is wrong, 3191 * the actual binding is: 3192 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3193 */ 3194 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3195 if (d->lun >= 256) { 3196 /* Use the LUN "flat space addressing method" */ 3197 id |= 0x4000; 3198 } 3199 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3200 (uint64_t)id << 32); 3201 } else if (usb) { 3202 /* 3203 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3204 * in the top 32 bits of the 64-bit LUN 3205 */ 3206 unsigned usb_port = atoi(usb->port->path); 3207 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3208 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3209 (uint64_t)id << 32); 3210 } 3211 } 3212 3213 /* 3214 * SLOF probes the USB devices, and if it recognizes that the device is a 3215 * storage device, it changes its name to "storage" instead of "usb-host", 3216 * and additionally adds a child node for the SCSI LUN, so the correct 3217 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3218 */ 3219 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3220 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3221 if (usb_host_dev_is_scsi_storage(usbdev)) { 3222 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3223 } 3224 } 3225 3226 if (phb) { 3227 /* Replace "pci" with "pci@800000020000000" */ 3228 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3229 } 3230 3231 if (vsc) { 3232 /* Same logic as virtio above */ 3233 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3234 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3235 } 3236 3237 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3238 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3239 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3240 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3241 } 3242 3243 return NULL; 3244 } 3245 3246 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3247 { 3248 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3249 3250 return g_strdup(spapr->kvm_type); 3251 } 3252 3253 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3254 { 3255 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3256 3257 g_free(spapr->kvm_type); 3258 spapr->kvm_type = g_strdup(value); 3259 } 3260 3261 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3262 { 3263 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3264 3265 return spapr->use_hotplug_event_source; 3266 } 3267 3268 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3269 Error **errp) 3270 { 3271 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3272 3273 spapr->use_hotplug_event_source = value; 3274 } 3275 3276 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3277 { 3278 return true; 3279 } 3280 3281 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3282 { 3283 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3284 3285 switch (spapr->resize_hpt) { 3286 case SPAPR_RESIZE_HPT_DEFAULT: 3287 return g_strdup("default"); 3288 case SPAPR_RESIZE_HPT_DISABLED: 3289 return g_strdup("disabled"); 3290 case SPAPR_RESIZE_HPT_ENABLED: 3291 return g_strdup("enabled"); 3292 case SPAPR_RESIZE_HPT_REQUIRED: 3293 return g_strdup("required"); 3294 } 3295 g_assert_not_reached(); 3296 } 3297 3298 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3299 { 3300 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3301 3302 if (strcmp(value, "default") == 0) { 3303 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3304 } else if (strcmp(value, "disabled") == 0) { 3305 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3306 } else if (strcmp(value, "enabled") == 0) { 3307 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3308 } else if (strcmp(value, "required") == 0) { 3309 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3310 } else { 3311 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3312 } 3313 } 3314 3315 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3316 void *opaque, Error **errp) 3317 { 3318 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3319 } 3320 3321 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3322 void *opaque, Error **errp) 3323 { 3324 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3325 } 3326 3327 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3328 { 3329 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3330 3331 if (spapr->irq == &spapr_irq_xics_legacy) { 3332 return g_strdup("legacy"); 3333 } else if (spapr->irq == &spapr_irq_xics) { 3334 return g_strdup("xics"); 3335 } else if (spapr->irq == &spapr_irq_xive) { 3336 return g_strdup("xive"); 3337 } else if (spapr->irq == &spapr_irq_dual) { 3338 return g_strdup("dual"); 3339 } 3340 g_assert_not_reached(); 3341 } 3342 3343 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3344 { 3345 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3346 3347 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3348 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3349 return; 3350 } 3351 3352 /* The legacy IRQ backend can not be set */ 3353 if (strcmp(value, "xics") == 0) { 3354 spapr->irq = &spapr_irq_xics; 3355 } else if (strcmp(value, "xive") == 0) { 3356 spapr->irq = &spapr_irq_xive; 3357 } else if (strcmp(value, "dual") == 0) { 3358 spapr->irq = &spapr_irq_dual; 3359 } else { 3360 error_setg(errp, "Bad value for \"ic-mode\" property"); 3361 } 3362 } 3363 3364 static char *spapr_get_host_model(Object *obj, Error **errp) 3365 { 3366 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3367 3368 return g_strdup(spapr->host_model); 3369 } 3370 3371 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3372 { 3373 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3374 3375 g_free(spapr->host_model); 3376 spapr->host_model = g_strdup(value); 3377 } 3378 3379 static char *spapr_get_host_serial(Object *obj, Error **errp) 3380 { 3381 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3382 3383 return g_strdup(spapr->host_serial); 3384 } 3385 3386 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3387 { 3388 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3389 3390 g_free(spapr->host_serial); 3391 spapr->host_serial = g_strdup(value); 3392 } 3393 3394 static void spapr_instance_init(Object *obj) 3395 { 3396 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3397 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3398 3399 spapr->htab_fd = -1; 3400 spapr->use_hotplug_event_source = true; 3401 object_property_add_str(obj, "kvm-type", 3402 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3403 object_property_set_description(obj, "kvm-type", 3404 "Specifies the KVM virtualization mode (HV, PR)", 3405 NULL); 3406 object_property_add_bool(obj, "modern-hotplug-events", 3407 spapr_get_modern_hotplug_events, 3408 spapr_set_modern_hotplug_events, 3409 NULL); 3410 object_property_set_description(obj, "modern-hotplug-events", 3411 "Use dedicated hotplug event mechanism in" 3412 " place of standard EPOW events when possible" 3413 " (required for memory hot-unplug support)", 3414 NULL); 3415 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3416 "Maximum permitted CPU compatibility mode", 3417 &error_fatal); 3418 3419 object_property_add_str(obj, "resize-hpt", 3420 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3421 object_property_set_description(obj, "resize-hpt", 3422 "Resizing of the Hash Page Table (enabled, disabled, required)", 3423 NULL); 3424 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3425 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3426 object_property_set_description(obj, "vsmt", 3427 "Virtual SMT: KVM behaves as if this were" 3428 " the host's SMT mode", &error_abort); 3429 object_property_add_bool(obj, "vfio-no-msix-emulation", 3430 spapr_get_msix_emulation, NULL, NULL); 3431 3432 /* The machine class defines the default interrupt controller mode */ 3433 spapr->irq = smc->irq; 3434 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3435 spapr_set_ic_mode, NULL); 3436 object_property_set_description(obj, "ic-mode", 3437 "Specifies the interrupt controller mode (xics, xive, dual)", 3438 NULL); 3439 3440 object_property_add_str(obj, "host-model", 3441 spapr_get_host_model, spapr_set_host_model, 3442 &error_abort); 3443 object_property_set_description(obj, "host-model", 3444 "Host model to advertise in guest device tree", &error_abort); 3445 object_property_add_str(obj, "host-serial", 3446 spapr_get_host_serial, spapr_set_host_serial, 3447 &error_abort); 3448 object_property_set_description(obj, "host-serial", 3449 "Host serial number to advertise in guest device tree", &error_abort); 3450 } 3451 3452 static void spapr_machine_finalizefn(Object *obj) 3453 { 3454 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3455 3456 g_free(spapr->kvm_type); 3457 } 3458 3459 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3460 { 3461 cpu_synchronize_state(cs); 3462 ppc_cpu_do_system_reset(cs); 3463 } 3464 3465 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3466 { 3467 CPUState *cs; 3468 3469 CPU_FOREACH(cs) { 3470 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3471 } 3472 } 3473 3474 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3475 void *fdt, int *fdt_start_offset, Error **errp) 3476 { 3477 uint64_t addr; 3478 uint32_t node; 3479 3480 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3481 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3482 &error_abort); 3483 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3484 SPAPR_MEMORY_BLOCK_SIZE); 3485 return 0; 3486 } 3487 3488 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3489 bool dedicated_hp_event_source, Error **errp) 3490 { 3491 SpaprDrc *drc; 3492 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3493 int i; 3494 uint64_t addr = addr_start; 3495 bool hotplugged = spapr_drc_hotplugged(dev); 3496 Error *local_err = NULL; 3497 3498 for (i = 0; i < nr_lmbs; i++) { 3499 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3500 addr / SPAPR_MEMORY_BLOCK_SIZE); 3501 g_assert(drc); 3502 3503 spapr_drc_attach(drc, dev, &local_err); 3504 if (local_err) { 3505 while (addr > addr_start) { 3506 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3507 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3508 addr / SPAPR_MEMORY_BLOCK_SIZE); 3509 spapr_drc_detach(drc); 3510 } 3511 error_propagate(errp, local_err); 3512 return; 3513 } 3514 if (!hotplugged) { 3515 spapr_drc_reset(drc); 3516 } 3517 addr += SPAPR_MEMORY_BLOCK_SIZE; 3518 } 3519 /* send hotplug notification to the 3520 * guest only in case of hotplugged memory 3521 */ 3522 if (hotplugged) { 3523 if (dedicated_hp_event_source) { 3524 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3525 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3526 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3527 nr_lmbs, 3528 spapr_drc_index(drc)); 3529 } else { 3530 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3531 nr_lmbs); 3532 } 3533 } 3534 } 3535 3536 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3537 Error **errp) 3538 { 3539 Error *local_err = NULL; 3540 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3541 PCDIMMDevice *dimm = PC_DIMM(dev); 3542 uint64_t size, addr; 3543 3544 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3545 3546 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3547 if (local_err) { 3548 goto out; 3549 } 3550 3551 addr = object_property_get_uint(OBJECT(dimm), 3552 PC_DIMM_ADDR_PROP, &local_err); 3553 if (local_err) { 3554 goto out_unplug; 3555 } 3556 3557 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3558 &local_err); 3559 if (local_err) { 3560 goto out_unplug; 3561 } 3562 3563 return; 3564 3565 out_unplug: 3566 pc_dimm_unplug(dimm, MACHINE(ms)); 3567 out: 3568 error_propagate(errp, local_err); 3569 } 3570 3571 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3572 Error **errp) 3573 { 3574 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3575 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3576 PCDIMMDevice *dimm = PC_DIMM(dev); 3577 Error *local_err = NULL; 3578 uint64_t size; 3579 Object *memdev; 3580 hwaddr pagesize; 3581 3582 if (!smc->dr_lmb_enabled) { 3583 error_setg(errp, "Memory hotplug not supported for this machine"); 3584 return; 3585 } 3586 3587 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3588 if (local_err) { 3589 error_propagate(errp, local_err); 3590 return; 3591 } 3592 3593 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3594 error_setg(errp, "Hotplugged memory size must be a multiple of " 3595 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3596 return; 3597 } 3598 3599 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3600 &error_abort); 3601 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3602 spapr_check_pagesize(spapr, pagesize, &local_err); 3603 if (local_err) { 3604 error_propagate(errp, local_err); 3605 return; 3606 } 3607 3608 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3609 } 3610 3611 struct SpaprDimmState { 3612 PCDIMMDevice *dimm; 3613 uint32_t nr_lmbs; 3614 QTAILQ_ENTRY(SpaprDimmState) next; 3615 }; 3616 3617 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3618 PCDIMMDevice *dimm) 3619 { 3620 SpaprDimmState *dimm_state = NULL; 3621 3622 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3623 if (dimm_state->dimm == dimm) { 3624 break; 3625 } 3626 } 3627 return dimm_state; 3628 } 3629 3630 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3631 uint32_t nr_lmbs, 3632 PCDIMMDevice *dimm) 3633 { 3634 SpaprDimmState *ds = NULL; 3635 3636 /* 3637 * If this request is for a DIMM whose removal had failed earlier 3638 * (due to guest's refusal to remove the LMBs), we would have this 3639 * dimm already in the pending_dimm_unplugs list. In that 3640 * case don't add again. 3641 */ 3642 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3643 if (!ds) { 3644 ds = g_malloc0(sizeof(SpaprDimmState)); 3645 ds->nr_lmbs = nr_lmbs; 3646 ds->dimm = dimm; 3647 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3648 } 3649 return ds; 3650 } 3651 3652 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3653 SpaprDimmState *dimm_state) 3654 { 3655 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3656 g_free(dimm_state); 3657 } 3658 3659 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3660 PCDIMMDevice *dimm) 3661 { 3662 SpaprDrc *drc; 3663 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3664 &error_abort); 3665 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3666 uint32_t avail_lmbs = 0; 3667 uint64_t addr_start, addr; 3668 int i; 3669 3670 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3671 &error_abort); 3672 3673 addr = addr_start; 3674 for (i = 0; i < nr_lmbs; i++) { 3675 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3676 addr / SPAPR_MEMORY_BLOCK_SIZE); 3677 g_assert(drc); 3678 if (drc->dev) { 3679 avail_lmbs++; 3680 } 3681 addr += SPAPR_MEMORY_BLOCK_SIZE; 3682 } 3683 3684 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3685 } 3686 3687 /* Callback to be called during DRC release. */ 3688 void spapr_lmb_release(DeviceState *dev) 3689 { 3690 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3691 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3692 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3693 3694 /* This information will get lost if a migration occurs 3695 * during the unplug process. In this case recover it. */ 3696 if (ds == NULL) { 3697 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3698 g_assert(ds); 3699 /* The DRC being examined by the caller at least must be counted */ 3700 g_assert(ds->nr_lmbs); 3701 } 3702 3703 if (--ds->nr_lmbs) { 3704 return; 3705 } 3706 3707 /* 3708 * Now that all the LMBs have been removed by the guest, call the 3709 * unplug handler chain. This can never fail. 3710 */ 3711 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3712 object_unparent(OBJECT(dev)); 3713 } 3714 3715 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3716 { 3717 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3718 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3719 3720 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3721 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3722 spapr_pending_dimm_unplugs_remove(spapr, ds); 3723 } 3724 3725 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3726 DeviceState *dev, Error **errp) 3727 { 3728 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3729 Error *local_err = NULL; 3730 PCDIMMDevice *dimm = PC_DIMM(dev); 3731 uint32_t nr_lmbs; 3732 uint64_t size, addr_start, addr; 3733 int i; 3734 SpaprDrc *drc; 3735 3736 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3737 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3738 3739 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3740 &local_err); 3741 if (local_err) { 3742 goto out; 3743 } 3744 3745 /* 3746 * An existing pending dimm state for this DIMM means that there is an 3747 * unplug operation in progress, waiting for the spapr_lmb_release 3748 * callback to complete the job (BQL can't cover that far). In this case, 3749 * bail out to avoid detaching DRCs that were already released. 3750 */ 3751 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3752 error_setg(&local_err, 3753 "Memory unplug already in progress for device %s", 3754 dev->id); 3755 goto out; 3756 } 3757 3758 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3759 3760 addr = addr_start; 3761 for (i = 0; i < nr_lmbs; i++) { 3762 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3763 addr / SPAPR_MEMORY_BLOCK_SIZE); 3764 g_assert(drc); 3765 3766 spapr_drc_detach(drc); 3767 addr += SPAPR_MEMORY_BLOCK_SIZE; 3768 } 3769 3770 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3771 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3772 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3773 nr_lmbs, spapr_drc_index(drc)); 3774 out: 3775 error_propagate(errp, local_err); 3776 } 3777 3778 /* Callback to be called during DRC release. */ 3779 void spapr_core_release(DeviceState *dev) 3780 { 3781 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3782 3783 /* Call the unplug handler chain. This can never fail. */ 3784 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3785 object_unparent(OBJECT(dev)); 3786 } 3787 3788 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3789 { 3790 MachineState *ms = MACHINE(hotplug_dev); 3791 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3792 CPUCore *cc = CPU_CORE(dev); 3793 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3794 3795 if (smc->pre_2_10_has_unused_icps) { 3796 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3797 int i; 3798 3799 for (i = 0; i < cc->nr_threads; i++) { 3800 CPUState *cs = CPU(sc->threads[i]); 3801 3802 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3803 } 3804 } 3805 3806 assert(core_slot); 3807 core_slot->cpu = NULL; 3808 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3809 } 3810 3811 static 3812 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3813 Error **errp) 3814 { 3815 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3816 int index; 3817 SpaprDrc *drc; 3818 CPUCore *cc = CPU_CORE(dev); 3819 3820 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3821 error_setg(errp, "Unable to find CPU core with core-id: %d", 3822 cc->core_id); 3823 return; 3824 } 3825 if (index == 0) { 3826 error_setg(errp, "Boot CPU core may not be unplugged"); 3827 return; 3828 } 3829 3830 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3831 spapr_vcpu_id(spapr, cc->core_id)); 3832 g_assert(drc); 3833 3834 spapr_drc_detach(drc); 3835 3836 spapr_hotplug_req_remove_by_index(drc); 3837 } 3838 3839 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3840 void *fdt, int *fdt_start_offset, Error **errp) 3841 { 3842 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3843 CPUState *cs = CPU(core->threads[0]); 3844 PowerPCCPU *cpu = POWERPC_CPU(cs); 3845 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3846 int id = spapr_get_vcpu_id(cpu); 3847 char *nodename; 3848 int offset; 3849 3850 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3851 offset = fdt_add_subnode(fdt, 0, nodename); 3852 g_free(nodename); 3853 3854 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3855 3856 *fdt_start_offset = offset; 3857 return 0; 3858 } 3859 3860 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3861 Error **errp) 3862 { 3863 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3864 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3865 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3866 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3867 CPUCore *cc = CPU_CORE(dev); 3868 CPUState *cs; 3869 SpaprDrc *drc; 3870 Error *local_err = NULL; 3871 CPUArchId *core_slot; 3872 int index; 3873 bool hotplugged = spapr_drc_hotplugged(dev); 3874 int i; 3875 3876 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3877 if (!core_slot) { 3878 error_setg(errp, "Unable to find CPU core with core-id: %d", 3879 cc->core_id); 3880 return; 3881 } 3882 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3883 spapr_vcpu_id(spapr, cc->core_id)); 3884 3885 g_assert(drc || !mc->has_hotpluggable_cpus); 3886 3887 if (drc) { 3888 spapr_drc_attach(drc, dev, &local_err); 3889 if (local_err) { 3890 error_propagate(errp, local_err); 3891 return; 3892 } 3893 3894 if (hotplugged) { 3895 /* 3896 * Send hotplug notification interrupt to the guest only 3897 * in case of hotplugged CPUs. 3898 */ 3899 spapr_hotplug_req_add_by_index(drc); 3900 } else { 3901 spapr_drc_reset(drc); 3902 } 3903 } 3904 3905 core_slot->cpu = OBJECT(dev); 3906 3907 if (smc->pre_2_10_has_unused_icps) { 3908 for (i = 0; i < cc->nr_threads; i++) { 3909 cs = CPU(core->threads[i]); 3910 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3911 } 3912 } 3913 3914 /* 3915 * Set compatibility mode to match the boot CPU, which was either set 3916 * by the machine reset code or by CAS. 3917 */ 3918 if (hotplugged) { 3919 for (i = 0; i < cc->nr_threads; i++) { 3920 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 3921 &local_err); 3922 if (local_err) { 3923 error_propagate(errp, local_err); 3924 return; 3925 } 3926 } 3927 } 3928 } 3929 3930 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3931 Error **errp) 3932 { 3933 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3934 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3935 Error *local_err = NULL; 3936 CPUCore *cc = CPU_CORE(dev); 3937 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3938 const char *type = object_get_typename(OBJECT(dev)); 3939 CPUArchId *core_slot; 3940 int index; 3941 unsigned int smp_threads = machine->smp.threads; 3942 3943 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3944 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3945 goto out; 3946 } 3947 3948 if (strcmp(base_core_type, type)) { 3949 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3950 goto out; 3951 } 3952 3953 if (cc->core_id % smp_threads) { 3954 error_setg(&local_err, "invalid core id %d", cc->core_id); 3955 goto out; 3956 } 3957 3958 /* 3959 * In general we should have homogeneous threads-per-core, but old 3960 * (pre hotplug support) machine types allow the last core to have 3961 * reduced threads as a compatibility hack for when we allowed 3962 * total vcpus not a multiple of threads-per-core. 3963 */ 3964 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3965 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3966 cc->nr_threads, smp_threads); 3967 goto out; 3968 } 3969 3970 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3971 if (!core_slot) { 3972 error_setg(&local_err, "core id %d out of range", cc->core_id); 3973 goto out; 3974 } 3975 3976 if (core_slot->cpu) { 3977 error_setg(&local_err, "core %d already populated", cc->core_id); 3978 goto out; 3979 } 3980 3981 numa_cpu_pre_plug(core_slot, dev, &local_err); 3982 3983 out: 3984 error_propagate(errp, local_err); 3985 } 3986 3987 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3988 void *fdt, int *fdt_start_offset, Error **errp) 3989 { 3990 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3991 int intc_phandle; 3992 3993 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3994 if (intc_phandle <= 0) { 3995 return -1; 3996 } 3997 3998 if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3999 fdt_start_offset)) { 4000 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4001 return -1; 4002 } 4003 4004 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4005 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4006 4007 return 0; 4008 } 4009 4010 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4011 Error **errp) 4012 { 4013 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4014 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4015 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4016 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4017 4018 if (dev->hotplugged && !smc->dr_phb_enabled) { 4019 error_setg(errp, "PHB hotplug not supported for this machine"); 4020 return; 4021 } 4022 4023 if (sphb->index == (uint32_t)-1) { 4024 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4025 return; 4026 } 4027 4028 /* 4029 * This will check that sphb->index doesn't exceed the maximum number of 4030 * PHBs for the current machine type. 4031 */ 4032 smc->phb_placement(spapr, sphb->index, 4033 &sphb->buid, &sphb->io_win_addr, 4034 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4035 windows_supported, sphb->dma_liobn, 4036 &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr, 4037 errp); 4038 } 4039 4040 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4041 Error **errp) 4042 { 4043 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4044 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4045 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4046 SpaprDrc *drc; 4047 bool hotplugged = spapr_drc_hotplugged(dev); 4048 Error *local_err = NULL; 4049 4050 if (!smc->dr_phb_enabled) { 4051 return; 4052 } 4053 4054 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4055 /* hotplug hooks should check it's enabled before getting this far */ 4056 assert(drc); 4057 4058 spapr_drc_attach(drc, DEVICE(dev), &local_err); 4059 if (local_err) { 4060 error_propagate(errp, local_err); 4061 return; 4062 } 4063 4064 if (hotplugged) { 4065 spapr_hotplug_req_add_by_index(drc); 4066 } else { 4067 spapr_drc_reset(drc); 4068 } 4069 } 4070 4071 void spapr_phb_release(DeviceState *dev) 4072 { 4073 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4074 4075 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4076 object_unparent(OBJECT(dev)); 4077 } 4078 4079 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4080 { 4081 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4082 } 4083 4084 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4085 DeviceState *dev, Error **errp) 4086 { 4087 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4088 SpaprDrc *drc; 4089 4090 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4091 assert(drc); 4092 4093 if (!spapr_drc_unplug_requested(drc)) { 4094 spapr_drc_detach(drc); 4095 spapr_hotplug_req_remove_by_index(drc); 4096 } 4097 } 4098 4099 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4100 Error **errp) 4101 { 4102 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4103 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4104 4105 if (spapr->tpm_proxy != NULL) { 4106 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4107 return; 4108 } 4109 4110 spapr->tpm_proxy = tpm_proxy; 4111 } 4112 4113 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4114 { 4115 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4116 4117 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 4118 object_unparent(OBJECT(dev)); 4119 spapr->tpm_proxy = NULL; 4120 } 4121 4122 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4123 DeviceState *dev, Error **errp) 4124 { 4125 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4126 spapr_memory_plug(hotplug_dev, dev, errp); 4127 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4128 spapr_core_plug(hotplug_dev, dev, errp); 4129 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4130 spapr_phb_plug(hotplug_dev, dev, errp); 4131 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4132 spapr_tpm_proxy_plug(hotplug_dev, dev, errp); 4133 } 4134 } 4135 4136 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4137 DeviceState *dev, Error **errp) 4138 { 4139 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4140 spapr_memory_unplug(hotplug_dev, dev); 4141 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4142 spapr_core_unplug(hotplug_dev, dev); 4143 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4144 spapr_phb_unplug(hotplug_dev, dev); 4145 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4146 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4147 } 4148 } 4149 4150 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4151 DeviceState *dev, Error **errp) 4152 { 4153 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4154 MachineClass *mc = MACHINE_GET_CLASS(sms); 4155 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4156 4157 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4158 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4159 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4160 } else { 4161 /* NOTE: this means there is a window after guest reset, prior to 4162 * CAS negotiation, where unplug requests will fail due to the 4163 * capability not being detected yet. This is a bit different than 4164 * the case with PCI unplug, where the events will be queued and 4165 * eventually handled by the guest after boot 4166 */ 4167 error_setg(errp, "Memory hot unplug not supported for this guest"); 4168 } 4169 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4170 if (!mc->has_hotpluggable_cpus) { 4171 error_setg(errp, "CPU hot unplug not supported on this machine"); 4172 return; 4173 } 4174 spapr_core_unplug_request(hotplug_dev, dev, errp); 4175 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4176 if (!smc->dr_phb_enabled) { 4177 error_setg(errp, "PHB hot unplug not supported on this machine"); 4178 return; 4179 } 4180 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4181 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4182 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4183 } 4184 } 4185 4186 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4187 DeviceState *dev, Error **errp) 4188 { 4189 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4190 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4191 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4192 spapr_core_pre_plug(hotplug_dev, dev, errp); 4193 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4194 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4195 } 4196 } 4197 4198 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4199 DeviceState *dev) 4200 { 4201 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4202 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4203 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4204 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4205 return HOTPLUG_HANDLER(machine); 4206 } 4207 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4208 PCIDevice *pcidev = PCI_DEVICE(dev); 4209 PCIBus *root = pci_device_root_bus(pcidev); 4210 SpaprPhbState *phb = 4211 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4212 TYPE_SPAPR_PCI_HOST_BRIDGE); 4213 4214 if (phb) { 4215 return HOTPLUG_HANDLER(phb); 4216 } 4217 } 4218 return NULL; 4219 } 4220 4221 static CpuInstanceProperties 4222 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4223 { 4224 CPUArchId *core_slot; 4225 MachineClass *mc = MACHINE_GET_CLASS(machine); 4226 4227 /* make sure possible_cpu are intialized */ 4228 mc->possible_cpu_arch_ids(machine); 4229 /* get CPU core slot containing thread that matches cpu_index */ 4230 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4231 assert(core_slot); 4232 return core_slot->props; 4233 } 4234 4235 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4236 { 4237 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4238 } 4239 4240 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4241 { 4242 int i; 4243 unsigned int smp_threads = machine->smp.threads; 4244 unsigned int smp_cpus = machine->smp.cpus; 4245 const char *core_type; 4246 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4247 MachineClass *mc = MACHINE_GET_CLASS(machine); 4248 4249 if (!mc->has_hotpluggable_cpus) { 4250 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4251 } 4252 if (machine->possible_cpus) { 4253 assert(machine->possible_cpus->len == spapr_max_cores); 4254 return machine->possible_cpus; 4255 } 4256 4257 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4258 if (!core_type) { 4259 error_report("Unable to find sPAPR CPU Core definition"); 4260 exit(1); 4261 } 4262 4263 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4264 sizeof(CPUArchId) * spapr_max_cores); 4265 machine->possible_cpus->len = spapr_max_cores; 4266 for (i = 0; i < machine->possible_cpus->len; i++) { 4267 int core_id = i * smp_threads; 4268 4269 machine->possible_cpus->cpus[i].type = core_type; 4270 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4271 machine->possible_cpus->cpus[i].arch_id = core_id; 4272 machine->possible_cpus->cpus[i].props.has_core_id = true; 4273 machine->possible_cpus->cpus[i].props.core_id = core_id; 4274 } 4275 return machine->possible_cpus; 4276 } 4277 4278 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4279 uint64_t *buid, hwaddr *pio, 4280 hwaddr *mmio32, hwaddr *mmio64, 4281 unsigned n_dma, uint32_t *liobns, 4282 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4283 { 4284 /* 4285 * New-style PHB window placement. 4286 * 4287 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4288 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4289 * windows. 4290 * 4291 * Some guest kernels can't work with MMIO windows above 1<<46 4292 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4293 * 4294 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4295 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4296 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4297 * 1TiB 64-bit MMIO windows for each PHB. 4298 */ 4299 const uint64_t base_buid = 0x800000020000000ULL; 4300 int i; 4301 4302 /* Sanity check natural alignments */ 4303 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4304 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4305 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4306 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4307 /* Sanity check bounds */ 4308 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4309 SPAPR_PCI_MEM32_WIN_SIZE); 4310 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4311 SPAPR_PCI_MEM64_WIN_SIZE); 4312 4313 if (index >= SPAPR_MAX_PHBS) { 4314 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4315 SPAPR_MAX_PHBS - 1); 4316 return; 4317 } 4318 4319 *buid = base_buid + index; 4320 for (i = 0; i < n_dma; ++i) { 4321 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4322 } 4323 4324 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4325 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4326 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4327 4328 *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE; 4329 *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE; 4330 } 4331 4332 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4333 { 4334 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4335 4336 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4337 } 4338 4339 static void spapr_ics_resend(XICSFabric *dev) 4340 { 4341 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4342 4343 ics_resend(spapr->ics); 4344 } 4345 4346 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4347 { 4348 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4349 4350 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4351 } 4352 4353 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4354 Monitor *mon) 4355 { 4356 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4357 4358 spapr->irq->print_info(spapr, mon); 4359 monitor_printf(mon, "irqchip: %s\n", 4360 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4361 } 4362 4363 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4364 { 4365 return cpu->vcpu_id; 4366 } 4367 4368 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4369 { 4370 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4371 MachineState *ms = MACHINE(spapr); 4372 int vcpu_id; 4373 4374 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4375 4376 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4377 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4378 error_append_hint(errp, "Adjust the number of cpus to %d " 4379 "or try to raise the number of threads per core\n", 4380 vcpu_id * ms->smp.threads / spapr->vsmt); 4381 return; 4382 } 4383 4384 cpu->vcpu_id = vcpu_id; 4385 } 4386 4387 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4388 { 4389 CPUState *cs; 4390 4391 CPU_FOREACH(cs) { 4392 PowerPCCPU *cpu = POWERPC_CPU(cs); 4393 4394 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4395 return cpu; 4396 } 4397 } 4398 4399 return NULL; 4400 } 4401 4402 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4403 { 4404 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4405 4406 /* These are only called by TCG, KVM maintains dispatch state */ 4407 4408 spapr_cpu->prod = false; 4409 if (spapr_cpu->vpa_addr) { 4410 CPUState *cs = CPU(cpu); 4411 uint32_t dispatch; 4412 4413 dispatch = ldl_be_phys(cs->as, 4414 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4415 dispatch++; 4416 if ((dispatch & 1) != 0) { 4417 qemu_log_mask(LOG_GUEST_ERROR, 4418 "VPA: incorrect dispatch counter value for " 4419 "dispatched partition %u, correcting.\n", dispatch); 4420 dispatch++; 4421 } 4422 stl_be_phys(cs->as, 4423 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4424 } 4425 } 4426 4427 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4428 { 4429 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4430 4431 if (spapr_cpu->vpa_addr) { 4432 CPUState *cs = CPU(cpu); 4433 uint32_t dispatch; 4434 4435 dispatch = ldl_be_phys(cs->as, 4436 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4437 dispatch++; 4438 if ((dispatch & 1) != 1) { 4439 qemu_log_mask(LOG_GUEST_ERROR, 4440 "VPA: incorrect dispatch counter value for " 4441 "preempted partition %u, correcting.\n", dispatch); 4442 dispatch++; 4443 } 4444 stl_be_phys(cs->as, 4445 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4446 } 4447 } 4448 4449 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4450 { 4451 MachineClass *mc = MACHINE_CLASS(oc); 4452 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4453 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4454 NMIClass *nc = NMI_CLASS(oc); 4455 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4456 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4457 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4458 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4459 4460 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4461 mc->ignore_boot_device_suffixes = true; 4462 4463 /* 4464 * We set up the default / latest behaviour here. The class_init 4465 * functions for the specific versioned machine types can override 4466 * these details for backwards compatibility 4467 */ 4468 mc->init = spapr_machine_init; 4469 mc->reset = spapr_machine_reset; 4470 mc->block_default_type = IF_SCSI; 4471 mc->max_cpus = 1024; 4472 mc->no_parallel = 1; 4473 mc->default_boot_order = ""; 4474 mc->default_ram_size = 512 * MiB; 4475 mc->default_display = "std"; 4476 mc->kvm_type = spapr_kvm_type; 4477 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4478 mc->pci_allow_0_address = true; 4479 assert(!mc->get_hotplug_handler); 4480 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4481 hc->pre_plug = spapr_machine_device_pre_plug; 4482 hc->plug = spapr_machine_device_plug; 4483 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4484 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4485 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4486 hc->unplug_request = spapr_machine_device_unplug_request; 4487 hc->unplug = spapr_machine_device_unplug; 4488 4489 smc->dr_lmb_enabled = true; 4490 smc->update_dt_enabled = true; 4491 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4492 mc->has_hotpluggable_cpus = true; 4493 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4494 fwc->get_dev_path = spapr_get_fw_dev_path; 4495 nc->nmi_monitor_handler = spapr_nmi; 4496 smc->phb_placement = spapr_phb_placement; 4497 vhc->hypercall = emulate_spapr_hypercall; 4498 vhc->hpt_mask = spapr_hpt_mask; 4499 vhc->map_hptes = spapr_map_hptes; 4500 vhc->unmap_hptes = spapr_unmap_hptes; 4501 vhc->hpte_set_c = spapr_hpte_set_c; 4502 vhc->hpte_set_r = spapr_hpte_set_r; 4503 vhc->get_pate = spapr_get_pate; 4504 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4505 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4506 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4507 xic->ics_get = spapr_ics_get; 4508 xic->ics_resend = spapr_ics_resend; 4509 xic->icp_get = spapr_icp_get; 4510 ispc->print_info = spapr_pic_print_info; 4511 /* Force NUMA node memory size to be a multiple of 4512 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4513 * in which LMBs are represented and hot-added 4514 */ 4515 mc->numa_mem_align_shift = 28; 4516 mc->numa_mem_supported = true; 4517 4518 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4519 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4520 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4521 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4522 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4523 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4524 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4525 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4526 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4527 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4528 spapr_caps_add_properties(smc, &error_abort); 4529 smc->irq = &spapr_irq_dual; 4530 smc->dr_phb_enabled = true; 4531 smc->linux_pci_probe = true; 4532 } 4533 4534 static const TypeInfo spapr_machine_info = { 4535 .name = TYPE_SPAPR_MACHINE, 4536 .parent = TYPE_MACHINE, 4537 .abstract = true, 4538 .instance_size = sizeof(SpaprMachineState), 4539 .instance_init = spapr_instance_init, 4540 .instance_finalize = spapr_machine_finalizefn, 4541 .class_size = sizeof(SpaprMachineClass), 4542 .class_init = spapr_machine_class_init, 4543 .interfaces = (InterfaceInfo[]) { 4544 { TYPE_FW_PATH_PROVIDER }, 4545 { TYPE_NMI }, 4546 { TYPE_HOTPLUG_HANDLER }, 4547 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4548 { TYPE_XICS_FABRIC }, 4549 { TYPE_INTERRUPT_STATS_PROVIDER }, 4550 { } 4551 }, 4552 }; 4553 4554 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4555 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4556 void *data) \ 4557 { \ 4558 MachineClass *mc = MACHINE_CLASS(oc); \ 4559 spapr_machine_##suffix##_class_options(mc); \ 4560 if (latest) { \ 4561 mc->alias = "pseries"; \ 4562 mc->is_default = 1; \ 4563 } \ 4564 } \ 4565 static const TypeInfo spapr_machine_##suffix##_info = { \ 4566 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4567 .parent = TYPE_SPAPR_MACHINE, \ 4568 .class_init = spapr_machine_##suffix##_class_init, \ 4569 }; \ 4570 static void spapr_machine_register_##suffix(void) \ 4571 { \ 4572 type_register(&spapr_machine_##suffix##_info); \ 4573 } \ 4574 type_init(spapr_machine_register_##suffix) 4575 4576 /* 4577 * pseries-4.2 4578 */ 4579 static void spapr_machine_4_2_class_options(MachineClass *mc) 4580 { 4581 /* Defaults for the latest behaviour inherited from the base class */ 4582 } 4583 4584 DEFINE_SPAPR_MACHINE(4_2, "4.2", true); 4585 4586 /* 4587 * pseries-4.1 4588 */ 4589 static void spapr_machine_4_1_class_options(MachineClass *mc) 4590 { 4591 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4592 static GlobalProperty compat[] = { 4593 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4594 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4595 }; 4596 4597 spapr_machine_4_2_class_options(mc); 4598 smc->linux_pci_probe = false; 4599 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4600 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4601 } 4602 4603 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4604 4605 /* 4606 * pseries-4.0 4607 */ 4608 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 4609 uint64_t *buid, hwaddr *pio, 4610 hwaddr *mmio32, hwaddr *mmio64, 4611 unsigned n_dma, uint32_t *liobns, 4612 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4613 { 4614 spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns, 4615 nv2gpa, nv2atsd, errp); 4616 *nv2gpa = 0; 4617 *nv2atsd = 0; 4618 } 4619 4620 static void spapr_machine_4_0_class_options(MachineClass *mc) 4621 { 4622 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4623 4624 spapr_machine_4_1_class_options(mc); 4625 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 4626 smc->phb_placement = phb_placement_4_0; 4627 smc->irq = &spapr_irq_xics; 4628 smc->pre_4_1_migration = true; 4629 } 4630 4631 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 4632 4633 /* 4634 * pseries-3.1 4635 */ 4636 static void spapr_machine_3_1_class_options(MachineClass *mc) 4637 { 4638 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4639 4640 spapr_machine_4_0_class_options(mc); 4641 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4642 4643 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4644 smc->update_dt_enabled = false; 4645 smc->dr_phb_enabled = false; 4646 smc->broken_host_serial_model = true; 4647 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4648 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4649 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4650 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4651 } 4652 4653 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4654 4655 /* 4656 * pseries-3.0 4657 */ 4658 4659 static void spapr_machine_3_0_class_options(MachineClass *mc) 4660 { 4661 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4662 4663 spapr_machine_3_1_class_options(mc); 4664 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4665 4666 smc->legacy_irq_allocation = true; 4667 smc->irq = &spapr_irq_xics_legacy; 4668 } 4669 4670 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4671 4672 /* 4673 * pseries-2.12 4674 */ 4675 static void spapr_machine_2_12_class_options(MachineClass *mc) 4676 { 4677 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4678 static GlobalProperty compat[] = { 4679 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4680 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4681 }; 4682 4683 spapr_machine_3_0_class_options(mc); 4684 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4685 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4686 4687 /* We depend on kvm_enabled() to choose a default value for the 4688 * hpt-max-page-size capability. Of course we can't do it here 4689 * because this is too early and the HW accelerator isn't initialzed 4690 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4691 */ 4692 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4693 } 4694 4695 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4696 4697 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4698 { 4699 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4700 4701 spapr_machine_2_12_class_options(mc); 4702 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4703 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4704 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4705 } 4706 4707 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4708 4709 /* 4710 * pseries-2.11 4711 */ 4712 4713 static void spapr_machine_2_11_class_options(MachineClass *mc) 4714 { 4715 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4716 4717 spapr_machine_2_12_class_options(mc); 4718 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4719 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4720 } 4721 4722 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4723 4724 /* 4725 * pseries-2.10 4726 */ 4727 4728 static void spapr_machine_2_10_class_options(MachineClass *mc) 4729 { 4730 spapr_machine_2_11_class_options(mc); 4731 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4732 } 4733 4734 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4735 4736 /* 4737 * pseries-2.9 4738 */ 4739 4740 static void spapr_machine_2_9_class_options(MachineClass *mc) 4741 { 4742 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4743 static GlobalProperty compat[] = { 4744 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4745 }; 4746 4747 spapr_machine_2_10_class_options(mc); 4748 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4749 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4750 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4751 smc->pre_2_10_has_unused_icps = true; 4752 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4753 } 4754 4755 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4756 4757 /* 4758 * pseries-2.8 4759 */ 4760 4761 static void spapr_machine_2_8_class_options(MachineClass *mc) 4762 { 4763 static GlobalProperty compat[] = { 4764 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4765 }; 4766 4767 spapr_machine_2_9_class_options(mc); 4768 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4769 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4770 mc->numa_mem_align_shift = 23; 4771 } 4772 4773 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4774 4775 /* 4776 * pseries-2.7 4777 */ 4778 4779 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4780 uint64_t *buid, hwaddr *pio, 4781 hwaddr *mmio32, hwaddr *mmio64, 4782 unsigned n_dma, uint32_t *liobns, 4783 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp) 4784 { 4785 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4786 const uint64_t base_buid = 0x800000020000000ULL; 4787 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4788 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4789 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4790 const uint32_t max_index = 255; 4791 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4792 4793 uint64_t ram_top = MACHINE(spapr)->ram_size; 4794 hwaddr phb0_base, phb_base; 4795 int i; 4796 4797 /* Do we have device memory? */ 4798 if (MACHINE(spapr)->maxram_size > ram_top) { 4799 /* Can't just use maxram_size, because there may be an 4800 * alignment gap between normal and device memory regions 4801 */ 4802 ram_top = MACHINE(spapr)->device_memory->base + 4803 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4804 } 4805 4806 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4807 4808 if (index > max_index) { 4809 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4810 max_index); 4811 return; 4812 } 4813 4814 *buid = base_buid + index; 4815 for (i = 0; i < n_dma; ++i) { 4816 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4817 } 4818 4819 phb_base = phb0_base + index * phb_spacing; 4820 *pio = phb_base + pio_offset; 4821 *mmio32 = phb_base + mmio_offset; 4822 /* 4823 * We don't set the 64-bit MMIO window, relying on the PHB's 4824 * fallback behaviour of automatically splitting a large "32-bit" 4825 * window into contiguous 32-bit and 64-bit windows 4826 */ 4827 4828 *nv2gpa = 0; 4829 *nv2atsd = 0; 4830 } 4831 4832 static void spapr_machine_2_7_class_options(MachineClass *mc) 4833 { 4834 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4835 static GlobalProperty compat[] = { 4836 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4837 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4838 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4839 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4840 }; 4841 4842 spapr_machine_2_8_class_options(mc); 4843 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4844 mc->default_machine_opts = "modern-hotplug-events=off"; 4845 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4846 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4847 smc->phb_placement = phb_placement_2_7; 4848 } 4849 4850 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4851 4852 /* 4853 * pseries-2.6 4854 */ 4855 4856 static void spapr_machine_2_6_class_options(MachineClass *mc) 4857 { 4858 static GlobalProperty compat[] = { 4859 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4860 }; 4861 4862 spapr_machine_2_7_class_options(mc); 4863 mc->has_hotpluggable_cpus = false; 4864 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4865 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4866 } 4867 4868 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4869 4870 /* 4871 * pseries-2.5 4872 */ 4873 4874 static void spapr_machine_2_5_class_options(MachineClass *mc) 4875 { 4876 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4877 static GlobalProperty compat[] = { 4878 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4879 }; 4880 4881 spapr_machine_2_6_class_options(mc); 4882 smc->use_ohci_by_default = true; 4883 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4884 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4885 } 4886 4887 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4888 4889 /* 4890 * pseries-2.4 4891 */ 4892 4893 static void spapr_machine_2_4_class_options(MachineClass *mc) 4894 { 4895 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4896 4897 spapr_machine_2_5_class_options(mc); 4898 smc->dr_lmb_enabled = false; 4899 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4900 } 4901 4902 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4903 4904 /* 4905 * pseries-2.3 4906 */ 4907 4908 static void spapr_machine_2_3_class_options(MachineClass *mc) 4909 { 4910 static GlobalProperty compat[] = { 4911 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4912 }; 4913 spapr_machine_2_4_class_options(mc); 4914 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4915 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4916 } 4917 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4918 4919 /* 4920 * pseries-2.2 4921 */ 4922 4923 static void spapr_machine_2_2_class_options(MachineClass *mc) 4924 { 4925 static GlobalProperty compat[] = { 4926 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4927 }; 4928 4929 spapr_machine_2_3_class_options(mc); 4930 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4931 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4932 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4933 } 4934 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4935 4936 /* 4937 * pseries-2.1 4938 */ 4939 4940 static void spapr_machine_2_1_class_options(MachineClass *mc) 4941 { 4942 spapr_machine_2_2_class_options(mc); 4943 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4944 } 4945 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4946 4947 static void spapr_machine_register_types(void) 4948 { 4949 type_register_static(&spapr_machine_info); 4950 } 4951 4952 type_init(spapr_machine_register_types) 4953