1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "hw/hw.h" 33 #include "qemu/log.h" 34 #include "hw/fw-path-provider.h" 35 #include "elf.h" 36 #include "net/net.h" 37 #include "sysemu/device_tree.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/misc.h" 42 #include "migration/global_state.h" 43 #include "migration/register.h" 44 #include "mmu-hash64.h" 45 #include "mmu-book3s-v3.h" 46 #include "cpu-models.h" 47 #include "qom/cpu.h" 48 49 #include "hw/boards.h" 50 #include "hw/ppc/ppc.h" 51 #include "hw/loader.h" 52 53 #include "hw/ppc/fdt.h" 54 #include "hw/ppc/spapr.h" 55 #include "hw/ppc/spapr_vio.h" 56 #include "hw/pci-host/spapr.h" 57 #include "hw/pci/msi.h" 58 59 #include "hw/pci/pci.h" 60 #include "hw/scsi/scsi.h" 61 #include "hw/virtio/virtio-scsi.h" 62 #include "hw/virtio/vhost-scsi-common.h" 63 64 #include "exec/address-spaces.h" 65 #include "exec/ram_addr.h" 66 #include "hw/usb.h" 67 #include "qemu/config-file.h" 68 #include "qemu/error-report.h" 69 #include "trace.h" 70 #include "hw/nmi.h" 71 #include "hw/intc/intc.h" 72 73 #include "qemu/cutils.h" 74 #include "hw/ppc/spapr_cpu_core.h" 75 #include "hw/mem/memory-device.h" 76 77 #include <libfdt.h> 78 79 /* SLOF memory layout: 80 * 81 * SLOF raw image loaded at 0, copies its romfs right below the flat 82 * device-tree, then position SLOF itself 31M below that 83 * 84 * So we set FW_OVERHEAD to 40MB which should account for all of that 85 * and more 86 * 87 * We load our kernel at 4M, leaving space for SLOF initial image 88 */ 89 #define FDT_MAX_SIZE 0x100000 90 #define RTAS_MAX_SIZE 0x10000 91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 92 #define FW_MAX_SIZE 0x400000 93 #define FW_FILE_NAME "slof.bin" 94 #define FW_OVERHEAD 0x2800000 95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 96 97 #define MIN_RMA_SLOF 128UL 98 99 #define PHANDLE_INTC 0x00001111 100 101 /* These two functions implement the VCPU id numbering: one to compute them 102 * all and one to identify thread 0 of a VCORE. Any change to the first one 103 * is likely to have an impact on the second one, so let's keep them close. 104 */ 105 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index) 106 { 107 assert(spapr->vsmt); 108 return 109 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 110 } 111 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr, 112 PowerPCCPU *cpu) 113 { 114 assert(spapr->vsmt); 115 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 116 } 117 118 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 119 { 120 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 121 * and newer QEMUs don't even have them. In both cases, we don't want 122 * to send anything on the wire. 123 */ 124 return false; 125 } 126 127 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 128 .name = "icp/server", 129 .version_id = 1, 130 .minimum_version_id = 1, 131 .needed = pre_2_10_vmstate_dummy_icp_needed, 132 .fields = (VMStateField[]) { 133 VMSTATE_UNUSED(4), /* uint32_t xirr */ 134 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 135 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 136 VMSTATE_END_OF_LIST() 137 }, 138 }; 139 140 static void pre_2_10_vmstate_register_dummy_icp(int i) 141 { 142 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 143 (void *)(uintptr_t) i); 144 } 145 146 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 147 { 148 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 149 (void *)(uintptr_t) i); 150 } 151 152 int spapr_max_server_number(sPAPRMachineState *spapr) 153 { 154 assert(spapr->vsmt); 155 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 156 } 157 158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 159 int smt_threads) 160 { 161 int i, ret = 0; 162 uint32_t servers_prop[smt_threads]; 163 uint32_t gservers_prop[smt_threads * 2]; 164 int index = spapr_get_vcpu_id(cpu); 165 166 if (cpu->compat_pvr) { 167 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 168 if (ret < 0) { 169 return ret; 170 } 171 } 172 173 /* Build interrupt servers and gservers properties */ 174 for (i = 0; i < smt_threads; i++) { 175 servers_prop[i] = cpu_to_be32(index + i); 176 /* Hack, direct the group queues back to cpu 0 */ 177 gservers_prop[i*2] = cpu_to_be32(index + i); 178 gservers_prop[i*2 + 1] = 0; 179 } 180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 181 servers_prop, sizeof(servers_prop)); 182 if (ret < 0) { 183 return ret; 184 } 185 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 186 gservers_prop, sizeof(gservers_prop)); 187 188 return ret; 189 } 190 191 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 192 { 193 int index = spapr_get_vcpu_id(cpu); 194 uint32_t associativity[] = {cpu_to_be32(0x5), 195 cpu_to_be32(0x0), 196 cpu_to_be32(0x0), 197 cpu_to_be32(0x0), 198 cpu_to_be32(cpu->node_id), 199 cpu_to_be32(index)}; 200 201 /* Advertise NUMA via ibm,associativity */ 202 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 203 sizeof(associativity)); 204 } 205 206 /* Populate the "ibm,pa-features" property */ 207 static void spapr_populate_pa_features(sPAPRMachineState *spapr, 208 PowerPCCPU *cpu, 209 void *fdt, int offset, 210 bool legacy_guest) 211 { 212 uint8_t pa_features_206[] = { 6, 0, 213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 214 uint8_t pa_features_207[] = { 24, 0, 215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 219 uint8_t pa_features_300[] = { 66, 0, 220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 223 /* 6: DS207 */ 224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 225 /* 16: Vector */ 226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 235 /* 42: PM, 44: PC RA, 46: SC vec'd */ 236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 237 /* 48: SIMD, 50: QP BFP, 52: String */ 238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 239 /* 54: DecFP, 56: DecI, 58: SHA */ 240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 241 /* 60: NM atomic, 62: RNG */ 242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 243 }; 244 uint8_t *pa_features = NULL; 245 size_t pa_size; 246 247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 248 pa_features = pa_features_206; 249 pa_size = sizeof(pa_features_206); 250 } 251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 252 pa_features = pa_features_207; 253 pa_size = sizeof(pa_features_207); 254 } 255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 256 pa_features = pa_features_300; 257 pa_size = sizeof(pa_features_300); 258 } 259 if (!pa_features) { 260 return; 261 } 262 263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 264 /* 265 * Note: we keep CI large pages off by default because a 64K capable 266 * guest provisioned with large pages might otherwise try to map a qemu 267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 268 * even if that qemu runs on a 4k host. 269 * We dd this bit back here if we are confident this is not an issue 270 */ 271 pa_features[3] |= 0x20; 272 } 273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 274 pa_features[24] |= 0x80; /* Transactional memory support */ 275 } 276 if (legacy_guest && pa_size > 40) { 277 /* Workaround for broken kernels that attempt (guest) radix 278 * mode when they can't handle it, if they see the radix bit set 279 * in pa-features. So hide it from them. */ 280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 281 } 282 283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 284 } 285 286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 287 { 288 int ret = 0, offset, cpus_offset; 289 CPUState *cs; 290 char cpu_model[32]; 291 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 292 293 CPU_FOREACH(cs) { 294 PowerPCCPU *cpu = POWERPC_CPU(cs); 295 DeviceClass *dc = DEVICE_GET_CLASS(cs); 296 int index = spapr_get_vcpu_id(cpu); 297 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 298 299 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 300 continue; 301 } 302 303 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 304 305 cpus_offset = fdt_path_offset(fdt, "/cpus"); 306 if (cpus_offset < 0) { 307 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 308 if (cpus_offset < 0) { 309 return cpus_offset; 310 } 311 } 312 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 313 if (offset < 0) { 314 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 315 if (offset < 0) { 316 return offset; 317 } 318 } 319 320 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 321 pft_size_prop, sizeof(pft_size_prop)); 322 if (ret < 0) { 323 return ret; 324 } 325 326 if (nb_numa_nodes > 1) { 327 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 328 if (ret < 0) { 329 return ret; 330 } 331 } 332 333 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 334 if (ret < 0) { 335 return ret; 336 } 337 338 spapr_populate_pa_features(spapr, cpu, fdt, offset, 339 spapr->cas_legacy_guest_workaround); 340 } 341 return ret; 342 } 343 344 static hwaddr spapr_node0_size(MachineState *machine) 345 { 346 if (nb_numa_nodes) { 347 int i; 348 for (i = 0; i < nb_numa_nodes; ++i) { 349 if (numa_info[i].node_mem) { 350 return MIN(pow2floor(numa_info[i].node_mem), 351 machine->ram_size); 352 } 353 } 354 } 355 return machine->ram_size; 356 } 357 358 static void add_str(GString *s, const gchar *s1) 359 { 360 g_string_append_len(s, s1, strlen(s1) + 1); 361 } 362 363 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 364 hwaddr size) 365 { 366 uint32_t associativity[] = { 367 cpu_to_be32(0x4), /* length */ 368 cpu_to_be32(0x0), cpu_to_be32(0x0), 369 cpu_to_be32(0x0), cpu_to_be32(nodeid) 370 }; 371 char mem_name[32]; 372 uint64_t mem_reg_property[2]; 373 int off; 374 375 mem_reg_property[0] = cpu_to_be64(start); 376 mem_reg_property[1] = cpu_to_be64(size); 377 378 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 379 off = fdt_add_subnode(fdt, 0, mem_name); 380 _FDT(off); 381 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 382 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 383 sizeof(mem_reg_property)))); 384 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 385 sizeof(associativity)))); 386 return off; 387 } 388 389 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 390 { 391 MachineState *machine = MACHINE(spapr); 392 hwaddr mem_start, node_size; 393 int i, nb_nodes = nb_numa_nodes; 394 NodeInfo *nodes = numa_info; 395 NodeInfo ramnode; 396 397 /* No NUMA nodes, assume there is just one node with whole RAM */ 398 if (!nb_numa_nodes) { 399 nb_nodes = 1; 400 ramnode.node_mem = machine->ram_size; 401 nodes = &ramnode; 402 } 403 404 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 405 if (!nodes[i].node_mem) { 406 continue; 407 } 408 if (mem_start >= machine->ram_size) { 409 node_size = 0; 410 } else { 411 node_size = nodes[i].node_mem; 412 if (node_size > machine->ram_size - mem_start) { 413 node_size = machine->ram_size - mem_start; 414 } 415 } 416 if (!mem_start) { 417 /* spapr_machine_init() checks for rma_size <= node0_size 418 * already */ 419 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 420 mem_start += spapr->rma_size; 421 node_size -= spapr->rma_size; 422 } 423 for ( ; node_size; ) { 424 hwaddr sizetmp = pow2floor(node_size); 425 426 /* mem_start != 0 here */ 427 if (ctzl(mem_start) < ctzl(sizetmp)) { 428 sizetmp = 1ULL << ctzl(mem_start); 429 } 430 431 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 432 node_size -= sizetmp; 433 mem_start += sizetmp; 434 } 435 } 436 437 return 0; 438 } 439 440 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 441 sPAPRMachineState *spapr) 442 { 443 PowerPCCPU *cpu = POWERPC_CPU(cs); 444 CPUPPCState *env = &cpu->env; 445 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 446 int index = spapr_get_vcpu_id(cpu); 447 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 448 0xffffffff, 0xffffffff}; 449 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 450 : SPAPR_TIMEBASE_FREQ; 451 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 452 uint32_t page_sizes_prop[64]; 453 size_t page_sizes_prop_size; 454 uint32_t vcpus_per_socket = smp_threads * smp_cores; 455 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 456 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 457 sPAPRDRConnector *drc; 458 int drc_index; 459 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 460 int i; 461 462 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 463 if (drc) { 464 drc_index = spapr_drc_index(drc); 465 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 466 } 467 468 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 469 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 470 471 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 472 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 473 env->dcache_line_size))); 474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 475 env->dcache_line_size))); 476 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 477 env->icache_line_size))); 478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 479 env->icache_line_size))); 480 481 if (pcc->l1_dcache_size) { 482 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 483 pcc->l1_dcache_size))); 484 } else { 485 warn_report("Unknown L1 dcache size for cpu"); 486 } 487 if (pcc->l1_icache_size) { 488 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 489 pcc->l1_icache_size))); 490 } else { 491 warn_report("Unknown L1 icache size for cpu"); 492 } 493 494 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 495 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 496 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 497 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 498 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 499 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 500 501 if (env->spr_cb[SPR_PURR].oea_read) { 502 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 503 } 504 505 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 506 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 507 segs, sizeof(segs)))); 508 } 509 510 /* Advertise VSX (vector extensions) if available 511 * 1 == VMX / Altivec available 512 * 2 == VSX available 513 * 514 * Only CPUs for which we create core types in spapr_cpu_core.c 515 * are possible, and all of those have VMX */ 516 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 518 } else { 519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 520 } 521 522 /* Advertise DFP (Decimal Floating Point) if available 523 * 0 / no property == no DFP 524 * 1 == DFP available */ 525 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 526 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 527 } 528 529 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 530 sizeof(page_sizes_prop)); 531 if (page_sizes_prop_size) { 532 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 533 page_sizes_prop, page_sizes_prop_size))); 534 } 535 536 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 537 538 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 539 cs->cpu_index / vcpus_per_socket))); 540 541 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 542 pft_size_prop, sizeof(pft_size_prop)))); 543 544 if (nb_numa_nodes > 1) { 545 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 546 } 547 548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 549 550 if (pcc->radix_page_info) { 551 for (i = 0; i < pcc->radix_page_info->count; i++) { 552 radix_AP_encodings[i] = 553 cpu_to_be32(pcc->radix_page_info->entries[i]); 554 } 555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 556 radix_AP_encodings, 557 pcc->radix_page_info->count * 558 sizeof(radix_AP_encodings[0])))); 559 } 560 } 561 562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 563 { 564 CPUState **rev; 565 CPUState *cs; 566 int n_cpus; 567 int cpus_offset; 568 char *nodename; 569 int i; 570 571 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 572 _FDT(cpus_offset); 573 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 575 576 /* 577 * We walk the CPUs in reverse order to ensure that CPU DT nodes 578 * created by fdt_add_subnode() end up in the right order in FDT 579 * for the guest kernel the enumerate the CPUs correctly. 580 * 581 * The CPU list cannot be traversed in reverse order, so we need 582 * to do extra work. 583 */ 584 n_cpus = 0; 585 rev = NULL; 586 CPU_FOREACH(cs) { 587 rev = g_renew(CPUState *, rev, n_cpus + 1); 588 rev[n_cpus++] = cs; 589 } 590 591 for (i = n_cpus - 1; i >= 0; i--) { 592 CPUState *cs = rev[i]; 593 PowerPCCPU *cpu = POWERPC_CPU(cs); 594 int index = spapr_get_vcpu_id(cpu); 595 DeviceClass *dc = DEVICE_GET_CLASS(cs); 596 int offset; 597 598 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 599 continue; 600 } 601 602 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 603 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 604 g_free(nodename); 605 _FDT(offset); 606 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 607 } 608 609 g_free(rev); 610 } 611 612 static int spapr_rng_populate_dt(void *fdt) 613 { 614 int node; 615 int ret; 616 617 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 618 if (node <= 0) { 619 return -1; 620 } 621 ret = fdt_setprop_string(fdt, node, "device_type", 622 "ibm,platform-facilities"); 623 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 624 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 625 626 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 627 if (node <= 0) { 628 return -1; 629 } 630 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 631 632 return ret ? -1 : 0; 633 } 634 635 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 636 { 637 MemoryDeviceInfoList *info; 638 639 for (info = list; info; info = info->next) { 640 MemoryDeviceInfo *value = info->value; 641 642 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 643 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 644 645 if (addr >= pcdimm_info->addr && 646 addr < (pcdimm_info->addr + pcdimm_info->size)) { 647 return pcdimm_info->node; 648 } 649 } 650 } 651 652 return -1; 653 } 654 655 struct sPAPRDrconfCellV2 { 656 uint32_t seq_lmbs; 657 uint64_t base_addr; 658 uint32_t drc_index; 659 uint32_t aa_index; 660 uint32_t flags; 661 } QEMU_PACKED; 662 663 typedef struct DrconfCellQueue { 664 struct sPAPRDrconfCellV2 cell; 665 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 666 } DrconfCellQueue; 667 668 static DrconfCellQueue * 669 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 670 uint32_t drc_index, uint32_t aa_index, 671 uint32_t flags) 672 { 673 DrconfCellQueue *elem; 674 675 elem = g_malloc0(sizeof(*elem)); 676 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 677 elem->cell.base_addr = cpu_to_be64(base_addr); 678 elem->cell.drc_index = cpu_to_be32(drc_index); 679 elem->cell.aa_index = cpu_to_be32(aa_index); 680 elem->cell.flags = cpu_to_be32(flags); 681 682 return elem; 683 } 684 685 /* ibm,dynamic-memory-v2 */ 686 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt, 687 int offset, MemoryDeviceInfoList *dimms) 688 { 689 MachineState *machine = MACHINE(spapr); 690 uint8_t *int_buf, *cur_index; 691 int ret; 692 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 693 uint64_t addr, cur_addr, size; 694 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 695 uint64_t mem_end = machine->device_memory->base + 696 memory_region_size(&machine->device_memory->mr); 697 uint32_t node, buf_len, nr_entries = 0; 698 sPAPRDRConnector *drc; 699 DrconfCellQueue *elem, *next; 700 MemoryDeviceInfoList *info; 701 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 702 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 703 704 /* Entry to cover RAM and the gap area */ 705 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 706 SPAPR_LMB_FLAGS_RESERVED | 707 SPAPR_LMB_FLAGS_DRC_INVALID); 708 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 709 nr_entries++; 710 711 cur_addr = machine->device_memory->base; 712 for (info = dimms; info; info = info->next) { 713 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 714 715 addr = di->addr; 716 size = di->size; 717 node = di->node; 718 719 /* Entry for hot-pluggable area */ 720 if (cur_addr < addr) { 721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 722 g_assert(drc); 723 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 724 cur_addr, spapr_drc_index(drc), -1, 0); 725 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 726 nr_entries++; 727 } 728 729 /* Entry for DIMM */ 730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 731 g_assert(drc); 732 elem = spapr_get_drconf_cell(size / lmb_size, addr, 733 spapr_drc_index(drc), node, 734 SPAPR_LMB_FLAGS_ASSIGNED); 735 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 736 nr_entries++; 737 cur_addr = addr + size; 738 } 739 740 /* Entry for remaining hotpluggable area */ 741 if (cur_addr < mem_end) { 742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 743 g_assert(drc); 744 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 745 cur_addr, spapr_drc_index(drc), -1, 0); 746 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 747 nr_entries++; 748 } 749 750 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 751 int_buf = cur_index = g_malloc0(buf_len); 752 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 753 cur_index += sizeof(nr_entries); 754 755 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 756 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 757 cur_index += sizeof(elem->cell); 758 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 759 g_free(elem); 760 } 761 762 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 763 g_free(int_buf); 764 if (ret < 0) { 765 return -1; 766 } 767 return 0; 768 } 769 770 /* ibm,dynamic-memory */ 771 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt, 772 int offset, MemoryDeviceInfoList *dimms) 773 { 774 MachineState *machine = MACHINE(spapr); 775 int i, ret; 776 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 777 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 778 uint32_t nr_lmbs = (machine->device_memory->base + 779 memory_region_size(&machine->device_memory->mr)) / 780 lmb_size; 781 uint32_t *int_buf, *cur_index, buf_len; 782 783 /* 784 * Allocate enough buffer size to fit in ibm,dynamic-memory 785 */ 786 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 787 cur_index = int_buf = g_malloc0(buf_len); 788 int_buf[0] = cpu_to_be32(nr_lmbs); 789 cur_index++; 790 for (i = 0; i < nr_lmbs; i++) { 791 uint64_t addr = i * lmb_size; 792 uint32_t *dynamic_memory = cur_index; 793 794 if (i >= device_lmb_start) { 795 sPAPRDRConnector *drc; 796 797 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 798 g_assert(drc); 799 800 dynamic_memory[0] = cpu_to_be32(addr >> 32); 801 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 802 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 803 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 804 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 805 if (memory_region_present(get_system_memory(), addr)) { 806 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 807 } else { 808 dynamic_memory[5] = cpu_to_be32(0); 809 } 810 } else { 811 /* 812 * LMB information for RMA, boot time RAM and gap b/n RAM and 813 * device memory region -- all these are marked as reserved 814 * and as having no valid DRC. 815 */ 816 dynamic_memory[0] = cpu_to_be32(addr >> 32); 817 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 818 dynamic_memory[2] = cpu_to_be32(0); 819 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 820 dynamic_memory[4] = cpu_to_be32(-1); 821 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 822 SPAPR_LMB_FLAGS_DRC_INVALID); 823 } 824 825 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 826 } 827 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 828 g_free(int_buf); 829 if (ret < 0) { 830 return -1; 831 } 832 return 0; 833 } 834 835 /* 836 * Adds ibm,dynamic-reconfiguration-memory node. 837 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 838 * of this device tree node. 839 */ 840 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 841 { 842 MachineState *machine = MACHINE(spapr); 843 int ret, i, offset; 844 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 845 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 846 uint32_t *int_buf, *cur_index, buf_len; 847 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 848 MemoryDeviceInfoList *dimms = NULL; 849 850 /* 851 * Don't create the node if there is no device memory 852 */ 853 if (machine->ram_size == machine->maxram_size) { 854 return 0; 855 } 856 857 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 858 859 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 860 sizeof(prop_lmb_size)); 861 if (ret < 0) { 862 return ret; 863 } 864 865 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 866 if (ret < 0) { 867 return ret; 868 } 869 870 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 871 if (ret < 0) { 872 return ret; 873 } 874 875 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 876 dimms = qmp_memory_device_list(); 877 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 878 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 879 } else { 880 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 881 } 882 qapi_free_MemoryDeviceInfoList(dimms); 883 884 if (ret < 0) { 885 return ret; 886 } 887 888 /* ibm,associativity-lookup-arrays */ 889 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 890 cur_index = int_buf = g_malloc0(buf_len); 891 int_buf[0] = cpu_to_be32(nr_nodes); 892 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 893 cur_index += 2; 894 for (i = 0; i < nr_nodes; i++) { 895 uint32_t associativity[] = { 896 cpu_to_be32(0x0), 897 cpu_to_be32(0x0), 898 cpu_to_be32(0x0), 899 cpu_to_be32(i) 900 }; 901 memcpy(cur_index, associativity, sizeof(associativity)); 902 cur_index += 4; 903 } 904 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 905 (cur_index - int_buf) * sizeof(uint32_t)); 906 g_free(int_buf); 907 908 return ret; 909 } 910 911 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 912 sPAPROptionVector *ov5_updates) 913 { 914 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 915 int ret = 0, offset; 916 917 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 918 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 919 g_assert(smc->dr_lmb_enabled); 920 ret = spapr_populate_drconf_memory(spapr, fdt); 921 if (ret) { 922 goto out; 923 } 924 } 925 926 offset = fdt_path_offset(fdt, "/chosen"); 927 if (offset < 0) { 928 offset = fdt_add_subnode(fdt, 0, "chosen"); 929 if (offset < 0) { 930 return offset; 931 } 932 } 933 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 934 "ibm,architecture-vec-5"); 935 936 out: 937 return ret; 938 } 939 940 static bool spapr_hotplugged_dev_before_cas(void) 941 { 942 Object *drc_container, *obj; 943 ObjectProperty *prop; 944 ObjectPropertyIterator iter; 945 946 drc_container = container_get(object_get_root(), "/dr-connector"); 947 object_property_iter_init(&iter, drc_container); 948 while ((prop = object_property_iter_next(&iter))) { 949 if (!strstart(prop->type, "link<", NULL)) { 950 continue; 951 } 952 obj = object_property_get_link(drc_container, prop->name, NULL); 953 if (spapr_drc_needed(obj)) { 954 return true; 955 } 956 } 957 return false; 958 } 959 960 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 961 target_ulong addr, target_ulong size, 962 sPAPROptionVector *ov5_updates) 963 { 964 void *fdt, *fdt_skel; 965 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 966 967 if (spapr_hotplugged_dev_before_cas()) { 968 return 1; 969 } 970 971 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 972 error_report("SLOF provided an unexpected CAS buffer size " 973 TARGET_FMT_lu " (min: %zu, max: %u)", 974 size, sizeof(hdr), FW_MAX_SIZE); 975 exit(EXIT_FAILURE); 976 } 977 978 size -= sizeof(hdr); 979 980 /* Create skeleton */ 981 fdt_skel = g_malloc0(size); 982 _FDT((fdt_create(fdt_skel, size))); 983 _FDT((fdt_finish_reservemap(fdt_skel))); 984 _FDT((fdt_begin_node(fdt_skel, ""))); 985 _FDT((fdt_end_node(fdt_skel))); 986 _FDT((fdt_finish(fdt_skel))); 987 fdt = g_malloc0(size); 988 _FDT((fdt_open_into(fdt_skel, fdt, size))); 989 g_free(fdt_skel); 990 991 /* Fixup cpu nodes */ 992 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 993 994 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 995 return -1; 996 } 997 998 /* Pack resulting tree */ 999 _FDT((fdt_pack(fdt))); 1000 1001 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1002 trace_spapr_cas_failed(size); 1003 return -1; 1004 } 1005 1006 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1007 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1008 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1009 g_free(fdt); 1010 1011 return 0; 1012 } 1013 1014 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 1015 { 1016 int rtas; 1017 GString *hypertas = g_string_sized_new(256); 1018 GString *qemu_hypertas = g_string_sized_new(256); 1019 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1020 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1021 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1022 uint32_t lrdr_capacity[] = { 1023 cpu_to_be32(max_device_addr >> 32), 1024 cpu_to_be32(max_device_addr & 0xffffffff), 1025 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1026 cpu_to_be32(max_cpus / smp_threads), 1027 }; 1028 uint32_t maxdomains[] = { 1029 cpu_to_be32(4), 1030 cpu_to_be32(0), 1031 cpu_to_be32(0), 1032 cpu_to_be32(0), 1033 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1), 1034 }; 1035 1036 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1037 1038 /* hypertas */ 1039 add_str(hypertas, "hcall-pft"); 1040 add_str(hypertas, "hcall-term"); 1041 add_str(hypertas, "hcall-dabr"); 1042 add_str(hypertas, "hcall-interrupt"); 1043 add_str(hypertas, "hcall-tce"); 1044 add_str(hypertas, "hcall-vio"); 1045 add_str(hypertas, "hcall-splpar"); 1046 add_str(hypertas, "hcall-bulk"); 1047 add_str(hypertas, "hcall-set-mode"); 1048 add_str(hypertas, "hcall-sprg0"); 1049 add_str(hypertas, "hcall-copy"); 1050 add_str(hypertas, "hcall-debug"); 1051 add_str(hypertas, "hcall-vphn"); 1052 add_str(qemu_hypertas, "hcall-memop1"); 1053 1054 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1055 add_str(hypertas, "hcall-multi-tce"); 1056 } 1057 1058 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1059 add_str(hypertas, "hcall-hpt-resize"); 1060 } 1061 1062 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1063 hypertas->str, hypertas->len)); 1064 g_string_free(hypertas, TRUE); 1065 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1066 qemu_hypertas->str, qemu_hypertas->len)); 1067 g_string_free(qemu_hypertas, TRUE); 1068 1069 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1070 refpoints, sizeof(refpoints))); 1071 1072 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1073 maxdomains, sizeof(maxdomains))); 1074 1075 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1076 RTAS_ERROR_LOG_MAX)); 1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1078 RTAS_EVENT_SCAN_RATE)); 1079 1080 g_assert(msi_nonbroken); 1081 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1082 1083 /* 1084 * According to PAPR, rtas ibm,os-term does not guarantee a return 1085 * back to the guest cpu. 1086 * 1087 * While an additional ibm,extended-os-term property indicates 1088 * that rtas call return will always occur. Set this property. 1089 */ 1090 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1091 1092 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1093 lrdr_capacity, sizeof(lrdr_capacity))); 1094 1095 spapr_dt_rtas_tokens(fdt, rtas); 1096 } 1097 1098 /* 1099 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1100 * and the XIVE features that the guest may request and thus the valid 1101 * values for bytes 23..26 of option vector 5: 1102 */ 1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt, 1104 int chosen) 1105 { 1106 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1107 1108 char val[2 * 4] = { 1109 23, spapr->irq->ov5, /* Xive mode. */ 1110 24, 0x00, /* Hash/Radix, filled in below. */ 1111 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1112 26, 0x40, /* Radix options: GTSE == yes. */ 1113 }; 1114 1115 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1116 first_ppc_cpu->compat_pvr)) { 1117 /* 1118 * If we're in a pre POWER9 compat mode then the guest should 1119 * do hash and use the legacy interrupt mode 1120 */ 1121 val[1] = 0x00; /* XICS */ 1122 val[3] = 0x00; /* Hash */ 1123 } else if (kvm_enabled()) { 1124 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1125 val[3] = 0x80; /* OV5_MMU_BOTH */ 1126 } else if (kvmppc_has_cap_mmu_radix()) { 1127 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1128 } else { 1129 val[3] = 0x00; /* Hash */ 1130 } 1131 } else { 1132 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1133 val[3] = 0xC0; 1134 } 1135 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1136 val, sizeof(val))); 1137 } 1138 1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 1140 { 1141 MachineState *machine = MACHINE(spapr); 1142 int chosen; 1143 const char *boot_device = machine->boot_order; 1144 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1145 size_t cb = 0; 1146 char *bootlist = get_boot_devices_list(&cb); 1147 1148 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1149 1150 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1151 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1152 spapr->initrd_base)); 1153 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1154 spapr->initrd_base + spapr->initrd_size)); 1155 1156 if (spapr->kernel_size) { 1157 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1158 cpu_to_be64(spapr->kernel_size) }; 1159 1160 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1161 &kprop, sizeof(kprop))); 1162 if (spapr->kernel_le) { 1163 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1164 } 1165 } 1166 if (boot_menu) { 1167 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1168 } 1169 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1170 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1171 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1172 1173 if (cb && bootlist) { 1174 int i; 1175 1176 for (i = 0; i < cb; i++) { 1177 if (bootlist[i] == '\n') { 1178 bootlist[i] = ' '; 1179 } 1180 } 1181 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1182 } 1183 1184 if (boot_device && strlen(boot_device)) { 1185 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1186 } 1187 1188 if (!spapr->has_graphics && stdout_path) { 1189 /* 1190 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1191 * kernel. New platforms should only use the "stdout-path" property. Set 1192 * the new property and continue using older property to remain 1193 * compatible with the existing firmware. 1194 */ 1195 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1196 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1197 } 1198 1199 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1200 1201 g_free(stdout_path); 1202 g_free(bootlist); 1203 } 1204 1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 1206 { 1207 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1208 * KVM to work under pHyp with some guest co-operation */ 1209 int hypervisor; 1210 uint8_t hypercall[16]; 1211 1212 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1213 /* indicate KVM hypercall interface */ 1214 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1215 if (kvmppc_has_cap_fixup_hcalls()) { 1216 /* 1217 * Older KVM versions with older guest kernels were broken 1218 * with the magic page, don't allow the guest to map it. 1219 */ 1220 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1221 sizeof(hypercall))) { 1222 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1223 hypercall, sizeof(hypercall))); 1224 } 1225 } 1226 } 1227 1228 static void *spapr_build_fdt(sPAPRMachineState *spapr) 1229 { 1230 MachineState *machine = MACHINE(spapr); 1231 MachineClass *mc = MACHINE_GET_CLASS(machine); 1232 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1233 int ret; 1234 void *fdt; 1235 sPAPRPHBState *phb; 1236 char *buf; 1237 1238 fdt = g_malloc0(FDT_MAX_SIZE); 1239 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1240 1241 /* Root node */ 1242 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1243 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1244 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1245 1246 /* 1247 * Add info to guest to indentify which host is it being run on 1248 * and what is the uuid of the guest 1249 */ 1250 if (spapr->host_model && !g_str_equal(spapr->host_model, "none")) { 1251 if (g_str_equal(spapr->host_model, "passthrough")) { 1252 /* -M host-model=passthrough */ 1253 if (kvmppc_get_host_model(&buf)) { 1254 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1255 g_free(buf); 1256 } 1257 } else { 1258 /* -M host-model=<user-string> */ 1259 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1260 } 1261 } 1262 1263 if (spapr->host_serial && !g_str_equal(spapr->host_serial, "none")) { 1264 if (g_str_equal(spapr->host_serial, "passthrough")) { 1265 /* -M host-serial=passthrough */ 1266 if (kvmppc_get_host_serial(&buf)) { 1267 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1268 g_free(buf); 1269 } 1270 } else { 1271 /* -M host-serial=<user-string> */ 1272 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1273 } 1274 } 1275 1276 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1277 1278 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1279 if (qemu_uuid_set) { 1280 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1281 } 1282 g_free(buf); 1283 1284 if (qemu_get_vm_name()) { 1285 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1286 qemu_get_vm_name())); 1287 } 1288 1289 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1290 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1291 1292 /* /interrupt controller */ 1293 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1294 PHANDLE_INTC); 1295 1296 ret = spapr_populate_memory(spapr, fdt); 1297 if (ret < 0) { 1298 error_report("couldn't setup memory nodes in fdt"); 1299 exit(1); 1300 } 1301 1302 /* /vdevice */ 1303 spapr_dt_vdevice(spapr->vio_bus, fdt); 1304 1305 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1306 ret = spapr_rng_populate_dt(fdt); 1307 if (ret < 0) { 1308 error_report("could not set up rng device in the fdt"); 1309 exit(1); 1310 } 1311 } 1312 1313 QLIST_FOREACH(phb, &spapr->phbs, list) { 1314 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt, 1315 spapr->irq->nr_msis); 1316 if (ret < 0) { 1317 error_report("couldn't setup PCI devices in fdt"); 1318 exit(1); 1319 } 1320 } 1321 1322 /* cpus */ 1323 spapr_populate_cpus_dt_node(fdt, spapr); 1324 1325 if (smc->dr_lmb_enabled) { 1326 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1327 } 1328 1329 if (mc->has_hotpluggable_cpus) { 1330 int offset = fdt_path_offset(fdt, "/cpus"); 1331 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1332 SPAPR_DR_CONNECTOR_TYPE_CPU); 1333 if (ret < 0) { 1334 error_report("Couldn't set up CPU DR device tree properties"); 1335 exit(1); 1336 } 1337 } 1338 1339 /* /event-sources */ 1340 spapr_dt_events(spapr, fdt); 1341 1342 /* /rtas */ 1343 spapr_dt_rtas(spapr, fdt); 1344 1345 /* /chosen */ 1346 spapr_dt_chosen(spapr, fdt); 1347 1348 /* /hypervisor */ 1349 if (kvm_enabled()) { 1350 spapr_dt_hypervisor(spapr, fdt); 1351 } 1352 1353 /* Build memory reserve map */ 1354 if (spapr->kernel_size) { 1355 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1356 } 1357 if (spapr->initrd_size) { 1358 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1359 } 1360 1361 /* ibm,client-architecture-support updates */ 1362 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1363 if (ret < 0) { 1364 error_report("couldn't setup CAS properties fdt"); 1365 exit(1); 1366 } 1367 1368 return fdt; 1369 } 1370 1371 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1372 { 1373 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1374 } 1375 1376 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1377 PowerPCCPU *cpu) 1378 { 1379 CPUPPCState *env = &cpu->env; 1380 1381 /* The TCG path should also be holding the BQL at this point */ 1382 g_assert(qemu_mutex_iothread_locked()); 1383 1384 if (msr_pr) { 1385 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1386 env->gpr[3] = H_PRIVILEGE; 1387 } else { 1388 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1389 } 1390 } 1391 1392 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1393 { 1394 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1395 1396 return spapr->patb_entry; 1397 } 1398 1399 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1400 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1401 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1402 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1403 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1404 1405 /* 1406 * Get the fd to access the kernel htab, re-opening it if necessary 1407 */ 1408 static int get_htab_fd(sPAPRMachineState *spapr) 1409 { 1410 Error *local_err = NULL; 1411 1412 if (spapr->htab_fd >= 0) { 1413 return spapr->htab_fd; 1414 } 1415 1416 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1417 if (spapr->htab_fd < 0) { 1418 error_report_err(local_err); 1419 } 1420 1421 return spapr->htab_fd; 1422 } 1423 1424 void close_htab_fd(sPAPRMachineState *spapr) 1425 { 1426 if (spapr->htab_fd >= 0) { 1427 close(spapr->htab_fd); 1428 } 1429 spapr->htab_fd = -1; 1430 } 1431 1432 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1433 { 1434 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1435 1436 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1437 } 1438 1439 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1440 { 1441 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1442 1443 assert(kvm_enabled()); 1444 1445 if (!spapr->htab) { 1446 return 0; 1447 } 1448 1449 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1450 } 1451 1452 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1453 hwaddr ptex, int n) 1454 { 1455 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1456 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1457 1458 if (!spapr->htab) { 1459 /* 1460 * HTAB is controlled by KVM. Fetch into temporary buffer 1461 */ 1462 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1463 kvmppc_read_hptes(hptes, ptex, n); 1464 return hptes; 1465 } 1466 1467 /* 1468 * HTAB is controlled by QEMU. Just point to the internally 1469 * accessible PTEG. 1470 */ 1471 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1472 } 1473 1474 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1475 const ppc_hash_pte64_t *hptes, 1476 hwaddr ptex, int n) 1477 { 1478 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1479 1480 if (!spapr->htab) { 1481 g_free((void *)hptes); 1482 } 1483 1484 /* Nothing to do for qemu managed HPT */ 1485 } 1486 1487 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1488 uint64_t pte0, uint64_t pte1) 1489 { 1490 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1491 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1492 1493 if (!spapr->htab) { 1494 kvmppc_write_hpte(ptex, pte0, pte1); 1495 } else { 1496 stq_p(spapr->htab + offset, pte0); 1497 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1498 } 1499 } 1500 1501 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1502 { 1503 int shift; 1504 1505 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1506 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1507 * that's much more than is needed for Linux guests */ 1508 shift = ctz64(pow2ceil(ramsize)) - 7; 1509 shift = MAX(shift, 18); /* Minimum architected size */ 1510 shift = MIN(shift, 46); /* Maximum architected size */ 1511 return shift; 1512 } 1513 1514 void spapr_free_hpt(sPAPRMachineState *spapr) 1515 { 1516 g_free(spapr->htab); 1517 spapr->htab = NULL; 1518 spapr->htab_shift = 0; 1519 close_htab_fd(spapr); 1520 } 1521 1522 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1523 Error **errp) 1524 { 1525 long rc; 1526 1527 /* Clean up any HPT info from a previous boot */ 1528 spapr_free_hpt(spapr); 1529 1530 rc = kvmppc_reset_htab(shift); 1531 if (rc < 0) { 1532 /* kernel-side HPT needed, but couldn't allocate one */ 1533 error_setg_errno(errp, errno, 1534 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1535 shift); 1536 /* This is almost certainly fatal, but if the caller really 1537 * wants to carry on with shift == 0, it's welcome to try */ 1538 } else if (rc > 0) { 1539 /* kernel-side HPT allocated */ 1540 if (rc != shift) { 1541 error_setg(errp, 1542 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1543 shift, rc); 1544 } 1545 1546 spapr->htab_shift = shift; 1547 spapr->htab = NULL; 1548 } else { 1549 /* kernel-side HPT not needed, allocate in userspace instead */ 1550 size_t size = 1ULL << shift; 1551 int i; 1552 1553 spapr->htab = qemu_memalign(size, size); 1554 if (!spapr->htab) { 1555 error_setg_errno(errp, errno, 1556 "Could not allocate HPT of order %d", shift); 1557 return; 1558 } 1559 1560 memset(spapr->htab, 0, size); 1561 spapr->htab_shift = shift; 1562 1563 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1564 DIRTY_HPTE(HPTE(spapr->htab, i)); 1565 } 1566 } 1567 /* We're setting up a hash table, so that means we're not radix */ 1568 spapr->patb_entry = 0; 1569 } 1570 1571 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1572 { 1573 int hpt_shift; 1574 1575 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1576 || (spapr->cas_reboot 1577 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1578 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1579 } else { 1580 uint64_t current_ram_size; 1581 1582 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1583 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1584 } 1585 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1586 1587 if (spapr->vrma_adjust) { 1588 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1589 spapr->htab_shift); 1590 } 1591 } 1592 1593 static int spapr_reset_drcs(Object *child, void *opaque) 1594 { 1595 sPAPRDRConnector *drc = 1596 (sPAPRDRConnector *) object_dynamic_cast(child, 1597 TYPE_SPAPR_DR_CONNECTOR); 1598 1599 if (drc) { 1600 spapr_drc_reset(drc); 1601 } 1602 1603 return 0; 1604 } 1605 1606 static void spapr_machine_reset(void) 1607 { 1608 MachineState *machine = MACHINE(qdev_get_machine()); 1609 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1610 PowerPCCPU *first_ppc_cpu; 1611 uint32_t rtas_limit; 1612 hwaddr rtas_addr, fdt_addr; 1613 void *fdt; 1614 int rc; 1615 1616 spapr_caps_apply(spapr); 1617 1618 first_ppc_cpu = POWERPC_CPU(first_cpu); 1619 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1620 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1621 spapr->max_compat_pvr)) { 1622 /* If using KVM with radix mode available, VCPUs can be started 1623 * without a HPT because KVM will start them in radix mode. 1624 * Set the GR bit in PATB so that we know there is no HPT. */ 1625 spapr->patb_entry = PATBE1_GR; 1626 } else { 1627 spapr_setup_hpt_and_vrma(spapr); 1628 } 1629 1630 /* if this reset wasn't generated by CAS, we should reset our 1631 * negotiated options and start from scratch */ 1632 if (!spapr->cas_reboot) { 1633 spapr_ovec_cleanup(spapr->ov5_cas); 1634 spapr->ov5_cas = spapr_ovec_new(); 1635 1636 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1637 } 1638 1639 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1640 spapr_irq_msi_reset(spapr); 1641 } 1642 1643 qemu_devices_reset(); 1644 1645 /* 1646 * This is fixing some of the default configuration of the XIVE 1647 * devices. To be called after the reset of the machine devices. 1648 */ 1649 spapr_irq_reset(spapr, &error_fatal); 1650 1651 /* DRC reset may cause a device to be unplugged. This will cause troubles 1652 * if this device is used by another device (eg, a running vhost backend 1653 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1654 * situations, we reset DRCs after all devices have been reset. 1655 */ 1656 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1657 1658 spapr_clear_pending_events(spapr); 1659 1660 /* 1661 * We place the device tree and RTAS just below either the top of the RMA, 1662 * or just below 2GB, whichever is lower, so that it can be 1663 * processed with 32-bit real mode code if necessary 1664 */ 1665 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1666 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1667 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1668 1669 fdt = spapr_build_fdt(spapr); 1670 1671 spapr_load_rtas(spapr, fdt, rtas_addr); 1672 1673 rc = fdt_pack(fdt); 1674 1675 /* Should only fail if we've built a corrupted tree */ 1676 assert(rc == 0); 1677 1678 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1679 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1680 fdt_totalsize(fdt), FDT_MAX_SIZE); 1681 exit(1); 1682 } 1683 1684 /* Load the fdt */ 1685 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1686 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1687 g_free(spapr->fdt_blob); 1688 spapr->fdt_size = fdt_totalsize(fdt); 1689 spapr->fdt_initial_size = spapr->fdt_size; 1690 spapr->fdt_blob = fdt; 1691 1692 /* Set up the entry state */ 1693 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1694 first_ppc_cpu->env.gpr[5] = 0; 1695 1696 spapr->cas_reboot = false; 1697 } 1698 1699 static void spapr_create_nvram(sPAPRMachineState *spapr) 1700 { 1701 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1702 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1703 1704 if (dinfo) { 1705 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1706 &error_fatal); 1707 } 1708 1709 qdev_init_nofail(dev); 1710 1711 spapr->nvram = (struct sPAPRNVRAM *)dev; 1712 } 1713 1714 static void spapr_rtc_create(sPAPRMachineState *spapr) 1715 { 1716 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1717 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1718 &error_fatal); 1719 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1720 &error_fatal); 1721 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1722 "date", &error_fatal); 1723 } 1724 1725 /* Returns whether we want to use VGA or not */ 1726 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1727 { 1728 switch (vga_interface_type) { 1729 case VGA_NONE: 1730 return false; 1731 case VGA_DEVICE: 1732 return true; 1733 case VGA_STD: 1734 case VGA_VIRTIO: 1735 case VGA_CIRRUS: 1736 return pci_vga_init(pci_bus) != NULL; 1737 default: 1738 error_setg(errp, 1739 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1740 return false; 1741 } 1742 } 1743 1744 static int spapr_pre_load(void *opaque) 1745 { 1746 int rc; 1747 1748 rc = spapr_caps_pre_load(opaque); 1749 if (rc) { 1750 return rc; 1751 } 1752 1753 return 0; 1754 } 1755 1756 static int spapr_post_load(void *opaque, int version_id) 1757 { 1758 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1759 int err = 0; 1760 1761 err = spapr_caps_post_migration(spapr); 1762 if (err) { 1763 return err; 1764 } 1765 1766 /* 1767 * In earlier versions, there was no separate qdev for the PAPR 1768 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1769 * So when migrating from those versions, poke the incoming offset 1770 * value into the RTC device 1771 */ 1772 if (version_id < 3) { 1773 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1774 if (err) { 1775 return err; 1776 } 1777 } 1778 1779 if (kvm_enabled() && spapr->patb_entry) { 1780 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1781 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1782 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1783 1784 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1785 if (err) { 1786 error_report("Process table config unsupported by the host"); 1787 return -EINVAL; 1788 } 1789 } 1790 1791 err = spapr_irq_post_load(spapr, version_id); 1792 if (err) { 1793 return err; 1794 } 1795 1796 return err; 1797 } 1798 1799 static int spapr_pre_save(void *opaque) 1800 { 1801 int rc; 1802 1803 rc = spapr_caps_pre_save(opaque); 1804 if (rc) { 1805 return rc; 1806 } 1807 1808 return 0; 1809 } 1810 1811 static bool version_before_3(void *opaque, int version_id) 1812 { 1813 return version_id < 3; 1814 } 1815 1816 static bool spapr_pending_events_needed(void *opaque) 1817 { 1818 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1819 return !QTAILQ_EMPTY(&spapr->pending_events); 1820 } 1821 1822 static const VMStateDescription vmstate_spapr_event_entry = { 1823 .name = "spapr_event_log_entry", 1824 .version_id = 1, 1825 .minimum_version_id = 1, 1826 .fields = (VMStateField[]) { 1827 VMSTATE_UINT32(summary, sPAPREventLogEntry), 1828 VMSTATE_UINT32(extended_length, sPAPREventLogEntry), 1829 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, 1830 NULL, extended_length), 1831 VMSTATE_END_OF_LIST() 1832 }, 1833 }; 1834 1835 static const VMStateDescription vmstate_spapr_pending_events = { 1836 .name = "spapr_pending_events", 1837 .version_id = 1, 1838 .minimum_version_id = 1, 1839 .needed = spapr_pending_events_needed, 1840 .fields = (VMStateField[]) { 1841 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, 1842 vmstate_spapr_event_entry, sPAPREventLogEntry, next), 1843 VMSTATE_END_OF_LIST() 1844 }, 1845 }; 1846 1847 static bool spapr_ov5_cas_needed(void *opaque) 1848 { 1849 sPAPRMachineState *spapr = opaque; 1850 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1851 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1852 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1853 bool cas_needed; 1854 1855 /* Prior to the introduction of sPAPROptionVector, we had two option 1856 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1857 * Both of these options encode machine topology into the device-tree 1858 * in such a way that the now-booted OS should still be able to interact 1859 * appropriately with QEMU regardless of what options were actually 1860 * negotiatied on the source side. 1861 * 1862 * As such, we can avoid migrating the CAS-negotiated options if these 1863 * are the only options available on the current machine/platform. 1864 * Since these are the only options available for pseries-2.7 and 1865 * earlier, this allows us to maintain old->new/new->old migration 1866 * compatibility. 1867 * 1868 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1869 * via default pseries-2.8 machines and explicit command-line parameters. 1870 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1871 * of the actual CAS-negotiated values to continue working properly. For 1872 * example, availability of memory unplug depends on knowing whether 1873 * OV5_HP_EVT was negotiated via CAS. 1874 * 1875 * Thus, for any cases where the set of available CAS-negotiatable 1876 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1877 * include the CAS-negotiated options in the migration stream, unless 1878 * if they affect boot time behaviour only. 1879 */ 1880 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1881 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1882 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1883 1884 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1885 * the mask itself since in the future it's possible "legacy" bits may be 1886 * removed via machine options, which could generate a false positive 1887 * that breaks migration. 1888 */ 1889 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1890 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1891 1892 spapr_ovec_cleanup(ov5_mask); 1893 spapr_ovec_cleanup(ov5_legacy); 1894 spapr_ovec_cleanup(ov5_removed); 1895 1896 return cas_needed; 1897 } 1898 1899 static const VMStateDescription vmstate_spapr_ov5_cas = { 1900 .name = "spapr_option_vector_ov5_cas", 1901 .version_id = 1, 1902 .minimum_version_id = 1, 1903 .needed = spapr_ov5_cas_needed, 1904 .fields = (VMStateField[]) { 1905 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1906 vmstate_spapr_ovec, sPAPROptionVector), 1907 VMSTATE_END_OF_LIST() 1908 }, 1909 }; 1910 1911 static bool spapr_patb_entry_needed(void *opaque) 1912 { 1913 sPAPRMachineState *spapr = opaque; 1914 1915 return !!spapr->patb_entry; 1916 } 1917 1918 static const VMStateDescription vmstate_spapr_patb_entry = { 1919 .name = "spapr_patb_entry", 1920 .version_id = 1, 1921 .minimum_version_id = 1, 1922 .needed = spapr_patb_entry_needed, 1923 .fields = (VMStateField[]) { 1924 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1925 VMSTATE_END_OF_LIST() 1926 }, 1927 }; 1928 1929 static bool spapr_irq_map_needed(void *opaque) 1930 { 1931 sPAPRMachineState *spapr = opaque; 1932 1933 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1934 } 1935 1936 static const VMStateDescription vmstate_spapr_irq_map = { 1937 .name = "spapr_irq_map", 1938 .version_id = 1, 1939 .minimum_version_id = 1, 1940 .needed = spapr_irq_map_needed, 1941 .fields = (VMStateField[]) { 1942 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr), 1943 VMSTATE_END_OF_LIST() 1944 }, 1945 }; 1946 1947 static bool spapr_dtb_needed(void *opaque) 1948 { 1949 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1950 1951 return smc->update_dt_enabled; 1952 } 1953 1954 static int spapr_dtb_pre_load(void *opaque) 1955 { 1956 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1957 1958 g_free(spapr->fdt_blob); 1959 spapr->fdt_blob = NULL; 1960 spapr->fdt_size = 0; 1961 1962 return 0; 1963 } 1964 1965 static const VMStateDescription vmstate_spapr_dtb = { 1966 .name = "spapr_dtb", 1967 .version_id = 1, 1968 .minimum_version_id = 1, 1969 .needed = spapr_dtb_needed, 1970 .pre_load = spapr_dtb_pre_load, 1971 .fields = (VMStateField[]) { 1972 VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState), 1973 VMSTATE_UINT32(fdt_size, sPAPRMachineState), 1974 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL, 1975 fdt_size), 1976 VMSTATE_END_OF_LIST() 1977 }, 1978 }; 1979 1980 static const VMStateDescription vmstate_spapr = { 1981 .name = "spapr", 1982 .version_id = 3, 1983 .minimum_version_id = 1, 1984 .pre_load = spapr_pre_load, 1985 .post_load = spapr_post_load, 1986 .pre_save = spapr_pre_save, 1987 .fields = (VMStateField[]) { 1988 /* used to be @next_irq */ 1989 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 1990 1991 /* RTC offset */ 1992 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 1993 1994 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 1995 VMSTATE_END_OF_LIST() 1996 }, 1997 .subsections = (const VMStateDescription*[]) { 1998 &vmstate_spapr_ov5_cas, 1999 &vmstate_spapr_patb_entry, 2000 &vmstate_spapr_pending_events, 2001 &vmstate_spapr_cap_htm, 2002 &vmstate_spapr_cap_vsx, 2003 &vmstate_spapr_cap_dfp, 2004 &vmstate_spapr_cap_cfpc, 2005 &vmstate_spapr_cap_sbbc, 2006 &vmstate_spapr_cap_ibs, 2007 &vmstate_spapr_irq_map, 2008 &vmstate_spapr_cap_nested_kvm_hv, 2009 &vmstate_spapr_dtb, 2010 NULL 2011 } 2012 }; 2013 2014 static int htab_save_setup(QEMUFile *f, void *opaque) 2015 { 2016 sPAPRMachineState *spapr = opaque; 2017 2018 /* "Iteration" header */ 2019 if (!spapr->htab_shift) { 2020 qemu_put_be32(f, -1); 2021 } else { 2022 qemu_put_be32(f, spapr->htab_shift); 2023 } 2024 2025 if (spapr->htab) { 2026 spapr->htab_save_index = 0; 2027 spapr->htab_first_pass = true; 2028 } else { 2029 if (spapr->htab_shift) { 2030 assert(kvm_enabled()); 2031 } 2032 } 2033 2034 2035 return 0; 2036 } 2037 2038 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, 2039 int chunkstart, int n_valid, int n_invalid) 2040 { 2041 qemu_put_be32(f, chunkstart); 2042 qemu_put_be16(f, n_valid); 2043 qemu_put_be16(f, n_invalid); 2044 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2045 HASH_PTE_SIZE_64 * n_valid); 2046 } 2047 2048 static void htab_save_end_marker(QEMUFile *f) 2049 { 2050 qemu_put_be32(f, 0); 2051 qemu_put_be16(f, 0); 2052 qemu_put_be16(f, 0); 2053 } 2054 2055 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 2056 int64_t max_ns) 2057 { 2058 bool has_timeout = max_ns != -1; 2059 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2060 int index = spapr->htab_save_index; 2061 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2062 2063 assert(spapr->htab_first_pass); 2064 2065 do { 2066 int chunkstart; 2067 2068 /* Consume invalid HPTEs */ 2069 while ((index < htabslots) 2070 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2071 CLEAN_HPTE(HPTE(spapr->htab, index)); 2072 index++; 2073 } 2074 2075 /* Consume valid HPTEs */ 2076 chunkstart = index; 2077 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2078 && HPTE_VALID(HPTE(spapr->htab, index))) { 2079 CLEAN_HPTE(HPTE(spapr->htab, index)); 2080 index++; 2081 } 2082 2083 if (index > chunkstart) { 2084 int n_valid = index - chunkstart; 2085 2086 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2087 2088 if (has_timeout && 2089 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2090 break; 2091 } 2092 } 2093 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2094 2095 if (index >= htabslots) { 2096 assert(index == htabslots); 2097 index = 0; 2098 spapr->htab_first_pass = false; 2099 } 2100 spapr->htab_save_index = index; 2101 } 2102 2103 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 2104 int64_t max_ns) 2105 { 2106 bool final = max_ns < 0; 2107 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2108 int examined = 0, sent = 0; 2109 int index = spapr->htab_save_index; 2110 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2111 2112 assert(!spapr->htab_first_pass); 2113 2114 do { 2115 int chunkstart, invalidstart; 2116 2117 /* Consume non-dirty HPTEs */ 2118 while ((index < htabslots) 2119 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2120 index++; 2121 examined++; 2122 } 2123 2124 chunkstart = index; 2125 /* Consume valid dirty HPTEs */ 2126 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2127 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2128 && HPTE_VALID(HPTE(spapr->htab, index))) { 2129 CLEAN_HPTE(HPTE(spapr->htab, index)); 2130 index++; 2131 examined++; 2132 } 2133 2134 invalidstart = index; 2135 /* Consume invalid dirty HPTEs */ 2136 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2137 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2138 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2139 CLEAN_HPTE(HPTE(spapr->htab, index)); 2140 index++; 2141 examined++; 2142 } 2143 2144 if (index > chunkstart) { 2145 int n_valid = invalidstart - chunkstart; 2146 int n_invalid = index - invalidstart; 2147 2148 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2149 sent += index - chunkstart; 2150 2151 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2152 break; 2153 } 2154 } 2155 2156 if (examined >= htabslots) { 2157 break; 2158 } 2159 2160 if (index >= htabslots) { 2161 assert(index == htabslots); 2162 index = 0; 2163 } 2164 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2165 2166 if (index >= htabslots) { 2167 assert(index == htabslots); 2168 index = 0; 2169 } 2170 2171 spapr->htab_save_index = index; 2172 2173 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2174 } 2175 2176 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2177 #define MAX_KVM_BUF_SIZE 2048 2178 2179 static int htab_save_iterate(QEMUFile *f, void *opaque) 2180 { 2181 sPAPRMachineState *spapr = opaque; 2182 int fd; 2183 int rc = 0; 2184 2185 /* Iteration header */ 2186 if (!spapr->htab_shift) { 2187 qemu_put_be32(f, -1); 2188 return 1; 2189 } else { 2190 qemu_put_be32(f, 0); 2191 } 2192 2193 if (!spapr->htab) { 2194 assert(kvm_enabled()); 2195 2196 fd = get_htab_fd(spapr); 2197 if (fd < 0) { 2198 return fd; 2199 } 2200 2201 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2202 if (rc < 0) { 2203 return rc; 2204 } 2205 } else if (spapr->htab_first_pass) { 2206 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2207 } else { 2208 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2209 } 2210 2211 htab_save_end_marker(f); 2212 2213 return rc; 2214 } 2215 2216 static int htab_save_complete(QEMUFile *f, void *opaque) 2217 { 2218 sPAPRMachineState *spapr = opaque; 2219 int fd; 2220 2221 /* Iteration header */ 2222 if (!spapr->htab_shift) { 2223 qemu_put_be32(f, -1); 2224 return 0; 2225 } else { 2226 qemu_put_be32(f, 0); 2227 } 2228 2229 if (!spapr->htab) { 2230 int rc; 2231 2232 assert(kvm_enabled()); 2233 2234 fd = get_htab_fd(spapr); 2235 if (fd < 0) { 2236 return fd; 2237 } 2238 2239 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2240 if (rc < 0) { 2241 return rc; 2242 } 2243 } else { 2244 if (spapr->htab_first_pass) { 2245 htab_save_first_pass(f, spapr, -1); 2246 } 2247 htab_save_later_pass(f, spapr, -1); 2248 } 2249 2250 /* End marker */ 2251 htab_save_end_marker(f); 2252 2253 return 0; 2254 } 2255 2256 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2257 { 2258 sPAPRMachineState *spapr = opaque; 2259 uint32_t section_hdr; 2260 int fd = -1; 2261 Error *local_err = NULL; 2262 2263 if (version_id < 1 || version_id > 1) { 2264 error_report("htab_load() bad version"); 2265 return -EINVAL; 2266 } 2267 2268 section_hdr = qemu_get_be32(f); 2269 2270 if (section_hdr == -1) { 2271 spapr_free_hpt(spapr); 2272 return 0; 2273 } 2274 2275 if (section_hdr) { 2276 /* First section gives the htab size */ 2277 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2278 if (local_err) { 2279 error_report_err(local_err); 2280 return -EINVAL; 2281 } 2282 return 0; 2283 } 2284 2285 if (!spapr->htab) { 2286 assert(kvm_enabled()); 2287 2288 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2289 if (fd < 0) { 2290 error_report_err(local_err); 2291 return fd; 2292 } 2293 } 2294 2295 while (true) { 2296 uint32_t index; 2297 uint16_t n_valid, n_invalid; 2298 2299 index = qemu_get_be32(f); 2300 n_valid = qemu_get_be16(f); 2301 n_invalid = qemu_get_be16(f); 2302 2303 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2304 /* End of Stream */ 2305 break; 2306 } 2307 2308 if ((index + n_valid + n_invalid) > 2309 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2310 /* Bad index in stream */ 2311 error_report( 2312 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2313 index, n_valid, n_invalid, spapr->htab_shift); 2314 return -EINVAL; 2315 } 2316 2317 if (spapr->htab) { 2318 if (n_valid) { 2319 qemu_get_buffer(f, HPTE(spapr->htab, index), 2320 HASH_PTE_SIZE_64 * n_valid); 2321 } 2322 if (n_invalid) { 2323 memset(HPTE(spapr->htab, index + n_valid), 0, 2324 HASH_PTE_SIZE_64 * n_invalid); 2325 } 2326 } else { 2327 int rc; 2328 2329 assert(fd >= 0); 2330 2331 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2332 if (rc < 0) { 2333 return rc; 2334 } 2335 } 2336 } 2337 2338 if (!spapr->htab) { 2339 assert(fd >= 0); 2340 close(fd); 2341 } 2342 2343 return 0; 2344 } 2345 2346 static void htab_save_cleanup(void *opaque) 2347 { 2348 sPAPRMachineState *spapr = opaque; 2349 2350 close_htab_fd(spapr); 2351 } 2352 2353 static SaveVMHandlers savevm_htab_handlers = { 2354 .save_setup = htab_save_setup, 2355 .save_live_iterate = htab_save_iterate, 2356 .save_live_complete_precopy = htab_save_complete, 2357 .save_cleanup = htab_save_cleanup, 2358 .load_state = htab_load, 2359 }; 2360 2361 static void spapr_boot_set(void *opaque, const char *boot_device, 2362 Error **errp) 2363 { 2364 MachineState *machine = MACHINE(opaque); 2365 machine->boot_order = g_strdup(boot_device); 2366 } 2367 2368 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 2369 { 2370 MachineState *machine = MACHINE(spapr); 2371 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2372 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2373 int i; 2374 2375 for (i = 0; i < nr_lmbs; i++) { 2376 uint64_t addr; 2377 2378 addr = i * lmb_size + machine->device_memory->base; 2379 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2380 addr / lmb_size); 2381 } 2382 } 2383 2384 /* 2385 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2386 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2387 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2388 */ 2389 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2390 { 2391 int i; 2392 2393 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2394 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2395 " is not aligned to %" PRIu64 " MiB", 2396 machine->ram_size, 2397 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2398 return; 2399 } 2400 2401 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2402 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2403 " is not aligned to %" PRIu64 " MiB", 2404 machine->ram_size, 2405 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2406 return; 2407 } 2408 2409 for (i = 0; i < nb_numa_nodes; i++) { 2410 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2411 error_setg(errp, 2412 "Node %d memory size 0x%" PRIx64 2413 " is not aligned to %" PRIu64 " MiB", 2414 i, numa_info[i].node_mem, 2415 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2416 return; 2417 } 2418 } 2419 } 2420 2421 /* find cpu slot in machine->possible_cpus by core_id */ 2422 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2423 { 2424 int index = id / smp_threads; 2425 2426 if (index >= ms->possible_cpus->len) { 2427 return NULL; 2428 } 2429 if (idx) { 2430 *idx = index; 2431 } 2432 return &ms->possible_cpus->cpus[index]; 2433 } 2434 2435 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) 2436 { 2437 Error *local_err = NULL; 2438 bool vsmt_user = !!spapr->vsmt; 2439 int kvm_smt = kvmppc_smt_threads(); 2440 int ret; 2441 2442 if (!kvm_enabled() && (smp_threads > 1)) { 2443 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2444 "on a pseries machine"); 2445 goto out; 2446 } 2447 if (!is_power_of_2(smp_threads)) { 2448 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2449 "machine because it must be a power of 2", smp_threads); 2450 goto out; 2451 } 2452 2453 /* Detemine the VSMT mode to use: */ 2454 if (vsmt_user) { 2455 if (spapr->vsmt < smp_threads) { 2456 error_setg(&local_err, "Cannot support VSMT mode %d" 2457 " because it must be >= threads/core (%d)", 2458 spapr->vsmt, smp_threads); 2459 goto out; 2460 } 2461 /* In this case, spapr->vsmt has been set by the command line */ 2462 } else { 2463 /* 2464 * Default VSMT value is tricky, because we need it to be as 2465 * consistent as possible (for migration), but this requires 2466 * changing it for at least some existing cases. We pick 8 as 2467 * the value that we'd get with KVM on POWER8, the 2468 * overwhelmingly common case in production systems. 2469 */ 2470 spapr->vsmt = MAX(8, smp_threads); 2471 } 2472 2473 /* KVM: If necessary, set the SMT mode: */ 2474 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2475 ret = kvmppc_set_smt_threads(spapr->vsmt); 2476 if (ret) { 2477 /* Looks like KVM isn't able to change VSMT mode */ 2478 error_setg(&local_err, 2479 "Failed to set KVM's VSMT mode to %d (errno %d)", 2480 spapr->vsmt, ret); 2481 /* We can live with that if the default one is big enough 2482 * for the number of threads, and a submultiple of the one 2483 * we want. In this case we'll waste some vcpu ids, but 2484 * behaviour will be correct */ 2485 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2486 warn_report_err(local_err); 2487 local_err = NULL; 2488 goto out; 2489 } else { 2490 if (!vsmt_user) { 2491 error_append_hint(&local_err, 2492 "On PPC, a VM with %d threads/core" 2493 " on a host with %d threads/core" 2494 " requires the use of VSMT mode %d.\n", 2495 smp_threads, kvm_smt, spapr->vsmt); 2496 } 2497 kvmppc_hint_smt_possible(&local_err); 2498 goto out; 2499 } 2500 } 2501 } 2502 /* else TCG: nothing to do currently */ 2503 out: 2504 error_propagate(errp, local_err); 2505 } 2506 2507 static void spapr_init_cpus(sPAPRMachineState *spapr) 2508 { 2509 MachineState *machine = MACHINE(spapr); 2510 MachineClass *mc = MACHINE_GET_CLASS(machine); 2511 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2512 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2513 const CPUArchIdList *possible_cpus; 2514 int boot_cores_nr = smp_cpus / smp_threads; 2515 int i; 2516 2517 possible_cpus = mc->possible_cpu_arch_ids(machine); 2518 if (mc->has_hotpluggable_cpus) { 2519 if (smp_cpus % smp_threads) { 2520 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2521 smp_cpus, smp_threads); 2522 exit(1); 2523 } 2524 if (max_cpus % smp_threads) { 2525 error_report("max_cpus (%u) must be multiple of threads (%u)", 2526 max_cpus, smp_threads); 2527 exit(1); 2528 } 2529 } else { 2530 if (max_cpus != smp_cpus) { 2531 error_report("This machine version does not support CPU hotplug"); 2532 exit(1); 2533 } 2534 boot_cores_nr = possible_cpus->len; 2535 } 2536 2537 if (smc->pre_2_10_has_unused_icps) { 2538 int i; 2539 2540 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2541 /* Dummy entries get deregistered when real ICPState objects 2542 * are registered during CPU core hotplug. 2543 */ 2544 pre_2_10_vmstate_register_dummy_icp(i); 2545 } 2546 } 2547 2548 for (i = 0; i < possible_cpus->len; i++) { 2549 int core_id = i * smp_threads; 2550 2551 if (mc->has_hotpluggable_cpus) { 2552 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2553 spapr_vcpu_id(spapr, core_id)); 2554 } 2555 2556 if (i < boot_cores_nr) { 2557 Object *core = object_new(type); 2558 int nr_threads = smp_threads; 2559 2560 /* Handle the partially filled core for older machine types */ 2561 if ((i + 1) * smp_threads >= smp_cpus) { 2562 nr_threads = smp_cpus - i * smp_threads; 2563 } 2564 2565 object_property_set_int(core, nr_threads, "nr-threads", 2566 &error_fatal); 2567 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2568 &error_fatal); 2569 object_property_set_bool(core, true, "realized", &error_fatal); 2570 2571 object_unref(core); 2572 } 2573 } 2574 } 2575 2576 static PCIHostState *spapr_create_default_phb(void) 2577 { 2578 DeviceState *dev; 2579 2580 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2581 qdev_prop_set_uint32(dev, "index", 0); 2582 qdev_init_nofail(dev); 2583 2584 return PCI_HOST_BRIDGE(dev); 2585 } 2586 2587 /* pSeries LPAR / sPAPR hardware init */ 2588 static void spapr_machine_init(MachineState *machine) 2589 { 2590 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2591 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2592 const char *kernel_filename = machine->kernel_filename; 2593 const char *initrd_filename = machine->initrd_filename; 2594 PCIHostState *phb; 2595 int i; 2596 MemoryRegion *sysmem = get_system_memory(); 2597 MemoryRegion *ram = g_new(MemoryRegion, 1); 2598 hwaddr node0_size = spapr_node0_size(machine); 2599 long load_limit, fw_size; 2600 char *filename; 2601 Error *resize_hpt_err = NULL; 2602 2603 msi_nonbroken = true; 2604 2605 QLIST_INIT(&spapr->phbs); 2606 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2607 2608 /* Determine capabilities to run with */ 2609 spapr_caps_init(spapr); 2610 2611 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2612 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2613 /* 2614 * If the user explicitly requested a mode we should either 2615 * supply it, or fail completely (which we do below). But if 2616 * it's not set explicitly, we reset our mode to something 2617 * that works 2618 */ 2619 if (resize_hpt_err) { 2620 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2621 error_free(resize_hpt_err); 2622 resize_hpt_err = NULL; 2623 } else { 2624 spapr->resize_hpt = smc->resize_hpt_default; 2625 } 2626 } 2627 2628 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2629 2630 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2631 /* 2632 * User requested HPT resize, but this host can't supply it. Bail out 2633 */ 2634 error_report_err(resize_hpt_err); 2635 exit(1); 2636 } 2637 2638 spapr->rma_size = node0_size; 2639 2640 /* With KVM, we don't actually know whether KVM supports an 2641 * unbounded RMA (PR KVM) or is limited by the hash table size 2642 * (HV KVM using VRMA), so we always assume the latter 2643 * 2644 * In that case, we also limit the initial allocations for RTAS 2645 * etc... to 256M since we have no way to know what the VRMA size 2646 * is going to be as it depends on the size of the hash table 2647 * which isn't determined yet. 2648 */ 2649 if (kvm_enabled()) { 2650 spapr->vrma_adjust = 1; 2651 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2652 } 2653 2654 /* Actually we don't support unbounded RMA anymore since we added 2655 * proper emulation of HV mode. The max we can get is 16G which 2656 * also happens to be what we configure for PAPR mode so make sure 2657 * we don't do anything bigger than that 2658 */ 2659 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2660 2661 if (spapr->rma_size > node0_size) { 2662 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2663 spapr->rma_size); 2664 exit(1); 2665 } 2666 2667 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2668 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2669 2670 /* 2671 * VSMT must be set in order to be able to compute VCPU ids, ie to 2672 * call spapr_max_server_number() or spapr_vcpu_id(). 2673 */ 2674 spapr_set_vsmt_mode(spapr, &error_fatal); 2675 2676 /* Set up Interrupt Controller before we create the VCPUs */ 2677 spapr_irq_init(spapr, &error_fatal); 2678 2679 /* Set up containers for ibm,client-architecture-support negotiated options 2680 */ 2681 spapr->ov5 = spapr_ovec_new(); 2682 spapr->ov5_cas = spapr_ovec_new(); 2683 2684 if (smc->dr_lmb_enabled) { 2685 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2686 spapr_validate_node_memory(machine, &error_fatal); 2687 } 2688 2689 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2690 2691 /* advertise support for dedicated HP event source to guests */ 2692 if (spapr->use_hotplug_event_source) { 2693 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2694 } 2695 2696 /* advertise support for HPT resizing */ 2697 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2698 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2699 } 2700 2701 /* advertise support for ibm,dyamic-memory-v2 */ 2702 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2703 2704 /* advertise XIVE on POWER9 machines */ 2705 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2706 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 2707 0, spapr->max_compat_pvr)) { 2708 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2709 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) { 2710 error_report("XIVE-only machines require a POWER9 CPU"); 2711 exit(1); 2712 } 2713 } 2714 2715 /* init CPUs */ 2716 spapr_init_cpus(spapr); 2717 2718 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2719 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2720 spapr->max_compat_pvr)) { 2721 /* KVM and TCG always allow GTSE with radix... */ 2722 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2723 } 2724 /* ... but not with hash (currently). */ 2725 2726 if (kvm_enabled()) { 2727 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2728 kvmppc_enable_logical_ci_hcalls(); 2729 kvmppc_enable_set_mode_hcall(); 2730 2731 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2732 kvmppc_enable_clear_ref_mod_hcalls(); 2733 } 2734 2735 /* allocate RAM */ 2736 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2737 machine->ram_size); 2738 memory_region_add_subregion(sysmem, 0, ram); 2739 2740 /* always allocate the device memory information */ 2741 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2742 2743 /* initialize hotplug memory address space */ 2744 if (machine->ram_size < machine->maxram_size) { 2745 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2746 /* 2747 * Limit the number of hotpluggable memory slots to half the number 2748 * slots that KVM supports, leaving the other half for PCI and other 2749 * devices. However ensure that number of slots doesn't drop below 32. 2750 */ 2751 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2752 SPAPR_MAX_RAM_SLOTS; 2753 2754 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2755 max_memslots = SPAPR_MAX_RAM_SLOTS; 2756 } 2757 if (machine->ram_slots > max_memslots) { 2758 error_report("Specified number of memory slots %" 2759 PRIu64" exceeds max supported %d", 2760 machine->ram_slots, max_memslots); 2761 exit(1); 2762 } 2763 2764 machine->device_memory->base = ROUND_UP(machine->ram_size, 2765 SPAPR_DEVICE_MEM_ALIGN); 2766 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2767 "device-memory", device_mem_size); 2768 memory_region_add_subregion(sysmem, machine->device_memory->base, 2769 &machine->device_memory->mr); 2770 } 2771 2772 if (smc->dr_lmb_enabled) { 2773 spapr_create_lmb_dr_connectors(spapr); 2774 } 2775 2776 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2777 if (!filename) { 2778 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2779 exit(1); 2780 } 2781 spapr->rtas_size = get_image_size(filename); 2782 if (spapr->rtas_size < 0) { 2783 error_report("Could not get size of LPAR rtas '%s'", filename); 2784 exit(1); 2785 } 2786 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2787 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2788 error_report("Could not load LPAR rtas '%s'", filename); 2789 exit(1); 2790 } 2791 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2792 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2793 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2794 exit(1); 2795 } 2796 g_free(filename); 2797 2798 /* Set up RTAS event infrastructure */ 2799 spapr_events_init(spapr); 2800 2801 /* Set up the RTC RTAS interfaces */ 2802 spapr_rtc_create(spapr); 2803 2804 /* Set up VIO bus */ 2805 spapr->vio_bus = spapr_vio_bus_init(); 2806 2807 for (i = 0; i < serial_max_hds(); i++) { 2808 if (serial_hd(i)) { 2809 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2810 } 2811 } 2812 2813 /* We always have at least the nvram device on VIO */ 2814 spapr_create_nvram(spapr); 2815 2816 /* Set up PCI */ 2817 spapr_pci_rtas_init(); 2818 2819 phb = spapr_create_default_phb(); 2820 2821 for (i = 0; i < nb_nics; i++) { 2822 NICInfo *nd = &nd_table[i]; 2823 2824 if (!nd->model) { 2825 nd->model = g_strdup("spapr-vlan"); 2826 } 2827 2828 if (g_str_equal(nd->model, "spapr-vlan") || 2829 g_str_equal(nd->model, "ibmveth")) { 2830 spapr_vlan_create(spapr->vio_bus, nd); 2831 } else { 2832 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2833 } 2834 } 2835 2836 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2837 spapr_vscsi_create(spapr->vio_bus); 2838 } 2839 2840 /* Graphics */ 2841 if (spapr_vga_init(phb->bus, &error_fatal)) { 2842 spapr->has_graphics = true; 2843 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2844 } 2845 2846 if (machine->usb) { 2847 if (smc->use_ohci_by_default) { 2848 pci_create_simple(phb->bus, -1, "pci-ohci"); 2849 } else { 2850 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2851 } 2852 2853 if (spapr->has_graphics) { 2854 USBBus *usb_bus = usb_bus_find(-1); 2855 2856 usb_create_simple(usb_bus, "usb-kbd"); 2857 usb_create_simple(usb_bus, "usb-mouse"); 2858 } 2859 } 2860 2861 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2862 error_report( 2863 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2864 MIN_RMA_SLOF); 2865 exit(1); 2866 } 2867 2868 if (kernel_filename) { 2869 uint64_t lowaddr = 0; 2870 2871 spapr->kernel_size = load_elf(kernel_filename, NULL, 2872 translate_kernel_address, NULL, 2873 NULL, &lowaddr, NULL, 1, 2874 PPC_ELF_MACHINE, 0, 0); 2875 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2876 spapr->kernel_size = load_elf(kernel_filename, NULL, 2877 translate_kernel_address, NULL, NULL, 2878 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2879 0, 0); 2880 spapr->kernel_le = spapr->kernel_size > 0; 2881 } 2882 if (spapr->kernel_size < 0) { 2883 error_report("error loading %s: %s", kernel_filename, 2884 load_elf_strerror(spapr->kernel_size)); 2885 exit(1); 2886 } 2887 2888 /* load initrd */ 2889 if (initrd_filename) { 2890 /* Try to locate the initrd in the gap between the kernel 2891 * and the firmware. Add a bit of space just in case 2892 */ 2893 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2894 + 0x1ffff) & ~0xffff; 2895 spapr->initrd_size = load_image_targphys(initrd_filename, 2896 spapr->initrd_base, 2897 load_limit 2898 - spapr->initrd_base); 2899 if (spapr->initrd_size < 0) { 2900 error_report("could not load initial ram disk '%s'", 2901 initrd_filename); 2902 exit(1); 2903 } 2904 } 2905 } 2906 2907 if (bios_name == NULL) { 2908 bios_name = FW_FILE_NAME; 2909 } 2910 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2911 if (!filename) { 2912 error_report("Could not find LPAR firmware '%s'", bios_name); 2913 exit(1); 2914 } 2915 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2916 if (fw_size <= 0) { 2917 error_report("Could not load LPAR firmware '%s'", filename); 2918 exit(1); 2919 } 2920 g_free(filename); 2921 2922 /* FIXME: Should register things through the MachineState's qdev 2923 * interface, this is a legacy from the sPAPREnvironment structure 2924 * which predated MachineState but had a similar function */ 2925 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2926 register_savevm_live(NULL, "spapr/htab", -1, 1, 2927 &savevm_htab_handlers, spapr); 2928 2929 qemu_register_boot_set(spapr_boot_set, spapr); 2930 2931 if (kvm_enabled()) { 2932 /* to stop and start vmclock */ 2933 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2934 &spapr->tb); 2935 2936 kvmppc_spapr_enable_inkernel_multitce(); 2937 } 2938 } 2939 2940 static int spapr_kvm_type(const char *vm_type) 2941 { 2942 if (!vm_type) { 2943 return 0; 2944 } 2945 2946 if (!strcmp(vm_type, "HV")) { 2947 return 1; 2948 } 2949 2950 if (!strcmp(vm_type, "PR")) { 2951 return 2; 2952 } 2953 2954 error_report("Unknown kvm-type specified '%s'", vm_type); 2955 exit(1); 2956 } 2957 2958 /* 2959 * Implementation of an interface to adjust firmware path 2960 * for the bootindex property handling. 2961 */ 2962 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 2963 DeviceState *dev) 2964 { 2965 #define CAST(type, obj, name) \ 2966 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 2967 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 2968 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 2969 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 2970 2971 if (d) { 2972 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 2973 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 2974 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 2975 2976 if (spapr) { 2977 /* 2978 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 2979 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 2980 * 0x8000 | (target << 8) | (bus << 5) | lun 2981 * (see the "Logical unit addressing format" table in SAM5) 2982 */ 2983 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 2984 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 2985 (uint64_t)id << 48); 2986 } else if (virtio) { 2987 /* 2988 * We use SRP luns of the form 01000000 | (target << 8) | lun 2989 * in the top 32 bits of the 64-bit LUN 2990 * Note: the quote above is from SLOF and it is wrong, 2991 * the actual binding is: 2992 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 2993 */ 2994 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 2995 if (d->lun >= 256) { 2996 /* Use the LUN "flat space addressing method" */ 2997 id |= 0x4000; 2998 } 2999 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3000 (uint64_t)id << 32); 3001 } else if (usb) { 3002 /* 3003 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3004 * in the top 32 bits of the 64-bit LUN 3005 */ 3006 unsigned usb_port = atoi(usb->port->path); 3007 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3008 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3009 (uint64_t)id << 32); 3010 } 3011 } 3012 3013 /* 3014 * SLOF probes the USB devices, and if it recognizes that the device is a 3015 * storage device, it changes its name to "storage" instead of "usb-host", 3016 * and additionally adds a child node for the SCSI LUN, so the correct 3017 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3018 */ 3019 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3020 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3021 if (usb_host_dev_is_scsi_storage(usbdev)) { 3022 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3023 } 3024 } 3025 3026 if (phb) { 3027 /* Replace "pci" with "pci@800000020000000" */ 3028 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3029 } 3030 3031 if (vsc) { 3032 /* Same logic as virtio above */ 3033 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3034 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3035 } 3036 3037 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3038 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3039 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3040 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3041 } 3042 3043 return NULL; 3044 } 3045 3046 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3047 { 3048 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3049 3050 return g_strdup(spapr->kvm_type); 3051 } 3052 3053 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3054 { 3055 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3056 3057 g_free(spapr->kvm_type); 3058 spapr->kvm_type = g_strdup(value); 3059 } 3060 3061 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3062 { 3063 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3064 3065 return spapr->use_hotplug_event_source; 3066 } 3067 3068 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3069 Error **errp) 3070 { 3071 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3072 3073 spapr->use_hotplug_event_source = value; 3074 } 3075 3076 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3077 { 3078 return true; 3079 } 3080 3081 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3082 { 3083 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3084 3085 switch (spapr->resize_hpt) { 3086 case SPAPR_RESIZE_HPT_DEFAULT: 3087 return g_strdup("default"); 3088 case SPAPR_RESIZE_HPT_DISABLED: 3089 return g_strdup("disabled"); 3090 case SPAPR_RESIZE_HPT_ENABLED: 3091 return g_strdup("enabled"); 3092 case SPAPR_RESIZE_HPT_REQUIRED: 3093 return g_strdup("required"); 3094 } 3095 g_assert_not_reached(); 3096 } 3097 3098 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3099 { 3100 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3101 3102 if (strcmp(value, "default") == 0) { 3103 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3104 } else if (strcmp(value, "disabled") == 0) { 3105 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3106 } else if (strcmp(value, "enabled") == 0) { 3107 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3108 } else if (strcmp(value, "required") == 0) { 3109 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3110 } else { 3111 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3112 } 3113 } 3114 3115 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3116 void *opaque, Error **errp) 3117 { 3118 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3119 } 3120 3121 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3122 void *opaque, Error **errp) 3123 { 3124 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3125 } 3126 3127 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3128 { 3129 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3130 3131 if (spapr->irq == &spapr_irq_xics_legacy) { 3132 return g_strdup("legacy"); 3133 } else if (spapr->irq == &spapr_irq_xics) { 3134 return g_strdup("xics"); 3135 } else if (spapr->irq == &spapr_irq_xive) { 3136 return g_strdup("xive"); 3137 } else if (spapr->irq == &spapr_irq_dual) { 3138 return g_strdup("dual"); 3139 } 3140 g_assert_not_reached(); 3141 } 3142 3143 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3144 { 3145 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3146 3147 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3148 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3149 return; 3150 } 3151 3152 /* The legacy IRQ backend can not be set */ 3153 if (strcmp(value, "xics") == 0) { 3154 spapr->irq = &spapr_irq_xics; 3155 } else if (strcmp(value, "xive") == 0) { 3156 spapr->irq = &spapr_irq_xive; 3157 } else if (strcmp(value, "dual") == 0) { 3158 spapr->irq = &spapr_irq_dual; 3159 } else { 3160 error_setg(errp, "Bad value for \"ic-mode\" property"); 3161 } 3162 } 3163 3164 static char *spapr_get_host_model(Object *obj, Error **errp) 3165 { 3166 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3167 3168 return g_strdup(spapr->host_model); 3169 } 3170 3171 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3172 { 3173 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3174 3175 g_free(spapr->host_model); 3176 spapr->host_model = g_strdup(value); 3177 } 3178 3179 static char *spapr_get_host_serial(Object *obj, Error **errp) 3180 { 3181 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3182 3183 return g_strdup(spapr->host_serial); 3184 } 3185 3186 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3187 { 3188 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3189 3190 g_free(spapr->host_serial); 3191 spapr->host_serial = g_strdup(value); 3192 } 3193 3194 static void spapr_instance_init(Object *obj) 3195 { 3196 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3197 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3198 3199 spapr->htab_fd = -1; 3200 spapr->use_hotplug_event_source = true; 3201 object_property_add_str(obj, "kvm-type", 3202 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3203 object_property_set_description(obj, "kvm-type", 3204 "Specifies the KVM virtualization mode (HV, PR)", 3205 NULL); 3206 object_property_add_bool(obj, "modern-hotplug-events", 3207 spapr_get_modern_hotplug_events, 3208 spapr_set_modern_hotplug_events, 3209 NULL); 3210 object_property_set_description(obj, "modern-hotplug-events", 3211 "Use dedicated hotplug event mechanism in" 3212 " place of standard EPOW events when possible" 3213 " (required for memory hot-unplug support)", 3214 NULL); 3215 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3216 "Maximum permitted CPU compatibility mode", 3217 &error_fatal); 3218 3219 object_property_add_str(obj, "resize-hpt", 3220 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3221 object_property_set_description(obj, "resize-hpt", 3222 "Resizing of the Hash Page Table (enabled, disabled, required)", 3223 NULL); 3224 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3225 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3226 object_property_set_description(obj, "vsmt", 3227 "Virtual SMT: KVM behaves as if this were" 3228 " the host's SMT mode", &error_abort); 3229 object_property_add_bool(obj, "vfio-no-msix-emulation", 3230 spapr_get_msix_emulation, NULL, NULL); 3231 3232 /* The machine class defines the default interrupt controller mode */ 3233 spapr->irq = smc->irq; 3234 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3235 spapr_set_ic_mode, NULL); 3236 object_property_set_description(obj, "ic-mode", 3237 "Specifies the interrupt controller mode (xics, xive, dual)", 3238 NULL); 3239 3240 object_property_add_str(obj, "host-model", 3241 spapr_get_host_model, spapr_set_host_model, 3242 &error_abort); 3243 object_property_set_description(obj, "host-model", 3244 "Set host's model-id to use - none|passthrough|string", &error_abort); 3245 object_property_add_str(obj, "host-serial", 3246 spapr_get_host_serial, spapr_set_host_serial, 3247 &error_abort); 3248 object_property_set_description(obj, "host-serial", 3249 "Set host's system-id to use - none|passthrough|string", &error_abort); 3250 } 3251 3252 static void spapr_machine_finalizefn(Object *obj) 3253 { 3254 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3255 3256 g_free(spapr->kvm_type); 3257 } 3258 3259 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3260 { 3261 cpu_synchronize_state(cs); 3262 ppc_cpu_do_system_reset(cs); 3263 } 3264 3265 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3266 { 3267 CPUState *cs; 3268 3269 CPU_FOREACH(cs) { 3270 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3271 } 3272 } 3273 3274 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3275 uint32_t node, bool dedicated_hp_event_source, 3276 Error **errp) 3277 { 3278 sPAPRDRConnector *drc; 3279 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3280 int i, fdt_offset, fdt_size; 3281 void *fdt; 3282 uint64_t addr = addr_start; 3283 bool hotplugged = spapr_drc_hotplugged(dev); 3284 Error *local_err = NULL; 3285 3286 for (i = 0; i < nr_lmbs; i++) { 3287 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3288 addr / SPAPR_MEMORY_BLOCK_SIZE); 3289 g_assert(drc); 3290 3291 fdt = create_device_tree(&fdt_size); 3292 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 3293 SPAPR_MEMORY_BLOCK_SIZE); 3294 3295 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3296 if (local_err) { 3297 while (addr > addr_start) { 3298 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3299 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3300 addr / SPAPR_MEMORY_BLOCK_SIZE); 3301 spapr_drc_detach(drc); 3302 } 3303 g_free(fdt); 3304 error_propagate(errp, local_err); 3305 return; 3306 } 3307 if (!hotplugged) { 3308 spapr_drc_reset(drc); 3309 } 3310 addr += SPAPR_MEMORY_BLOCK_SIZE; 3311 } 3312 /* send hotplug notification to the 3313 * guest only in case of hotplugged memory 3314 */ 3315 if (hotplugged) { 3316 if (dedicated_hp_event_source) { 3317 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3318 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3319 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3320 nr_lmbs, 3321 spapr_drc_index(drc)); 3322 } else { 3323 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3324 nr_lmbs); 3325 } 3326 } 3327 } 3328 3329 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3330 Error **errp) 3331 { 3332 Error *local_err = NULL; 3333 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3334 PCDIMMDevice *dimm = PC_DIMM(dev); 3335 uint64_t size, addr; 3336 uint32_t node; 3337 3338 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3339 3340 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3341 if (local_err) { 3342 goto out; 3343 } 3344 3345 addr = object_property_get_uint(OBJECT(dimm), 3346 PC_DIMM_ADDR_PROP, &local_err); 3347 if (local_err) { 3348 goto out_unplug; 3349 } 3350 3351 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, 3352 &error_abort); 3353 spapr_add_lmbs(dev, addr, size, node, 3354 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3355 &local_err); 3356 if (local_err) { 3357 goto out_unplug; 3358 } 3359 3360 return; 3361 3362 out_unplug: 3363 pc_dimm_unplug(dimm, MACHINE(ms)); 3364 out: 3365 error_propagate(errp, local_err); 3366 } 3367 3368 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3369 Error **errp) 3370 { 3371 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3372 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3373 PCDIMMDevice *dimm = PC_DIMM(dev); 3374 Error *local_err = NULL; 3375 uint64_t size; 3376 Object *memdev; 3377 hwaddr pagesize; 3378 3379 if (!smc->dr_lmb_enabled) { 3380 error_setg(errp, "Memory hotplug not supported for this machine"); 3381 return; 3382 } 3383 3384 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3385 if (local_err) { 3386 error_propagate(errp, local_err); 3387 return; 3388 } 3389 3390 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3391 error_setg(errp, "Hotplugged memory size must be a multiple of " 3392 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3393 return; 3394 } 3395 3396 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3397 &error_abort); 3398 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3399 spapr_check_pagesize(spapr, pagesize, &local_err); 3400 if (local_err) { 3401 error_propagate(errp, local_err); 3402 return; 3403 } 3404 3405 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3406 } 3407 3408 struct sPAPRDIMMState { 3409 PCDIMMDevice *dimm; 3410 uint32_t nr_lmbs; 3411 QTAILQ_ENTRY(sPAPRDIMMState) next; 3412 }; 3413 3414 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 3415 PCDIMMDevice *dimm) 3416 { 3417 sPAPRDIMMState *dimm_state = NULL; 3418 3419 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3420 if (dimm_state->dimm == dimm) { 3421 break; 3422 } 3423 } 3424 return dimm_state; 3425 } 3426 3427 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 3428 uint32_t nr_lmbs, 3429 PCDIMMDevice *dimm) 3430 { 3431 sPAPRDIMMState *ds = NULL; 3432 3433 /* 3434 * If this request is for a DIMM whose removal had failed earlier 3435 * (due to guest's refusal to remove the LMBs), we would have this 3436 * dimm already in the pending_dimm_unplugs list. In that 3437 * case don't add again. 3438 */ 3439 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3440 if (!ds) { 3441 ds = g_malloc0(sizeof(sPAPRDIMMState)); 3442 ds->nr_lmbs = nr_lmbs; 3443 ds->dimm = dimm; 3444 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3445 } 3446 return ds; 3447 } 3448 3449 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 3450 sPAPRDIMMState *dimm_state) 3451 { 3452 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3453 g_free(dimm_state); 3454 } 3455 3456 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 3457 PCDIMMDevice *dimm) 3458 { 3459 sPAPRDRConnector *drc; 3460 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3461 &error_abort); 3462 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3463 uint32_t avail_lmbs = 0; 3464 uint64_t addr_start, addr; 3465 int i; 3466 3467 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3468 &error_abort); 3469 3470 addr = addr_start; 3471 for (i = 0; i < nr_lmbs; i++) { 3472 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3473 addr / SPAPR_MEMORY_BLOCK_SIZE); 3474 g_assert(drc); 3475 if (drc->dev) { 3476 avail_lmbs++; 3477 } 3478 addr += SPAPR_MEMORY_BLOCK_SIZE; 3479 } 3480 3481 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3482 } 3483 3484 /* Callback to be called during DRC release. */ 3485 void spapr_lmb_release(DeviceState *dev) 3486 { 3487 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3488 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3489 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3490 3491 /* This information will get lost if a migration occurs 3492 * during the unplug process. In this case recover it. */ 3493 if (ds == NULL) { 3494 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3495 g_assert(ds); 3496 /* The DRC being examined by the caller at least must be counted */ 3497 g_assert(ds->nr_lmbs); 3498 } 3499 3500 if (--ds->nr_lmbs) { 3501 return; 3502 } 3503 3504 /* 3505 * Now that all the LMBs have been removed by the guest, call the 3506 * unplug handler chain. This can never fail. 3507 */ 3508 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3509 } 3510 3511 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3512 { 3513 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3514 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3515 3516 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3517 object_unparent(OBJECT(dev)); 3518 spapr_pending_dimm_unplugs_remove(spapr, ds); 3519 } 3520 3521 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3522 DeviceState *dev, Error **errp) 3523 { 3524 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3525 Error *local_err = NULL; 3526 PCDIMMDevice *dimm = PC_DIMM(dev); 3527 uint32_t nr_lmbs; 3528 uint64_t size, addr_start, addr; 3529 int i; 3530 sPAPRDRConnector *drc; 3531 3532 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3533 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3534 3535 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3536 &local_err); 3537 if (local_err) { 3538 goto out; 3539 } 3540 3541 /* 3542 * An existing pending dimm state for this DIMM means that there is an 3543 * unplug operation in progress, waiting for the spapr_lmb_release 3544 * callback to complete the job (BQL can't cover that far). In this case, 3545 * bail out to avoid detaching DRCs that were already released. 3546 */ 3547 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3548 error_setg(&local_err, 3549 "Memory unplug already in progress for device %s", 3550 dev->id); 3551 goto out; 3552 } 3553 3554 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3555 3556 addr = addr_start; 3557 for (i = 0; i < nr_lmbs; i++) { 3558 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3559 addr / SPAPR_MEMORY_BLOCK_SIZE); 3560 g_assert(drc); 3561 3562 spapr_drc_detach(drc); 3563 addr += SPAPR_MEMORY_BLOCK_SIZE; 3564 } 3565 3566 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3567 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3568 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3569 nr_lmbs, spapr_drc_index(drc)); 3570 out: 3571 error_propagate(errp, local_err); 3572 } 3573 3574 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 3575 sPAPRMachineState *spapr) 3576 { 3577 PowerPCCPU *cpu = POWERPC_CPU(cs); 3578 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3579 int id = spapr_get_vcpu_id(cpu); 3580 void *fdt; 3581 int offset, fdt_size; 3582 char *nodename; 3583 3584 fdt = create_device_tree(&fdt_size); 3585 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3586 offset = fdt_add_subnode(fdt, 0, nodename); 3587 3588 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3589 g_free(nodename); 3590 3591 *fdt_offset = offset; 3592 return fdt; 3593 } 3594 3595 /* Callback to be called during DRC release. */ 3596 void spapr_core_release(DeviceState *dev) 3597 { 3598 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3599 3600 /* Call the unplug handler chain. This can never fail. */ 3601 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3602 } 3603 3604 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3605 { 3606 MachineState *ms = MACHINE(hotplug_dev); 3607 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3608 CPUCore *cc = CPU_CORE(dev); 3609 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3610 3611 if (smc->pre_2_10_has_unused_icps) { 3612 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3613 int i; 3614 3615 for (i = 0; i < cc->nr_threads; i++) { 3616 CPUState *cs = CPU(sc->threads[i]); 3617 3618 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3619 } 3620 } 3621 3622 assert(core_slot); 3623 core_slot->cpu = NULL; 3624 object_unparent(OBJECT(dev)); 3625 } 3626 3627 static 3628 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3629 Error **errp) 3630 { 3631 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3632 int index; 3633 sPAPRDRConnector *drc; 3634 CPUCore *cc = CPU_CORE(dev); 3635 3636 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3637 error_setg(errp, "Unable to find CPU core with core-id: %d", 3638 cc->core_id); 3639 return; 3640 } 3641 if (index == 0) { 3642 error_setg(errp, "Boot CPU core may not be unplugged"); 3643 return; 3644 } 3645 3646 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3647 spapr_vcpu_id(spapr, cc->core_id)); 3648 g_assert(drc); 3649 3650 spapr_drc_detach(drc); 3651 3652 spapr_hotplug_req_remove_by_index(drc); 3653 } 3654 3655 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3656 Error **errp) 3657 { 3658 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3659 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3660 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3661 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3662 CPUCore *cc = CPU_CORE(dev); 3663 CPUState *cs = CPU(core->threads[0]); 3664 sPAPRDRConnector *drc; 3665 Error *local_err = NULL; 3666 CPUArchId *core_slot; 3667 int index; 3668 bool hotplugged = spapr_drc_hotplugged(dev); 3669 3670 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3671 if (!core_slot) { 3672 error_setg(errp, "Unable to find CPU core with core-id: %d", 3673 cc->core_id); 3674 return; 3675 } 3676 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3677 spapr_vcpu_id(spapr, cc->core_id)); 3678 3679 g_assert(drc || !mc->has_hotpluggable_cpus); 3680 3681 if (drc) { 3682 void *fdt; 3683 int fdt_offset; 3684 3685 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 3686 3687 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3688 if (local_err) { 3689 g_free(fdt); 3690 error_propagate(errp, local_err); 3691 return; 3692 } 3693 3694 if (hotplugged) { 3695 /* 3696 * Send hotplug notification interrupt to the guest only 3697 * in case of hotplugged CPUs. 3698 */ 3699 spapr_hotplug_req_add_by_index(drc); 3700 } else { 3701 spapr_drc_reset(drc); 3702 } 3703 } 3704 3705 core_slot->cpu = OBJECT(dev); 3706 3707 if (smc->pre_2_10_has_unused_icps) { 3708 int i; 3709 3710 for (i = 0; i < cc->nr_threads; i++) { 3711 cs = CPU(core->threads[i]); 3712 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3713 } 3714 } 3715 } 3716 3717 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3718 Error **errp) 3719 { 3720 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3721 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3722 Error *local_err = NULL; 3723 CPUCore *cc = CPU_CORE(dev); 3724 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3725 const char *type = object_get_typename(OBJECT(dev)); 3726 CPUArchId *core_slot; 3727 int index; 3728 3729 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3730 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3731 goto out; 3732 } 3733 3734 if (strcmp(base_core_type, type)) { 3735 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3736 goto out; 3737 } 3738 3739 if (cc->core_id % smp_threads) { 3740 error_setg(&local_err, "invalid core id %d", cc->core_id); 3741 goto out; 3742 } 3743 3744 /* 3745 * In general we should have homogeneous threads-per-core, but old 3746 * (pre hotplug support) machine types allow the last core to have 3747 * reduced threads as a compatibility hack for when we allowed 3748 * total vcpus not a multiple of threads-per-core. 3749 */ 3750 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3751 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3752 cc->nr_threads, smp_threads); 3753 goto out; 3754 } 3755 3756 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3757 if (!core_slot) { 3758 error_setg(&local_err, "core id %d out of range", cc->core_id); 3759 goto out; 3760 } 3761 3762 if (core_slot->cpu) { 3763 error_setg(&local_err, "core %d already populated", cc->core_id); 3764 goto out; 3765 } 3766 3767 numa_cpu_pre_plug(core_slot, dev, &local_err); 3768 3769 out: 3770 error_propagate(errp, local_err); 3771 } 3772 3773 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3774 DeviceState *dev, Error **errp) 3775 { 3776 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3777 spapr_memory_plug(hotplug_dev, dev, errp); 3778 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3779 spapr_core_plug(hotplug_dev, dev, errp); 3780 } 3781 } 3782 3783 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 3784 DeviceState *dev, Error **errp) 3785 { 3786 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3787 spapr_memory_unplug(hotplug_dev, dev); 3788 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3789 spapr_core_unplug(hotplug_dev, dev); 3790 } 3791 } 3792 3793 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3794 DeviceState *dev, Error **errp) 3795 { 3796 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3797 MachineClass *mc = MACHINE_GET_CLASS(sms); 3798 3799 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3800 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3801 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3802 } else { 3803 /* NOTE: this means there is a window after guest reset, prior to 3804 * CAS negotiation, where unplug requests will fail due to the 3805 * capability not being detected yet. This is a bit different than 3806 * the case with PCI unplug, where the events will be queued and 3807 * eventually handled by the guest after boot 3808 */ 3809 error_setg(errp, "Memory hot unplug not supported for this guest"); 3810 } 3811 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3812 if (!mc->has_hotpluggable_cpus) { 3813 error_setg(errp, "CPU hot unplug not supported on this machine"); 3814 return; 3815 } 3816 spapr_core_unplug_request(hotplug_dev, dev, errp); 3817 } 3818 } 3819 3820 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3821 DeviceState *dev, Error **errp) 3822 { 3823 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3824 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3825 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3826 spapr_core_pre_plug(hotplug_dev, dev, errp); 3827 } 3828 } 3829 3830 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3831 DeviceState *dev) 3832 { 3833 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3834 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3835 return HOTPLUG_HANDLER(machine); 3836 } 3837 return NULL; 3838 } 3839 3840 static CpuInstanceProperties 3841 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3842 { 3843 CPUArchId *core_slot; 3844 MachineClass *mc = MACHINE_GET_CLASS(machine); 3845 3846 /* make sure possible_cpu are intialized */ 3847 mc->possible_cpu_arch_ids(machine); 3848 /* get CPU core slot containing thread that matches cpu_index */ 3849 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3850 assert(core_slot); 3851 return core_slot->props; 3852 } 3853 3854 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 3855 { 3856 return idx / smp_cores % nb_numa_nodes; 3857 } 3858 3859 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3860 { 3861 int i; 3862 const char *core_type; 3863 int spapr_max_cores = max_cpus / smp_threads; 3864 MachineClass *mc = MACHINE_GET_CLASS(machine); 3865 3866 if (!mc->has_hotpluggable_cpus) { 3867 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3868 } 3869 if (machine->possible_cpus) { 3870 assert(machine->possible_cpus->len == spapr_max_cores); 3871 return machine->possible_cpus; 3872 } 3873 3874 core_type = spapr_get_cpu_core_type(machine->cpu_type); 3875 if (!core_type) { 3876 error_report("Unable to find sPAPR CPU Core definition"); 3877 exit(1); 3878 } 3879 3880 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3881 sizeof(CPUArchId) * spapr_max_cores); 3882 machine->possible_cpus->len = spapr_max_cores; 3883 for (i = 0; i < machine->possible_cpus->len; i++) { 3884 int core_id = i * smp_threads; 3885 3886 machine->possible_cpus->cpus[i].type = core_type; 3887 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3888 machine->possible_cpus->cpus[i].arch_id = core_id; 3889 machine->possible_cpus->cpus[i].props.has_core_id = true; 3890 machine->possible_cpus->cpus[i].props.core_id = core_id; 3891 } 3892 return machine->possible_cpus; 3893 } 3894 3895 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3896 uint64_t *buid, hwaddr *pio, 3897 hwaddr *mmio32, hwaddr *mmio64, 3898 unsigned n_dma, uint32_t *liobns, Error **errp) 3899 { 3900 /* 3901 * New-style PHB window placement. 3902 * 3903 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3904 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3905 * windows. 3906 * 3907 * Some guest kernels can't work with MMIO windows above 1<<46 3908 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3909 * 3910 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3911 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3912 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3913 * 1TiB 64-bit MMIO windows for each PHB. 3914 */ 3915 const uint64_t base_buid = 0x800000020000000ULL; 3916 int i; 3917 3918 /* Sanity check natural alignments */ 3919 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3920 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3921 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3922 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3923 /* Sanity check bounds */ 3924 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3925 SPAPR_PCI_MEM32_WIN_SIZE); 3926 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3927 SPAPR_PCI_MEM64_WIN_SIZE); 3928 3929 if (index >= SPAPR_MAX_PHBS) { 3930 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3931 SPAPR_MAX_PHBS - 1); 3932 return; 3933 } 3934 3935 *buid = base_buid + index; 3936 for (i = 0; i < n_dma; ++i) { 3937 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3938 } 3939 3940 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3941 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3942 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3943 } 3944 3945 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3946 { 3947 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3948 3949 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3950 } 3951 3952 static void spapr_ics_resend(XICSFabric *dev) 3953 { 3954 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3955 3956 ics_resend(spapr->ics); 3957 } 3958 3959 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 3960 { 3961 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 3962 3963 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 3964 } 3965 3966 static void spapr_pic_print_info(InterruptStatsProvider *obj, 3967 Monitor *mon) 3968 { 3969 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3970 3971 spapr->irq->print_info(spapr, mon); 3972 } 3973 3974 int spapr_get_vcpu_id(PowerPCCPU *cpu) 3975 { 3976 return cpu->vcpu_id; 3977 } 3978 3979 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 3980 { 3981 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3982 int vcpu_id; 3983 3984 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 3985 3986 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 3987 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 3988 error_append_hint(errp, "Adjust the number of cpus to %d " 3989 "or try to raise the number of threads per core\n", 3990 vcpu_id * smp_threads / spapr->vsmt); 3991 return; 3992 } 3993 3994 cpu->vcpu_id = vcpu_id; 3995 } 3996 3997 PowerPCCPU *spapr_find_cpu(int vcpu_id) 3998 { 3999 CPUState *cs; 4000 4001 CPU_FOREACH(cs) { 4002 PowerPCCPU *cpu = POWERPC_CPU(cs); 4003 4004 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4005 return cpu; 4006 } 4007 } 4008 4009 return NULL; 4010 } 4011 4012 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4013 { 4014 MachineClass *mc = MACHINE_CLASS(oc); 4015 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4016 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4017 NMIClass *nc = NMI_CLASS(oc); 4018 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4019 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4020 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4021 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4022 4023 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4024 mc->ignore_boot_device_suffixes = true; 4025 4026 /* 4027 * We set up the default / latest behaviour here. The class_init 4028 * functions for the specific versioned machine types can override 4029 * these details for backwards compatibility 4030 */ 4031 mc->init = spapr_machine_init; 4032 mc->reset = spapr_machine_reset; 4033 mc->block_default_type = IF_SCSI; 4034 mc->max_cpus = 1024; 4035 mc->no_parallel = 1; 4036 mc->default_boot_order = ""; 4037 mc->default_ram_size = 512 * MiB; 4038 mc->default_display = "std"; 4039 mc->kvm_type = spapr_kvm_type; 4040 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4041 mc->pci_allow_0_address = true; 4042 assert(!mc->get_hotplug_handler); 4043 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4044 hc->pre_plug = spapr_machine_device_pre_plug; 4045 hc->plug = spapr_machine_device_plug; 4046 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4047 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4048 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4049 hc->unplug_request = spapr_machine_device_unplug_request; 4050 hc->unplug = spapr_machine_device_unplug; 4051 4052 smc->dr_lmb_enabled = true; 4053 smc->update_dt_enabled = true; 4054 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4055 mc->has_hotpluggable_cpus = true; 4056 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4057 fwc->get_dev_path = spapr_get_fw_dev_path; 4058 nc->nmi_monitor_handler = spapr_nmi; 4059 smc->phb_placement = spapr_phb_placement; 4060 vhc->hypercall = emulate_spapr_hypercall; 4061 vhc->hpt_mask = spapr_hpt_mask; 4062 vhc->map_hptes = spapr_map_hptes; 4063 vhc->unmap_hptes = spapr_unmap_hptes; 4064 vhc->store_hpte = spapr_store_hpte; 4065 vhc->get_patbe = spapr_get_patbe; 4066 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4067 xic->ics_get = spapr_ics_get; 4068 xic->ics_resend = spapr_ics_resend; 4069 xic->icp_get = spapr_icp_get; 4070 ispc->print_info = spapr_pic_print_info; 4071 /* Force NUMA node memory size to be a multiple of 4072 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4073 * in which LMBs are represented and hot-added 4074 */ 4075 mc->numa_mem_align_shift = 28; 4076 4077 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4078 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4079 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4080 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4081 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4082 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4083 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4084 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4085 spapr_caps_add_properties(smc, &error_abort); 4086 smc->irq = &spapr_irq_xics; 4087 } 4088 4089 static const TypeInfo spapr_machine_info = { 4090 .name = TYPE_SPAPR_MACHINE, 4091 .parent = TYPE_MACHINE, 4092 .abstract = true, 4093 .instance_size = sizeof(sPAPRMachineState), 4094 .instance_init = spapr_instance_init, 4095 .instance_finalize = spapr_machine_finalizefn, 4096 .class_size = sizeof(sPAPRMachineClass), 4097 .class_init = spapr_machine_class_init, 4098 .interfaces = (InterfaceInfo[]) { 4099 { TYPE_FW_PATH_PROVIDER }, 4100 { TYPE_NMI }, 4101 { TYPE_HOTPLUG_HANDLER }, 4102 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4103 { TYPE_XICS_FABRIC }, 4104 { TYPE_INTERRUPT_STATS_PROVIDER }, 4105 { } 4106 }, 4107 }; 4108 4109 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4110 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4111 void *data) \ 4112 { \ 4113 MachineClass *mc = MACHINE_CLASS(oc); \ 4114 spapr_machine_##suffix##_class_options(mc); \ 4115 if (latest) { \ 4116 mc->alias = "pseries"; \ 4117 mc->is_default = 1; \ 4118 } \ 4119 } \ 4120 static const TypeInfo spapr_machine_##suffix##_info = { \ 4121 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4122 .parent = TYPE_SPAPR_MACHINE, \ 4123 .class_init = spapr_machine_##suffix##_class_init, \ 4124 }; \ 4125 static void spapr_machine_register_##suffix(void) \ 4126 { \ 4127 type_register(&spapr_machine_##suffix##_info); \ 4128 } \ 4129 type_init(spapr_machine_register_##suffix) 4130 4131 /* 4132 * pseries-4.0 4133 */ 4134 static void spapr_machine_4_0_class_options(MachineClass *mc) 4135 { 4136 /* Defaults for the latest behaviour inherited from the base class */ 4137 } 4138 4139 DEFINE_SPAPR_MACHINE(4_0, "4.0", true); 4140 4141 /* 4142 * pseries-3.1 4143 */ 4144 static void spapr_machine_3_1_class_options(MachineClass *mc) 4145 { 4146 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4147 static GlobalProperty compat[] = { 4148 { TYPE_SPAPR_MACHINE, "host-model", "passthrough" }, 4149 { TYPE_SPAPR_MACHINE, "host-serial", "passthrough" }, 4150 }; 4151 4152 spapr_machine_4_0_class_options(mc); 4153 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4154 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4155 4156 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4157 smc->update_dt_enabled = false; 4158 } 4159 4160 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4161 4162 /* 4163 * pseries-3.0 4164 */ 4165 4166 static void spapr_machine_3_0_class_options(MachineClass *mc) 4167 { 4168 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4169 4170 spapr_machine_3_1_class_options(mc); 4171 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4172 4173 smc->legacy_irq_allocation = true; 4174 smc->irq = &spapr_irq_xics_legacy; 4175 } 4176 4177 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4178 4179 /* 4180 * pseries-2.12 4181 */ 4182 static void spapr_machine_2_12_class_options(MachineClass *mc) 4183 { 4184 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4185 static GlobalProperty compat[] = { 4186 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4187 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4188 }; 4189 4190 spapr_machine_3_0_class_options(mc); 4191 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4192 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4193 4194 /* We depend on kvm_enabled() to choose a default value for the 4195 * hpt-max-page-size capability. Of course we can't do it here 4196 * because this is too early and the HW accelerator isn't initialzed 4197 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4198 */ 4199 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4200 } 4201 4202 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4203 4204 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4205 { 4206 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4207 4208 spapr_machine_2_12_class_options(mc); 4209 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4210 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4211 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4212 } 4213 4214 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4215 4216 /* 4217 * pseries-2.11 4218 */ 4219 4220 static void spapr_machine_2_11_class_options(MachineClass *mc) 4221 { 4222 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4223 4224 spapr_machine_2_12_class_options(mc); 4225 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4226 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4227 } 4228 4229 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4230 4231 /* 4232 * pseries-2.10 4233 */ 4234 4235 static void spapr_machine_2_10_class_options(MachineClass *mc) 4236 { 4237 spapr_machine_2_11_class_options(mc); 4238 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4239 } 4240 4241 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4242 4243 /* 4244 * pseries-2.9 4245 */ 4246 4247 static void spapr_machine_2_9_class_options(MachineClass *mc) 4248 { 4249 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4250 static GlobalProperty compat[] = { 4251 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4252 }; 4253 4254 spapr_machine_2_10_class_options(mc); 4255 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4256 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4257 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4258 smc->pre_2_10_has_unused_icps = true; 4259 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4260 } 4261 4262 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4263 4264 /* 4265 * pseries-2.8 4266 */ 4267 4268 static void spapr_machine_2_8_class_options(MachineClass *mc) 4269 { 4270 static GlobalProperty compat[] = { 4271 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4272 }; 4273 4274 spapr_machine_2_9_class_options(mc); 4275 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4276 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4277 mc->numa_mem_align_shift = 23; 4278 } 4279 4280 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4281 4282 /* 4283 * pseries-2.7 4284 */ 4285 4286 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 4287 uint64_t *buid, hwaddr *pio, 4288 hwaddr *mmio32, hwaddr *mmio64, 4289 unsigned n_dma, uint32_t *liobns, Error **errp) 4290 { 4291 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4292 const uint64_t base_buid = 0x800000020000000ULL; 4293 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4294 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4295 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4296 const uint32_t max_index = 255; 4297 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4298 4299 uint64_t ram_top = MACHINE(spapr)->ram_size; 4300 hwaddr phb0_base, phb_base; 4301 int i; 4302 4303 /* Do we have device memory? */ 4304 if (MACHINE(spapr)->maxram_size > ram_top) { 4305 /* Can't just use maxram_size, because there may be an 4306 * alignment gap between normal and device memory regions 4307 */ 4308 ram_top = MACHINE(spapr)->device_memory->base + 4309 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4310 } 4311 4312 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4313 4314 if (index > max_index) { 4315 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4316 max_index); 4317 return; 4318 } 4319 4320 *buid = base_buid + index; 4321 for (i = 0; i < n_dma; ++i) { 4322 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4323 } 4324 4325 phb_base = phb0_base + index * phb_spacing; 4326 *pio = phb_base + pio_offset; 4327 *mmio32 = phb_base + mmio_offset; 4328 /* 4329 * We don't set the 64-bit MMIO window, relying on the PHB's 4330 * fallback behaviour of automatically splitting a large "32-bit" 4331 * window into contiguous 32-bit and 64-bit windows 4332 */ 4333 } 4334 4335 static void spapr_machine_2_7_class_options(MachineClass *mc) 4336 { 4337 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4338 static GlobalProperty compat[] = { 4339 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4340 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4341 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4342 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4343 }; 4344 4345 spapr_machine_2_8_class_options(mc); 4346 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4347 mc->default_machine_opts = "modern-hotplug-events=off"; 4348 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4349 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4350 smc->phb_placement = phb_placement_2_7; 4351 } 4352 4353 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4354 4355 /* 4356 * pseries-2.6 4357 */ 4358 4359 static void spapr_machine_2_6_class_options(MachineClass *mc) 4360 { 4361 static GlobalProperty compat[] = { 4362 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4363 }; 4364 4365 spapr_machine_2_7_class_options(mc); 4366 mc->has_hotpluggable_cpus = false; 4367 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4368 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4369 } 4370 4371 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4372 4373 /* 4374 * pseries-2.5 4375 */ 4376 4377 static void spapr_machine_2_5_class_options(MachineClass *mc) 4378 { 4379 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4380 static GlobalProperty compat[] = { 4381 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4382 }; 4383 4384 spapr_machine_2_6_class_options(mc); 4385 smc->use_ohci_by_default = true; 4386 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4387 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4388 } 4389 4390 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4391 4392 /* 4393 * pseries-2.4 4394 */ 4395 4396 static void spapr_machine_2_4_class_options(MachineClass *mc) 4397 { 4398 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4399 4400 spapr_machine_2_5_class_options(mc); 4401 smc->dr_lmb_enabled = false; 4402 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4403 } 4404 4405 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4406 4407 /* 4408 * pseries-2.3 4409 */ 4410 4411 static void spapr_machine_2_3_class_options(MachineClass *mc) 4412 { 4413 static GlobalProperty compat[] = { 4414 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4415 }; 4416 spapr_machine_2_4_class_options(mc); 4417 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4418 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4419 } 4420 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4421 4422 /* 4423 * pseries-2.2 4424 */ 4425 4426 static void spapr_machine_2_2_class_options(MachineClass *mc) 4427 { 4428 static GlobalProperty compat[] = { 4429 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4430 }; 4431 4432 spapr_machine_2_3_class_options(mc); 4433 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4434 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4435 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4436 } 4437 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4438 4439 /* 4440 * pseries-2.1 4441 */ 4442 4443 static void spapr_machine_2_1_class_options(MachineClass *mc) 4444 { 4445 spapr_machine_2_2_class_options(mc); 4446 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4447 } 4448 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4449 4450 static void spapr_machine_register_types(void) 4451 { 4452 type_register_static(&spapr_machine_info); 4453 } 4454 4455 type_init(spapr_machine_register_types) 4456