xref: /qemu/hw/ppc/spapr.c (revision 27461d69a0f108dea756419251acc3ea65198f1b)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48 
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52 
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58 
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63 
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72 
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "hw/mem/memory-device.h"
76 
77 #include <libfdt.h>
78 
79 /* SLOF memory layout:
80  *
81  * SLOF raw image loaded at 0, copies its romfs right below the flat
82  * device-tree, then position SLOF itself 31M below that
83  *
84  * So we set FW_OVERHEAD to 40MB which should account for all of that
85  * and more
86  *
87  * We load our kernel at 4M, leaving space for SLOF initial image
88  */
89 #define FDT_MAX_SIZE            0x100000
90 #define RTAS_MAX_SIZE           0x10000
91 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE             0x400000
93 #define FW_FILE_NAME            "slof.bin"
94 #define FW_OVERHEAD             0x2800000
95 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
96 
97 #define MIN_RMA_SLOF            128UL
98 
99 #define PHANDLE_INTC            0x00001111
100 
101 /* These two functions implement the VCPU id numbering: one to compute them
102  * all and one to identify thread 0 of a VCORE. Any change to the first one
103  * is likely to have an impact on the second one, so let's keep them close.
104  */
105 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
106 {
107     assert(spapr->vsmt);
108     return
109         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
110 }
111 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
112                                       PowerPCCPU *cpu)
113 {
114     assert(spapr->vsmt);
115     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
116 }
117 
118 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
119 {
120     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
121      * and newer QEMUs don't even have them. In both cases, we don't want
122      * to send anything on the wire.
123      */
124     return false;
125 }
126 
127 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
128     .name = "icp/server",
129     .version_id = 1,
130     .minimum_version_id = 1,
131     .needed = pre_2_10_vmstate_dummy_icp_needed,
132     .fields = (VMStateField[]) {
133         VMSTATE_UNUSED(4), /* uint32_t xirr */
134         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
135         VMSTATE_UNUSED(1), /* uint8_t mfrr */
136         VMSTATE_END_OF_LIST()
137     },
138 };
139 
140 static void pre_2_10_vmstate_register_dummy_icp(int i)
141 {
142     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
143                      (void *)(uintptr_t) i);
144 }
145 
146 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
147 {
148     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
149                        (void *)(uintptr_t) i);
150 }
151 
152 int spapr_max_server_number(sPAPRMachineState *spapr)
153 {
154     assert(spapr->vsmt);
155     return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
156 }
157 
158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
159                                   int smt_threads)
160 {
161     int i, ret = 0;
162     uint32_t servers_prop[smt_threads];
163     uint32_t gservers_prop[smt_threads * 2];
164     int index = spapr_get_vcpu_id(cpu);
165 
166     if (cpu->compat_pvr) {
167         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
168         if (ret < 0) {
169             return ret;
170         }
171     }
172 
173     /* Build interrupt servers and gservers properties */
174     for (i = 0; i < smt_threads; i++) {
175         servers_prop[i] = cpu_to_be32(index + i);
176         /* Hack, direct the group queues back to cpu 0 */
177         gservers_prop[i*2] = cpu_to_be32(index + i);
178         gservers_prop[i*2 + 1] = 0;
179     }
180     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
181                       servers_prop, sizeof(servers_prop));
182     if (ret < 0) {
183         return ret;
184     }
185     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
186                       gservers_prop, sizeof(gservers_prop));
187 
188     return ret;
189 }
190 
191 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
192 {
193     int index = spapr_get_vcpu_id(cpu);
194     uint32_t associativity[] = {cpu_to_be32(0x5),
195                                 cpu_to_be32(0x0),
196                                 cpu_to_be32(0x0),
197                                 cpu_to_be32(0x0),
198                                 cpu_to_be32(cpu->node_id),
199                                 cpu_to_be32(index)};
200 
201     /* Advertise NUMA via ibm,associativity */
202     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
203                           sizeof(associativity));
204 }
205 
206 /* Populate the "ibm,pa-features" property */
207 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
208                                        PowerPCCPU *cpu,
209                                        void *fdt, int offset,
210                                        bool legacy_guest)
211 {
212     uint8_t pa_features_206[] = { 6, 0,
213         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214     uint8_t pa_features_207[] = { 24, 0,
215         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219     uint8_t pa_features_300[] = { 66, 0,
220         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223         /* 6: DS207 */
224         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225         /* 16: Vector */
226         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235         /* 42: PM, 44: PC RA, 46: SC vec'd */
236         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237         /* 48: SIMD, 50: QP BFP, 52: String */
238         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239         /* 54: DecFP, 56: DecI, 58: SHA */
240         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241         /* 60: NM atomic, 62: RNG */
242         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243     };
244     uint8_t *pa_features = NULL;
245     size_t pa_size;
246 
247     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248         pa_features = pa_features_206;
249         pa_size = sizeof(pa_features_206);
250     }
251     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252         pa_features = pa_features_207;
253         pa_size = sizeof(pa_features_207);
254     }
255     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256         pa_features = pa_features_300;
257         pa_size = sizeof(pa_features_300);
258     }
259     if (!pa_features) {
260         return;
261     }
262 
263     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264         /*
265          * Note: we keep CI large pages off by default because a 64K capable
266          * guest provisioned with large pages might otherwise try to map a qemu
267          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268          * even if that qemu runs on a 4k host.
269          * We dd this bit back here if we are confident this is not an issue
270          */
271         pa_features[3] |= 0x20;
272     }
273     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274         pa_features[24] |= 0x80;    /* Transactional memory support */
275     }
276     if (legacy_guest && pa_size > 40) {
277         /* Workaround for broken kernels that attempt (guest) radix
278          * mode when they can't handle it, if they see the radix bit set
279          * in pa-features. So hide it from them. */
280         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281     }
282 
283     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285 
286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
287 {
288     int ret = 0, offset, cpus_offset;
289     CPUState *cs;
290     char cpu_model[32];
291     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
292 
293     CPU_FOREACH(cs) {
294         PowerPCCPU *cpu = POWERPC_CPU(cs);
295         DeviceClass *dc = DEVICE_GET_CLASS(cs);
296         int index = spapr_get_vcpu_id(cpu);
297         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
298 
299         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
300             continue;
301         }
302 
303         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
304 
305         cpus_offset = fdt_path_offset(fdt, "/cpus");
306         if (cpus_offset < 0) {
307             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
308             if (cpus_offset < 0) {
309                 return cpus_offset;
310             }
311         }
312         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
313         if (offset < 0) {
314             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
315             if (offset < 0) {
316                 return offset;
317             }
318         }
319 
320         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
321                           pft_size_prop, sizeof(pft_size_prop));
322         if (ret < 0) {
323             return ret;
324         }
325 
326         if (nb_numa_nodes > 1) {
327             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
328             if (ret < 0) {
329                 return ret;
330             }
331         }
332 
333         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
334         if (ret < 0) {
335             return ret;
336         }
337 
338         spapr_populate_pa_features(spapr, cpu, fdt, offset,
339                                    spapr->cas_legacy_guest_workaround);
340     }
341     return ret;
342 }
343 
344 static hwaddr spapr_node0_size(MachineState *machine)
345 {
346     if (nb_numa_nodes) {
347         int i;
348         for (i = 0; i < nb_numa_nodes; ++i) {
349             if (numa_info[i].node_mem) {
350                 return MIN(pow2floor(numa_info[i].node_mem),
351                            machine->ram_size);
352             }
353         }
354     }
355     return machine->ram_size;
356 }
357 
358 static void add_str(GString *s, const gchar *s1)
359 {
360     g_string_append_len(s, s1, strlen(s1) + 1);
361 }
362 
363 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
364                                        hwaddr size)
365 {
366     uint32_t associativity[] = {
367         cpu_to_be32(0x4), /* length */
368         cpu_to_be32(0x0), cpu_to_be32(0x0),
369         cpu_to_be32(0x0), cpu_to_be32(nodeid)
370     };
371     char mem_name[32];
372     uint64_t mem_reg_property[2];
373     int off;
374 
375     mem_reg_property[0] = cpu_to_be64(start);
376     mem_reg_property[1] = cpu_to_be64(size);
377 
378     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
379     off = fdt_add_subnode(fdt, 0, mem_name);
380     _FDT(off);
381     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
382     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
383                       sizeof(mem_reg_property))));
384     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
385                       sizeof(associativity))));
386     return off;
387 }
388 
389 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
390 {
391     MachineState *machine = MACHINE(spapr);
392     hwaddr mem_start, node_size;
393     int i, nb_nodes = nb_numa_nodes;
394     NodeInfo *nodes = numa_info;
395     NodeInfo ramnode;
396 
397     /* No NUMA nodes, assume there is just one node with whole RAM */
398     if (!nb_numa_nodes) {
399         nb_nodes = 1;
400         ramnode.node_mem = machine->ram_size;
401         nodes = &ramnode;
402     }
403 
404     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
405         if (!nodes[i].node_mem) {
406             continue;
407         }
408         if (mem_start >= machine->ram_size) {
409             node_size = 0;
410         } else {
411             node_size = nodes[i].node_mem;
412             if (node_size > machine->ram_size - mem_start) {
413                 node_size = machine->ram_size - mem_start;
414             }
415         }
416         if (!mem_start) {
417             /* spapr_machine_init() checks for rma_size <= node0_size
418              * already */
419             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
420             mem_start += spapr->rma_size;
421             node_size -= spapr->rma_size;
422         }
423         for ( ; node_size; ) {
424             hwaddr sizetmp = pow2floor(node_size);
425 
426             /* mem_start != 0 here */
427             if (ctzl(mem_start) < ctzl(sizetmp)) {
428                 sizetmp = 1ULL << ctzl(mem_start);
429             }
430 
431             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
432             node_size -= sizetmp;
433             mem_start += sizetmp;
434         }
435     }
436 
437     return 0;
438 }
439 
440 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
441                                   sPAPRMachineState *spapr)
442 {
443     PowerPCCPU *cpu = POWERPC_CPU(cs);
444     CPUPPCState *env = &cpu->env;
445     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
446     int index = spapr_get_vcpu_id(cpu);
447     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
448                        0xffffffff, 0xffffffff};
449     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
450         : SPAPR_TIMEBASE_FREQ;
451     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
452     uint32_t page_sizes_prop[64];
453     size_t page_sizes_prop_size;
454     uint32_t vcpus_per_socket = smp_threads * smp_cores;
455     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
456     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
457     sPAPRDRConnector *drc;
458     int drc_index;
459     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
460     int i;
461 
462     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
463     if (drc) {
464         drc_index = spapr_drc_index(drc);
465         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
466     }
467 
468     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
469     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
470 
471     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
472     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
473                            env->dcache_line_size)));
474     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
475                            env->dcache_line_size)));
476     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
477                            env->icache_line_size)));
478     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
479                            env->icache_line_size)));
480 
481     if (pcc->l1_dcache_size) {
482         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
483                                pcc->l1_dcache_size)));
484     } else {
485         warn_report("Unknown L1 dcache size for cpu");
486     }
487     if (pcc->l1_icache_size) {
488         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
489                                pcc->l1_icache_size)));
490     } else {
491         warn_report("Unknown L1 icache size for cpu");
492     }
493 
494     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
495     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
496     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
497     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
498     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
499     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
500 
501     if (env->spr_cb[SPR_PURR].oea_read) {
502         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
503     }
504 
505     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
506         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
507                           segs, sizeof(segs))));
508     }
509 
510     /* Advertise VSX (vector extensions) if available
511      *   1               == VMX / Altivec available
512      *   2               == VSX available
513      *
514      * Only CPUs for which we create core types in spapr_cpu_core.c
515      * are possible, and all of those have VMX */
516     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
517         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
518     } else {
519         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
520     }
521 
522     /* Advertise DFP (Decimal Floating Point) if available
523      *   0 / no property == no DFP
524      *   1               == DFP available */
525     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
526         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
527     }
528 
529     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
530                                                       sizeof(page_sizes_prop));
531     if (page_sizes_prop_size) {
532         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
533                           page_sizes_prop, page_sizes_prop_size)));
534     }
535 
536     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
537 
538     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
539                            cs->cpu_index / vcpus_per_socket)));
540 
541     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
542                       pft_size_prop, sizeof(pft_size_prop))));
543 
544     if (nb_numa_nodes > 1) {
545         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
546     }
547 
548     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
549 
550     if (pcc->radix_page_info) {
551         for (i = 0; i < pcc->radix_page_info->count; i++) {
552             radix_AP_encodings[i] =
553                 cpu_to_be32(pcc->radix_page_info->entries[i]);
554         }
555         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
556                           radix_AP_encodings,
557                           pcc->radix_page_info->count *
558                           sizeof(radix_AP_encodings[0]))));
559     }
560 }
561 
562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
563 {
564     CPUState **rev;
565     CPUState *cs;
566     int n_cpus;
567     int cpus_offset;
568     char *nodename;
569     int i;
570 
571     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
572     _FDT(cpus_offset);
573     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
574     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
575 
576     /*
577      * We walk the CPUs in reverse order to ensure that CPU DT nodes
578      * created by fdt_add_subnode() end up in the right order in FDT
579      * for the guest kernel the enumerate the CPUs correctly.
580      *
581      * The CPU list cannot be traversed in reverse order, so we need
582      * to do extra work.
583      */
584     n_cpus = 0;
585     rev = NULL;
586     CPU_FOREACH(cs) {
587         rev = g_renew(CPUState *, rev, n_cpus + 1);
588         rev[n_cpus++] = cs;
589     }
590 
591     for (i = n_cpus - 1; i >= 0; i--) {
592         CPUState *cs = rev[i];
593         PowerPCCPU *cpu = POWERPC_CPU(cs);
594         int index = spapr_get_vcpu_id(cpu);
595         DeviceClass *dc = DEVICE_GET_CLASS(cs);
596         int offset;
597 
598         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
599             continue;
600         }
601 
602         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
603         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
604         g_free(nodename);
605         _FDT(offset);
606         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
607     }
608 
609     g_free(rev);
610 }
611 
612 static int spapr_rng_populate_dt(void *fdt)
613 {
614     int node;
615     int ret;
616 
617     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
618     if (node <= 0) {
619         return -1;
620     }
621     ret = fdt_setprop_string(fdt, node, "device_type",
622                              "ibm,platform-facilities");
623     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
624     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
625 
626     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
627     if (node <= 0) {
628         return -1;
629     }
630     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
631 
632     return ret ? -1 : 0;
633 }
634 
635 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
636 {
637     MemoryDeviceInfoList *info;
638 
639     for (info = list; info; info = info->next) {
640         MemoryDeviceInfo *value = info->value;
641 
642         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
643             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
644 
645             if (addr >= pcdimm_info->addr &&
646                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
647                 return pcdimm_info->node;
648             }
649         }
650     }
651 
652     return -1;
653 }
654 
655 struct sPAPRDrconfCellV2 {
656      uint32_t seq_lmbs;
657      uint64_t base_addr;
658      uint32_t drc_index;
659      uint32_t aa_index;
660      uint32_t flags;
661 } QEMU_PACKED;
662 
663 typedef struct DrconfCellQueue {
664     struct sPAPRDrconfCellV2 cell;
665     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
666 } DrconfCellQueue;
667 
668 static DrconfCellQueue *
669 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
670                       uint32_t drc_index, uint32_t aa_index,
671                       uint32_t flags)
672 {
673     DrconfCellQueue *elem;
674 
675     elem = g_malloc0(sizeof(*elem));
676     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
677     elem->cell.base_addr = cpu_to_be64(base_addr);
678     elem->cell.drc_index = cpu_to_be32(drc_index);
679     elem->cell.aa_index = cpu_to_be32(aa_index);
680     elem->cell.flags = cpu_to_be32(flags);
681 
682     return elem;
683 }
684 
685 /* ibm,dynamic-memory-v2 */
686 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
687                                    int offset, MemoryDeviceInfoList *dimms)
688 {
689     MachineState *machine = MACHINE(spapr);
690     uint8_t *int_buf, *cur_index;
691     int ret;
692     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
693     uint64_t addr, cur_addr, size;
694     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
695     uint64_t mem_end = machine->device_memory->base +
696                        memory_region_size(&machine->device_memory->mr);
697     uint32_t node, buf_len, nr_entries = 0;
698     sPAPRDRConnector *drc;
699     DrconfCellQueue *elem, *next;
700     MemoryDeviceInfoList *info;
701     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
702         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
703 
704     /* Entry to cover RAM and the gap area */
705     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
706                                  SPAPR_LMB_FLAGS_RESERVED |
707                                  SPAPR_LMB_FLAGS_DRC_INVALID);
708     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
709     nr_entries++;
710 
711     cur_addr = machine->device_memory->base;
712     for (info = dimms; info; info = info->next) {
713         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
714 
715         addr = di->addr;
716         size = di->size;
717         node = di->node;
718 
719         /* Entry for hot-pluggable area */
720         if (cur_addr < addr) {
721             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
722             g_assert(drc);
723             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
724                                          cur_addr, spapr_drc_index(drc), -1, 0);
725             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
726             nr_entries++;
727         }
728 
729         /* Entry for DIMM */
730         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
731         g_assert(drc);
732         elem = spapr_get_drconf_cell(size / lmb_size, addr,
733                                      spapr_drc_index(drc), node,
734                                      SPAPR_LMB_FLAGS_ASSIGNED);
735         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
736         nr_entries++;
737         cur_addr = addr + size;
738     }
739 
740     /* Entry for remaining hotpluggable area */
741     if (cur_addr < mem_end) {
742         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
743         g_assert(drc);
744         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
745                                      cur_addr, spapr_drc_index(drc), -1, 0);
746         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
747         nr_entries++;
748     }
749 
750     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
751     int_buf = cur_index = g_malloc0(buf_len);
752     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
753     cur_index += sizeof(nr_entries);
754 
755     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
756         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
757         cur_index += sizeof(elem->cell);
758         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
759         g_free(elem);
760     }
761 
762     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
763     g_free(int_buf);
764     if (ret < 0) {
765         return -1;
766     }
767     return 0;
768 }
769 
770 /* ibm,dynamic-memory */
771 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
772                                    int offset, MemoryDeviceInfoList *dimms)
773 {
774     MachineState *machine = MACHINE(spapr);
775     int i, ret;
776     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
777     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
778     uint32_t nr_lmbs = (machine->device_memory->base +
779                        memory_region_size(&machine->device_memory->mr)) /
780                        lmb_size;
781     uint32_t *int_buf, *cur_index, buf_len;
782 
783     /*
784      * Allocate enough buffer size to fit in ibm,dynamic-memory
785      */
786     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
787     cur_index = int_buf = g_malloc0(buf_len);
788     int_buf[0] = cpu_to_be32(nr_lmbs);
789     cur_index++;
790     for (i = 0; i < nr_lmbs; i++) {
791         uint64_t addr = i * lmb_size;
792         uint32_t *dynamic_memory = cur_index;
793 
794         if (i >= device_lmb_start) {
795             sPAPRDRConnector *drc;
796 
797             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
798             g_assert(drc);
799 
800             dynamic_memory[0] = cpu_to_be32(addr >> 32);
801             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
802             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
803             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
804             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
805             if (memory_region_present(get_system_memory(), addr)) {
806                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
807             } else {
808                 dynamic_memory[5] = cpu_to_be32(0);
809             }
810         } else {
811             /*
812              * LMB information for RMA, boot time RAM and gap b/n RAM and
813              * device memory region -- all these are marked as reserved
814              * and as having no valid DRC.
815              */
816             dynamic_memory[0] = cpu_to_be32(addr >> 32);
817             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
818             dynamic_memory[2] = cpu_to_be32(0);
819             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
820             dynamic_memory[4] = cpu_to_be32(-1);
821             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
822                                             SPAPR_LMB_FLAGS_DRC_INVALID);
823         }
824 
825         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
826     }
827     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
828     g_free(int_buf);
829     if (ret < 0) {
830         return -1;
831     }
832     return 0;
833 }
834 
835 /*
836  * Adds ibm,dynamic-reconfiguration-memory node.
837  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
838  * of this device tree node.
839  */
840 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
841 {
842     MachineState *machine = MACHINE(spapr);
843     int ret, i, offset;
844     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
845     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
846     uint32_t *int_buf, *cur_index, buf_len;
847     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
848     MemoryDeviceInfoList *dimms = NULL;
849 
850     /*
851      * Don't create the node if there is no device memory
852      */
853     if (machine->ram_size == machine->maxram_size) {
854         return 0;
855     }
856 
857     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
858 
859     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
860                     sizeof(prop_lmb_size));
861     if (ret < 0) {
862         return ret;
863     }
864 
865     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
866     if (ret < 0) {
867         return ret;
868     }
869 
870     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
871     if (ret < 0) {
872         return ret;
873     }
874 
875     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
876     dimms = qmp_memory_device_list();
877     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
878         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
879     } else {
880         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
881     }
882     qapi_free_MemoryDeviceInfoList(dimms);
883 
884     if (ret < 0) {
885         return ret;
886     }
887 
888     /* ibm,associativity-lookup-arrays */
889     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
890     cur_index = int_buf = g_malloc0(buf_len);
891     int_buf[0] = cpu_to_be32(nr_nodes);
892     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
893     cur_index += 2;
894     for (i = 0; i < nr_nodes; i++) {
895         uint32_t associativity[] = {
896             cpu_to_be32(0x0),
897             cpu_to_be32(0x0),
898             cpu_to_be32(0x0),
899             cpu_to_be32(i)
900         };
901         memcpy(cur_index, associativity, sizeof(associativity));
902         cur_index += 4;
903     }
904     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
905             (cur_index - int_buf) * sizeof(uint32_t));
906     g_free(int_buf);
907 
908     return ret;
909 }
910 
911 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
912                                 sPAPROptionVector *ov5_updates)
913 {
914     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
915     int ret = 0, offset;
916 
917     /* Generate ibm,dynamic-reconfiguration-memory node if required */
918     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
919         g_assert(smc->dr_lmb_enabled);
920         ret = spapr_populate_drconf_memory(spapr, fdt);
921         if (ret) {
922             goto out;
923         }
924     }
925 
926     offset = fdt_path_offset(fdt, "/chosen");
927     if (offset < 0) {
928         offset = fdt_add_subnode(fdt, 0, "chosen");
929         if (offset < 0) {
930             return offset;
931         }
932     }
933     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
934                                  "ibm,architecture-vec-5");
935 
936 out:
937     return ret;
938 }
939 
940 static bool spapr_hotplugged_dev_before_cas(void)
941 {
942     Object *drc_container, *obj;
943     ObjectProperty *prop;
944     ObjectPropertyIterator iter;
945 
946     drc_container = container_get(object_get_root(), "/dr-connector");
947     object_property_iter_init(&iter, drc_container);
948     while ((prop = object_property_iter_next(&iter))) {
949         if (!strstart(prop->type, "link<", NULL)) {
950             continue;
951         }
952         obj = object_property_get_link(drc_container, prop->name, NULL);
953         if (spapr_drc_needed(obj)) {
954             return true;
955         }
956     }
957     return false;
958 }
959 
960 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
961                                  target_ulong addr, target_ulong size,
962                                  sPAPROptionVector *ov5_updates)
963 {
964     void *fdt, *fdt_skel;
965     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
966 
967     if (spapr_hotplugged_dev_before_cas()) {
968         return 1;
969     }
970 
971     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
972         error_report("SLOF provided an unexpected CAS buffer size "
973                      TARGET_FMT_lu " (min: %zu, max: %u)",
974                      size, sizeof(hdr), FW_MAX_SIZE);
975         exit(EXIT_FAILURE);
976     }
977 
978     size -= sizeof(hdr);
979 
980     /* Create skeleton */
981     fdt_skel = g_malloc0(size);
982     _FDT((fdt_create(fdt_skel, size)));
983     _FDT((fdt_finish_reservemap(fdt_skel)));
984     _FDT((fdt_begin_node(fdt_skel, "")));
985     _FDT((fdt_end_node(fdt_skel)));
986     _FDT((fdt_finish(fdt_skel)));
987     fdt = g_malloc0(size);
988     _FDT((fdt_open_into(fdt_skel, fdt, size)));
989     g_free(fdt_skel);
990 
991     /* Fixup cpu nodes */
992     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
993 
994     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
995         return -1;
996     }
997 
998     /* Pack resulting tree */
999     _FDT((fdt_pack(fdt)));
1000 
1001     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1002         trace_spapr_cas_failed(size);
1003         return -1;
1004     }
1005 
1006     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1007     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1008     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1009     g_free(fdt);
1010 
1011     return 0;
1012 }
1013 
1014 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1015 {
1016     int rtas;
1017     GString *hypertas = g_string_sized_new(256);
1018     GString *qemu_hypertas = g_string_sized_new(256);
1019     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1020     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1021         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1022     uint32_t lrdr_capacity[] = {
1023         cpu_to_be32(max_device_addr >> 32),
1024         cpu_to_be32(max_device_addr & 0xffffffff),
1025         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1026         cpu_to_be32(max_cpus / smp_threads),
1027     };
1028     uint32_t maxdomains[] = {
1029         cpu_to_be32(4),
1030         cpu_to_be32(0),
1031         cpu_to_be32(0),
1032         cpu_to_be32(0),
1033         cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1034     };
1035 
1036     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1037 
1038     /* hypertas */
1039     add_str(hypertas, "hcall-pft");
1040     add_str(hypertas, "hcall-term");
1041     add_str(hypertas, "hcall-dabr");
1042     add_str(hypertas, "hcall-interrupt");
1043     add_str(hypertas, "hcall-tce");
1044     add_str(hypertas, "hcall-vio");
1045     add_str(hypertas, "hcall-splpar");
1046     add_str(hypertas, "hcall-bulk");
1047     add_str(hypertas, "hcall-set-mode");
1048     add_str(hypertas, "hcall-sprg0");
1049     add_str(hypertas, "hcall-copy");
1050     add_str(hypertas, "hcall-debug");
1051     add_str(hypertas, "hcall-vphn");
1052     add_str(qemu_hypertas, "hcall-memop1");
1053 
1054     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1055         add_str(hypertas, "hcall-multi-tce");
1056     }
1057 
1058     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1059         add_str(hypertas, "hcall-hpt-resize");
1060     }
1061 
1062     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1063                      hypertas->str, hypertas->len));
1064     g_string_free(hypertas, TRUE);
1065     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1066                      qemu_hypertas->str, qemu_hypertas->len));
1067     g_string_free(qemu_hypertas, TRUE);
1068 
1069     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1070                      refpoints, sizeof(refpoints)));
1071 
1072     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1073                      maxdomains, sizeof(maxdomains)));
1074 
1075     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1076                           RTAS_ERROR_LOG_MAX));
1077     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1078                           RTAS_EVENT_SCAN_RATE));
1079 
1080     g_assert(msi_nonbroken);
1081     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1082 
1083     /*
1084      * According to PAPR, rtas ibm,os-term does not guarantee a return
1085      * back to the guest cpu.
1086      *
1087      * While an additional ibm,extended-os-term property indicates
1088      * that rtas call return will always occur. Set this property.
1089      */
1090     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1091 
1092     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1093                      lrdr_capacity, sizeof(lrdr_capacity)));
1094 
1095     spapr_dt_rtas_tokens(fdt, rtas);
1096 }
1097 
1098 /*
1099  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1100  * and the XIVE features that the guest may request and thus the valid
1101  * values for bytes 23..26 of option vector 5:
1102  */
1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt,
1104                                           int chosen)
1105 {
1106     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1107 
1108     char val[2 * 4] = {
1109         23, spapr->irq->ov5, /* Xive mode. */
1110         24, 0x00, /* Hash/Radix, filled in below. */
1111         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1112         26, 0x40, /* Radix options: GTSE == yes. */
1113     };
1114 
1115     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1116                           first_ppc_cpu->compat_pvr)) {
1117         /*
1118          * If we're in a pre POWER9 compat mode then the guest should
1119          * do hash and use the legacy interrupt mode
1120          */
1121         val[1] = 0x00; /* XICS */
1122         val[3] = 0x00; /* Hash */
1123     } else if (kvm_enabled()) {
1124         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1125             val[3] = 0x80; /* OV5_MMU_BOTH */
1126         } else if (kvmppc_has_cap_mmu_radix()) {
1127             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1128         } else {
1129             val[3] = 0x00; /* Hash */
1130         }
1131     } else {
1132         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1133         val[3] = 0xC0;
1134     }
1135     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1136                      val, sizeof(val)));
1137 }
1138 
1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1140 {
1141     MachineState *machine = MACHINE(spapr);
1142     int chosen;
1143     const char *boot_device = machine->boot_order;
1144     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1145     size_t cb = 0;
1146     char *bootlist = get_boot_devices_list(&cb);
1147 
1148     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1149 
1150     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1151     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1152                           spapr->initrd_base));
1153     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1154                           spapr->initrd_base + spapr->initrd_size));
1155 
1156     if (spapr->kernel_size) {
1157         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1158                               cpu_to_be64(spapr->kernel_size) };
1159 
1160         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1161                          &kprop, sizeof(kprop)));
1162         if (spapr->kernel_le) {
1163             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1164         }
1165     }
1166     if (boot_menu) {
1167         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1168     }
1169     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1170     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1171     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1172 
1173     if (cb && bootlist) {
1174         int i;
1175 
1176         for (i = 0; i < cb; i++) {
1177             if (bootlist[i] == '\n') {
1178                 bootlist[i] = ' ';
1179             }
1180         }
1181         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1182     }
1183 
1184     if (boot_device && strlen(boot_device)) {
1185         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1186     }
1187 
1188     if (!spapr->has_graphics && stdout_path) {
1189         /*
1190          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1191          * kernel. New platforms should only use the "stdout-path" property. Set
1192          * the new property and continue using older property to remain
1193          * compatible with the existing firmware.
1194          */
1195         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1196         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1197     }
1198 
1199     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1200 
1201     g_free(stdout_path);
1202     g_free(bootlist);
1203 }
1204 
1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1206 {
1207     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1208      * KVM to work under pHyp with some guest co-operation */
1209     int hypervisor;
1210     uint8_t hypercall[16];
1211 
1212     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1213     /* indicate KVM hypercall interface */
1214     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1215     if (kvmppc_has_cap_fixup_hcalls()) {
1216         /*
1217          * Older KVM versions with older guest kernels were broken
1218          * with the magic page, don't allow the guest to map it.
1219          */
1220         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1221                                   sizeof(hypercall))) {
1222             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1223                              hypercall, sizeof(hypercall)));
1224         }
1225     }
1226 }
1227 
1228 static void *spapr_build_fdt(sPAPRMachineState *spapr)
1229 {
1230     MachineState *machine = MACHINE(spapr);
1231     MachineClass *mc = MACHINE_GET_CLASS(machine);
1232     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1233     int ret;
1234     void *fdt;
1235     sPAPRPHBState *phb;
1236     char *buf;
1237 
1238     fdt = g_malloc0(FDT_MAX_SIZE);
1239     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1240 
1241     /* Root node */
1242     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1243     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1244     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1245 
1246     /*
1247      * Add info to guest to indentify which host is it being run on
1248      * and what is the uuid of the guest
1249      */
1250     if (spapr->host_model && !g_str_equal(spapr->host_model, "none")) {
1251         if (g_str_equal(spapr->host_model, "passthrough")) {
1252             /* -M host-model=passthrough */
1253             if (kvmppc_get_host_model(&buf)) {
1254                 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1255                 g_free(buf);
1256             }
1257         } else {
1258             /* -M host-model=<user-string> */
1259             _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1260         }
1261     }
1262 
1263     if (spapr->host_serial && !g_str_equal(spapr->host_serial, "none")) {
1264         if (g_str_equal(spapr->host_serial, "passthrough")) {
1265             /* -M host-serial=passthrough */
1266             if (kvmppc_get_host_serial(&buf)) {
1267                 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1268                 g_free(buf);
1269             }
1270         } else {
1271             /* -M host-serial=<user-string> */
1272             _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1273         }
1274     }
1275 
1276     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1277 
1278     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1279     if (qemu_uuid_set) {
1280         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1281     }
1282     g_free(buf);
1283 
1284     if (qemu_get_vm_name()) {
1285         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1286                                 qemu_get_vm_name()));
1287     }
1288 
1289     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1290     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1291 
1292     /* /interrupt controller */
1293     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1294                           PHANDLE_INTC);
1295 
1296     ret = spapr_populate_memory(spapr, fdt);
1297     if (ret < 0) {
1298         error_report("couldn't setup memory nodes in fdt");
1299         exit(1);
1300     }
1301 
1302     /* /vdevice */
1303     spapr_dt_vdevice(spapr->vio_bus, fdt);
1304 
1305     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1306         ret = spapr_rng_populate_dt(fdt);
1307         if (ret < 0) {
1308             error_report("could not set up rng device in the fdt");
1309             exit(1);
1310         }
1311     }
1312 
1313     QLIST_FOREACH(phb, &spapr->phbs, list) {
1314         ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1315                                     spapr->irq->nr_msis);
1316         if (ret < 0) {
1317             error_report("couldn't setup PCI devices in fdt");
1318             exit(1);
1319         }
1320     }
1321 
1322     /* cpus */
1323     spapr_populate_cpus_dt_node(fdt, spapr);
1324 
1325     if (smc->dr_lmb_enabled) {
1326         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1327     }
1328 
1329     if (mc->has_hotpluggable_cpus) {
1330         int offset = fdt_path_offset(fdt, "/cpus");
1331         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1332                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1333         if (ret < 0) {
1334             error_report("Couldn't set up CPU DR device tree properties");
1335             exit(1);
1336         }
1337     }
1338 
1339     /* /event-sources */
1340     spapr_dt_events(spapr, fdt);
1341 
1342     /* /rtas */
1343     spapr_dt_rtas(spapr, fdt);
1344 
1345     /* /chosen */
1346     spapr_dt_chosen(spapr, fdt);
1347 
1348     /* /hypervisor */
1349     if (kvm_enabled()) {
1350         spapr_dt_hypervisor(spapr, fdt);
1351     }
1352 
1353     /* Build memory reserve map */
1354     if (spapr->kernel_size) {
1355         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1356     }
1357     if (spapr->initrd_size) {
1358         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1359     }
1360 
1361     /* ibm,client-architecture-support updates */
1362     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1363     if (ret < 0) {
1364         error_report("couldn't setup CAS properties fdt");
1365         exit(1);
1366     }
1367 
1368     return fdt;
1369 }
1370 
1371 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1372 {
1373     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1374 }
1375 
1376 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1377                                     PowerPCCPU *cpu)
1378 {
1379     CPUPPCState *env = &cpu->env;
1380 
1381     /* The TCG path should also be holding the BQL at this point */
1382     g_assert(qemu_mutex_iothread_locked());
1383 
1384     if (msr_pr) {
1385         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1386         env->gpr[3] = H_PRIVILEGE;
1387     } else {
1388         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1389     }
1390 }
1391 
1392 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1393 {
1394     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1395 
1396     return spapr->patb_entry;
1397 }
1398 
1399 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1400 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1401 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1402 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1403 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1404 
1405 /*
1406  * Get the fd to access the kernel htab, re-opening it if necessary
1407  */
1408 static int get_htab_fd(sPAPRMachineState *spapr)
1409 {
1410     Error *local_err = NULL;
1411 
1412     if (spapr->htab_fd >= 0) {
1413         return spapr->htab_fd;
1414     }
1415 
1416     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1417     if (spapr->htab_fd < 0) {
1418         error_report_err(local_err);
1419     }
1420 
1421     return spapr->htab_fd;
1422 }
1423 
1424 void close_htab_fd(sPAPRMachineState *spapr)
1425 {
1426     if (spapr->htab_fd >= 0) {
1427         close(spapr->htab_fd);
1428     }
1429     spapr->htab_fd = -1;
1430 }
1431 
1432 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1433 {
1434     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1435 
1436     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1437 }
1438 
1439 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1440 {
1441     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1442 
1443     assert(kvm_enabled());
1444 
1445     if (!spapr->htab) {
1446         return 0;
1447     }
1448 
1449     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1450 }
1451 
1452 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1453                                                 hwaddr ptex, int n)
1454 {
1455     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1456     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1457 
1458     if (!spapr->htab) {
1459         /*
1460          * HTAB is controlled by KVM. Fetch into temporary buffer
1461          */
1462         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1463         kvmppc_read_hptes(hptes, ptex, n);
1464         return hptes;
1465     }
1466 
1467     /*
1468      * HTAB is controlled by QEMU. Just point to the internally
1469      * accessible PTEG.
1470      */
1471     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1472 }
1473 
1474 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1475                               const ppc_hash_pte64_t *hptes,
1476                               hwaddr ptex, int n)
1477 {
1478     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1479 
1480     if (!spapr->htab) {
1481         g_free((void *)hptes);
1482     }
1483 
1484     /* Nothing to do for qemu managed HPT */
1485 }
1486 
1487 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1488                              uint64_t pte0, uint64_t pte1)
1489 {
1490     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1491     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1492 
1493     if (!spapr->htab) {
1494         kvmppc_write_hpte(ptex, pte0, pte1);
1495     } else {
1496         stq_p(spapr->htab + offset, pte0);
1497         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1498     }
1499 }
1500 
1501 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1502 {
1503     int shift;
1504 
1505     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1506      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1507      * that's much more than is needed for Linux guests */
1508     shift = ctz64(pow2ceil(ramsize)) - 7;
1509     shift = MAX(shift, 18); /* Minimum architected size */
1510     shift = MIN(shift, 46); /* Maximum architected size */
1511     return shift;
1512 }
1513 
1514 void spapr_free_hpt(sPAPRMachineState *spapr)
1515 {
1516     g_free(spapr->htab);
1517     spapr->htab = NULL;
1518     spapr->htab_shift = 0;
1519     close_htab_fd(spapr);
1520 }
1521 
1522 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1523                           Error **errp)
1524 {
1525     long rc;
1526 
1527     /* Clean up any HPT info from a previous boot */
1528     spapr_free_hpt(spapr);
1529 
1530     rc = kvmppc_reset_htab(shift);
1531     if (rc < 0) {
1532         /* kernel-side HPT needed, but couldn't allocate one */
1533         error_setg_errno(errp, errno,
1534                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1535                          shift);
1536         /* This is almost certainly fatal, but if the caller really
1537          * wants to carry on with shift == 0, it's welcome to try */
1538     } else if (rc > 0) {
1539         /* kernel-side HPT allocated */
1540         if (rc != shift) {
1541             error_setg(errp,
1542                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1543                        shift, rc);
1544         }
1545 
1546         spapr->htab_shift = shift;
1547         spapr->htab = NULL;
1548     } else {
1549         /* kernel-side HPT not needed, allocate in userspace instead */
1550         size_t size = 1ULL << shift;
1551         int i;
1552 
1553         spapr->htab = qemu_memalign(size, size);
1554         if (!spapr->htab) {
1555             error_setg_errno(errp, errno,
1556                              "Could not allocate HPT of order %d", shift);
1557             return;
1558         }
1559 
1560         memset(spapr->htab, 0, size);
1561         spapr->htab_shift = shift;
1562 
1563         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1564             DIRTY_HPTE(HPTE(spapr->htab, i));
1565         }
1566     }
1567     /* We're setting up a hash table, so that means we're not radix */
1568     spapr->patb_entry = 0;
1569 }
1570 
1571 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1572 {
1573     int hpt_shift;
1574 
1575     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1576         || (spapr->cas_reboot
1577             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1578         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1579     } else {
1580         uint64_t current_ram_size;
1581 
1582         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1583         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1584     }
1585     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1586 
1587     if (spapr->vrma_adjust) {
1588         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1589                                           spapr->htab_shift);
1590     }
1591 }
1592 
1593 static int spapr_reset_drcs(Object *child, void *opaque)
1594 {
1595     sPAPRDRConnector *drc =
1596         (sPAPRDRConnector *) object_dynamic_cast(child,
1597                                                  TYPE_SPAPR_DR_CONNECTOR);
1598 
1599     if (drc) {
1600         spapr_drc_reset(drc);
1601     }
1602 
1603     return 0;
1604 }
1605 
1606 static void spapr_machine_reset(void)
1607 {
1608     MachineState *machine = MACHINE(qdev_get_machine());
1609     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1610     PowerPCCPU *first_ppc_cpu;
1611     uint32_t rtas_limit;
1612     hwaddr rtas_addr, fdt_addr;
1613     void *fdt;
1614     int rc;
1615 
1616     spapr_caps_apply(spapr);
1617 
1618     first_ppc_cpu = POWERPC_CPU(first_cpu);
1619     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1620         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1621                               spapr->max_compat_pvr)) {
1622         /* If using KVM with radix mode available, VCPUs can be started
1623          * without a HPT because KVM will start them in radix mode.
1624          * Set the GR bit in PATB so that we know there is no HPT. */
1625         spapr->patb_entry = PATBE1_GR;
1626     } else {
1627         spapr_setup_hpt_and_vrma(spapr);
1628     }
1629 
1630     /* if this reset wasn't generated by CAS, we should reset our
1631      * negotiated options and start from scratch */
1632     if (!spapr->cas_reboot) {
1633         spapr_ovec_cleanup(spapr->ov5_cas);
1634         spapr->ov5_cas = spapr_ovec_new();
1635 
1636         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1637     }
1638 
1639     if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1640         spapr_irq_msi_reset(spapr);
1641     }
1642 
1643     qemu_devices_reset();
1644 
1645     /*
1646      * This is fixing some of the default configuration of the XIVE
1647      * devices. To be called after the reset of the machine devices.
1648      */
1649     spapr_irq_reset(spapr, &error_fatal);
1650 
1651     /* DRC reset may cause a device to be unplugged. This will cause troubles
1652      * if this device is used by another device (eg, a running vhost backend
1653      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1654      * situations, we reset DRCs after all devices have been reset.
1655      */
1656     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1657 
1658     spapr_clear_pending_events(spapr);
1659 
1660     /*
1661      * We place the device tree and RTAS just below either the top of the RMA,
1662      * or just below 2GB, whichever is lower, so that it can be
1663      * processed with 32-bit real mode code if necessary
1664      */
1665     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1666     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1667     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1668 
1669     fdt = spapr_build_fdt(spapr);
1670 
1671     spapr_load_rtas(spapr, fdt, rtas_addr);
1672 
1673     rc = fdt_pack(fdt);
1674 
1675     /* Should only fail if we've built a corrupted tree */
1676     assert(rc == 0);
1677 
1678     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1679         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1680                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1681         exit(1);
1682     }
1683 
1684     /* Load the fdt */
1685     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1686     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1687     g_free(spapr->fdt_blob);
1688     spapr->fdt_size = fdt_totalsize(fdt);
1689     spapr->fdt_initial_size = spapr->fdt_size;
1690     spapr->fdt_blob = fdt;
1691 
1692     /* Set up the entry state */
1693     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1694     first_ppc_cpu->env.gpr[5] = 0;
1695 
1696     spapr->cas_reboot = false;
1697 }
1698 
1699 static void spapr_create_nvram(sPAPRMachineState *spapr)
1700 {
1701     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1702     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1703 
1704     if (dinfo) {
1705         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1706                             &error_fatal);
1707     }
1708 
1709     qdev_init_nofail(dev);
1710 
1711     spapr->nvram = (struct sPAPRNVRAM *)dev;
1712 }
1713 
1714 static void spapr_rtc_create(sPAPRMachineState *spapr)
1715 {
1716     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1717     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1718                               &error_fatal);
1719     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1720                               &error_fatal);
1721     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1722                               "date", &error_fatal);
1723 }
1724 
1725 /* Returns whether we want to use VGA or not */
1726 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1727 {
1728     switch (vga_interface_type) {
1729     case VGA_NONE:
1730         return false;
1731     case VGA_DEVICE:
1732         return true;
1733     case VGA_STD:
1734     case VGA_VIRTIO:
1735     case VGA_CIRRUS:
1736         return pci_vga_init(pci_bus) != NULL;
1737     default:
1738         error_setg(errp,
1739                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1740         return false;
1741     }
1742 }
1743 
1744 static int spapr_pre_load(void *opaque)
1745 {
1746     int rc;
1747 
1748     rc = spapr_caps_pre_load(opaque);
1749     if (rc) {
1750         return rc;
1751     }
1752 
1753     return 0;
1754 }
1755 
1756 static int spapr_post_load(void *opaque, int version_id)
1757 {
1758     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1759     int err = 0;
1760 
1761     err = spapr_caps_post_migration(spapr);
1762     if (err) {
1763         return err;
1764     }
1765 
1766     /*
1767      * In earlier versions, there was no separate qdev for the PAPR
1768      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1769      * So when migrating from those versions, poke the incoming offset
1770      * value into the RTC device
1771      */
1772     if (version_id < 3) {
1773         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1774         if (err) {
1775             return err;
1776         }
1777     }
1778 
1779     if (kvm_enabled() && spapr->patb_entry) {
1780         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1781         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1782         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1783 
1784         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1785         if (err) {
1786             error_report("Process table config unsupported by the host");
1787             return -EINVAL;
1788         }
1789     }
1790 
1791     err = spapr_irq_post_load(spapr, version_id);
1792     if (err) {
1793         return err;
1794     }
1795 
1796     return err;
1797 }
1798 
1799 static int spapr_pre_save(void *opaque)
1800 {
1801     int rc;
1802 
1803     rc = spapr_caps_pre_save(opaque);
1804     if (rc) {
1805         return rc;
1806     }
1807 
1808     return 0;
1809 }
1810 
1811 static bool version_before_3(void *opaque, int version_id)
1812 {
1813     return version_id < 3;
1814 }
1815 
1816 static bool spapr_pending_events_needed(void *opaque)
1817 {
1818     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1819     return !QTAILQ_EMPTY(&spapr->pending_events);
1820 }
1821 
1822 static const VMStateDescription vmstate_spapr_event_entry = {
1823     .name = "spapr_event_log_entry",
1824     .version_id = 1,
1825     .minimum_version_id = 1,
1826     .fields = (VMStateField[]) {
1827         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1828         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1829         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1830                                      NULL, extended_length),
1831         VMSTATE_END_OF_LIST()
1832     },
1833 };
1834 
1835 static const VMStateDescription vmstate_spapr_pending_events = {
1836     .name = "spapr_pending_events",
1837     .version_id = 1,
1838     .minimum_version_id = 1,
1839     .needed = spapr_pending_events_needed,
1840     .fields = (VMStateField[]) {
1841         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1842                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1843         VMSTATE_END_OF_LIST()
1844     },
1845 };
1846 
1847 static bool spapr_ov5_cas_needed(void *opaque)
1848 {
1849     sPAPRMachineState *spapr = opaque;
1850     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1851     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1852     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1853     bool cas_needed;
1854 
1855     /* Prior to the introduction of sPAPROptionVector, we had two option
1856      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1857      * Both of these options encode machine topology into the device-tree
1858      * in such a way that the now-booted OS should still be able to interact
1859      * appropriately with QEMU regardless of what options were actually
1860      * negotiatied on the source side.
1861      *
1862      * As such, we can avoid migrating the CAS-negotiated options if these
1863      * are the only options available on the current machine/platform.
1864      * Since these are the only options available for pseries-2.7 and
1865      * earlier, this allows us to maintain old->new/new->old migration
1866      * compatibility.
1867      *
1868      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1869      * via default pseries-2.8 machines and explicit command-line parameters.
1870      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1871      * of the actual CAS-negotiated values to continue working properly. For
1872      * example, availability of memory unplug depends on knowing whether
1873      * OV5_HP_EVT was negotiated via CAS.
1874      *
1875      * Thus, for any cases where the set of available CAS-negotiatable
1876      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1877      * include the CAS-negotiated options in the migration stream, unless
1878      * if they affect boot time behaviour only.
1879      */
1880     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1881     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1882     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1883 
1884     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1885      * the mask itself since in the future it's possible "legacy" bits may be
1886      * removed via machine options, which could generate a false positive
1887      * that breaks migration.
1888      */
1889     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1890     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1891 
1892     spapr_ovec_cleanup(ov5_mask);
1893     spapr_ovec_cleanup(ov5_legacy);
1894     spapr_ovec_cleanup(ov5_removed);
1895 
1896     return cas_needed;
1897 }
1898 
1899 static const VMStateDescription vmstate_spapr_ov5_cas = {
1900     .name = "spapr_option_vector_ov5_cas",
1901     .version_id = 1,
1902     .minimum_version_id = 1,
1903     .needed = spapr_ov5_cas_needed,
1904     .fields = (VMStateField[]) {
1905         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1906                                  vmstate_spapr_ovec, sPAPROptionVector),
1907         VMSTATE_END_OF_LIST()
1908     },
1909 };
1910 
1911 static bool spapr_patb_entry_needed(void *opaque)
1912 {
1913     sPAPRMachineState *spapr = opaque;
1914 
1915     return !!spapr->patb_entry;
1916 }
1917 
1918 static const VMStateDescription vmstate_spapr_patb_entry = {
1919     .name = "spapr_patb_entry",
1920     .version_id = 1,
1921     .minimum_version_id = 1,
1922     .needed = spapr_patb_entry_needed,
1923     .fields = (VMStateField[]) {
1924         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1925         VMSTATE_END_OF_LIST()
1926     },
1927 };
1928 
1929 static bool spapr_irq_map_needed(void *opaque)
1930 {
1931     sPAPRMachineState *spapr = opaque;
1932 
1933     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1934 }
1935 
1936 static const VMStateDescription vmstate_spapr_irq_map = {
1937     .name = "spapr_irq_map",
1938     .version_id = 1,
1939     .minimum_version_id = 1,
1940     .needed = spapr_irq_map_needed,
1941     .fields = (VMStateField[]) {
1942         VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1943         VMSTATE_END_OF_LIST()
1944     },
1945 };
1946 
1947 static bool spapr_dtb_needed(void *opaque)
1948 {
1949     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1950 
1951     return smc->update_dt_enabled;
1952 }
1953 
1954 static int spapr_dtb_pre_load(void *opaque)
1955 {
1956     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1957 
1958     g_free(spapr->fdt_blob);
1959     spapr->fdt_blob = NULL;
1960     spapr->fdt_size = 0;
1961 
1962     return 0;
1963 }
1964 
1965 static const VMStateDescription vmstate_spapr_dtb = {
1966     .name = "spapr_dtb",
1967     .version_id = 1,
1968     .minimum_version_id = 1,
1969     .needed = spapr_dtb_needed,
1970     .pre_load = spapr_dtb_pre_load,
1971     .fields = (VMStateField[]) {
1972         VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState),
1973         VMSTATE_UINT32(fdt_size, sPAPRMachineState),
1974         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL,
1975                                      fdt_size),
1976         VMSTATE_END_OF_LIST()
1977     },
1978 };
1979 
1980 static const VMStateDescription vmstate_spapr = {
1981     .name = "spapr",
1982     .version_id = 3,
1983     .minimum_version_id = 1,
1984     .pre_load = spapr_pre_load,
1985     .post_load = spapr_post_load,
1986     .pre_save = spapr_pre_save,
1987     .fields = (VMStateField[]) {
1988         /* used to be @next_irq */
1989         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
1990 
1991         /* RTC offset */
1992         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
1993 
1994         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
1995         VMSTATE_END_OF_LIST()
1996     },
1997     .subsections = (const VMStateDescription*[]) {
1998         &vmstate_spapr_ov5_cas,
1999         &vmstate_spapr_patb_entry,
2000         &vmstate_spapr_pending_events,
2001         &vmstate_spapr_cap_htm,
2002         &vmstate_spapr_cap_vsx,
2003         &vmstate_spapr_cap_dfp,
2004         &vmstate_spapr_cap_cfpc,
2005         &vmstate_spapr_cap_sbbc,
2006         &vmstate_spapr_cap_ibs,
2007         &vmstate_spapr_irq_map,
2008         &vmstate_spapr_cap_nested_kvm_hv,
2009         &vmstate_spapr_dtb,
2010         NULL
2011     }
2012 };
2013 
2014 static int htab_save_setup(QEMUFile *f, void *opaque)
2015 {
2016     sPAPRMachineState *spapr = opaque;
2017 
2018     /* "Iteration" header */
2019     if (!spapr->htab_shift) {
2020         qemu_put_be32(f, -1);
2021     } else {
2022         qemu_put_be32(f, spapr->htab_shift);
2023     }
2024 
2025     if (spapr->htab) {
2026         spapr->htab_save_index = 0;
2027         spapr->htab_first_pass = true;
2028     } else {
2029         if (spapr->htab_shift) {
2030             assert(kvm_enabled());
2031         }
2032     }
2033 
2034 
2035     return 0;
2036 }
2037 
2038 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
2039                             int chunkstart, int n_valid, int n_invalid)
2040 {
2041     qemu_put_be32(f, chunkstart);
2042     qemu_put_be16(f, n_valid);
2043     qemu_put_be16(f, n_invalid);
2044     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2045                     HASH_PTE_SIZE_64 * n_valid);
2046 }
2047 
2048 static void htab_save_end_marker(QEMUFile *f)
2049 {
2050     qemu_put_be32(f, 0);
2051     qemu_put_be16(f, 0);
2052     qemu_put_be16(f, 0);
2053 }
2054 
2055 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
2056                                  int64_t max_ns)
2057 {
2058     bool has_timeout = max_ns != -1;
2059     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2060     int index = spapr->htab_save_index;
2061     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2062 
2063     assert(spapr->htab_first_pass);
2064 
2065     do {
2066         int chunkstart;
2067 
2068         /* Consume invalid HPTEs */
2069         while ((index < htabslots)
2070                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2071             CLEAN_HPTE(HPTE(spapr->htab, index));
2072             index++;
2073         }
2074 
2075         /* Consume valid HPTEs */
2076         chunkstart = index;
2077         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2078                && HPTE_VALID(HPTE(spapr->htab, index))) {
2079             CLEAN_HPTE(HPTE(spapr->htab, index));
2080             index++;
2081         }
2082 
2083         if (index > chunkstart) {
2084             int n_valid = index - chunkstart;
2085 
2086             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2087 
2088             if (has_timeout &&
2089                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2090                 break;
2091             }
2092         }
2093     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2094 
2095     if (index >= htabslots) {
2096         assert(index == htabslots);
2097         index = 0;
2098         spapr->htab_first_pass = false;
2099     }
2100     spapr->htab_save_index = index;
2101 }
2102 
2103 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2104                                 int64_t max_ns)
2105 {
2106     bool final = max_ns < 0;
2107     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2108     int examined = 0, sent = 0;
2109     int index = spapr->htab_save_index;
2110     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2111 
2112     assert(!spapr->htab_first_pass);
2113 
2114     do {
2115         int chunkstart, invalidstart;
2116 
2117         /* Consume non-dirty HPTEs */
2118         while ((index < htabslots)
2119                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2120             index++;
2121             examined++;
2122         }
2123 
2124         chunkstart = index;
2125         /* Consume valid dirty HPTEs */
2126         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2127                && HPTE_DIRTY(HPTE(spapr->htab, index))
2128                && HPTE_VALID(HPTE(spapr->htab, index))) {
2129             CLEAN_HPTE(HPTE(spapr->htab, index));
2130             index++;
2131             examined++;
2132         }
2133 
2134         invalidstart = index;
2135         /* Consume invalid dirty HPTEs */
2136         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2137                && HPTE_DIRTY(HPTE(spapr->htab, index))
2138                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2139             CLEAN_HPTE(HPTE(spapr->htab, index));
2140             index++;
2141             examined++;
2142         }
2143 
2144         if (index > chunkstart) {
2145             int n_valid = invalidstart - chunkstart;
2146             int n_invalid = index - invalidstart;
2147 
2148             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2149             sent += index - chunkstart;
2150 
2151             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2152                 break;
2153             }
2154         }
2155 
2156         if (examined >= htabslots) {
2157             break;
2158         }
2159 
2160         if (index >= htabslots) {
2161             assert(index == htabslots);
2162             index = 0;
2163         }
2164     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2165 
2166     if (index >= htabslots) {
2167         assert(index == htabslots);
2168         index = 0;
2169     }
2170 
2171     spapr->htab_save_index = index;
2172 
2173     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2174 }
2175 
2176 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2177 #define MAX_KVM_BUF_SIZE    2048
2178 
2179 static int htab_save_iterate(QEMUFile *f, void *opaque)
2180 {
2181     sPAPRMachineState *spapr = opaque;
2182     int fd;
2183     int rc = 0;
2184 
2185     /* Iteration header */
2186     if (!spapr->htab_shift) {
2187         qemu_put_be32(f, -1);
2188         return 1;
2189     } else {
2190         qemu_put_be32(f, 0);
2191     }
2192 
2193     if (!spapr->htab) {
2194         assert(kvm_enabled());
2195 
2196         fd = get_htab_fd(spapr);
2197         if (fd < 0) {
2198             return fd;
2199         }
2200 
2201         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2202         if (rc < 0) {
2203             return rc;
2204         }
2205     } else  if (spapr->htab_first_pass) {
2206         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2207     } else {
2208         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2209     }
2210 
2211     htab_save_end_marker(f);
2212 
2213     return rc;
2214 }
2215 
2216 static int htab_save_complete(QEMUFile *f, void *opaque)
2217 {
2218     sPAPRMachineState *spapr = opaque;
2219     int fd;
2220 
2221     /* Iteration header */
2222     if (!spapr->htab_shift) {
2223         qemu_put_be32(f, -1);
2224         return 0;
2225     } else {
2226         qemu_put_be32(f, 0);
2227     }
2228 
2229     if (!spapr->htab) {
2230         int rc;
2231 
2232         assert(kvm_enabled());
2233 
2234         fd = get_htab_fd(spapr);
2235         if (fd < 0) {
2236             return fd;
2237         }
2238 
2239         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2240         if (rc < 0) {
2241             return rc;
2242         }
2243     } else {
2244         if (spapr->htab_first_pass) {
2245             htab_save_first_pass(f, spapr, -1);
2246         }
2247         htab_save_later_pass(f, spapr, -1);
2248     }
2249 
2250     /* End marker */
2251     htab_save_end_marker(f);
2252 
2253     return 0;
2254 }
2255 
2256 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2257 {
2258     sPAPRMachineState *spapr = opaque;
2259     uint32_t section_hdr;
2260     int fd = -1;
2261     Error *local_err = NULL;
2262 
2263     if (version_id < 1 || version_id > 1) {
2264         error_report("htab_load() bad version");
2265         return -EINVAL;
2266     }
2267 
2268     section_hdr = qemu_get_be32(f);
2269 
2270     if (section_hdr == -1) {
2271         spapr_free_hpt(spapr);
2272         return 0;
2273     }
2274 
2275     if (section_hdr) {
2276         /* First section gives the htab size */
2277         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2278         if (local_err) {
2279             error_report_err(local_err);
2280             return -EINVAL;
2281         }
2282         return 0;
2283     }
2284 
2285     if (!spapr->htab) {
2286         assert(kvm_enabled());
2287 
2288         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2289         if (fd < 0) {
2290             error_report_err(local_err);
2291             return fd;
2292         }
2293     }
2294 
2295     while (true) {
2296         uint32_t index;
2297         uint16_t n_valid, n_invalid;
2298 
2299         index = qemu_get_be32(f);
2300         n_valid = qemu_get_be16(f);
2301         n_invalid = qemu_get_be16(f);
2302 
2303         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2304             /* End of Stream */
2305             break;
2306         }
2307 
2308         if ((index + n_valid + n_invalid) >
2309             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2310             /* Bad index in stream */
2311             error_report(
2312                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2313                 index, n_valid, n_invalid, spapr->htab_shift);
2314             return -EINVAL;
2315         }
2316 
2317         if (spapr->htab) {
2318             if (n_valid) {
2319                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2320                                 HASH_PTE_SIZE_64 * n_valid);
2321             }
2322             if (n_invalid) {
2323                 memset(HPTE(spapr->htab, index + n_valid), 0,
2324                        HASH_PTE_SIZE_64 * n_invalid);
2325             }
2326         } else {
2327             int rc;
2328 
2329             assert(fd >= 0);
2330 
2331             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2332             if (rc < 0) {
2333                 return rc;
2334             }
2335         }
2336     }
2337 
2338     if (!spapr->htab) {
2339         assert(fd >= 0);
2340         close(fd);
2341     }
2342 
2343     return 0;
2344 }
2345 
2346 static void htab_save_cleanup(void *opaque)
2347 {
2348     sPAPRMachineState *spapr = opaque;
2349 
2350     close_htab_fd(spapr);
2351 }
2352 
2353 static SaveVMHandlers savevm_htab_handlers = {
2354     .save_setup = htab_save_setup,
2355     .save_live_iterate = htab_save_iterate,
2356     .save_live_complete_precopy = htab_save_complete,
2357     .save_cleanup = htab_save_cleanup,
2358     .load_state = htab_load,
2359 };
2360 
2361 static void spapr_boot_set(void *opaque, const char *boot_device,
2362                            Error **errp)
2363 {
2364     MachineState *machine = MACHINE(opaque);
2365     machine->boot_order = g_strdup(boot_device);
2366 }
2367 
2368 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2369 {
2370     MachineState *machine = MACHINE(spapr);
2371     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2372     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2373     int i;
2374 
2375     for (i = 0; i < nr_lmbs; i++) {
2376         uint64_t addr;
2377 
2378         addr = i * lmb_size + machine->device_memory->base;
2379         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2380                                addr / lmb_size);
2381     }
2382 }
2383 
2384 /*
2385  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2386  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2387  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2388  */
2389 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2390 {
2391     int i;
2392 
2393     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2394         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2395                    " is not aligned to %" PRIu64 " MiB",
2396                    machine->ram_size,
2397                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2398         return;
2399     }
2400 
2401     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2402         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2403                    " is not aligned to %" PRIu64 " MiB",
2404                    machine->ram_size,
2405                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2406         return;
2407     }
2408 
2409     for (i = 0; i < nb_numa_nodes; i++) {
2410         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2411             error_setg(errp,
2412                        "Node %d memory size 0x%" PRIx64
2413                        " is not aligned to %" PRIu64 " MiB",
2414                        i, numa_info[i].node_mem,
2415                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2416             return;
2417         }
2418     }
2419 }
2420 
2421 /* find cpu slot in machine->possible_cpus by core_id */
2422 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2423 {
2424     int index = id / smp_threads;
2425 
2426     if (index >= ms->possible_cpus->len) {
2427         return NULL;
2428     }
2429     if (idx) {
2430         *idx = index;
2431     }
2432     return &ms->possible_cpus->cpus[index];
2433 }
2434 
2435 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2436 {
2437     Error *local_err = NULL;
2438     bool vsmt_user = !!spapr->vsmt;
2439     int kvm_smt = kvmppc_smt_threads();
2440     int ret;
2441 
2442     if (!kvm_enabled() && (smp_threads > 1)) {
2443         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2444                      "on a pseries machine");
2445         goto out;
2446     }
2447     if (!is_power_of_2(smp_threads)) {
2448         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2449                      "machine because it must be a power of 2", smp_threads);
2450         goto out;
2451     }
2452 
2453     /* Detemine the VSMT mode to use: */
2454     if (vsmt_user) {
2455         if (spapr->vsmt < smp_threads) {
2456             error_setg(&local_err, "Cannot support VSMT mode %d"
2457                          " because it must be >= threads/core (%d)",
2458                          spapr->vsmt, smp_threads);
2459             goto out;
2460         }
2461         /* In this case, spapr->vsmt has been set by the command line */
2462     } else {
2463         /*
2464          * Default VSMT value is tricky, because we need it to be as
2465          * consistent as possible (for migration), but this requires
2466          * changing it for at least some existing cases.  We pick 8 as
2467          * the value that we'd get with KVM on POWER8, the
2468          * overwhelmingly common case in production systems.
2469          */
2470         spapr->vsmt = MAX(8, smp_threads);
2471     }
2472 
2473     /* KVM: If necessary, set the SMT mode: */
2474     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2475         ret = kvmppc_set_smt_threads(spapr->vsmt);
2476         if (ret) {
2477             /* Looks like KVM isn't able to change VSMT mode */
2478             error_setg(&local_err,
2479                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2480                        spapr->vsmt, ret);
2481             /* We can live with that if the default one is big enough
2482              * for the number of threads, and a submultiple of the one
2483              * we want.  In this case we'll waste some vcpu ids, but
2484              * behaviour will be correct */
2485             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2486                 warn_report_err(local_err);
2487                 local_err = NULL;
2488                 goto out;
2489             } else {
2490                 if (!vsmt_user) {
2491                     error_append_hint(&local_err,
2492                                       "On PPC, a VM with %d threads/core"
2493                                       " on a host with %d threads/core"
2494                                       " requires the use of VSMT mode %d.\n",
2495                                       smp_threads, kvm_smt, spapr->vsmt);
2496                 }
2497                 kvmppc_hint_smt_possible(&local_err);
2498                 goto out;
2499             }
2500         }
2501     }
2502     /* else TCG: nothing to do currently */
2503 out:
2504     error_propagate(errp, local_err);
2505 }
2506 
2507 static void spapr_init_cpus(sPAPRMachineState *spapr)
2508 {
2509     MachineState *machine = MACHINE(spapr);
2510     MachineClass *mc = MACHINE_GET_CLASS(machine);
2511     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2512     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2513     const CPUArchIdList *possible_cpus;
2514     int boot_cores_nr = smp_cpus / smp_threads;
2515     int i;
2516 
2517     possible_cpus = mc->possible_cpu_arch_ids(machine);
2518     if (mc->has_hotpluggable_cpus) {
2519         if (smp_cpus % smp_threads) {
2520             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2521                          smp_cpus, smp_threads);
2522             exit(1);
2523         }
2524         if (max_cpus % smp_threads) {
2525             error_report("max_cpus (%u) must be multiple of threads (%u)",
2526                          max_cpus, smp_threads);
2527             exit(1);
2528         }
2529     } else {
2530         if (max_cpus != smp_cpus) {
2531             error_report("This machine version does not support CPU hotplug");
2532             exit(1);
2533         }
2534         boot_cores_nr = possible_cpus->len;
2535     }
2536 
2537     if (smc->pre_2_10_has_unused_icps) {
2538         int i;
2539 
2540         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2541             /* Dummy entries get deregistered when real ICPState objects
2542              * are registered during CPU core hotplug.
2543              */
2544             pre_2_10_vmstate_register_dummy_icp(i);
2545         }
2546     }
2547 
2548     for (i = 0; i < possible_cpus->len; i++) {
2549         int core_id = i * smp_threads;
2550 
2551         if (mc->has_hotpluggable_cpus) {
2552             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2553                                    spapr_vcpu_id(spapr, core_id));
2554         }
2555 
2556         if (i < boot_cores_nr) {
2557             Object *core  = object_new(type);
2558             int nr_threads = smp_threads;
2559 
2560             /* Handle the partially filled core for older machine types */
2561             if ((i + 1) * smp_threads >= smp_cpus) {
2562                 nr_threads = smp_cpus - i * smp_threads;
2563             }
2564 
2565             object_property_set_int(core, nr_threads, "nr-threads",
2566                                     &error_fatal);
2567             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2568                                     &error_fatal);
2569             object_property_set_bool(core, true, "realized", &error_fatal);
2570 
2571             object_unref(core);
2572         }
2573     }
2574 }
2575 
2576 static PCIHostState *spapr_create_default_phb(void)
2577 {
2578     DeviceState *dev;
2579 
2580     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2581     qdev_prop_set_uint32(dev, "index", 0);
2582     qdev_init_nofail(dev);
2583 
2584     return PCI_HOST_BRIDGE(dev);
2585 }
2586 
2587 /* pSeries LPAR / sPAPR hardware init */
2588 static void spapr_machine_init(MachineState *machine)
2589 {
2590     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2591     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2592     const char *kernel_filename = machine->kernel_filename;
2593     const char *initrd_filename = machine->initrd_filename;
2594     PCIHostState *phb;
2595     int i;
2596     MemoryRegion *sysmem = get_system_memory();
2597     MemoryRegion *ram = g_new(MemoryRegion, 1);
2598     hwaddr node0_size = spapr_node0_size(machine);
2599     long load_limit, fw_size;
2600     char *filename;
2601     Error *resize_hpt_err = NULL;
2602 
2603     msi_nonbroken = true;
2604 
2605     QLIST_INIT(&spapr->phbs);
2606     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2607 
2608     /* Determine capabilities to run with */
2609     spapr_caps_init(spapr);
2610 
2611     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2612     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2613         /*
2614          * If the user explicitly requested a mode we should either
2615          * supply it, or fail completely (which we do below).  But if
2616          * it's not set explicitly, we reset our mode to something
2617          * that works
2618          */
2619         if (resize_hpt_err) {
2620             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2621             error_free(resize_hpt_err);
2622             resize_hpt_err = NULL;
2623         } else {
2624             spapr->resize_hpt = smc->resize_hpt_default;
2625         }
2626     }
2627 
2628     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2629 
2630     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2631         /*
2632          * User requested HPT resize, but this host can't supply it.  Bail out
2633          */
2634         error_report_err(resize_hpt_err);
2635         exit(1);
2636     }
2637 
2638     spapr->rma_size = node0_size;
2639 
2640     /* With KVM, we don't actually know whether KVM supports an
2641      * unbounded RMA (PR KVM) or is limited by the hash table size
2642      * (HV KVM using VRMA), so we always assume the latter
2643      *
2644      * In that case, we also limit the initial allocations for RTAS
2645      * etc... to 256M since we have no way to know what the VRMA size
2646      * is going to be as it depends on the size of the hash table
2647      * which isn't determined yet.
2648      */
2649     if (kvm_enabled()) {
2650         spapr->vrma_adjust = 1;
2651         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2652     }
2653 
2654     /* Actually we don't support unbounded RMA anymore since we added
2655      * proper emulation of HV mode. The max we can get is 16G which
2656      * also happens to be what we configure for PAPR mode so make sure
2657      * we don't do anything bigger than that
2658      */
2659     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2660 
2661     if (spapr->rma_size > node0_size) {
2662         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2663                      spapr->rma_size);
2664         exit(1);
2665     }
2666 
2667     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2668     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2669 
2670     /*
2671      * VSMT must be set in order to be able to compute VCPU ids, ie to
2672      * call spapr_max_server_number() or spapr_vcpu_id().
2673      */
2674     spapr_set_vsmt_mode(spapr, &error_fatal);
2675 
2676     /* Set up Interrupt Controller before we create the VCPUs */
2677     spapr_irq_init(spapr, &error_fatal);
2678 
2679     /* Set up containers for ibm,client-architecture-support negotiated options
2680      */
2681     spapr->ov5 = spapr_ovec_new();
2682     spapr->ov5_cas = spapr_ovec_new();
2683 
2684     if (smc->dr_lmb_enabled) {
2685         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2686         spapr_validate_node_memory(machine, &error_fatal);
2687     }
2688 
2689     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2690 
2691     /* advertise support for dedicated HP event source to guests */
2692     if (spapr->use_hotplug_event_source) {
2693         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2694     }
2695 
2696     /* advertise support for HPT resizing */
2697     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2698         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2699     }
2700 
2701     /* advertise support for ibm,dyamic-memory-v2 */
2702     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2703 
2704     /* advertise XIVE on POWER9 machines */
2705     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2706         if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
2707                                   0, spapr->max_compat_pvr)) {
2708             spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2709         } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) {
2710             error_report("XIVE-only machines require a POWER9 CPU");
2711             exit(1);
2712         }
2713     }
2714 
2715     /* init CPUs */
2716     spapr_init_cpus(spapr);
2717 
2718     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2719         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2720                               spapr->max_compat_pvr)) {
2721         /* KVM and TCG always allow GTSE with radix... */
2722         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2723     }
2724     /* ... but not with hash (currently). */
2725 
2726     if (kvm_enabled()) {
2727         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2728         kvmppc_enable_logical_ci_hcalls();
2729         kvmppc_enable_set_mode_hcall();
2730 
2731         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2732         kvmppc_enable_clear_ref_mod_hcalls();
2733     }
2734 
2735     /* allocate RAM */
2736     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2737                                          machine->ram_size);
2738     memory_region_add_subregion(sysmem, 0, ram);
2739 
2740     /* always allocate the device memory information */
2741     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2742 
2743     /* initialize hotplug memory address space */
2744     if (machine->ram_size < machine->maxram_size) {
2745         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2746         /*
2747          * Limit the number of hotpluggable memory slots to half the number
2748          * slots that KVM supports, leaving the other half for PCI and other
2749          * devices. However ensure that number of slots doesn't drop below 32.
2750          */
2751         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2752                            SPAPR_MAX_RAM_SLOTS;
2753 
2754         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2755             max_memslots = SPAPR_MAX_RAM_SLOTS;
2756         }
2757         if (machine->ram_slots > max_memslots) {
2758             error_report("Specified number of memory slots %"
2759                          PRIu64" exceeds max supported %d",
2760                          machine->ram_slots, max_memslots);
2761             exit(1);
2762         }
2763 
2764         machine->device_memory->base = ROUND_UP(machine->ram_size,
2765                                                 SPAPR_DEVICE_MEM_ALIGN);
2766         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2767                            "device-memory", device_mem_size);
2768         memory_region_add_subregion(sysmem, machine->device_memory->base,
2769                                     &machine->device_memory->mr);
2770     }
2771 
2772     if (smc->dr_lmb_enabled) {
2773         spapr_create_lmb_dr_connectors(spapr);
2774     }
2775 
2776     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2777     if (!filename) {
2778         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2779         exit(1);
2780     }
2781     spapr->rtas_size = get_image_size(filename);
2782     if (spapr->rtas_size < 0) {
2783         error_report("Could not get size of LPAR rtas '%s'", filename);
2784         exit(1);
2785     }
2786     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2787     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2788         error_report("Could not load LPAR rtas '%s'", filename);
2789         exit(1);
2790     }
2791     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2792         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2793                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2794         exit(1);
2795     }
2796     g_free(filename);
2797 
2798     /* Set up RTAS event infrastructure */
2799     spapr_events_init(spapr);
2800 
2801     /* Set up the RTC RTAS interfaces */
2802     spapr_rtc_create(spapr);
2803 
2804     /* Set up VIO bus */
2805     spapr->vio_bus = spapr_vio_bus_init();
2806 
2807     for (i = 0; i < serial_max_hds(); i++) {
2808         if (serial_hd(i)) {
2809             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2810         }
2811     }
2812 
2813     /* We always have at least the nvram device on VIO */
2814     spapr_create_nvram(spapr);
2815 
2816     /* Set up PCI */
2817     spapr_pci_rtas_init();
2818 
2819     phb = spapr_create_default_phb();
2820 
2821     for (i = 0; i < nb_nics; i++) {
2822         NICInfo *nd = &nd_table[i];
2823 
2824         if (!nd->model) {
2825             nd->model = g_strdup("spapr-vlan");
2826         }
2827 
2828         if (g_str_equal(nd->model, "spapr-vlan") ||
2829             g_str_equal(nd->model, "ibmveth")) {
2830             spapr_vlan_create(spapr->vio_bus, nd);
2831         } else {
2832             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2833         }
2834     }
2835 
2836     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2837         spapr_vscsi_create(spapr->vio_bus);
2838     }
2839 
2840     /* Graphics */
2841     if (spapr_vga_init(phb->bus, &error_fatal)) {
2842         spapr->has_graphics = true;
2843         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2844     }
2845 
2846     if (machine->usb) {
2847         if (smc->use_ohci_by_default) {
2848             pci_create_simple(phb->bus, -1, "pci-ohci");
2849         } else {
2850             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2851         }
2852 
2853         if (spapr->has_graphics) {
2854             USBBus *usb_bus = usb_bus_find(-1);
2855 
2856             usb_create_simple(usb_bus, "usb-kbd");
2857             usb_create_simple(usb_bus, "usb-mouse");
2858         }
2859     }
2860 
2861     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2862         error_report(
2863             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2864             MIN_RMA_SLOF);
2865         exit(1);
2866     }
2867 
2868     if (kernel_filename) {
2869         uint64_t lowaddr = 0;
2870 
2871         spapr->kernel_size = load_elf(kernel_filename, NULL,
2872                                       translate_kernel_address, NULL,
2873                                       NULL, &lowaddr, NULL, 1,
2874                                       PPC_ELF_MACHINE, 0, 0);
2875         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2876             spapr->kernel_size = load_elf(kernel_filename, NULL,
2877                                           translate_kernel_address, NULL, NULL,
2878                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2879                                           0, 0);
2880             spapr->kernel_le = spapr->kernel_size > 0;
2881         }
2882         if (spapr->kernel_size < 0) {
2883             error_report("error loading %s: %s", kernel_filename,
2884                          load_elf_strerror(spapr->kernel_size));
2885             exit(1);
2886         }
2887 
2888         /* load initrd */
2889         if (initrd_filename) {
2890             /* Try to locate the initrd in the gap between the kernel
2891              * and the firmware. Add a bit of space just in case
2892              */
2893             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2894                                   + 0x1ffff) & ~0xffff;
2895             spapr->initrd_size = load_image_targphys(initrd_filename,
2896                                                      spapr->initrd_base,
2897                                                      load_limit
2898                                                      - spapr->initrd_base);
2899             if (spapr->initrd_size < 0) {
2900                 error_report("could not load initial ram disk '%s'",
2901                              initrd_filename);
2902                 exit(1);
2903             }
2904         }
2905     }
2906 
2907     if (bios_name == NULL) {
2908         bios_name = FW_FILE_NAME;
2909     }
2910     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2911     if (!filename) {
2912         error_report("Could not find LPAR firmware '%s'", bios_name);
2913         exit(1);
2914     }
2915     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2916     if (fw_size <= 0) {
2917         error_report("Could not load LPAR firmware '%s'", filename);
2918         exit(1);
2919     }
2920     g_free(filename);
2921 
2922     /* FIXME: Should register things through the MachineState's qdev
2923      * interface, this is a legacy from the sPAPREnvironment structure
2924      * which predated MachineState but had a similar function */
2925     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2926     register_savevm_live(NULL, "spapr/htab", -1, 1,
2927                          &savevm_htab_handlers, spapr);
2928 
2929     qemu_register_boot_set(spapr_boot_set, spapr);
2930 
2931     if (kvm_enabled()) {
2932         /* to stop and start vmclock */
2933         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2934                                          &spapr->tb);
2935 
2936         kvmppc_spapr_enable_inkernel_multitce();
2937     }
2938 }
2939 
2940 static int spapr_kvm_type(const char *vm_type)
2941 {
2942     if (!vm_type) {
2943         return 0;
2944     }
2945 
2946     if (!strcmp(vm_type, "HV")) {
2947         return 1;
2948     }
2949 
2950     if (!strcmp(vm_type, "PR")) {
2951         return 2;
2952     }
2953 
2954     error_report("Unknown kvm-type specified '%s'", vm_type);
2955     exit(1);
2956 }
2957 
2958 /*
2959  * Implementation of an interface to adjust firmware path
2960  * for the bootindex property handling.
2961  */
2962 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
2963                                    DeviceState *dev)
2964 {
2965 #define CAST(type, obj, name) \
2966     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
2967     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
2968     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
2969     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
2970 
2971     if (d) {
2972         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
2973         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
2974         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
2975 
2976         if (spapr) {
2977             /*
2978              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
2979              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
2980              * 0x8000 | (target << 8) | (bus << 5) | lun
2981              * (see the "Logical unit addressing format" table in SAM5)
2982              */
2983             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
2984             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
2985                                    (uint64_t)id << 48);
2986         } else if (virtio) {
2987             /*
2988              * We use SRP luns of the form 01000000 | (target << 8) | lun
2989              * in the top 32 bits of the 64-bit LUN
2990              * Note: the quote above is from SLOF and it is wrong,
2991              * the actual binding is:
2992              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
2993              */
2994             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
2995             if (d->lun >= 256) {
2996                 /* Use the LUN "flat space addressing method" */
2997                 id |= 0x4000;
2998             }
2999             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3000                                    (uint64_t)id << 32);
3001         } else if (usb) {
3002             /*
3003              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3004              * in the top 32 bits of the 64-bit LUN
3005              */
3006             unsigned usb_port = atoi(usb->port->path);
3007             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3008             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3009                                    (uint64_t)id << 32);
3010         }
3011     }
3012 
3013     /*
3014      * SLOF probes the USB devices, and if it recognizes that the device is a
3015      * storage device, it changes its name to "storage" instead of "usb-host",
3016      * and additionally adds a child node for the SCSI LUN, so the correct
3017      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3018      */
3019     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3020         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3021         if (usb_host_dev_is_scsi_storage(usbdev)) {
3022             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3023         }
3024     }
3025 
3026     if (phb) {
3027         /* Replace "pci" with "pci@800000020000000" */
3028         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3029     }
3030 
3031     if (vsc) {
3032         /* Same logic as virtio above */
3033         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3034         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3035     }
3036 
3037     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3038         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3039         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3040         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3041     }
3042 
3043     return NULL;
3044 }
3045 
3046 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3047 {
3048     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3049 
3050     return g_strdup(spapr->kvm_type);
3051 }
3052 
3053 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3054 {
3055     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3056 
3057     g_free(spapr->kvm_type);
3058     spapr->kvm_type = g_strdup(value);
3059 }
3060 
3061 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3062 {
3063     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3064 
3065     return spapr->use_hotplug_event_source;
3066 }
3067 
3068 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3069                                             Error **errp)
3070 {
3071     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3072 
3073     spapr->use_hotplug_event_source = value;
3074 }
3075 
3076 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3077 {
3078     return true;
3079 }
3080 
3081 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3082 {
3083     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3084 
3085     switch (spapr->resize_hpt) {
3086     case SPAPR_RESIZE_HPT_DEFAULT:
3087         return g_strdup("default");
3088     case SPAPR_RESIZE_HPT_DISABLED:
3089         return g_strdup("disabled");
3090     case SPAPR_RESIZE_HPT_ENABLED:
3091         return g_strdup("enabled");
3092     case SPAPR_RESIZE_HPT_REQUIRED:
3093         return g_strdup("required");
3094     }
3095     g_assert_not_reached();
3096 }
3097 
3098 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3099 {
3100     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3101 
3102     if (strcmp(value, "default") == 0) {
3103         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3104     } else if (strcmp(value, "disabled") == 0) {
3105         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3106     } else if (strcmp(value, "enabled") == 0) {
3107         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3108     } else if (strcmp(value, "required") == 0) {
3109         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3110     } else {
3111         error_setg(errp, "Bad value for \"resize-hpt\" property");
3112     }
3113 }
3114 
3115 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3116                                    void *opaque, Error **errp)
3117 {
3118     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3119 }
3120 
3121 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3122                                    void *opaque, Error **errp)
3123 {
3124     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3125 }
3126 
3127 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3128 {
3129     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3130 
3131     if (spapr->irq == &spapr_irq_xics_legacy) {
3132         return g_strdup("legacy");
3133     } else if (spapr->irq == &spapr_irq_xics) {
3134         return g_strdup("xics");
3135     } else if (spapr->irq == &spapr_irq_xive) {
3136         return g_strdup("xive");
3137     } else if (spapr->irq == &spapr_irq_dual) {
3138         return g_strdup("dual");
3139     }
3140     g_assert_not_reached();
3141 }
3142 
3143 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3144 {
3145     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3146 
3147     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3148         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3149         return;
3150     }
3151 
3152     /* The legacy IRQ backend can not be set */
3153     if (strcmp(value, "xics") == 0) {
3154         spapr->irq = &spapr_irq_xics;
3155     } else if (strcmp(value, "xive") == 0) {
3156         spapr->irq = &spapr_irq_xive;
3157     } else if (strcmp(value, "dual") == 0) {
3158         spapr->irq = &spapr_irq_dual;
3159     } else {
3160         error_setg(errp, "Bad value for \"ic-mode\" property");
3161     }
3162 }
3163 
3164 static char *spapr_get_host_model(Object *obj, Error **errp)
3165 {
3166     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3167 
3168     return g_strdup(spapr->host_model);
3169 }
3170 
3171 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3172 {
3173     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3174 
3175     g_free(spapr->host_model);
3176     spapr->host_model = g_strdup(value);
3177 }
3178 
3179 static char *spapr_get_host_serial(Object *obj, Error **errp)
3180 {
3181     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3182 
3183     return g_strdup(spapr->host_serial);
3184 }
3185 
3186 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3187 {
3188     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3189 
3190     g_free(spapr->host_serial);
3191     spapr->host_serial = g_strdup(value);
3192 }
3193 
3194 static void spapr_instance_init(Object *obj)
3195 {
3196     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3197     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3198 
3199     spapr->htab_fd = -1;
3200     spapr->use_hotplug_event_source = true;
3201     object_property_add_str(obj, "kvm-type",
3202                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3203     object_property_set_description(obj, "kvm-type",
3204                                     "Specifies the KVM virtualization mode (HV, PR)",
3205                                     NULL);
3206     object_property_add_bool(obj, "modern-hotplug-events",
3207                             spapr_get_modern_hotplug_events,
3208                             spapr_set_modern_hotplug_events,
3209                             NULL);
3210     object_property_set_description(obj, "modern-hotplug-events",
3211                                     "Use dedicated hotplug event mechanism in"
3212                                     " place of standard EPOW events when possible"
3213                                     " (required for memory hot-unplug support)",
3214                                     NULL);
3215     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3216                             "Maximum permitted CPU compatibility mode",
3217                             &error_fatal);
3218 
3219     object_property_add_str(obj, "resize-hpt",
3220                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3221     object_property_set_description(obj, "resize-hpt",
3222                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3223                                     NULL);
3224     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3225                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3226     object_property_set_description(obj, "vsmt",
3227                                     "Virtual SMT: KVM behaves as if this were"
3228                                     " the host's SMT mode", &error_abort);
3229     object_property_add_bool(obj, "vfio-no-msix-emulation",
3230                              spapr_get_msix_emulation, NULL, NULL);
3231 
3232     /* The machine class defines the default interrupt controller mode */
3233     spapr->irq = smc->irq;
3234     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3235                             spapr_set_ic_mode, NULL);
3236     object_property_set_description(obj, "ic-mode",
3237                  "Specifies the interrupt controller mode (xics, xive, dual)",
3238                  NULL);
3239 
3240     object_property_add_str(obj, "host-model",
3241         spapr_get_host_model, spapr_set_host_model,
3242         &error_abort);
3243     object_property_set_description(obj, "host-model",
3244         "Set host's model-id to use - none|passthrough|string", &error_abort);
3245     object_property_add_str(obj, "host-serial",
3246         spapr_get_host_serial, spapr_set_host_serial,
3247         &error_abort);
3248     object_property_set_description(obj, "host-serial",
3249         "Set host's system-id to use - none|passthrough|string", &error_abort);
3250 }
3251 
3252 static void spapr_machine_finalizefn(Object *obj)
3253 {
3254     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3255 
3256     g_free(spapr->kvm_type);
3257 }
3258 
3259 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3260 {
3261     cpu_synchronize_state(cs);
3262     ppc_cpu_do_system_reset(cs);
3263 }
3264 
3265 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3266 {
3267     CPUState *cs;
3268 
3269     CPU_FOREACH(cs) {
3270         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3271     }
3272 }
3273 
3274 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3275                            uint32_t node, bool dedicated_hp_event_source,
3276                            Error **errp)
3277 {
3278     sPAPRDRConnector *drc;
3279     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3280     int i, fdt_offset, fdt_size;
3281     void *fdt;
3282     uint64_t addr = addr_start;
3283     bool hotplugged = spapr_drc_hotplugged(dev);
3284     Error *local_err = NULL;
3285 
3286     for (i = 0; i < nr_lmbs; i++) {
3287         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3288                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3289         g_assert(drc);
3290 
3291         fdt = create_device_tree(&fdt_size);
3292         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3293                                                 SPAPR_MEMORY_BLOCK_SIZE);
3294 
3295         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3296         if (local_err) {
3297             while (addr > addr_start) {
3298                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3299                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3300                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3301                 spapr_drc_detach(drc);
3302             }
3303             g_free(fdt);
3304             error_propagate(errp, local_err);
3305             return;
3306         }
3307         if (!hotplugged) {
3308             spapr_drc_reset(drc);
3309         }
3310         addr += SPAPR_MEMORY_BLOCK_SIZE;
3311     }
3312     /* send hotplug notification to the
3313      * guest only in case of hotplugged memory
3314      */
3315     if (hotplugged) {
3316         if (dedicated_hp_event_source) {
3317             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3318                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3319             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3320                                                    nr_lmbs,
3321                                                    spapr_drc_index(drc));
3322         } else {
3323             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3324                                            nr_lmbs);
3325         }
3326     }
3327 }
3328 
3329 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3330                               Error **errp)
3331 {
3332     Error *local_err = NULL;
3333     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3334     PCDIMMDevice *dimm = PC_DIMM(dev);
3335     uint64_t size, addr;
3336     uint32_t node;
3337 
3338     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3339 
3340     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3341     if (local_err) {
3342         goto out;
3343     }
3344 
3345     addr = object_property_get_uint(OBJECT(dimm),
3346                                     PC_DIMM_ADDR_PROP, &local_err);
3347     if (local_err) {
3348         goto out_unplug;
3349     }
3350 
3351     node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3352                                     &error_abort);
3353     spapr_add_lmbs(dev, addr, size, node,
3354                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3355                    &local_err);
3356     if (local_err) {
3357         goto out_unplug;
3358     }
3359 
3360     return;
3361 
3362 out_unplug:
3363     pc_dimm_unplug(dimm, MACHINE(ms));
3364 out:
3365     error_propagate(errp, local_err);
3366 }
3367 
3368 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3369                                   Error **errp)
3370 {
3371     const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3372     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3373     PCDIMMDevice *dimm = PC_DIMM(dev);
3374     Error *local_err = NULL;
3375     uint64_t size;
3376     Object *memdev;
3377     hwaddr pagesize;
3378 
3379     if (!smc->dr_lmb_enabled) {
3380         error_setg(errp, "Memory hotplug not supported for this machine");
3381         return;
3382     }
3383 
3384     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3385     if (local_err) {
3386         error_propagate(errp, local_err);
3387         return;
3388     }
3389 
3390     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3391         error_setg(errp, "Hotplugged memory size must be a multiple of "
3392                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3393         return;
3394     }
3395 
3396     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3397                                       &error_abort);
3398     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3399     spapr_check_pagesize(spapr, pagesize, &local_err);
3400     if (local_err) {
3401         error_propagate(errp, local_err);
3402         return;
3403     }
3404 
3405     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3406 }
3407 
3408 struct sPAPRDIMMState {
3409     PCDIMMDevice *dimm;
3410     uint32_t nr_lmbs;
3411     QTAILQ_ENTRY(sPAPRDIMMState) next;
3412 };
3413 
3414 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3415                                                        PCDIMMDevice *dimm)
3416 {
3417     sPAPRDIMMState *dimm_state = NULL;
3418 
3419     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3420         if (dimm_state->dimm == dimm) {
3421             break;
3422         }
3423     }
3424     return dimm_state;
3425 }
3426 
3427 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3428                                                       uint32_t nr_lmbs,
3429                                                       PCDIMMDevice *dimm)
3430 {
3431     sPAPRDIMMState *ds = NULL;
3432 
3433     /*
3434      * If this request is for a DIMM whose removal had failed earlier
3435      * (due to guest's refusal to remove the LMBs), we would have this
3436      * dimm already in the pending_dimm_unplugs list. In that
3437      * case don't add again.
3438      */
3439     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3440     if (!ds) {
3441         ds = g_malloc0(sizeof(sPAPRDIMMState));
3442         ds->nr_lmbs = nr_lmbs;
3443         ds->dimm = dimm;
3444         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3445     }
3446     return ds;
3447 }
3448 
3449 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3450                                               sPAPRDIMMState *dimm_state)
3451 {
3452     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3453     g_free(dimm_state);
3454 }
3455 
3456 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3457                                                         PCDIMMDevice *dimm)
3458 {
3459     sPAPRDRConnector *drc;
3460     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3461                                                   &error_abort);
3462     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3463     uint32_t avail_lmbs = 0;
3464     uint64_t addr_start, addr;
3465     int i;
3466 
3467     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3468                                          &error_abort);
3469 
3470     addr = addr_start;
3471     for (i = 0; i < nr_lmbs; i++) {
3472         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3473                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3474         g_assert(drc);
3475         if (drc->dev) {
3476             avail_lmbs++;
3477         }
3478         addr += SPAPR_MEMORY_BLOCK_SIZE;
3479     }
3480 
3481     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3482 }
3483 
3484 /* Callback to be called during DRC release. */
3485 void spapr_lmb_release(DeviceState *dev)
3486 {
3487     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3488     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3489     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3490 
3491     /* This information will get lost if a migration occurs
3492      * during the unplug process. In this case recover it. */
3493     if (ds == NULL) {
3494         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3495         g_assert(ds);
3496         /* The DRC being examined by the caller at least must be counted */
3497         g_assert(ds->nr_lmbs);
3498     }
3499 
3500     if (--ds->nr_lmbs) {
3501         return;
3502     }
3503 
3504     /*
3505      * Now that all the LMBs have been removed by the guest, call the
3506      * unplug handler chain. This can never fail.
3507      */
3508     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3509 }
3510 
3511 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3512 {
3513     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3514     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3515 
3516     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3517     object_unparent(OBJECT(dev));
3518     spapr_pending_dimm_unplugs_remove(spapr, ds);
3519 }
3520 
3521 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3522                                         DeviceState *dev, Error **errp)
3523 {
3524     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3525     Error *local_err = NULL;
3526     PCDIMMDevice *dimm = PC_DIMM(dev);
3527     uint32_t nr_lmbs;
3528     uint64_t size, addr_start, addr;
3529     int i;
3530     sPAPRDRConnector *drc;
3531 
3532     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3533     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3534 
3535     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3536                                          &local_err);
3537     if (local_err) {
3538         goto out;
3539     }
3540 
3541     /*
3542      * An existing pending dimm state for this DIMM means that there is an
3543      * unplug operation in progress, waiting for the spapr_lmb_release
3544      * callback to complete the job (BQL can't cover that far). In this case,
3545      * bail out to avoid detaching DRCs that were already released.
3546      */
3547     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3548         error_setg(&local_err,
3549                    "Memory unplug already in progress for device %s",
3550                    dev->id);
3551         goto out;
3552     }
3553 
3554     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3555 
3556     addr = addr_start;
3557     for (i = 0; i < nr_lmbs; i++) {
3558         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3559                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3560         g_assert(drc);
3561 
3562         spapr_drc_detach(drc);
3563         addr += SPAPR_MEMORY_BLOCK_SIZE;
3564     }
3565 
3566     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3567                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3568     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3569                                               nr_lmbs, spapr_drc_index(drc));
3570 out:
3571     error_propagate(errp, local_err);
3572 }
3573 
3574 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3575                                            sPAPRMachineState *spapr)
3576 {
3577     PowerPCCPU *cpu = POWERPC_CPU(cs);
3578     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3579     int id = spapr_get_vcpu_id(cpu);
3580     void *fdt;
3581     int offset, fdt_size;
3582     char *nodename;
3583 
3584     fdt = create_device_tree(&fdt_size);
3585     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3586     offset = fdt_add_subnode(fdt, 0, nodename);
3587 
3588     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3589     g_free(nodename);
3590 
3591     *fdt_offset = offset;
3592     return fdt;
3593 }
3594 
3595 /* Callback to be called during DRC release. */
3596 void spapr_core_release(DeviceState *dev)
3597 {
3598     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3599 
3600     /* Call the unplug handler chain. This can never fail. */
3601     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3602 }
3603 
3604 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3605 {
3606     MachineState *ms = MACHINE(hotplug_dev);
3607     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3608     CPUCore *cc = CPU_CORE(dev);
3609     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3610 
3611     if (smc->pre_2_10_has_unused_icps) {
3612         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3613         int i;
3614 
3615         for (i = 0; i < cc->nr_threads; i++) {
3616             CPUState *cs = CPU(sc->threads[i]);
3617 
3618             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3619         }
3620     }
3621 
3622     assert(core_slot);
3623     core_slot->cpu = NULL;
3624     object_unparent(OBJECT(dev));
3625 }
3626 
3627 static
3628 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3629                                Error **errp)
3630 {
3631     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3632     int index;
3633     sPAPRDRConnector *drc;
3634     CPUCore *cc = CPU_CORE(dev);
3635 
3636     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3637         error_setg(errp, "Unable to find CPU core with core-id: %d",
3638                    cc->core_id);
3639         return;
3640     }
3641     if (index == 0) {
3642         error_setg(errp, "Boot CPU core may not be unplugged");
3643         return;
3644     }
3645 
3646     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3647                           spapr_vcpu_id(spapr, cc->core_id));
3648     g_assert(drc);
3649 
3650     spapr_drc_detach(drc);
3651 
3652     spapr_hotplug_req_remove_by_index(drc);
3653 }
3654 
3655 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3656                             Error **errp)
3657 {
3658     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3659     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3660     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3661     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3662     CPUCore *cc = CPU_CORE(dev);
3663     CPUState *cs = CPU(core->threads[0]);
3664     sPAPRDRConnector *drc;
3665     Error *local_err = NULL;
3666     CPUArchId *core_slot;
3667     int index;
3668     bool hotplugged = spapr_drc_hotplugged(dev);
3669 
3670     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3671     if (!core_slot) {
3672         error_setg(errp, "Unable to find CPU core with core-id: %d",
3673                    cc->core_id);
3674         return;
3675     }
3676     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3677                           spapr_vcpu_id(spapr, cc->core_id));
3678 
3679     g_assert(drc || !mc->has_hotpluggable_cpus);
3680 
3681     if (drc) {
3682         void *fdt;
3683         int fdt_offset;
3684 
3685         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3686 
3687         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3688         if (local_err) {
3689             g_free(fdt);
3690             error_propagate(errp, local_err);
3691             return;
3692         }
3693 
3694         if (hotplugged) {
3695             /*
3696              * Send hotplug notification interrupt to the guest only
3697              * in case of hotplugged CPUs.
3698              */
3699             spapr_hotplug_req_add_by_index(drc);
3700         } else {
3701             spapr_drc_reset(drc);
3702         }
3703     }
3704 
3705     core_slot->cpu = OBJECT(dev);
3706 
3707     if (smc->pre_2_10_has_unused_icps) {
3708         int i;
3709 
3710         for (i = 0; i < cc->nr_threads; i++) {
3711             cs = CPU(core->threads[i]);
3712             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3713         }
3714     }
3715 }
3716 
3717 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3718                                 Error **errp)
3719 {
3720     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3721     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3722     Error *local_err = NULL;
3723     CPUCore *cc = CPU_CORE(dev);
3724     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3725     const char *type = object_get_typename(OBJECT(dev));
3726     CPUArchId *core_slot;
3727     int index;
3728 
3729     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3730         error_setg(&local_err, "CPU hotplug not supported for this machine");
3731         goto out;
3732     }
3733 
3734     if (strcmp(base_core_type, type)) {
3735         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3736         goto out;
3737     }
3738 
3739     if (cc->core_id % smp_threads) {
3740         error_setg(&local_err, "invalid core id %d", cc->core_id);
3741         goto out;
3742     }
3743 
3744     /*
3745      * In general we should have homogeneous threads-per-core, but old
3746      * (pre hotplug support) machine types allow the last core to have
3747      * reduced threads as a compatibility hack for when we allowed
3748      * total vcpus not a multiple of threads-per-core.
3749      */
3750     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3751         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3752                    cc->nr_threads, smp_threads);
3753         goto out;
3754     }
3755 
3756     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3757     if (!core_slot) {
3758         error_setg(&local_err, "core id %d out of range", cc->core_id);
3759         goto out;
3760     }
3761 
3762     if (core_slot->cpu) {
3763         error_setg(&local_err, "core %d already populated", cc->core_id);
3764         goto out;
3765     }
3766 
3767     numa_cpu_pre_plug(core_slot, dev, &local_err);
3768 
3769 out:
3770     error_propagate(errp, local_err);
3771 }
3772 
3773 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3774                                       DeviceState *dev, Error **errp)
3775 {
3776     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3777         spapr_memory_plug(hotplug_dev, dev, errp);
3778     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3779         spapr_core_plug(hotplug_dev, dev, errp);
3780     }
3781 }
3782 
3783 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3784                                         DeviceState *dev, Error **errp)
3785 {
3786     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3787         spapr_memory_unplug(hotplug_dev, dev);
3788     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3789         spapr_core_unplug(hotplug_dev, dev);
3790     }
3791 }
3792 
3793 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3794                                                 DeviceState *dev, Error **errp)
3795 {
3796     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3797     MachineClass *mc = MACHINE_GET_CLASS(sms);
3798 
3799     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3800         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3801             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3802         } else {
3803             /* NOTE: this means there is a window after guest reset, prior to
3804              * CAS negotiation, where unplug requests will fail due to the
3805              * capability not being detected yet. This is a bit different than
3806              * the case with PCI unplug, where the events will be queued and
3807              * eventually handled by the guest after boot
3808              */
3809             error_setg(errp, "Memory hot unplug not supported for this guest");
3810         }
3811     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3812         if (!mc->has_hotpluggable_cpus) {
3813             error_setg(errp, "CPU hot unplug not supported on this machine");
3814             return;
3815         }
3816         spapr_core_unplug_request(hotplug_dev, dev, errp);
3817     }
3818 }
3819 
3820 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3821                                           DeviceState *dev, Error **errp)
3822 {
3823     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3824         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3825     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3826         spapr_core_pre_plug(hotplug_dev, dev, errp);
3827     }
3828 }
3829 
3830 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3831                                                  DeviceState *dev)
3832 {
3833     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3834         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3835         return HOTPLUG_HANDLER(machine);
3836     }
3837     return NULL;
3838 }
3839 
3840 static CpuInstanceProperties
3841 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3842 {
3843     CPUArchId *core_slot;
3844     MachineClass *mc = MACHINE_GET_CLASS(machine);
3845 
3846     /* make sure possible_cpu are intialized */
3847     mc->possible_cpu_arch_ids(machine);
3848     /* get CPU core slot containing thread that matches cpu_index */
3849     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3850     assert(core_slot);
3851     return core_slot->props;
3852 }
3853 
3854 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3855 {
3856     return idx / smp_cores % nb_numa_nodes;
3857 }
3858 
3859 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3860 {
3861     int i;
3862     const char *core_type;
3863     int spapr_max_cores = max_cpus / smp_threads;
3864     MachineClass *mc = MACHINE_GET_CLASS(machine);
3865 
3866     if (!mc->has_hotpluggable_cpus) {
3867         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3868     }
3869     if (machine->possible_cpus) {
3870         assert(machine->possible_cpus->len == spapr_max_cores);
3871         return machine->possible_cpus;
3872     }
3873 
3874     core_type = spapr_get_cpu_core_type(machine->cpu_type);
3875     if (!core_type) {
3876         error_report("Unable to find sPAPR CPU Core definition");
3877         exit(1);
3878     }
3879 
3880     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3881                              sizeof(CPUArchId) * spapr_max_cores);
3882     machine->possible_cpus->len = spapr_max_cores;
3883     for (i = 0; i < machine->possible_cpus->len; i++) {
3884         int core_id = i * smp_threads;
3885 
3886         machine->possible_cpus->cpus[i].type = core_type;
3887         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3888         machine->possible_cpus->cpus[i].arch_id = core_id;
3889         machine->possible_cpus->cpus[i].props.has_core_id = true;
3890         machine->possible_cpus->cpus[i].props.core_id = core_id;
3891     }
3892     return machine->possible_cpus;
3893 }
3894 
3895 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3896                                 uint64_t *buid, hwaddr *pio,
3897                                 hwaddr *mmio32, hwaddr *mmio64,
3898                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3899 {
3900     /*
3901      * New-style PHB window placement.
3902      *
3903      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3904      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3905      * windows.
3906      *
3907      * Some guest kernels can't work with MMIO windows above 1<<46
3908      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3909      *
3910      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3911      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3912      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3913      * 1TiB 64-bit MMIO windows for each PHB.
3914      */
3915     const uint64_t base_buid = 0x800000020000000ULL;
3916     int i;
3917 
3918     /* Sanity check natural alignments */
3919     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3920     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3921     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3922     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3923     /* Sanity check bounds */
3924     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3925                       SPAPR_PCI_MEM32_WIN_SIZE);
3926     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3927                       SPAPR_PCI_MEM64_WIN_SIZE);
3928 
3929     if (index >= SPAPR_MAX_PHBS) {
3930         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3931                    SPAPR_MAX_PHBS - 1);
3932         return;
3933     }
3934 
3935     *buid = base_buid + index;
3936     for (i = 0; i < n_dma; ++i) {
3937         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3938     }
3939 
3940     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3941     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3942     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3943 }
3944 
3945 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3946 {
3947     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3948 
3949     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3950 }
3951 
3952 static void spapr_ics_resend(XICSFabric *dev)
3953 {
3954     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3955 
3956     ics_resend(spapr->ics);
3957 }
3958 
3959 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3960 {
3961     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
3962 
3963     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
3964 }
3965 
3966 static void spapr_pic_print_info(InterruptStatsProvider *obj,
3967                                  Monitor *mon)
3968 {
3969     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3970 
3971     spapr->irq->print_info(spapr, mon);
3972 }
3973 
3974 int spapr_get_vcpu_id(PowerPCCPU *cpu)
3975 {
3976     return cpu->vcpu_id;
3977 }
3978 
3979 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
3980 {
3981     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3982     int vcpu_id;
3983 
3984     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
3985 
3986     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
3987         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
3988         error_append_hint(errp, "Adjust the number of cpus to %d "
3989                           "or try to raise the number of threads per core\n",
3990                           vcpu_id * smp_threads / spapr->vsmt);
3991         return;
3992     }
3993 
3994     cpu->vcpu_id = vcpu_id;
3995 }
3996 
3997 PowerPCCPU *spapr_find_cpu(int vcpu_id)
3998 {
3999     CPUState *cs;
4000 
4001     CPU_FOREACH(cs) {
4002         PowerPCCPU *cpu = POWERPC_CPU(cs);
4003 
4004         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4005             return cpu;
4006         }
4007     }
4008 
4009     return NULL;
4010 }
4011 
4012 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4013 {
4014     MachineClass *mc = MACHINE_CLASS(oc);
4015     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4016     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4017     NMIClass *nc = NMI_CLASS(oc);
4018     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4019     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4020     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4021     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4022 
4023     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4024     mc->ignore_boot_device_suffixes = true;
4025 
4026     /*
4027      * We set up the default / latest behaviour here.  The class_init
4028      * functions for the specific versioned machine types can override
4029      * these details for backwards compatibility
4030      */
4031     mc->init = spapr_machine_init;
4032     mc->reset = spapr_machine_reset;
4033     mc->block_default_type = IF_SCSI;
4034     mc->max_cpus = 1024;
4035     mc->no_parallel = 1;
4036     mc->default_boot_order = "";
4037     mc->default_ram_size = 512 * MiB;
4038     mc->default_display = "std";
4039     mc->kvm_type = spapr_kvm_type;
4040     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4041     mc->pci_allow_0_address = true;
4042     assert(!mc->get_hotplug_handler);
4043     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4044     hc->pre_plug = spapr_machine_device_pre_plug;
4045     hc->plug = spapr_machine_device_plug;
4046     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4047     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4048     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4049     hc->unplug_request = spapr_machine_device_unplug_request;
4050     hc->unplug = spapr_machine_device_unplug;
4051 
4052     smc->dr_lmb_enabled = true;
4053     smc->update_dt_enabled = true;
4054     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4055     mc->has_hotpluggable_cpus = true;
4056     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4057     fwc->get_dev_path = spapr_get_fw_dev_path;
4058     nc->nmi_monitor_handler = spapr_nmi;
4059     smc->phb_placement = spapr_phb_placement;
4060     vhc->hypercall = emulate_spapr_hypercall;
4061     vhc->hpt_mask = spapr_hpt_mask;
4062     vhc->map_hptes = spapr_map_hptes;
4063     vhc->unmap_hptes = spapr_unmap_hptes;
4064     vhc->store_hpte = spapr_store_hpte;
4065     vhc->get_patbe = spapr_get_patbe;
4066     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4067     xic->ics_get = spapr_ics_get;
4068     xic->ics_resend = spapr_ics_resend;
4069     xic->icp_get = spapr_icp_get;
4070     ispc->print_info = spapr_pic_print_info;
4071     /* Force NUMA node memory size to be a multiple of
4072      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4073      * in which LMBs are represented and hot-added
4074      */
4075     mc->numa_mem_align_shift = 28;
4076 
4077     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4078     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4079     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4080     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4081     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4082     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4083     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4084     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4085     spapr_caps_add_properties(smc, &error_abort);
4086     smc->irq = &spapr_irq_xics;
4087 }
4088 
4089 static const TypeInfo spapr_machine_info = {
4090     .name          = TYPE_SPAPR_MACHINE,
4091     .parent        = TYPE_MACHINE,
4092     .abstract      = true,
4093     .instance_size = sizeof(sPAPRMachineState),
4094     .instance_init = spapr_instance_init,
4095     .instance_finalize = spapr_machine_finalizefn,
4096     .class_size    = sizeof(sPAPRMachineClass),
4097     .class_init    = spapr_machine_class_init,
4098     .interfaces = (InterfaceInfo[]) {
4099         { TYPE_FW_PATH_PROVIDER },
4100         { TYPE_NMI },
4101         { TYPE_HOTPLUG_HANDLER },
4102         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4103         { TYPE_XICS_FABRIC },
4104         { TYPE_INTERRUPT_STATS_PROVIDER },
4105         { }
4106     },
4107 };
4108 
4109 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4110     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4111                                                     void *data)      \
4112     {                                                                \
4113         MachineClass *mc = MACHINE_CLASS(oc);                        \
4114         spapr_machine_##suffix##_class_options(mc);                  \
4115         if (latest) {                                                \
4116             mc->alias = "pseries";                                   \
4117             mc->is_default = 1;                                      \
4118         }                                                            \
4119     }                                                                \
4120     static const TypeInfo spapr_machine_##suffix##_info = {          \
4121         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4122         .parent = TYPE_SPAPR_MACHINE,                                \
4123         .class_init = spapr_machine_##suffix##_class_init,           \
4124     };                                                               \
4125     static void spapr_machine_register_##suffix(void)                \
4126     {                                                                \
4127         type_register(&spapr_machine_##suffix##_info);               \
4128     }                                                                \
4129     type_init(spapr_machine_register_##suffix)
4130 
4131 /*
4132  * pseries-4.0
4133  */
4134 static void spapr_machine_4_0_class_options(MachineClass *mc)
4135 {
4136     /* Defaults for the latest behaviour inherited from the base class */
4137 }
4138 
4139 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4140 
4141 /*
4142  * pseries-3.1
4143  */
4144 static void spapr_machine_3_1_class_options(MachineClass *mc)
4145 {
4146     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4147     static GlobalProperty compat[] = {
4148         { TYPE_SPAPR_MACHINE, "host-model", "passthrough" },
4149         { TYPE_SPAPR_MACHINE, "host-serial", "passthrough" },
4150     };
4151 
4152     spapr_machine_4_0_class_options(mc);
4153     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4154     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4155 
4156     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4157     smc->update_dt_enabled = false;
4158 }
4159 
4160 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4161 
4162 /*
4163  * pseries-3.0
4164  */
4165 
4166 static void spapr_machine_3_0_class_options(MachineClass *mc)
4167 {
4168     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4169 
4170     spapr_machine_3_1_class_options(mc);
4171     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4172 
4173     smc->legacy_irq_allocation = true;
4174     smc->irq = &spapr_irq_xics_legacy;
4175 }
4176 
4177 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4178 
4179 /*
4180  * pseries-2.12
4181  */
4182 static void spapr_machine_2_12_class_options(MachineClass *mc)
4183 {
4184     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4185     static GlobalProperty compat[] = {
4186         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4187         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4188     };
4189 
4190     spapr_machine_3_0_class_options(mc);
4191     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4192     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4193 
4194     /* We depend on kvm_enabled() to choose a default value for the
4195      * hpt-max-page-size capability. Of course we can't do it here
4196      * because this is too early and the HW accelerator isn't initialzed
4197      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4198      */
4199     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4200 }
4201 
4202 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4203 
4204 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4205 {
4206     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4207 
4208     spapr_machine_2_12_class_options(mc);
4209     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4210     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4211     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4212 }
4213 
4214 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4215 
4216 /*
4217  * pseries-2.11
4218  */
4219 
4220 static void spapr_machine_2_11_class_options(MachineClass *mc)
4221 {
4222     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4223 
4224     spapr_machine_2_12_class_options(mc);
4225     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4226     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4227 }
4228 
4229 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4230 
4231 /*
4232  * pseries-2.10
4233  */
4234 
4235 static void spapr_machine_2_10_class_options(MachineClass *mc)
4236 {
4237     spapr_machine_2_11_class_options(mc);
4238     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4239 }
4240 
4241 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4242 
4243 /*
4244  * pseries-2.9
4245  */
4246 
4247 static void spapr_machine_2_9_class_options(MachineClass *mc)
4248 {
4249     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4250     static GlobalProperty compat[] = {
4251         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4252     };
4253 
4254     spapr_machine_2_10_class_options(mc);
4255     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4256     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4257     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4258     smc->pre_2_10_has_unused_icps = true;
4259     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4260 }
4261 
4262 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4263 
4264 /*
4265  * pseries-2.8
4266  */
4267 
4268 static void spapr_machine_2_8_class_options(MachineClass *mc)
4269 {
4270     static GlobalProperty compat[] = {
4271         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4272     };
4273 
4274     spapr_machine_2_9_class_options(mc);
4275     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4276     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4277     mc->numa_mem_align_shift = 23;
4278 }
4279 
4280 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4281 
4282 /*
4283  * pseries-2.7
4284  */
4285 
4286 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4287                               uint64_t *buid, hwaddr *pio,
4288                               hwaddr *mmio32, hwaddr *mmio64,
4289                               unsigned n_dma, uint32_t *liobns, Error **errp)
4290 {
4291     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4292     const uint64_t base_buid = 0x800000020000000ULL;
4293     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4294     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4295     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4296     const uint32_t max_index = 255;
4297     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4298 
4299     uint64_t ram_top = MACHINE(spapr)->ram_size;
4300     hwaddr phb0_base, phb_base;
4301     int i;
4302 
4303     /* Do we have device memory? */
4304     if (MACHINE(spapr)->maxram_size > ram_top) {
4305         /* Can't just use maxram_size, because there may be an
4306          * alignment gap between normal and device memory regions
4307          */
4308         ram_top = MACHINE(spapr)->device_memory->base +
4309             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4310     }
4311 
4312     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4313 
4314     if (index > max_index) {
4315         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4316                    max_index);
4317         return;
4318     }
4319 
4320     *buid = base_buid + index;
4321     for (i = 0; i < n_dma; ++i) {
4322         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4323     }
4324 
4325     phb_base = phb0_base + index * phb_spacing;
4326     *pio = phb_base + pio_offset;
4327     *mmio32 = phb_base + mmio_offset;
4328     /*
4329      * We don't set the 64-bit MMIO window, relying on the PHB's
4330      * fallback behaviour of automatically splitting a large "32-bit"
4331      * window into contiguous 32-bit and 64-bit windows
4332      */
4333 }
4334 
4335 static void spapr_machine_2_7_class_options(MachineClass *mc)
4336 {
4337     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4338     static GlobalProperty compat[] = {
4339         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4340         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4341         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4342         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4343     };
4344 
4345     spapr_machine_2_8_class_options(mc);
4346     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4347     mc->default_machine_opts = "modern-hotplug-events=off";
4348     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4349     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4350     smc->phb_placement = phb_placement_2_7;
4351 }
4352 
4353 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4354 
4355 /*
4356  * pseries-2.6
4357  */
4358 
4359 static void spapr_machine_2_6_class_options(MachineClass *mc)
4360 {
4361     static GlobalProperty compat[] = {
4362         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4363     };
4364 
4365     spapr_machine_2_7_class_options(mc);
4366     mc->has_hotpluggable_cpus = false;
4367     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4368     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4369 }
4370 
4371 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4372 
4373 /*
4374  * pseries-2.5
4375  */
4376 
4377 static void spapr_machine_2_5_class_options(MachineClass *mc)
4378 {
4379     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4380     static GlobalProperty compat[] = {
4381         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4382     };
4383 
4384     spapr_machine_2_6_class_options(mc);
4385     smc->use_ohci_by_default = true;
4386     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4387     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4388 }
4389 
4390 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4391 
4392 /*
4393  * pseries-2.4
4394  */
4395 
4396 static void spapr_machine_2_4_class_options(MachineClass *mc)
4397 {
4398     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4399 
4400     spapr_machine_2_5_class_options(mc);
4401     smc->dr_lmb_enabled = false;
4402     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4403 }
4404 
4405 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4406 
4407 /*
4408  * pseries-2.3
4409  */
4410 
4411 static void spapr_machine_2_3_class_options(MachineClass *mc)
4412 {
4413     static GlobalProperty compat[] = {
4414         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4415     };
4416     spapr_machine_2_4_class_options(mc);
4417     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4418     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4419 }
4420 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4421 
4422 /*
4423  * pseries-2.2
4424  */
4425 
4426 static void spapr_machine_2_2_class_options(MachineClass *mc)
4427 {
4428     static GlobalProperty compat[] = {
4429         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4430     };
4431 
4432     spapr_machine_2_3_class_options(mc);
4433     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4434     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4435     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4436 }
4437 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4438 
4439 /*
4440  * pseries-2.1
4441  */
4442 
4443 static void spapr_machine_2_1_class_options(MachineClass *mc)
4444 {
4445     spapr_machine_2_2_class_options(mc);
4446     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4447 }
4448 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4449 
4450 static void spapr_machine_register_types(void)
4451 {
4452     type_register_static(&spapr_machine_info);
4453 }
4454 
4455 type_init(spapr_machine_register_types)
4456