1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 */ 26 27 #include "qemu/osdep.h" 28 #include "qemu/datadir.h" 29 #include "qemu/memalign.h" 30 #include "qemu/guest-random.h" 31 #include "qapi/error.h" 32 #include "qapi/qapi-events-machine.h" 33 #include "qapi/qapi-events-qdev.h" 34 #include "qapi/visitor.h" 35 #include "sysemu/sysemu.h" 36 #include "sysemu/hostmem.h" 37 #include "sysemu/numa.h" 38 #include "sysemu/qtest.h" 39 #include "sysemu/reset.h" 40 #include "sysemu/runstate.h" 41 #include "qemu/log.h" 42 #include "hw/fw-path-provider.h" 43 #include "elf.h" 44 #include "net/net.h" 45 #include "sysemu/device_tree.h" 46 #include "sysemu/cpus.h" 47 #include "sysemu/hw_accel.h" 48 #include "kvm_ppc.h" 49 #include "migration/misc.h" 50 #include "migration/qemu-file-types.h" 51 #include "migration/global_state.h" 52 #include "migration/register.h" 53 #include "migration/blocker.h" 54 #include "mmu-hash64.h" 55 #include "mmu-book3s-v3.h" 56 #include "cpu-models.h" 57 #include "hw/core/cpu.h" 58 59 #include "hw/ppc/ppc.h" 60 #include "hw/loader.h" 61 62 #include "hw/ppc/fdt.h" 63 #include "hw/ppc/spapr.h" 64 #include "hw/ppc/spapr_nested.h" 65 #include "hw/ppc/spapr_vio.h" 66 #include "hw/ppc/vof.h" 67 #include "hw/qdev-properties.h" 68 #include "hw/pci-host/spapr.h" 69 #include "hw/pci/msi.h" 70 71 #include "hw/pci/pci.h" 72 #include "hw/scsi/scsi.h" 73 #include "hw/virtio/virtio-scsi.h" 74 #include "hw/virtio/vhost-scsi-common.h" 75 76 #include "exec/ram_addr.h" 77 #include "hw/usb.h" 78 #include "qemu/config-file.h" 79 #include "qemu/error-report.h" 80 #include "trace.h" 81 #include "hw/nmi.h" 82 #include "hw/intc/intc.h" 83 84 #include "hw/ppc/spapr_cpu_core.h" 85 #include "hw/mem/memory-device.h" 86 #include "hw/ppc/spapr_tpm_proxy.h" 87 #include "hw/ppc/spapr_nvdimm.h" 88 #include "hw/ppc/spapr_numa.h" 89 #include "hw/ppc/pef.h" 90 91 #include "monitor/monitor.h" 92 93 #include <libfdt.h> 94 95 /* SLOF memory layout: 96 * 97 * SLOF raw image loaded at 0, copies its romfs right below the flat 98 * device-tree, then position SLOF itself 31M below that 99 * 100 * So we set FW_OVERHEAD to 40MB which should account for all of that 101 * and more 102 * 103 * We load our kernel at 4M, leaving space for SLOF initial image 104 */ 105 #define FDT_MAX_ADDR 0x80000000 /* FDT must stay below that */ 106 #define FW_MAX_SIZE 0x400000 107 #define FW_FILE_NAME "slof.bin" 108 #define FW_FILE_NAME_VOF "vof.bin" 109 #define FW_OVERHEAD 0x2800000 110 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 111 112 #define MIN_RMA_SLOF (128 * MiB) 113 114 #define PHANDLE_INTC 0x00001111 115 116 /* These two functions implement the VCPU id numbering: one to compute them 117 * all and one to identify thread 0 of a VCORE. Any change to the first one 118 * is likely to have an impact on the second one, so let's keep them close. 119 */ 120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 121 { 122 MachineState *ms = MACHINE(spapr); 123 unsigned int smp_threads = ms->smp.threads; 124 125 assert(spapr->vsmt); 126 return 127 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 128 } 129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 130 PowerPCCPU *cpu) 131 { 132 assert(spapr->vsmt); 133 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 134 } 135 136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 137 { 138 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 139 * and newer QEMUs don't even have them. In both cases, we don't want 140 * to send anything on the wire. 141 */ 142 return false; 143 } 144 145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 146 /* 147 * Hack ahead. We can't have two devices with the same name and 148 * instance id. So I rename this to pass make check. 149 * Real help from people who knows the hardware is needed. 150 */ 151 .name = "icp/server", 152 .version_id = 1, 153 .minimum_version_id = 1, 154 .needed = pre_2_10_vmstate_dummy_icp_needed, 155 .fields = (const VMStateField[]) { 156 VMSTATE_UNUSED(4), /* uint32_t xirr */ 157 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 158 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 159 VMSTATE_END_OF_LIST() 160 }, 161 }; 162 163 /* 164 * See comment in hw/intc/xics.c:icp_realize() 165 * 166 * You have to remove vmstate_replace_hack_for_ppc() when you remove 167 * the machine types that need the following function. 168 */ 169 static void pre_2_10_vmstate_register_dummy_icp(int i) 170 { 171 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 172 (void *)(uintptr_t) i); 173 } 174 175 /* 176 * See comment in hw/intc/xics.c:icp_realize() 177 * 178 * You have to remove vmstate_replace_hack_for_ppc() when you remove 179 * the machine types that need the following function. 180 */ 181 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 182 { 183 /* 184 * This used to be: 185 * 186 * vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 187 * (void *)(uintptr_t) i); 188 */ 189 } 190 191 int spapr_max_server_number(SpaprMachineState *spapr) 192 { 193 MachineState *ms = MACHINE(spapr); 194 195 assert(spapr->vsmt); 196 return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); 197 } 198 199 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 200 int smt_threads) 201 { 202 int i, ret = 0; 203 g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); 204 g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); 205 int index = spapr_get_vcpu_id(cpu); 206 207 if (cpu->compat_pvr) { 208 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 209 if (ret < 0) { 210 return ret; 211 } 212 } 213 214 /* Build interrupt servers and gservers properties */ 215 for (i = 0; i < smt_threads; i++) { 216 servers_prop[i] = cpu_to_be32(index + i); 217 /* Hack, direct the group queues back to cpu 0 */ 218 gservers_prop[i*2] = cpu_to_be32(index + i); 219 gservers_prop[i*2 + 1] = 0; 220 } 221 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 222 servers_prop, sizeof(*servers_prop) * smt_threads); 223 if (ret < 0) { 224 return ret; 225 } 226 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 227 gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); 228 229 return ret; 230 } 231 232 static void spapr_dt_pa_features(SpaprMachineState *spapr, 233 PowerPCCPU *cpu, 234 void *fdt, int offset) 235 { 236 /* 237 * SSO (SAO) ordering is supported on KVM and thread=single hosts, 238 * but not MTTCG, so disable it. To advertise it, a cap would have 239 * to be added, or support implemented for MTTCG. 240 * 241 * Copy/paste is not supported by TCG, so it is not advertised. KVM 242 * can execute them but it has no accelerator drivers which are usable, 243 * so there isn't much need for it anyway. 244 */ 245 246 /* These should be kept in sync with pnv */ 247 uint8_t pa_features_206[] = { 6, 0, 248 0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 }; 249 uint8_t pa_features_207[] = { 24, 0, 250 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, 251 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 252 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 253 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 254 uint8_t pa_features_300[] = { 66, 0, 255 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 256 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 257 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 258 /* 6: DS207 */ 259 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 260 /* 16: Vector */ 261 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 262 /* 18: Vec. Scalar, 20: Vec. XOR */ 263 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 264 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 265 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 266 /* 32: LE atomic, 34: EBB + ext EBB */ 267 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 268 /* 40: Radix MMU */ 269 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 270 /* 42: PM, 44: PC RA, 46: SC vec'd */ 271 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 272 /* 48: SIMD, 50: QP BFP, 52: String */ 273 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 274 /* 54: DecFP, 56: DecI, 58: SHA */ 275 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 276 /* 60: NM atomic, 62: RNG */ 277 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 278 }; 279 /* 3.1 removes SAO, HTM support */ 280 uint8_t pa_features_31[] = { 74, 0, 281 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 282 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ 283 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ 284 /* 6: DS207 */ 285 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 286 /* 16: Vector */ 287 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 288 /* 18: Vec. Scalar, 20: Vec. XOR */ 289 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 290 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 291 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 292 /* 32: LE atomic, 34: EBB + ext EBB */ 293 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 294 /* 40: Radix MMU */ 295 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ 296 /* 42: PM, 44: PC RA, 46: SC vec'd */ 297 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 298 /* 48: SIMD, 50: QP BFP, 52: String */ 299 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 300 /* 54: DecFP, 56: DecI, 58: SHA */ 301 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 302 /* 60: NM atomic, 62: RNG */ 303 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 304 /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */ 305 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */ 306 /* 72: [P]HASHST/[P]HASHCHK */ 307 0x80, 0x00, /* 72 - 73 */ 308 }; 309 uint8_t *pa_features = NULL; 310 size_t pa_size; 311 312 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 313 pa_features = pa_features_206; 314 pa_size = sizeof(pa_features_206); 315 } 316 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 317 pa_features = pa_features_207; 318 pa_size = sizeof(pa_features_207); 319 } 320 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 321 pa_features = pa_features_300; 322 pa_size = sizeof(pa_features_300); 323 } 324 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) { 325 pa_features = pa_features_31; 326 pa_size = sizeof(pa_features_31); 327 } 328 if (!pa_features) { 329 return; 330 } 331 332 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 333 /* 334 * Note: we keep CI large pages off by default because a 64K capable 335 * guest provisioned with large pages might otherwise try to map a qemu 336 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 337 * even if that qemu runs on a 4k host. 338 * We dd this bit back here if we are confident this is not an issue 339 */ 340 pa_features[3] |= 0x20; 341 } 342 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 343 pa_features[24] |= 0x80; /* Transactional memory support */ 344 } 345 if (spapr->cas_pre_isa3_guest && pa_size > 40) { 346 /* Workaround for broken kernels that attempt (guest) radix 347 * mode when they can't handle it, if they see the radix bit set 348 * in pa-features. So hide it from them. */ 349 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 350 } 351 352 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 353 } 354 355 static hwaddr spapr_node0_size(MachineState *machine) 356 { 357 if (machine->numa_state->num_nodes) { 358 int i; 359 for (i = 0; i < machine->numa_state->num_nodes; ++i) { 360 if (machine->numa_state->nodes[i].node_mem) { 361 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), 362 machine->ram_size); 363 } 364 } 365 } 366 return machine->ram_size; 367 } 368 369 static void add_str(GString *s, const gchar *s1) 370 { 371 g_string_append_len(s, s1, strlen(s1) + 1); 372 } 373 374 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, 375 hwaddr start, hwaddr size) 376 { 377 char mem_name[32]; 378 uint64_t mem_reg_property[2]; 379 int off; 380 381 mem_reg_property[0] = cpu_to_be64(start); 382 mem_reg_property[1] = cpu_to_be64(size); 383 384 sprintf(mem_name, "memory@%" HWADDR_PRIx, start); 385 off = fdt_add_subnode(fdt, 0, mem_name); 386 _FDT(off); 387 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 388 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 389 sizeof(mem_reg_property)))); 390 spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); 391 return off; 392 } 393 394 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 395 { 396 MemoryDeviceInfoList *info; 397 398 for (info = list; info; info = info->next) { 399 MemoryDeviceInfo *value = info->value; 400 401 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 402 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 403 404 if (addr >= pcdimm_info->addr && 405 addr < (pcdimm_info->addr + pcdimm_info->size)) { 406 return pcdimm_info->node; 407 } 408 } 409 } 410 411 return -1; 412 } 413 414 struct sPAPRDrconfCellV2 { 415 uint32_t seq_lmbs; 416 uint64_t base_addr; 417 uint32_t drc_index; 418 uint32_t aa_index; 419 uint32_t flags; 420 } QEMU_PACKED; 421 422 typedef struct DrconfCellQueue { 423 struct sPAPRDrconfCellV2 cell; 424 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 425 } DrconfCellQueue; 426 427 static DrconfCellQueue * 428 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 429 uint32_t drc_index, uint32_t aa_index, 430 uint32_t flags) 431 { 432 DrconfCellQueue *elem; 433 434 elem = g_malloc0(sizeof(*elem)); 435 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 436 elem->cell.base_addr = cpu_to_be64(base_addr); 437 elem->cell.drc_index = cpu_to_be32(drc_index); 438 elem->cell.aa_index = cpu_to_be32(aa_index); 439 elem->cell.flags = cpu_to_be32(flags); 440 441 return elem; 442 } 443 444 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, 445 int offset, MemoryDeviceInfoList *dimms) 446 { 447 MachineState *machine = MACHINE(spapr); 448 uint8_t *int_buf, *cur_index; 449 int ret; 450 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 451 uint64_t addr, cur_addr, size; 452 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 453 uint64_t mem_end = machine->device_memory->base + 454 memory_region_size(&machine->device_memory->mr); 455 uint32_t node, buf_len, nr_entries = 0; 456 SpaprDrc *drc; 457 DrconfCellQueue *elem, *next; 458 MemoryDeviceInfoList *info; 459 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 460 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 461 462 /* Entry to cover RAM and the gap area */ 463 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 464 SPAPR_LMB_FLAGS_RESERVED | 465 SPAPR_LMB_FLAGS_DRC_INVALID); 466 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 467 nr_entries++; 468 469 cur_addr = machine->device_memory->base; 470 for (info = dimms; info; info = info->next) { 471 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 472 473 addr = di->addr; 474 size = di->size; 475 node = di->node; 476 477 /* 478 * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The 479 * area is marked hotpluggable in the next iteration for the bigger 480 * chunk including the NVDIMM occupied area. 481 */ 482 if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) 483 continue; 484 485 /* Entry for hot-pluggable area */ 486 if (cur_addr < addr) { 487 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 488 g_assert(drc); 489 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 490 cur_addr, spapr_drc_index(drc), -1, 0); 491 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 492 nr_entries++; 493 } 494 495 /* Entry for DIMM */ 496 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 497 g_assert(drc); 498 elem = spapr_get_drconf_cell(size / lmb_size, addr, 499 spapr_drc_index(drc), node, 500 (SPAPR_LMB_FLAGS_ASSIGNED | 501 SPAPR_LMB_FLAGS_HOTREMOVABLE)); 502 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 503 nr_entries++; 504 cur_addr = addr + size; 505 } 506 507 /* Entry for remaining hotpluggable area */ 508 if (cur_addr < mem_end) { 509 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 510 g_assert(drc); 511 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 512 cur_addr, spapr_drc_index(drc), -1, 0); 513 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 514 nr_entries++; 515 } 516 517 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 518 int_buf = cur_index = g_malloc0(buf_len); 519 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 520 cur_index += sizeof(nr_entries); 521 522 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 523 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 524 cur_index += sizeof(elem->cell); 525 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 526 g_free(elem); 527 } 528 529 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 530 g_free(int_buf); 531 if (ret < 0) { 532 return -1; 533 } 534 return 0; 535 } 536 537 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, 538 int offset, MemoryDeviceInfoList *dimms) 539 { 540 MachineState *machine = MACHINE(spapr); 541 int i, ret; 542 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 543 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 544 uint32_t nr_lmbs = (machine->device_memory->base + 545 memory_region_size(&machine->device_memory->mr)) / 546 lmb_size; 547 uint32_t *int_buf, *cur_index, buf_len; 548 549 /* 550 * Allocate enough buffer size to fit in ibm,dynamic-memory 551 */ 552 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 553 cur_index = int_buf = g_malloc0(buf_len); 554 int_buf[0] = cpu_to_be32(nr_lmbs); 555 cur_index++; 556 for (i = 0; i < nr_lmbs; i++) { 557 uint64_t addr = i * lmb_size; 558 uint32_t *dynamic_memory = cur_index; 559 560 if (i >= device_lmb_start) { 561 SpaprDrc *drc; 562 563 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 564 g_assert(drc); 565 566 dynamic_memory[0] = cpu_to_be32(addr >> 32); 567 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 568 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 569 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 570 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 571 if (memory_region_present(get_system_memory(), addr)) { 572 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 573 } else { 574 dynamic_memory[5] = cpu_to_be32(0); 575 } 576 } else { 577 /* 578 * LMB information for RMA, boot time RAM and gap b/n RAM and 579 * device memory region -- all these are marked as reserved 580 * and as having no valid DRC. 581 */ 582 dynamic_memory[0] = cpu_to_be32(addr >> 32); 583 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 584 dynamic_memory[2] = cpu_to_be32(0); 585 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 586 dynamic_memory[4] = cpu_to_be32(-1); 587 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 588 SPAPR_LMB_FLAGS_DRC_INVALID); 589 } 590 591 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 592 } 593 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 594 g_free(int_buf); 595 if (ret < 0) { 596 return -1; 597 } 598 return 0; 599 } 600 601 /* 602 * Adds ibm,dynamic-reconfiguration-memory node. 603 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 604 * of this device tree node. 605 */ 606 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, 607 void *fdt) 608 { 609 MachineState *machine = MACHINE(spapr); 610 int ret, offset; 611 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 612 uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), 613 cpu_to_be32(lmb_size & 0xffffffff)}; 614 MemoryDeviceInfoList *dimms = NULL; 615 616 /* Don't create the node if there is no device memory. */ 617 if (!machine->device_memory) { 618 return 0; 619 } 620 621 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 622 623 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 624 sizeof(prop_lmb_size)); 625 if (ret < 0) { 626 return ret; 627 } 628 629 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 630 if (ret < 0) { 631 return ret; 632 } 633 634 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 635 if (ret < 0) { 636 return ret; 637 } 638 639 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 640 dimms = qmp_memory_device_list(); 641 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 642 ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); 643 } else { 644 ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); 645 } 646 qapi_free_MemoryDeviceInfoList(dimms); 647 648 if (ret < 0) { 649 return ret; 650 } 651 652 ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); 653 654 return ret; 655 } 656 657 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) 658 { 659 MachineState *machine = MACHINE(spapr); 660 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 661 hwaddr mem_start, node_size; 662 int i, nb_nodes = machine->numa_state->num_nodes; 663 NodeInfo *nodes = machine->numa_state->nodes; 664 665 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 666 if (!nodes[i].node_mem) { 667 continue; 668 } 669 if (mem_start >= machine->ram_size) { 670 node_size = 0; 671 } else { 672 node_size = nodes[i].node_mem; 673 if (node_size > machine->ram_size - mem_start) { 674 node_size = machine->ram_size - mem_start; 675 } 676 } 677 if (!mem_start) { 678 /* spapr_machine_init() checks for rma_size <= node0_size 679 * already */ 680 spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); 681 mem_start += spapr->rma_size; 682 node_size -= spapr->rma_size; 683 } 684 for ( ; node_size; ) { 685 hwaddr sizetmp = pow2floor(node_size); 686 687 /* mem_start != 0 here */ 688 if (ctzl(mem_start) < ctzl(sizetmp)) { 689 sizetmp = 1ULL << ctzl(mem_start); 690 } 691 692 spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); 693 node_size -= sizetmp; 694 mem_start += sizetmp; 695 } 696 } 697 698 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 699 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { 700 int ret; 701 702 g_assert(smc->dr_lmb_enabled); 703 ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); 704 if (ret) { 705 return ret; 706 } 707 } 708 709 return 0; 710 } 711 712 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, 713 SpaprMachineState *spapr) 714 { 715 MachineState *ms = MACHINE(spapr); 716 PowerPCCPU *cpu = POWERPC_CPU(cs); 717 CPUPPCState *env = &cpu->env; 718 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 719 int index = spapr_get_vcpu_id(cpu); 720 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 721 0xffffffff, 0xffffffff}; 722 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 723 : SPAPR_TIMEBASE_FREQ; 724 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 725 uint32_t page_sizes_prop[64]; 726 size_t page_sizes_prop_size; 727 unsigned int smp_threads = ms->smp.threads; 728 uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; 729 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 730 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 731 SpaprDrc *drc; 732 int drc_index; 733 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 734 int i; 735 736 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 737 if (drc) { 738 drc_index = spapr_drc_index(drc); 739 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 740 } 741 742 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 743 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 744 745 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 746 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 747 env->dcache_line_size))); 748 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 749 env->dcache_line_size))); 750 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 751 env->icache_line_size))); 752 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 753 env->icache_line_size))); 754 755 if (pcc->l1_dcache_size) { 756 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 757 pcc->l1_dcache_size))); 758 } else { 759 warn_report("Unknown L1 dcache size for cpu"); 760 } 761 if (pcc->l1_icache_size) { 762 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 763 pcc->l1_icache_size))); 764 } else { 765 warn_report("Unknown L1 icache size for cpu"); 766 } 767 768 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 769 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 770 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 771 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 772 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 773 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 774 775 if (ppc_has_spr(cpu, SPR_PURR)) { 776 _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); 777 } 778 if (ppc_has_spr(cpu, SPR_PURR)) { 779 _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); 780 } 781 782 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 783 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 784 segs, sizeof(segs)))); 785 } 786 787 /* Advertise VSX (vector extensions) if available 788 * 1 == VMX / Altivec available 789 * 2 == VSX available 790 * 791 * Only CPUs for which we create core types in spapr_cpu_core.c 792 * are possible, and all of those have VMX */ 793 if (env->insns_flags & PPC_ALTIVEC) { 794 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 795 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 796 } else { 797 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 798 } 799 } 800 801 /* Advertise DFP (Decimal Floating Point) if available 802 * 0 / no property == no DFP 803 * 1 == DFP available */ 804 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 805 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 806 } 807 808 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 809 sizeof(page_sizes_prop)); 810 if (page_sizes_prop_size) { 811 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 812 page_sizes_prop, page_sizes_prop_size))); 813 } 814 815 spapr_dt_pa_features(spapr, cpu, fdt, offset); 816 817 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 818 cs->cpu_index / vcpus_per_socket))); 819 820 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 821 pft_size_prop, sizeof(pft_size_prop)))); 822 823 if (ms->numa_state->num_nodes > 1) { 824 _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); 825 } 826 827 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 828 829 if (pcc->radix_page_info) { 830 for (i = 0; i < pcc->radix_page_info->count; i++) { 831 radix_AP_encodings[i] = 832 cpu_to_be32(pcc->radix_page_info->entries[i]); 833 } 834 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 835 radix_AP_encodings, 836 pcc->radix_page_info->count * 837 sizeof(radix_AP_encodings[0])))); 838 } 839 840 /* 841 * We set this property to let the guest know that it can use the large 842 * decrementer and its width in bits. 843 */ 844 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 845 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 846 pcc->lrg_decr_bits))); 847 } 848 849 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs, 850 int cpus_offset) 851 { 852 PowerPCCPU *cpu = POWERPC_CPU(cs); 853 int index = spapr_get_vcpu_id(cpu); 854 DeviceClass *dc = DEVICE_GET_CLASS(cs); 855 g_autofree char *nodename = NULL; 856 int offset; 857 858 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 859 return; 860 } 861 862 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 863 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 864 _FDT(offset); 865 spapr_dt_cpu(cs, fdt, offset, spapr); 866 } 867 868 869 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) 870 { 871 CPUState **rev; 872 CPUState *cs; 873 int n_cpus; 874 int cpus_offset; 875 int i; 876 877 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 878 _FDT(cpus_offset); 879 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 880 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 881 882 /* 883 * We walk the CPUs in reverse order to ensure that CPU DT nodes 884 * created by fdt_add_subnode() end up in the right order in FDT 885 * for the guest kernel the enumerate the CPUs correctly. 886 * 887 * The CPU list cannot be traversed in reverse order, so we need 888 * to do extra work. 889 */ 890 n_cpus = 0; 891 rev = NULL; 892 CPU_FOREACH(cs) { 893 rev = g_renew(CPUState *, rev, n_cpus + 1); 894 rev[n_cpus++] = cs; 895 } 896 897 for (i = n_cpus - 1; i >= 0; i--) { 898 spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset); 899 } 900 901 g_free(rev); 902 } 903 904 static int spapr_dt_rng(void *fdt) 905 { 906 int node; 907 int ret; 908 909 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 910 if (node <= 0) { 911 return -1; 912 } 913 ret = fdt_setprop_string(fdt, node, "device_type", 914 "ibm,platform-facilities"); 915 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 916 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 917 918 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 919 if (node <= 0) { 920 return -1; 921 } 922 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 923 924 return ret ? -1 : 0; 925 } 926 927 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 928 { 929 MachineState *ms = MACHINE(spapr); 930 int rtas; 931 GString *hypertas = g_string_sized_new(256); 932 GString *qemu_hypertas = g_string_sized_new(256); 933 uint32_t lrdr_capacity[] = { 934 0, 935 0, 936 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), 937 cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), 938 cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), 939 }; 940 941 /* Do we have device memory? */ 942 if (MACHINE(spapr)->device_memory) { 943 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 944 memory_region_size(&MACHINE(spapr)->device_memory->mr); 945 946 lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); 947 lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); 948 } 949 950 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 951 952 /* hypertas */ 953 add_str(hypertas, "hcall-pft"); 954 add_str(hypertas, "hcall-term"); 955 add_str(hypertas, "hcall-dabr"); 956 add_str(hypertas, "hcall-interrupt"); 957 add_str(hypertas, "hcall-tce"); 958 add_str(hypertas, "hcall-vio"); 959 add_str(hypertas, "hcall-splpar"); 960 add_str(hypertas, "hcall-join"); 961 add_str(hypertas, "hcall-bulk"); 962 add_str(hypertas, "hcall-set-mode"); 963 add_str(hypertas, "hcall-sprg0"); 964 add_str(hypertas, "hcall-copy"); 965 add_str(hypertas, "hcall-debug"); 966 add_str(hypertas, "hcall-vphn"); 967 if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { 968 add_str(hypertas, "hcall-rpt-invalidate"); 969 } 970 971 add_str(qemu_hypertas, "hcall-memop1"); 972 973 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 974 add_str(hypertas, "hcall-multi-tce"); 975 } 976 977 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 978 add_str(hypertas, "hcall-hpt-resize"); 979 } 980 981 add_str(hypertas, "hcall-watchdog"); 982 983 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 984 hypertas->str, hypertas->len)); 985 g_string_free(hypertas, TRUE); 986 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 987 qemu_hypertas->str, qemu_hypertas->len)); 988 g_string_free(qemu_hypertas, TRUE); 989 990 spapr_numa_write_rtas_dt(spapr, fdt, rtas); 991 992 /* 993 * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, 994 * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. 995 * 996 * The system reset requirements are driven by existing Linux and PowerVM 997 * implementation which (contrary to PAPR) saves r3 in the error log 998 * structure like machine check, so Linux expects to find the saved r3 999 * value at the address in r3 upon FWNMI-enabled sreset interrupt (and 1000 * does not look at the error value). 1001 * 1002 * System reset interrupts are not subject to interlock like machine 1003 * check, so this memory area could be corrupted if the sreset is 1004 * interrupted by a machine check (or vice versa) if it was shared. To 1005 * prevent this, system reset uses per-CPU areas for the sreset save 1006 * area. A system reset that interrupts a system reset handler could 1007 * still overwrite this area, but Linux doesn't try to recover in that 1008 * case anyway. 1009 * 1010 * The extra 8 bytes is required because Linux's FWNMI error log check 1011 * is off-by-one. 1012 * 1013 * RTAS_MIN_SIZE is required for the RTAS blob itself. 1014 */ 1015 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + 1016 RTAS_ERROR_LOG_MAX + 1017 ms->smp.max_cpus * sizeof(uint64_t) * 2 + 1018 sizeof(uint64_t))); 1019 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1020 RTAS_ERROR_LOG_MAX)); 1021 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1022 RTAS_EVENT_SCAN_RATE)); 1023 1024 g_assert(msi_nonbroken); 1025 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1026 1027 /* 1028 * According to PAPR, rtas ibm,os-term does not guarantee a return 1029 * back to the guest cpu. 1030 * 1031 * While an additional ibm,extended-os-term property indicates 1032 * that rtas call return will always occur. Set this property. 1033 */ 1034 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1035 1036 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1037 lrdr_capacity, sizeof(lrdr_capacity))); 1038 1039 spapr_dt_rtas_tokens(fdt, rtas); 1040 } 1041 1042 /* 1043 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1044 * and the XIVE features that the guest may request and thus the valid 1045 * values for bytes 23..26 of option vector 5: 1046 */ 1047 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1048 int chosen) 1049 { 1050 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1051 1052 char val[2 * 4] = { 1053 23, 0x00, /* XICS / XIVE mode */ 1054 24, 0x00, /* Hash/Radix, filled in below. */ 1055 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1056 26, 0x40, /* Radix options: GTSE == yes. */ 1057 }; 1058 1059 if (spapr->irq->xics && spapr->irq->xive) { 1060 val[1] = SPAPR_OV5_XIVE_BOTH; 1061 } else if (spapr->irq->xive) { 1062 val[1] = SPAPR_OV5_XIVE_EXPLOIT; 1063 } else { 1064 assert(spapr->irq->xics); 1065 val[1] = SPAPR_OV5_XIVE_LEGACY; 1066 } 1067 1068 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1069 first_ppc_cpu->compat_pvr)) { 1070 /* 1071 * If we're in a pre POWER9 compat mode then the guest should 1072 * do hash and use the legacy interrupt mode 1073 */ 1074 val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ 1075 val[3] = 0x00; /* Hash */ 1076 spapr_check_mmu_mode(false); 1077 } else if (kvm_enabled()) { 1078 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1079 val[3] = 0x80; /* OV5_MMU_BOTH */ 1080 } else if (kvmppc_has_cap_mmu_radix()) { 1081 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1082 } else { 1083 val[3] = 0x00; /* Hash */ 1084 } 1085 } else { 1086 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1087 val[3] = 0xC0; 1088 } 1089 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1090 val, sizeof(val))); 1091 } 1092 1093 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) 1094 { 1095 MachineState *machine = MACHINE(spapr); 1096 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1097 int chosen; 1098 1099 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1100 1101 if (reset) { 1102 const char *boot_device = spapr->boot_device; 1103 g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1104 size_t cb = 0; 1105 g_autofree char *bootlist = get_boot_devices_list(&cb); 1106 1107 if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { 1108 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", 1109 machine->kernel_cmdline)); 1110 } 1111 1112 if (spapr->initrd_size) { 1113 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1114 spapr->initrd_base)); 1115 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1116 spapr->initrd_base + spapr->initrd_size)); 1117 } 1118 1119 if (spapr->kernel_size) { 1120 uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), 1121 cpu_to_be64(spapr->kernel_size) }; 1122 1123 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1124 &kprop, sizeof(kprop))); 1125 if (spapr->kernel_le) { 1126 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1127 } 1128 } 1129 if (machine->boot_config.has_menu && machine->boot_config.menu) { 1130 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); 1131 } 1132 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1133 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1134 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1135 1136 if (cb && bootlist) { 1137 int i; 1138 1139 for (i = 0; i < cb; i++) { 1140 if (bootlist[i] == '\n') { 1141 bootlist[i] = ' '; 1142 } 1143 } 1144 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1145 } 1146 1147 if (boot_device && strlen(boot_device)) { 1148 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1149 } 1150 1151 if (spapr->want_stdout_path && stdout_path) { 1152 /* 1153 * "linux,stdout-path" and "stdout" properties are 1154 * deprecated by linux kernel. New platforms should only 1155 * use the "stdout-path" property. Set the new property 1156 * and continue using older property to remain compatible 1157 * with the existing firmware. 1158 */ 1159 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1160 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1161 } 1162 1163 /* 1164 * We can deal with BAR reallocation just fine, advertise it 1165 * to the guest 1166 */ 1167 if (smc->linux_pci_probe) { 1168 _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); 1169 } 1170 1171 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1172 } 1173 1174 _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); 1175 1176 _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); 1177 } 1178 1179 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1180 { 1181 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1182 * KVM to work under pHyp with some guest co-operation */ 1183 int hypervisor; 1184 uint8_t hypercall[16]; 1185 1186 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1187 /* indicate KVM hypercall interface */ 1188 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1189 if (kvmppc_has_cap_fixup_hcalls()) { 1190 /* 1191 * Older KVM versions with older guest kernels were broken 1192 * with the magic page, don't allow the guest to map it. 1193 */ 1194 if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall, 1195 sizeof(hypercall))) { 1196 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1197 hypercall, sizeof(hypercall))); 1198 } 1199 } 1200 } 1201 1202 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) 1203 { 1204 MachineState *machine = MACHINE(spapr); 1205 MachineClass *mc = MACHINE_GET_CLASS(machine); 1206 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1207 uint32_t root_drc_type_mask = 0; 1208 int ret; 1209 void *fdt; 1210 SpaprPhbState *phb; 1211 char *buf; 1212 1213 fdt = g_malloc0(space); 1214 _FDT((fdt_create_empty_tree(fdt, space))); 1215 1216 /* Root node */ 1217 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1218 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1219 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1220 1221 /* Guest UUID & Name*/ 1222 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1223 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1224 if (qemu_uuid_set) { 1225 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1226 } 1227 g_free(buf); 1228 1229 if (qemu_get_vm_name()) { 1230 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1231 qemu_get_vm_name())); 1232 } 1233 1234 /* Host Model & Serial Number */ 1235 if (spapr->host_model) { 1236 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1237 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1238 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1239 g_free(buf); 1240 } 1241 1242 if (spapr->host_serial) { 1243 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1244 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1245 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1246 g_free(buf); 1247 } 1248 1249 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1250 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1251 1252 /* /interrupt controller */ 1253 spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); 1254 1255 ret = spapr_dt_memory(spapr, fdt); 1256 if (ret < 0) { 1257 error_report("couldn't setup memory nodes in fdt"); 1258 exit(1); 1259 } 1260 1261 /* /vdevice */ 1262 spapr_dt_vdevice(spapr->vio_bus, fdt); 1263 1264 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1265 ret = spapr_dt_rng(fdt); 1266 if (ret < 0) { 1267 error_report("could not set up rng device in the fdt"); 1268 exit(1); 1269 } 1270 } 1271 1272 QLIST_FOREACH(phb, &spapr->phbs, list) { 1273 ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); 1274 if (ret < 0) { 1275 error_report("couldn't setup PCI devices in fdt"); 1276 exit(1); 1277 } 1278 } 1279 1280 spapr_dt_cpus(fdt, spapr); 1281 1282 /* ibm,drc-indexes and friends */ 1283 if (smc->dr_lmb_enabled) { 1284 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; 1285 } 1286 if (smc->dr_phb_enabled) { 1287 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; 1288 } 1289 if (mc->nvdimm_supported) { 1290 root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; 1291 } 1292 if (root_drc_type_mask) { 1293 _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); 1294 } 1295 1296 if (mc->has_hotpluggable_cpus) { 1297 int offset = fdt_path_offset(fdt, "/cpus"); 1298 ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); 1299 if (ret < 0) { 1300 error_report("Couldn't set up CPU DR device tree properties"); 1301 exit(1); 1302 } 1303 } 1304 1305 /* /event-sources */ 1306 spapr_dt_events(spapr, fdt); 1307 1308 /* /rtas */ 1309 spapr_dt_rtas(spapr, fdt); 1310 1311 /* /chosen */ 1312 spapr_dt_chosen(spapr, fdt, reset); 1313 1314 /* /hypervisor */ 1315 if (kvm_enabled()) { 1316 spapr_dt_hypervisor(spapr, fdt); 1317 } 1318 1319 /* Build memory reserve map */ 1320 if (reset) { 1321 if (spapr->kernel_size) { 1322 _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, 1323 spapr->kernel_size))); 1324 } 1325 if (spapr->initrd_size) { 1326 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, 1327 spapr->initrd_size))); 1328 } 1329 } 1330 1331 /* NVDIMM devices */ 1332 if (mc->nvdimm_supported) { 1333 spapr_dt_persistent_memory(spapr, fdt); 1334 } 1335 1336 return fdt; 1337 } 1338 1339 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1340 { 1341 SpaprMachineState *spapr = opaque; 1342 1343 return (addr & 0x0fffffff) + spapr->kernel_addr; 1344 } 1345 1346 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1347 PowerPCCPU *cpu) 1348 { 1349 CPUPPCState *env = &cpu->env; 1350 1351 /* The TCG path should also be holding the BQL at this point */ 1352 g_assert(bql_locked()); 1353 1354 g_assert(!vhyp_cpu_in_nested(cpu)); 1355 1356 if (FIELD_EX64(env->msr, MSR, PR)) { 1357 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1358 env->gpr[3] = H_PRIVILEGE; 1359 } else { 1360 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1361 } 1362 } 1363 1364 struct LPCRSyncState { 1365 target_ulong value; 1366 target_ulong mask; 1367 }; 1368 1369 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1370 { 1371 struct LPCRSyncState *s = arg.host_ptr; 1372 PowerPCCPU *cpu = POWERPC_CPU(cs); 1373 CPUPPCState *env = &cpu->env; 1374 target_ulong lpcr; 1375 1376 cpu_synchronize_state(cs); 1377 lpcr = env->spr[SPR_LPCR]; 1378 lpcr &= ~s->mask; 1379 lpcr |= s->value; 1380 ppc_store_lpcr(cpu, lpcr); 1381 } 1382 1383 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1384 { 1385 CPUState *cs; 1386 struct LPCRSyncState s = { 1387 .value = value, 1388 .mask = mask 1389 }; 1390 CPU_FOREACH(cs) { 1391 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1392 } 1393 } 1394 1395 /* May be used when the machine is not running */ 1396 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) 1397 { 1398 CPUState *cs; 1399 CPU_FOREACH(cs) { 1400 PowerPCCPU *cpu = POWERPC_CPU(cs); 1401 CPUPPCState *env = &cpu->env; 1402 target_ulong lpcr; 1403 1404 lpcr = env->spr[SPR_LPCR]; 1405 lpcr &= ~(LPCR_HR | LPCR_UPRT); 1406 ppc_store_lpcr(cpu, lpcr); 1407 } 1408 } 1409 1410 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, 1411 target_ulong lpid, ppc_v3_pate_t *entry) 1412 { 1413 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1414 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 1415 1416 if (!spapr_cpu->in_nested) { 1417 assert(lpid == 0); 1418 1419 /* Copy PATE1:GR into PATE0:HR */ 1420 entry->dw0 = spapr->patb_entry & PATE0_HR; 1421 entry->dw1 = spapr->patb_entry; 1422 return true; 1423 } else { 1424 assert(spapr_nested_api(spapr)); 1425 if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) { 1426 return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry); 1427 } 1428 return false; 1429 } 1430 } 1431 1432 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1433 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1434 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1435 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1436 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1437 1438 /* 1439 * Get the fd to access the kernel htab, re-opening it if necessary 1440 */ 1441 static int get_htab_fd(SpaprMachineState *spapr) 1442 { 1443 Error *local_err = NULL; 1444 1445 if (spapr->htab_fd >= 0) { 1446 return spapr->htab_fd; 1447 } 1448 1449 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1450 if (spapr->htab_fd < 0) { 1451 error_report_err(local_err); 1452 } 1453 1454 return spapr->htab_fd; 1455 } 1456 1457 void close_htab_fd(SpaprMachineState *spapr) 1458 { 1459 if (spapr->htab_fd >= 0) { 1460 close(spapr->htab_fd); 1461 } 1462 spapr->htab_fd = -1; 1463 } 1464 1465 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1466 { 1467 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1468 1469 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1470 } 1471 1472 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1473 { 1474 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1475 1476 assert(kvm_enabled()); 1477 1478 if (!spapr->htab) { 1479 return 0; 1480 } 1481 1482 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1483 } 1484 1485 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1486 hwaddr ptex, int n) 1487 { 1488 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1489 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1490 1491 if (!spapr->htab) { 1492 /* 1493 * HTAB is controlled by KVM. Fetch into temporary buffer 1494 */ 1495 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1496 kvmppc_read_hptes(hptes, ptex, n); 1497 return hptes; 1498 } 1499 1500 /* 1501 * HTAB is controlled by QEMU. Just point to the internally 1502 * accessible PTEG. 1503 */ 1504 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1505 } 1506 1507 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1508 const ppc_hash_pte64_t *hptes, 1509 hwaddr ptex, int n) 1510 { 1511 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1512 1513 if (!spapr->htab) { 1514 g_free((void *)hptes); 1515 } 1516 1517 /* Nothing to do for qemu managed HPT */ 1518 } 1519 1520 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, 1521 uint64_t pte0, uint64_t pte1) 1522 { 1523 SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); 1524 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1525 1526 if (!spapr->htab) { 1527 kvmppc_write_hpte(ptex, pte0, pte1); 1528 } else { 1529 if (pte0 & HPTE64_V_VALID) { 1530 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1531 /* 1532 * When setting valid, we write PTE1 first. This ensures 1533 * proper synchronization with the reading code in 1534 * ppc_hash64_pteg_search() 1535 */ 1536 smp_wmb(); 1537 stq_p(spapr->htab + offset, pte0); 1538 } else { 1539 stq_p(spapr->htab + offset, pte0); 1540 /* 1541 * When clearing it we set PTE0 first. This ensures proper 1542 * synchronization with the reading code in 1543 * ppc_hash64_pteg_search() 1544 */ 1545 smp_wmb(); 1546 stq_p(spapr->htab + offset + HPTE64_DW1, pte1); 1547 } 1548 } 1549 } 1550 1551 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1552 uint64_t pte1) 1553 { 1554 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; 1555 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1556 1557 if (!spapr->htab) { 1558 /* There should always be a hash table when this is called */ 1559 error_report("spapr_hpte_set_c called with no hash table !"); 1560 return; 1561 } 1562 1563 /* The HW performs a non-atomic byte update */ 1564 stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); 1565 } 1566 1567 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1568 uint64_t pte1) 1569 { 1570 hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; 1571 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1572 1573 if (!spapr->htab) { 1574 /* There should always be a hash table when this is called */ 1575 error_report("spapr_hpte_set_r called with no hash table !"); 1576 return; 1577 } 1578 1579 /* The HW performs a non-atomic byte update */ 1580 stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); 1581 } 1582 1583 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1584 { 1585 int shift; 1586 1587 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1588 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1589 * that's much more than is needed for Linux guests */ 1590 shift = ctz64(pow2ceil(ramsize)) - 7; 1591 shift = MAX(shift, 18); /* Minimum architected size */ 1592 shift = MIN(shift, 46); /* Maximum architected size */ 1593 return shift; 1594 } 1595 1596 void spapr_free_hpt(SpaprMachineState *spapr) 1597 { 1598 qemu_vfree(spapr->htab); 1599 spapr->htab = NULL; 1600 spapr->htab_shift = 0; 1601 close_htab_fd(spapr); 1602 } 1603 1604 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) 1605 { 1606 ERRP_GUARD(); 1607 long rc; 1608 1609 /* Clean up any HPT info from a previous boot */ 1610 spapr_free_hpt(spapr); 1611 1612 rc = kvmppc_reset_htab(shift); 1613 1614 if (rc == -EOPNOTSUPP) { 1615 error_setg(errp, "HPT not supported in nested guests"); 1616 return -EOPNOTSUPP; 1617 } 1618 1619 if (rc < 0) { 1620 /* kernel-side HPT needed, but couldn't allocate one */ 1621 error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", 1622 shift); 1623 error_append_hint(errp, "Try smaller maxmem?\n"); 1624 return -errno; 1625 } else if (rc > 0) { 1626 /* kernel-side HPT allocated */ 1627 if (rc != shift) { 1628 error_setg(errp, 1629 "Requested order %d HPT, but kernel allocated order %ld", 1630 shift, rc); 1631 error_append_hint(errp, "Try smaller maxmem?\n"); 1632 return -ENOSPC; 1633 } 1634 1635 spapr->htab_shift = shift; 1636 spapr->htab = NULL; 1637 } else { 1638 /* kernel-side HPT not needed, allocate in userspace instead */ 1639 size_t size = 1ULL << shift; 1640 int i; 1641 1642 spapr->htab = qemu_memalign(size, size); 1643 memset(spapr->htab, 0, size); 1644 spapr->htab_shift = shift; 1645 1646 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1647 DIRTY_HPTE(HPTE(spapr->htab, i)); 1648 } 1649 } 1650 /* We're setting up a hash table, so that means we're not radix */ 1651 spapr->patb_entry = 0; 1652 spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1653 return 0; 1654 } 1655 1656 void spapr_setup_hpt(SpaprMachineState *spapr) 1657 { 1658 int hpt_shift; 1659 1660 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { 1661 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1662 } else { 1663 uint64_t current_ram_size; 1664 1665 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1666 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1667 } 1668 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1669 1670 if (kvm_enabled()) { 1671 hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); 1672 1673 /* Check our RMA fits in the possible VRMA */ 1674 if (vrma_limit < spapr->rma_size) { 1675 error_report("Unable to create %" HWADDR_PRIu 1676 "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", 1677 spapr->rma_size / MiB, vrma_limit / MiB); 1678 exit(EXIT_FAILURE); 1679 } 1680 } 1681 } 1682 1683 void spapr_check_mmu_mode(bool guest_radix) 1684 { 1685 if (guest_radix) { 1686 if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { 1687 error_report("Guest requested unavailable MMU mode (radix)."); 1688 exit(EXIT_FAILURE); 1689 } 1690 } else { 1691 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() 1692 && !kvmppc_has_cap_mmu_hash_v3()) { 1693 error_report("Guest requested unavailable MMU mode (hash)."); 1694 exit(EXIT_FAILURE); 1695 } 1696 } 1697 } 1698 1699 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason) 1700 { 1701 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1702 PowerPCCPU *first_ppc_cpu; 1703 hwaddr fdt_addr; 1704 void *fdt; 1705 int rc; 1706 1707 if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) { 1708 /* 1709 * Record-replay snapshot load must not consume random, this was 1710 * already replayed from initial machine reset. 1711 */ 1712 qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); 1713 } 1714 1715 pef_kvm_reset(machine->cgs, &error_fatal); 1716 spapr_caps_apply(spapr); 1717 spapr_nested_reset(spapr); 1718 1719 first_ppc_cpu = POWERPC_CPU(first_cpu); 1720 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1721 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1722 spapr->max_compat_pvr)) { 1723 /* 1724 * If using KVM with radix mode available, VCPUs can be started 1725 * without a HPT because KVM will start them in radix mode. 1726 * Set the GR bit in PATE so that we know there is no HPT. 1727 */ 1728 spapr->patb_entry = PATE1_GR; 1729 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1730 } else { 1731 spapr_setup_hpt(spapr); 1732 } 1733 1734 qemu_devices_reset(reason); 1735 1736 spapr_ovec_cleanup(spapr->ov5_cas); 1737 spapr->ov5_cas = spapr_ovec_new(); 1738 1739 ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); 1740 1741 /* 1742 * This is fixing some of the default configuration of the XIVE 1743 * devices. To be called after the reset of the machine devices. 1744 */ 1745 spapr_irq_reset(spapr, &error_fatal); 1746 1747 /* 1748 * There is no CAS under qtest. Simulate one to please the code that 1749 * depends on spapr->ov5_cas. This is especially needed to test device 1750 * unplug, so we do that before resetting the DRCs. 1751 */ 1752 if (qtest_enabled()) { 1753 spapr_ovec_cleanup(spapr->ov5_cas); 1754 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1755 } 1756 1757 spapr_nvdimm_finish_flushes(); 1758 1759 /* DRC reset may cause a device to be unplugged. This will cause troubles 1760 * if this device is used by another device (eg, a running vhost backend 1761 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1762 * situations, we reset DRCs after all devices have been reset. 1763 */ 1764 spapr_drc_reset_all(spapr); 1765 1766 spapr_clear_pending_events(spapr); 1767 1768 /* 1769 * We place the device tree just below either the top of the RMA, 1770 * or just below 2GB, whichever is lower, so that it can be 1771 * processed with 32-bit real mode code if necessary 1772 */ 1773 fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; 1774 1775 fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); 1776 if (spapr->vof) { 1777 spapr_vof_reset(spapr, fdt, &error_fatal); 1778 /* 1779 * Do not pack the FDT as the client may change properties. 1780 * VOF client does not expect the FDT so we do not load it to the VM. 1781 */ 1782 } else { 1783 rc = fdt_pack(fdt); 1784 /* Should only fail if we've built a corrupted tree */ 1785 assert(rc == 0); 1786 1787 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 1788 0, fdt_addr, 0); 1789 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1790 } 1791 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1792 1793 g_free(spapr->fdt_blob); 1794 spapr->fdt_size = fdt_totalsize(fdt); 1795 spapr->fdt_initial_size = spapr->fdt_size; 1796 spapr->fdt_blob = fdt; 1797 1798 /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ 1799 machine->fdt = fdt; 1800 1801 /* Set up the entry state */ 1802 first_ppc_cpu->env.gpr[5] = 0; 1803 1804 spapr->fwnmi_system_reset_addr = -1; 1805 spapr->fwnmi_machine_check_addr = -1; 1806 spapr->fwnmi_machine_check_interlock = -1; 1807 1808 /* Signal all vCPUs waiting on this condition */ 1809 qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); 1810 1811 migrate_del_blocker(&spapr->fwnmi_migration_blocker); 1812 } 1813 1814 static void spapr_create_nvram(SpaprMachineState *spapr) 1815 { 1816 DeviceState *dev = qdev_new("spapr-nvram"); 1817 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1818 1819 if (dinfo) { 1820 qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), 1821 &error_fatal); 1822 } 1823 1824 qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); 1825 1826 spapr->nvram = (struct SpaprNvram *)dev; 1827 } 1828 1829 static void spapr_rtc_create(SpaprMachineState *spapr) 1830 { 1831 object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, 1832 sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1833 &error_fatal, NULL); 1834 qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); 1835 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1836 "date"); 1837 } 1838 1839 /* Returns whether we want to use VGA or not */ 1840 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1841 { 1842 vga_interface_created = true; 1843 switch (vga_interface_type) { 1844 case VGA_NONE: 1845 return false; 1846 case VGA_DEVICE: 1847 return true; 1848 case VGA_STD: 1849 case VGA_VIRTIO: 1850 case VGA_CIRRUS: 1851 return pci_vga_init(pci_bus) != NULL; 1852 default: 1853 error_setg(errp, 1854 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1855 return false; 1856 } 1857 } 1858 1859 static int spapr_pre_load(void *opaque) 1860 { 1861 int rc; 1862 1863 rc = spapr_caps_pre_load(opaque); 1864 if (rc) { 1865 return rc; 1866 } 1867 1868 return 0; 1869 } 1870 1871 static int spapr_post_load(void *opaque, int version_id) 1872 { 1873 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1874 int err = 0; 1875 1876 err = spapr_caps_post_migration(spapr); 1877 if (err) { 1878 return err; 1879 } 1880 1881 /* 1882 * In earlier versions, there was no separate qdev for the PAPR 1883 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1884 * So when migrating from those versions, poke the incoming offset 1885 * value into the RTC device 1886 */ 1887 if (version_id < 3) { 1888 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1889 if (err) { 1890 return err; 1891 } 1892 } 1893 1894 if (kvm_enabled() && spapr->patb_entry) { 1895 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1896 bool radix = !!(spapr->patb_entry & PATE1_GR); 1897 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1898 1899 /* 1900 * Update LPCR:HR and UPRT as they may not be set properly in 1901 * the stream 1902 */ 1903 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1904 LPCR_HR | LPCR_UPRT); 1905 1906 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1907 if (err) { 1908 error_report("Process table config unsupported by the host"); 1909 return -EINVAL; 1910 } 1911 } 1912 1913 err = spapr_irq_post_load(spapr, version_id); 1914 if (err) { 1915 return err; 1916 } 1917 1918 return err; 1919 } 1920 1921 static int spapr_pre_save(void *opaque) 1922 { 1923 int rc; 1924 1925 rc = spapr_caps_pre_save(opaque); 1926 if (rc) { 1927 return rc; 1928 } 1929 1930 return 0; 1931 } 1932 1933 static bool version_before_3(void *opaque, int version_id) 1934 { 1935 return version_id < 3; 1936 } 1937 1938 static bool spapr_pending_events_needed(void *opaque) 1939 { 1940 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1941 return !QTAILQ_EMPTY(&spapr->pending_events); 1942 } 1943 1944 static const VMStateDescription vmstate_spapr_event_entry = { 1945 .name = "spapr_event_log_entry", 1946 .version_id = 1, 1947 .minimum_version_id = 1, 1948 .fields = (const VMStateField[]) { 1949 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1950 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1951 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1952 NULL, extended_length), 1953 VMSTATE_END_OF_LIST() 1954 }, 1955 }; 1956 1957 static const VMStateDescription vmstate_spapr_pending_events = { 1958 .name = "spapr_pending_events", 1959 .version_id = 1, 1960 .minimum_version_id = 1, 1961 .needed = spapr_pending_events_needed, 1962 .fields = (const VMStateField[]) { 1963 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1964 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1965 VMSTATE_END_OF_LIST() 1966 }, 1967 }; 1968 1969 static bool spapr_ov5_cas_needed(void *opaque) 1970 { 1971 SpaprMachineState *spapr = opaque; 1972 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1973 bool cas_needed; 1974 1975 /* Prior to the introduction of SpaprOptionVector, we had two option 1976 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1977 * Both of these options encode machine topology into the device-tree 1978 * in such a way that the now-booted OS should still be able to interact 1979 * appropriately with QEMU regardless of what options were actually 1980 * negotiatied on the source side. 1981 * 1982 * As such, we can avoid migrating the CAS-negotiated options if these 1983 * are the only options available on the current machine/platform. 1984 * Since these are the only options available for pseries-2.7 and 1985 * earlier, this allows us to maintain old->new/new->old migration 1986 * compatibility. 1987 * 1988 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1989 * via default pseries-2.8 machines and explicit command-line parameters. 1990 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1991 * of the actual CAS-negotiated values to continue working properly. For 1992 * example, availability of memory unplug depends on knowing whether 1993 * OV5_HP_EVT was negotiated via CAS. 1994 * 1995 * Thus, for any cases where the set of available CAS-negotiatable 1996 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1997 * include the CAS-negotiated options in the migration stream, unless 1998 * if they affect boot time behaviour only. 1999 */ 2000 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 2001 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 2002 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 2003 2004 /* We need extra information if we have any bits outside the mask 2005 * defined above */ 2006 cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); 2007 2008 spapr_ovec_cleanup(ov5_mask); 2009 2010 return cas_needed; 2011 } 2012 2013 static const VMStateDescription vmstate_spapr_ov5_cas = { 2014 .name = "spapr_option_vector_ov5_cas", 2015 .version_id = 1, 2016 .minimum_version_id = 1, 2017 .needed = spapr_ov5_cas_needed, 2018 .fields = (const VMStateField[]) { 2019 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 2020 vmstate_spapr_ovec, SpaprOptionVector), 2021 VMSTATE_END_OF_LIST() 2022 }, 2023 }; 2024 2025 static bool spapr_patb_entry_needed(void *opaque) 2026 { 2027 SpaprMachineState *spapr = opaque; 2028 2029 return !!spapr->patb_entry; 2030 } 2031 2032 static const VMStateDescription vmstate_spapr_patb_entry = { 2033 .name = "spapr_patb_entry", 2034 .version_id = 1, 2035 .minimum_version_id = 1, 2036 .needed = spapr_patb_entry_needed, 2037 .fields = (const VMStateField[]) { 2038 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2039 VMSTATE_END_OF_LIST() 2040 }, 2041 }; 2042 2043 static bool spapr_irq_map_needed(void *opaque) 2044 { 2045 SpaprMachineState *spapr = opaque; 2046 2047 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2048 } 2049 2050 static const VMStateDescription vmstate_spapr_irq_map = { 2051 .name = "spapr_irq_map", 2052 .version_id = 1, 2053 .minimum_version_id = 1, 2054 .needed = spapr_irq_map_needed, 2055 .fields = (const VMStateField[]) { 2056 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2057 VMSTATE_END_OF_LIST() 2058 }, 2059 }; 2060 2061 static bool spapr_dtb_needed(void *opaque) 2062 { 2063 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2064 2065 return smc->update_dt_enabled; 2066 } 2067 2068 static int spapr_dtb_pre_load(void *opaque) 2069 { 2070 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2071 2072 g_free(spapr->fdt_blob); 2073 spapr->fdt_blob = NULL; 2074 spapr->fdt_size = 0; 2075 2076 return 0; 2077 } 2078 2079 static const VMStateDescription vmstate_spapr_dtb = { 2080 .name = "spapr_dtb", 2081 .version_id = 1, 2082 .minimum_version_id = 1, 2083 .needed = spapr_dtb_needed, 2084 .pre_load = spapr_dtb_pre_load, 2085 .fields = (const VMStateField[]) { 2086 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2087 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2088 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2089 fdt_size), 2090 VMSTATE_END_OF_LIST() 2091 }, 2092 }; 2093 2094 static bool spapr_fwnmi_needed(void *opaque) 2095 { 2096 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2097 2098 return spapr->fwnmi_machine_check_addr != -1; 2099 } 2100 2101 static int spapr_fwnmi_pre_save(void *opaque) 2102 { 2103 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2104 2105 /* 2106 * Check if machine check handling is in progress and print a 2107 * warning message. 2108 */ 2109 if (spapr->fwnmi_machine_check_interlock != -1) { 2110 warn_report("A machine check is being handled during migration. The" 2111 "handler may run and log hardware error on the destination"); 2112 } 2113 2114 return 0; 2115 } 2116 2117 static const VMStateDescription vmstate_spapr_fwnmi = { 2118 .name = "spapr_fwnmi", 2119 .version_id = 1, 2120 .minimum_version_id = 1, 2121 .needed = spapr_fwnmi_needed, 2122 .pre_save = spapr_fwnmi_pre_save, 2123 .fields = (const VMStateField[]) { 2124 VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), 2125 VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), 2126 VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), 2127 VMSTATE_END_OF_LIST() 2128 }, 2129 }; 2130 2131 static const VMStateDescription vmstate_spapr = { 2132 .name = "spapr", 2133 .version_id = 3, 2134 .minimum_version_id = 1, 2135 .pre_load = spapr_pre_load, 2136 .post_load = spapr_post_load, 2137 .pre_save = spapr_pre_save, 2138 .fields = (const VMStateField[]) { 2139 /* used to be @next_irq */ 2140 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2141 2142 /* RTC offset */ 2143 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2144 2145 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2146 VMSTATE_END_OF_LIST() 2147 }, 2148 .subsections = (const VMStateDescription * const []) { 2149 &vmstate_spapr_ov5_cas, 2150 &vmstate_spapr_patb_entry, 2151 &vmstate_spapr_pending_events, 2152 &vmstate_spapr_cap_htm, 2153 &vmstate_spapr_cap_vsx, 2154 &vmstate_spapr_cap_dfp, 2155 &vmstate_spapr_cap_cfpc, 2156 &vmstate_spapr_cap_sbbc, 2157 &vmstate_spapr_cap_ibs, 2158 &vmstate_spapr_cap_hpt_maxpagesize, 2159 &vmstate_spapr_irq_map, 2160 &vmstate_spapr_cap_nested_kvm_hv, 2161 &vmstate_spapr_dtb, 2162 &vmstate_spapr_cap_large_decr, 2163 &vmstate_spapr_cap_ccf_assist, 2164 &vmstate_spapr_cap_fwnmi, 2165 &vmstate_spapr_fwnmi, 2166 &vmstate_spapr_cap_rpt_invalidate, 2167 NULL 2168 } 2169 }; 2170 2171 static int htab_save_setup(QEMUFile *f, void *opaque) 2172 { 2173 SpaprMachineState *spapr = opaque; 2174 2175 /* "Iteration" header */ 2176 if (!spapr->htab_shift) { 2177 qemu_put_be32(f, -1); 2178 } else { 2179 qemu_put_be32(f, spapr->htab_shift); 2180 } 2181 2182 if (spapr->htab) { 2183 spapr->htab_save_index = 0; 2184 spapr->htab_first_pass = true; 2185 } else { 2186 if (spapr->htab_shift) { 2187 assert(kvm_enabled()); 2188 } 2189 } 2190 2191 2192 return 0; 2193 } 2194 2195 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2196 int chunkstart, int n_valid, int n_invalid) 2197 { 2198 qemu_put_be32(f, chunkstart); 2199 qemu_put_be16(f, n_valid); 2200 qemu_put_be16(f, n_invalid); 2201 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2202 HASH_PTE_SIZE_64 * n_valid); 2203 } 2204 2205 static void htab_save_end_marker(QEMUFile *f) 2206 { 2207 qemu_put_be32(f, 0); 2208 qemu_put_be16(f, 0); 2209 qemu_put_be16(f, 0); 2210 } 2211 2212 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2213 int64_t max_ns) 2214 { 2215 bool has_timeout = max_ns != -1; 2216 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2217 int index = spapr->htab_save_index; 2218 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2219 2220 assert(spapr->htab_first_pass); 2221 2222 do { 2223 int chunkstart; 2224 2225 /* Consume invalid HPTEs */ 2226 while ((index < htabslots) 2227 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2228 CLEAN_HPTE(HPTE(spapr->htab, index)); 2229 index++; 2230 } 2231 2232 /* Consume valid HPTEs */ 2233 chunkstart = index; 2234 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2235 && HPTE_VALID(HPTE(spapr->htab, index))) { 2236 CLEAN_HPTE(HPTE(spapr->htab, index)); 2237 index++; 2238 } 2239 2240 if (index > chunkstart) { 2241 int n_valid = index - chunkstart; 2242 2243 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2244 2245 if (has_timeout && 2246 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2247 break; 2248 } 2249 } 2250 } while ((index < htabslots) && !migration_rate_exceeded(f)); 2251 2252 if (index >= htabslots) { 2253 assert(index == htabslots); 2254 index = 0; 2255 spapr->htab_first_pass = false; 2256 } 2257 spapr->htab_save_index = index; 2258 } 2259 2260 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2261 int64_t max_ns) 2262 { 2263 bool final = max_ns < 0; 2264 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2265 int examined = 0, sent = 0; 2266 int index = spapr->htab_save_index; 2267 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2268 2269 assert(!spapr->htab_first_pass); 2270 2271 do { 2272 int chunkstart, invalidstart; 2273 2274 /* Consume non-dirty HPTEs */ 2275 while ((index < htabslots) 2276 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2277 index++; 2278 examined++; 2279 } 2280 2281 chunkstart = index; 2282 /* Consume valid dirty HPTEs */ 2283 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2284 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2285 && HPTE_VALID(HPTE(spapr->htab, index))) { 2286 CLEAN_HPTE(HPTE(spapr->htab, index)); 2287 index++; 2288 examined++; 2289 } 2290 2291 invalidstart = index; 2292 /* Consume invalid dirty HPTEs */ 2293 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2294 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2295 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2296 CLEAN_HPTE(HPTE(spapr->htab, index)); 2297 index++; 2298 examined++; 2299 } 2300 2301 if (index > chunkstart) { 2302 int n_valid = invalidstart - chunkstart; 2303 int n_invalid = index - invalidstart; 2304 2305 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2306 sent += index - chunkstart; 2307 2308 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2309 break; 2310 } 2311 } 2312 2313 if (examined >= htabslots) { 2314 break; 2315 } 2316 2317 if (index >= htabslots) { 2318 assert(index == htabslots); 2319 index = 0; 2320 } 2321 } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); 2322 2323 if (index >= htabslots) { 2324 assert(index == htabslots); 2325 index = 0; 2326 } 2327 2328 spapr->htab_save_index = index; 2329 2330 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2331 } 2332 2333 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2334 #define MAX_KVM_BUF_SIZE 2048 2335 2336 static int htab_save_iterate(QEMUFile *f, void *opaque) 2337 { 2338 SpaprMachineState *spapr = opaque; 2339 int fd; 2340 int rc = 0; 2341 2342 /* Iteration header */ 2343 if (!spapr->htab_shift) { 2344 qemu_put_be32(f, -1); 2345 return 1; 2346 } else { 2347 qemu_put_be32(f, 0); 2348 } 2349 2350 if (!spapr->htab) { 2351 assert(kvm_enabled()); 2352 2353 fd = get_htab_fd(spapr); 2354 if (fd < 0) { 2355 return fd; 2356 } 2357 2358 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2359 if (rc < 0) { 2360 return rc; 2361 } 2362 } else if (spapr->htab_first_pass) { 2363 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2364 } else { 2365 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2366 } 2367 2368 htab_save_end_marker(f); 2369 2370 return rc; 2371 } 2372 2373 static int htab_save_complete(QEMUFile *f, void *opaque) 2374 { 2375 SpaprMachineState *spapr = opaque; 2376 int fd; 2377 2378 /* Iteration header */ 2379 if (!spapr->htab_shift) { 2380 qemu_put_be32(f, -1); 2381 return 0; 2382 } else { 2383 qemu_put_be32(f, 0); 2384 } 2385 2386 if (!spapr->htab) { 2387 int rc; 2388 2389 assert(kvm_enabled()); 2390 2391 fd = get_htab_fd(spapr); 2392 if (fd < 0) { 2393 return fd; 2394 } 2395 2396 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2397 if (rc < 0) { 2398 return rc; 2399 } 2400 } else { 2401 if (spapr->htab_first_pass) { 2402 htab_save_first_pass(f, spapr, -1); 2403 } 2404 htab_save_later_pass(f, spapr, -1); 2405 } 2406 2407 /* End marker */ 2408 htab_save_end_marker(f); 2409 2410 return 0; 2411 } 2412 2413 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2414 { 2415 SpaprMachineState *spapr = opaque; 2416 uint32_t section_hdr; 2417 int fd = -1; 2418 Error *local_err = NULL; 2419 2420 if (version_id < 1 || version_id > 1) { 2421 error_report("htab_load() bad version"); 2422 return -EINVAL; 2423 } 2424 2425 section_hdr = qemu_get_be32(f); 2426 2427 if (section_hdr == -1) { 2428 spapr_free_hpt(spapr); 2429 return 0; 2430 } 2431 2432 if (section_hdr) { 2433 int ret; 2434 2435 /* First section gives the htab size */ 2436 ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2437 if (ret < 0) { 2438 error_report_err(local_err); 2439 return ret; 2440 } 2441 return 0; 2442 } 2443 2444 if (!spapr->htab) { 2445 assert(kvm_enabled()); 2446 2447 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2448 if (fd < 0) { 2449 error_report_err(local_err); 2450 return fd; 2451 } 2452 } 2453 2454 while (true) { 2455 uint32_t index; 2456 uint16_t n_valid, n_invalid; 2457 2458 index = qemu_get_be32(f); 2459 n_valid = qemu_get_be16(f); 2460 n_invalid = qemu_get_be16(f); 2461 2462 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2463 /* End of Stream */ 2464 break; 2465 } 2466 2467 if ((index + n_valid + n_invalid) > 2468 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2469 /* Bad index in stream */ 2470 error_report( 2471 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2472 index, n_valid, n_invalid, spapr->htab_shift); 2473 return -EINVAL; 2474 } 2475 2476 if (spapr->htab) { 2477 if (n_valid) { 2478 qemu_get_buffer(f, HPTE(spapr->htab, index), 2479 HASH_PTE_SIZE_64 * n_valid); 2480 } 2481 if (n_invalid) { 2482 memset(HPTE(spapr->htab, index + n_valid), 0, 2483 HASH_PTE_SIZE_64 * n_invalid); 2484 } 2485 } else { 2486 int rc; 2487 2488 assert(fd >= 0); 2489 2490 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, 2491 &local_err); 2492 if (rc < 0) { 2493 error_report_err(local_err); 2494 return rc; 2495 } 2496 } 2497 } 2498 2499 if (!spapr->htab) { 2500 assert(fd >= 0); 2501 close(fd); 2502 } 2503 2504 return 0; 2505 } 2506 2507 static void htab_save_cleanup(void *opaque) 2508 { 2509 SpaprMachineState *spapr = opaque; 2510 2511 close_htab_fd(spapr); 2512 } 2513 2514 static SaveVMHandlers savevm_htab_handlers = { 2515 .save_setup = htab_save_setup, 2516 .save_live_iterate = htab_save_iterate, 2517 .save_live_complete_precopy = htab_save_complete, 2518 .save_cleanup = htab_save_cleanup, 2519 .load_state = htab_load, 2520 }; 2521 2522 static void spapr_boot_set(void *opaque, const char *boot_device, 2523 Error **errp) 2524 { 2525 SpaprMachineState *spapr = SPAPR_MACHINE(opaque); 2526 2527 g_free(spapr->boot_device); 2528 spapr->boot_device = g_strdup(boot_device); 2529 } 2530 2531 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2532 { 2533 MachineState *machine = MACHINE(spapr); 2534 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2535 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2536 int i; 2537 2538 g_assert(!nr_lmbs || machine->device_memory); 2539 for (i = 0; i < nr_lmbs; i++) { 2540 uint64_t addr; 2541 2542 addr = i * lmb_size + machine->device_memory->base; 2543 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2544 addr / lmb_size); 2545 } 2546 } 2547 2548 /* 2549 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2550 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2551 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2552 */ 2553 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2554 { 2555 int i; 2556 2557 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2558 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2559 " is not aligned to %" PRIu64 " MiB", 2560 machine->ram_size, 2561 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2562 return; 2563 } 2564 2565 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2566 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2567 " is not aligned to %" PRIu64 " MiB", 2568 machine->ram_size, 2569 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2570 return; 2571 } 2572 2573 for (i = 0; i < machine->numa_state->num_nodes; i++) { 2574 if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2575 error_setg(errp, 2576 "Node %d memory size 0x%" PRIx64 2577 " is not aligned to %" PRIu64 " MiB", 2578 i, machine->numa_state->nodes[i].node_mem, 2579 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2580 return; 2581 } 2582 } 2583 } 2584 2585 /* find cpu slot in machine->possible_cpus by core_id */ 2586 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2587 { 2588 int index = id / ms->smp.threads; 2589 2590 if (index >= ms->possible_cpus->len) { 2591 return NULL; 2592 } 2593 if (idx) { 2594 *idx = index; 2595 } 2596 return &ms->possible_cpus->cpus[index]; 2597 } 2598 2599 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2600 { 2601 MachineState *ms = MACHINE(spapr); 2602 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2603 Error *local_err = NULL; 2604 bool vsmt_user = !!spapr->vsmt; 2605 int kvm_smt = kvmppc_smt_threads(); 2606 int ret; 2607 unsigned int smp_threads = ms->smp.threads; 2608 2609 if (tcg_enabled()) { 2610 if (smp_threads > 1 && 2611 !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, 2612 spapr->max_compat_pvr)) { 2613 error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); 2614 return; 2615 } 2616 2617 if (smp_threads > 8) { 2618 error_setg(errp, "TCG cannot support more than 8 threads/core " 2619 "on a pseries machine"); 2620 return; 2621 } 2622 } 2623 if (!is_power_of_2(smp_threads)) { 2624 error_setg(errp, "Cannot support %d threads/core on a pseries " 2625 "machine because it must be a power of 2", smp_threads); 2626 return; 2627 } 2628 2629 /* Determine the VSMT mode to use: */ 2630 if (vsmt_user) { 2631 if (spapr->vsmt < smp_threads) { 2632 error_setg(errp, "Cannot support VSMT mode %d" 2633 " because it must be >= threads/core (%d)", 2634 spapr->vsmt, smp_threads); 2635 return; 2636 } 2637 /* In this case, spapr->vsmt has been set by the command line */ 2638 } else if (!smc->smp_threads_vsmt) { 2639 /* 2640 * Default VSMT value is tricky, because we need it to be as 2641 * consistent as possible (for migration), but this requires 2642 * changing it for at least some existing cases. We pick 8 as 2643 * the value that we'd get with KVM on POWER8, the 2644 * overwhelmingly common case in production systems. 2645 */ 2646 spapr->vsmt = MAX(8, smp_threads); 2647 } else { 2648 spapr->vsmt = smp_threads; 2649 } 2650 2651 /* KVM: If necessary, set the SMT mode: */ 2652 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2653 ret = kvmppc_set_smt_threads(spapr->vsmt); 2654 if (ret) { 2655 /* Looks like KVM isn't able to change VSMT mode */ 2656 error_setg(&local_err, 2657 "Failed to set KVM's VSMT mode to %d (errno %d)", 2658 spapr->vsmt, ret); 2659 /* We can live with that if the default one is big enough 2660 * for the number of threads, and a submultiple of the one 2661 * we want. In this case we'll waste some vcpu ids, but 2662 * behaviour will be correct */ 2663 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2664 warn_report_err(local_err); 2665 } else { 2666 if (!vsmt_user) { 2667 error_append_hint(&local_err, 2668 "On PPC, a VM with %d threads/core" 2669 " on a host with %d threads/core" 2670 " requires the use of VSMT mode %d.\n", 2671 smp_threads, kvm_smt, spapr->vsmt); 2672 } 2673 kvmppc_error_append_smt_possible_hint(&local_err); 2674 error_propagate(errp, local_err); 2675 } 2676 } 2677 } 2678 /* else TCG: nothing to do currently */ 2679 } 2680 2681 static void spapr_init_cpus(SpaprMachineState *spapr) 2682 { 2683 MachineState *machine = MACHINE(spapr); 2684 MachineClass *mc = MACHINE_GET_CLASS(machine); 2685 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2686 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2687 const CPUArchIdList *possible_cpus; 2688 unsigned int smp_cpus = machine->smp.cpus; 2689 unsigned int smp_threads = machine->smp.threads; 2690 unsigned int max_cpus = machine->smp.max_cpus; 2691 int boot_cores_nr = smp_cpus / smp_threads; 2692 int i; 2693 2694 possible_cpus = mc->possible_cpu_arch_ids(machine); 2695 if (mc->has_hotpluggable_cpus) { 2696 if (smp_cpus % smp_threads) { 2697 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2698 smp_cpus, smp_threads); 2699 exit(1); 2700 } 2701 if (max_cpus % smp_threads) { 2702 error_report("max_cpus (%u) must be multiple of threads (%u)", 2703 max_cpus, smp_threads); 2704 exit(1); 2705 } 2706 } else { 2707 if (max_cpus != smp_cpus) { 2708 error_report("This machine version does not support CPU hotplug"); 2709 exit(1); 2710 } 2711 boot_cores_nr = possible_cpus->len; 2712 } 2713 2714 if (smc->pre_2_10_has_unused_icps) { 2715 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2716 /* Dummy entries get deregistered when real ICPState objects 2717 * are registered during CPU core hotplug. 2718 */ 2719 pre_2_10_vmstate_register_dummy_icp(i); 2720 } 2721 } 2722 2723 for (i = 0; i < possible_cpus->len; i++) { 2724 int core_id = i * smp_threads; 2725 2726 if (mc->has_hotpluggable_cpus) { 2727 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2728 spapr_vcpu_id(spapr, core_id)); 2729 } 2730 2731 if (i < boot_cores_nr) { 2732 Object *core = object_new(type); 2733 int nr_threads = smp_threads; 2734 2735 /* Handle the partially filled core for older machine types */ 2736 if ((i + 1) * smp_threads >= smp_cpus) { 2737 nr_threads = smp_cpus - i * smp_threads; 2738 } 2739 2740 object_property_set_int(core, "nr-threads", nr_threads, 2741 &error_fatal); 2742 object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, 2743 &error_fatal); 2744 qdev_realize(DEVICE(core), NULL, &error_fatal); 2745 2746 object_unref(core); 2747 } 2748 } 2749 } 2750 2751 static PCIHostState *spapr_create_default_phb(void) 2752 { 2753 DeviceState *dev; 2754 2755 dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); 2756 qdev_prop_set_uint32(dev, "index", 0); 2757 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 2758 2759 return PCI_HOST_BRIDGE(dev); 2760 } 2761 2762 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) 2763 { 2764 MachineState *machine = MACHINE(spapr); 2765 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 2766 hwaddr rma_size = machine->ram_size; 2767 hwaddr node0_size = spapr_node0_size(machine); 2768 2769 /* RMA has to fit in the first NUMA node */ 2770 rma_size = MIN(rma_size, node0_size); 2771 2772 /* 2773 * VRMA access is via a special 1TiB SLB mapping, so the RMA can 2774 * never exceed that 2775 */ 2776 rma_size = MIN(rma_size, 1 * TiB); 2777 2778 /* 2779 * Clamp the RMA size based on machine type. This is for 2780 * migration compatibility with older qemu versions, which limited 2781 * the RMA size for complicated and mostly bad reasons. 2782 */ 2783 if (smc->rma_limit) { 2784 rma_size = MIN(rma_size, smc->rma_limit); 2785 } 2786 2787 if (rma_size < MIN_RMA_SLOF) { 2788 error_setg(errp, 2789 "pSeries SLOF firmware requires >= %" HWADDR_PRIx 2790 "ldMiB guest RMA (Real Mode Area memory)", 2791 MIN_RMA_SLOF / MiB); 2792 return 0; 2793 } 2794 2795 return rma_size; 2796 } 2797 2798 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) 2799 { 2800 MachineState *machine = MACHINE(spapr); 2801 int i; 2802 2803 for (i = 0; i < machine->ram_slots; i++) { 2804 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); 2805 } 2806 } 2807 2808 /* pSeries LPAR / sPAPR hardware init */ 2809 static void spapr_machine_init(MachineState *machine) 2810 { 2811 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2812 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2813 MachineClass *mc = MACHINE_GET_CLASS(machine); 2814 const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; 2815 const char *bios_name = machine->firmware ?: bios_default; 2816 g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2817 const char *kernel_filename = machine->kernel_filename; 2818 const char *initrd_filename = machine->initrd_filename; 2819 PCIHostState *phb; 2820 bool has_vga; 2821 int i; 2822 MemoryRegion *sysmem = get_system_memory(); 2823 long load_limit, fw_size; 2824 Error *resize_hpt_err = NULL; 2825 NICInfo *nd; 2826 2827 if (!filename) { 2828 error_report("Could not find LPAR firmware '%s'", bios_name); 2829 exit(1); 2830 } 2831 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2832 if (fw_size <= 0) { 2833 error_report("Could not load LPAR firmware '%s'", filename); 2834 exit(1); 2835 } 2836 2837 /* 2838 * if Secure VM (PEF) support is configured, then initialize it 2839 */ 2840 pef_kvm_init(machine->cgs, &error_fatal); 2841 2842 msi_nonbroken = true; 2843 2844 QLIST_INIT(&spapr->phbs); 2845 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2846 2847 /* Determine capabilities to run with */ 2848 spapr_caps_init(spapr); 2849 2850 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2851 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2852 /* 2853 * If the user explicitly requested a mode we should either 2854 * supply it, or fail completely (which we do below). But if 2855 * it's not set explicitly, we reset our mode to something 2856 * that works 2857 */ 2858 if (resize_hpt_err) { 2859 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2860 error_free(resize_hpt_err); 2861 resize_hpt_err = NULL; 2862 } else { 2863 spapr->resize_hpt = smc->resize_hpt_default; 2864 } 2865 } 2866 2867 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2868 2869 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2870 /* 2871 * User requested HPT resize, but this host can't supply it. Bail out 2872 */ 2873 error_report_err(resize_hpt_err); 2874 exit(1); 2875 } 2876 error_free(resize_hpt_err); 2877 2878 spapr->rma_size = spapr_rma_size(spapr, &error_fatal); 2879 2880 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2881 load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; 2882 2883 /* 2884 * VSMT must be set in order to be able to compute VCPU ids, ie to 2885 * call spapr_max_server_number() or spapr_vcpu_id(). 2886 */ 2887 spapr_set_vsmt_mode(spapr, &error_fatal); 2888 2889 /* Set up Interrupt Controller before we create the VCPUs */ 2890 spapr_irq_init(spapr, &error_fatal); 2891 2892 /* Set up containers for ibm,client-architecture-support negotiated options 2893 */ 2894 spapr->ov5 = spapr_ovec_new(); 2895 spapr->ov5_cas = spapr_ovec_new(); 2896 2897 if (smc->dr_lmb_enabled) { 2898 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2899 spapr_validate_node_memory(machine, &error_fatal); 2900 } 2901 2902 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2903 2904 /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ 2905 if (!smc->pre_6_2_numa_affinity) { 2906 spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); 2907 } 2908 2909 /* advertise support for dedicated HP event source to guests */ 2910 if (spapr->use_hotplug_event_source) { 2911 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2912 } 2913 2914 /* advertise support for HPT resizing */ 2915 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2916 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2917 } 2918 2919 /* advertise support for ibm,dyamic-memory-v2 */ 2920 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2921 2922 /* advertise XIVE on POWER9 machines */ 2923 if (spapr->irq->xive) { 2924 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2925 } 2926 2927 /* init CPUs */ 2928 spapr_init_cpus(spapr); 2929 2930 /* Init numa_assoc_array */ 2931 spapr_numa_associativity_init(spapr, machine); 2932 2933 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2934 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2935 spapr->max_compat_pvr)) { 2936 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); 2937 /* KVM and TCG always allow GTSE with radix... */ 2938 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2939 } 2940 /* ... but not with hash (currently). */ 2941 2942 if (kvm_enabled()) { 2943 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2944 kvmppc_enable_logical_ci_hcalls(); 2945 kvmppc_enable_set_mode_hcall(); 2946 2947 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2948 kvmppc_enable_clear_ref_mod_hcalls(); 2949 2950 /* Enable H_PAGE_INIT */ 2951 kvmppc_enable_h_page_init(); 2952 } 2953 2954 /* map RAM */ 2955 memory_region_add_subregion(sysmem, 0, machine->ram); 2956 2957 /* initialize hotplug memory address space */ 2958 if (machine->ram_size < machine->maxram_size) { 2959 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2960 hwaddr device_mem_base; 2961 2962 /* 2963 * Limit the number of hotpluggable memory slots to half the number 2964 * slots that KVM supports, leaving the other half for PCI and other 2965 * devices. However ensure that number of slots doesn't drop below 32. 2966 */ 2967 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2968 SPAPR_MAX_RAM_SLOTS; 2969 2970 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2971 max_memslots = SPAPR_MAX_RAM_SLOTS; 2972 } 2973 if (machine->ram_slots > max_memslots) { 2974 error_report("Specified number of memory slots %" 2975 PRIu64" exceeds max supported %d", 2976 machine->ram_slots, max_memslots); 2977 exit(1); 2978 } 2979 2980 device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); 2981 machine_memory_devices_init(machine, device_mem_base, device_mem_size); 2982 } 2983 2984 if (smc->dr_lmb_enabled) { 2985 spapr_create_lmb_dr_connectors(spapr); 2986 } 2987 2988 if (mc->nvdimm_supported) { 2989 spapr_create_nvdimm_dr_connectors(spapr); 2990 } 2991 2992 /* Set up RTAS event infrastructure */ 2993 spapr_events_init(spapr); 2994 2995 /* Set up the RTC RTAS interfaces */ 2996 spapr_rtc_create(spapr); 2997 2998 /* Set up VIO bus */ 2999 spapr->vio_bus = spapr_vio_bus_init(); 3000 3001 for (i = 0; serial_hd(i); i++) { 3002 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 3003 } 3004 3005 /* We always have at least the nvram device on VIO */ 3006 spapr_create_nvram(spapr); 3007 3008 /* 3009 * Setup hotplug / dynamic-reconfiguration connectors. top-level 3010 * connectors (described in root DT node's "ibm,drc-types" property) 3011 * are pre-initialized here. additional child connectors (such as 3012 * connectors for a PHBs PCI slots) are added as needed during their 3013 * parent's realization. 3014 */ 3015 if (smc->dr_phb_enabled) { 3016 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 3017 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 3018 } 3019 } 3020 3021 /* Set up PCI */ 3022 spapr_pci_rtas_init(); 3023 3024 phb = spapr_create_default_phb(); 3025 3026 while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) { 3027 spapr_vlan_create(spapr->vio_bus, nd); 3028 } 3029 3030 pci_init_nic_devices(phb->bus, NULL); 3031 3032 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 3033 spapr_vscsi_create(spapr->vio_bus); 3034 } 3035 3036 /* Graphics */ 3037 has_vga = spapr_vga_init(phb->bus, &error_fatal); 3038 if (has_vga) { 3039 spapr->want_stdout_path = !machine->enable_graphics; 3040 machine->usb |= defaults_enabled() && !machine->usb_disabled; 3041 } else { 3042 spapr->want_stdout_path = true; 3043 } 3044 3045 if (machine->usb) { 3046 if (smc->use_ohci_by_default) { 3047 pci_create_simple(phb->bus, -1, "pci-ohci"); 3048 } else { 3049 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 3050 } 3051 3052 if (has_vga) { 3053 USBBus *usb_bus; 3054 3055 usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS, 3056 &error_abort)); 3057 usb_create_simple(usb_bus, "usb-kbd"); 3058 usb_create_simple(usb_bus, "usb-mouse"); 3059 } 3060 } 3061 3062 if (kernel_filename) { 3063 uint64_t loaded_addr = 0; 3064 3065 spapr->kernel_size = load_elf(kernel_filename, NULL, 3066 translate_kernel_address, spapr, 3067 NULL, &loaded_addr, NULL, NULL, 1, 3068 PPC_ELF_MACHINE, 0, 0); 3069 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 3070 spapr->kernel_size = load_elf(kernel_filename, NULL, 3071 translate_kernel_address, spapr, 3072 NULL, &loaded_addr, NULL, NULL, 0, 3073 PPC_ELF_MACHINE, 0, 0); 3074 spapr->kernel_le = spapr->kernel_size > 0; 3075 } 3076 if (spapr->kernel_size < 0) { 3077 error_report("error loading %s: %s", kernel_filename, 3078 load_elf_strerror(spapr->kernel_size)); 3079 exit(1); 3080 } 3081 3082 if (spapr->kernel_addr != loaded_addr) { 3083 warn_report("spapr: kernel_addr changed from 0x%"PRIx64 3084 " to 0x%"PRIx64, 3085 spapr->kernel_addr, loaded_addr); 3086 spapr->kernel_addr = loaded_addr; 3087 } 3088 3089 /* load initrd */ 3090 if (initrd_filename) { 3091 /* Try to locate the initrd in the gap between the kernel 3092 * and the firmware. Add a bit of space just in case 3093 */ 3094 spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size 3095 + 0x1ffff) & ~0xffff; 3096 spapr->initrd_size = load_image_targphys(initrd_filename, 3097 spapr->initrd_base, 3098 load_limit 3099 - spapr->initrd_base); 3100 if (spapr->initrd_size < 0) { 3101 error_report("could not load initial ram disk '%s'", 3102 initrd_filename); 3103 exit(1); 3104 } 3105 } 3106 } 3107 3108 /* FIXME: Should register things through the MachineState's qdev 3109 * interface, this is a legacy from the sPAPREnvironment structure 3110 * which predated MachineState but had a similar function */ 3111 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3112 register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, 3113 &savevm_htab_handlers, spapr); 3114 3115 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); 3116 3117 qemu_register_boot_set(spapr_boot_set, spapr); 3118 3119 /* 3120 * Nothing needs to be done to resume a suspended guest because 3121 * suspending does not change the machine state, so no need for 3122 * a ->wakeup method. 3123 */ 3124 qemu_register_wakeup_support(); 3125 3126 if (kvm_enabled()) { 3127 /* to stop and start vmclock */ 3128 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3129 &spapr->tb); 3130 3131 kvmppc_spapr_enable_inkernel_multitce(); 3132 } 3133 3134 qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); 3135 if (spapr->vof) { 3136 spapr->vof->fw_size = fw_size; /* for claim() on itself */ 3137 spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); 3138 } 3139 3140 spapr_watchdog_init(spapr); 3141 } 3142 3143 #define DEFAULT_KVM_TYPE "auto" 3144 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3145 { 3146 /* 3147 * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to 3148 * accommodate the 'HV' and 'PV' formats that exists in the 3149 * wild. The 'auto' mode is being introduced already as 3150 * lower-case, thus we don't need to bother checking for 3151 * "AUTO". 3152 */ 3153 if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { 3154 return 0; 3155 } 3156 3157 if (!g_ascii_strcasecmp(vm_type, "hv")) { 3158 return 1; 3159 } 3160 3161 if (!g_ascii_strcasecmp(vm_type, "pr")) { 3162 return 2; 3163 } 3164 3165 error_report("Unknown kvm-type specified '%s'", vm_type); 3166 return -1; 3167 } 3168 3169 /* 3170 * Implementation of an interface to adjust firmware path 3171 * for the bootindex property handling. 3172 */ 3173 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3174 DeviceState *dev) 3175 { 3176 #define CAST(type, obj, name) \ 3177 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3178 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3179 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3180 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3181 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3182 3183 if (d && bus) { 3184 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3185 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3186 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3187 3188 if (spapr) { 3189 /* 3190 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3191 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3192 * 0x8000 | (target << 8) | (bus << 5) | lun 3193 * (see the "Logical unit addressing format" table in SAM5) 3194 */ 3195 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3196 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3197 (uint64_t)id << 48); 3198 } else if (virtio) { 3199 /* 3200 * We use SRP luns of the form 01000000 | (target << 8) | lun 3201 * in the top 32 bits of the 64-bit LUN 3202 * Note: the quote above is from SLOF and it is wrong, 3203 * the actual binding is: 3204 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3205 */ 3206 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3207 if (d->lun >= 256) { 3208 /* Use the LUN "flat space addressing method" */ 3209 id |= 0x4000; 3210 } 3211 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3212 (uint64_t)id << 32); 3213 } else if (usb) { 3214 /* 3215 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3216 * in the top 32 bits of the 64-bit LUN 3217 */ 3218 unsigned usb_port = atoi(usb->port->path); 3219 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3220 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3221 (uint64_t)id << 32); 3222 } 3223 } 3224 3225 /* 3226 * SLOF probes the USB devices, and if it recognizes that the device is a 3227 * storage device, it changes its name to "storage" instead of "usb-host", 3228 * and additionally adds a child node for the SCSI LUN, so the correct 3229 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3230 */ 3231 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3232 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3233 if (usb_device_is_scsi_storage(usbdev)) { 3234 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3235 } 3236 } 3237 3238 if (phb) { 3239 /* Replace "pci" with "pci@800000020000000" */ 3240 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3241 } 3242 3243 if (vsc) { 3244 /* Same logic as virtio above */ 3245 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3246 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3247 } 3248 3249 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3250 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3251 PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3252 return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn)); 3253 } 3254 3255 if (pcidev) { 3256 return spapr_pci_fw_dev_name(pcidev); 3257 } 3258 3259 return NULL; 3260 } 3261 3262 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3263 { 3264 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3265 3266 return g_strdup(spapr->kvm_type); 3267 } 3268 3269 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3270 { 3271 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3272 3273 g_free(spapr->kvm_type); 3274 spapr->kvm_type = g_strdup(value); 3275 } 3276 3277 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3278 { 3279 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3280 3281 return spapr->use_hotplug_event_source; 3282 } 3283 3284 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3285 Error **errp) 3286 { 3287 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3288 3289 spapr->use_hotplug_event_source = value; 3290 } 3291 3292 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3293 { 3294 return true; 3295 } 3296 3297 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3298 { 3299 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3300 3301 switch (spapr->resize_hpt) { 3302 case SPAPR_RESIZE_HPT_DEFAULT: 3303 return g_strdup("default"); 3304 case SPAPR_RESIZE_HPT_DISABLED: 3305 return g_strdup("disabled"); 3306 case SPAPR_RESIZE_HPT_ENABLED: 3307 return g_strdup("enabled"); 3308 case SPAPR_RESIZE_HPT_REQUIRED: 3309 return g_strdup("required"); 3310 } 3311 g_assert_not_reached(); 3312 } 3313 3314 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3315 { 3316 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3317 3318 if (strcmp(value, "default") == 0) { 3319 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3320 } else if (strcmp(value, "disabled") == 0) { 3321 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3322 } else if (strcmp(value, "enabled") == 0) { 3323 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3324 } else if (strcmp(value, "required") == 0) { 3325 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3326 } else { 3327 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3328 } 3329 } 3330 3331 static bool spapr_get_vof(Object *obj, Error **errp) 3332 { 3333 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3334 3335 return spapr->vof != NULL; 3336 } 3337 3338 static void spapr_set_vof(Object *obj, bool value, Error **errp) 3339 { 3340 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3341 3342 if (spapr->vof) { 3343 vof_cleanup(spapr->vof); 3344 g_free(spapr->vof); 3345 spapr->vof = NULL; 3346 } 3347 if (!value) { 3348 return; 3349 } 3350 spapr->vof = g_malloc0(sizeof(*spapr->vof)); 3351 } 3352 3353 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3354 { 3355 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3356 3357 if (spapr->irq == &spapr_irq_xics_legacy) { 3358 return g_strdup("legacy"); 3359 } else if (spapr->irq == &spapr_irq_xics) { 3360 return g_strdup("xics"); 3361 } else if (spapr->irq == &spapr_irq_xive) { 3362 return g_strdup("xive"); 3363 } else if (spapr->irq == &spapr_irq_dual) { 3364 return g_strdup("dual"); 3365 } 3366 g_assert_not_reached(); 3367 } 3368 3369 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3370 { 3371 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3372 3373 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3374 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3375 return; 3376 } 3377 3378 /* The legacy IRQ backend can not be set */ 3379 if (strcmp(value, "xics") == 0) { 3380 spapr->irq = &spapr_irq_xics; 3381 } else if (strcmp(value, "xive") == 0) { 3382 spapr->irq = &spapr_irq_xive; 3383 } else if (strcmp(value, "dual") == 0) { 3384 spapr->irq = &spapr_irq_dual; 3385 } else { 3386 error_setg(errp, "Bad value for \"ic-mode\" property"); 3387 } 3388 } 3389 3390 static char *spapr_get_host_model(Object *obj, Error **errp) 3391 { 3392 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3393 3394 return g_strdup(spapr->host_model); 3395 } 3396 3397 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3398 { 3399 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3400 3401 g_free(spapr->host_model); 3402 spapr->host_model = g_strdup(value); 3403 } 3404 3405 static char *spapr_get_host_serial(Object *obj, Error **errp) 3406 { 3407 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3408 3409 return g_strdup(spapr->host_serial); 3410 } 3411 3412 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3413 { 3414 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3415 3416 g_free(spapr->host_serial); 3417 spapr->host_serial = g_strdup(value); 3418 } 3419 3420 static void spapr_instance_init(Object *obj) 3421 { 3422 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3423 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3424 MachineState *ms = MACHINE(spapr); 3425 MachineClass *mc = MACHINE_GET_CLASS(ms); 3426 3427 /* 3428 * NVDIMM support went live in 5.1 without considering that, in 3429 * other archs, the user needs to enable NVDIMM support with the 3430 * 'nvdimm' machine option and the default behavior is NVDIMM 3431 * support disabled. It is too late to roll back to the standard 3432 * behavior without breaking 5.1 guests. 3433 */ 3434 if (mc->nvdimm_supported) { 3435 ms->nvdimms_state->is_enabled = true; 3436 } 3437 3438 spapr->htab_fd = -1; 3439 spapr->use_hotplug_event_source = true; 3440 spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); 3441 object_property_add_str(obj, "kvm-type", 3442 spapr_get_kvm_type, spapr_set_kvm_type); 3443 object_property_set_description(obj, "kvm-type", 3444 "Specifies the KVM virtualization mode (auto," 3445 " hv, pr). Defaults to 'auto'. This mode will use" 3446 " any available KVM module loaded in the host," 3447 " where kvm_hv takes precedence if both kvm_hv and" 3448 " kvm_pr are loaded."); 3449 object_property_add_bool(obj, "modern-hotplug-events", 3450 spapr_get_modern_hotplug_events, 3451 spapr_set_modern_hotplug_events); 3452 object_property_set_description(obj, "modern-hotplug-events", 3453 "Use dedicated hotplug event mechanism in" 3454 " place of standard EPOW events when possible" 3455 " (required for memory hot-unplug support)"); 3456 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3457 "Maximum permitted CPU compatibility mode"); 3458 3459 object_property_add_str(obj, "resize-hpt", 3460 spapr_get_resize_hpt, spapr_set_resize_hpt); 3461 object_property_set_description(obj, "resize-hpt", 3462 "Resizing of the Hash Page Table (enabled, disabled, required)"); 3463 object_property_add_uint32_ptr(obj, "vsmt", 3464 &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); 3465 object_property_set_description(obj, "vsmt", 3466 "Virtual SMT: KVM behaves as if this were" 3467 " the host's SMT mode"); 3468 3469 object_property_add_bool(obj, "vfio-no-msix-emulation", 3470 spapr_get_msix_emulation, NULL); 3471 3472 object_property_add_uint64_ptr(obj, "kernel-addr", 3473 &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); 3474 object_property_set_description(obj, "kernel-addr", 3475 stringify(KERNEL_LOAD_ADDR) 3476 " for -kernel is the default"); 3477 spapr->kernel_addr = KERNEL_LOAD_ADDR; 3478 3479 object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); 3480 object_property_set_description(obj, "x-vof", 3481 "Enable Virtual Open Firmware (experimental)"); 3482 3483 /* The machine class defines the default interrupt controller mode */ 3484 spapr->irq = smc->irq; 3485 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3486 spapr_set_ic_mode); 3487 object_property_set_description(obj, "ic-mode", 3488 "Specifies the interrupt controller mode (xics, xive, dual)"); 3489 3490 object_property_add_str(obj, "host-model", 3491 spapr_get_host_model, spapr_set_host_model); 3492 object_property_set_description(obj, "host-model", 3493 "Host model to advertise in guest device tree"); 3494 object_property_add_str(obj, "host-serial", 3495 spapr_get_host_serial, spapr_set_host_serial); 3496 object_property_set_description(obj, "host-serial", 3497 "Host serial number to advertise in guest device tree"); 3498 } 3499 3500 static void spapr_machine_finalizefn(Object *obj) 3501 { 3502 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3503 3504 g_free(spapr->kvm_type); 3505 } 3506 3507 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3508 { 3509 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 3510 PowerPCCPU *cpu = POWERPC_CPU(cs); 3511 CPUPPCState *env = &cpu->env; 3512 3513 cpu_synchronize_state(cs); 3514 /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ 3515 if (spapr->fwnmi_system_reset_addr != -1) { 3516 uint64_t rtas_addr, addr; 3517 3518 /* get rtas addr from fdt */ 3519 rtas_addr = spapr_get_rtas_addr(); 3520 if (!rtas_addr) { 3521 qemu_system_guest_panicked(NULL); 3522 return; 3523 } 3524 3525 addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; 3526 stq_be_phys(&address_space_memory, addr, env->gpr[3]); 3527 stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); 3528 env->gpr[3] = addr; 3529 } 3530 ppc_cpu_do_system_reset(cs); 3531 if (spapr->fwnmi_system_reset_addr != -1) { 3532 env->nip = spapr->fwnmi_system_reset_addr; 3533 } 3534 } 3535 3536 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3537 { 3538 CPUState *cs; 3539 3540 CPU_FOREACH(cs) { 3541 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3542 } 3543 } 3544 3545 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3546 void *fdt, int *fdt_start_offset, Error **errp) 3547 { 3548 uint64_t addr; 3549 uint32_t node; 3550 3551 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3552 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3553 &error_abort); 3554 *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, 3555 SPAPR_MEMORY_BLOCK_SIZE); 3556 return 0; 3557 } 3558 3559 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3560 bool dedicated_hp_event_source) 3561 { 3562 SpaprDrc *drc; 3563 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3564 int i; 3565 uint64_t addr = addr_start; 3566 bool hotplugged = spapr_drc_hotplugged(dev); 3567 3568 for (i = 0; i < nr_lmbs; i++) { 3569 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3570 addr / SPAPR_MEMORY_BLOCK_SIZE); 3571 g_assert(drc); 3572 3573 /* 3574 * memory_device_get_free_addr() provided a range of free addresses 3575 * that doesn't overlap with any existing mapping at pre-plug. The 3576 * corresponding LMB DRCs are thus assumed to be all attachable. 3577 */ 3578 spapr_drc_attach(drc, dev); 3579 if (!hotplugged) { 3580 spapr_drc_reset(drc); 3581 } 3582 addr += SPAPR_MEMORY_BLOCK_SIZE; 3583 } 3584 /* send hotplug notification to the 3585 * guest only in case of hotplugged memory 3586 */ 3587 if (hotplugged) { 3588 if (dedicated_hp_event_source) { 3589 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3590 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3591 g_assert(drc); 3592 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3593 nr_lmbs, 3594 spapr_drc_index(drc)); 3595 } else { 3596 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3597 nr_lmbs); 3598 } 3599 } 3600 } 3601 3602 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 3603 { 3604 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3605 PCDIMMDevice *dimm = PC_DIMM(dev); 3606 uint64_t size, addr; 3607 int64_t slot; 3608 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3609 3610 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3611 3612 pc_dimm_plug(dimm, MACHINE(ms)); 3613 3614 if (!is_nvdimm) { 3615 addr = object_property_get_uint(OBJECT(dimm), 3616 PC_DIMM_ADDR_PROP, &error_abort); 3617 spapr_add_lmbs(dev, addr, size, 3618 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); 3619 } else { 3620 slot = object_property_get_int(OBJECT(dimm), 3621 PC_DIMM_SLOT_PROP, &error_abort); 3622 /* We should have valid slot number at this point */ 3623 g_assert(slot >= 0); 3624 spapr_add_nvdimm(dev, slot); 3625 } 3626 } 3627 3628 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3629 Error **errp) 3630 { 3631 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3632 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3633 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); 3634 PCDIMMDevice *dimm = PC_DIMM(dev); 3635 Error *local_err = NULL; 3636 uint64_t size; 3637 Object *memdev; 3638 hwaddr pagesize; 3639 3640 if (!smc->dr_lmb_enabled) { 3641 error_setg(errp, "Memory hotplug not supported for this machine"); 3642 return; 3643 } 3644 3645 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3646 if (local_err) { 3647 error_propagate(errp, local_err); 3648 return; 3649 } 3650 3651 if (is_nvdimm) { 3652 if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { 3653 return; 3654 } 3655 } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3656 error_setg(errp, "Hotplugged memory size must be a multiple of " 3657 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3658 return; 3659 } 3660 3661 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3662 &error_abort); 3663 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3664 if (!spapr_check_pagesize(spapr, pagesize, errp)) { 3665 return; 3666 } 3667 3668 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3669 } 3670 3671 struct SpaprDimmState { 3672 PCDIMMDevice *dimm; 3673 uint32_t nr_lmbs; 3674 QTAILQ_ENTRY(SpaprDimmState) next; 3675 }; 3676 3677 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3678 PCDIMMDevice *dimm) 3679 { 3680 SpaprDimmState *dimm_state = NULL; 3681 3682 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3683 if (dimm_state->dimm == dimm) { 3684 break; 3685 } 3686 } 3687 return dimm_state; 3688 } 3689 3690 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3691 uint32_t nr_lmbs, 3692 PCDIMMDevice *dimm) 3693 { 3694 SpaprDimmState *ds = NULL; 3695 3696 /* 3697 * If this request is for a DIMM whose removal had failed earlier 3698 * (due to guest's refusal to remove the LMBs), we would have this 3699 * dimm already in the pending_dimm_unplugs list. In that 3700 * case don't add again. 3701 */ 3702 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3703 if (!ds) { 3704 ds = g_new0(SpaprDimmState, 1); 3705 ds->nr_lmbs = nr_lmbs; 3706 ds->dimm = dimm; 3707 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3708 } 3709 return ds; 3710 } 3711 3712 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3713 SpaprDimmState *dimm_state) 3714 { 3715 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3716 g_free(dimm_state); 3717 } 3718 3719 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3720 PCDIMMDevice *dimm) 3721 { 3722 SpaprDrc *drc; 3723 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3724 &error_abort); 3725 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3726 uint32_t avail_lmbs = 0; 3727 uint64_t addr_start, addr; 3728 int i; 3729 3730 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3731 &error_abort); 3732 3733 addr = addr_start; 3734 for (i = 0; i < nr_lmbs; i++) { 3735 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3736 addr / SPAPR_MEMORY_BLOCK_SIZE); 3737 g_assert(drc); 3738 if (drc->dev) { 3739 avail_lmbs++; 3740 } 3741 addr += SPAPR_MEMORY_BLOCK_SIZE; 3742 } 3743 3744 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3745 } 3746 3747 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) 3748 { 3749 SpaprDimmState *ds; 3750 PCDIMMDevice *dimm; 3751 SpaprDrc *drc; 3752 uint32_t nr_lmbs; 3753 uint64_t size, addr_start, addr; 3754 g_autofree char *qapi_error = NULL; 3755 int i; 3756 3757 if (!dev) { 3758 return; 3759 } 3760 3761 dimm = PC_DIMM(dev); 3762 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3763 3764 /* 3765 * 'ds == NULL' would mean that the DIMM doesn't have a pending 3766 * unplug state, but one of its DRC is marked as unplug_requested. 3767 * This is bad and weird enough to g_assert() out. 3768 */ 3769 g_assert(ds); 3770 3771 spapr_pending_dimm_unplugs_remove(spapr, ds); 3772 3773 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3774 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3775 3776 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3777 &error_abort); 3778 3779 addr = addr_start; 3780 for (i = 0; i < nr_lmbs; i++) { 3781 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3782 addr / SPAPR_MEMORY_BLOCK_SIZE); 3783 g_assert(drc); 3784 3785 drc->unplug_requested = false; 3786 addr += SPAPR_MEMORY_BLOCK_SIZE; 3787 } 3788 3789 /* 3790 * Tell QAPI that something happened and the memory 3791 * hotunplug wasn't successful. Keep sending 3792 * MEM_UNPLUG_ERROR even while sending 3793 * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of 3794 * MEM_UNPLUG_ERROR is due. 3795 */ 3796 qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest " 3797 "for device %s", dev->id); 3798 3799 qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error); 3800 3801 qapi_event_send_device_unplug_guest_error(dev->id, 3802 dev->canonical_path); 3803 } 3804 3805 /* Callback to be called during DRC release. */ 3806 void spapr_lmb_release(DeviceState *dev) 3807 { 3808 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3809 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3810 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3811 3812 /* This information will get lost if a migration occurs 3813 * during the unplug process. In this case recover it. */ 3814 if (ds == NULL) { 3815 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3816 g_assert(ds); 3817 /* The DRC being examined by the caller at least must be counted */ 3818 g_assert(ds->nr_lmbs); 3819 } 3820 3821 if (--ds->nr_lmbs) { 3822 return; 3823 } 3824 3825 /* 3826 * Now that all the LMBs have been removed by the guest, call the 3827 * unplug handler chain. This can never fail. 3828 */ 3829 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3830 object_unparent(OBJECT(dev)); 3831 } 3832 3833 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3834 { 3835 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3836 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3837 3838 /* We really shouldn't get this far without anything to unplug */ 3839 g_assert(ds); 3840 3841 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3842 qdev_unrealize(dev); 3843 spapr_pending_dimm_unplugs_remove(spapr, ds); 3844 } 3845 3846 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3847 DeviceState *dev, Error **errp) 3848 { 3849 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3850 PCDIMMDevice *dimm = PC_DIMM(dev); 3851 uint32_t nr_lmbs; 3852 uint64_t size, addr_start, addr; 3853 int i; 3854 SpaprDrc *drc; 3855 3856 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 3857 error_setg(errp, "nvdimm device hot unplug is not supported yet."); 3858 return; 3859 } 3860 3861 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3862 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3863 3864 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3865 &error_abort); 3866 3867 /* 3868 * An existing pending dimm state for this DIMM means that there is an 3869 * unplug operation in progress, waiting for the spapr_lmb_release 3870 * callback to complete the job (BQL can't cover that far). In this case, 3871 * bail out to avoid detaching DRCs that were already released. 3872 */ 3873 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3874 error_setg(errp, "Memory unplug already in progress for device %s", 3875 dev->id); 3876 return; 3877 } 3878 3879 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3880 3881 addr = addr_start; 3882 for (i = 0; i < nr_lmbs; i++) { 3883 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3884 addr / SPAPR_MEMORY_BLOCK_SIZE); 3885 g_assert(drc); 3886 3887 spapr_drc_unplug_request(drc); 3888 addr += SPAPR_MEMORY_BLOCK_SIZE; 3889 } 3890 3891 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3892 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3893 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3894 nr_lmbs, spapr_drc_index(drc)); 3895 } 3896 3897 /* Callback to be called during DRC release. */ 3898 void spapr_core_release(DeviceState *dev) 3899 { 3900 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3901 3902 /* Call the unplug handler chain. This can never fail. */ 3903 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3904 object_unparent(OBJECT(dev)); 3905 } 3906 3907 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3908 { 3909 MachineState *ms = MACHINE(hotplug_dev); 3910 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3911 CPUCore *cc = CPU_CORE(dev); 3912 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3913 3914 if (smc->pre_2_10_has_unused_icps) { 3915 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3916 int i; 3917 3918 for (i = 0; i < cc->nr_threads; i++) { 3919 CPUState *cs = CPU(sc->threads[i]); 3920 3921 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3922 } 3923 } 3924 3925 assert(core_slot); 3926 core_slot->cpu = NULL; 3927 qdev_unrealize(dev); 3928 } 3929 3930 static 3931 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3932 Error **errp) 3933 { 3934 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3935 int index; 3936 SpaprDrc *drc; 3937 CPUCore *cc = CPU_CORE(dev); 3938 3939 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3940 error_setg(errp, "Unable to find CPU core with core-id: %d", 3941 cc->core_id); 3942 return; 3943 } 3944 if (index == 0) { 3945 error_setg(errp, "Boot CPU core may not be unplugged"); 3946 return; 3947 } 3948 3949 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3950 spapr_vcpu_id(spapr, cc->core_id)); 3951 g_assert(drc); 3952 3953 if (!spapr_drc_unplug_requested(drc)) { 3954 spapr_drc_unplug_request(drc); 3955 } 3956 3957 /* 3958 * spapr_hotplug_req_remove_by_index is left unguarded, out of the 3959 * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ 3960 * pulses removing the same CPU. Otherwise, in an failed hotunplug 3961 * attempt (e.g. the kernel will refuse to remove the last online 3962 * CPU), we will never attempt it again because unplug_requested 3963 * will still be 'true' in that case. 3964 */ 3965 spapr_hotplug_req_remove_by_index(drc); 3966 } 3967 3968 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3969 void *fdt, int *fdt_start_offset, Error **errp) 3970 { 3971 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3972 CPUState *cs = CPU(core->threads[0]); 3973 PowerPCCPU *cpu = POWERPC_CPU(cs); 3974 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3975 int id = spapr_get_vcpu_id(cpu); 3976 g_autofree char *nodename = NULL; 3977 int offset; 3978 3979 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3980 offset = fdt_add_subnode(fdt, 0, nodename); 3981 3982 spapr_dt_cpu(cs, fdt, offset, spapr); 3983 3984 /* 3985 * spapr_dt_cpu() does not fill the 'name' property in the 3986 * CPU node. The function is called during boot process, before 3987 * and after CAS, and overwriting the 'name' property written 3988 * by SLOF is not allowed. 3989 * 3990 * Write it manually after spapr_dt_cpu(). This makes the hotplug 3991 * CPUs more compatible with the coldplugged ones, which have 3992 * the 'name' property. Linux Kernel also relies on this 3993 * property to identify CPU nodes. 3994 */ 3995 _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); 3996 3997 *fdt_start_offset = offset; 3998 return 0; 3999 } 4000 4001 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4002 { 4003 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4004 MachineClass *mc = MACHINE_GET_CLASS(spapr); 4005 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4006 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 4007 CPUCore *cc = CPU_CORE(dev); 4008 CPUState *cs; 4009 SpaprDrc *drc; 4010 CPUArchId *core_slot; 4011 int index; 4012 bool hotplugged = spapr_drc_hotplugged(dev); 4013 int i; 4014 4015 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4016 g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ 4017 4018 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 4019 spapr_vcpu_id(spapr, cc->core_id)); 4020 4021 g_assert(drc || !mc->has_hotpluggable_cpus); 4022 4023 if (drc) { 4024 /* 4025 * spapr_core_pre_plug() already buys us this is a brand new 4026 * core being plugged into a free slot. Nothing should already 4027 * be attached to the corresponding DRC. 4028 */ 4029 spapr_drc_attach(drc, dev); 4030 4031 if (hotplugged) { 4032 /* 4033 * Send hotplug notification interrupt to the guest only 4034 * in case of hotplugged CPUs. 4035 */ 4036 spapr_hotplug_req_add_by_index(drc); 4037 } else { 4038 spapr_drc_reset(drc); 4039 } 4040 } 4041 4042 core_slot->cpu = OBJECT(dev); 4043 4044 /* 4045 * Set compatibility mode to match the boot CPU, which was either set 4046 * by the machine reset code or by CAS. This really shouldn't fail at 4047 * this point. 4048 */ 4049 if (hotplugged) { 4050 for (i = 0; i < cc->nr_threads; i++) { 4051 ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, 4052 &error_abort); 4053 } 4054 } 4055 4056 if (smc->pre_2_10_has_unused_icps) { 4057 for (i = 0; i < cc->nr_threads; i++) { 4058 cs = CPU(core->threads[i]); 4059 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 4060 } 4061 } 4062 } 4063 4064 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4065 Error **errp) 4066 { 4067 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 4068 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 4069 CPUCore *cc = CPU_CORE(dev); 4070 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 4071 const char *type = object_get_typename(OBJECT(dev)); 4072 CPUArchId *core_slot; 4073 int index; 4074 unsigned int smp_threads = machine->smp.threads; 4075 4076 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 4077 error_setg(errp, "CPU hotplug not supported for this machine"); 4078 return; 4079 } 4080 4081 if (strcmp(base_core_type, type)) { 4082 error_setg(errp, "CPU core type should be %s", base_core_type); 4083 return; 4084 } 4085 4086 if (cc->core_id % smp_threads) { 4087 error_setg(errp, "invalid core id %d", cc->core_id); 4088 return; 4089 } 4090 4091 /* 4092 * In general we should have homogeneous threads-per-core, but old 4093 * (pre hotplug support) machine types allow the last core to have 4094 * reduced threads as a compatibility hack for when we allowed 4095 * total vcpus not a multiple of threads-per-core. 4096 */ 4097 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 4098 error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, 4099 smp_threads); 4100 return; 4101 } 4102 4103 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 4104 if (!core_slot) { 4105 error_setg(errp, "core id %d out of range", cc->core_id); 4106 return; 4107 } 4108 4109 if (core_slot->cpu) { 4110 error_setg(errp, "core %d already populated", cc->core_id); 4111 return; 4112 } 4113 4114 numa_cpu_pre_plug(core_slot, dev, errp); 4115 } 4116 4117 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 4118 void *fdt, int *fdt_start_offset, Error **errp) 4119 { 4120 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 4121 int intc_phandle; 4122 4123 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 4124 if (intc_phandle <= 0) { 4125 return -1; 4126 } 4127 4128 if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { 4129 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 4130 return -1; 4131 } 4132 4133 /* generally SLOF creates these, for hotplug it's up to QEMU */ 4134 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 4135 4136 return 0; 4137 } 4138 4139 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4140 Error **errp) 4141 { 4142 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4143 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4144 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4145 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 4146 SpaprDrc *drc; 4147 4148 if (dev->hotplugged && !smc->dr_phb_enabled) { 4149 error_setg(errp, "PHB hotplug not supported for this machine"); 4150 return false; 4151 } 4152 4153 if (sphb->index == (uint32_t)-1) { 4154 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 4155 return false; 4156 } 4157 4158 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4159 if (drc && drc->dev) { 4160 error_setg(errp, "PHB %d already attached", sphb->index); 4161 return false; 4162 } 4163 4164 /* 4165 * This will check that sphb->index doesn't exceed the maximum number of 4166 * PHBs for the current machine type. 4167 */ 4168 return 4169 smc->phb_placement(spapr, sphb->index, 4170 &sphb->buid, &sphb->io_win_addr, 4171 &sphb->mem_win_addr, &sphb->mem64_win_addr, 4172 windows_supported, sphb->dma_liobn, 4173 errp); 4174 } 4175 4176 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4177 { 4178 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4179 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 4180 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4181 SpaprDrc *drc; 4182 bool hotplugged = spapr_drc_hotplugged(dev); 4183 4184 if (!smc->dr_phb_enabled) { 4185 return; 4186 } 4187 4188 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4189 /* hotplug hooks should check it's enabled before getting this far */ 4190 assert(drc); 4191 4192 /* spapr_phb_pre_plug() already checked the DRC is attachable */ 4193 spapr_drc_attach(drc, dev); 4194 4195 if (hotplugged) { 4196 spapr_hotplug_req_add_by_index(drc); 4197 } else { 4198 spapr_drc_reset(drc); 4199 } 4200 } 4201 4202 void spapr_phb_release(DeviceState *dev) 4203 { 4204 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 4205 4206 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 4207 object_unparent(OBJECT(dev)); 4208 } 4209 4210 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4211 { 4212 qdev_unrealize(dev); 4213 } 4214 4215 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 4216 DeviceState *dev, Error **errp) 4217 { 4218 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 4219 SpaprDrc *drc; 4220 4221 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 4222 assert(drc); 4223 4224 if (!spapr_drc_unplug_requested(drc)) { 4225 spapr_drc_unplug_request(drc); 4226 spapr_hotplug_req_remove_by_index(drc); 4227 } else { 4228 error_setg(errp, 4229 "PCI Host Bridge unplug already in progress for device %s", 4230 dev->id); 4231 } 4232 } 4233 4234 static 4235 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 4236 Error **errp) 4237 { 4238 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4239 4240 if (spapr->tpm_proxy != NULL) { 4241 error_setg(errp, "Only one TPM proxy can be specified for this machine"); 4242 return false; 4243 } 4244 4245 return true; 4246 } 4247 4248 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) 4249 { 4250 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4251 SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); 4252 4253 /* Already checked in spapr_tpm_proxy_pre_plug() */ 4254 g_assert(spapr->tpm_proxy == NULL); 4255 4256 spapr->tpm_proxy = tpm_proxy; 4257 } 4258 4259 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 4260 { 4261 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4262 4263 qdev_unrealize(dev); 4264 object_unparent(OBJECT(dev)); 4265 spapr->tpm_proxy = NULL; 4266 } 4267 4268 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 4269 DeviceState *dev, Error **errp) 4270 { 4271 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4272 spapr_memory_plug(hotplug_dev, dev); 4273 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4274 spapr_core_plug(hotplug_dev, dev); 4275 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4276 spapr_phb_plug(hotplug_dev, dev); 4277 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4278 spapr_tpm_proxy_plug(hotplug_dev, dev); 4279 } 4280 } 4281 4282 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 4283 DeviceState *dev, Error **errp) 4284 { 4285 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4286 spapr_memory_unplug(hotplug_dev, dev); 4287 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4288 spapr_core_unplug(hotplug_dev, dev); 4289 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4290 spapr_phb_unplug(hotplug_dev, dev); 4291 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4292 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4293 } 4294 } 4295 4296 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) 4297 { 4298 return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || 4299 /* 4300 * CAS will process all pending unplug requests. 4301 * 4302 * HACK: a guest could theoretically have cleared all bits in OV5, 4303 * but none of the guests we care for do. 4304 */ 4305 spapr_ovec_empty(spapr->ov5_cas); 4306 } 4307 4308 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4309 DeviceState *dev, Error **errp) 4310 { 4311 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4312 MachineClass *mc = MACHINE_GET_CLASS(sms); 4313 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4314 4315 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4316 if (spapr_memory_hot_unplug_supported(sms)) { 4317 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4318 } else { 4319 error_setg(errp, "Memory hot unplug not supported for this guest"); 4320 } 4321 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4322 if (!mc->has_hotpluggable_cpus) { 4323 error_setg(errp, "CPU hot unplug not supported on this machine"); 4324 return; 4325 } 4326 spapr_core_unplug_request(hotplug_dev, dev, errp); 4327 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4328 if (!smc->dr_phb_enabled) { 4329 error_setg(errp, "PHB hot unplug not supported on this machine"); 4330 return; 4331 } 4332 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4333 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4334 spapr_tpm_proxy_unplug(hotplug_dev, dev); 4335 } 4336 } 4337 4338 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4339 DeviceState *dev, Error **errp) 4340 { 4341 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4342 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4343 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4344 spapr_core_pre_plug(hotplug_dev, dev, errp); 4345 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4346 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4347 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4348 spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); 4349 } 4350 } 4351 4352 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4353 DeviceState *dev) 4354 { 4355 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4356 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4357 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || 4358 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { 4359 return HOTPLUG_HANDLER(machine); 4360 } 4361 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 4362 PCIDevice *pcidev = PCI_DEVICE(dev); 4363 PCIBus *root = pci_device_root_bus(pcidev); 4364 SpaprPhbState *phb = 4365 (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), 4366 TYPE_SPAPR_PCI_HOST_BRIDGE); 4367 4368 if (phb) { 4369 return HOTPLUG_HANDLER(phb); 4370 } 4371 } 4372 return NULL; 4373 } 4374 4375 static CpuInstanceProperties 4376 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4377 { 4378 CPUArchId *core_slot; 4379 MachineClass *mc = MACHINE_GET_CLASS(machine); 4380 4381 /* make sure possible_cpu are initialized */ 4382 mc->possible_cpu_arch_ids(machine); 4383 /* get CPU core slot containing thread that matches cpu_index */ 4384 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4385 assert(core_slot); 4386 return core_slot->props; 4387 } 4388 4389 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4390 { 4391 return idx / ms->smp.cores % ms->numa_state->num_nodes; 4392 } 4393 4394 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4395 { 4396 int i; 4397 unsigned int smp_threads = machine->smp.threads; 4398 unsigned int smp_cpus = machine->smp.cpus; 4399 const char *core_type; 4400 int spapr_max_cores = machine->smp.max_cpus / smp_threads; 4401 MachineClass *mc = MACHINE_GET_CLASS(machine); 4402 4403 if (!mc->has_hotpluggable_cpus) { 4404 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4405 } 4406 if (machine->possible_cpus) { 4407 assert(machine->possible_cpus->len == spapr_max_cores); 4408 return machine->possible_cpus; 4409 } 4410 4411 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4412 if (!core_type) { 4413 error_report("Unable to find sPAPR CPU Core definition"); 4414 exit(1); 4415 } 4416 4417 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4418 sizeof(CPUArchId) * spapr_max_cores); 4419 machine->possible_cpus->len = spapr_max_cores; 4420 for (i = 0; i < machine->possible_cpus->len; i++) { 4421 int core_id = i * smp_threads; 4422 4423 machine->possible_cpus->cpus[i].type = core_type; 4424 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4425 machine->possible_cpus->cpus[i].arch_id = core_id; 4426 machine->possible_cpus->cpus[i].props.has_core_id = true; 4427 machine->possible_cpus->cpus[i].props.core_id = core_id; 4428 } 4429 return machine->possible_cpus; 4430 } 4431 4432 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4433 uint64_t *buid, hwaddr *pio, 4434 hwaddr *mmio32, hwaddr *mmio64, 4435 unsigned n_dma, uint32_t *liobns, Error **errp) 4436 { 4437 /* 4438 * New-style PHB window placement. 4439 * 4440 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4441 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4442 * windows. 4443 * 4444 * Some guest kernels can't work with MMIO windows above 1<<46 4445 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4446 * 4447 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4448 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4449 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4450 * 1TiB 64-bit MMIO windows for each PHB. 4451 */ 4452 const uint64_t base_buid = 0x800000020000000ULL; 4453 int i; 4454 4455 /* Sanity check natural alignments */ 4456 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4457 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4458 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4459 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4460 /* Sanity check bounds */ 4461 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4462 SPAPR_PCI_MEM32_WIN_SIZE); 4463 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4464 SPAPR_PCI_MEM64_WIN_SIZE); 4465 4466 if (index >= SPAPR_MAX_PHBS) { 4467 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4468 SPAPR_MAX_PHBS - 1); 4469 return false; 4470 } 4471 4472 *buid = base_buid + index; 4473 for (i = 0; i < n_dma; ++i) { 4474 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4475 } 4476 4477 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4478 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4479 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4480 return true; 4481 } 4482 4483 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4484 { 4485 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4486 4487 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4488 } 4489 4490 static void spapr_ics_resend(XICSFabric *dev) 4491 { 4492 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4493 4494 ics_resend(spapr->ics); 4495 } 4496 4497 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4498 { 4499 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4500 4501 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4502 } 4503 4504 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4505 Monitor *mon) 4506 { 4507 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4508 4509 spapr_irq_print_info(spapr, mon); 4510 monitor_printf(mon, "irqchip: %s\n", 4511 kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); 4512 } 4513 4514 /* 4515 * This is a XIVE only operation 4516 */ 4517 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, 4518 uint8_t nvt_blk, uint32_t nvt_idx, 4519 bool cam_ignore, uint8_t priority, 4520 uint32_t logic_serv, XiveTCTXMatch *match) 4521 { 4522 SpaprMachineState *spapr = SPAPR_MACHINE(xfb); 4523 XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); 4524 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 4525 int count; 4526 4527 count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, 4528 priority, logic_serv, match); 4529 if (count < 0) { 4530 return count; 4531 } 4532 4533 /* 4534 * When we implement the save and restore of the thread interrupt 4535 * contexts in the enter/exit CPU handlers of the machine and the 4536 * escalations in QEMU, we should be able to handle non dispatched 4537 * vCPUs. 4538 * 4539 * Until this is done, the sPAPR machine should find at least one 4540 * matching context always. 4541 */ 4542 if (count == 0) { 4543 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", 4544 nvt_blk, nvt_idx); 4545 } 4546 4547 return count; 4548 } 4549 4550 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4551 { 4552 return cpu->vcpu_id; 4553 } 4554 4555 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4556 { 4557 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4558 MachineState *ms = MACHINE(spapr); 4559 int vcpu_id; 4560 4561 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4562 4563 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4564 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4565 error_append_hint(errp, "Adjust the number of cpus to %d " 4566 "or try to raise the number of threads per core\n", 4567 vcpu_id * ms->smp.threads / spapr->vsmt); 4568 return false; 4569 } 4570 4571 cpu->vcpu_id = vcpu_id; 4572 return true; 4573 } 4574 4575 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4576 { 4577 CPUState *cs; 4578 4579 CPU_FOREACH(cs) { 4580 PowerPCCPU *cpu = POWERPC_CPU(cs); 4581 4582 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4583 return cpu; 4584 } 4585 } 4586 4587 return NULL; 4588 } 4589 4590 static bool spapr_cpu_in_nested(PowerPCCPU *cpu) 4591 { 4592 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4593 4594 return spapr_cpu->in_nested; 4595 } 4596 4597 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4598 { 4599 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4600 4601 /* These are only called by TCG, KVM maintains dispatch state */ 4602 4603 spapr_cpu->prod = false; 4604 if (spapr_cpu->vpa_addr) { 4605 CPUState *cs = CPU(cpu); 4606 uint32_t dispatch; 4607 4608 dispatch = ldl_be_phys(cs->as, 4609 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4610 dispatch++; 4611 if ((dispatch & 1) != 0) { 4612 qemu_log_mask(LOG_GUEST_ERROR, 4613 "VPA: incorrect dispatch counter value for " 4614 "dispatched partition %u, correcting.\n", dispatch); 4615 dispatch++; 4616 } 4617 stl_be_phys(cs->as, 4618 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4619 } 4620 } 4621 4622 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) 4623 { 4624 SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); 4625 4626 if (spapr_cpu->vpa_addr) { 4627 CPUState *cs = CPU(cpu); 4628 uint32_t dispatch; 4629 4630 dispatch = ldl_be_phys(cs->as, 4631 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); 4632 dispatch++; 4633 if ((dispatch & 1) != 1) { 4634 qemu_log_mask(LOG_GUEST_ERROR, 4635 "VPA: incorrect dispatch counter value for " 4636 "preempted partition %u, correcting.\n", dispatch); 4637 dispatch++; 4638 } 4639 stl_be_phys(cs->as, 4640 spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); 4641 } 4642 } 4643 4644 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4645 { 4646 MachineClass *mc = MACHINE_CLASS(oc); 4647 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4648 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4649 NMIClass *nc = NMI_CLASS(oc); 4650 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4651 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4652 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4653 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4654 XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); 4655 VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); 4656 4657 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4658 mc->ignore_boot_device_suffixes = true; 4659 4660 /* 4661 * We set up the default / latest behaviour here. The class_init 4662 * functions for the specific versioned machine types can override 4663 * these details for backwards compatibility 4664 */ 4665 mc->init = spapr_machine_init; 4666 mc->reset = spapr_machine_reset; 4667 mc->block_default_type = IF_SCSI; 4668 4669 /* 4670 * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(), 4671 * In TCG the limit is restricted by the range of CPU IPIs available. 4672 */ 4673 mc->max_cpus = SPAPR_IRQ_NR_IPIS; 4674 4675 mc->no_parallel = 1; 4676 mc->default_boot_order = ""; 4677 mc->default_ram_size = 512 * MiB; 4678 mc->default_ram_id = "ppc_spapr.ram"; 4679 mc->default_display = "std"; 4680 mc->kvm_type = spapr_kvm_type; 4681 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4682 mc->pci_allow_0_address = true; 4683 assert(!mc->get_hotplug_handler); 4684 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4685 hc->pre_plug = spapr_machine_device_pre_plug; 4686 hc->plug = spapr_machine_device_plug; 4687 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4688 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4689 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4690 hc->unplug_request = spapr_machine_device_unplug_request; 4691 hc->unplug = spapr_machine_device_unplug; 4692 4693 smc->dr_lmb_enabled = true; 4694 smc->update_dt_enabled = true; 4695 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); 4696 mc->has_hotpluggable_cpus = true; 4697 mc->nvdimm_supported = true; 4698 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4699 fwc->get_dev_path = spapr_get_fw_dev_path; 4700 nc->nmi_monitor_handler = spapr_nmi; 4701 smc->phb_placement = spapr_phb_placement; 4702 vhc->cpu_in_nested = spapr_cpu_in_nested; 4703 vhc->deliver_hv_excp = spapr_exit_nested; 4704 vhc->hypercall = emulate_spapr_hypercall; 4705 vhc->hpt_mask = spapr_hpt_mask; 4706 vhc->map_hptes = spapr_map_hptes; 4707 vhc->unmap_hptes = spapr_unmap_hptes; 4708 vhc->hpte_set_c = spapr_hpte_set_c; 4709 vhc->hpte_set_r = spapr_hpte_set_r; 4710 vhc->get_pate = spapr_get_pate; 4711 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4712 vhc->cpu_exec_enter = spapr_cpu_exec_enter; 4713 vhc->cpu_exec_exit = spapr_cpu_exec_exit; 4714 xic->ics_get = spapr_ics_get; 4715 xic->ics_resend = spapr_ics_resend; 4716 xic->icp_get = spapr_icp_get; 4717 ispc->print_info = spapr_pic_print_info; 4718 /* Force NUMA node memory size to be a multiple of 4719 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4720 * in which LMBs are represented and hot-added 4721 */ 4722 mc->numa_mem_align_shift = 28; 4723 mc->auto_enable_numa = true; 4724 4725 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4726 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4727 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4728 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4729 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4730 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4731 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4732 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4733 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4734 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; 4735 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; 4736 smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; 4737 4738 /* 4739 * This cap specifies whether the AIL 3 mode for 4740 * H_SET_RESOURCE is supported. The default is modified 4741 * by default_caps_with_cpu(). 4742 */ 4743 smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; 4744 spapr_caps_add_properties(smc); 4745 smc->irq = &spapr_irq_dual; 4746 smc->dr_phb_enabled = true; 4747 smc->linux_pci_probe = true; 4748 smc->smp_threads_vsmt = true; 4749 smc->nr_xirqs = SPAPR_NR_XIRQS; 4750 xfc->match_nvt = spapr_match_nvt; 4751 vmc->client_architecture_support = spapr_vof_client_architecture_support; 4752 vmc->quiesce = spapr_vof_quiesce; 4753 vmc->setprop = spapr_vof_setprop; 4754 } 4755 4756 static const TypeInfo spapr_machine_info = { 4757 .name = TYPE_SPAPR_MACHINE, 4758 .parent = TYPE_MACHINE, 4759 .abstract = true, 4760 .instance_size = sizeof(SpaprMachineState), 4761 .instance_init = spapr_instance_init, 4762 .instance_finalize = spapr_machine_finalizefn, 4763 .class_size = sizeof(SpaprMachineClass), 4764 .class_init = spapr_machine_class_init, 4765 .interfaces = (InterfaceInfo[]) { 4766 { TYPE_FW_PATH_PROVIDER }, 4767 { TYPE_NMI }, 4768 { TYPE_HOTPLUG_HANDLER }, 4769 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4770 { TYPE_XICS_FABRIC }, 4771 { TYPE_INTERRUPT_STATS_PROVIDER }, 4772 { TYPE_XIVE_FABRIC }, 4773 { TYPE_VOF_MACHINE_IF }, 4774 { } 4775 }, 4776 }; 4777 4778 static void spapr_machine_latest_class_options(MachineClass *mc) 4779 { 4780 mc->alias = "pseries"; 4781 mc->is_default = true; 4782 } 4783 4784 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4785 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4786 void *data) \ 4787 { \ 4788 MachineClass *mc = MACHINE_CLASS(oc); \ 4789 spapr_machine_##suffix##_class_options(mc); \ 4790 if (latest) { \ 4791 spapr_machine_latest_class_options(mc); \ 4792 } \ 4793 } \ 4794 static const TypeInfo spapr_machine_##suffix##_info = { \ 4795 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4796 .parent = TYPE_SPAPR_MACHINE, \ 4797 .class_init = spapr_machine_##suffix##_class_init, \ 4798 }; \ 4799 static void spapr_machine_register_##suffix(void) \ 4800 { \ 4801 type_register(&spapr_machine_##suffix##_info); \ 4802 } \ 4803 type_init(spapr_machine_register_##suffix) 4804 4805 /* 4806 * pseries-9.0 4807 */ 4808 static void spapr_machine_9_0_class_options(MachineClass *mc) 4809 { 4810 /* Defaults for the latest behaviour inherited from the base class */ 4811 } 4812 4813 DEFINE_SPAPR_MACHINE(9_0, "9.0", true); 4814 4815 /* 4816 * pseries-8.2 4817 */ 4818 static void spapr_machine_8_2_class_options(MachineClass *mc) 4819 { 4820 spapr_machine_9_0_class_options(mc); 4821 compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); 4822 } 4823 4824 DEFINE_SPAPR_MACHINE(8_2, "8.2", false); 4825 4826 /* 4827 * pseries-8.1 4828 */ 4829 static void spapr_machine_8_1_class_options(MachineClass *mc) 4830 { 4831 spapr_machine_8_2_class_options(mc); 4832 compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); 4833 } 4834 4835 DEFINE_SPAPR_MACHINE(8_1, "8.1", false); 4836 4837 /* 4838 * pseries-8.0 4839 */ 4840 static void spapr_machine_8_0_class_options(MachineClass *mc) 4841 { 4842 spapr_machine_8_1_class_options(mc); 4843 compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); 4844 } 4845 4846 DEFINE_SPAPR_MACHINE(8_0, "8.0", false); 4847 4848 /* 4849 * pseries-7.2 4850 */ 4851 static void spapr_machine_7_2_class_options(MachineClass *mc) 4852 { 4853 spapr_machine_8_0_class_options(mc); 4854 compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); 4855 } 4856 4857 DEFINE_SPAPR_MACHINE(7_2, "7.2", false); 4858 4859 /* 4860 * pseries-7.1 4861 */ 4862 static void spapr_machine_7_1_class_options(MachineClass *mc) 4863 { 4864 spapr_machine_7_2_class_options(mc); 4865 compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); 4866 } 4867 4868 DEFINE_SPAPR_MACHINE(7_1, "7.1", false); 4869 4870 /* 4871 * pseries-7.0 4872 */ 4873 static void spapr_machine_7_0_class_options(MachineClass *mc) 4874 { 4875 spapr_machine_7_1_class_options(mc); 4876 compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); 4877 } 4878 4879 DEFINE_SPAPR_MACHINE(7_0, "7.0", false); 4880 4881 /* 4882 * pseries-6.2 4883 */ 4884 static void spapr_machine_6_2_class_options(MachineClass *mc) 4885 { 4886 spapr_machine_7_0_class_options(mc); 4887 compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); 4888 } 4889 4890 DEFINE_SPAPR_MACHINE(6_2, "6.2", false); 4891 4892 /* 4893 * pseries-6.1 4894 */ 4895 static void spapr_machine_6_1_class_options(MachineClass *mc) 4896 { 4897 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4898 4899 spapr_machine_6_2_class_options(mc); 4900 compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); 4901 smc->pre_6_2_numa_affinity = true; 4902 mc->smp_props.prefer_sockets = true; 4903 } 4904 4905 DEFINE_SPAPR_MACHINE(6_1, "6.1", false); 4906 4907 /* 4908 * pseries-6.0 4909 */ 4910 static void spapr_machine_6_0_class_options(MachineClass *mc) 4911 { 4912 spapr_machine_6_1_class_options(mc); 4913 compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); 4914 } 4915 4916 DEFINE_SPAPR_MACHINE(6_0, "6.0", false); 4917 4918 /* 4919 * pseries-5.2 4920 */ 4921 static void spapr_machine_5_2_class_options(MachineClass *mc) 4922 { 4923 spapr_machine_6_0_class_options(mc); 4924 compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); 4925 } 4926 4927 DEFINE_SPAPR_MACHINE(5_2, "5.2", false); 4928 4929 /* 4930 * pseries-5.1 4931 */ 4932 static void spapr_machine_5_1_class_options(MachineClass *mc) 4933 { 4934 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4935 4936 spapr_machine_5_2_class_options(mc); 4937 compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); 4938 smc->pre_5_2_numa_associativity = true; 4939 } 4940 4941 DEFINE_SPAPR_MACHINE(5_1, "5.1", false); 4942 4943 /* 4944 * pseries-5.0 4945 */ 4946 static void spapr_machine_5_0_class_options(MachineClass *mc) 4947 { 4948 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4949 static GlobalProperty compat[] = { 4950 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, 4951 }; 4952 4953 spapr_machine_5_1_class_options(mc); 4954 compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); 4955 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4956 mc->numa_mem_supported = true; 4957 smc->pre_5_1_assoc_refpoints = true; 4958 } 4959 4960 DEFINE_SPAPR_MACHINE(5_0, "5.0", false); 4961 4962 /* 4963 * pseries-4.2 4964 */ 4965 static void spapr_machine_4_2_class_options(MachineClass *mc) 4966 { 4967 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4968 4969 spapr_machine_5_0_class_options(mc); 4970 compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); 4971 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4972 smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; 4973 smc->rma_limit = 16 * GiB; 4974 mc->nvdimm_supported = false; 4975 } 4976 4977 DEFINE_SPAPR_MACHINE(4_2, "4.2", false); 4978 4979 /* 4980 * pseries-4.1 4981 */ 4982 static void spapr_machine_4_1_class_options(MachineClass *mc) 4983 { 4984 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4985 static GlobalProperty compat[] = { 4986 /* Only allow 4kiB and 64kiB IOMMU pagesizes */ 4987 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, 4988 }; 4989 4990 spapr_machine_4_2_class_options(mc); 4991 smc->linux_pci_probe = false; 4992 smc->smp_threads_vsmt = false; 4993 compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); 4994 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4995 } 4996 4997 DEFINE_SPAPR_MACHINE(4_1, "4.1", false); 4998 4999 /* 5000 * pseries-4.0 5001 */ 5002 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, 5003 uint64_t *buid, hwaddr *pio, 5004 hwaddr *mmio32, hwaddr *mmio64, 5005 unsigned n_dma, uint32_t *liobns, Error **errp) 5006 { 5007 if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, 5008 liobns, errp)) { 5009 return false; 5010 } 5011 return true; 5012 } 5013 static void spapr_machine_4_0_class_options(MachineClass *mc) 5014 { 5015 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5016 5017 spapr_machine_4_1_class_options(mc); 5018 compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); 5019 smc->phb_placement = phb_placement_4_0; 5020 smc->irq = &spapr_irq_xics; 5021 smc->pre_4_1_migration = true; 5022 } 5023 5024 DEFINE_SPAPR_MACHINE(4_0, "4.0", false); 5025 5026 /* 5027 * pseries-3.1 5028 */ 5029 static void spapr_machine_3_1_class_options(MachineClass *mc) 5030 { 5031 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5032 5033 spapr_machine_4_0_class_options(mc); 5034 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 5035 5036 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 5037 smc->update_dt_enabled = false; 5038 smc->dr_phb_enabled = false; 5039 smc->broken_host_serial_model = true; 5040 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 5041 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 5042 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 5043 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 5044 } 5045 5046 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 5047 5048 /* 5049 * pseries-3.0 5050 */ 5051 5052 static void spapr_machine_3_0_class_options(MachineClass *mc) 5053 { 5054 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5055 5056 spapr_machine_3_1_class_options(mc); 5057 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 5058 5059 smc->legacy_irq_allocation = true; 5060 smc->nr_xirqs = 0x400; 5061 smc->irq = &spapr_irq_xics_legacy; 5062 } 5063 5064 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 5065 5066 /* 5067 * pseries-2.12 5068 */ 5069 static void spapr_machine_2_12_class_options(MachineClass *mc) 5070 { 5071 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5072 static GlobalProperty compat[] = { 5073 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 5074 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 5075 }; 5076 5077 spapr_machine_3_0_class_options(mc); 5078 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 5079 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5080 5081 /* We depend on kvm_enabled() to choose a default value for the 5082 * hpt-max-page-size capability. Of course we can't do it here 5083 * because this is too early and the HW accelerator isn't initialized 5084 * yet. Postpone this to machine init (see default_caps_with_cpu()). 5085 */ 5086 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 5087 } 5088 5089 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 5090 5091 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 5092 { 5093 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5094 5095 spapr_machine_2_12_class_options(mc); 5096 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 5097 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 5098 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 5099 } 5100 5101 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 5102 5103 /* 5104 * pseries-2.11 5105 */ 5106 5107 static void spapr_machine_2_11_class_options(MachineClass *mc) 5108 { 5109 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5110 5111 spapr_machine_2_12_class_options(mc); 5112 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 5113 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 5114 mc->deprecation_reason = "old and not maintained - use a 2.12+ version"; 5115 } 5116 5117 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 5118 5119 /* 5120 * pseries-2.10 5121 */ 5122 5123 static void spapr_machine_2_10_class_options(MachineClass *mc) 5124 { 5125 spapr_machine_2_11_class_options(mc); 5126 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 5127 } 5128 5129 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 5130 5131 /* 5132 * pseries-2.9 5133 */ 5134 5135 static void spapr_machine_2_9_class_options(MachineClass *mc) 5136 { 5137 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5138 static GlobalProperty compat[] = { 5139 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 5140 }; 5141 5142 spapr_machine_2_10_class_options(mc); 5143 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 5144 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5145 smc->pre_2_10_has_unused_icps = true; 5146 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 5147 } 5148 5149 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 5150 5151 /* 5152 * pseries-2.8 5153 */ 5154 5155 static void spapr_machine_2_8_class_options(MachineClass *mc) 5156 { 5157 static GlobalProperty compat[] = { 5158 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 5159 }; 5160 5161 spapr_machine_2_9_class_options(mc); 5162 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 5163 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5164 mc->numa_mem_align_shift = 23; 5165 } 5166 5167 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 5168 5169 /* 5170 * pseries-2.7 5171 */ 5172 5173 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 5174 uint64_t *buid, hwaddr *pio, 5175 hwaddr *mmio32, hwaddr *mmio64, 5176 unsigned n_dma, uint32_t *liobns, Error **errp) 5177 { 5178 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 5179 const uint64_t base_buid = 0x800000020000000ULL; 5180 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 5181 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 5182 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 5183 const uint32_t max_index = 255; 5184 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 5185 5186 uint64_t ram_top = MACHINE(spapr)->ram_size; 5187 hwaddr phb0_base, phb_base; 5188 int i; 5189 5190 /* Do we have device memory? */ 5191 if (MACHINE(spapr)->device_memory) { 5192 /* Can't just use maxram_size, because there may be an 5193 * alignment gap between normal and device memory regions 5194 */ 5195 ram_top = MACHINE(spapr)->device_memory->base + 5196 memory_region_size(&MACHINE(spapr)->device_memory->mr); 5197 } 5198 5199 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 5200 5201 if (index > max_index) { 5202 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 5203 max_index); 5204 return false; 5205 } 5206 5207 *buid = base_buid + index; 5208 for (i = 0; i < n_dma; ++i) { 5209 liobns[i] = SPAPR_PCI_LIOBN(index, i); 5210 } 5211 5212 phb_base = phb0_base + index * phb_spacing; 5213 *pio = phb_base + pio_offset; 5214 *mmio32 = phb_base + mmio_offset; 5215 /* 5216 * We don't set the 64-bit MMIO window, relying on the PHB's 5217 * fallback behaviour of automatically splitting a large "32-bit" 5218 * window into contiguous 32-bit and 64-bit windows 5219 */ 5220 5221 return true; 5222 } 5223 5224 static void spapr_machine_2_7_class_options(MachineClass *mc) 5225 { 5226 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5227 static GlobalProperty compat[] = { 5228 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 5229 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 5230 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 5231 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 5232 }; 5233 5234 spapr_machine_2_8_class_options(mc); 5235 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 5236 mc->default_machine_opts = "modern-hotplug-events=off"; 5237 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 5238 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5239 smc->phb_placement = phb_placement_2_7; 5240 } 5241 5242 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 5243 5244 /* 5245 * pseries-2.6 5246 */ 5247 5248 static void spapr_machine_2_6_class_options(MachineClass *mc) 5249 { 5250 static GlobalProperty compat[] = { 5251 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 5252 }; 5253 5254 spapr_machine_2_7_class_options(mc); 5255 mc->has_hotpluggable_cpus = false; 5256 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 5257 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5258 } 5259 5260 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 5261 5262 /* 5263 * pseries-2.5 5264 */ 5265 5266 static void spapr_machine_2_5_class_options(MachineClass *mc) 5267 { 5268 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5269 static GlobalProperty compat[] = { 5270 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 5271 }; 5272 5273 spapr_machine_2_6_class_options(mc); 5274 smc->use_ohci_by_default = true; 5275 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 5276 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5277 } 5278 5279 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 5280 5281 /* 5282 * pseries-2.4 5283 */ 5284 5285 static void spapr_machine_2_4_class_options(MachineClass *mc) 5286 { 5287 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 5288 5289 spapr_machine_2_5_class_options(mc); 5290 smc->dr_lmb_enabled = false; 5291 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 5292 } 5293 5294 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 5295 5296 /* 5297 * pseries-2.3 5298 */ 5299 5300 static void spapr_machine_2_3_class_options(MachineClass *mc) 5301 { 5302 static GlobalProperty compat[] = { 5303 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 5304 }; 5305 spapr_machine_2_4_class_options(mc); 5306 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 5307 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5308 } 5309 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 5310 5311 /* 5312 * pseries-2.2 5313 */ 5314 5315 static void spapr_machine_2_2_class_options(MachineClass *mc) 5316 { 5317 static GlobalProperty compat[] = { 5318 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 5319 }; 5320 5321 spapr_machine_2_3_class_options(mc); 5322 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 5323 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 5324 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 5325 } 5326 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 5327 5328 /* 5329 * pseries-2.1 5330 */ 5331 5332 static void spapr_machine_2_1_class_options(MachineClass *mc) 5333 { 5334 spapr_machine_2_2_class_options(mc); 5335 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 5336 } 5337 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 5338 5339 static void spapr_machine_register_types(void) 5340 { 5341 type_register_static(&spapr_machine_info); 5342 } 5343 5344 type_init(spapr_machine_register_types) 5345