xref: /qemu/hw/ppc/spapr.c (revision 21a8d22f58b7e8eb70f5cf48ba119d7865a37fc0)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu/datadir.h"
29 #include "qemu/memalign.h"
30 #include "qemu/guest-random.h"
31 #include "qapi/error.h"
32 #include "qapi/qapi-events-machine.h"
33 #include "qapi/qapi-events-qdev.h"
34 #include "qapi/visitor.h"
35 #include "sysemu/sysemu.h"
36 #include "sysemu/hostmem.h"
37 #include "sysemu/numa.h"
38 #include "sysemu/qtest.h"
39 #include "sysemu/reset.h"
40 #include "sysemu/runstate.h"
41 #include "qemu/log.h"
42 #include "hw/fw-path-provider.h"
43 #include "elf.h"
44 #include "net/net.h"
45 #include "sysemu/device_tree.h"
46 #include "sysemu/cpus.h"
47 #include "sysemu/hw_accel.h"
48 #include "kvm_ppc.h"
49 #include "migration/misc.h"
50 #include "migration/qemu-file-types.h"
51 #include "migration/global_state.h"
52 #include "migration/register.h"
53 #include "migration/blocker.h"
54 #include "mmu-hash64.h"
55 #include "mmu-book3s-v3.h"
56 #include "cpu-models.h"
57 #include "hw/core/cpu.h"
58 
59 #include "hw/ppc/ppc.h"
60 #include "hw/loader.h"
61 
62 #include "hw/ppc/fdt.h"
63 #include "hw/ppc/spapr.h"
64 #include "hw/ppc/spapr_nested.h"
65 #include "hw/ppc/spapr_vio.h"
66 #include "hw/ppc/vof.h"
67 #include "hw/qdev-properties.h"
68 #include "hw/pci-host/spapr.h"
69 #include "hw/pci/msi.h"
70 
71 #include "hw/pci/pci.h"
72 #include "hw/scsi/scsi.h"
73 #include "hw/virtio/virtio-scsi.h"
74 #include "hw/virtio/vhost-scsi-common.h"
75 
76 #include "exec/ram_addr.h"
77 #include "hw/usb.h"
78 #include "qemu/config-file.h"
79 #include "qemu/error-report.h"
80 #include "trace.h"
81 #include "hw/nmi.h"
82 #include "hw/intc/intc.h"
83 
84 #include "hw/ppc/spapr_cpu_core.h"
85 #include "hw/mem/memory-device.h"
86 #include "hw/ppc/spapr_tpm_proxy.h"
87 #include "hw/ppc/spapr_nvdimm.h"
88 #include "hw/ppc/spapr_numa.h"
89 #include "hw/ppc/pef.h"
90 
91 #include "monitor/monitor.h"
92 
93 #include <libfdt.h>
94 
95 /* SLOF memory layout:
96  *
97  * SLOF raw image loaded at 0, copies its romfs right below the flat
98  * device-tree, then position SLOF itself 31M below that
99  *
100  * So we set FW_OVERHEAD to 40MB which should account for all of that
101  * and more
102  *
103  * We load our kernel at 4M, leaving space for SLOF initial image
104  */
105 #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */
106 #define FW_MAX_SIZE             0x400000
107 #define FW_FILE_NAME            "slof.bin"
108 #define FW_FILE_NAME_VOF        "vof.bin"
109 #define FW_OVERHEAD             0x2800000
110 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
111 
112 #define MIN_RMA_SLOF            (128 * MiB)
113 
114 #define PHANDLE_INTC            0x00001111
115 
116 /* These two functions implement the VCPU id numbering: one to compute them
117  * all and one to identify thread 0 of a VCORE. Any change to the first one
118  * is likely to have an impact on the second one, so let's keep them close.
119  */
120 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
121 {
122     MachineState *ms = MACHINE(spapr);
123     unsigned int smp_threads = ms->smp.threads;
124 
125     assert(spapr->vsmt);
126     return
127         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
128 }
129 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
130                                       PowerPCCPU *cpu)
131 {
132     assert(spapr->vsmt);
133     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
134 }
135 
136 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
137 {
138     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
139      * and newer QEMUs don't even have them. In both cases, we don't want
140      * to send anything on the wire.
141      */
142     return false;
143 }
144 
145 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
146     /*
147      * Hack ahead.  We can't have two devices with the same name and
148      * instance id.  So I rename this to pass make check.
149      * Real help from people who knows the hardware is needed.
150      */
151     .name = "icp/server",
152     .version_id = 1,
153     .minimum_version_id = 1,
154     .needed = pre_2_10_vmstate_dummy_icp_needed,
155     .fields = (const VMStateField[]) {
156         VMSTATE_UNUSED(4), /* uint32_t xirr */
157         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
158         VMSTATE_UNUSED(1), /* uint8_t mfrr */
159         VMSTATE_END_OF_LIST()
160     },
161 };
162 
163 /*
164  * See comment in hw/intc/xics.c:icp_realize()
165  *
166  * You have to remove vmstate_replace_hack_for_ppc() when you remove
167  * the machine types that need the following function.
168  */
169 static void pre_2_10_vmstate_register_dummy_icp(int i)
170 {
171     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
172                      (void *)(uintptr_t) i);
173 }
174 
175 /*
176  * See comment in hw/intc/xics.c:icp_realize()
177  *
178  * You have to remove vmstate_replace_hack_for_ppc() when you remove
179  * the machine types that need the following function.
180  */
181 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
182 {
183     /*
184      * This used to be:
185      *
186      *    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
187      *                      (void *)(uintptr_t) i);
188      */
189 }
190 
191 int spapr_max_server_number(SpaprMachineState *spapr)
192 {
193     MachineState *ms = MACHINE(spapr);
194 
195     assert(spapr->vsmt);
196     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
197 }
198 
199 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
200                                   int smt_threads)
201 {
202     int i, ret = 0;
203     g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads);
204     g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2);
205     int index = spapr_get_vcpu_id(cpu);
206 
207     if (cpu->compat_pvr) {
208         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
209         if (ret < 0) {
210             return ret;
211         }
212     }
213 
214     /* Build interrupt servers and gservers properties */
215     for (i = 0; i < smt_threads; i++) {
216         servers_prop[i] = cpu_to_be32(index + i);
217         /* Hack, direct the group queues back to cpu 0 */
218         gservers_prop[i*2] = cpu_to_be32(index + i);
219         gservers_prop[i*2 + 1] = 0;
220     }
221     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
222                       servers_prop, sizeof(*servers_prop) * smt_threads);
223     if (ret < 0) {
224         return ret;
225     }
226     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
227                       gservers_prop, sizeof(*gservers_prop) * smt_threads * 2);
228 
229     return ret;
230 }
231 
232 static void spapr_dt_pa_features(SpaprMachineState *spapr,
233                                  PowerPCCPU *cpu,
234                                  void *fdt, int offset)
235 {
236     /*
237      * SSO (SAO) ordering is supported on KVM and thread=single hosts,
238      * but not MTTCG, so disable it. To advertise it, a cap would have
239      * to be added, or support implemented for MTTCG.
240      *
241      * Copy/paste is not supported by TCG, so it is not advertised. KVM
242      * can execute them but it has no accelerator drivers which are usable,
243      * so there isn't much need for it anyway.
244      */
245 
246     /* These should be kept in sync with pnv */
247     uint8_t pa_features_206[] = { 6, 0,
248         0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 };
249     uint8_t pa_features_207[] = { 24, 0,
250         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0,
251         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
252         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
253         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
254     uint8_t pa_features_300[] = { 66, 0,
255         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
256         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
257         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
258         /* 6: DS207 */
259         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
260         /* 16: Vector */
261         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
262         /* 18: Vec. Scalar, 20: Vec. XOR */
263         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
264         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
265         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
266         /* 32: LE atomic, 34: EBB + ext EBB */
267         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
268         /* 40: Radix MMU */
269         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
270         /* 42: PM, 44: PC RA, 46: SC vec'd */
271         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
272         /* 48: SIMD, 50: QP BFP, 52: String */
273         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
274         /* 54: DecFP, 56: DecI, 58: SHA */
275         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
276         /* 60: NM atomic, 62: RNG */
277         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
278     };
279     /* 3.1 removes SAO, HTM support */
280     uint8_t pa_features_31[] = { 74, 0,
281         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
282         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */
283         0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */
284         /* 6: DS207 */
285         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
286         /* 16: Vector */
287         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
288         /* 18: Vec. Scalar, 20: Vec. XOR */
289         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
290         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
291         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
292         /* 32: LE atomic, 34: EBB + ext EBB */
293         0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
294         /* 40: Radix MMU */
295         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */
296         /* 42: PM, 44: PC RA, 46: SC vec'd */
297         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
298         /* 48: SIMD, 50: QP BFP, 52: String */
299         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
300         /* 54: DecFP, 56: DecI, 58: SHA */
301         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
302         /* 60: NM atomic, 62: RNG */
303         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
304         /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */
305         0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */
306         /* 72: [P]HASHST/[P]HASHCHK */
307         0x80, 0x00,                         /* 72 - 73 */
308     };
309     uint8_t *pa_features = NULL;
310     size_t pa_size;
311 
312     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
313         pa_features = pa_features_206;
314         pa_size = sizeof(pa_features_206);
315     }
316     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
317         pa_features = pa_features_207;
318         pa_size = sizeof(pa_features_207);
319     }
320     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
321         pa_features = pa_features_300;
322         pa_size = sizeof(pa_features_300);
323     }
324     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) {
325         pa_features = pa_features_31;
326         pa_size = sizeof(pa_features_31);
327     }
328     if (!pa_features) {
329         return;
330     }
331 
332     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
333         /*
334          * Note: we keep CI large pages off by default because a 64K capable
335          * guest provisioned with large pages might otherwise try to map a qemu
336          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
337          * even if that qemu runs on a 4k host.
338          * We dd this bit back here if we are confident this is not an issue
339          */
340         pa_features[3] |= 0x20;
341     }
342     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
343         pa_features[24] |= 0x80;    /* Transactional memory support */
344     }
345     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
346         /* Workaround for broken kernels that attempt (guest) radix
347          * mode when they can't handle it, if they see the radix bit set
348          * in pa-features. So hide it from them. */
349         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
350     }
351 
352     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
353 }
354 
355 static hwaddr spapr_node0_size(MachineState *machine)
356 {
357     if (machine->numa_state->num_nodes) {
358         int i;
359         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
360             if (machine->numa_state->nodes[i].node_mem) {
361                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
362                            machine->ram_size);
363             }
364         }
365     }
366     return machine->ram_size;
367 }
368 
369 static void add_str(GString *s, const gchar *s1)
370 {
371     g_string_append_len(s, s1, strlen(s1) + 1);
372 }
373 
374 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
375                                 hwaddr start, hwaddr size)
376 {
377     char mem_name[32];
378     uint64_t mem_reg_property[2];
379     int off;
380 
381     mem_reg_property[0] = cpu_to_be64(start);
382     mem_reg_property[1] = cpu_to_be64(size);
383 
384     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
385     off = fdt_add_subnode(fdt, 0, mem_name);
386     _FDT(off);
387     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
388     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
389                       sizeof(mem_reg_property))));
390     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
391     return off;
392 }
393 
394 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
395 {
396     MemoryDeviceInfoList *info;
397 
398     for (info = list; info; info = info->next) {
399         MemoryDeviceInfo *value = info->value;
400 
401         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
402             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
403 
404             if (addr >= pcdimm_info->addr &&
405                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
406                 return pcdimm_info->node;
407             }
408         }
409     }
410 
411     return -1;
412 }
413 
414 struct sPAPRDrconfCellV2 {
415      uint32_t seq_lmbs;
416      uint64_t base_addr;
417      uint32_t drc_index;
418      uint32_t aa_index;
419      uint32_t flags;
420 } QEMU_PACKED;
421 
422 typedef struct DrconfCellQueue {
423     struct sPAPRDrconfCellV2 cell;
424     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
425 } DrconfCellQueue;
426 
427 static DrconfCellQueue *
428 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
429                       uint32_t drc_index, uint32_t aa_index,
430                       uint32_t flags)
431 {
432     DrconfCellQueue *elem;
433 
434     elem = g_malloc0(sizeof(*elem));
435     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
436     elem->cell.base_addr = cpu_to_be64(base_addr);
437     elem->cell.drc_index = cpu_to_be32(drc_index);
438     elem->cell.aa_index = cpu_to_be32(aa_index);
439     elem->cell.flags = cpu_to_be32(flags);
440 
441     return elem;
442 }
443 
444 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
445                                       int offset, MemoryDeviceInfoList *dimms)
446 {
447     MachineState *machine = MACHINE(spapr);
448     uint8_t *int_buf, *cur_index;
449     int ret;
450     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
451     uint64_t addr, cur_addr, size;
452     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
453     uint64_t mem_end = machine->device_memory->base +
454                        memory_region_size(&machine->device_memory->mr);
455     uint32_t node, buf_len, nr_entries = 0;
456     SpaprDrc *drc;
457     DrconfCellQueue *elem, *next;
458     MemoryDeviceInfoList *info;
459     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
460         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
461 
462     /* Entry to cover RAM and the gap area */
463     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
464                                  SPAPR_LMB_FLAGS_RESERVED |
465                                  SPAPR_LMB_FLAGS_DRC_INVALID);
466     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
467     nr_entries++;
468 
469     cur_addr = machine->device_memory->base;
470     for (info = dimms; info; info = info->next) {
471         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
472 
473         addr = di->addr;
474         size = di->size;
475         node = di->node;
476 
477         /*
478          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
479          * area is marked hotpluggable in the next iteration for the bigger
480          * chunk including the NVDIMM occupied area.
481          */
482         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
483             continue;
484 
485         /* Entry for hot-pluggable area */
486         if (cur_addr < addr) {
487             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
488             g_assert(drc);
489             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
490                                          cur_addr, spapr_drc_index(drc), -1, 0);
491             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
492             nr_entries++;
493         }
494 
495         /* Entry for DIMM */
496         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
497         g_assert(drc);
498         elem = spapr_get_drconf_cell(size / lmb_size, addr,
499                                      spapr_drc_index(drc), node,
500                                      (SPAPR_LMB_FLAGS_ASSIGNED |
501                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
502         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
503         nr_entries++;
504         cur_addr = addr + size;
505     }
506 
507     /* Entry for remaining hotpluggable area */
508     if (cur_addr < mem_end) {
509         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
510         g_assert(drc);
511         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
512                                      cur_addr, spapr_drc_index(drc), -1, 0);
513         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
514         nr_entries++;
515     }
516 
517     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
518     int_buf = cur_index = g_malloc0(buf_len);
519     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
520     cur_index += sizeof(nr_entries);
521 
522     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
523         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
524         cur_index += sizeof(elem->cell);
525         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
526         g_free(elem);
527     }
528 
529     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
530     g_free(int_buf);
531     if (ret < 0) {
532         return -1;
533     }
534     return 0;
535 }
536 
537 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
538                                    int offset, MemoryDeviceInfoList *dimms)
539 {
540     MachineState *machine = MACHINE(spapr);
541     int i, ret;
542     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
543     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
544     uint32_t nr_lmbs = (machine->device_memory->base +
545                        memory_region_size(&machine->device_memory->mr)) /
546                        lmb_size;
547     uint32_t *int_buf, *cur_index, buf_len;
548 
549     /*
550      * Allocate enough buffer size to fit in ibm,dynamic-memory
551      */
552     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
553     cur_index = int_buf = g_malloc0(buf_len);
554     int_buf[0] = cpu_to_be32(nr_lmbs);
555     cur_index++;
556     for (i = 0; i < nr_lmbs; i++) {
557         uint64_t addr = i * lmb_size;
558         uint32_t *dynamic_memory = cur_index;
559 
560         if (i >= device_lmb_start) {
561             SpaprDrc *drc;
562 
563             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
564             g_assert(drc);
565 
566             dynamic_memory[0] = cpu_to_be32(addr >> 32);
567             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
568             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
569             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
570             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
571             if (memory_region_present(get_system_memory(), addr)) {
572                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
573             } else {
574                 dynamic_memory[5] = cpu_to_be32(0);
575             }
576         } else {
577             /*
578              * LMB information for RMA, boot time RAM and gap b/n RAM and
579              * device memory region -- all these are marked as reserved
580              * and as having no valid DRC.
581              */
582             dynamic_memory[0] = cpu_to_be32(addr >> 32);
583             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
584             dynamic_memory[2] = cpu_to_be32(0);
585             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
586             dynamic_memory[4] = cpu_to_be32(-1);
587             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
588                                             SPAPR_LMB_FLAGS_DRC_INVALID);
589         }
590 
591         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
592     }
593     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
594     g_free(int_buf);
595     if (ret < 0) {
596         return -1;
597     }
598     return 0;
599 }
600 
601 /*
602  * Adds ibm,dynamic-reconfiguration-memory node.
603  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
604  * of this device tree node.
605  */
606 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
607                                                    void *fdt)
608 {
609     MachineState *machine = MACHINE(spapr);
610     int ret, offset;
611     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
612     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
613                                 cpu_to_be32(lmb_size & 0xffffffff)};
614     MemoryDeviceInfoList *dimms = NULL;
615 
616     /* Don't create the node if there is no device memory. */
617     if (!machine->device_memory) {
618         return 0;
619     }
620 
621     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
622 
623     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
624                     sizeof(prop_lmb_size));
625     if (ret < 0) {
626         return ret;
627     }
628 
629     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
630     if (ret < 0) {
631         return ret;
632     }
633 
634     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
635     if (ret < 0) {
636         return ret;
637     }
638 
639     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
640     dimms = qmp_memory_device_list();
641     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
642         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
643     } else {
644         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
645     }
646     qapi_free_MemoryDeviceInfoList(dimms);
647 
648     if (ret < 0) {
649         return ret;
650     }
651 
652     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
653 
654     return ret;
655 }
656 
657 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
658 {
659     MachineState *machine = MACHINE(spapr);
660     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
661     hwaddr mem_start, node_size;
662     int i, nb_nodes = machine->numa_state->num_nodes;
663     NodeInfo *nodes = machine->numa_state->nodes;
664 
665     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
666         if (!nodes[i].node_mem) {
667             continue;
668         }
669         if (mem_start >= machine->ram_size) {
670             node_size = 0;
671         } else {
672             node_size = nodes[i].node_mem;
673             if (node_size > machine->ram_size - mem_start) {
674                 node_size = machine->ram_size - mem_start;
675             }
676         }
677         if (!mem_start) {
678             /* spapr_machine_init() checks for rma_size <= node0_size
679              * already */
680             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
681             mem_start += spapr->rma_size;
682             node_size -= spapr->rma_size;
683         }
684         for ( ; node_size; ) {
685             hwaddr sizetmp = pow2floor(node_size);
686 
687             /* mem_start != 0 here */
688             if (ctzl(mem_start) < ctzl(sizetmp)) {
689                 sizetmp = 1ULL << ctzl(mem_start);
690             }
691 
692             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
693             node_size -= sizetmp;
694             mem_start += sizetmp;
695         }
696     }
697 
698     /* Generate ibm,dynamic-reconfiguration-memory node if required */
699     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
700         int ret;
701 
702         g_assert(smc->dr_lmb_enabled);
703         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
704         if (ret) {
705             return ret;
706         }
707     }
708 
709     return 0;
710 }
711 
712 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
713                          SpaprMachineState *spapr)
714 {
715     MachineState *ms = MACHINE(spapr);
716     PowerPCCPU *cpu = POWERPC_CPU(cs);
717     CPUPPCState *env = &cpu->env;
718     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
719     int index = spapr_get_vcpu_id(cpu);
720     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
721                        0xffffffff, 0xffffffff};
722     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
723         : SPAPR_TIMEBASE_FREQ;
724     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
725     uint32_t page_sizes_prop[64];
726     size_t page_sizes_prop_size;
727     unsigned int smp_threads = ms->smp.threads;
728     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
729     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
730     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
731     SpaprDrc *drc;
732     int drc_index;
733     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
734     int i;
735 
736     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
737     if (drc) {
738         drc_index = spapr_drc_index(drc);
739         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
740     }
741 
742     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
743     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
744 
745     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
746     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
747                            env->dcache_line_size)));
748     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
749                            env->dcache_line_size)));
750     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
751                            env->icache_line_size)));
752     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
753                            env->icache_line_size)));
754 
755     if (pcc->l1_dcache_size) {
756         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
757                                pcc->l1_dcache_size)));
758     } else {
759         warn_report("Unknown L1 dcache size for cpu");
760     }
761     if (pcc->l1_icache_size) {
762         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
763                                pcc->l1_icache_size)));
764     } else {
765         warn_report("Unknown L1 icache size for cpu");
766     }
767 
768     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
769     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
770     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
771     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
772     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
773     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
774 
775     if (ppc_has_spr(cpu, SPR_PURR)) {
776         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
777     }
778     if (ppc_has_spr(cpu, SPR_PURR)) {
779         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
780     }
781 
782     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
783         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
784                           segs, sizeof(segs))));
785     }
786 
787     /* Advertise VSX (vector extensions) if available
788      *   1               == VMX / Altivec available
789      *   2               == VSX available
790      *
791      * Only CPUs for which we create core types in spapr_cpu_core.c
792      * are possible, and all of those have VMX */
793     if (env->insns_flags & PPC_ALTIVEC) {
794         if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
795             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
796         } else {
797             _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
798         }
799     }
800 
801     /* Advertise DFP (Decimal Floating Point) if available
802      *   0 / no property == no DFP
803      *   1               == DFP available */
804     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
805         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
806     }
807 
808     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
809                                                       sizeof(page_sizes_prop));
810     if (page_sizes_prop_size) {
811         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
812                           page_sizes_prop, page_sizes_prop_size)));
813     }
814 
815     spapr_dt_pa_features(spapr, cpu, fdt, offset);
816 
817     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
818                            cs->cpu_index / vcpus_per_socket)));
819 
820     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
821                       pft_size_prop, sizeof(pft_size_prop))));
822 
823     if (ms->numa_state->num_nodes > 1) {
824         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
825     }
826 
827     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
828 
829     if (pcc->radix_page_info) {
830         for (i = 0; i < pcc->radix_page_info->count; i++) {
831             radix_AP_encodings[i] =
832                 cpu_to_be32(pcc->radix_page_info->entries[i]);
833         }
834         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
835                           radix_AP_encodings,
836                           pcc->radix_page_info->count *
837                           sizeof(radix_AP_encodings[0]))));
838     }
839 
840     /*
841      * We set this property to let the guest know that it can use the large
842      * decrementer and its width in bits.
843      */
844     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
845         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
846                               pcc->lrg_decr_bits)));
847 }
848 
849 static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs,
850                              int cpus_offset)
851 {
852     PowerPCCPU *cpu = POWERPC_CPU(cs);
853     int index = spapr_get_vcpu_id(cpu);
854     DeviceClass *dc = DEVICE_GET_CLASS(cs);
855     g_autofree char *nodename = NULL;
856     int offset;
857 
858     if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
859         return;
860     }
861 
862     nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
863     offset = fdt_add_subnode(fdt, cpus_offset, nodename);
864     _FDT(offset);
865     spapr_dt_cpu(cs, fdt, offset, spapr);
866 }
867 
868 
869 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
870 {
871     CPUState **rev;
872     CPUState *cs;
873     int n_cpus;
874     int cpus_offset;
875     int i;
876 
877     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
878     _FDT(cpus_offset);
879     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
880     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
881 
882     /*
883      * We walk the CPUs in reverse order to ensure that CPU DT nodes
884      * created by fdt_add_subnode() end up in the right order in FDT
885      * for the guest kernel the enumerate the CPUs correctly.
886      *
887      * The CPU list cannot be traversed in reverse order, so we need
888      * to do extra work.
889      */
890     n_cpus = 0;
891     rev = NULL;
892     CPU_FOREACH(cs) {
893         rev = g_renew(CPUState *, rev, n_cpus + 1);
894         rev[n_cpus++] = cs;
895     }
896 
897     for (i = n_cpus - 1; i >= 0; i--) {
898         spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset);
899     }
900 
901     g_free(rev);
902 }
903 
904 static int spapr_dt_rng(void *fdt)
905 {
906     int node;
907     int ret;
908 
909     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
910     if (node <= 0) {
911         return -1;
912     }
913     ret = fdt_setprop_string(fdt, node, "device_type",
914                              "ibm,platform-facilities");
915     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
916     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
917 
918     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
919     if (node <= 0) {
920         return -1;
921     }
922     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
923 
924     return ret ? -1 : 0;
925 }
926 
927 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
928 {
929     MachineState *ms = MACHINE(spapr);
930     int rtas;
931     GString *hypertas = g_string_sized_new(256);
932     GString *qemu_hypertas = g_string_sized_new(256);
933     uint32_t lrdr_capacity[] = {
934         0,
935         0,
936         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
937         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
938         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
939     };
940 
941     /* Do we have device memory? */
942     if (MACHINE(spapr)->device_memory) {
943         uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
944             memory_region_size(&MACHINE(spapr)->device_memory->mr);
945 
946         lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32);
947         lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff);
948     }
949 
950     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
951 
952     /* hypertas */
953     add_str(hypertas, "hcall-pft");
954     add_str(hypertas, "hcall-term");
955     add_str(hypertas, "hcall-dabr");
956     add_str(hypertas, "hcall-interrupt");
957     add_str(hypertas, "hcall-tce");
958     add_str(hypertas, "hcall-vio");
959     add_str(hypertas, "hcall-splpar");
960     add_str(hypertas, "hcall-join");
961     add_str(hypertas, "hcall-bulk");
962     add_str(hypertas, "hcall-set-mode");
963     add_str(hypertas, "hcall-sprg0");
964     add_str(hypertas, "hcall-copy");
965     add_str(hypertas, "hcall-debug");
966     add_str(hypertas, "hcall-vphn");
967     if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) {
968         add_str(hypertas, "hcall-rpt-invalidate");
969     }
970 
971     add_str(qemu_hypertas, "hcall-memop1");
972 
973     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
974         add_str(hypertas, "hcall-multi-tce");
975     }
976 
977     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
978         add_str(hypertas, "hcall-hpt-resize");
979     }
980 
981     add_str(hypertas, "hcall-watchdog");
982 
983     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
984                      hypertas->str, hypertas->len));
985     g_string_free(hypertas, TRUE);
986     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
987                      qemu_hypertas->str, qemu_hypertas->len));
988     g_string_free(qemu_hypertas, TRUE);
989 
990     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
991 
992     /*
993      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
994      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
995      *
996      * The system reset requirements are driven by existing Linux and PowerVM
997      * implementation which (contrary to PAPR) saves r3 in the error log
998      * structure like machine check, so Linux expects to find the saved r3
999      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
1000      * does not look at the error value).
1001      *
1002      * System reset interrupts are not subject to interlock like machine
1003      * check, so this memory area could be corrupted if the sreset is
1004      * interrupted by a machine check (or vice versa) if it was shared. To
1005      * prevent this, system reset uses per-CPU areas for the sreset save
1006      * area. A system reset that interrupts a system reset handler could
1007      * still overwrite this area, but Linux doesn't try to recover in that
1008      * case anyway.
1009      *
1010      * The extra 8 bytes is required because Linux's FWNMI error log check
1011      * is off-by-one.
1012      *
1013      * RTAS_MIN_SIZE is required for the RTAS blob itself.
1014      */
1015     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE +
1016                           RTAS_ERROR_LOG_MAX +
1017                           ms->smp.max_cpus * sizeof(uint64_t) * 2 +
1018                           sizeof(uint64_t)));
1019     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1020                           RTAS_ERROR_LOG_MAX));
1021     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1022                           RTAS_EVENT_SCAN_RATE));
1023 
1024     g_assert(msi_nonbroken);
1025     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1026 
1027     /*
1028      * According to PAPR, rtas ibm,os-term does not guarantee a return
1029      * back to the guest cpu.
1030      *
1031      * While an additional ibm,extended-os-term property indicates
1032      * that rtas call return will always occur. Set this property.
1033      */
1034     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1035 
1036     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1037                      lrdr_capacity, sizeof(lrdr_capacity)));
1038 
1039     spapr_dt_rtas_tokens(fdt, rtas);
1040 }
1041 
1042 /*
1043  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1044  * and the XIVE features that the guest may request and thus the valid
1045  * values for bytes 23..26 of option vector 5:
1046  */
1047 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1048                                           int chosen)
1049 {
1050     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1051 
1052     char val[2 * 4] = {
1053         23, 0x00, /* XICS / XIVE mode */
1054         24, 0x00, /* Hash/Radix, filled in below. */
1055         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1056         26, 0x40, /* Radix options: GTSE == yes. */
1057     };
1058 
1059     if (spapr->irq->xics && spapr->irq->xive) {
1060         val[1] = SPAPR_OV5_XIVE_BOTH;
1061     } else if (spapr->irq->xive) {
1062         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
1063     } else {
1064         assert(spapr->irq->xics);
1065         val[1] = SPAPR_OV5_XIVE_LEGACY;
1066     }
1067 
1068     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1069                           first_ppc_cpu->compat_pvr)) {
1070         /*
1071          * If we're in a pre POWER9 compat mode then the guest should
1072          * do hash and use the legacy interrupt mode
1073          */
1074         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
1075         val[3] = 0x00; /* Hash */
1076         spapr_check_mmu_mode(false);
1077     } else if (kvm_enabled()) {
1078         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1079             val[3] = 0x80; /* OV5_MMU_BOTH */
1080         } else if (kvmppc_has_cap_mmu_radix()) {
1081             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1082         } else {
1083             val[3] = 0x00; /* Hash */
1084         }
1085     } else {
1086         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1087         val[3] = 0xC0;
1088     }
1089     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1090                      val, sizeof(val)));
1091 }
1092 
1093 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1094 {
1095     MachineState *machine = MACHINE(spapr);
1096     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1097     int chosen;
1098 
1099     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1100 
1101     if (reset) {
1102         const char *boot_device = spapr->boot_device;
1103         g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1104         size_t cb = 0;
1105         g_autofree char *bootlist = get_boot_devices_list(&cb);
1106 
1107         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1108             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1109                                     machine->kernel_cmdline));
1110         }
1111 
1112         if (spapr->initrd_size) {
1113             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1114                                   spapr->initrd_base));
1115             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1116                                   spapr->initrd_base + spapr->initrd_size));
1117         }
1118 
1119         if (spapr->kernel_size) {
1120             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1121                                   cpu_to_be64(spapr->kernel_size) };
1122 
1123             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1124                          &kprop, sizeof(kprop)));
1125             if (spapr->kernel_le) {
1126                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1127             }
1128         }
1129         if (machine->boot_config.has_menu && machine->boot_config.menu) {
1130             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true)));
1131         }
1132         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1133         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1134         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1135 
1136         if (cb && bootlist) {
1137             int i;
1138 
1139             for (i = 0; i < cb; i++) {
1140                 if (bootlist[i] == '\n') {
1141                     bootlist[i] = ' ';
1142                 }
1143             }
1144             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1145         }
1146 
1147         if (boot_device && strlen(boot_device)) {
1148             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1149         }
1150 
1151         if (spapr->want_stdout_path && stdout_path) {
1152             /*
1153              * "linux,stdout-path" and "stdout" properties are
1154              * deprecated by linux kernel. New platforms should only
1155              * use the "stdout-path" property. Set the new property
1156              * and continue using older property to remain compatible
1157              * with the existing firmware.
1158              */
1159             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1160             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1161         }
1162 
1163         /*
1164          * We can deal with BAR reallocation just fine, advertise it
1165          * to the guest
1166          */
1167         if (smc->linux_pci_probe) {
1168             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1169         }
1170 
1171         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1172     }
1173 
1174     _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32));
1175 
1176     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1177 }
1178 
1179 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1180 {
1181     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1182      * KVM to work under pHyp with some guest co-operation */
1183     int hypervisor;
1184     uint8_t hypercall[16];
1185 
1186     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1187     /* indicate KVM hypercall interface */
1188     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1189     if (kvmppc_has_cap_fixup_hcalls()) {
1190         /*
1191          * Older KVM versions with older guest kernels were broken
1192          * with the magic page, don't allow the guest to map it.
1193          */
1194         if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall,
1195                                   sizeof(hypercall))) {
1196             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1197                              hypercall, sizeof(hypercall)));
1198         }
1199     }
1200 }
1201 
1202 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1203 {
1204     MachineState *machine = MACHINE(spapr);
1205     MachineClass *mc = MACHINE_GET_CLASS(machine);
1206     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1207     uint32_t root_drc_type_mask = 0;
1208     int ret;
1209     void *fdt;
1210     SpaprPhbState *phb;
1211     char *buf;
1212 
1213     fdt = g_malloc0(space);
1214     _FDT((fdt_create_empty_tree(fdt, space)));
1215 
1216     /* Root node */
1217     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1218     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1219     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1220 
1221     /* Guest UUID & Name*/
1222     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1223     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1224     if (qemu_uuid_set) {
1225         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1226     }
1227     g_free(buf);
1228 
1229     if (qemu_get_vm_name()) {
1230         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1231                                 qemu_get_vm_name()));
1232     }
1233 
1234     /* Host Model & Serial Number */
1235     if (spapr->host_model) {
1236         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1237     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1238         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1239         g_free(buf);
1240     }
1241 
1242     if (spapr->host_serial) {
1243         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1244     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1245         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1246         g_free(buf);
1247     }
1248 
1249     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1250     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1251 
1252     /* /interrupt controller */
1253     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1254 
1255     ret = spapr_dt_memory(spapr, fdt);
1256     if (ret < 0) {
1257         error_report("couldn't setup memory nodes in fdt");
1258         exit(1);
1259     }
1260 
1261     /* /vdevice */
1262     spapr_dt_vdevice(spapr->vio_bus, fdt);
1263 
1264     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1265         ret = spapr_dt_rng(fdt);
1266         if (ret < 0) {
1267             error_report("could not set up rng device in the fdt");
1268             exit(1);
1269         }
1270     }
1271 
1272     QLIST_FOREACH(phb, &spapr->phbs, list) {
1273         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1274         if (ret < 0) {
1275             error_report("couldn't setup PCI devices in fdt");
1276             exit(1);
1277         }
1278     }
1279 
1280     spapr_dt_cpus(fdt, spapr);
1281 
1282     /* ibm,drc-indexes and friends */
1283     if (smc->dr_lmb_enabled) {
1284         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1285     }
1286     if (smc->dr_phb_enabled) {
1287         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1288     }
1289     if (mc->nvdimm_supported) {
1290         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1291     }
1292     if (root_drc_type_mask) {
1293         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1294     }
1295 
1296     if (mc->has_hotpluggable_cpus) {
1297         int offset = fdt_path_offset(fdt, "/cpus");
1298         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1299         if (ret < 0) {
1300             error_report("Couldn't set up CPU DR device tree properties");
1301             exit(1);
1302         }
1303     }
1304 
1305     /* /event-sources */
1306     spapr_dt_events(spapr, fdt);
1307 
1308     /* /rtas */
1309     spapr_dt_rtas(spapr, fdt);
1310 
1311     /* /chosen */
1312     spapr_dt_chosen(spapr, fdt, reset);
1313 
1314     /* /hypervisor */
1315     if (kvm_enabled()) {
1316         spapr_dt_hypervisor(spapr, fdt);
1317     }
1318 
1319     /* Build memory reserve map */
1320     if (reset) {
1321         if (spapr->kernel_size) {
1322             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1323                                   spapr->kernel_size)));
1324         }
1325         if (spapr->initrd_size) {
1326             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1327                                   spapr->initrd_size)));
1328         }
1329     }
1330 
1331     /* NVDIMM devices */
1332     if (mc->nvdimm_supported) {
1333         spapr_dt_persistent_memory(spapr, fdt);
1334     }
1335 
1336     return fdt;
1337 }
1338 
1339 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1340 {
1341     SpaprMachineState *spapr = opaque;
1342 
1343     return (addr & 0x0fffffff) + spapr->kernel_addr;
1344 }
1345 
1346 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1347                                     PowerPCCPU *cpu)
1348 {
1349     CPUPPCState *env = &cpu->env;
1350 
1351     /* The TCG path should also be holding the BQL at this point */
1352     g_assert(bql_locked());
1353 
1354     g_assert(!vhyp_cpu_in_nested(cpu));
1355 
1356     if (FIELD_EX64(env->msr, MSR, PR)) {
1357         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1358         env->gpr[3] = H_PRIVILEGE;
1359     } else {
1360         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1361     }
1362 }
1363 
1364 struct LPCRSyncState {
1365     target_ulong value;
1366     target_ulong mask;
1367 };
1368 
1369 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1370 {
1371     struct LPCRSyncState *s = arg.host_ptr;
1372     PowerPCCPU *cpu = POWERPC_CPU(cs);
1373     CPUPPCState *env = &cpu->env;
1374     target_ulong lpcr;
1375 
1376     cpu_synchronize_state(cs);
1377     lpcr = env->spr[SPR_LPCR];
1378     lpcr &= ~s->mask;
1379     lpcr |= s->value;
1380     ppc_store_lpcr(cpu, lpcr);
1381 }
1382 
1383 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1384 {
1385     CPUState *cs;
1386     struct LPCRSyncState s = {
1387         .value = value,
1388         .mask = mask
1389     };
1390     CPU_FOREACH(cs) {
1391         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1392     }
1393 }
1394 
1395 /* May be used when the machine is not running */
1396 void spapr_init_all_lpcrs(target_ulong value, target_ulong mask)
1397 {
1398     CPUState *cs;
1399     CPU_FOREACH(cs) {
1400         PowerPCCPU *cpu = POWERPC_CPU(cs);
1401         CPUPPCState *env = &cpu->env;
1402         target_ulong lpcr;
1403 
1404         lpcr = env->spr[SPR_LPCR];
1405         lpcr &= ~(LPCR_HR | LPCR_UPRT);
1406         ppc_store_lpcr(cpu, lpcr);
1407     }
1408 }
1409 
1410 static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu,
1411                            target_ulong lpid, ppc_v3_pate_t *entry)
1412 {
1413     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1414     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
1415 
1416     if (!spapr_cpu->in_nested) {
1417         assert(lpid == 0);
1418 
1419         /* Copy PATE1:GR into PATE0:HR */
1420         entry->dw0 = spapr->patb_entry & PATE0_HR;
1421         entry->dw1 = spapr->patb_entry;
1422         return true;
1423     } else {
1424         assert(spapr_nested_api(spapr));
1425         if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) {
1426             return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry);
1427         }
1428         return false;
1429     }
1430 }
1431 
1432 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1433 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1434 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1435 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1436 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1437 
1438 /*
1439  * Get the fd to access the kernel htab, re-opening it if necessary
1440  */
1441 static int get_htab_fd(SpaprMachineState *spapr)
1442 {
1443     Error *local_err = NULL;
1444 
1445     if (spapr->htab_fd >= 0) {
1446         return spapr->htab_fd;
1447     }
1448 
1449     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1450     if (spapr->htab_fd < 0) {
1451         error_report_err(local_err);
1452     }
1453 
1454     return spapr->htab_fd;
1455 }
1456 
1457 void close_htab_fd(SpaprMachineState *spapr)
1458 {
1459     if (spapr->htab_fd >= 0) {
1460         close(spapr->htab_fd);
1461     }
1462     spapr->htab_fd = -1;
1463 }
1464 
1465 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1466 {
1467     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1468 
1469     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1470 }
1471 
1472 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1473 {
1474     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1475 
1476     assert(kvm_enabled());
1477 
1478     if (!spapr->htab) {
1479         return 0;
1480     }
1481 
1482     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1483 }
1484 
1485 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1486                                                 hwaddr ptex, int n)
1487 {
1488     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1489     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1490 
1491     if (!spapr->htab) {
1492         /*
1493          * HTAB is controlled by KVM. Fetch into temporary buffer
1494          */
1495         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1496         kvmppc_read_hptes(hptes, ptex, n);
1497         return hptes;
1498     }
1499 
1500     /*
1501      * HTAB is controlled by QEMU. Just point to the internally
1502      * accessible PTEG.
1503      */
1504     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1505 }
1506 
1507 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1508                               const ppc_hash_pte64_t *hptes,
1509                               hwaddr ptex, int n)
1510 {
1511     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1512 
1513     if (!spapr->htab) {
1514         g_free((void *)hptes);
1515     }
1516 
1517     /* Nothing to do for qemu managed HPT */
1518 }
1519 
1520 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1521                       uint64_t pte0, uint64_t pte1)
1522 {
1523     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1524     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1525 
1526     if (!spapr->htab) {
1527         kvmppc_write_hpte(ptex, pte0, pte1);
1528     } else {
1529         if (pte0 & HPTE64_V_VALID) {
1530             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1531             /*
1532              * When setting valid, we write PTE1 first. This ensures
1533              * proper synchronization with the reading code in
1534              * ppc_hash64_pteg_search()
1535              */
1536             smp_wmb();
1537             stq_p(spapr->htab + offset, pte0);
1538         } else {
1539             stq_p(spapr->htab + offset, pte0);
1540             /*
1541              * When clearing it we set PTE0 first. This ensures proper
1542              * synchronization with the reading code in
1543              * ppc_hash64_pteg_search()
1544              */
1545             smp_wmb();
1546             stq_p(spapr->htab + offset + HPTE64_DW1, pte1);
1547         }
1548     }
1549 }
1550 
1551 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1552                              uint64_t pte1)
1553 {
1554     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C;
1555     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1556 
1557     if (!spapr->htab) {
1558         /* There should always be a hash table when this is called */
1559         error_report("spapr_hpte_set_c called with no hash table !");
1560         return;
1561     }
1562 
1563     /* The HW performs a non-atomic byte update */
1564     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1565 }
1566 
1567 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1568                              uint64_t pte1)
1569 {
1570     hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R;
1571     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1572 
1573     if (!spapr->htab) {
1574         /* There should always be a hash table when this is called */
1575         error_report("spapr_hpte_set_r called with no hash table !");
1576         return;
1577     }
1578 
1579     /* The HW performs a non-atomic byte update */
1580     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1581 }
1582 
1583 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1584 {
1585     int shift;
1586 
1587     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1588      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1589      * that's much more than is needed for Linux guests */
1590     shift = ctz64(pow2ceil(ramsize)) - 7;
1591     shift = MAX(shift, 18); /* Minimum architected size */
1592     shift = MIN(shift, 46); /* Maximum architected size */
1593     return shift;
1594 }
1595 
1596 void spapr_free_hpt(SpaprMachineState *spapr)
1597 {
1598     qemu_vfree(spapr->htab);
1599     spapr->htab = NULL;
1600     spapr->htab_shift = 0;
1601     close_htab_fd(spapr);
1602 }
1603 
1604 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1605 {
1606     ERRP_GUARD();
1607     long rc;
1608 
1609     /* Clean up any HPT info from a previous boot */
1610     spapr_free_hpt(spapr);
1611 
1612     rc = kvmppc_reset_htab(shift);
1613 
1614     if (rc == -EOPNOTSUPP) {
1615         error_setg(errp, "HPT not supported in nested guests");
1616         return -EOPNOTSUPP;
1617     }
1618 
1619     if (rc < 0) {
1620         /* kernel-side HPT needed, but couldn't allocate one */
1621         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1622                          shift);
1623         error_append_hint(errp, "Try smaller maxmem?\n");
1624         return -errno;
1625     } else if (rc > 0) {
1626         /* kernel-side HPT allocated */
1627         if (rc != shift) {
1628             error_setg(errp,
1629                        "Requested order %d HPT, but kernel allocated order %ld",
1630                        shift, rc);
1631             error_append_hint(errp, "Try smaller maxmem?\n");
1632             return -ENOSPC;
1633         }
1634 
1635         spapr->htab_shift = shift;
1636         spapr->htab = NULL;
1637     } else {
1638         /* kernel-side HPT not needed, allocate in userspace instead */
1639         size_t size = 1ULL << shift;
1640         int i;
1641 
1642         spapr->htab = qemu_memalign(size, size);
1643         memset(spapr->htab, 0, size);
1644         spapr->htab_shift = shift;
1645 
1646         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1647             DIRTY_HPTE(HPTE(spapr->htab, i));
1648         }
1649     }
1650     /* We're setting up a hash table, so that means we're not radix */
1651     spapr->patb_entry = 0;
1652     spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1653     return 0;
1654 }
1655 
1656 void spapr_setup_hpt(SpaprMachineState *spapr)
1657 {
1658     int hpt_shift;
1659 
1660     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1661         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1662     } else {
1663         uint64_t current_ram_size;
1664 
1665         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1666         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1667     }
1668     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1669 
1670     if (kvm_enabled()) {
1671         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1672 
1673         /* Check our RMA fits in the possible VRMA */
1674         if (vrma_limit < spapr->rma_size) {
1675             error_report("Unable to create %" HWADDR_PRIu
1676                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1677                          spapr->rma_size / MiB, vrma_limit / MiB);
1678             exit(EXIT_FAILURE);
1679         }
1680     }
1681 }
1682 
1683 void spapr_check_mmu_mode(bool guest_radix)
1684 {
1685     if (guest_radix) {
1686         if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) {
1687             error_report("Guest requested unavailable MMU mode (radix).");
1688             exit(EXIT_FAILURE);
1689         }
1690     } else {
1691         if (kvm_enabled() && kvmppc_has_cap_mmu_radix()
1692             && !kvmppc_has_cap_mmu_hash_v3()) {
1693             error_report("Guest requested unavailable MMU mode (hash).");
1694             exit(EXIT_FAILURE);
1695         }
1696     }
1697 }
1698 
1699 static void spapr_machine_reset(MachineState *machine, ShutdownCause reason)
1700 {
1701     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1702     PowerPCCPU *first_ppc_cpu;
1703     hwaddr fdt_addr;
1704     void *fdt;
1705     int rc;
1706 
1707     if (reason != SHUTDOWN_CAUSE_SNAPSHOT_LOAD) {
1708         /*
1709          * Record-replay snapshot load must not consume random, this was
1710          * already replayed from initial machine reset.
1711          */
1712         qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32);
1713     }
1714 
1715     pef_kvm_reset(machine->cgs, &error_fatal);
1716     spapr_caps_apply(spapr);
1717     spapr_nested_reset(spapr);
1718 
1719     first_ppc_cpu = POWERPC_CPU(first_cpu);
1720     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1721         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1722                               spapr->max_compat_pvr)) {
1723         /*
1724          * If using KVM with radix mode available, VCPUs can be started
1725          * without a HPT because KVM will start them in radix mode.
1726          * Set the GR bit in PATE so that we know there is no HPT.
1727          */
1728         spapr->patb_entry = PATE1_GR;
1729         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1730     } else {
1731         spapr_setup_hpt(spapr);
1732     }
1733 
1734     qemu_devices_reset(reason);
1735 
1736     spapr_ovec_cleanup(spapr->ov5_cas);
1737     spapr->ov5_cas = spapr_ovec_new();
1738 
1739     ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal);
1740 
1741     /*
1742      * This is fixing some of the default configuration of the XIVE
1743      * devices. To be called after the reset of the machine devices.
1744      */
1745     spapr_irq_reset(spapr, &error_fatal);
1746 
1747     /*
1748      * There is no CAS under qtest. Simulate one to please the code that
1749      * depends on spapr->ov5_cas. This is especially needed to test device
1750      * unplug, so we do that before resetting the DRCs.
1751      */
1752     if (qtest_enabled()) {
1753         spapr_ovec_cleanup(spapr->ov5_cas);
1754         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1755     }
1756 
1757     spapr_nvdimm_finish_flushes();
1758 
1759     /* DRC reset may cause a device to be unplugged. This will cause troubles
1760      * if this device is used by another device (eg, a running vhost backend
1761      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1762      * situations, we reset DRCs after all devices have been reset.
1763      */
1764     spapr_drc_reset_all(spapr);
1765 
1766     spapr_clear_pending_events(spapr);
1767 
1768     /*
1769      * We place the device tree just below either the top of the RMA,
1770      * or just below 2GB, whichever is lower, so that it can be
1771      * processed with 32-bit real mode code if necessary
1772      */
1773     fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE;
1774 
1775     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1776     if (spapr->vof) {
1777         spapr_vof_reset(spapr, fdt, &error_fatal);
1778         /*
1779          * Do not pack the FDT as the client may change properties.
1780          * VOF client does not expect the FDT so we do not load it to the VM.
1781          */
1782     } else {
1783         rc = fdt_pack(fdt);
1784         /* Should only fail if we've built a corrupted tree */
1785         assert(rc == 0);
1786 
1787         spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT,
1788                                   0, fdt_addr, 0);
1789         cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1790     }
1791     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1792 
1793     g_free(spapr->fdt_blob);
1794     spapr->fdt_size = fdt_totalsize(fdt);
1795     spapr->fdt_initial_size = spapr->fdt_size;
1796     spapr->fdt_blob = fdt;
1797 
1798     /* Set machine->fdt for 'dumpdtb' QMP/HMP command */
1799     machine->fdt = fdt;
1800 
1801     /* Set up the entry state */
1802     first_ppc_cpu->env.gpr[5] = 0;
1803 
1804     spapr->fwnmi_system_reset_addr = -1;
1805     spapr->fwnmi_machine_check_addr = -1;
1806     spapr->fwnmi_machine_check_interlock = -1;
1807 
1808     /* Signal all vCPUs waiting on this condition */
1809     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1810 
1811     migrate_del_blocker(&spapr->fwnmi_migration_blocker);
1812 }
1813 
1814 static void spapr_create_nvram(SpaprMachineState *spapr)
1815 {
1816     DeviceState *dev = qdev_new("spapr-nvram");
1817     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1818 
1819     if (dinfo) {
1820         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1821                                 &error_fatal);
1822     }
1823 
1824     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1825 
1826     spapr->nvram = (struct SpaprNvram *)dev;
1827 }
1828 
1829 static void spapr_rtc_create(SpaprMachineState *spapr)
1830 {
1831     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1832                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1833                                        &error_fatal, NULL);
1834     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1835     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1836                               "date");
1837 }
1838 
1839 /* Returns whether we want to use VGA or not */
1840 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1841 {
1842     vga_interface_created = true;
1843     switch (vga_interface_type) {
1844     case VGA_NONE:
1845         return false;
1846     case VGA_DEVICE:
1847         return true;
1848     case VGA_STD:
1849     case VGA_VIRTIO:
1850     case VGA_CIRRUS:
1851         return pci_vga_init(pci_bus) != NULL;
1852     default:
1853         error_setg(errp,
1854                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1855         return false;
1856     }
1857 }
1858 
1859 static int spapr_pre_load(void *opaque)
1860 {
1861     int rc;
1862 
1863     rc = spapr_caps_pre_load(opaque);
1864     if (rc) {
1865         return rc;
1866     }
1867 
1868     return 0;
1869 }
1870 
1871 static int spapr_post_load(void *opaque, int version_id)
1872 {
1873     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1874     int err = 0;
1875 
1876     err = spapr_caps_post_migration(spapr);
1877     if (err) {
1878         return err;
1879     }
1880 
1881     /*
1882      * In earlier versions, there was no separate qdev for the PAPR
1883      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1884      * So when migrating from those versions, poke the incoming offset
1885      * value into the RTC device
1886      */
1887     if (version_id < 3) {
1888         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1889         if (err) {
1890             return err;
1891         }
1892     }
1893 
1894     if (kvm_enabled() && spapr->patb_entry) {
1895         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1896         bool radix = !!(spapr->patb_entry & PATE1_GR);
1897         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1898 
1899         /*
1900          * Update LPCR:HR and UPRT as they may not be set properly in
1901          * the stream
1902          */
1903         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1904                             LPCR_HR | LPCR_UPRT);
1905 
1906         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1907         if (err) {
1908             error_report("Process table config unsupported by the host");
1909             return -EINVAL;
1910         }
1911     }
1912 
1913     err = spapr_irq_post_load(spapr, version_id);
1914     if (err) {
1915         return err;
1916     }
1917 
1918     return err;
1919 }
1920 
1921 static int spapr_pre_save(void *opaque)
1922 {
1923     int rc;
1924 
1925     rc = spapr_caps_pre_save(opaque);
1926     if (rc) {
1927         return rc;
1928     }
1929 
1930     return 0;
1931 }
1932 
1933 static bool version_before_3(void *opaque, int version_id)
1934 {
1935     return version_id < 3;
1936 }
1937 
1938 static bool spapr_pending_events_needed(void *opaque)
1939 {
1940     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1941     return !QTAILQ_EMPTY(&spapr->pending_events);
1942 }
1943 
1944 static const VMStateDescription vmstate_spapr_event_entry = {
1945     .name = "spapr_event_log_entry",
1946     .version_id = 1,
1947     .minimum_version_id = 1,
1948     .fields = (const VMStateField[]) {
1949         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1950         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1951         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1952                                      NULL, extended_length),
1953         VMSTATE_END_OF_LIST()
1954     },
1955 };
1956 
1957 static const VMStateDescription vmstate_spapr_pending_events = {
1958     .name = "spapr_pending_events",
1959     .version_id = 1,
1960     .minimum_version_id = 1,
1961     .needed = spapr_pending_events_needed,
1962     .fields = (const VMStateField[]) {
1963         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1964                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1965         VMSTATE_END_OF_LIST()
1966     },
1967 };
1968 
1969 static bool spapr_ov5_cas_needed(void *opaque)
1970 {
1971     SpaprMachineState *spapr = opaque;
1972     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1973     bool cas_needed;
1974 
1975     /* Prior to the introduction of SpaprOptionVector, we had two option
1976      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1977      * Both of these options encode machine topology into the device-tree
1978      * in such a way that the now-booted OS should still be able to interact
1979      * appropriately with QEMU regardless of what options were actually
1980      * negotiatied on the source side.
1981      *
1982      * As such, we can avoid migrating the CAS-negotiated options if these
1983      * are the only options available on the current machine/platform.
1984      * Since these are the only options available for pseries-2.7 and
1985      * earlier, this allows us to maintain old->new/new->old migration
1986      * compatibility.
1987      *
1988      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1989      * via default pseries-2.8 machines and explicit command-line parameters.
1990      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1991      * of the actual CAS-negotiated values to continue working properly. For
1992      * example, availability of memory unplug depends on knowing whether
1993      * OV5_HP_EVT was negotiated via CAS.
1994      *
1995      * Thus, for any cases where the set of available CAS-negotiatable
1996      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1997      * include the CAS-negotiated options in the migration stream, unless
1998      * if they affect boot time behaviour only.
1999      */
2000     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2001     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2002     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2003 
2004     /* We need extra information if we have any bits outside the mask
2005      * defined above */
2006     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
2007 
2008     spapr_ovec_cleanup(ov5_mask);
2009 
2010     return cas_needed;
2011 }
2012 
2013 static const VMStateDescription vmstate_spapr_ov5_cas = {
2014     .name = "spapr_option_vector_ov5_cas",
2015     .version_id = 1,
2016     .minimum_version_id = 1,
2017     .needed = spapr_ov5_cas_needed,
2018     .fields = (const VMStateField[]) {
2019         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2020                                  vmstate_spapr_ovec, SpaprOptionVector),
2021         VMSTATE_END_OF_LIST()
2022     },
2023 };
2024 
2025 static bool spapr_patb_entry_needed(void *opaque)
2026 {
2027     SpaprMachineState *spapr = opaque;
2028 
2029     return !!spapr->patb_entry;
2030 }
2031 
2032 static const VMStateDescription vmstate_spapr_patb_entry = {
2033     .name = "spapr_patb_entry",
2034     .version_id = 1,
2035     .minimum_version_id = 1,
2036     .needed = spapr_patb_entry_needed,
2037     .fields = (const VMStateField[]) {
2038         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2039         VMSTATE_END_OF_LIST()
2040     },
2041 };
2042 
2043 static bool spapr_irq_map_needed(void *opaque)
2044 {
2045     SpaprMachineState *spapr = opaque;
2046 
2047     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2048 }
2049 
2050 static const VMStateDescription vmstate_spapr_irq_map = {
2051     .name = "spapr_irq_map",
2052     .version_id = 1,
2053     .minimum_version_id = 1,
2054     .needed = spapr_irq_map_needed,
2055     .fields = (const VMStateField[]) {
2056         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2057         VMSTATE_END_OF_LIST()
2058     },
2059 };
2060 
2061 static bool spapr_dtb_needed(void *opaque)
2062 {
2063     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2064 
2065     return smc->update_dt_enabled;
2066 }
2067 
2068 static int spapr_dtb_pre_load(void *opaque)
2069 {
2070     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2071 
2072     g_free(spapr->fdt_blob);
2073     spapr->fdt_blob = NULL;
2074     spapr->fdt_size = 0;
2075 
2076     return 0;
2077 }
2078 
2079 static const VMStateDescription vmstate_spapr_dtb = {
2080     .name = "spapr_dtb",
2081     .version_id = 1,
2082     .minimum_version_id = 1,
2083     .needed = spapr_dtb_needed,
2084     .pre_load = spapr_dtb_pre_load,
2085     .fields = (const VMStateField[]) {
2086         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2087         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2088         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2089                                      fdt_size),
2090         VMSTATE_END_OF_LIST()
2091     },
2092 };
2093 
2094 static bool spapr_fwnmi_needed(void *opaque)
2095 {
2096     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2097 
2098     return spapr->fwnmi_machine_check_addr != -1;
2099 }
2100 
2101 static int spapr_fwnmi_pre_save(void *opaque)
2102 {
2103     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2104 
2105     /*
2106      * Check if machine check handling is in progress and print a
2107      * warning message.
2108      */
2109     if (spapr->fwnmi_machine_check_interlock != -1) {
2110         warn_report("A machine check is being handled during migration. The"
2111                 "handler may run and log hardware error on the destination");
2112     }
2113 
2114     return 0;
2115 }
2116 
2117 static const VMStateDescription vmstate_spapr_fwnmi = {
2118     .name = "spapr_fwnmi",
2119     .version_id = 1,
2120     .minimum_version_id = 1,
2121     .needed = spapr_fwnmi_needed,
2122     .pre_save = spapr_fwnmi_pre_save,
2123     .fields = (const VMStateField[]) {
2124         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
2125         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
2126         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
2127         VMSTATE_END_OF_LIST()
2128     },
2129 };
2130 
2131 static const VMStateDescription vmstate_spapr = {
2132     .name = "spapr",
2133     .version_id = 3,
2134     .minimum_version_id = 1,
2135     .pre_load = spapr_pre_load,
2136     .post_load = spapr_post_load,
2137     .pre_save = spapr_pre_save,
2138     .fields = (const VMStateField[]) {
2139         /* used to be @next_irq */
2140         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2141 
2142         /* RTC offset */
2143         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2144 
2145         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2146         VMSTATE_END_OF_LIST()
2147     },
2148     .subsections = (const VMStateDescription * const []) {
2149         &vmstate_spapr_ov5_cas,
2150         &vmstate_spapr_patb_entry,
2151         &vmstate_spapr_pending_events,
2152         &vmstate_spapr_cap_htm,
2153         &vmstate_spapr_cap_vsx,
2154         &vmstate_spapr_cap_dfp,
2155         &vmstate_spapr_cap_cfpc,
2156         &vmstate_spapr_cap_sbbc,
2157         &vmstate_spapr_cap_ibs,
2158         &vmstate_spapr_cap_hpt_maxpagesize,
2159         &vmstate_spapr_irq_map,
2160         &vmstate_spapr_cap_nested_kvm_hv,
2161         &vmstate_spapr_dtb,
2162         &vmstate_spapr_cap_large_decr,
2163         &vmstate_spapr_cap_ccf_assist,
2164         &vmstate_spapr_cap_fwnmi,
2165         &vmstate_spapr_fwnmi,
2166         &vmstate_spapr_cap_rpt_invalidate,
2167         NULL
2168     }
2169 };
2170 
2171 static int htab_save_setup(QEMUFile *f, void *opaque)
2172 {
2173     SpaprMachineState *spapr = opaque;
2174 
2175     /* "Iteration" header */
2176     if (!spapr->htab_shift) {
2177         qemu_put_be32(f, -1);
2178     } else {
2179         qemu_put_be32(f, spapr->htab_shift);
2180     }
2181 
2182     if (spapr->htab) {
2183         spapr->htab_save_index = 0;
2184         spapr->htab_first_pass = true;
2185     } else {
2186         if (spapr->htab_shift) {
2187             assert(kvm_enabled());
2188         }
2189     }
2190 
2191 
2192     return 0;
2193 }
2194 
2195 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2196                             int chunkstart, int n_valid, int n_invalid)
2197 {
2198     qemu_put_be32(f, chunkstart);
2199     qemu_put_be16(f, n_valid);
2200     qemu_put_be16(f, n_invalid);
2201     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2202                     HASH_PTE_SIZE_64 * n_valid);
2203 }
2204 
2205 static void htab_save_end_marker(QEMUFile *f)
2206 {
2207     qemu_put_be32(f, 0);
2208     qemu_put_be16(f, 0);
2209     qemu_put_be16(f, 0);
2210 }
2211 
2212 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2213                                  int64_t max_ns)
2214 {
2215     bool has_timeout = max_ns != -1;
2216     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2217     int index = spapr->htab_save_index;
2218     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2219 
2220     assert(spapr->htab_first_pass);
2221 
2222     do {
2223         int chunkstart;
2224 
2225         /* Consume invalid HPTEs */
2226         while ((index < htabslots)
2227                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2228             CLEAN_HPTE(HPTE(spapr->htab, index));
2229             index++;
2230         }
2231 
2232         /* Consume valid HPTEs */
2233         chunkstart = index;
2234         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2235                && HPTE_VALID(HPTE(spapr->htab, index))) {
2236             CLEAN_HPTE(HPTE(spapr->htab, index));
2237             index++;
2238         }
2239 
2240         if (index > chunkstart) {
2241             int n_valid = index - chunkstart;
2242 
2243             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2244 
2245             if (has_timeout &&
2246                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2247                 break;
2248             }
2249         }
2250     } while ((index < htabslots) && !migration_rate_exceeded(f));
2251 
2252     if (index >= htabslots) {
2253         assert(index == htabslots);
2254         index = 0;
2255         spapr->htab_first_pass = false;
2256     }
2257     spapr->htab_save_index = index;
2258 }
2259 
2260 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2261                                 int64_t max_ns)
2262 {
2263     bool final = max_ns < 0;
2264     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2265     int examined = 0, sent = 0;
2266     int index = spapr->htab_save_index;
2267     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2268 
2269     assert(!spapr->htab_first_pass);
2270 
2271     do {
2272         int chunkstart, invalidstart;
2273 
2274         /* Consume non-dirty HPTEs */
2275         while ((index < htabslots)
2276                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2277             index++;
2278             examined++;
2279         }
2280 
2281         chunkstart = index;
2282         /* Consume valid dirty HPTEs */
2283         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2284                && HPTE_DIRTY(HPTE(spapr->htab, index))
2285                && HPTE_VALID(HPTE(spapr->htab, index))) {
2286             CLEAN_HPTE(HPTE(spapr->htab, index));
2287             index++;
2288             examined++;
2289         }
2290 
2291         invalidstart = index;
2292         /* Consume invalid dirty HPTEs */
2293         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2294                && HPTE_DIRTY(HPTE(spapr->htab, index))
2295                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2296             CLEAN_HPTE(HPTE(spapr->htab, index));
2297             index++;
2298             examined++;
2299         }
2300 
2301         if (index > chunkstart) {
2302             int n_valid = invalidstart - chunkstart;
2303             int n_invalid = index - invalidstart;
2304 
2305             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2306             sent += index - chunkstart;
2307 
2308             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2309                 break;
2310             }
2311         }
2312 
2313         if (examined >= htabslots) {
2314             break;
2315         }
2316 
2317         if (index >= htabslots) {
2318             assert(index == htabslots);
2319             index = 0;
2320         }
2321     } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final));
2322 
2323     if (index >= htabslots) {
2324         assert(index == htabslots);
2325         index = 0;
2326     }
2327 
2328     spapr->htab_save_index = index;
2329 
2330     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2331 }
2332 
2333 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2334 #define MAX_KVM_BUF_SIZE    2048
2335 
2336 static int htab_save_iterate(QEMUFile *f, void *opaque)
2337 {
2338     SpaprMachineState *spapr = opaque;
2339     int fd;
2340     int rc = 0;
2341 
2342     /* Iteration header */
2343     if (!spapr->htab_shift) {
2344         qemu_put_be32(f, -1);
2345         return 1;
2346     } else {
2347         qemu_put_be32(f, 0);
2348     }
2349 
2350     if (!spapr->htab) {
2351         assert(kvm_enabled());
2352 
2353         fd = get_htab_fd(spapr);
2354         if (fd < 0) {
2355             return fd;
2356         }
2357 
2358         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2359         if (rc < 0) {
2360             return rc;
2361         }
2362     } else  if (spapr->htab_first_pass) {
2363         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2364     } else {
2365         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2366     }
2367 
2368     htab_save_end_marker(f);
2369 
2370     return rc;
2371 }
2372 
2373 static int htab_save_complete(QEMUFile *f, void *opaque)
2374 {
2375     SpaprMachineState *spapr = opaque;
2376     int fd;
2377 
2378     /* Iteration header */
2379     if (!spapr->htab_shift) {
2380         qemu_put_be32(f, -1);
2381         return 0;
2382     } else {
2383         qemu_put_be32(f, 0);
2384     }
2385 
2386     if (!spapr->htab) {
2387         int rc;
2388 
2389         assert(kvm_enabled());
2390 
2391         fd = get_htab_fd(spapr);
2392         if (fd < 0) {
2393             return fd;
2394         }
2395 
2396         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2397         if (rc < 0) {
2398             return rc;
2399         }
2400     } else {
2401         if (spapr->htab_first_pass) {
2402             htab_save_first_pass(f, spapr, -1);
2403         }
2404         htab_save_later_pass(f, spapr, -1);
2405     }
2406 
2407     /* End marker */
2408     htab_save_end_marker(f);
2409 
2410     return 0;
2411 }
2412 
2413 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2414 {
2415     SpaprMachineState *spapr = opaque;
2416     uint32_t section_hdr;
2417     int fd = -1;
2418     Error *local_err = NULL;
2419 
2420     if (version_id < 1 || version_id > 1) {
2421         error_report("htab_load() bad version");
2422         return -EINVAL;
2423     }
2424 
2425     section_hdr = qemu_get_be32(f);
2426 
2427     if (section_hdr == -1) {
2428         spapr_free_hpt(spapr);
2429         return 0;
2430     }
2431 
2432     if (section_hdr) {
2433         int ret;
2434 
2435         /* First section gives the htab size */
2436         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2437         if (ret < 0) {
2438             error_report_err(local_err);
2439             return ret;
2440         }
2441         return 0;
2442     }
2443 
2444     if (!spapr->htab) {
2445         assert(kvm_enabled());
2446 
2447         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2448         if (fd < 0) {
2449             error_report_err(local_err);
2450             return fd;
2451         }
2452     }
2453 
2454     while (true) {
2455         uint32_t index;
2456         uint16_t n_valid, n_invalid;
2457 
2458         index = qemu_get_be32(f);
2459         n_valid = qemu_get_be16(f);
2460         n_invalid = qemu_get_be16(f);
2461 
2462         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2463             /* End of Stream */
2464             break;
2465         }
2466 
2467         if ((index + n_valid + n_invalid) >
2468             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2469             /* Bad index in stream */
2470             error_report(
2471                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2472                 index, n_valid, n_invalid, spapr->htab_shift);
2473             return -EINVAL;
2474         }
2475 
2476         if (spapr->htab) {
2477             if (n_valid) {
2478                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2479                                 HASH_PTE_SIZE_64 * n_valid);
2480             }
2481             if (n_invalid) {
2482                 memset(HPTE(spapr->htab, index + n_valid), 0,
2483                        HASH_PTE_SIZE_64 * n_invalid);
2484             }
2485         } else {
2486             int rc;
2487 
2488             assert(fd >= 0);
2489 
2490             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2491                                         &local_err);
2492             if (rc < 0) {
2493                 error_report_err(local_err);
2494                 return rc;
2495             }
2496         }
2497     }
2498 
2499     if (!spapr->htab) {
2500         assert(fd >= 0);
2501         close(fd);
2502     }
2503 
2504     return 0;
2505 }
2506 
2507 static void htab_save_cleanup(void *opaque)
2508 {
2509     SpaprMachineState *spapr = opaque;
2510 
2511     close_htab_fd(spapr);
2512 }
2513 
2514 static SaveVMHandlers savevm_htab_handlers = {
2515     .save_setup = htab_save_setup,
2516     .save_live_iterate = htab_save_iterate,
2517     .save_live_complete_precopy = htab_save_complete,
2518     .save_cleanup = htab_save_cleanup,
2519     .load_state = htab_load,
2520 };
2521 
2522 static void spapr_boot_set(void *opaque, const char *boot_device,
2523                            Error **errp)
2524 {
2525     SpaprMachineState *spapr = SPAPR_MACHINE(opaque);
2526 
2527     g_free(spapr->boot_device);
2528     spapr->boot_device = g_strdup(boot_device);
2529 }
2530 
2531 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2532 {
2533     MachineState *machine = MACHINE(spapr);
2534     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2535     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2536     int i;
2537 
2538     g_assert(!nr_lmbs || machine->device_memory);
2539     for (i = 0; i < nr_lmbs; i++) {
2540         uint64_t addr;
2541 
2542         addr = i * lmb_size + machine->device_memory->base;
2543         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2544                                addr / lmb_size);
2545     }
2546 }
2547 
2548 /*
2549  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2550  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2551  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2552  */
2553 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2554 {
2555     int i;
2556 
2557     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2558         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2559                    " is not aligned to %" PRIu64 " MiB",
2560                    machine->ram_size,
2561                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2562         return;
2563     }
2564 
2565     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2566         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2567                    " is not aligned to %" PRIu64 " MiB",
2568                    machine->ram_size,
2569                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2570         return;
2571     }
2572 
2573     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2574         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2575             error_setg(errp,
2576                        "Node %d memory size 0x%" PRIx64
2577                        " is not aligned to %" PRIu64 " MiB",
2578                        i, machine->numa_state->nodes[i].node_mem,
2579                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2580             return;
2581         }
2582     }
2583 }
2584 
2585 /* find cpu slot in machine->possible_cpus by core_id */
2586 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2587 {
2588     int index = id / ms->smp.threads;
2589 
2590     if (index >= ms->possible_cpus->len) {
2591         return NULL;
2592     }
2593     if (idx) {
2594         *idx = index;
2595     }
2596     return &ms->possible_cpus->cpus[index];
2597 }
2598 
2599 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2600 {
2601     MachineState *ms = MACHINE(spapr);
2602     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2603     Error *local_err = NULL;
2604     bool vsmt_user = !!spapr->vsmt;
2605     int kvm_smt = kvmppc_smt_threads();
2606     int ret;
2607     unsigned int smp_threads = ms->smp.threads;
2608 
2609     if (tcg_enabled()) {
2610         if (smp_threads > 1 &&
2611             !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0,
2612                                    spapr->max_compat_pvr)) {
2613             error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs");
2614             return;
2615         }
2616 
2617         if (smp_threads > 8) {
2618             error_setg(errp, "TCG cannot support more than 8 threads/core "
2619                        "on a pseries machine");
2620             return;
2621         }
2622     }
2623     if (!is_power_of_2(smp_threads)) {
2624         error_setg(errp, "Cannot support %d threads/core on a pseries "
2625                    "machine because it must be a power of 2", smp_threads);
2626         return;
2627     }
2628 
2629     /* Determine the VSMT mode to use: */
2630     if (vsmt_user) {
2631         if (spapr->vsmt < smp_threads) {
2632             error_setg(errp, "Cannot support VSMT mode %d"
2633                        " because it must be >= threads/core (%d)",
2634                        spapr->vsmt, smp_threads);
2635             return;
2636         }
2637         /* In this case, spapr->vsmt has been set by the command line */
2638     } else if (!smc->smp_threads_vsmt) {
2639         /*
2640          * Default VSMT value is tricky, because we need it to be as
2641          * consistent as possible (for migration), but this requires
2642          * changing it for at least some existing cases.  We pick 8 as
2643          * the value that we'd get with KVM on POWER8, the
2644          * overwhelmingly common case in production systems.
2645          */
2646         spapr->vsmt = MAX(8, smp_threads);
2647     } else {
2648         spapr->vsmt = smp_threads;
2649     }
2650 
2651     /* KVM: If necessary, set the SMT mode: */
2652     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2653         ret = kvmppc_set_smt_threads(spapr->vsmt);
2654         if (ret) {
2655             /* Looks like KVM isn't able to change VSMT mode */
2656             error_setg(&local_err,
2657                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2658                        spapr->vsmt, ret);
2659             /* We can live with that if the default one is big enough
2660              * for the number of threads, and a submultiple of the one
2661              * we want.  In this case we'll waste some vcpu ids, but
2662              * behaviour will be correct */
2663             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2664                 warn_report_err(local_err);
2665             } else {
2666                 if (!vsmt_user) {
2667                     error_append_hint(&local_err,
2668                                       "On PPC, a VM with %d threads/core"
2669                                       " on a host with %d threads/core"
2670                                       " requires the use of VSMT mode %d.\n",
2671                                       smp_threads, kvm_smt, spapr->vsmt);
2672                 }
2673                 kvmppc_error_append_smt_possible_hint(&local_err);
2674                 error_propagate(errp, local_err);
2675             }
2676         }
2677     }
2678     /* else TCG: nothing to do currently */
2679 }
2680 
2681 static void spapr_init_cpus(SpaprMachineState *spapr)
2682 {
2683     MachineState *machine = MACHINE(spapr);
2684     MachineClass *mc = MACHINE_GET_CLASS(machine);
2685     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2686     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2687     const CPUArchIdList *possible_cpus;
2688     unsigned int smp_cpus = machine->smp.cpus;
2689     unsigned int smp_threads = machine->smp.threads;
2690     unsigned int max_cpus = machine->smp.max_cpus;
2691     int boot_cores_nr = smp_cpus / smp_threads;
2692     int i;
2693 
2694     possible_cpus = mc->possible_cpu_arch_ids(machine);
2695     if (mc->has_hotpluggable_cpus) {
2696         if (smp_cpus % smp_threads) {
2697             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2698                          smp_cpus, smp_threads);
2699             exit(1);
2700         }
2701         if (max_cpus % smp_threads) {
2702             error_report("max_cpus (%u) must be multiple of threads (%u)",
2703                          max_cpus, smp_threads);
2704             exit(1);
2705         }
2706     } else {
2707         if (max_cpus != smp_cpus) {
2708             error_report("This machine version does not support CPU hotplug");
2709             exit(1);
2710         }
2711         boot_cores_nr = possible_cpus->len;
2712     }
2713 
2714     if (smc->pre_2_10_has_unused_icps) {
2715         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2716             /* Dummy entries get deregistered when real ICPState objects
2717              * are registered during CPU core hotplug.
2718              */
2719             pre_2_10_vmstate_register_dummy_icp(i);
2720         }
2721     }
2722 
2723     for (i = 0; i < possible_cpus->len; i++) {
2724         int core_id = i * smp_threads;
2725 
2726         if (mc->has_hotpluggable_cpus) {
2727             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2728                                    spapr_vcpu_id(spapr, core_id));
2729         }
2730 
2731         if (i < boot_cores_nr) {
2732             Object *core  = object_new(type);
2733             int nr_threads = smp_threads;
2734 
2735             /* Handle the partially filled core for older machine types */
2736             if ((i + 1) * smp_threads >= smp_cpus) {
2737                 nr_threads = smp_cpus - i * smp_threads;
2738             }
2739 
2740             object_property_set_int(core, "nr-threads", nr_threads,
2741                                     &error_fatal);
2742             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2743                                     &error_fatal);
2744             qdev_realize(DEVICE(core), NULL, &error_fatal);
2745 
2746             object_unref(core);
2747         }
2748     }
2749 }
2750 
2751 static PCIHostState *spapr_create_default_phb(void)
2752 {
2753     DeviceState *dev;
2754 
2755     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2756     qdev_prop_set_uint32(dev, "index", 0);
2757     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2758 
2759     return PCI_HOST_BRIDGE(dev);
2760 }
2761 
2762 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2763 {
2764     MachineState *machine = MACHINE(spapr);
2765     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2766     hwaddr rma_size = machine->ram_size;
2767     hwaddr node0_size = spapr_node0_size(machine);
2768 
2769     /* RMA has to fit in the first NUMA node */
2770     rma_size = MIN(rma_size, node0_size);
2771 
2772     /*
2773      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2774      * never exceed that
2775      */
2776     rma_size = MIN(rma_size, 1 * TiB);
2777 
2778     /*
2779      * Clamp the RMA size based on machine type.  This is for
2780      * migration compatibility with older qemu versions, which limited
2781      * the RMA size for complicated and mostly bad reasons.
2782      */
2783     if (smc->rma_limit) {
2784         rma_size = MIN(rma_size, smc->rma_limit);
2785     }
2786 
2787     if (rma_size < MIN_RMA_SLOF) {
2788         error_setg(errp,
2789                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2790                    "ldMiB guest RMA (Real Mode Area memory)",
2791                    MIN_RMA_SLOF / MiB);
2792         return 0;
2793     }
2794 
2795     return rma_size;
2796 }
2797 
2798 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2799 {
2800     MachineState *machine = MACHINE(spapr);
2801     int i;
2802 
2803     for (i = 0; i < machine->ram_slots; i++) {
2804         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2805     }
2806 }
2807 
2808 /* pSeries LPAR / sPAPR hardware init */
2809 static void spapr_machine_init(MachineState *machine)
2810 {
2811     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2812     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2813     MachineClass *mc = MACHINE_GET_CLASS(machine);
2814     const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME;
2815     const char *bios_name = machine->firmware ?: bios_default;
2816     g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2817     const char *kernel_filename = machine->kernel_filename;
2818     const char *initrd_filename = machine->initrd_filename;
2819     PCIHostState *phb;
2820     bool has_vga;
2821     int i;
2822     MemoryRegion *sysmem = get_system_memory();
2823     long load_limit, fw_size;
2824     Error *resize_hpt_err = NULL;
2825     NICInfo *nd;
2826 
2827     if (!filename) {
2828         error_report("Could not find LPAR firmware '%s'", bios_name);
2829         exit(1);
2830     }
2831     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2832     if (fw_size <= 0) {
2833         error_report("Could not load LPAR firmware '%s'", filename);
2834         exit(1);
2835     }
2836 
2837     /*
2838      * if Secure VM (PEF) support is configured, then initialize it
2839      */
2840     pef_kvm_init(machine->cgs, &error_fatal);
2841 
2842     msi_nonbroken = true;
2843 
2844     QLIST_INIT(&spapr->phbs);
2845     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2846 
2847     /* Determine capabilities to run with */
2848     spapr_caps_init(spapr);
2849 
2850     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2851     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2852         /*
2853          * If the user explicitly requested a mode we should either
2854          * supply it, or fail completely (which we do below).  But if
2855          * it's not set explicitly, we reset our mode to something
2856          * that works
2857          */
2858         if (resize_hpt_err) {
2859             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2860             error_free(resize_hpt_err);
2861             resize_hpt_err = NULL;
2862         } else {
2863             spapr->resize_hpt = smc->resize_hpt_default;
2864         }
2865     }
2866 
2867     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2868 
2869     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2870         /*
2871          * User requested HPT resize, but this host can't supply it.  Bail out
2872          */
2873         error_report_err(resize_hpt_err);
2874         exit(1);
2875     }
2876     error_free(resize_hpt_err);
2877 
2878     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2879 
2880     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2881     load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD;
2882 
2883     /*
2884      * VSMT must be set in order to be able to compute VCPU ids, ie to
2885      * call spapr_max_server_number() or spapr_vcpu_id().
2886      */
2887     spapr_set_vsmt_mode(spapr, &error_fatal);
2888 
2889     /* Set up Interrupt Controller before we create the VCPUs */
2890     spapr_irq_init(spapr, &error_fatal);
2891 
2892     /* Set up containers for ibm,client-architecture-support negotiated options
2893      */
2894     spapr->ov5 = spapr_ovec_new();
2895     spapr->ov5_cas = spapr_ovec_new();
2896 
2897     if (smc->dr_lmb_enabled) {
2898         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2899         spapr_validate_node_memory(machine, &error_fatal);
2900     }
2901 
2902     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2903 
2904     /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */
2905     if (!smc->pre_6_2_numa_affinity) {
2906         spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY);
2907     }
2908 
2909     /* advertise support for dedicated HP event source to guests */
2910     if (spapr->use_hotplug_event_source) {
2911         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2912     }
2913 
2914     /* advertise support for HPT resizing */
2915     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2916         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2917     }
2918 
2919     /* advertise support for ibm,dyamic-memory-v2 */
2920     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2921 
2922     /* advertise XIVE on POWER9 machines */
2923     if (spapr->irq->xive) {
2924         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2925     }
2926 
2927     /* init CPUs */
2928     spapr_init_cpus(spapr);
2929 
2930     /* Init numa_assoc_array */
2931     spapr_numa_associativity_init(spapr, machine);
2932 
2933     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2934         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2935                               spapr->max_compat_pvr)) {
2936         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2937         /* KVM and TCG always allow GTSE with radix... */
2938         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2939     }
2940     /* ... but not with hash (currently). */
2941 
2942     if (kvm_enabled()) {
2943         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2944         kvmppc_enable_logical_ci_hcalls();
2945         kvmppc_enable_set_mode_hcall();
2946 
2947         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2948         kvmppc_enable_clear_ref_mod_hcalls();
2949 
2950         /* Enable H_PAGE_INIT */
2951         kvmppc_enable_h_page_init();
2952     }
2953 
2954     /* map RAM */
2955     memory_region_add_subregion(sysmem, 0, machine->ram);
2956 
2957     /* initialize hotplug memory address space */
2958     if (machine->ram_size < machine->maxram_size) {
2959         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2960         hwaddr device_mem_base;
2961 
2962         /*
2963          * Limit the number of hotpluggable memory slots to half the number
2964          * slots that KVM supports, leaving the other half for PCI and other
2965          * devices. However ensure that number of slots doesn't drop below 32.
2966          */
2967         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2968                            SPAPR_MAX_RAM_SLOTS;
2969 
2970         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2971             max_memslots = SPAPR_MAX_RAM_SLOTS;
2972         }
2973         if (machine->ram_slots > max_memslots) {
2974             error_report("Specified number of memory slots %"
2975                          PRIu64" exceeds max supported %d",
2976                          machine->ram_slots, max_memslots);
2977             exit(1);
2978         }
2979 
2980         device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN);
2981         machine_memory_devices_init(machine, device_mem_base, device_mem_size);
2982     }
2983 
2984     if (smc->dr_lmb_enabled) {
2985         spapr_create_lmb_dr_connectors(spapr);
2986     }
2987 
2988     if (mc->nvdimm_supported) {
2989         spapr_create_nvdimm_dr_connectors(spapr);
2990     }
2991 
2992     /* Set up RTAS event infrastructure */
2993     spapr_events_init(spapr);
2994 
2995     /* Set up the RTC RTAS interfaces */
2996     spapr_rtc_create(spapr);
2997 
2998     /* Set up VIO bus */
2999     spapr->vio_bus = spapr_vio_bus_init();
3000 
3001     for (i = 0; serial_hd(i); i++) {
3002         spapr_vty_create(spapr->vio_bus, serial_hd(i));
3003     }
3004 
3005     /* We always have at least the nvram device on VIO */
3006     spapr_create_nvram(spapr);
3007 
3008     /*
3009      * Setup hotplug / dynamic-reconfiguration connectors. top-level
3010      * connectors (described in root DT node's "ibm,drc-types" property)
3011      * are pre-initialized here. additional child connectors (such as
3012      * connectors for a PHBs PCI slots) are added as needed during their
3013      * parent's realization.
3014      */
3015     if (smc->dr_phb_enabled) {
3016         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
3017             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
3018         }
3019     }
3020 
3021     /* Set up PCI */
3022     spapr_pci_rtas_init();
3023 
3024     phb = spapr_create_default_phb();
3025 
3026     while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) {
3027         spapr_vlan_create(spapr->vio_bus, nd);
3028     }
3029 
3030     pci_init_nic_devices(phb->bus, NULL);
3031 
3032     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
3033         spapr_vscsi_create(spapr->vio_bus);
3034     }
3035 
3036     /* Graphics */
3037     has_vga = spapr_vga_init(phb->bus, &error_fatal);
3038     if (has_vga) {
3039         spapr->want_stdout_path = !machine->enable_graphics;
3040         machine->usb |= defaults_enabled() && !machine->usb_disabled;
3041     } else {
3042         spapr->want_stdout_path = true;
3043     }
3044 
3045     if (machine->usb) {
3046         if (smc->use_ohci_by_default) {
3047             pci_create_simple(phb->bus, -1, "pci-ohci");
3048         } else {
3049             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3050         }
3051 
3052         if (has_vga) {
3053             USBBus *usb_bus;
3054 
3055             usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS,
3056                                                               &error_abort));
3057             usb_create_simple(usb_bus, "usb-kbd");
3058             usb_create_simple(usb_bus, "usb-mouse");
3059         }
3060     }
3061 
3062     if (kernel_filename) {
3063         uint64_t loaded_addr = 0;
3064 
3065         spapr->kernel_size = load_elf(kernel_filename, NULL,
3066                                       translate_kernel_address, spapr,
3067                                       NULL, &loaded_addr, NULL, NULL, 1,
3068                                       PPC_ELF_MACHINE, 0, 0);
3069         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3070             spapr->kernel_size = load_elf(kernel_filename, NULL,
3071                                           translate_kernel_address, spapr,
3072                                           NULL, &loaded_addr, NULL, NULL, 0,
3073                                           PPC_ELF_MACHINE, 0, 0);
3074             spapr->kernel_le = spapr->kernel_size > 0;
3075         }
3076         if (spapr->kernel_size < 0) {
3077             error_report("error loading %s: %s", kernel_filename,
3078                          load_elf_strerror(spapr->kernel_size));
3079             exit(1);
3080         }
3081 
3082         if (spapr->kernel_addr != loaded_addr) {
3083             warn_report("spapr: kernel_addr changed from 0x%"PRIx64
3084                         " to 0x%"PRIx64,
3085                         spapr->kernel_addr, loaded_addr);
3086             spapr->kernel_addr = loaded_addr;
3087         }
3088 
3089         /* load initrd */
3090         if (initrd_filename) {
3091             /* Try to locate the initrd in the gap between the kernel
3092              * and the firmware. Add a bit of space just in case
3093              */
3094             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
3095                                   + 0x1ffff) & ~0xffff;
3096             spapr->initrd_size = load_image_targphys(initrd_filename,
3097                                                      spapr->initrd_base,
3098                                                      load_limit
3099                                                      - spapr->initrd_base);
3100             if (spapr->initrd_size < 0) {
3101                 error_report("could not load initial ram disk '%s'",
3102                              initrd_filename);
3103                 exit(1);
3104             }
3105         }
3106     }
3107 
3108     /* FIXME: Should register things through the MachineState's qdev
3109      * interface, this is a legacy from the sPAPREnvironment structure
3110      * which predated MachineState but had a similar function */
3111     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3112     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3113                          &savevm_htab_handlers, spapr);
3114 
3115     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3116 
3117     qemu_register_boot_set(spapr_boot_set, spapr);
3118 
3119     /*
3120      * Nothing needs to be done to resume a suspended guest because
3121      * suspending does not change the machine state, so no need for
3122      * a ->wakeup method.
3123      */
3124     qemu_register_wakeup_support();
3125 
3126     if (kvm_enabled()) {
3127         /* to stop and start vmclock */
3128         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3129                                          &spapr->tb);
3130 
3131         kvmppc_spapr_enable_inkernel_multitce();
3132     }
3133 
3134     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3135     if (spapr->vof) {
3136         spapr->vof->fw_size = fw_size; /* for claim() on itself */
3137         spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client);
3138     }
3139 
3140     spapr_watchdog_init(spapr);
3141 }
3142 
3143 #define DEFAULT_KVM_TYPE "auto"
3144 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3145 {
3146     /*
3147      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3148      * accommodate the 'HV' and 'PV' formats that exists in the
3149      * wild. The 'auto' mode is being introduced already as
3150      * lower-case, thus we don't need to bother checking for
3151      * "AUTO".
3152      */
3153     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3154         return 0;
3155     }
3156 
3157     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3158         return 1;
3159     }
3160 
3161     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3162         return 2;
3163     }
3164 
3165     error_report("Unknown kvm-type specified '%s'", vm_type);
3166     return -1;
3167 }
3168 
3169 /*
3170  * Implementation of an interface to adjust firmware path
3171  * for the bootindex property handling.
3172  */
3173 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3174                                    DeviceState *dev)
3175 {
3176 #define CAST(type, obj, name) \
3177     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3178     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3179     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3180     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3181     PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3182 
3183     if (d && bus) {
3184         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3185         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3186         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3187 
3188         if (spapr) {
3189             /*
3190              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3191              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3192              * 0x8000 | (target << 8) | (bus << 5) | lun
3193              * (see the "Logical unit addressing format" table in SAM5)
3194              */
3195             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3196             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3197                                    (uint64_t)id << 48);
3198         } else if (virtio) {
3199             /*
3200              * We use SRP luns of the form 01000000 | (target << 8) | lun
3201              * in the top 32 bits of the 64-bit LUN
3202              * Note: the quote above is from SLOF and it is wrong,
3203              * the actual binding is:
3204              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3205              */
3206             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3207             if (d->lun >= 256) {
3208                 /* Use the LUN "flat space addressing method" */
3209                 id |= 0x4000;
3210             }
3211             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3212                                    (uint64_t)id << 32);
3213         } else if (usb) {
3214             /*
3215              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3216              * in the top 32 bits of the 64-bit LUN
3217              */
3218             unsigned usb_port = atoi(usb->port->path);
3219             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3220             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3221                                    (uint64_t)id << 32);
3222         }
3223     }
3224 
3225     /*
3226      * SLOF probes the USB devices, and if it recognizes that the device is a
3227      * storage device, it changes its name to "storage" instead of "usb-host",
3228      * and additionally adds a child node for the SCSI LUN, so the correct
3229      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3230      */
3231     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3232         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3233         if (usb_device_is_scsi_storage(usbdev)) {
3234             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3235         }
3236     }
3237 
3238     if (phb) {
3239         /* Replace "pci" with "pci@800000020000000" */
3240         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3241     }
3242 
3243     if (vsc) {
3244         /* Same logic as virtio above */
3245         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3246         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3247     }
3248 
3249     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3250         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3251         PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3252         return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn));
3253     }
3254 
3255     if (pcidev) {
3256         return spapr_pci_fw_dev_name(pcidev);
3257     }
3258 
3259     return NULL;
3260 }
3261 
3262 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3263 {
3264     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3265 
3266     return g_strdup(spapr->kvm_type);
3267 }
3268 
3269 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3270 {
3271     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3272 
3273     g_free(spapr->kvm_type);
3274     spapr->kvm_type = g_strdup(value);
3275 }
3276 
3277 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3278 {
3279     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3280 
3281     return spapr->use_hotplug_event_source;
3282 }
3283 
3284 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3285                                             Error **errp)
3286 {
3287     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3288 
3289     spapr->use_hotplug_event_source = value;
3290 }
3291 
3292 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3293 {
3294     return true;
3295 }
3296 
3297 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3298 {
3299     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3300 
3301     switch (spapr->resize_hpt) {
3302     case SPAPR_RESIZE_HPT_DEFAULT:
3303         return g_strdup("default");
3304     case SPAPR_RESIZE_HPT_DISABLED:
3305         return g_strdup("disabled");
3306     case SPAPR_RESIZE_HPT_ENABLED:
3307         return g_strdup("enabled");
3308     case SPAPR_RESIZE_HPT_REQUIRED:
3309         return g_strdup("required");
3310     }
3311     g_assert_not_reached();
3312 }
3313 
3314 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3315 {
3316     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3317 
3318     if (strcmp(value, "default") == 0) {
3319         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3320     } else if (strcmp(value, "disabled") == 0) {
3321         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3322     } else if (strcmp(value, "enabled") == 0) {
3323         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3324     } else if (strcmp(value, "required") == 0) {
3325         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3326     } else {
3327         error_setg(errp, "Bad value for \"resize-hpt\" property");
3328     }
3329 }
3330 
3331 static bool spapr_get_vof(Object *obj, Error **errp)
3332 {
3333     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3334 
3335     return spapr->vof != NULL;
3336 }
3337 
3338 static void spapr_set_vof(Object *obj, bool value, Error **errp)
3339 {
3340     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3341 
3342     if (spapr->vof) {
3343         vof_cleanup(spapr->vof);
3344         g_free(spapr->vof);
3345         spapr->vof = NULL;
3346     }
3347     if (!value) {
3348         return;
3349     }
3350     spapr->vof = g_malloc0(sizeof(*spapr->vof));
3351 }
3352 
3353 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3354 {
3355     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3356 
3357     if (spapr->irq == &spapr_irq_xics_legacy) {
3358         return g_strdup("legacy");
3359     } else if (spapr->irq == &spapr_irq_xics) {
3360         return g_strdup("xics");
3361     } else if (spapr->irq == &spapr_irq_xive) {
3362         return g_strdup("xive");
3363     } else if (spapr->irq == &spapr_irq_dual) {
3364         return g_strdup("dual");
3365     }
3366     g_assert_not_reached();
3367 }
3368 
3369 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3370 {
3371     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3372 
3373     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3374         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3375         return;
3376     }
3377 
3378     /* The legacy IRQ backend can not be set */
3379     if (strcmp(value, "xics") == 0) {
3380         spapr->irq = &spapr_irq_xics;
3381     } else if (strcmp(value, "xive") == 0) {
3382         spapr->irq = &spapr_irq_xive;
3383     } else if (strcmp(value, "dual") == 0) {
3384         spapr->irq = &spapr_irq_dual;
3385     } else {
3386         error_setg(errp, "Bad value for \"ic-mode\" property");
3387     }
3388 }
3389 
3390 static char *spapr_get_host_model(Object *obj, Error **errp)
3391 {
3392     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3393 
3394     return g_strdup(spapr->host_model);
3395 }
3396 
3397 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3398 {
3399     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3400 
3401     g_free(spapr->host_model);
3402     spapr->host_model = g_strdup(value);
3403 }
3404 
3405 static char *spapr_get_host_serial(Object *obj, Error **errp)
3406 {
3407     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3408 
3409     return g_strdup(spapr->host_serial);
3410 }
3411 
3412 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3413 {
3414     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3415 
3416     g_free(spapr->host_serial);
3417     spapr->host_serial = g_strdup(value);
3418 }
3419 
3420 static void spapr_instance_init(Object *obj)
3421 {
3422     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3423     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3424     MachineState *ms = MACHINE(spapr);
3425     MachineClass *mc = MACHINE_GET_CLASS(ms);
3426 
3427     /*
3428      * NVDIMM support went live in 5.1 without considering that, in
3429      * other archs, the user needs to enable NVDIMM support with the
3430      * 'nvdimm' machine option and the default behavior is NVDIMM
3431      * support disabled. It is too late to roll back to the standard
3432      * behavior without breaking 5.1 guests.
3433      */
3434     if (mc->nvdimm_supported) {
3435         ms->nvdimms_state->is_enabled = true;
3436     }
3437 
3438     spapr->htab_fd = -1;
3439     spapr->use_hotplug_event_source = true;
3440     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3441     object_property_add_str(obj, "kvm-type",
3442                             spapr_get_kvm_type, spapr_set_kvm_type);
3443     object_property_set_description(obj, "kvm-type",
3444                                     "Specifies the KVM virtualization mode (auto,"
3445                                     " hv, pr). Defaults to 'auto'. This mode will use"
3446                                     " any available KVM module loaded in the host,"
3447                                     " where kvm_hv takes precedence if both kvm_hv and"
3448                                     " kvm_pr are loaded.");
3449     object_property_add_bool(obj, "modern-hotplug-events",
3450                             spapr_get_modern_hotplug_events,
3451                             spapr_set_modern_hotplug_events);
3452     object_property_set_description(obj, "modern-hotplug-events",
3453                                     "Use dedicated hotplug event mechanism in"
3454                                     " place of standard EPOW events when possible"
3455                                     " (required for memory hot-unplug support)");
3456     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3457                             "Maximum permitted CPU compatibility mode");
3458 
3459     object_property_add_str(obj, "resize-hpt",
3460                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3461     object_property_set_description(obj, "resize-hpt",
3462                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3463     object_property_add_uint32_ptr(obj, "vsmt",
3464                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3465     object_property_set_description(obj, "vsmt",
3466                                     "Virtual SMT: KVM behaves as if this were"
3467                                     " the host's SMT mode");
3468 
3469     object_property_add_bool(obj, "vfio-no-msix-emulation",
3470                              spapr_get_msix_emulation, NULL);
3471 
3472     object_property_add_uint64_ptr(obj, "kernel-addr",
3473                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3474     object_property_set_description(obj, "kernel-addr",
3475                                     stringify(KERNEL_LOAD_ADDR)
3476                                     " for -kernel is the default");
3477     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3478 
3479     object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof);
3480     object_property_set_description(obj, "x-vof",
3481                                     "Enable Virtual Open Firmware (experimental)");
3482 
3483     /* The machine class defines the default interrupt controller mode */
3484     spapr->irq = smc->irq;
3485     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3486                             spapr_set_ic_mode);
3487     object_property_set_description(obj, "ic-mode",
3488                  "Specifies the interrupt controller mode (xics, xive, dual)");
3489 
3490     object_property_add_str(obj, "host-model",
3491         spapr_get_host_model, spapr_set_host_model);
3492     object_property_set_description(obj, "host-model",
3493         "Host model to advertise in guest device tree");
3494     object_property_add_str(obj, "host-serial",
3495         spapr_get_host_serial, spapr_set_host_serial);
3496     object_property_set_description(obj, "host-serial",
3497         "Host serial number to advertise in guest device tree");
3498 }
3499 
3500 static void spapr_machine_finalizefn(Object *obj)
3501 {
3502     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3503 
3504     g_free(spapr->kvm_type);
3505 }
3506 
3507 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3508 {
3509     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3510     PowerPCCPU *cpu = POWERPC_CPU(cs);
3511     CPUPPCState *env = &cpu->env;
3512 
3513     cpu_synchronize_state(cs);
3514     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3515     if (spapr->fwnmi_system_reset_addr != -1) {
3516         uint64_t rtas_addr, addr;
3517 
3518         /* get rtas addr from fdt */
3519         rtas_addr = spapr_get_rtas_addr();
3520         if (!rtas_addr) {
3521             qemu_system_guest_panicked(NULL);
3522             return;
3523         }
3524 
3525         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3526         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3527         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3528         env->gpr[3] = addr;
3529     }
3530     ppc_cpu_do_system_reset(cs);
3531     if (spapr->fwnmi_system_reset_addr != -1) {
3532         env->nip = spapr->fwnmi_system_reset_addr;
3533     }
3534 }
3535 
3536 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3537 {
3538     CPUState *cs;
3539 
3540     CPU_FOREACH(cs) {
3541         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3542     }
3543 }
3544 
3545 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3546                           void *fdt, int *fdt_start_offset, Error **errp)
3547 {
3548     uint64_t addr;
3549     uint32_t node;
3550 
3551     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3552     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3553                                     &error_abort);
3554     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3555                                              SPAPR_MEMORY_BLOCK_SIZE);
3556     return 0;
3557 }
3558 
3559 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3560                            bool dedicated_hp_event_source)
3561 {
3562     SpaprDrc *drc;
3563     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3564     int i;
3565     uint64_t addr = addr_start;
3566     bool hotplugged = spapr_drc_hotplugged(dev);
3567 
3568     for (i = 0; i < nr_lmbs; i++) {
3569         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3570                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3571         g_assert(drc);
3572 
3573         /*
3574          * memory_device_get_free_addr() provided a range of free addresses
3575          * that doesn't overlap with any existing mapping at pre-plug. The
3576          * corresponding LMB DRCs are thus assumed to be all attachable.
3577          */
3578         spapr_drc_attach(drc, dev);
3579         if (!hotplugged) {
3580             spapr_drc_reset(drc);
3581         }
3582         addr += SPAPR_MEMORY_BLOCK_SIZE;
3583     }
3584     /* send hotplug notification to the
3585      * guest only in case of hotplugged memory
3586      */
3587     if (hotplugged) {
3588         if (dedicated_hp_event_source) {
3589             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3590                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3591             g_assert(drc);
3592             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3593                                                    nr_lmbs,
3594                                                    spapr_drc_index(drc));
3595         } else {
3596             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3597                                            nr_lmbs);
3598         }
3599     }
3600 }
3601 
3602 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3603 {
3604     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3605     PCDIMMDevice *dimm = PC_DIMM(dev);
3606     uint64_t size, addr;
3607     int64_t slot;
3608     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3609 
3610     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3611 
3612     pc_dimm_plug(dimm, MACHINE(ms));
3613 
3614     if (!is_nvdimm) {
3615         addr = object_property_get_uint(OBJECT(dimm),
3616                                         PC_DIMM_ADDR_PROP, &error_abort);
3617         spapr_add_lmbs(dev, addr, size,
3618                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3619     } else {
3620         slot = object_property_get_int(OBJECT(dimm),
3621                                        PC_DIMM_SLOT_PROP, &error_abort);
3622         /* We should have valid slot number at this point */
3623         g_assert(slot >= 0);
3624         spapr_add_nvdimm(dev, slot);
3625     }
3626 }
3627 
3628 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3629                                   Error **errp)
3630 {
3631     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3632     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3633     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3634     PCDIMMDevice *dimm = PC_DIMM(dev);
3635     Error *local_err = NULL;
3636     uint64_t size;
3637     Object *memdev;
3638     hwaddr pagesize;
3639 
3640     if (!smc->dr_lmb_enabled) {
3641         error_setg(errp, "Memory hotplug not supported for this machine");
3642         return;
3643     }
3644 
3645     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3646     if (local_err) {
3647         error_propagate(errp, local_err);
3648         return;
3649     }
3650 
3651     if (is_nvdimm) {
3652         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3653             return;
3654         }
3655     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3656         error_setg(errp, "Hotplugged memory size must be a multiple of "
3657                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3658         return;
3659     }
3660 
3661     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3662                                       &error_abort);
3663     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3664     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3665         return;
3666     }
3667 
3668     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3669 }
3670 
3671 struct SpaprDimmState {
3672     PCDIMMDevice *dimm;
3673     uint32_t nr_lmbs;
3674     QTAILQ_ENTRY(SpaprDimmState) next;
3675 };
3676 
3677 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3678                                                        PCDIMMDevice *dimm)
3679 {
3680     SpaprDimmState *dimm_state = NULL;
3681 
3682     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3683         if (dimm_state->dimm == dimm) {
3684             break;
3685         }
3686     }
3687     return dimm_state;
3688 }
3689 
3690 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3691                                                       uint32_t nr_lmbs,
3692                                                       PCDIMMDevice *dimm)
3693 {
3694     SpaprDimmState *ds = NULL;
3695 
3696     /*
3697      * If this request is for a DIMM whose removal had failed earlier
3698      * (due to guest's refusal to remove the LMBs), we would have this
3699      * dimm already in the pending_dimm_unplugs list. In that
3700      * case don't add again.
3701      */
3702     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3703     if (!ds) {
3704         ds = g_new0(SpaprDimmState, 1);
3705         ds->nr_lmbs = nr_lmbs;
3706         ds->dimm = dimm;
3707         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3708     }
3709     return ds;
3710 }
3711 
3712 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3713                                               SpaprDimmState *dimm_state)
3714 {
3715     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3716     g_free(dimm_state);
3717 }
3718 
3719 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3720                                                         PCDIMMDevice *dimm)
3721 {
3722     SpaprDrc *drc;
3723     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3724                                                   &error_abort);
3725     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3726     uint32_t avail_lmbs = 0;
3727     uint64_t addr_start, addr;
3728     int i;
3729 
3730     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3731                                           &error_abort);
3732 
3733     addr = addr_start;
3734     for (i = 0; i < nr_lmbs; i++) {
3735         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3736                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3737         g_assert(drc);
3738         if (drc->dev) {
3739             avail_lmbs++;
3740         }
3741         addr += SPAPR_MEMORY_BLOCK_SIZE;
3742     }
3743 
3744     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3745 }
3746 
3747 void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev)
3748 {
3749     SpaprDimmState *ds;
3750     PCDIMMDevice *dimm;
3751     SpaprDrc *drc;
3752     uint32_t nr_lmbs;
3753     uint64_t size, addr_start, addr;
3754     g_autofree char *qapi_error = NULL;
3755     int i;
3756 
3757     if (!dev) {
3758         return;
3759     }
3760 
3761     dimm = PC_DIMM(dev);
3762     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3763 
3764     /*
3765      * 'ds == NULL' would mean that the DIMM doesn't have a pending
3766      * unplug state, but one of its DRC is marked as unplug_requested.
3767      * This is bad and weird enough to g_assert() out.
3768      */
3769     g_assert(ds);
3770 
3771     spapr_pending_dimm_unplugs_remove(spapr, ds);
3772 
3773     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3774     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3775 
3776     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3777                                           &error_abort);
3778 
3779     addr = addr_start;
3780     for (i = 0; i < nr_lmbs; i++) {
3781         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3782                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3783         g_assert(drc);
3784 
3785         drc->unplug_requested = false;
3786         addr += SPAPR_MEMORY_BLOCK_SIZE;
3787     }
3788 
3789     /*
3790      * Tell QAPI that something happened and the memory
3791      * hotunplug wasn't successful. Keep sending
3792      * MEM_UNPLUG_ERROR even while sending
3793      * DEVICE_UNPLUG_GUEST_ERROR until the deprecation of
3794      * MEM_UNPLUG_ERROR is due.
3795      */
3796     qapi_error = g_strdup_printf("Memory hotunplug rejected by the guest "
3797                                  "for device %s", dev->id);
3798 
3799     qapi_event_send_mem_unplug_error(dev->id ? : "", qapi_error);
3800 
3801     qapi_event_send_device_unplug_guest_error(dev->id,
3802                                               dev->canonical_path);
3803 }
3804 
3805 /* Callback to be called during DRC release. */
3806 void spapr_lmb_release(DeviceState *dev)
3807 {
3808     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3809     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3810     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3811 
3812     /* This information will get lost if a migration occurs
3813      * during the unplug process. In this case recover it. */
3814     if (ds == NULL) {
3815         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3816         g_assert(ds);
3817         /* The DRC being examined by the caller at least must be counted */
3818         g_assert(ds->nr_lmbs);
3819     }
3820 
3821     if (--ds->nr_lmbs) {
3822         return;
3823     }
3824 
3825     /*
3826      * Now that all the LMBs have been removed by the guest, call the
3827      * unplug handler chain. This can never fail.
3828      */
3829     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3830     object_unparent(OBJECT(dev));
3831 }
3832 
3833 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3834 {
3835     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3836     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3837 
3838     /* We really shouldn't get this far without anything to unplug */
3839     g_assert(ds);
3840 
3841     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3842     qdev_unrealize(dev);
3843     spapr_pending_dimm_unplugs_remove(spapr, ds);
3844 }
3845 
3846 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3847                                         DeviceState *dev, Error **errp)
3848 {
3849     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3850     PCDIMMDevice *dimm = PC_DIMM(dev);
3851     uint32_t nr_lmbs;
3852     uint64_t size, addr_start, addr;
3853     int i;
3854     SpaprDrc *drc;
3855 
3856     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3857         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3858         return;
3859     }
3860 
3861     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3862     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3863 
3864     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3865                                           &error_abort);
3866 
3867     /*
3868      * An existing pending dimm state for this DIMM means that there is an
3869      * unplug operation in progress, waiting for the spapr_lmb_release
3870      * callback to complete the job (BQL can't cover that far). In this case,
3871      * bail out to avoid detaching DRCs that were already released.
3872      */
3873     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3874         error_setg(errp, "Memory unplug already in progress for device %s",
3875                    dev->id);
3876         return;
3877     }
3878 
3879     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3880 
3881     addr = addr_start;
3882     for (i = 0; i < nr_lmbs; i++) {
3883         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3884                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3885         g_assert(drc);
3886 
3887         spapr_drc_unplug_request(drc);
3888         addr += SPAPR_MEMORY_BLOCK_SIZE;
3889     }
3890 
3891     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3892                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3893     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3894                                               nr_lmbs, spapr_drc_index(drc));
3895 }
3896 
3897 /* Callback to be called during DRC release. */
3898 void spapr_core_release(DeviceState *dev)
3899 {
3900     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3901 
3902     /* Call the unplug handler chain. This can never fail. */
3903     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3904     object_unparent(OBJECT(dev));
3905 }
3906 
3907 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3908 {
3909     MachineState *ms = MACHINE(hotplug_dev);
3910     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3911     CPUCore *cc = CPU_CORE(dev);
3912     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3913 
3914     if (smc->pre_2_10_has_unused_icps) {
3915         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3916         int i;
3917 
3918         for (i = 0; i < cc->nr_threads; i++) {
3919             CPUState *cs = CPU(sc->threads[i]);
3920 
3921             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3922         }
3923     }
3924 
3925     assert(core_slot);
3926     core_slot->cpu = NULL;
3927     qdev_unrealize(dev);
3928 }
3929 
3930 static
3931 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3932                                Error **errp)
3933 {
3934     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3935     int index;
3936     SpaprDrc *drc;
3937     CPUCore *cc = CPU_CORE(dev);
3938 
3939     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3940         error_setg(errp, "Unable to find CPU core with core-id: %d",
3941                    cc->core_id);
3942         return;
3943     }
3944     if (index == 0) {
3945         error_setg(errp, "Boot CPU core may not be unplugged");
3946         return;
3947     }
3948 
3949     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3950                           spapr_vcpu_id(spapr, cc->core_id));
3951     g_assert(drc);
3952 
3953     if (!spapr_drc_unplug_requested(drc)) {
3954         spapr_drc_unplug_request(drc);
3955     }
3956 
3957     /*
3958      * spapr_hotplug_req_remove_by_index is left unguarded, out of the
3959      * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ
3960      * pulses removing the same CPU. Otherwise, in an failed hotunplug
3961      * attempt (e.g. the kernel will refuse to remove the last online
3962      * CPU), we will never attempt it again because unplug_requested
3963      * will still be 'true' in that case.
3964      */
3965     spapr_hotplug_req_remove_by_index(drc);
3966 }
3967 
3968 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3969                            void *fdt, int *fdt_start_offset, Error **errp)
3970 {
3971     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3972     CPUState *cs = CPU(core->threads[0]);
3973     PowerPCCPU *cpu = POWERPC_CPU(cs);
3974     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3975     int id = spapr_get_vcpu_id(cpu);
3976     g_autofree char *nodename = NULL;
3977     int offset;
3978 
3979     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3980     offset = fdt_add_subnode(fdt, 0, nodename);
3981 
3982     spapr_dt_cpu(cs, fdt, offset, spapr);
3983 
3984     /*
3985      * spapr_dt_cpu() does not fill the 'name' property in the
3986      * CPU node. The function is called during boot process, before
3987      * and after CAS, and overwriting the 'name' property written
3988      * by SLOF is not allowed.
3989      *
3990      * Write it manually after spapr_dt_cpu(). This makes the hotplug
3991      * CPUs more compatible with the coldplugged ones, which have
3992      * the 'name' property. Linux Kernel also relies on this
3993      * property to identify CPU nodes.
3994      */
3995     _FDT((fdt_setprop_string(fdt, offset, "name", nodename)));
3996 
3997     *fdt_start_offset = offset;
3998     return 0;
3999 }
4000 
4001 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4002 {
4003     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4004     MachineClass *mc = MACHINE_GET_CLASS(spapr);
4005     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4006     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
4007     CPUCore *cc = CPU_CORE(dev);
4008     CPUState *cs;
4009     SpaprDrc *drc;
4010     CPUArchId *core_slot;
4011     int index;
4012     bool hotplugged = spapr_drc_hotplugged(dev);
4013     int i;
4014 
4015     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4016     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
4017 
4018     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
4019                           spapr_vcpu_id(spapr, cc->core_id));
4020 
4021     g_assert(drc || !mc->has_hotpluggable_cpus);
4022 
4023     if (drc) {
4024         /*
4025          * spapr_core_pre_plug() already buys us this is a brand new
4026          * core being plugged into a free slot. Nothing should already
4027          * be attached to the corresponding DRC.
4028          */
4029         spapr_drc_attach(drc, dev);
4030 
4031         if (hotplugged) {
4032             /*
4033              * Send hotplug notification interrupt to the guest only
4034              * in case of hotplugged CPUs.
4035              */
4036             spapr_hotplug_req_add_by_index(drc);
4037         } else {
4038             spapr_drc_reset(drc);
4039         }
4040     }
4041 
4042     core_slot->cpu = OBJECT(dev);
4043 
4044     /*
4045      * Set compatibility mode to match the boot CPU, which was either set
4046      * by the machine reset code or by CAS. This really shouldn't fail at
4047      * this point.
4048      */
4049     if (hotplugged) {
4050         for (i = 0; i < cc->nr_threads; i++) {
4051             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
4052                            &error_abort);
4053         }
4054     }
4055 
4056     if (smc->pre_2_10_has_unused_icps) {
4057         for (i = 0; i < cc->nr_threads; i++) {
4058             cs = CPU(core->threads[i]);
4059             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
4060         }
4061     }
4062 }
4063 
4064 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4065                                 Error **errp)
4066 {
4067     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
4068     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
4069     CPUCore *cc = CPU_CORE(dev);
4070     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
4071     const char *type = object_get_typename(OBJECT(dev));
4072     CPUArchId *core_slot;
4073     int index;
4074     unsigned int smp_threads = machine->smp.threads;
4075 
4076     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
4077         error_setg(errp, "CPU hotplug not supported for this machine");
4078         return;
4079     }
4080 
4081     if (strcmp(base_core_type, type)) {
4082         error_setg(errp, "CPU core type should be %s", base_core_type);
4083         return;
4084     }
4085 
4086     if (cc->core_id % smp_threads) {
4087         error_setg(errp, "invalid core id %d", cc->core_id);
4088         return;
4089     }
4090 
4091     /*
4092      * In general we should have homogeneous threads-per-core, but old
4093      * (pre hotplug support) machine types allow the last core to have
4094      * reduced threads as a compatibility hack for when we allowed
4095      * total vcpus not a multiple of threads-per-core.
4096      */
4097     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
4098         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
4099                    smp_threads);
4100         return;
4101     }
4102 
4103     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
4104     if (!core_slot) {
4105         error_setg(errp, "core id %d out of range", cc->core_id);
4106         return;
4107     }
4108 
4109     if (core_slot->cpu) {
4110         error_setg(errp, "core %d already populated", cc->core_id);
4111         return;
4112     }
4113 
4114     numa_cpu_pre_plug(core_slot, dev, errp);
4115 }
4116 
4117 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
4118                           void *fdt, int *fdt_start_offset, Error **errp)
4119 {
4120     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
4121     int intc_phandle;
4122 
4123     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
4124     if (intc_phandle <= 0) {
4125         return -1;
4126     }
4127 
4128     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
4129         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
4130         return -1;
4131     }
4132 
4133     /* generally SLOF creates these, for hotplug it's up to QEMU */
4134     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
4135 
4136     return 0;
4137 }
4138 
4139 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4140                                Error **errp)
4141 {
4142     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4143     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4144     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4145     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
4146     SpaprDrc *drc;
4147 
4148     if (dev->hotplugged && !smc->dr_phb_enabled) {
4149         error_setg(errp, "PHB hotplug not supported for this machine");
4150         return false;
4151     }
4152 
4153     if (sphb->index == (uint32_t)-1) {
4154         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
4155         return false;
4156     }
4157 
4158     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4159     if (drc && drc->dev) {
4160         error_setg(errp, "PHB %d already attached", sphb->index);
4161         return false;
4162     }
4163 
4164     /*
4165      * This will check that sphb->index doesn't exceed the maximum number of
4166      * PHBs for the current machine type.
4167      */
4168     return
4169         smc->phb_placement(spapr, sphb->index,
4170                            &sphb->buid, &sphb->io_win_addr,
4171                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
4172                            windows_supported, sphb->dma_liobn,
4173                            errp);
4174 }
4175 
4176 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4177 {
4178     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4179     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
4180     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4181     SpaprDrc *drc;
4182     bool hotplugged = spapr_drc_hotplugged(dev);
4183 
4184     if (!smc->dr_phb_enabled) {
4185         return;
4186     }
4187 
4188     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4189     /* hotplug hooks should check it's enabled before getting this far */
4190     assert(drc);
4191 
4192     /* spapr_phb_pre_plug() already checked the DRC is attachable */
4193     spapr_drc_attach(drc, dev);
4194 
4195     if (hotplugged) {
4196         spapr_hotplug_req_add_by_index(drc);
4197     } else {
4198         spapr_drc_reset(drc);
4199     }
4200 }
4201 
4202 void spapr_phb_release(DeviceState *dev)
4203 {
4204     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4205 
4206     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4207     object_unparent(OBJECT(dev));
4208 }
4209 
4210 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4211 {
4212     qdev_unrealize(dev);
4213 }
4214 
4215 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4216                                      DeviceState *dev, Error **errp)
4217 {
4218     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4219     SpaprDrc *drc;
4220 
4221     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4222     assert(drc);
4223 
4224     if (!spapr_drc_unplug_requested(drc)) {
4225         spapr_drc_unplug_request(drc);
4226         spapr_hotplug_req_remove_by_index(drc);
4227     } else {
4228         error_setg(errp,
4229                    "PCI Host Bridge unplug already in progress for device %s",
4230                    dev->id);
4231     }
4232 }
4233 
4234 static
4235 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4236                               Error **errp)
4237 {
4238     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4239 
4240     if (spapr->tpm_proxy != NULL) {
4241         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4242         return false;
4243     }
4244 
4245     return true;
4246 }
4247 
4248 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4249 {
4250     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4251     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4252 
4253     /* Already checked in spapr_tpm_proxy_pre_plug() */
4254     g_assert(spapr->tpm_proxy == NULL);
4255 
4256     spapr->tpm_proxy = tpm_proxy;
4257 }
4258 
4259 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4260 {
4261     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4262 
4263     qdev_unrealize(dev);
4264     object_unparent(OBJECT(dev));
4265     spapr->tpm_proxy = NULL;
4266 }
4267 
4268 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4269                                       DeviceState *dev, Error **errp)
4270 {
4271     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4272         spapr_memory_plug(hotplug_dev, dev);
4273     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4274         spapr_core_plug(hotplug_dev, dev);
4275     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4276         spapr_phb_plug(hotplug_dev, dev);
4277     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4278         spapr_tpm_proxy_plug(hotplug_dev, dev);
4279     }
4280 }
4281 
4282 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4283                                         DeviceState *dev, Error **errp)
4284 {
4285     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4286         spapr_memory_unplug(hotplug_dev, dev);
4287     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4288         spapr_core_unplug(hotplug_dev, dev);
4289     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4290         spapr_phb_unplug(hotplug_dev, dev);
4291     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4292         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4293     }
4294 }
4295 
4296 bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr)
4297 {
4298     return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) ||
4299         /*
4300          * CAS will process all pending unplug requests.
4301          *
4302          * HACK: a guest could theoretically have cleared all bits in OV5,
4303          * but none of the guests we care for do.
4304          */
4305         spapr_ovec_empty(spapr->ov5_cas);
4306 }
4307 
4308 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4309                                                 DeviceState *dev, Error **errp)
4310 {
4311     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4312     MachineClass *mc = MACHINE_GET_CLASS(sms);
4313     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4314 
4315     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4316         if (spapr_memory_hot_unplug_supported(sms)) {
4317             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4318         } else {
4319             error_setg(errp, "Memory hot unplug not supported for this guest");
4320         }
4321     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4322         if (!mc->has_hotpluggable_cpus) {
4323             error_setg(errp, "CPU hot unplug not supported on this machine");
4324             return;
4325         }
4326         spapr_core_unplug_request(hotplug_dev, dev, errp);
4327     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4328         if (!smc->dr_phb_enabled) {
4329             error_setg(errp, "PHB hot unplug not supported on this machine");
4330             return;
4331         }
4332         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4333     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4334         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4335     }
4336 }
4337 
4338 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4339                                           DeviceState *dev, Error **errp)
4340 {
4341     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4342         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4343     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4344         spapr_core_pre_plug(hotplug_dev, dev, errp);
4345     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4346         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4347     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4348         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4349     }
4350 }
4351 
4352 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4353                                                  DeviceState *dev)
4354 {
4355     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4356         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4357         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4358         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4359         return HOTPLUG_HANDLER(machine);
4360     }
4361     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4362         PCIDevice *pcidev = PCI_DEVICE(dev);
4363         PCIBus *root = pci_device_root_bus(pcidev);
4364         SpaprPhbState *phb =
4365             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4366                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4367 
4368         if (phb) {
4369             return HOTPLUG_HANDLER(phb);
4370         }
4371     }
4372     return NULL;
4373 }
4374 
4375 static CpuInstanceProperties
4376 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4377 {
4378     CPUArchId *core_slot;
4379     MachineClass *mc = MACHINE_GET_CLASS(machine);
4380 
4381     /* make sure possible_cpu are initialized */
4382     mc->possible_cpu_arch_ids(machine);
4383     /* get CPU core slot containing thread that matches cpu_index */
4384     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4385     assert(core_slot);
4386     return core_slot->props;
4387 }
4388 
4389 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4390 {
4391     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4392 }
4393 
4394 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4395 {
4396     int i;
4397     unsigned int smp_threads = machine->smp.threads;
4398     unsigned int smp_cpus = machine->smp.cpus;
4399     const char *core_type;
4400     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4401     MachineClass *mc = MACHINE_GET_CLASS(machine);
4402 
4403     if (!mc->has_hotpluggable_cpus) {
4404         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4405     }
4406     if (machine->possible_cpus) {
4407         assert(machine->possible_cpus->len == spapr_max_cores);
4408         return machine->possible_cpus;
4409     }
4410 
4411     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4412     if (!core_type) {
4413         error_report("Unable to find sPAPR CPU Core definition");
4414         exit(1);
4415     }
4416 
4417     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4418                              sizeof(CPUArchId) * spapr_max_cores);
4419     machine->possible_cpus->len = spapr_max_cores;
4420     for (i = 0; i < machine->possible_cpus->len; i++) {
4421         int core_id = i * smp_threads;
4422 
4423         machine->possible_cpus->cpus[i].type = core_type;
4424         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4425         machine->possible_cpus->cpus[i].arch_id = core_id;
4426         machine->possible_cpus->cpus[i].props.has_core_id = true;
4427         machine->possible_cpus->cpus[i].props.core_id = core_id;
4428     }
4429     return machine->possible_cpus;
4430 }
4431 
4432 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4433                                 uint64_t *buid, hwaddr *pio,
4434                                 hwaddr *mmio32, hwaddr *mmio64,
4435                                 unsigned n_dma, uint32_t *liobns, Error **errp)
4436 {
4437     /*
4438      * New-style PHB window placement.
4439      *
4440      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4441      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4442      * windows.
4443      *
4444      * Some guest kernels can't work with MMIO windows above 1<<46
4445      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4446      *
4447      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4448      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4449      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4450      * 1TiB 64-bit MMIO windows for each PHB.
4451      */
4452     const uint64_t base_buid = 0x800000020000000ULL;
4453     int i;
4454 
4455     /* Sanity check natural alignments */
4456     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4457     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4458     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4459     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4460     /* Sanity check bounds */
4461     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4462                       SPAPR_PCI_MEM32_WIN_SIZE);
4463     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4464                       SPAPR_PCI_MEM64_WIN_SIZE);
4465 
4466     if (index >= SPAPR_MAX_PHBS) {
4467         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4468                    SPAPR_MAX_PHBS - 1);
4469         return false;
4470     }
4471 
4472     *buid = base_buid + index;
4473     for (i = 0; i < n_dma; ++i) {
4474         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4475     }
4476 
4477     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4478     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4479     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4480     return true;
4481 }
4482 
4483 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4484 {
4485     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4486 
4487     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4488 }
4489 
4490 static void spapr_ics_resend(XICSFabric *dev)
4491 {
4492     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4493 
4494     ics_resend(spapr->ics);
4495 }
4496 
4497 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4498 {
4499     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4500 
4501     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4502 }
4503 
4504 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4505                                  Monitor *mon)
4506 {
4507     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4508 
4509     spapr_irq_print_info(spapr, mon);
4510     monitor_printf(mon, "irqchip: %s\n",
4511                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4512 }
4513 
4514 /*
4515  * This is a XIVE only operation
4516  */
4517 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4518                            uint8_t nvt_blk, uint32_t nvt_idx,
4519                            bool cam_ignore, uint8_t priority,
4520                            uint32_t logic_serv, XiveTCTXMatch *match)
4521 {
4522     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4523     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4524     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4525     int count;
4526 
4527     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4528                            priority, logic_serv, match);
4529     if (count < 0) {
4530         return count;
4531     }
4532 
4533     /*
4534      * When we implement the save and restore of the thread interrupt
4535      * contexts in the enter/exit CPU handlers of the machine and the
4536      * escalations in QEMU, we should be able to handle non dispatched
4537      * vCPUs.
4538      *
4539      * Until this is done, the sPAPR machine should find at least one
4540      * matching context always.
4541      */
4542     if (count == 0) {
4543         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4544                       nvt_blk, nvt_idx);
4545     }
4546 
4547     return count;
4548 }
4549 
4550 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4551 {
4552     return cpu->vcpu_id;
4553 }
4554 
4555 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4556 {
4557     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4558     MachineState *ms = MACHINE(spapr);
4559     int vcpu_id;
4560 
4561     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4562 
4563     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4564         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4565         error_append_hint(errp, "Adjust the number of cpus to %d "
4566                           "or try to raise the number of threads per core\n",
4567                           vcpu_id * ms->smp.threads / spapr->vsmt);
4568         return false;
4569     }
4570 
4571     cpu->vcpu_id = vcpu_id;
4572     return true;
4573 }
4574 
4575 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4576 {
4577     CPUState *cs;
4578 
4579     CPU_FOREACH(cs) {
4580         PowerPCCPU *cpu = POWERPC_CPU(cs);
4581 
4582         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4583             return cpu;
4584         }
4585     }
4586 
4587     return NULL;
4588 }
4589 
4590 static bool spapr_cpu_in_nested(PowerPCCPU *cpu)
4591 {
4592     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4593 
4594     return spapr_cpu->in_nested;
4595 }
4596 
4597 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4598 {
4599     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4600 
4601     /* These are only called by TCG, KVM maintains dispatch state */
4602 
4603     spapr_cpu->prod = false;
4604     if (spapr_cpu->vpa_addr) {
4605         CPUState *cs = CPU(cpu);
4606         uint32_t dispatch;
4607 
4608         dispatch = ldl_be_phys(cs->as,
4609                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4610         dispatch++;
4611         if ((dispatch & 1) != 0) {
4612             qemu_log_mask(LOG_GUEST_ERROR,
4613                           "VPA: incorrect dispatch counter value for "
4614                           "dispatched partition %u, correcting.\n", dispatch);
4615             dispatch++;
4616         }
4617         stl_be_phys(cs->as,
4618                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4619     }
4620 }
4621 
4622 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4623 {
4624     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4625 
4626     if (spapr_cpu->vpa_addr) {
4627         CPUState *cs = CPU(cpu);
4628         uint32_t dispatch;
4629 
4630         dispatch = ldl_be_phys(cs->as,
4631                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4632         dispatch++;
4633         if ((dispatch & 1) != 1) {
4634             qemu_log_mask(LOG_GUEST_ERROR,
4635                           "VPA: incorrect dispatch counter value for "
4636                           "preempted partition %u, correcting.\n", dispatch);
4637             dispatch++;
4638         }
4639         stl_be_phys(cs->as,
4640                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4641     }
4642 }
4643 
4644 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4645 {
4646     MachineClass *mc = MACHINE_CLASS(oc);
4647     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4648     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4649     NMIClass *nc = NMI_CLASS(oc);
4650     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4651     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4652     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4653     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4654     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4655     VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc);
4656 
4657     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4658     mc->ignore_boot_device_suffixes = true;
4659 
4660     /*
4661      * We set up the default / latest behaviour here.  The class_init
4662      * functions for the specific versioned machine types can override
4663      * these details for backwards compatibility
4664      */
4665     mc->init = spapr_machine_init;
4666     mc->reset = spapr_machine_reset;
4667     mc->block_default_type = IF_SCSI;
4668 
4669     /*
4670      * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(),
4671      * In TCG the limit is restricted by the range of CPU IPIs available.
4672      */
4673     mc->max_cpus = SPAPR_IRQ_NR_IPIS;
4674 
4675     mc->no_parallel = 1;
4676     mc->default_boot_order = "";
4677     mc->default_ram_size = 512 * MiB;
4678     mc->default_ram_id = "ppc_spapr.ram";
4679     mc->default_display = "std";
4680     mc->kvm_type = spapr_kvm_type;
4681     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4682     mc->pci_allow_0_address = true;
4683     assert(!mc->get_hotplug_handler);
4684     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4685     hc->pre_plug = spapr_machine_device_pre_plug;
4686     hc->plug = spapr_machine_device_plug;
4687     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4688     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4689     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4690     hc->unplug_request = spapr_machine_device_unplug_request;
4691     hc->unplug = spapr_machine_device_unplug;
4692 
4693     smc->dr_lmb_enabled = true;
4694     smc->update_dt_enabled = true;
4695     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
4696     mc->has_hotpluggable_cpus = true;
4697     mc->nvdimm_supported = true;
4698     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4699     fwc->get_dev_path = spapr_get_fw_dev_path;
4700     nc->nmi_monitor_handler = spapr_nmi;
4701     smc->phb_placement = spapr_phb_placement;
4702     vhc->cpu_in_nested = spapr_cpu_in_nested;
4703     vhc->deliver_hv_excp = spapr_exit_nested;
4704     vhc->hypercall = emulate_spapr_hypercall;
4705     vhc->hpt_mask = spapr_hpt_mask;
4706     vhc->map_hptes = spapr_map_hptes;
4707     vhc->unmap_hptes = spapr_unmap_hptes;
4708     vhc->hpte_set_c = spapr_hpte_set_c;
4709     vhc->hpte_set_r = spapr_hpte_set_r;
4710     vhc->get_pate = spapr_get_pate;
4711     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4712     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4713     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4714     xic->ics_get = spapr_ics_get;
4715     xic->ics_resend = spapr_ics_resend;
4716     xic->icp_get = spapr_icp_get;
4717     ispc->print_info = spapr_pic_print_info;
4718     /* Force NUMA node memory size to be a multiple of
4719      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4720      * in which LMBs are represented and hot-added
4721      */
4722     mc->numa_mem_align_shift = 28;
4723     mc->auto_enable_numa = true;
4724 
4725     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4726     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4727     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4728     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4729     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4730     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4731     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4732     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4733     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4734     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4735     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4736     smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF;
4737 
4738     /*
4739      * This cap specifies whether the AIL 3 mode for
4740      * H_SET_RESOURCE is supported. The default is modified
4741      * by default_caps_with_cpu().
4742      */
4743     smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON;
4744     spapr_caps_add_properties(smc);
4745     smc->irq = &spapr_irq_dual;
4746     smc->dr_phb_enabled = true;
4747     smc->linux_pci_probe = true;
4748     smc->smp_threads_vsmt = true;
4749     smc->nr_xirqs = SPAPR_NR_XIRQS;
4750     xfc->match_nvt = spapr_match_nvt;
4751     vmc->client_architecture_support = spapr_vof_client_architecture_support;
4752     vmc->quiesce = spapr_vof_quiesce;
4753     vmc->setprop = spapr_vof_setprop;
4754 }
4755 
4756 static const TypeInfo spapr_machine_info = {
4757     .name          = TYPE_SPAPR_MACHINE,
4758     .parent        = TYPE_MACHINE,
4759     .abstract      = true,
4760     .instance_size = sizeof(SpaprMachineState),
4761     .instance_init = spapr_instance_init,
4762     .instance_finalize = spapr_machine_finalizefn,
4763     .class_size    = sizeof(SpaprMachineClass),
4764     .class_init    = spapr_machine_class_init,
4765     .interfaces = (InterfaceInfo[]) {
4766         { TYPE_FW_PATH_PROVIDER },
4767         { TYPE_NMI },
4768         { TYPE_HOTPLUG_HANDLER },
4769         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4770         { TYPE_XICS_FABRIC },
4771         { TYPE_INTERRUPT_STATS_PROVIDER },
4772         { TYPE_XIVE_FABRIC },
4773         { TYPE_VOF_MACHINE_IF },
4774         { }
4775     },
4776 };
4777 
4778 static void spapr_machine_latest_class_options(MachineClass *mc)
4779 {
4780     mc->alias = "pseries";
4781     mc->is_default = true;
4782 }
4783 
4784 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4785     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4786                                                     void *data)      \
4787     {                                                                \
4788         MachineClass *mc = MACHINE_CLASS(oc);                        \
4789         spapr_machine_##suffix##_class_options(mc);                  \
4790         if (latest) {                                                \
4791             spapr_machine_latest_class_options(mc);                  \
4792         }                                                            \
4793     }                                                                \
4794     static const TypeInfo spapr_machine_##suffix##_info = {          \
4795         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4796         .parent = TYPE_SPAPR_MACHINE,                                \
4797         .class_init = spapr_machine_##suffix##_class_init,           \
4798     };                                                               \
4799     static void spapr_machine_register_##suffix(void)                \
4800     {                                                                \
4801         type_register(&spapr_machine_##suffix##_info);               \
4802     }                                                                \
4803     type_init(spapr_machine_register_##suffix)
4804 
4805 /*
4806  * pseries-9.0
4807  */
4808 static void spapr_machine_9_0_class_options(MachineClass *mc)
4809 {
4810     /* Defaults for the latest behaviour inherited from the base class */
4811 }
4812 
4813 DEFINE_SPAPR_MACHINE(9_0, "9.0", true);
4814 
4815 /*
4816  * pseries-8.2
4817  */
4818 static void spapr_machine_8_2_class_options(MachineClass *mc)
4819 {
4820     spapr_machine_9_0_class_options(mc);
4821     compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len);
4822 }
4823 
4824 DEFINE_SPAPR_MACHINE(8_2, "8.2", false);
4825 
4826 /*
4827  * pseries-8.1
4828  */
4829 static void spapr_machine_8_1_class_options(MachineClass *mc)
4830 {
4831     spapr_machine_8_2_class_options(mc);
4832     compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len);
4833 }
4834 
4835 DEFINE_SPAPR_MACHINE(8_1, "8.1", false);
4836 
4837 /*
4838  * pseries-8.0
4839  */
4840 static void spapr_machine_8_0_class_options(MachineClass *mc)
4841 {
4842     spapr_machine_8_1_class_options(mc);
4843     compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len);
4844 }
4845 
4846 DEFINE_SPAPR_MACHINE(8_0, "8.0", false);
4847 
4848 /*
4849  * pseries-7.2
4850  */
4851 static void spapr_machine_7_2_class_options(MachineClass *mc)
4852 {
4853     spapr_machine_8_0_class_options(mc);
4854     compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len);
4855 }
4856 
4857 DEFINE_SPAPR_MACHINE(7_2, "7.2", false);
4858 
4859 /*
4860  * pseries-7.1
4861  */
4862 static void spapr_machine_7_1_class_options(MachineClass *mc)
4863 {
4864     spapr_machine_7_2_class_options(mc);
4865     compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len);
4866 }
4867 
4868 DEFINE_SPAPR_MACHINE(7_1, "7.1", false);
4869 
4870 /*
4871  * pseries-7.0
4872  */
4873 static void spapr_machine_7_0_class_options(MachineClass *mc)
4874 {
4875     spapr_machine_7_1_class_options(mc);
4876     compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len);
4877 }
4878 
4879 DEFINE_SPAPR_MACHINE(7_0, "7.0", false);
4880 
4881 /*
4882  * pseries-6.2
4883  */
4884 static void spapr_machine_6_2_class_options(MachineClass *mc)
4885 {
4886     spapr_machine_7_0_class_options(mc);
4887     compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len);
4888 }
4889 
4890 DEFINE_SPAPR_MACHINE(6_2, "6.2", false);
4891 
4892 /*
4893  * pseries-6.1
4894  */
4895 static void spapr_machine_6_1_class_options(MachineClass *mc)
4896 {
4897     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4898 
4899     spapr_machine_6_2_class_options(mc);
4900     compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len);
4901     smc->pre_6_2_numa_affinity = true;
4902     mc->smp_props.prefer_sockets = true;
4903 }
4904 
4905 DEFINE_SPAPR_MACHINE(6_1, "6.1", false);
4906 
4907 /*
4908  * pseries-6.0
4909  */
4910 static void spapr_machine_6_0_class_options(MachineClass *mc)
4911 {
4912     spapr_machine_6_1_class_options(mc);
4913     compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len);
4914 }
4915 
4916 DEFINE_SPAPR_MACHINE(6_0, "6.0", false);
4917 
4918 /*
4919  * pseries-5.2
4920  */
4921 static void spapr_machine_5_2_class_options(MachineClass *mc)
4922 {
4923     spapr_machine_6_0_class_options(mc);
4924     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4925 }
4926 
4927 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4928 
4929 /*
4930  * pseries-5.1
4931  */
4932 static void spapr_machine_5_1_class_options(MachineClass *mc)
4933 {
4934     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4935 
4936     spapr_machine_5_2_class_options(mc);
4937     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4938     smc->pre_5_2_numa_associativity = true;
4939 }
4940 
4941 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4942 
4943 /*
4944  * pseries-5.0
4945  */
4946 static void spapr_machine_5_0_class_options(MachineClass *mc)
4947 {
4948     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4949     static GlobalProperty compat[] = {
4950         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4951     };
4952 
4953     spapr_machine_5_1_class_options(mc);
4954     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4955     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4956     mc->numa_mem_supported = true;
4957     smc->pre_5_1_assoc_refpoints = true;
4958 }
4959 
4960 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4961 
4962 /*
4963  * pseries-4.2
4964  */
4965 static void spapr_machine_4_2_class_options(MachineClass *mc)
4966 {
4967     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4968 
4969     spapr_machine_5_0_class_options(mc);
4970     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4971     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4972     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4973     smc->rma_limit = 16 * GiB;
4974     mc->nvdimm_supported = false;
4975 }
4976 
4977 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4978 
4979 /*
4980  * pseries-4.1
4981  */
4982 static void spapr_machine_4_1_class_options(MachineClass *mc)
4983 {
4984     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4985     static GlobalProperty compat[] = {
4986         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4987         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4988     };
4989 
4990     spapr_machine_4_2_class_options(mc);
4991     smc->linux_pci_probe = false;
4992     smc->smp_threads_vsmt = false;
4993     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4994     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4995 }
4996 
4997 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4998 
4999 /*
5000  * pseries-4.0
5001  */
5002 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
5003                               uint64_t *buid, hwaddr *pio,
5004                               hwaddr *mmio32, hwaddr *mmio64,
5005                               unsigned n_dma, uint32_t *liobns, Error **errp)
5006 {
5007     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
5008                              liobns, errp)) {
5009         return false;
5010     }
5011     return true;
5012 }
5013 static void spapr_machine_4_0_class_options(MachineClass *mc)
5014 {
5015     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5016 
5017     spapr_machine_4_1_class_options(mc);
5018     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
5019     smc->phb_placement = phb_placement_4_0;
5020     smc->irq = &spapr_irq_xics;
5021     smc->pre_4_1_migration = true;
5022 }
5023 
5024 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
5025 
5026 /*
5027  * pseries-3.1
5028  */
5029 static void spapr_machine_3_1_class_options(MachineClass *mc)
5030 {
5031     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5032 
5033     spapr_machine_4_0_class_options(mc);
5034     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
5035 
5036     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
5037     smc->update_dt_enabled = false;
5038     smc->dr_phb_enabled = false;
5039     smc->broken_host_serial_model = true;
5040     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
5041     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
5042     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
5043     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
5044 }
5045 
5046 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
5047 
5048 /*
5049  * pseries-3.0
5050  */
5051 
5052 static void spapr_machine_3_0_class_options(MachineClass *mc)
5053 {
5054     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5055 
5056     spapr_machine_3_1_class_options(mc);
5057     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
5058 
5059     smc->legacy_irq_allocation = true;
5060     smc->nr_xirqs = 0x400;
5061     smc->irq = &spapr_irq_xics_legacy;
5062 }
5063 
5064 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
5065 
5066 /*
5067  * pseries-2.12
5068  */
5069 static void spapr_machine_2_12_class_options(MachineClass *mc)
5070 {
5071     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5072     static GlobalProperty compat[] = {
5073         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
5074         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
5075     };
5076 
5077     spapr_machine_3_0_class_options(mc);
5078     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
5079     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5080 
5081     /* We depend on kvm_enabled() to choose a default value for the
5082      * hpt-max-page-size capability. Of course we can't do it here
5083      * because this is too early and the HW accelerator isn't initialized
5084      * yet. Postpone this to machine init (see default_caps_with_cpu()).
5085      */
5086     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
5087 }
5088 
5089 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
5090 
5091 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
5092 {
5093     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5094 
5095     spapr_machine_2_12_class_options(mc);
5096     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
5097     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
5098     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
5099 }
5100 
5101 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
5102 
5103 /*
5104  * pseries-2.11
5105  */
5106 
5107 static void spapr_machine_2_11_class_options(MachineClass *mc)
5108 {
5109     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5110 
5111     spapr_machine_2_12_class_options(mc);
5112     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
5113     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
5114     mc->deprecation_reason = "old and not maintained - use a 2.12+ version";
5115 }
5116 
5117 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
5118 
5119 /*
5120  * pseries-2.10
5121  */
5122 
5123 static void spapr_machine_2_10_class_options(MachineClass *mc)
5124 {
5125     spapr_machine_2_11_class_options(mc);
5126     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
5127 }
5128 
5129 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
5130 
5131 /*
5132  * pseries-2.9
5133  */
5134 
5135 static void spapr_machine_2_9_class_options(MachineClass *mc)
5136 {
5137     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5138     static GlobalProperty compat[] = {
5139         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
5140     };
5141 
5142     spapr_machine_2_10_class_options(mc);
5143     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
5144     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5145     smc->pre_2_10_has_unused_icps = true;
5146     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
5147 }
5148 
5149 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
5150 
5151 /*
5152  * pseries-2.8
5153  */
5154 
5155 static void spapr_machine_2_8_class_options(MachineClass *mc)
5156 {
5157     static GlobalProperty compat[] = {
5158         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
5159     };
5160 
5161     spapr_machine_2_9_class_options(mc);
5162     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
5163     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5164     mc->numa_mem_align_shift = 23;
5165 }
5166 
5167 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
5168 
5169 /*
5170  * pseries-2.7
5171  */
5172 
5173 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
5174                               uint64_t *buid, hwaddr *pio,
5175                               hwaddr *mmio32, hwaddr *mmio64,
5176                               unsigned n_dma, uint32_t *liobns, Error **errp)
5177 {
5178     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
5179     const uint64_t base_buid = 0x800000020000000ULL;
5180     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
5181     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
5182     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
5183     const uint32_t max_index = 255;
5184     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
5185 
5186     uint64_t ram_top = MACHINE(spapr)->ram_size;
5187     hwaddr phb0_base, phb_base;
5188     int i;
5189 
5190     /* Do we have device memory? */
5191     if (MACHINE(spapr)->device_memory) {
5192         /* Can't just use maxram_size, because there may be an
5193          * alignment gap between normal and device memory regions
5194          */
5195         ram_top = MACHINE(spapr)->device_memory->base +
5196             memory_region_size(&MACHINE(spapr)->device_memory->mr);
5197     }
5198 
5199     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
5200 
5201     if (index > max_index) {
5202         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
5203                    max_index);
5204         return false;
5205     }
5206 
5207     *buid = base_buid + index;
5208     for (i = 0; i < n_dma; ++i) {
5209         liobns[i] = SPAPR_PCI_LIOBN(index, i);
5210     }
5211 
5212     phb_base = phb0_base + index * phb_spacing;
5213     *pio = phb_base + pio_offset;
5214     *mmio32 = phb_base + mmio_offset;
5215     /*
5216      * We don't set the 64-bit MMIO window, relying on the PHB's
5217      * fallback behaviour of automatically splitting a large "32-bit"
5218      * window into contiguous 32-bit and 64-bit windows
5219      */
5220 
5221     return true;
5222 }
5223 
5224 static void spapr_machine_2_7_class_options(MachineClass *mc)
5225 {
5226     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5227     static GlobalProperty compat[] = {
5228         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
5229         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
5230         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
5231         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
5232     };
5233 
5234     spapr_machine_2_8_class_options(mc);
5235     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
5236     mc->default_machine_opts = "modern-hotplug-events=off";
5237     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
5238     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5239     smc->phb_placement = phb_placement_2_7;
5240 }
5241 
5242 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
5243 
5244 /*
5245  * pseries-2.6
5246  */
5247 
5248 static void spapr_machine_2_6_class_options(MachineClass *mc)
5249 {
5250     static GlobalProperty compat[] = {
5251         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
5252     };
5253 
5254     spapr_machine_2_7_class_options(mc);
5255     mc->has_hotpluggable_cpus = false;
5256     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
5257     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5258 }
5259 
5260 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
5261 
5262 /*
5263  * pseries-2.5
5264  */
5265 
5266 static void spapr_machine_2_5_class_options(MachineClass *mc)
5267 {
5268     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5269     static GlobalProperty compat[] = {
5270         { "spapr-vlan", "use-rx-buffer-pools", "off" },
5271     };
5272 
5273     spapr_machine_2_6_class_options(mc);
5274     smc->use_ohci_by_default = true;
5275     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
5276     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5277 }
5278 
5279 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
5280 
5281 /*
5282  * pseries-2.4
5283  */
5284 
5285 static void spapr_machine_2_4_class_options(MachineClass *mc)
5286 {
5287     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
5288 
5289     spapr_machine_2_5_class_options(mc);
5290     smc->dr_lmb_enabled = false;
5291     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
5292 }
5293 
5294 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
5295 
5296 /*
5297  * pseries-2.3
5298  */
5299 
5300 static void spapr_machine_2_3_class_options(MachineClass *mc)
5301 {
5302     static GlobalProperty compat[] = {
5303         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
5304     };
5305     spapr_machine_2_4_class_options(mc);
5306     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
5307     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5308 }
5309 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
5310 
5311 /*
5312  * pseries-2.2
5313  */
5314 
5315 static void spapr_machine_2_2_class_options(MachineClass *mc)
5316 {
5317     static GlobalProperty compat[] = {
5318         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
5319     };
5320 
5321     spapr_machine_2_3_class_options(mc);
5322     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
5323     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
5324     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
5325 }
5326 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
5327 
5328 /*
5329  * pseries-2.1
5330  */
5331 
5332 static void spapr_machine_2_1_class_options(MachineClass *mc)
5333 {
5334     spapr_machine_2_2_class_options(mc);
5335     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
5336 }
5337 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
5338 
5339 static void spapr_machine_register_types(void)
5340 {
5341     type_register_static(&spapr_machine_info);
5342 }
5343 
5344 type_init(spapr_machine_register_types)
5345