xref: /qemu/hw/ppc/spapr.c (revision 1e8b5b1aa16b7d73ba8ba52c95d0b52329d5c9d0)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qemu/datadir.h"
30 #include "qapi/error.h"
31 #include "qapi/visitor.h"
32 #include "sysemu/sysemu.h"
33 #include "sysemu/hostmem.h"
34 #include "sysemu/numa.h"
35 #include "sysemu/qtest.h"
36 #include "sysemu/reset.h"
37 #include "sysemu/runstate.h"
38 #include "qemu/log.h"
39 #include "hw/fw-path-provider.h"
40 #include "elf.h"
41 #include "net/net.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/cpus.h"
44 #include "sysemu/hw_accel.h"
45 #include "kvm_ppc.h"
46 #include "migration/misc.h"
47 #include "migration/qemu-file-types.h"
48 #include "migration/global_state.h"
49 #include "migration/register.h"
50 #include "migration/blocker.h"
51 #include "mmu-hash64.h"
52 #include "mmu-book3s-v3.h"
53 #include "cpu-models.h"
54 #include "hw/core/cpu.h"
55 
56 #include "hw/boards.h"
57 #include "hw/ppc/ppc.h"
58 #include "hw/loader.h"
59 
60 #include "hw/ppc/fdt.h"
61 #include "hw/ppc/spapr.h"
62 #include "hw/ppc/spapr_vio.h"
63 #include "hw/qdev-properties.h"
64 #include "hw/pci-host/spapr.h"
65 #include "hw/pci/msi.h"
66 
67 #include "hw/pci/pci.h"
68 #include "hw/scsi/scsi.h"
69 #include "hw/virtio/virtio-scsi.h"
70 #include "hw/virtio/vhost-scsi-common.h"
71 
72 #include "exec/address-spaces.h"
73 #include "exec/ram_addr.h"
74 #include "hw/usb.h"
75 #include "qemu/config-file.h"
76 #include "qemu/error-report.h"
77 #include "trace.h"
78 #include "hw/nmi.h"
79 #include "hw/intc/intc.h"
80 
81 #include "hw/ppc/spapr_cpu_core.h"
82 #include "hw/mem/memory-device.h"
83 #include "hw/ppc/spapr_tpm_proxy.h"
84 #include "hw/ppc/spapr_nvdimm.h"
85 #include "hw/ppc/spapr_numa.h"
86 
87 #include "monitor/monitor.h"
88 
89 #include <libfdt.h>
90 
91 /* SLOF memory layout:
92  *
93  * SLOF raw image loaded at 0, copies its romfs right below the flat
94  * device-tree, then position SLOF itself 31M below that
95  *
96  * So we set FW_OVERHEAD to 40MB which should account for all of that
97  * and more
98  *
99  * We load our kernel at 4M, leaving space for SLOF initial image
100  */
101 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
102 #define FW_MAX_SIZE             0x400000
103 #define FW_FILE_NAME            "slof.bin"
104 #define FW_OVERHEAD             0x2800000
105 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
106 
107 #define MIN_RMA_SLOF            (128 * MiB)
108 
109 #define PHANDLE_INTC            0x00001111
110 
111 /* These two functions implement the VCPU id numbering: one to compute them
112  * all and one to identify thread 0 of a VCORE. Any change to the first one
113  * is likely to have an impact on the second one, so let's keep them close.
114  */
115 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
116 {
117     MachineState *ms = MACHINE(spapr);
118     unsigned int smp_threads = ms->smp.threads;
119 
120     assert(spapr->vsmt);
121     return
122         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
123 }
124 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
125                                       PowerPCCPU *cpu)
126 {
127     assert(spapr->vsmt);
128     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
129 }
130 
131 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
132 {
133     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
134      * and newer QEMUs don't even have them. In both cases, we don't want
135      * to send anything on the wire.
136      */
137     return false;
138 }
139 
140 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
141     .name = "icp/server",
142     .version_id = 1,
143     .minimum_version_id = 1,
144     .needed = pre_2_10_vmstate_dummy_icp_needed,
145     .fields = (VMStateField[]) {
146         VMSTATE_UNUSED(4), /* uint32_t xirr */
147         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
148         VMSTATE_UNUSED(1), /* uint8_t mfrr */
149         VMSTATE_END_OF_LIST()
150     },
151 };
152 
153 static void pre_2_10_vmstate_register_dummy_icp(int i)
154 {
155     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
156                      (void *)(uintptr_t) i);
157 }
158 
159 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
160 {
161     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
162                        (void *)(uintptr_t) i);
163 }
164 
165 int spapr_max_server_number(SpaprMachineState *spapr)
166 {
167     MachineState *ms = MACHINE(spapr);
168 
169     assert(spapr->vsmt);
170     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
171 }
172 
173 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
174                                   int smt_threads)
175 {
176     int i, ret = 0;
177     uint32_t servers_prop[smt_threads];
178     uint32_t gservers_prop[smt_threads * 2];
179     int index = spapr_get_vcpu_id(cpu);
180 
181     if (cpu->compat_pvr) {
182         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
183         if (ret < 0) {
184             return ret;
185         }
186     }
187 
188     /* Build interrupt servers and gservers properties */
189     for (i = 0; i < smt_threads; i++) {
190         servers_prop[i] = cpu_to_be32(index + i);
191         /* Hack, direct the group queues back to cpu 0 */
192         gservers_prop[i*2] = cpu_to_be32(index + i);
193         gservers_prop[i*2 + 1] = 0;
194     }
195     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
196                       servers_prop, sizeof(servers_prop));
197     if (ret < 0) {
198         return ret;
199     }
200     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
201                       gservers_prop, sizeof(gservers_prop));
202 
203     return ret;
204 }
205 
206 static void spapr_dt_pa_features(SpaprMachineState *spapr,
207                                  PowerPCCPU *cpu,
208                                  void *fdt, int offset)
209 {
210     uint8_t pa_features_206[] = { 6, 0,
211         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
212     uint8_t pa_features_207[] = { 24, 0,
213         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
214         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
215         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
216         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
217     uint8_t pa_features_300[] = { 66, 0,
218         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
219         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
220         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
221         /* 6: DS207 */
222         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
223         /* 16: Vector */
224         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
225         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
226         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
227         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
228         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
229         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
230         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
231         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
232         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
233         /* 42: PM, 44: PC RA, 46: SC vec'd */
234         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
235         /* 48: SIMD, 50: QP BFP, 52: String */
236         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
237         /* 54: DecFP, 56: DecI, 58: SHA */
238         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
239         /* 60: NM atomic, 62: RNG */
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
241     };
242     uint8_t *pa_features = NULL;
243     size_t pa_size;
244 
245     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
246         pa_features = pa_features_206;
247         pa_size = sizeof(pa_features_206);
248     }
249     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
250         pa_features = pa_features_207;
251         pa_size = sizeof(pa_features_207);
252     }
253     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
254         pa_features = pa_features_300;
255         pa_size = sizeof(pa_features_300);
256     }
257     if (!pa_features) {
258         return;
259     }
260 
261     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
262         /*
263          * Note: we keep CI large pages off by default because a 64K capable
264          * guest provisioned with large pages might otherwise try to map a qemu
265          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
266          * even if that qemu runs on a 4k host.
267          * We dd this bit back here if we are confident this is not an issue
268          */
269         pa_features[3] |= 0x20;
270     }
271     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
272         pa_features[24] |= 0x80;    /* Transactional memory support */
273     }
274     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
275         /* Workaround for broken kernels that attempt (guest) radix
276          * mode when they can't handle it, if they see the radix bit set
277          * in pa-features. So hide it from them. */
278         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
279     }
280 
281     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
282 }
283 
284 static hwaddr spapr_node0_size(MachineState *machine)
285 {
286     if (machine->numa_state->num_nodes) {
287         int i;
288         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
289             if (machine->numa_state->nodes[i].node_mem) {
290                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
291                            machine->ram_size);
292             }
293         }
294     }
295     return machine->ram_size;
296 }
297 
298 bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
299 {
300     MachineState *machine = MACHINE(spapr);
301     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
302 
303     return smc->pre_5_2_numa_associativity ||
304            machine->numa_state->num_nodes <= 1;
305 }
306 
307 static void add_str(GString *s, const gchar *s1)
308 {
309     g_string_append_len(s, s1, strlen(s1) + 1);
310 }
311 
312 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
313                                 hwaddr start, hwaddr size)
314 {
315     char mem_name[32];
316     uint64_t mem_reg_property[2];
317     int off;
318 
319     mem_reg_property[0] = cpu_to_be64(start);
320     mem_reg_property[1] = cpu_to_be64(size);
321 
322     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
323     off = fdt_add_subnode(fdt, 0, mem_name);
324     _FDT(off);
325     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
326     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
327                       sizeof(mem_reg_property))));
328     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
329     return off;
330 }
331 
332 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
333 {
334     MemoryDeviceInfoList *info;
335 
336     for (info = list; info; info = info->next) {
337         MemoryDeviceInfo *value = info->value;
338 
339         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
340             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
341 
342             if (addr >= pcdimm_info->addr &&
343                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
344                 return pcdimm_info->node;
345             }
346         }
347     }
348 
349     return -1;
350 }
351 
352 struct sPAPRDrconfCellV2 {
353      uint32_t seq_lmbs;
354      uint64_t base_addr;
355      uint32_t drc_index;
356      uint32_t aa_index;
357      uint32_t flags;
358 } QEMU_PACKED;
359 
360 typedef struct DrconfCellQueue {
361     struct sPAPRDrconfCellV2 cell;
362     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
363 } DrconfCellQueue;
364 
365 static DrconfCellQueue *
366 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
367                       uint32_t drc_index, uint32_t aa_index,
368                       uint32_t flags)
369 {
370     DrconfCellQueue *elem;
371 
372     elem = g_malloc0(sizeof(*elem));
373     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
374     elem->cell.base_addr = cpu_to_be64(base_addr);
375     elem->cell.drc_index = cpu_to_be32(drc_index);
376     elem->cell.aa_index = cpu_to_be32(aa_index);
377     elem->cell.flags = cpu_to_be32(flags);
378 
379     return elem;
380 }
381 
382 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
383                                       int offset, MemoryDeviceInfoList *dimms)
384 {
385     MachineState *machine = MACHINE(spapr);
386     uint8_t *int_buf, *cur_index;
387     int ret;
388     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
389     uint64_t addr, cur_addr, size;
390     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
391     uint64_t mem_end = machine->device_memory->base +
392                        memory_region_size(&machine->device_memory->mr);
393     uint32_t node, buf_len, nr_entries = 0;
394     SpaprDrc *drc;
395     DrconfCellQueue *elem, *next;
396     MemoryDeviceInfoList *info;
397     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
398         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
399 
400     /* Entry to cover RAM and the gap area */
401     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
402                                  SPAPR_LMB_FLAGS_RESERVED |
403                                  SPAPR_LMB_FLAGS_DRC_INVALID);
404     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
405     nr_entries++;
406 
407     cur_addr = machine->device_memory->base;
408     for (info = dimms; info; info = info->next) {
409         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
410 
411         addr = di->addr;
412         size = di->size;
413         node = di->node;
414 
415         /*
416          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
417          * area is marked hotpluggable in the next iteration for the bigger
418          * chunk including the NVDIMM occupied area.
419          */
420         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
421             continue;
422 
423         /* Entry for hot-pluggable area */
424         if (cur_addr < addr) {
425             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
426             g_assert(drc);
427             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
428                                          cur_addr, spapr_drc_index(drc), -1, 0);
429             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
430             nr_entries++;
431         }
432 
433         /* Entry for DIMM */
434         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
435         g_assert(drc);
436         elem = spapr_get_drconf_cell(size / lmb_size, addr,
437                                      spapr_drc_index(drc), node,
438                                      (SPAPR_LMB_FLAGS_ASSIGNED |
439                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
440         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
441         nr_entries++;
442         cur_addr = addr + size;
443     }
444 
445     /* Entry for remaining hotpluggable area */
446     if (cur_addr < mem_end) {
447         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
448         g_assert(drc);
449         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
450                                      cur_addr, spapr_drc_index(drc), -1, 0);
451         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
452         nr_entries++;
453     }
454 
455     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
456     int_buf = cur_index = g_malloc0(buf_len);
457     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
458     cur_index += sizeof(nr_entries);
459 
460     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
461         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
462         cur_index += sizeof(elem->cell);
463         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
464         g_free(elem);
465     }
466 
467     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
468     g_free(int_buf);
469     if (ret < 0) {
470         return -1;
471     }
472     return 0;
473 }
474 
475 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
476                                    int offset, MemoryDeviceInfoList *dimms)
477 {
478     MachineState *machine = MACHINE(spapr);
479     int i, ret;
480     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
481     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
482     uint32_t nr_lmbs = (machine->device_memory->base +
483                        memory_region_size(&machine->device_memory->mr)) /
484                        lmb_size;
485     uint32_t *int_buf, *cur_index, buf_len;
486 
487     /*
488      * Allocate enough buffer size to fit in ibm,dynamic-memory
489      */
490     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
491     cur_index = int_buf = g_malloc0(buf_len);
492     int_buf[0] = cpu_to_be32(nr_lmbs);
493     cur_index++;
494     for (i = 0; i < nr_lmbs; i++) {
495         uint64_t addr = i * lmb_size;
496         uint32_t *dynamic_memory = cur_index;
497 
498         if (i >= device_lmb_start) {
499             SpaprDrc *drc;
500 
501             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
502             g_assert(drc);
503 
504             dynamic_memory[0] = cpu_to_be32(addr >> 32);
505             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
506             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
507             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
508             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
509             if (memory_region_present(get_system_memory(), addr)) {
510                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
511             } else {
512                 dynamic_memory[5] = cpu_to_be32(0);
513             }
514         } else {
515             /*
516              * LMB information for RMA, boot time RAM and gap b/n RAM and
517              * device memory region -- all these are marked as reserved
518              * and as having no valid DRC.
519              */
520             dynamic_memory[0] = cpu_to_be32(addr >> 32);
521             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
522             dynamic_memory[2] = cpu_to_be32(0);
523             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
524             dynamic_memory[4] = cpu_to_be32(-1);
525             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
526                                             SPAPR_LMB_FLAGS_DRC_INVALID);
527         }
528 
529         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
530     }
531     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
532     g_free(int_buf);
533     if (ret < 0) {
534         return -1;
535     }
536     return 0;
537 }
538 
539 /*
540  * Adds ibm,dynamic-reconfiguration-memory node.
541  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
542  * of this device tree node.
543  */
544 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
545                                                    void *fdt)
546 {
547     MachineState *machine = MACHINE(spapr);
548     int ret, offset;
549     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
550     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
551                                 cpu_to_be32(lmb_size & 0xffffffff)};
552     MemoryDeviceInfoList *dimms = NULL;
553 
554     /*
555      * Don't create the node if there is no device memory
556      */
557     if (machine->ram_size == machine->maxram_size) {
558         return 0;
559     }
560 
561     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
562 
563     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
564                     sizeof(prop_lmb_size));
565     if (ret < 0) {
566         return ret;
567     }
568 
569     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
570     if (ret < 0) {
571         return ret;
572     }
573 
574     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
575     if (ret < 0) {
576         return ret;
577     }
578 
579     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
580     dimms = qmp_memory_device_list();
581     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
582         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
583     } else {
584         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
585     }
586     qapi_free_MemoryDeviceInfoList(dimms);
587 
588     if (ret < 0) {
589         return ret;
590     }
591 
592     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
593 
594     return ret;
595 }
596 
597 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
598 {
599     MachineState *machine = MACHINE(spapr);
600     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
601     hwaddr mem_start, node_size;
602     int i, nb_nodes = machine->numa_state->num_nodes;
603     NodeInfo *nodes = machine->numa_state->nodes;
604 
605     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
606         if (!nodes[i].node_mem) {
607             continue;
608         }
609         if (mem_start >= machine->ram_size) {
610             node_size = 0;
611         } else {
612             node_size = nodes[i].node_mem;
613             if (node_size > machine->ram_size - mem_start) {
614                 node_size = machine->ram_size - mem_start;
615             }
616         }
617         if (!mem_start) {
618             /* spapr_machine_init() checks for rma_size <= node0_size
619              * already */
620             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
621             mem_start += spapr->rma_size;
622             node_size -= spapr->rma_size;
623         }
624         for ( ; node_size; ) {
625             hwaddr sizetmp = pow2floor(node_size);
626 
627             /* mem_start != 0 here */
628             if (ctzl(mem_start) < ctzl(sizetmp)) {
629                 sizetmp = 1ULL << ctzl(mem_start);
630             }
631 
632             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
633             node_size -= sizetmp;
634             mem_start += sizetmp;
635         }
636     }
637 
638     /* Generate ibm,dynamic-reconfiguration-memory node if required */
639     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
640         int ret;
641 
642         g_assert(smc->dr_lmb_enabled);
643         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
644         if (ret) {
645             return ret;
646         }
647     }
648 
649     return 0;
650 }
651 
652 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
653                          SpaprMachineState *spapr)
654 {
655     MachineState *ms = MACHINE(spapr);
656     PowerPCCPU *cpu = POWERPC_CPU(cs);
657     CPUPPCState *env = &cpu->env;
658     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
659     int index = spapr_get_vcpu_id(cpu);
660     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
661                        0xffffffff, 0xffffffff};
662     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
663         : SPAPR_TIMEBASE_FREQ;
664     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
665     uint32_t page_sizes_prop[64];
666     size_t page_sizes_prop_size;
667     unsigned int smp_threads = ms->smp.threads;
668     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
669     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
670     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
671     SpaprDrc *drc;
672     int drc_index;
673     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
674     int i;
675 
676     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
677     if (drc) {
678         drc_index = spapr_drc_index(drc);
679         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
680     }
681 
682     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
683     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
684 
685     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
686     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
687                            env->dcache_line_size)));
688     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
689                            env->dcache_line_size)));
690     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
691                            env->icache_line_size)));
692     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
693                            env->icache_line_size)));
694 
695     if (pcc->l1_dcache_size) {
696         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
697                                pcc->l1_dcache_size)));
698     } else {
699         warn_report("Unknown L1 dcache size for cpu");
700     }
701     if (pcc->l1_icache_size) {
702         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
703                                pcc->l1_icache_size)));
704     } else {
705         warn_report("Unknown L1 icache size for cpu");
706     }
707 
708     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
709     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
710     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
711     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
712     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
713     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
714 
715     if (env->spr_cb[SPR_PURR].oea_read) {
716         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
717     }
718     if (env->spr_cb[SPR_SPURR].oea_read) {
719         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
720     }
721 
722     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
723         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
724                           segs, sizeof(segs))));
725     }
726 
727     /* Advertise VSX (vector extensions) if available
728      *   1               == VMX / Altivec available
729      *   2               == VSX available
730      *
731      * Only CPUs for which we create core types in spapr_cpu_core.c
732      * are possible, and all of those have VMX */
733     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
734         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
735     } else {
736         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
737     }
738 
739     /* Advertise DFP (Decimal Floating Point) if available
740      *   0 / no property == no DFP
741      *   1               == DFP available */
742     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
743         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
744     }
745 
746     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
747                                                       sizeof(page_sizes_prop));
748     if (page_sizes_prop_size) {
749         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
750                           page_sizes_prop, page_sizes_prop_size)));
751     }
752 
753     spapr_dt_pa_features(spapr, cpu, fdt, offset);
754 
755     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
756                            cs->cpu_index / vcpus_per_socket)));
757 
758     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
759                       pft_size_prop, sizeof(pft_size_prop))));
760 
761     if (ms->numa_state->num_nodes > 1) {
762         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
763     }
764 
765     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
766 
767     if (pcc->radix_page_info) {
768         for (i = 0; i < pcc->radix_page_info->count; i++) {
769             radix_AP_encodings[i] =
770                 cpu_to_be32(pcc->radix_page_info->entries[i]);
771         }
772         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
773                           radix_AP_encodings,
774                           pcc->radix_page_info->count *
775                           sizeof(radix_AP_encodings[0]))));
776     }
777 
778     /*
779      * We set this property to let the guest know that it can use the large
780      * decrementer and its width in bits.
781      */
782     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
783         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
784                               pcc->lrg_decr_bits)));
785 }
786 
787 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
788 {
789     CPUState **rev;
790     CPUState *cs;
791     int n_cpus;
792     int cpus_offset;
793     char *nodename;
794     int i;
795 
796     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
797     _FDT(cpus_offset);
798     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
799     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
800 
801     /*
802      * We walk the CPUs in reverse order to ensure that CPU DT nodes
803      * created by fdt_add_subnode() end up in the right order in FDT
804      * for the guest kernel the enumerate the CPUs correctly.
805      *
806      * The CPU list cannot be traversed in reverse order, so we need
807      * to do extra work.
808      */
809     n_cpus = 0;
810     rev = NULL;
811     CPU_FOREACH(cs) {
812         rev = g_renew(CPUState *, rev, n_cpus + 1);
813         rev[n_cpus++] = cs;
814     }
815 
816     for (i = n_cpus - 1; i >= 0; i--) {
817         CPUState *cs = rev[i];
818         PowerPCCPU *cpu = POWERPC_CPU(cs);
819         int index = spapr_get_vcpu_id(cpu);
820         DeviceClass *dc = DEVICE_GET_CLASS(cs);
821         int offset;
822 
823         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
824             continue;
825         }
826 
827         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
828         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
829         g_free(nodename);
830         _FDT(offset);
831         spapr_dt_cpu(cs, fdt, offset, spapr);
832     }
833 
834     g_free(rev);
835 }
836 
837 static int spapr_dt_rng(void *fdt)
838 {
839     int node;
840     int ret;
841 
842     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
843     if (node <= 0) {
844         return -1;
845     }
846     ret = fdt_setprop_string(fdt, node, "device_type",
847                              "ibm,platform-facilities");
848     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
849     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
850 
851     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
852     if (node <= 0) {
853         return -1;
854     }
855     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
856 
857     return ret ? -1 : 0;
858 }
859 
860 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
861 {
862     MachineState *ms = MACHINE(spapr);
863     int rtas;
864     GString *hypertas = g_string_sized_new(256);
865     GString *qemu_hypertas = g_string_sized_new(256);
866     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
867         memory_region_size(&MACHINE(spapr)->device_memory->mr);
868     uint32_t lrdr_capacity[] = {
869         cpu_to_be32(max_device_addr >> 32),
870         cpu_to_be32(max_device_addr & 0xffffffff),
871         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
872         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
873         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
874     };
875 
876     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
877 
878     /* hypertas */
879     add_str(hypertas, "hcall-pft");
880     add_str(hypertas, "hcall-term");
881     add_str(hypertas, "hcall-dabr");
882     add_str(hypertas, "hcall-interrupt");
883     add_str(hypertas, "hcall-tce");
884     add_str(hypertas, "hcall-vio");
885     add_str(hypertas, "hcall-splpar");
886     add_str(hypertas, "hcall-join");
887     add_str(hypertas, "hcall-bulk");
888     add_str(hypertas, "hcall-set-mode");
889     add_str(hypertas, "hcall-sprg0");
890     add_str(hypertas, "hcall-copy");
891     add_str(hypertas, "hcall-debug");
892     add_str(hypertas, "hcall-vphn");
893     add_str(qemu_hypertas, "hcall-memop1");
894 
895     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
896         add_str(hypertas, "hcall-multi-tce");
897     }
898 
899     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
900         add_str(hypertas, "hcall-hpt-resize");
901     }
902 
903     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
904                      hypertas->str, hypertas->len));
905     g_string_free(hypertas, TRUE);
906     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
907                      qemu_hypertas->str, qemu_hypertas->len));
908     g_string_free(qemu_hypertas, TRUE);
909 
910     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
911 
912     /*
913      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
914      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
915      *
916      * The system reset requirements are driven by existing Linux and PowerVM
917      * implementation which (contrary to PAPR) saves r3 in the error log
918      * structure like machine check, so Linux expects to find the saved r3
919      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
920      * does not look at the error value).
921      *
922      * System reset interrupts are not subject to interlock like machine
923      * check, so this memory area could be corrupted if the sreset is
924      * interrupted by a machine check (or vice versa) if it was shared. To
925      * prevent this, system reset uses per-CPU areas for the sreset save
926      * area. A system reset that interrupts a system reset handler could
927      * still overwrite this area, but Linux doesn't try to recover in that
928      * case anyway.
929      *
930      * The extra 8 bytes is required because Linux's FWNMI error log check
931      * is off-by-one.
932      */
933     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
934 			  ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
935     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
936                           RTAS_ERROR_LOG_MAX));
937     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
938                           RTAS_EVENT_SCAN_RATE));
939 
940     g_assert(msi_nonbroken);
941     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
942 
943     /*
944      * According to PAPR, rtas ibm,os-term does not guarantee a return
945      * back to the guest cpu.
946      *
947      * While an additional ibm,extended-os-term property indicates
948      * that rtas call return will always occur. Set this property.
949      */
950     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
951 
952     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
953                      lrdr_capacity, sizeof(lrdr_capacity)));
954 
955     spapr_dt_rtas_tokens(fdt, rtas);
956 }
957 
958 /*
959  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
960  * and the XIVE features that the guest may request and thus the valid
961  * values for bytes 23..26 of option vector 5:
962  */
963 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
964                                           int chosen)
965 {
966     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
967 
968     char val[2 * 4] = {
969         23, 0x00, /* XICS / XIVE mode */
970         24, 0x00, /* Hash/Radix, filled in below. */
971         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
972         26, 0x40, /* Radix options: GTSE == yes. */
973     };
974 
975     if (spapr->irq->xics && spapr->irq->xive) {
976         val[1] = SPAPR_OV5_XIVE_BOTH;
977     } else if (spapr->irq->xive) {
978         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
979     } else {
980         assert(spapr->irq->xics);
981         val[1] = SPAPR_OV5_XIVE_LEGACY;
982     }
983 
984     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
985                           first_ppc_cpu->compat_pvr)) {
986         /*
987          * If we're in a pre POWER9 compat mode then the guest should
988          * do hash and use the legacy interrupt mode
989          */
990         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
991         val[3] = 0x00; /* Hash */
992     } else if (kvm_enabled()) {
993         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
994             val[3] = 0x80; /* OV5_MMU_BOTH */
995         } else if (kvmppc_has_cap_mmu_radix()) {
996             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
997         } else {
998             val[3] = 0x00; /* Hash */
999         }
1000     } else {
1001         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1002         val[3] = 0xC0;
1003     }
1004     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1005                      val, sizeof(val)));
1006 }
1007 
1008 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1009 {
1010     MachineState *machine = MACHINE(spapr);
1011     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1012     int chosen;
1013 
1014     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1015 
1016     if (reset) {
1017         const char *boot_device = machine->boot_order;
1018         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1019         size_t cb = 0;
1020         char *bootlist = get_boot_devices_list(&cb);
1021 
1022         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1023             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1024                                     machine->kernel_cmdline));
1025         }
1026 
1027         if (spapr->initrd_size) {
1028             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1029                                   spapr->initrd_base));
1030             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1031                                   spapr->initrd_base + spapr->initrd_size));
1032         }
1033 
1034         if (spapr->kernel_size) {
1035             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1036                                   cpu_to_be64(spapr->kernel_size) };
1037 
1038             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1039                          &kprop, sizeof(kprop)));
1040             if (spapr->kernel_le) {
1041                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1042             }
1043         }
1044         if (boot_menu) {
1045             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1046         }
1047         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1048         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1049         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1050 
1051         if (cb && bootlist) {
1052             int i;
1053 
1054             for (i = 0; i < cb; i++) {
1055                 if (bootlist[i] == '\n') {
1056                     bootlist[i] = ' ';
1057                 }
1058             }
1059             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1060         }
1061 
1062         if (boot_device && strlen(boot_device)) {
1063             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1064         }
1065 
1066         if (!spapr->has_graphics && stdout_path) {
1067             /*
1068              * "linux,stdout-path" and "stdout" properties are
1069              * deprecated by linux kernel. New platforms should only
1070              * use the "stdout-path" property. Set the new property
1071              * and continue using older property to remain compatible
1072              * with the existing firmware.
1073              */
1074             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1075             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1076         }
1077 
1078         /*
1079          * We can deal with BAR reallocation just fine, advertise it
1080          * to the guest
1081          */
1082         if (smc->linux_pci_probe) {
1083             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1084         }
1085 
1086         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1087 
1088         g_free(stdout_path);
1089         g_free(bootlist);
1090     }
1091 
1092     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1093 }
1094 
1095 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1096 {
1097     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1098      * KVM to work under pHyp with some guest co-operation */
1099     int hypervisor;
1100     uint8_t hypercall[16];
1101 
1102     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1103     /* indicate KVM hypercall interface */
1104     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1105     if (kvmppc_has_cap_fixup_hcalls()) {
1106         /*
1107          * Older KVM versions with older guest kernels were broken
1108          * with the magic page, don't allow the guest to map it.
1109          */
1110         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1111                                   sizeof(hypercall))) {
1112             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1113                              hypercall, sizeof(hypercall)));
1114         }
1115     }
1116 }
1117 
1118 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1119 {
1120     MachineState *machine = MACHINE(spapr);
1121     MachineClass *mc = MACHINE_GET_CLASS(machine);
1122     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1123     uint32_t root_drc_type_mask = 0;
1124     int ret;
1125     void *fdt;
1126     SpaprPhbState *phb;
1127     char *buf;
1128 
1129     fdt = g_malloc0(space);
1130     _FDT((fdt_create_empty_tree(fdt, space)));
1131 
1132     /* Root node */
1133     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1134     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1135     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1136 
1137     /* Guest UUID & Name*/
1138     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1139     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1140     if (qemu_uuid_set) {
1141         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1142     }
1143     g_free(buf);
1144 
1145     if (qemu_get_vm_name()) {
1146         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1147                                 qemu_get_vm_name()));
1148     }
1149 
1150     /* Host Model & Serial Number */
1151     if (spapr->host_model) {
1152         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1153     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1154         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1155         g_free(buf);
1156     }
1157 
1158     if (spapr->host_serial) {
1159         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1160     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1161         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1162         g_free(buf);
1163     }
1164 
1165     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1166     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1167 
1168     /* /interrupt controller */
1169     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1170 
1171     ret = spapr_dt_memory(spapr, fdt);
1172     if (ret < 0) {
1173         error_report("couldn't setup memory nodes in fdt");
1174         exit(1);
1175     }
1176 
1177     /* /vdevice */
1178     spapr_dt_vdevice(spapr->vio_bus, fdt);
1179 
1180     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1181         ret = spapr_dt_rng(fdt);
1182         if (ret < 0) {
1183             error_report("could not set up rng device in the fdt");
1184             exit(1);
1185         }
1186     }
1187 
1188     QLIST_FOREACH(phb, &spapr->phbs, list) {
1189         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1190         if (ret < 0) {
1191             error_report("couldn't setup PCI devices in fdt");
1192             exit(1);
1193         }
1194     }
1195 
1196     spapr_dt_cpus(fdt, spapr);
1197 
1198     /* ibm,drc-indexes and friends */
1199     if (smc->dr_lmb_enabled) {
1200         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB;
1201     }
1202     if (smc->dr_phb_enabled) {
1203         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB;
1204     }
1205     if (mc->nvdimm_supported) {
1206         root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM;
1207     }
1208     if (root_drc_type_mask) {
1209         _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask));
1210     }
1211 
1212     if (mc->has_hotpluggable_cpus) {
1213         int offset = fdt_path_offset(fdt, "/cpus");
1214         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1215         if (ret < 0) {
1216             error_report("Couldn't set up CPU DR device tree properties");
1217             exit(1);
1218         }
1219     }
1220 
1221     /* /event-sources */
1222     spapr_dt_events(spapr, fdt);
1223 
1224     /* /rtas */
1225     spapr_dt_rtas(spapr, fdt);
1226 
1227     /* /chosen */
1228     spapr_dt_chosen(spapr, fdt, reset);
1229 
1230     /* /hypervisor */
1231     if (kvm_enabled()) {
1232         spapr_dt_hypervisor(spapr, fdt);
1233     }
1234 
1235     /* Build memory reserve map */
1236     if (reset) {
1237         if (spapr->kernel_size) {
1238             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1239                                   spapr->kernel_size)));
1240         }
1241         if (spapr->initrd_size) {
1242             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1243                                   spapr->initrd_size)));
1244         }
1245     }
1246 
1247     /* NVDIMM devices */
1248     if (mc->nvdimm_supported) {
1249         spapr_dt_persistent_memory(spapr, fdt);
1250     }
1251 
1252     return fdt;
1253 }
1254 
1255 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1256 {
1257     SpaprMachineState *spapr = opaque;
1258 
1259     return (addr & 0x0fffffff) + spapr->kernel_addr;
1260 }
1261 
1262 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1263                                     PowerPCCPU *cpu)
1264 {
1265     CPUPPCState *env = &cpu->env;
1266 
1267     /* The TCG path should also be holding the BQL at this point */
1268     g_assert(qemu_mutex_iothread_locked());
1269 
1270     if (msr_pr) {
1271         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1272         env->gpr[3] = H_PRIVILEGE;
1273     } else {
1274         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1275     }
1276 }
1277 
1278 struct LPCRSyncState {
1279     target_ulong value;
1280     target_ulong mask;
1281 };
1282 
1283 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1284 {
1285     struct LPCRSyncState *s = arg.host_ptr;
1286     PowerPCCPU *cpu = POWERPC_CPU(cs);
1287     CPUPPCState *env = &cpu->env;
1288     target_ulong lpcr;
1289 
1290     cpu_synchronize_state(cs);
1291     lpcr = env->spr[SPR_LPCR];
1292     lpcr &= ~s->mask;
1293     lpcr |= s->value;
1294     ppc_store_lpcr(cpu, lpcr);
1295 }
1296 
1297 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1298 {
1299     CPUState *cs;
1300     struct LPCRSyncState s = {
1301         .value = value,
1302         .mask = mask
1303     };
1304     CPU_FOREACH(cs) {
1305         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1306     }
1307 }
1308 
1309 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1310 {
1311     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1312 
1313     /* Copy PATE1:GR into PATE0:HR */
1314     entry->dw0 = spapr->patb_entry & PATE0_HR;
1315     entry->dw1 = spapr->patb_entry;
1316 }
1317 
1318 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1319 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1320 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1321 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1322 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1323 
1324 /*
1325  * Get the fd to access the kernel htab, re-opening it if necessary
1326  */
1327 static int get_htab_fd(SpaprMachineState *spapr)
1328 {
1329     Error *local_err = NULL;
1330 
1331     if (spapr->htab_fd >= 0) {
1332         return spapr->htab_fd;
1333     }
1334 
1335     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1336     if (spapr->htab_fd < 0) {
1337         error_report_err(local_err);
1338     }
1339 
1340     return spapr->htab_fd;
1341 }
1342 
1343 void close_htab_fd(SpaprMachineState *spapr)
1344 {
1345     if (spapr->htab_fd >= 0) {
1346         close(spapr->htab_fd);
1347     }
1348     spapr->htab_fd = -1;
1349 }
1350 
1351 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1352 {
1353     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1354 
1355     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1356 }
1357 
1358 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1359 {
1360     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1361 
1362     assert(kvm_enabled());
1363 
1364     if (!spapr->htab) {
1365         return 0;
1366     }
1367 
1368     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1369 }
1370 
1371 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1372                                                 hwaddr ptex, int n)
1373 {
1374     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1375     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1376 
1377     if (!spapr->htab) {
1378         /*
1379          * HTAB is controlled by KVM. Fetch into temporary buffer
1380          */
1381         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1382         kvmppc_read_hptes(hptes, ptex, n);
1383         return hptes;
1384     }
1385 
1386     /*
1387      * HTAB is controlled by QEMU. Just point to the internally
1388      * accessible PTEG.
1389      */
1390     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1391 }
1392 
1393 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1394                               const ppc_hash_pte64_t *hptes,
1395                               hwaddr ptex, int n)
1396 {
1397     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1398 
1399     if (!spapr->htab) {
1400         g_free((void *)hptes);
1401     }
1402 
1403     /* Nothing to do for qemu managed HPT */
1404 }
1405 
1406 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1407                       uint64_t pte0, uint64_t pte1)
1408 {
1409     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1410     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1411 
1412     if (!spapr->htab) {
1413         kvmppc_write_hpte(ptex, pte0, pte1);
1414     } else {
1415         if (pte0 & HPTE64_V_VALID) {
1416             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1417             /*
1418              * When setting valid, we write PTE1 first. This ensures
1419              * proper synchronization with the reading code in
1420              * ppc_hash64_pteg_search()
1421              */
1422             smp_wmb();
1423             stq_p(spapr->htab + offset, pte0);
1424         } else {
1425             stq_p(spapr->htab + offset, pte0);
1426             /*
1427              * When clearing it we set PTE0 first. This ensures proper
1428              * synchronization with the reading code in
1429              * ppc_hash64_pteg_search()
1430              */
1431             smp_wmb();
1432             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1433         }
1434     }
1435 }
1436 
1437 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1438                              uint64_t pte1)
1439 {
1440     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1441     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1442 
1443     if (!spapr->htab) {
1444         /* There should always be a hash table when this is called */
1445         error_report("spapr_hpte_set_c called with no hash table !");
1446         return;
1447     }
1448 
1449     /* The HW performs a non-atomic byte update */
1450     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1451 }
1452 
1453 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1454                              uint64_t pte1)
1455 {
1456     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1457     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1458 
1459     if (!spapr->htab) {
1460         /* There should always be a hash table when this is called */
1461         error_report("spapr_hpte_set_r called with no hash table !");
1462         return;
1463     }
1464 
1465     /* The HW performs a non-atomic byte update */
1466     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1467 }
1468 
1469 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1470 {
1471     int shift;
1472 
1473     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1474      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1475      * that's much more than is needed for Linux guests */
1476     shift = ctz64(pow2ceil(ramsize)) - 7;
1477     shift = MAX(shift, 18); /* Minimum architected size */
1478     shift = MIN(shift, 46); /* Maximum architected size */
1479     return shift;
1480 }
1481 
1482 void spapr_free_hpt(SpaprMachineState *spapr)
1483 {
1484     g_free(spapr->htab);
1485     spapr->htab = NULL;
1486     spapr->htab_shift = 0;
1487     close_htab_fd(spapr);
1488 }
1489 
1490 int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp)
1491 {
1492     ERRP_GUARD();
1493     long rc;
1494 
1495     /* Clean up any HPT info from a previous boot */
1496     spapr_free_hpt(spapr);
1497 
1498     rc = kvmppc_reset_htab(shift);
1499 
1500     if (rc == -EOPNOTSUPP) {
1501         error_setg(errp, "HPT not supported in nested guests");
1502         return -EOPNOTSUPP;
1503     }
1504 
1505     if (rc < 0) {
1506         /* kernel-side HPT needed, but couldn't allocate one */
1507         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1508                          shift);
1509         error_append_hint(errp, "Try smaller maxmem?\n");
1510         return -errno;
1511     } else if (rc > 0) {
1512         /* kernel-side HPT allocated */
1513         if (rc != shift) {
1514             error_setg(errp,
1515                        "Requested order %d HPT, but kernel allocated order %ld",
1516                        shift, rc);
1517             error_append_hint(errp, "Try smaller maxmem?\n");
1518             return -ENOSPC;
1519         }
1520 
1521         spapr->htab_shift = shift;
1522         spapr->htab = NULL;
1523     } else {
1524         /* kernel-side HPT not needed, allocate in userspace instead */
1525         size_t size = 1ULL << shift;
1526         int i;
1527 
1528         spapr->htab = qemu_memalign(size, size);
1529         memset(spapr->htab, 0, size);
1530         spapr->htab_shift = shift;
1531 
1532         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1533             DIRTY_HPTE(HPTE(spapr->htab, i));
1534         }
1535     }
1536     /* We're setting up a hash table, so that means we're not radix */
1537     spapr->patb_entry = 0;
1538     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1539     return 0;
1540 }
1541 
1542 void spapr_setup_hpt(SpaprMachineState *spapr)
1543 {
1544     int hpt_shift;
1545 
1546     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1547         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1548     } else {
1549         uint64_t current_ram_size;
1550 
1551         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1552         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1553     }
1554     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1555 
1556     if (kvm_enabled()) {
1557         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1558 
1559         /* Check our RMA fits in the possible VRMA */
1560         if (vrma_limit < spapr->rma_size) {
1561             error_report("Unable to create %" HWADDR_PRIu
1562                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1563                          spapr->rma_size / MiB, vrma_limit / MiB);
1564             exit(EXIT_FAILURE);
1565         }
1566     }
1567 }
1568 
1569 static int spapr_reset_drcs(Object *child, void *opaque)
1570 {
1571     SpaprDrc *drc =
1572         (SpaprDrc *) object_dynamic_cast(child,
1573                                                  TYPE_SPAPR_DR_CONNECTOR);
1574 
1575     if (drc) {
1576         spapr_drc_reset(drc);
1577     }
1578 
1579     return 0;
1580 }
1581 
1582 static void spapr_machine_reset(MachineState *machine)
1583 {
1584     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1585     PowerPCCPU *first_ppc_cpu;
1586     hwaddr fdt_addr;
1587     void *fdt;
1588     int rc;
1589 
1590     kvmppc_svm_off(&error_fatal);
1591     spapr_caps_apply(spapr);
1592 
1593     first_ppc_cpu = POWERPC_CPU(first_cpu);
1594     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1595         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1596                               spapr->max_compat_pvr)) {
1597         /*
1598          * If using KVM with radix mode available, VCPUs can be started
1599          * without a HPT because KVM will start them in radix mode.
1600          * Set the GR bit in PATE so that we know there is no HPT.
1601          */
1602         spapr->patb_entry = PATE1_GR;
1603         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1604     } else {
1605         spapr_setup_hpt(spapr);
1606     }
1607 
1608     qemu_devices_reset();
1609 
1610     spapr_ovec_cleanup(spapr->ov5_cas);
1611     spapr->ov5_cas = spapr_ovec_new();
1612 
1613     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1614 
1615     /*
1616      * This is fixing some of the default configuration of the XIVE
1617      * devices. To be called after the reset of the machine devices.
1618      */
1619     spapr_irq_reset(spapr, &error_fatal);
1620 
1621     /*
1622      * There is no CAS under qtest. Simulate one to please the code that
1623      * depends on spapr->ov5_cas. This is especially needed to test device
1624      * unplug, so we do that before resetting the DRCs.
1625      */
1626     if (qtest_enabled()) {
1627         spapr_ovec_cleanup(spapr->ov5_cas);
1628         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1629     }
1630 
1631     /* DRC reset may cause a device to be unplugged. This will cause troubles
1632      * if this device is used by another device (eg, a running vhost backend
1633      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1634      * situations, we reset DRCs after all devices have been reset.
1635      */
1636     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1637 
1638     spapr_clear_pending_events(spapr);
1639 
1640     /*
1641      * We place the device tree and RTAS just below either the top of the RMA,
1642      * or just below 2GB, whichever is lower, so that it can be
1643      * processed with 32-bit real mode code if necessary
1644      */
1645     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1646 
1647     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1648 
1649     rc = fdt_pack(fdt);
1650 
1651     /* Should only fail if we've built a corrupted tree */
1652     assert(rc == 0);
1653 
1654     /* Load the fdt */
1655     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1656     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1657     g_free(spapr->fdt_blob);
1658     spapr->fdt_size = fdt_totalsize(fdt);
1659     spapr->fdt_initial_size = spapr->fdt_size;
1660     spapr->fdt_blob = fdt;
1661 
1662     /* Set up the entry state */
1663     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1664     first_ppc_cpu->env.gpr[5] = 0;
1665 
1666     spapr->fwnmi_system_reset_addr = -1;
1667     spapr->fwnmi_machine_check_addr = -1;
1668     spapr->fwnmi_machine_check_interlock = -1;
1669 
1670     /* Signal all vCPUs waiting on this condition */
1671     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1672 
1673     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1674 }
1675 
1676 static void spapr_create_nvram(SpaprMachineState *spapr)
1677 {
1678     DeviceState *dev = qdev_new("spapr-nvram");
1679     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1680 
1681     if (dinfo) {
1682         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1683                                 &error_fatal);
1684     }
1685 
1686     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1687 
1688     spapr->nvram = (struct SpaprNvram *)dev;
1689 }
1690 
1691 static void spapr_rtc_create(SpaprMachineState *spapr)
1692 {
1693     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1694                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1695                                        &error_fatal, NULL);
1696     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1697     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1698                               "date");
1699 }
1700 
1701 /* Returns whether we want to use VGA or not */
1702 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1703 {
1704     switch (vga_interface_type) {
1705     case VGA_NONE:
1706         return false;
1707     case VGA_DEVICE:
1708         return true;
1709     case VGA_STD:
1710     case VGA_VIRTIO:
1711     case VGA_CIRRUS:
1712         return pci_vga_init(pci_bus) != NULL;
1713     default:
1714         error_setg(errp,
1715                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1716         return false;
1717     }
1718 }
1719 
1720 static int spapr_pre_load(void *opaque)
1721 {
1722     int rc;
1723 
1724     rc = spapr_caps_pre_load(opaque);
1725     if (rc) {
1726         return rc;
1727     }
1728 
1729     return 0;
1730 }
1731 
1732 static int spapr_post_load(void *opaque, int version_id)
1733 {
1734     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1735     int err = 0;
1736 
1737     err = spapr_caps_post_migration(spapr);
1738     if (err) {
1739         return err;
1740     }
1741 
1742     /*
1743      * In earlier versions, there was no separate qdev for the PAPR
1744      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1745      * So when migrating from those versions, poke the incoming offset
1746      * value into the RTC device
1747      */
1748     if (version_id < 3) {
1749         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1750         if (err) {
1751             return err;
1752         }
1753     }
1754 
1755     if (kvm_enabled() && spapr->patb_entry) {
1756         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1757         bool radix = !!(spapr->patb_entry & PATE1_GR);
1758         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1759 
1760         /*
1761          * Update LPCR:HR and UPRT as they may not be set properly in
1762          * the stream
1763          */
1764         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1765                             LPCR_HR | LPCR_UPRT);
1766 
1767         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1768         if (err) {
1769             error_report("Process table config unsupported by the host");
1770             return -EINVAL;
1771         }
1772     }
1773 
1774     err = spapr_irq_post_load(spapr, version_id);
1775     if (err) {
1776         return err;
1777     }
1778 
1779     return err;
1780 }
1781 
1782 static int spapr_pre_save(void *opaque)
1783 {
1784     int rc;
1785 
1786     rc = spapr_caps_pre_save(opaque);
1787     if (rc) {
1788         return rc;
1789     }
1790 
1791     return 0;
1792 }
1793 
1794 static bool version_before_3(void *opaque, int version_id)
1795 {
1796     return version_id < 3;
1797 }
1798 
1799 static bool spapr_pending_events_needed(void *opaque)
1800 {
1801     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1802     return !QTAILQ_EMPTY(&spapr->pending_events);
1803 }
1804 
1805 static const VMStateDescription vmstate_spapr_event_entry = {
1806     .name = "spapr_event_log_entry",
1807     .version_id = 1,
1808     .minimum_version_id = 1,
1809     .fields = (VMStateField[]) {
1810         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1811         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1812         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1813                                      NULL, extended_length),
1814         VMSTATE_END_OF_LIST()
1815     },
1816 };
1817 
1818 static const VMStateDescription vmstate_spapr_pending_events = {
1819     .name = "spapr_pending_events",
1820     .version_id = 1,
1821     .minimum_version_id = 1,
1822     .needed = spapr_pending_events_needed,
1823     .fields = (VMStateField[]) {
1824         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1825                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1826         VMSTATE_END_OF_LIST()
1827     },
1828 };
1829 
1830 static bool spapr_ov5_cas_needed(void *opaque)
1831 {
1832     SpaprMachineState *spapr = opaque;
1833     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1834     bool cas_needed;
1835 
1836     /* Prior to the introduction of SpaprOptionVector, we had two option
1837      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1838      * Both of these options encode machine topology into the device-tree
1839      * in such a way that the now-booted OS should still be able to interact
1840      * appropriately with QEMU regardless of what options were actually
1841      * negotiatied on the source side.
1842      *
1843      * As such, we can avoid migrating the CAS-negotiated options if these
1844      * are the only options available on the current machine/platform.
1845      * Since these are the only options available for pseries-2.7 and
1846      * earlier, this allows us to maintain old->new/new->old migration
1847      * compatibility.
1848      *
1849      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1850      * via default pseries-2.8 machines and explicit command-line parameters.
1851      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1852      * of the actual CAS-negotiated values to continue working properly. For
1853      * example, availability of memory unplug depends on knowing whether
1854      * OV5_HP_EVT was negotiated via CAS.
1855      *
1856      * Thus, for any cases where the set of available CAS-negotiatable
1857      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1858      * include the CAS-negotiated options in the migration stream, unless
1859      * if they affect boot time behaviour only.
1860      */
1861     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1862     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1863     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1864 
1865     /* We need extra information if we have any bits outside the mask
1866      * defined above */
1867     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1868 
1869     spapr_ovec_cleanup(ov5_mask);
1870 
1871     return cas_needed;
1872 }
1873 
1874 static const VMStateDescription vmstate_spapr_ov5_cas = {
1875     .name = "spapr_option_vector_ov5_cas",
1876     .version_id = 1,
1877     .minimum_version_id = 1,
1878     .needed = spapr_ov5_cas_needed,
1879     .fields = (VMStateField[]) {
1880         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1881                                  vmstate_spapr_ovec, SpaprOptionVector),
1882         VMSTATE_END_OF_LIST()
1883     },
1884 };
1885 
1886 static bool spapr_patb_entry_needed(void *opaque)
1887 {
1888     SpaprMachineState *spapr = opaque;
1889 
1890     return !!spapr->patb_entry;
1891 }
1892 
1893 static const VMStateDescription vmstate_spapr_patb_entry = {
1894     .name = "spapr_patb_entry",
1895     .version_id = 1,
1896     .minimum_version_id = 1,
1897     .needed = spapr_patb_entry_needed,
1898     .fields = (VMStateField[]) {
1899         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1900         VMSTATE_END_OF_LIST()
1901     },
1902 };
1903 
1904 static bool spapr_irq_map_needed(void *opaque)
1905 {
1906     SpaprMachineState *spapr = opaque;
1907 
1908     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1909 }
1910 
1911 static const VMStateDescription vmstate_spapr_irq_map = {
1912     .name = "spapr_irq_map",
1913     .version_id = 1,
1914     .minimum_version_id = 1,
1915     .needed = spapr_irq_map_needed,
1916     .fields = (VMStateField[]) {
1917         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1918         VMSTATE_END_OF_LIST()
1919     },
1920 };
1921 
1922 static bool spapr_dtb_needed(void *opaque)
1923 {
1924     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1925 
1926     return smc->update_dt_enabled;
1927 }
1928 
1929 static int spapr_dtb_pre_load(void *opaque)
1930 {
1931     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1932 
1933     g_free(spapr->fdt_blob);
1934     spapr->fdt_blob = NULL;
1935     spapr->fdt_size = 0;
1936 
1937     return 0;
1938 }
1939 
1940 static const VMStateDescription vmstate_spapr_dtb = {
1941     .name = "spapr_dtb",
1942     .version_id = 1,
1943     .minimum_version_id = 1,
1944     .needed = spapr_dtb_needed,
1945     .pre_load = spapr_dtb_pre_load,
1946     .fields = (VMStateField[]) {
1947         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1948         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1949         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1950                                      fdt_size),
1951         VMSTATE_END_OF_LIST()
1952     },
1953 };
1954 
1955 static bool spapr_fwnmi_needed(void *opaque)
1956 {
1957     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1958 
1959     return spapr->fwnmi_machine_check_addr != -1;
1960 }
1961 
1962 static int spapr_fwnmi_pre_save(void *opaque)
1963 {
1964     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1965 
1966     /*
1967      * Check if machine check handling is in progress and print a
1968      * warning message.
1969      */
1970     if (spapr->fwnmi_machine_check_interlock != -1) {
1971         warn_report("A machine check is being handled during migration. The"
1972                 "handler may run and log hardware error on the destination");
1973     }
1974 
1975     return 0;
1976 }
1977 
1978 static const VMStateDescription vmstate_spapr_fwnmi = {
1979     .name = "spapr_fwnmi",
1980     .version_id = 1,
1981     .minimum_version_id = 1,
1982     .needed = spapr_fwnmi_needed,
1983     .pre_save = spapr_fwnmi_pre_save,
1984     .fields = (VMStateField[]) {
1985         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1986         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1987         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1988         VMSTATE_END_OF_LIST()
1989     },
1990 };
1991 
1992 static const VMStateDescription vmstate_spapr = {
1993     .name = "spapr",
1994     .version_id = 3,
1995     .minimum_version_id = 1,
1996     .pre_load = spapr_pre_load,
1997     .post_load = spapr_post_load,
1998     .pre_save = spapr_pre_save,
1999     .fields = (VMStateField[]) {
2000         /* used to be @next_irq */
2001         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2002 
2003         /* RTC offset */
2004         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2005 
2006         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2007         VMSTATE_END_OF_LIST()
2008     },
2009     .subsections = (const VMStateDescription*[]) {
2010         &vmstate_spapr_ov5_cas,
2011         &vmstate_spapr_patb_entry,
2012         &vmstate_spapr_pending_events,
2013         &vmstate_spapr_cap_htm,
2014         &vmstate_spapr_cap_vsx,
2015         &vmstate_spapr_cap_dfp,
2016         &vmstate_spapr_cap_cfpc,
2017         &vmstate_spapr_cap_sbbc,
2018         &vmstate_spapr_cap_ibs,
2019         &vmstate_spapr_cap_hpt_maxpagesize,
2020         &vmstate_spapr_irq_map,
2021         &vmstate_spapr_cap_nested_kvm_hv,
2022         &vmstate_spapr_dtb,
2023         &vmstate_spapr_cap_large_decr,
2024         &vmstate_spapr_cap_ccf_assist,
2025         &vmstate_spapr_cap_fwnmi,
2026         &vmstate_spapr_fwnmi,
2027         NULL
2028     }
2029 };
2030 
2031 static int htab_save_setup(QEMUFile *f, void *opaque)
2032 {
2033     SpaprMachineState *spapr = opaque;
2034 
2035     /* "Iteration" header */
2036     if (!spapr->htab_shift) {
2037         qemu_put_be32(f, -1);
2038     } else {
2039         qemu_put_be32(f, spapr->htab_shift);
2040     }
2041 
2042     if (spapr->htab) {
2043         spapr->htab_save_index = 0;
2044         spapr->htab_first_pass = true;
2045     } else {
2046         if (spapr->htab_shift) {
2047             assert(kvm_enabled());
2048         }
2049     }
2050 
2051 
2052     return 0;
2053 }
2054 
2055 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2056                             int chunkstart, int n_valid, int n_invalid)
2057 {
2058     qemu_put_be32(f, chunkstart);
2059     qemu_put_be16(f, n_valid);
2060     qemu_put_be16(f, n_invalid);
2061     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2062                     HASH_PTE_SIZE_64 * n_valid);
2063 }
2064 
2065 static void htab_save_end_marker(QEMUFile *f)
2066 {
2067     qemu_put_be32(f, 0);
2068     qemu_put_be16(f, 0);
2069     qemu_put_be16(f, 0);
2070 }
2071 
2072 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2073                                  int64_t max_ns)
2074 {
2075     bool has_timeout = max_ns != -1;
2076     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2077     int index = spapr->htab_save_index;
2078     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2079 
2080     assert(spapr->htab_first_pass);
2081 
2082     do {
2083         int chunkstart;
2084 
2085         /* Consume invalid HPTEs */
2086         while ((index < htabslots)
2087                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2088             CLEAN_HPTE(HPTE(spapr->htab, index));
2089             index++;
2090         }
2091 
2092         /* Consume valid HPTEs */
2093         chunkstart = index;
2094         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2095                && HPTE_VALID(HPTE(spapr->htab, index))) {
2096             CLEAN_HPTE(HPTE(spapr->htab, index));
2097             index++;
2098         }
2099 
2100         if (index > chunkstart) {
2101             int n_valid = index - chunkstart;
2102 
2103             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2104 
2105             if (has_timeout &&
2106                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2107                 break;
2108             }
2109         }
2110     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2111 
2112     if (index >= htabslots) {
2113         assert(index == htabslots);
2114         index = 0;
2115         spapr->htab_first_pass = false;
2116     }
2117     spapr->htab_save_index = index;
2118 }
2119 
2120 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2121                                 int64_t max_ns)
2122 {
2123     bool final = max_ns < 0;
2124     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2125     int examined = 0, sent = 0;
2126     int index = spapr->htab_save_index;
2127     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2128 
2129     assert(!spapr->htab_first_pass);
2130 
2131     do {
2132         int chunkstart, invalidstart;
2133 
2134         /* Consume non-dirty HPTEs */
2135         while ((index < htabslots)
2136                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2137             index++;
2138             examined++;
2139         }
2140 
2141         chunkstart = index;
2142         /* Consume valid dirty HPTEs */
2143         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2144                && HPTE_DIRTY(HPTE(spapr->htab, index))
2145                && HPTE_VALID(HPTE(spapr->htab, index))) {
2146             CLEAN_HPTE(HPTE(spapr->htab, index));
2147             index++;
2148             examined++;
2149         }
2150 
2151         invalidstart = index;
2152         /* Consume invalid dirty HPTEs */
2153         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2154                && HPTE_DIRTY(HPTE(spapr->htab, index))
2155                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2156             CLEAN_HPTE(HPTE(spapr->htab, index));
2157             index++;
2158             examined++;
2159         }
2160 
2161         if (index > chunkstart) {
2162             int n_valid = invalidstart - chunkstart;
2163             int n_invalid = index - invalidstart;
2164 
2165             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2166             sent += index - chunkstart;
2167 
2168             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2169                 break;
2170             }
2171         }
2172 
2173         if (examined >= htabslots) {
2174             break;
2175         }
2176 
2177         if (index >= htabslots) {
2178             assert(index == htabslots);
2179             index = 0;
2180         }
2181     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2182 
2183     if (index >= htabslots) {
2184         assert(index == htabslots);
2185         index = 0;
2186     }
2187 
2188     spapr->htab_save_index = index;
2189 
2190     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2191 }
2192 
2193 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2194 #define MAX_KVM_BUF_SIZE    2048
2195 
2196 static int htab_save_iterate(QEMUFile *f, void *opaque)
2197 {
2198     SpaprMachineState *spapr = opaque;
2199     int fd;
2200     int rc = 0;
2201 
2202     /* Iteration header */
2203     if (!spapr->htab_shift) {
2204         qemu_put_be32(f, -1);
2205         return 1;
2206     } else {
2207         qemu_put_be32(f, 0);
2208     }
2209 
2210     if (!spapr->htab) {
2211         assert(kvm_enabled());
2212 
2213         fd = get_htab_fd(spapr);
2214         if (fd < 0) {
2215             return fd;
2216         }
2217 
2218         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2219         if (rc < 0) {
2220             return rc;
2221         }
2222     } else  if (spapr->htab_first_pass) {
2223         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2224     } else {
2225         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2226     }
2227 
2228     htab_save_end_marker(f);
2229 
2230     return rc;
2231 }
2232 
2233 static int htab_save_complete(QEMUFile *f, void *opaque)
2234 {
2235     SpaprMachineState *spapr = opaque;
2236     int fd;
2237 
2238     /* Iteration header */
2239     if (!spapr->htab_shift) {
2240         qemu_put_be32(f, -1);
2241         return 0;
2242     } else {
2243         qemu_put_be32(f, 0);
2244     }
2245 
2246     if (!spapr->htab) {
2247         int rc;
2248 
2249         assert(kvm_enabled());
2250 
2251         fd = get_htab_fd(spapr);
2252         if (fd < 0) {
2253             return fd;
2254         }
2255 
2256         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2257         if (rc < 0) {
2258             return rc;
2259         }
2260     } else {
2261         if (spapr->htab_first_pass) {
2262             htab_save_first_pass(f, spapr, -1);
2263         }
2264         htab_save_later_pass(f, spapr, -1);
2265     }
2266 
2267     /* End marker */
2268     htab_save_end_marker(f);
2269 
2270     return 0;
2271 }
2272 
2273 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2274 {
2275     SpaprMachineState *spapr = opaque;
2276     uint32_t section_hdr;
2277     int fd = -1;
2278     Error *local_err = NULL;
2279 
2280     if (version_id < 1 || version_id > 1) {
2281         error_report("htab_load() bad version");
2282         return -EINVAL;
2283     }
2284 
2285     section_hdr = qemu_get_be32(f);
2286 
2287     if (section_hdr == -1) {
2288         spapr_free_hpt(spapr);
2289         return 0;
2290     }
2291 
2292     if (section_hdr) {
2293         int ret;
2294 
2295         /* First section gives the htab size */
2296         ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2297         if (ret < 0) {
2298             error_report_err(local_err);
2299             return ret;
2300         }
2301         return 0;
2302     }
2303 
2304     if (!spapr->htab) {
2305         assert(kvm_enabled());
2306 
2307         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2308         if (fd < 0) {
2309             error_report_err(local_err);
2310             return fd;
2311         }
2312     }
2313 
2314     while (true) {
2315         uint32_t index;
2316         uint16_t n_valid, n_invalid;
2317 
2318         index = qemu_get_be32(f);
2319         n_valid = qemu_get_be16(f);
2320         n_invalid = qemu_get_be16(f);
2321 
2322         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2323             /* End of Stream */
2324             break;
2325         }
2326 
2327         if ((index + n_valid + n_invalid) >
2328             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2329             /* Bad index in stream */
2330             error_report(
2331                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2332                 index, n_valid, n_invalid, spapr->htab_shift);
2333             return -EINVAL;
2334         }
2335 
2336         if (spapr->htab) {
2337             if (n_valid) {
2338                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2339                                 HASH_PTE_SIZE_64 * n_valid);
2340             }
2341             if (n_invalid) {
2342                 memset(HPTE(spapr->htab, index + n_valid), 0,
2343                        HASH_PTE_SIZE_64 * n_invalid);
2344             }
2345         } else {
2346             int rc;
2347 
2348             assert(fd >= 0);
2349 
2350             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2351                                         &local_err);
2352             if (rc < 0) {
2353                 error_report_err(local_err);
2354                 return rc;
2355             }
2356         }
2357     }
2358 
2359     if (!spapr->htab) {
2360         assert(fd >= 0);
2361         close(fd);
2362     }
2363 
2364     return 0;
2365 }
2366 
2367 static void htab_save_cleanup(void *opaque)
2368 {
2369     SpaprMachineState *spapr = opaque;
2370 
2371     close_htab_fd(spapr);
2372 }
2373 
2374 static SaveVMHandlers savevm_htab_handlers = {
2375     .save_setup = htab_save_setup,
2376     .save_live_iterate = htab_save_iterate,
2377     .save_live_complete_precopy = htab_save_complete,
2378     .save_cleanup = htab_save_cleanup,
2379     .load_state = htab_load,
2380 };
2381 
2382 static void spapr_boot_set(void *opaque, const char *boot_device,
2383                            Error **errp)
2384 {
2385     MachineState *machine = MACHINE(opaque);
2386     machine->boot_order = g_strdup(boot_device);
2387 }
2388 
2389 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2390 {
2391     MachineState *machine = MACHINE(spapr);
2392     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2393     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2394     int i;
2395 
2396     for (i = 0; i < nr_lmbs; i++) {
2397         uint64_t addr;
2398 
2399         addr = i * lmb_size + machine->device_memory->base;
2400         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2401                                addr / lmb_size);
2402     }
2403 }
2404 
2405 /*
2406  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2407  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2408  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2409  */
2410 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2411 {
2412     int i;
2413 
2414     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2415         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2416                    " is not aligned to %" PRIu64 " MiB",
2417                    machine->ram_size,
2418                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2419         return;
2420     }
2421 
2422     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2423         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2424                    " is not aligned to %" PRIu64 " MiB",
2425                    machine->ram_size,
2426                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2427         return;
2428     }
2429 
2430     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2431         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2432             error_setg(errp,
2433                        "Node %d memory size 0x%" PRIx64
2434                        " is not aligned to %" PRIu64 " MiB",
2435                        i, machine->numa_state->nodes[i].node_mem,
2436                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2437             return;
2438         }
2439     }
2440 }
2441 
2442 /* find cpu slot in machine->possible_cpus by core_id */
2443 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2444 {
2445     int index = id / ms->smp.threads;
2446 
2447     if (index >= ms->possible_cpus->len) {
2448         return NULL;
2449     }
2450     if (idx) {
2451         *idx = index;
2452     }
2453     return &ms->possible_cpus->cpus[index];
2454 }
2455 
2456 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2457 {
2458     MachineState *ms = MACHINE(spapr);
2459     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2460     Error *local_err = NULL;
2461     bool vsmt_user = !!spapr->vsmt;
2462     int kvm_smt = kvmppc_smt_threads();
2463     int ret;
2464     unsigned int smp_threads = ms->smp.threads;
2465 
2466     if (!kvm_enabled() && (smp_threads > 1)) {
2467         error_setg(errp, "TCG cannot support more than 1 thread/core "
2468                    "on a pseries machine");
2469         return;
2470     }
2471     if (!is_power_of_2(smp_threads)) {
2472         error_setg(errp, "Cannot support %d threads/core on a pseries "
2473                    "machine because it must be a power of 2", smp_threads);
2474         return;
2475     }
2476 
2477     /* Detemine the VSMT mode to use: */
2478     if (vsmt_user) {
2479         if (spapr->vsmt < smp_threads) {
2480             error_setg(errp, "Cannot support VSMT mode %d"
2481                        " because it must be >= threads/core (%d)",
2482                        spapr->vsmt, smp_threads);
2483             return;
2484         }
2485         /* In this case, spapr->vsmt has been set by the command line */
2486     } else if (!smc->smp_threads_vsmt) {
2487         /*
2488          * Default VSMT value is tricky, because we need it to be as
2489          * consistent as possible (for migration), but this requires
2490          * changing it for at least some existing cases.  We pick 8 as
2491          * the value that we'd get with KVM on POWER8, the
2492          * overwhelmingly common case in production systems.
2493          */
2494         spapr->vsmt = MAX(8, smp_threads);
2495     } else {
2496         spapr->vsmt = smp_threads;
2497     }
2498 
2499     /* KVM: If necessary, set the SMT mode: */
2500     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2501         ret = kvmppc_set_smt_threads(spapr->vsmt);
2502         if (ret) {
2503             /* Looks like KVM isn't able to change VSMT mode */
2504             error_setg(&local_err,
2505                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2506                        spapr->vsmt, ret);
2507             /* We can live with that if the default one is big enough
2508              * for the number of threads, and a submultiple of the one
2509              * we want.  In this case we'll waste some vcpu ids, but
2510              * behaviour will be correct */
2511             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2512                 warn_report_err(local_err);
2513             } else {
2514                 if (!vsmt_user) {
2515                     error_append_hint(&local_err,
2516                                       "On PPC, a VM with %d threads/core"
2517                                       " on a host with %d threads/core"
2518                                       " requires the use of VSMT mode %d.\n",
2519                                       smp_threads, kvm_smt, spapr->vsmt);
2520                 }
2521                 kvmppc_error_append_smt_possible_hint(&local_err);
2522                 error_propagate(errp, local_err);
2523             }
2524         }
2525     }
2526     /* else TCG: nothing to do currently */
2527 }
2528 
2529 static void spapr_init_cpus(SpaprMachineState *spapr)
2530 {
2531     MachineState *machine = MACHINE(spapr);
2532     MachineClass *mc = MACHINE_GET_CLASS(machine);
2533     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2534     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2535     const CPUArchIdList *possible_cpus;
2536     unsigned int smp_cpus = machine->smp.cpus;
2537     unsigned int smp_threads = machine->smp.threads;
2538     unsigned int max_cpus = machine->smp.max_cpus;
2539     int boot_cores_nr = smp_cpus / smp_threads;
2540     int i;
2541 
2542     possible_cpus = mc->possible_cpu_arch_ids(machine);
2543     if (mc->has_hotpluggable_cpus) {
2544         if (smp_cpus % smp_threads) {
2545             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2546                          smp_cpus, smp_threads);
2547             exit(1);
2548         }
2549         if (max_cpus % smp_threads) {
2550             error_report("max_cpus (%u) must be multiple of threads (%u)",
2551                          max_cpus, smp_threads);
2552             exit(1);
2553         }
2554     } else {
2555         if (max_cpus != smp_cpus) {
2556             error_report("This machine version does not support CPU hotplug");
2557             exit(1);
2558         }
2559         boot_cores_nr = possible_cpus->len;
2560     }
2561 
2562     if (smc->pre_2_10_has_unused_icps) {
2563         int i;
2564 
2565         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2566             /* Dummy entries get deregistered when real ICPState objects
2567              * are registered during CPU core hotplug.
2568              */
2569             pre_2_10_vmstate_register_dummy_icp(i);
2570         }
2571     }
2572 
2573     for (i = 0; i < possible_cpus->len; i++) {
2574         int core_id = i * smp_threads;
2575 
2576         if (mc->has_hotpluggable_cpus) {
2577             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2578                                    spapr_vcpu_id(spapr, core_id));
2579         }
2580 
2581         if (i < boot_cores_nr) {
2582             Object *core  = object_new(type);
2583             int nr_threads = smp_threads;
2584 
2585             /* Handle the partially filled core for older machine types */
2586             if ((i + 1) * smp_threads >= smp_cpus) {
2587                 nr_threads = smp_cpus - i * smp_threads;
2588             }
2589 
2590             object_property_set_int(core, "nr-threads", nr_threads,
2591                                     &error_fatal);
2592             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2593                                     &error_fatal);
2594             qdev_realize(DEVICE(core), NULL, &error_fatal);
2595 
2596             object_unref(core);
2597         }
2598     }
2599 }
2600 
2601 static PCIHostState *spapr_create_default_phb(void)
2602 {
2603     DeviceState *dev;
2604 
2605     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2606     qdev_prop_set_uint32(dev, "index", 0);
2607     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2608 
2609     return PCI_HOST_BRIDGE(dev);
2610 }
2611 
2612 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2613 {
2614     MachineState *machine = MACHINE(spapr);
2615     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2616     hwaddr rma_size = machine->ram_size;
2617     hwaddr node0_size = spapr_node0_size(machine);
2618 
2619     /* RMA has to fit in the first NUMA node */
2620     rma_size = MIN(rma_size, node0_size);
2621 
2622     /*
2623      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2624      * never exceed that
2625      */
2626     rma_size = MIN(rma_size, 1 * TiB);
2627 
2628     /*
2629      * Clamp the RMA size based on machine type.  This is for
2630      * migration compatibility with older qemu versions, which limited
2631      * the RMA size for complicated and mostly bad reasons.
2632      */
2633     if (smc->rma_limit) {
2634         rma_size = MIN(rma_size, smc->rma_limit);
2635     }
2636 
2637     if (rma_size < MIN_RMA_SLOF) {
2638         error_setg(errp,
2639                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2640                    "ldMiB guest RMA (Real Mode Area memory)",
2641                    MIN_RMA_SLOF / MiB);
2642         return 0;
2643     }
2644 
2645     return rma_size;
2646 }
2647 
2648 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2649 {
2650     MachineState *machine = MACHINE(spapr);
2651     int i;
2652 
2653     for (i = 0; i < machine->ram_slots; i++) {
2654         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2655     }
2656 }
2657 
2658 /* pSeries LPAR / sPAPR hardware init */
2659 static void spapr_machine_init(MachineState *machine)
2660 {
2661     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2662     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2663     MachineClass *mc = MACHINE_GET_CLASS(machine);
2664     const char *bios_name = machine->firmware ?: FW_FILE_NAME;
2665     const char *kernel_filename = machine->kernel_filename;
2666     const char *initrd_filename = machine->initrd_filename;
2667     PCIHostState *phb;
2668     int i;
2669     MemoryRegion *sysmem = get_system_memory();
2670     long load_limit, fw_size;
2671     char *filename;
2672     Error *resize_hpt_err = NULL;
2673 
2674     msi_nonbroken = true;
2675 
2676     QLIST_INIT(&spapr->phbs);
2677     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2678 
2679     /* Determine capabilities to run with */
2680     spapr_caps_init(spapr);
2681 
2682     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2683     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2684         /*
2685          * If the user explicitly requested a mode we should either
2686          * supply it, or fail completely (which we do below).  But if
2687          * it's not set explicitly, we reset our mode to something
2688          * that works
2689          */
2690         if (resize_hpt_err) {
2691             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2692             error_free(resize_hpt_err);
2693             resize_hpt_err = NULL;
2694         } else {
2695             spapr->resize_hpt = smc->resize_hpt_default;
2696         }
2697     }
2698 
2699     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2700 
2701     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2702         /*
2703          * User requested HPT resize, but this host can't supply it.  Bail out
2704          */
2705         error_report_err(resize_hpt_err);
2706         exit(1);
2707     }
2708     error_free(resize_hpt_err);
2709 
2710     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2711 
2712     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2713     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2714 
2715     /*
2716      * VSMT must be set in order to be able to compute VCPU ids, ie to
2717      * call spapr_max_server_number() or spapr_vcpu_id().
2718      */
2719     spapr_set_vsmt_mode(spapr, &error_fatal);
2720 
2721     /* Set up Interrupt Controller before we create the VCPUs */
2722     spapr_irq_init(spapr, &error_fatal);
2723 
2724     /* Set up containers for ibm,client-architecture-support negotiated options
2725      */
2726     spapr->ov5 = spapr_ovec_new();
2727     spapr->ov5_cas = spapr_ovec_new();
2728 
2729     if (smc->dr_lmb_enabled) {
2730         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2731         spapr_validate_node_memory(machine, &error_fatal);
2732     }
2733 
2734     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2735 
2736     /* advertise support for dedicated HP event source to guests */
2737     if (spapr->use_hotplug_event_source) {
2738         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2739     }
2740 
2741     /* advertise support for HPT resizing */
2742     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2743         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2744     }
2745 
2746     /* advertise support for ibm,dyamic-memory-v2 */
2747     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2748 
2749     /* advertise XIVE on POWER9 machines */
2750     if (spapr->irq->xive) {
2751         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2752     }
2753 
2754     /* init CPUs */
2755     spapr_init_cpus(spapr);
2756 
2757     /*
2758      * check we don't have a memory-less/cpu-less NUMA node
2759      * Firmware relies on the existing memory/cpu topology to provide the
2760      * NUMA topology to the kernel.
2761      * And the linux kernel needs to know the NUMA topology at start
2762      * to be able to hotplug CPUs later.
2763      */
2764     if (machine->numa_state->num_nodes) {
2765         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2766             /* check for memory-less node */
2767             if (machine->numa_state->nodes[i].node_mem == 0) {
2768                 CPUState *cs;
2769                 int found = 0;
2770                 /* check for cpu-less node */
2771                 CPU_FOREACH(cs) {
2772                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2773                     if (cpu->node_id == i) {
2774                         found = 1;
2775                         break;
2776                     }
2777                 }
2778                 /* memory-less and cpu-less node */
2779                 if (!found) {
2780                     error_report(
2781                        "Memory-less/cpu-less nodes are not supported (node %d)",
2782                                  i);
2783                     exit(1);
2784                 }
2785             }
2786         }
2787 
2788     }
2789 
2790     /*
2791      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2792      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2793      * called from vPHB reset handler so we initialize the counter here.
2794      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2795      * must be equally distant from any other node.
2796      * The final value of spapr->gpu_numa_id is going to be written to
2797      * max-associativity-domains in spapr_build_fdt().
2798      */
2799     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2800 
2801     /* Init numa_assoc_array */
2802     spapr_numa_associativity_init(spapr, machine);
2803 
2804     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2805         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2806                               spapr->max_compat_pvr)) {
2807         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2808         /* KVM and TCG always allow GTSE with radix... */
2809         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2810     }
2811     /* ... but not with hash (currently). */
2812 
2813     if (kvm_enabled()) {
2814         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2815         kvmppc_enable_logical_ci_hcalls();
2816         kvmppc_enable_set_mode_hcall();
2817 
2818         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2819         kvmppc_enable_clear_ref_mod_hcalls();
2820 
2821         /* Enable H_PAGE_INIT */
2822         kvmppc_enable_h_page_init();
2823     }
2824 
2825     /* map RAM */
2826     memory_region_add_subregion(sysmem, 0, machine->ram);
2827 
2828     /* always allocate the device memory information */
2829     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2830 
2831     /* initialize hotplug memory address space */
2832     if (machine->ram_size < machine->maxram_size) {
2833         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2834         /*
2835          * Limit the number of hotpluggable memory slots to half the number
2836          * slots that KVM supports, leaving the other half for PCI and other
2837          * devices. However ensure that number of slots doesn't drop below 32.
2838          */
2839         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2840                            SPAPR_MAX_RAM_SLOTS;
2841 
2842         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2843             max_memslots = SPAPR_MAX_RAM_SLOTS;
2844         }
2845         if (machine->ram_slots > max_memslots) {
2846             error_report("Specified number of memory slots %"
2847                          PRIu64" exceeds max supported %d",
2848                          machine->ram_slots, max_memslots);
2849             exit(1);
2850         }
2851 
2852         machine->device_memory->base = ROUND_UP(machine->ram_size,
2853                                                 SPAPR_DEVICE_MEM_ALIGN);
2854         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2855                            "device-memory", device_mem_size);
2856         memory_region_add_subregion(sysmem, machine->device_memory->base,
2857                                     &machine->device_memory->mr);
2858     }
2859 
2860     if (smc->dr_lmb_enabled) {
2861         spapr_create_lmb_dr_connectors(spapr);
2862     }
2863 
2864     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2865         /* Create the error string for live migration blocker */
2866         error_setg(&spapr->fwnmi_migration_blocker,
2867             "A machine check is being handled during migration. The handler"
2868             "may run and log hardware error on the destination");
2869     }
2870 
2871     if (mc->nvdimm_supported) {
2872         spapr_create_nvdimm_dr_connectors(spapr);
2873     }
2874 
2875     /* Set up RTAS event infrastructure */
2876     spapr_events_init(spapr);
2877 
2878     /* Set up the RTC RTAS interfaces */
2879     spapr_rtc_create(spapr);
2880 
2881     /* Set up VIO bus */
2882     spapr->vio_bus = spapr_vio_bus_init();
2883 
2884     for (i = 0; serial_hd(i); i++) {
2885         spapr_vty_create(spapr->vio_bus, serial_hd(i));
2886     }
2887 
2888     /* We always have at least the nvram device on VIO */
2889     spapr_create_nvram(spapr);
2890 
2891     /*
2892      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2893      * connectors (described in root DT node's "ibm,drc-types" property)
2894      * are pre-initialized here. additional child connectors (such as
2895      * connectors for a PHBs PCI slots) are added as needed during their
2896      * parent's realization.
2897      */
2898     if (smc->dr_phb_enabled) {
2899         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2900             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2901         }
2902     }
2903 
2904     /* Set up PCI */
2905     spapr_pci_rtas_init();
2906 
2907     phb = spapr_create_default_phb();
2908 
2909     for (i = 0; i < nb_nics; i++) {
2910         NICInfo *nd = &nd_table[i];
2911 
2912         if (!nd->model) {
2913             nd->model = g_strdup("spapr-vlan");
2914         }
2915 
2916         if (g_str_equal(nd->model, "spapr-vlan") ||
2917             g_str_equal(nd->model, "ibmveth")) {
2918             spapr_vlan_create(spapr->vio_bus, nd);
2919         } else {
2920             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2921         }
2922     }
2923 
2924     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2925         spapr_vscsi_create(spapr->vio_bus);
2926     }
2927 
2928     /* Graphics */
2929     if (spapr_vga_init(phb->bus, &error_fatal)) {
2930         spapr->has_graphics = true;
2931         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2932     }
2933 
2934     if (machine->usb) {
2935         if (smc->use_ohci_by_default) {
2936             pci_create_simple(phb->bus, -1, "pci-ohci");
2937         } else {
2938             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2939         }
2940 
2941         if (spapr->has_graphics) {
2942             USBBus *usb_bus = usb_bus_find(-1);
2943 
2944             usb_create_simple(usb_bus, "usb-kbd");
2945             usb_create_simple(usb_bus, "usb-mouse");
2946         }
2947     }
2948 
2949     if (kernel_filename) {
2950         spapr->kernel_size = load_elf(kernel_filename, NULL,
2951                                       translate_kernel_address, spapr,
2952                                       NULL, NULL, NULL, NULL, 1,
2953                                       PPC_ELF_MACHINE, 0, 0);
2954         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2955             spapr->kernel_size = load_elf(kernel_filename, NULL,
2956                                           translate_kernel_address, spapr,
2957                                           NULL, NULL, NULL, NULL, 0,
2958                                           PPC_ELF_MACHINE, 0, 0);
2959             spapr->kernel_le = spapr->kernel_size > 0;
2960         }
2961         if (spapr->kernel_size < 0) {
2962             error_report("error loading %s: %s", kernel_filename,
2963                          load_elf_strerror(spapr->kernel_size));
2964             exit(1);
2965         }
2966 
2967         /* load initrd */
2968         if (initrd_filename) {
2969             /* Try to locate the initrd in the gap between the kernel
2970              * and the firmware. Add a bit of space just in case
2971              */
2972             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2973                                   + 0x1ffff) & ~0xffff;
2974             spapr->initrd_size = load_image_targphys(initrd_filename,
2975                                                      spapr->initrd_base,
2976                                                      load_limit
2977                                                      - spapr->initrd_base);
2978             if (spapr->initrd_size < 0) {
2979                 error_report("could not load initial ram disk '%s'",
2980                              initrd_filename);
2981                 exit(1);
2982             }
2983         }
2984     }
2985 
2986     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2987     if (!filename) {
2988         error_report("Could not find LPAR firmware '%s'", bios_name);
2989         exit(1);
2990     }
2991     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2992     if (fw_size <= 0) {
2993         error_report("Could not load LPAR firmware '%s'", filename);
2994         exit(1);
2995     }
2996     g_free(filename);
2997 
2998     /* FIXME: Should register things through the MachineState's qdev
2999      * interface, this is a legacy from the sPAPREnvironment structure
3000      * which predated MachineState but had a similar function */
3001     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3002     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3003                          &savevm_htab_handlers, spapr);
3004 
3005     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3006 
3007     qemu_register_boot_set(spapr_boot_set, spapr);
3008 
3009     /*
3010      * Nothing needs to be done to resume a suspended guest because
3011      * suspending does not change the machine state, so no need for
3012      * a ->wakeup method.
3013      */
3014     qemu_register_wakeup_support();
3015 
3016     if (kvm_enabled()) {
3017         /* to stop and start vmclock */
3018         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3019                                          &spapr->tb);
3020 
3021         kvmppc_spapr_enable_inkernel_multitce();
3022     }
3023 
3024     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3025 }
3026 
3027 #define DEFAULT_KVM_TYPE "auto"
3028 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3029 {
3030     /*
3031      * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to
3032      * accomodate the 'HV' and 'PV' formats that exists in the
3033      * wild. The 'auto' mode is being introduced already as
3034      * lower-case, thus we don't need to bother checking for
3035      * "AUTO".
3036      */
3037     if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) {
3038         return 0;
3039     }
3040 
3041     if (!g_ascii_strcasecmp(vm_type, "hv")) {
3042         return 1;
3043     }
3044 
3045     if (!g_ascii_strcasecmp(vm_type, "pr")) {
3046         return 2;
3047     }
3048 
3049     error_report("Unknown kvm-type specified '%s'", vm_type);
3050     exit(1);
3051 }
3052 
3053 /*
3054  * Implementation of an interface to adjust firmware path
3055  * for the bootindex property handling.
3056  */
3057 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3058                                    DeviceState *dev)
3059 {
3060 #define CAST(type, obj, name) \
3061     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3062     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3063     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3064     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3065 
3066     if (d) {
3067         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3068         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3069         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3070 
3071         if (spapr) {
3072             /*
3073              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3074              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3075              * 0x8000 | (target << 8) | (bus << 5) | lun
3076              * (see the "Logical unit addressing format" table in SAM5)
3077              */
3078             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3079             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3080                                    (uint64_t)id << 48);
3081         } else if (virtio) {
3082             /*
3083              * We use SRP luns of the form 01000000 | (target << 8) | lun
3084              * in the top 32 bits of the 64-bit LUN
3085              * Note: the quote above is from SLOF and it is wrong,
3086              * the actual binding is:
3087              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3088              */
3089             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3090             if (d->lun >= 256) {
3091                 /* Use the LUN "flat space addressing method" */
3092                 id |= 0x4000;
3093             }
3094             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3095                                    (uint64_t)id << 32);
3096         } else if (usb) {
3097             /*
3098              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3099              * in the top 32 bits of the 64-bit LUN
3100              */
3101             unsigned usb_port = atoi(usb->port->path);
3102             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3103             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3104                                    (uint64_t)id << 32);
3105         }
3106     }
3107 
3108     /*
3109      * SLOF probes the USB devices, and if it recognizes that the device is a
3110      * storage device, it changes its name to "storage" instead of "usb-host",
3111      * and additionally adds a child node for the SCSI LUN, so the correct
3112      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3113      */
3114     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3115         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3116         if (usb_host_dev_is_scsi_storage(usbdev)) {
3117             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3118         }
3119     }
3120 
3121     if (phb) {
3122         /* Replace "pci" with "pci@800000020000000" */
3123         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3124     }
3125 
3126     if (vsc) {
3127         /* Same logic as virtio above */
3128         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3129         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3130     }
3131 
3132     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3133         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3134         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3135         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3136     }
3137 
3138     return NULL;
3139 }
3140 
3141 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3142 {
3143     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3144 
3145     return g_strdup(spapr->kvm_type);
3146 }
3147 
3148 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3149 {
3150     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3151 
3152     g_free(spapr->kvm_type);
3153     spapr->kvm_type = g_strdup(value);
3154 }
3155 
3156 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3157 {
3158     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3159 
3160     return spapr->use_hotplug_event_source;
3161 }
3162 
3163 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3164                                             Error **errp)
3165 {
3166     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3167 
3168     spapr->use_hotplug_event_source = value;
3169 }
3170 
3171 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3172 {
3173     return true;
3174 }
3175 
3176 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3177 {
3178     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3179 
3180     switch (spapr->resize_hpt) {
3181     case SPAPR_RESIZE_HPT_DEFAULT:
3182         return g_strdup("default");
3183     case SPAPR_RESIZE_HPT_DISABLED:
3184         return g_strdup("disabled");
3185     case SPAPR_RESIZE_HPT_ENABLED:
3186         return g_strdup("enabled");
3187     case SPAPR_RESIZE_HPT_REQUIRED:
3188         return g_strdup("required");
3189     }
3190     g_assert_not_reached();
3191 }
3192 
3193 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3194 {
3195     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3196 
3197     if (strcmp(value, "default") == 0) {
3198         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3199     } else if (strcmp(value, "disabled") == 0) {
3200         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3201     } else if (strcmp(value, "enabled") == 0) {
3202         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3203     } else if (strcmp(value, "required") == 0) {
3204         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3205     } else {
3206         error_setg(errp, "Bad value for \"resize-hpt\" property");
3207     }
3208 }
3209 
3210 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3211 {
3212     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3213 
3214     if (spapr->irq == &spapr_irq_xics_legacy) {
3215         return g_strdup("legacy");
3216     } else if (spapr->irq == &spapr_irq_xics) {
3217         return g_strdup("xics");
3218     } else if (spapr->irq == &spapr_irq_xive) {
3219         return g_strdup("xive");
3220     } else if (spapr->irq == &spapr_irq_dual) {
3221         return g_strdup("dual");
3222     }
3223     g_assert_not_reached();
3224 }
3225 
3226 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3227 {
3228     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3229 
3230     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3231         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3232         return;
3233     }
3234 
3235     /* The legacy IRQ backend can not be set */
3236     if (strcmp(value, "xics") == 0) {
3237         spapr->irq = &spapr_irq_xics;
3238     } else if (strcmp(value, "xive") == 0) {
3239         spapr->irq = &spapr_irq_xive;
3240     } else if (strcmp(value, "dual") == 0) {
3241         spapr->irq = &spapr_irq_dual;
3242     } else {
3243         error_setg(errp, "Bad value for \"ic-mode\" property");
3244     }
3245 }
3246 
3247 static char *spapr_get_host_model(Object *obj, Error **errp)
3248 {
3249     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3250 
3251     return g_strdup(spapr->host_model);
3252 }
3253 
3254 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3255 {
3256     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3257 
3258     g_free(spapr->host_model);
3259     spapr->host_model = g_strdup(value);
3260 }
3261 
3262 static char *spapr_get_host_serial(Object *obj, Error **errp)
3263 {
3264     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3265 
3266     return g_strdup(spapr->host_serial);
3267 }
3268 
3269 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3270 {
3271     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3272 
3273     g_free(spapr->host_serial);
3274     spapr->host_serial = g_strdup(value);
3275 }
3276 
3277 static void spapr_instance_init(Object *obj)
3278 {
3279     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3280     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3281     MachineState *ms = MACHINE(spapr);
3282     MachineClass *mc = MACHINE_GET_CLASS(ms);
3283 
3284     /*
3285      * NVDIMM support went live in 5.1 without considering that, in
3286      * other archs, the user needs to enable NVDIMM support with the
3287      * 'nvdimm' machine option and the default behavior is NVDIMM
3288      * support disabled. It is too late to roll back to the standard
3289      * behavior without breaking 5.1 guests.
3290      */
3291     if (mc->nvdimm_supported) {
3292         ms->nvdimms_state->is_enabled = true;
3293     }
3294 
3295     spapr->htab_fd = -1;
3296     spapr->use_hotplug_event_source = true;
3297     spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE);
3298     object_property_add_str(obj, "kvm-type",
3299                             spapr_get_kvm_type, spapr_set_kvm_type);
3300     object_property_set_description(obj, "kvm-type",
3301                                     "Specifies the KVM virtualization mode (auto,"
3302                                     " hv, pr). Defaults to 'auto'. This mode will use"
3303                                     " any available KVM module loaded in the host,"
3304                                     " where kvm_hv takes precedence if both kvm_hv and"
3305                                     " kvm_pr are loaded.");
3306     object_property_add_bool(obj, "modern-hotplug-events",
3307                             spapr_get_modern_hotplug_events,
3308                             spapr_set_modern_hotplug_events);
3309     object_property_set_description(obj, "modern-hotplug-events",
3310                                     "Use dedicated hotplug event mechanism in"
3311                                     " place of standard EPOW events when possible"
3312                                     " (required for memory hot-unplug support)");
3313     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3314                             "Maximum permitted CPU compatibility mode");
3315 
3316     object_property_add_str(obj, "resize-hpt",
3317                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3318     object_property_set_description(obj, "resize-hpt",
3319                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3320     object_property_add_uint32_ptr(obj, "vsmt",
3321                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3322     object_property_set_description(obj, "vsmt",
3323                                     "Virtual SMT: KVM behaves as if this were"
3324                                     " the host's SMT mode");
3325 
3326     object_property_add_bool(obj, "vfio-no-msix-emulation",
3327                              spapr_get_msix_emulation, NULL);
3328 
3329     object_property_add_uint64_ptr(obj, "kernel-addr",
3330                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3331     object_property_set_description(obj, "kernel-addr",
3332                                     stringify(KERNEL_LOAD_ADDR)
3333                                     " for -kernel is the default");
3334     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3335     /* The machine class defines the default interrupt controller mode */
3336     spapr->irq = smc->irq;
3337     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3338                             spapr_set_ic_mode);
3339     object_property_set_description(obj, "ic-mode",
3340                  "Specifies the interrupt controller mode (xics, xive, dual)");
3341 
3342     object_property_add_str(obj, "host-model",
3343         spapr_get_host_model, spapr_set_host_model);
3344     object_property_set_description(obj, "host-model",
3345         "Host model to advertise in guest device tree");
3346     object_property_add_str(obj, "host-serial",
3347         spapr_get_host_serial, spapr_set_host_serial);
3348     object_property_set_description(obj, "host-serial",
3349         "Host serial number to advertise in guest device tree");
3350 }
3351 
3352 static void spapr_machine_finalizefn(Object *obj)
3353 {
3354     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3355 
3356     g_free(spapr->kvm_type);
3357 }
3358 
3359 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3360 {
3361     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3362     PowerPCCPU *cpu = POWERPC_CPU(cs);
3363     CPUPPCState *env = &cpu->env;
3364 
3365     cpu_synchronize_state(cs);
3366     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3367     if (spapr->fwnmi_system_reset_addr != -1) {
3368         uint64_t rtas_addr, addr;
3369 
3370         /* get rtas addr from fdt */
3371         rtas_addr = spapr_get_rtas_addr();
3372         if (!rtas_addr) {
3373             qemu_system_guest_panicked(NULL);
3374             return;
3375         }
3376 
3377         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3378         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3379         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3380         env->gpr[3] = addr;
3381     }
3382     ppc_cpu_do_system_reset(cs);
3383     if (spapr->fwnmi_system_reset_addr != -1) {
3384         env->nip = spapr->fwnmi_system_reset_addr;
3385     }
3386 }
3387 
3388 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3389 {
3390     CPUState *cs;
3391 
3392     CPU_FOREACH(cs) {
3393         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3394     }
3395 }
3396 
3397 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3398                           void *fdt, int *fdt_start_offset, Error **errp)
3399 {
3400     uint64_t addr;
3401     uint32_t node;
3402 
3403     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3404     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3405                                     &error_abort);
3406     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3407                                              SPAPR_MEMORY_BLOCK_SIZE);
3408     return 0;
3409 }
3410 
3411 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3412                            bool dedicated_hp_event_source)
3413 {
3414     SpaprDrc *drc;
3415     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3416     int i;
3417     uint64_t addr = addr_start;
3418     bool hotplugged = spapr_drc_hotplugged(dev);
3419 
3420     for (i = 0; i < nr_lmbs; i++) {
3421         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3422                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3423         g_assert(drc);
3424 
3425         /*
3426          * memory_device_get_free_addr() provided a range of free addresses
3427          * that doesn't overlap with any existing mapping at pre-plug. The
3428          * corresponding LMB DRCs are thus assumed to be all attachable.
3429          */
3430         spapr_drc_attach(drc, dev);
3431         if (!hotplugged) {
3432             spapr_drc_reset(drc);
3433         }
3434         addr += SPAPR_MEMORY_BLOCK_SIZE;
3435     }
3436     /* send hotplug notification to the
3437      * guest only in case of hotplugged memory
3438      */
3439     if (hotplugged) {
3440         if (dedicated_hp_event_source) {
3441             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3442                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3443             g_assert(drc);
3444             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3445                                                    nr_lmbs,
3446                                                    spapr_drc_index(drc));
3447         } else {
3448             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3449                                            nr_lmbs);
3450         }
3451     }
3452 }
3453 
3454 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3455 {
3456     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3457     PCDIMMDevice *dimm = PC_DIMM(dev);
3458     uint64_t size, addr;
3459     int64_t slot;
3460     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3461 
3462     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3463 
3464     pc_dimm_plug(dimm, MACHINE(ms));
3465 
3466     if (!is_nvdimm) {
3467         addr = object_property_get_uint(OBJECT(dimm),
3468                                         PC_DIMM_ADDR_PROP, &error_abort);
3469         spapr_add_lmbs(dev, addr, size,
3470                        spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT));
3471     } else {
3472         slot = object_property_get_int(OBJECT(dimm),
3473                                        PC_DIMM_SLOT_PROP, &error_abort);
3474         /* We should have valid slot number at this point */
3475         g_assert(slot >= 0);
3476         spapr_add_nvdimm(dev, slot);
3477     }
3478 }
3479 
3480 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3481                                   Error **errp)
3482 {
3483     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3484     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3485     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3486     PCDIMMDevice *dimm = PC_DIMM(dev);
3487     Error *local_err = NULL;
3488     uint64_t size;
3489     Object *memdev;
3490     hwaddr pagesize;
3491 
3492     if (!smc->dr_lmb_enabled) {
3493         error_setg(errp, "Memory hotplug not supported for this machine");
3494         return;
3495     }
3496 
3497     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3498     if (local_err) {
3499         error_propagate(errp, local_err);
3500         return;
3501     }
3502 
3503     if (is_nvdimm) {
3504         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3505             return;
3506         }
3507     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3508         error_setg(errp, "Hotplugged memory size must be a multiple of "
3509                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3510         return;
3511     }
3512 
3513     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3514                                       &error_abort);
3515     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3516     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3517         return;
3518     }
3519 
3520     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3521 }
3522 
3523 struct SpaprDimmState {
3524     PCDIMMDevice *dimm;
3525     uint32_t nr_lmbs;
3526     QTAILQ_ENTRY(SpaprDimmState) next;
3527 };
3528 
3529 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3530                                                        PCDIMMDevice *dimm)
3531 {
3532     SpaprDimmState *dimm_state = NULL;
3533 
3534     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3535         if (dimm_state->dimm == dimm) {
3536             break;
3537         }
3538     }
3539     return dimm_state;
3540 }
3541 
3542 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3543                                                       uint32_t nr_lmbs,
3544                                                       PCDIMMDevice *dimm)
3545 {
3546     SpaprDimmState *ds = NULL;
3547 
3548     /*
3549      * If this request is for a DIMM whose removal had failed earlier
3550      * (due to guest's refusal to remove the LMBs), we would have this
3551      * dimm already in the pending_dimm_unplugs list. In that
3552      * case don't add again.
3553      */
3554     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3555     if (!ds) {
3556         ds = g_malloc0(sizeof(SpaprDimmState));
3557         ds->nr_lmbs = nr_lmbs;
3558         ds->dimm = dimm;
3559         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3560     }
3561     return ds;
3562 }
3563 
3564 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3565                                               SpaprDimmState *dimm_state)
3566 {
3567     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3568     g_free(dimm_state);
3569 }
3570 
3571 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3572                                                         PCDIMMDevice *dimm)
3573 {
3574     SpaprDrc *drc;
3575     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3576                                                   &error_abort);
3577     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3578     uint32_t avail_lmbs = 0;
3579     uint64_t addr_start, addr;
3580     int i;
3581 
3582     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3583                                           &error_abort);
3584 
3585     addr = addr_start;
3586     for (i = 0; i < nr_lmbs; i++) {
3587         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3588                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3589         g_assert(drc);
3590         if (drc->dev) {
3591             avail_lmbs++;
3592         }
3593         addr += SPAPR_MEMORY_BLOCK_SIZE;
3594     }
3595 
3596     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3597 }
3598 
3599 /* Callback to be called during DRC release. */
3600 void spapr_lmb_release(DeviceState *dev)
3601 {
3602     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3603     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3604     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3605 
3606     /* This information will get lost if a migration occurs
3607      * during the unplug process. In this case recover it. */
3608     if (ds == NULL) {
3609         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3610         g_assert(ds);
3611         /* The DRC being examined by the caller at least must be counted */
3612         g_assert(ds->nr_lmbs);
3613     }
3614 
3615     if (--ds->nr_lmbs) {
3616         return;
3617     }
3618 
3619     /*
3620      * Now that all the LMBs have been removed by the guest, call the
3621      * unplug handler chain. This can never fail.
3622      */
3623     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3624     object_unparent(OBJECT(dev));
3625 }
3626 
3627 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3628 {
3629     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3630     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3631 
3632     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3633     qdev_unrealize(dev);
3634     spapr_pending_dimm_unplugs_remove(spapr, ds);
3635 }
3636 
3637 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3638                                         DeviceState *dev, Error **errp)
3639 {
3640     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3641     PCDIMMDevice *dimm = PC_DIMM(dev);
3642     uint32_t nr_lmbs;
3643     uint64_t size, addr_start, addr;
3644     int i;
3645     SpaprDrc *drc;
3646 
3647     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3648         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3649         return;
3650     }
3651 
3652     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3653     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3654 
3655     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3656                                           &error_abort);
3657 
3658     /*
3659      * An existing pending dimm state for this DIMM means that there is an
3660      * unplug operation in progress, waiting for the spapr_lmb_release
3661      * callback to complete the job (BQL can't cover that far). In this case,
3662      * bail out to avoid detaching DRCs that were already released.
3663      */
3664     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3665         error_setg(errp, "Memory unplug already in progress for device %s",
3666                    dev->id);
3667         return;
3668     }
3669 
3670     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3671 
3672     addr = addr_start;
3673     for (i = 0; i < nr_lmbs; i++) {
3674         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3675                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3676         g_assert(drc);
3677 
3678         spapr_drc_detach(drc);
3679         addr += SPAPR_MEMORY_BLOCK_SIZE;
3680     }
3681 
3682     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3683                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3684     g_assert(drc);
3685     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3686                                               nr_lmbs, spapr_drc_index(drc));
3687 }
3688 
3689 /* Callback to be called during DRC release. */
3690 void spapr_core_release(DeviceState *dev)
3691 {
3692     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3693 
3694     /* Call the unplug handler chain. This can never fail. */
3695     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3696     object_unparent(OBJECT(dev));
3697 }
3698 
3699 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3700 {
3701     MachineState *ms = MACHINE(hotplug_dev);
3702     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3703     CPUCore *cc = CPU_CORE(dev);
3704     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3705 
3706     if (smc->pre_2_10_has_unused_icps) {
3707         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3708         int i;
3709 
3710         for (i = 0; i < cc->nr_threads; i++) {
3711             CPUState *cs = CPU(sc->threads[i]);
3712 
3713             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3714         }
3715     }
3716 
3717     assert(core_slot);
3718     core_slot->cpu = NULL;
3719     qdev_unrealize(dev);
3720 }
3721 
3722 static
3723 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3724                                Error **errp)
3725 {
3726     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3727     int index;
3728     SpaprDrc *drc;
3729     CPUCore *cc = CPU_CORE(dev);
3730 
3731     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3732         error_setg(errp, "Unable to find CPU core with core-id: %d",
3733                    cc->core_id);
3734         return;
3735     }
3736     if (index == 0) {
3737         error_setg(errp, "Boot CPU core may not be unplugged");
3738         return;
3739     }
3740 
3741     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3742                           spapr_vcpu_id(spapr, cc->core_id));
3743     g_assert(drc);
3744 
3745     if (!spapr_drc_unplug_requested(drc)) {
3746         spapr_drc_detach(drc);
3747         spapr_hotplug_req_remove_by_index(drc);
3748     }
3749 }
3750 
3751 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3752                            void *fdt, int *fdt_start_offset, Error **errp)
3753 {
3754     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3755     CPUState *cs = CPU(core->threads[0]);
3756     PowerPCCPU *cpu = POWERPC_CPU(cs);
3757     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3758     int id = spapr_get_vcpu_id(cpu);
3759     char *nodename;
3760     int offset;
3761 
3762     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3763     offset = fdt_add_subnode(fdt, 0, nodename);
3764     g_free(nodename);
3765 
3766     spapr_dt_cpu(cs, fdt, offset, spapr);
3767 
3768     *fdt_start_offset = offset;
3769     return 0;
3770 }
3771 
3772 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3773 {
3774     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3775     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3776     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3777     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3778     CPUCore *cc = CPU_CORE(dev);
3779     CPUState *cs;
3780     SpaprDrc *drc;
3781     CPUArchId *core_slot;
3782     int index;
3783     bool hotplugged = spapr_drc_hotplugged(dev);
3784     int i;
3785 
3786     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3787     g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */
3788 
3789     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3790                           spapr_vcpu_id(spapr, cc->core_id));
3791 
3792     g_assert(drc || !mc->has_hotpluggable_cpus);
3793 
3794     if (drc) {
3795         /*
3796          * spapr_core_pre_plug() already buys us this is a brand new
3797          * core being plugged into a free slot. Nothing should already
3798          * be attached to the corresponding DRC.
3799          */
3800         spapr_drc_attach(drc, dev);
3801 
3802         if (hotplugged) {
3803             /*
3804              * Send hotplug notification interrupt to the guest only
3805              * in case of hotplugged CPUs.
3806              */
3807             spapr_hotplug_req_add_by_index(drc);
3808         } else {
3809             spapr_drc_reset(drc);
3810         }
3811     }
3812 
3813     core_slot->cpu = OBJECT(dev);
3814 
3815     /*
3816      * Set compatibility mode to match the boot CPU, which was either set
3817      * by the machine reset code or by CAS. This really shouldn't fail at
3818      * this point.
3819      */
3820     if (hotplugged) {
3821         for (i = 0; i < cc->nr_threads; i++) {
3822             ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr,
3823                            &error_abort);
3824         }
3825     }
3826 
3827     if (smc->pre_2_10_has_unused_icps) {
3828         for (i = 0; i < cc->nr_threads; i++) {
3829             cs = CPU(core->threads[i]);
3830             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3831         }
3832     }
3833 }
3834 
3835 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3836                                 Error **errp)
3837 {
3838     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3839     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3840     CPUCore *cc = CPU_CORE(dev);
3841     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3842     const char *type = object_get_typename(OBJECT(dev));
3843     CPUArchId *core_slot;
3844     int index;
3845     unsigned int smp_threads = machine->smp.threads;
3846 
3847     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3848         error_setg(errp, "CPU hotplug not supported for this machine");
3849         return;
3850     }
3851 
3852     if (strcmp(base_core_type, type)) {
3853         error_setg(errp, "CPU core type should be %s", base_core_type);
3854         return;
3855     }
3856 
3857     if (cc->core_id % smp_threads) {
3858         error_setg(errp, "invalid core id %d", cc->core_id);
3859         return;
3860     }
3861 
3862     /*
3863      * In general we should have homogeneous threads-per-core, but old
3864      * (pre hotplug support) machine types allow the last core to have
3865      * reduced threads as a compatibility hack for when we allowed
3866      * total vcpus not a multiple of threads-per-core.
3867      */
3868     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3869         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3870                    smp_threads);
3871         return;
3872     }
3873 
3874     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3875     if (!core_slot) {
3876         error_setg(errp, "core id %d out of range", cc->core_id);
3877         return;
3878     }
3879 
3880     if (core_slot->cpu) {
3881         error_setg(errp, "core %d already populated", cc->core_id);
3882         return;
3883     }
3884 
3885     numa_cpu_pre_plug(core_slot, dev, errp);
3886 }
3887 
3888 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3889                           void *fdt, int *fdt_start_offset, Error **errp)
3890 {
3891     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3892     int intc_phandle;
3893 
3894     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3895     if (intc_phandle <= 0) {
3896         return -1;
3897     }
3898 
3899     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3900         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3901         return -1;
3902     }
3903 
3904     /* generally SLOF creates these, for hotplug it's up to QEMU */
3905     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3906 
3907     return 0;
3908 }
3909 
3910 static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3911                                Error **errp)
3912 {
3913     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3914     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3915     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3916     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3917     SpaprDrc *drc;
3918 
3919     if (dev->hotplugged && !smc->dr_phb_enabled) {
3920         error_setg(errp, "PHB hotplug not supported for this machine");
3921         return false;
3922     }
3923 
3924     if (sphb->index == (uint32_t)-1) {
3925         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3926         return false;
3927     }
3928 
3929     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3930     if (drc && drc->dev) {
3931         error_setg(errp, "PHB %d already attached", sphb->index);
3932         return false;
3933     }
3934 
3935     /*
3936      * This will check that sphb->index doesn't exceed the maximum number of
3937      * PHBs for the current machine type.
3938      */
3939     return
3940         smc->phb_placement(spapr, sphb->index,
3941                            &sphb->buid, &sphb->io_win_addr,
3942                            &sphb->mem_win_addr, &sphb->mem64_win_addr,
3943                            windows_supported, sphb->dma_liobn,
3944                            &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3945                            errp);
3946 }
3947 
3948 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
3949 {
3950     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3951     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3952     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3953     SpaprDrc *drc;
3954     bool hotplugged = spapr_drc_hotplugged(dev);
3955 
3956     if (!smc->dr_phb_enabled) {
3957         return;
3958     }
3959 
3960     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3961     /* hotplug hooks should check it's enabled before getting this far */
3962     assert(drc);
3963 
3964     /* spapr_phb_pre_plug() already checked the DRC is attachable */
3965     spapr_drc_attach(drc, dev);
3966 
3967     if (hotplugged) {
3968         spapr_hotplug_req_add_by_index(drc);
3969     } else {
3970         spapr_drc_reset(drc);
3971     }
3972 }
3973 
3974 void spapr_phb_release(DeviceState *dev)
3975 {
3976     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3977 
3978     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3979     object_unparent(OBJECT(dev));
3980 }
3981 
3982 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3983 {
3984     qdev_unrealize(dev);
3985 }
3986 
3987 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3988                                      DeviceState *dev, Error **errp)
3989 {
3990     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3991     SpaprDrc *drc;
3992 
3993     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3994     assert(drc);
3995 
3996     if (!spapr_drc_unplug_requested(drc)) {
3997         spapr_drc_detach(drc);
3998         spapr_hotplug_req_remove_by_index(drc);
3999     }
4000 }
4001 
4002 static
4003 bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4004                               Error **errp)
4005 {
4006     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4007 
4008     if (spapr->tpm_proxy != NULL) {
4009         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4010         return false;
4011     }
4012 
4013     return true;
4014 }
4015 
4016 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev)
4017 {
4018     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4019     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4020 
4021     /* Already checked in spapr_tpm_proxy_pre_plug() */
4022     g_assert(spapr->tpm_proxy == NULL);
4023 
4024     spapr->tpm_proxy = tpm_proxy;
4025 }
4026 
4027 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4028 {
4029     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4030 
4031     qdev_unrealize(dev);
4032     object_unparent(OBJECT(dev));
4033     spapr->tpm_proxy = NULL;
4034 }
4035 
4036 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4037                                       DeviceState *dev, Error **errp)
4038 {
4039     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4040         spapr_memory_plug(hotplug_dev, dev);
4041     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4042         spapr_core_plug(hotplug_dev, dev);
4043     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4044         spapr_phb_plug(hotplug_dev, dev);
4045     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4046         spapr_tpm_proxy_plug(hotplug_dev, dev);
4047     }
4048 }
4049 
4050 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4051                                         DeviceState *dev, Error **errp)
4052 {
4053     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4054         spapr_memory_unplug(hotplug_dev, dev);
4055     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4056         spapr_core_unplug(hotplug_dev, dev);
4057     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4058         spapr_phb_unplug(hotplug_dev, dev);
4059     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4060         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4061     }
4062 }
4063 
4064 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4065                                                 DeviceState *dev, Error **errp)
4066 {
4067     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4068     MachineClass *mc = MACHINE_GET_CLASS(sms);
4069     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4070 
4071     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4072         if (!smc->pre_6_0_memory_unplug ||
4073             spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4074             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4075         } else {
4076             /* NOTE: this means there is a window after guest reset, prior to
4077              * CAS negotiation, where unplug requests will fail due to the
4078              * capability not being detected yet. This is a bit different than
4079              * the case with PCI unplug, where the events will be queued and
4080              * eventually handled by the guest after boot
4081              */
4082             error_setg(errp, "Memory hot unplug not supported for this guest");
4083         }
4084     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4085         if (!mc->has_hotpluggable_cpus) {
4086             error_setg(errp, "CPU hot unplug not supported on this machine");
4087             return;
4088         }
4089         spapr_core_unplug_request(hotplug_dev, dev, errp);
4090     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4091         if (!smc->dr_phb_enabled) {
4092             error_setg(errp, "PHB hot unplug not supported on this machine");
4093             return;
4094         }
4095         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4096     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4097         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4098     }
4099 }
4100 
4101 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4102                                           DeviceState *dev, Error **errp)
4103 {
4104     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4105         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4106     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4107         spapr_core_pre_plug(hotplug_dev, dev, errp);
4108     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4109         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4110     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4111         spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp);
4112     }
4113 }
4114 
4115 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4116                                                  DeviceState *dev)
4117 {
4118     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4119         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4120         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4121         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4122         return HOTPLUG_HANDLER(machine);
4123     }
4124     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4125         PCIDevice *pcidev = PCI_DEVICE(dev);
4126         PCIBus *root = pci_device_root_bus(pcidev);
4127         SpaprPhbState *phb =
4128             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4129                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4130 
4131         if (phb) {
4132             return HOTPLUG_HANDLER(phb);
4133         }
4134     }
4135     return NULL;
4136 }
4137 
4138 static CpuInstanceProperties
4139 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4140 {
4141     CPUArchId *core_slot;
4142     MachineClass *mc = MACHINE_GET_CLASS(machine);
4143 
4144     /* make sure possible_cpu are intialized */
4145     mc->possible_cpu_arch_ids(machine);
4146     /* get CPU core slot containing thread that matches cpu_index */
4147     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4148     assert(core_slot);
4149     return core_slot->props;
4150 }
4151 
4152 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4153 {
4154     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4155 }
4156 
4157 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4158 {
4159     int i;
4160     unsigned int smp_threads = machine->smp.threads;
4161     unsigned int smp_cpus = machine->smp.cpus;
4162     const char *core_type;
4163     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4164     MachineClass *mc = MACHINE_GET_CLASS(machine);
4165 
4166     if (!mc->has_hotpluggable_cpus) {
4167         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4168     }
4169     if (machine->possible_cpus) {
4170         assert(machine->possible_cpus->len == spapr_max_cores);
4171         return machine->possible_cpus;
4172     }
4173 
4174     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4175     if (!core_type) {
4176         error_report("Unable to find sPAPR CPU Core definition");
4177         exit(1);
4178     }
4179 
4180     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4181                              sizeof(CPUArchId) * spapr_max_cores);
4182     machine->possible_cpus->len = spapr_max_cores;
4183     for (i = 0; i < machine->possible_cpus->len; i++) {
4184         int core_id = i * smp_threads;
4185 
4186         machine->possible_cpus->cpus[i].type = core_type;
4187         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4188         machine->possible_cpus->cpus[i].arch_id = core_id;
4189         machine->possible_cpus->cpus[i].props.has_core_id = true;
4190         machine->possible_cpus->cpus[i].props.core_id = core_id;
4191     }
4192     return machine->possible_cpus;
4193 }
4194 
4195 static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4196                                 uint64_t *buid, hwaddr *pio,
4197                                 hwaddr *mmio32, hwaddr *mmio64,
4198                                 unsigned n_dma, uint32_t *liobns,
4199                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4200 {
4201     /*
4202      * New-style PHB window placement.
4203      *
4204      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4205      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4206      * windows.
4207      *
4208      * Some guest kernels can't work with MMIO windows above 1<<46
4209      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4210      *
4211      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4212      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4213      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4214      * 1TiB 64-bit MMIO windows for each PHB.
4215      */
4216     const uint64_t base_buid = 0x800000020000000ULL;
4217     int i;
4218 
4219     /* Sanity check natural alignments */
4220     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4221     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4222     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4223     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4224     /* Sanity check bounds */
4225     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4226                       SPAPR_PCI_MEM32_WIN_SIZE);
4227     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4228                       SPAPR_PCI_MEM64_WIN_SIZE);
4229 
4230     if (index >= SPAPR_MAX_PHBS) {
4231         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4232                    SPAPR_MAX_PHBS - 1);
4233         return false;
4234     }
4235 
4236     *buid = base_buid + index;
4237     for (i = 0; i < n_dma; ++i) {
4238         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4239     }
4240 
4241     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4242     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4243     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4244 
4245     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4246     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4247     return true;
4248 }
4249 
4250 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4251 {
4252     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4253 
4254     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4255 }
4256 
4257 static void spapr_ics_resend(XICSFabric *dev)
4258 {
4259     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4260 
4261     ics_resend(spapr->ics);
4262 }
4263 
4264 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4265 {
4266     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4267 
4268     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4269 }
4270 
4271 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4272                                  Monitor *mon)
4273 {
4274     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4275 
4276     spapr_irq_print_info(spapr, mon);
4277     monitor_printf(mon, "irqchip: %s\n",
4278                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4279 }
4280 
4281 /*
4282  * This is a XIVE only operation
4283  */
4284 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4285                            uint8_t nvt_blk, uint32_t nvt_idx,
4286                            bool cam_ignore, uint8_t priority,
4287                            uint32_t logic_serv, XiveTCTXMatch *match)
4288 {
4289     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4290     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4291     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4292     int count;
4293 
4294     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4295                            priority, logic_serv, match);
4296     if (count < 0) {
4297         return count;
4298     }
4299 
4300     /*
4301      * When we implement the save and restore of the thread interrupt
4302      * contexts in the enter/exit CPU handlers of the machine and the
4303      * escalations in QEMU, we should be able to handle non dispatched
4304      * vCPUs.
4305      *
4306      * Until this is done, the sPAPR machine should find at least one
4307      * matching context always.
4308      */
4309     if (count == 0) {
4310         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4311                       nvt_blk, nvt_idx);
4312     }
4313 
4314     return count;
4315 }
4316 
4317 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4318 {
4319     return cpu->vcpu_id;
4320 }
4321 
4322 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4323 {
4324     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4325     MachineState *ms = MACHINE(spapr);
4326     int vcpu_id;
4327 
4328     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4329 
4330     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4331         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4332         error_append_hint(errp, "Adjust the number of cpus to %d "
4333                           "or try to raise the number of threads per core\n",
4334                           vcpu_id * ms->smp.threads / spapr->vsmt);
4335         return false;
4336     }
4337 
4338     cpu->vcpu_id = vcpu_id;
4339     return true;
4340 }
4341 
4342 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4343 {
4344     CPUState *cs;
4345 
4346     CPU_FOREACH(cs) {
4347         PowerPCCPU *cpu = POWERPC_CPU(cs);
4348 
4349         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4350             return cpu;
4351         }
4352     }
4353 
4354     return NULL;
4355 }
4356 
4357 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4358 {
4359     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4360 
4361     /* These are only called by TCG, KVM maintains dispatch state */
4362 
4363     spapr_cpu->prod = false;
4364     if (spapr_cpu->vpa_addr) {
4365         CPUState *cs = CPU(cpu);
4366         uint32_t dispatch;
4367 
4368         dispatch = ldl_be_phys(cs->as,
4369                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4370         dispatch++;
4371         if ((dispatch & 1) != 0) {
4372             qemu_log_mask(LOG_GUEST_ERROR,
4373                           "VPA: incorrect dispatch counter value for "
4374                           "dispatched partition %u, correcting.\n", dispatch);
4375             dispatch++;
4376         }
4377         stl_be_phys(cs->as,
4378                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4379     }
4380 }
4381 
4382 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4383 {
4384     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4385 
4386     if (spapr_cpu->vpa_addr) {
4387         CPUState *cs = CPU(cpu);
4388         uint32_t dispatch;
4389 
4390         dispatch = ldl_be_phys(cs->as,
4391                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4392         dispatch++;
4393         if ((dispatch & 1) != 1) {
4394             qemu_log_mask(LOG_GUEST_ERROR,
4395                           "VPA: incorrect dispatch counter value for "
4396                           "preempted partition %u, correcting.\n", dispatch);
4397             dispatch++;
4398         }
4399         stl_be_phys(cs->as,
4400                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4401     }
4402 }
4403 
4404 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4405 {
4406     MachineClass *mc = MACHINE_CLASS(oc);
4407     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4408     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4409     NMIClass *nc = NMI_CLASS(oc);
4410     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4411     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4412     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4413     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4414     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4415 
4416     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4417     mc->ignore_boot_device_suffixes = true;
4418 
4419     /*
4420      * We set up the default / latest behaviour here.  The class_init
4421      * functions for the specific versioned machine types can override
4422      * these details for backwards compatibility
4423      */
4424     mc->init = spapr_machine_init;
4425     mc->reset = spapr_machine_reset;
4426     mc->block_default_type = IF_SCSI;
4427     mc->max_cpus = 1024;
4428     mc->no_parallel = 1;
4429     mc->default_boot_order = "";
4430     mc->default_ram_size = 512 * MiB;
4431     mc->default_ram_id = "ppc_spapr.ram";
4432     mc->default_display = "std";
4433     mc->kvm_type = spapr_kvm_type;
4434     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4435     mc->pci_allow_0_address = true;
4436     assert(!mc->get_hotplug_handler);
4437     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4438     hc->pre_plug = spapr_machine_device_pre_plug;
4439     hc->plug = spapr_machine_device_plug;
4440     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4441     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4442     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4443     hc->unplug_request = spapr_machine_device_unplug_request;
4444     hc->unplug = spapr_machine_device_unplug;
4445 
4446     smc->dr_lmb_enabled = true;
4447     smc->update_dt_enabled = true;
4448     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4449     mc->has_hotpluggable_cpus = true;
4450     mc->nvdimm_supported = true;
4451     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4452     fwc->get_dev_path = spapr_get_fw_dev_path;
4453     nc->nmi_monitor_handler = spapr_nmi;
4454     smc->phb_placement = spapr_phb_placement;
4455     vhc->hypercall = emulate_spapr_hypercall;
4456     vhc->hpt_mask = spapr_hpt_mask;
4457     vhc->map_hptes = spapr_map_hptes;
4458     vhc->unmap_hptes = spapr_unmap_hptes;
4459     vhc->hpte_set_c = spapr_hpte_set_c;
4460     vhc->hpte_set_r = spapr_hpte_set_r;
4461     vhc->get_pate = spapr_get_pate;
4462     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4463     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4464     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4465     xic->ics_get = spapr_ics_get;
4466     xic->ics_resend = spapr_ics_resend;
4467     xic->icp_get = spapr_icp_get;
4468     ispc->print_info = spapr_pic_print_info;
4469     /* Force NUMA node memory size to be a multiple of
4470      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4471      * in which LMBs are represented and hot-added
4472      */
4473     mc->numa_mem_align_shift = 28;
4474     mc->auto_enable_numa = true;
4475 
4476     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4477     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4478     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4479     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4480     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4481     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4482     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4483     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4484     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4485     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4486     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4487     spapr_caps_add_properties(smc);
4488     smc->irq = &spapr_irq_dual;
4489     smc->dr_phb_enabled = true;
4490     smc->linux_pci_probe = true;
4491     smc->smp_threads_vsmt = true;
4492     smc->nr_xirqs = SPAPR_NR_XIRQS;
4493     xfc->match_nvt = spapr_match_nvt;
4494 }
4495 
4496 static const TypeInfo spapr_machine_info = {
4497     .name          = TYPE_SPAPR_MACHINE,
4498     .parent        = TYPE_MACHINE,
4499     .abstract      = true,
4500     .instance_size = sizeof(SpaprMachineState),
4501     .instance_init = spapr_instance_init,
4502     .instance_finalize = spapr_machine_finalizefn,
4503     .class_size    = sizeof(SpaprMachineClass),
4504     .class_init    = spapr_machine_class_init,
4505     .interfaces = (InterfaceInfo[]) {
4506         { TYPE_FW_PATH_PROVIDER },
4507         { TYPE_NMI },
4508         { TYPE_HOTPLUG_HANDLER },
4509         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4510         { TYPE_XICS_FABRIC },
4511         { TYPE_INTERRUPT_STATS_PROVIDER },
4512         { TYPE_XIVE_FABRIC },
4513         { }
4514     },
4515 };
4516 
4517 static void spapr_machine_latest_class_options(MachineClass *mc)
4518 {
4519     mc->alias = "pseries";
4520     mc->is_default = true;
4521 }
4522 
4523 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4524     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4525                                                     void *data)      \
4526     {                                                                \
4527         MachineClass *mc = MACHINE_CLASS(oc);                        \
4528         spapr_machine_##suffix##_class_options(mc);                  \
4529         if (latest) {                                                \
4530             spapr_machine_latest_class_options(mc);                  \
4531         }                                                            \
4532     }                                                                \
4533     static const TypeInfo spapr_machine_##suffix##_info = {          \
4534         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4535         .parent = TYPE_SPAPR_MACHINE,                                \
4536         .class_init = spapr_machine_##suffix##_class_init,           \
4537     };                                                               \
4538     static void spapr_machine_register_##suffix(void)                \
4539     {                                                                \
4540         type_register(&spapr_machine_##suffix##_info);               \
4541     }                                                                \
4542     type_init(spapr_machine_register_##suffix)
4543 
4544 /*
4545  * pseries-6.0
4546  */
4547 static void spapr_machine_6_0_class_options(MachineClass *mc)
4548 {
4549     /* Defaults for the latest behaviour inherited from the base class */
4550 }
4551 
4552 DEFINE_SPAPR_MACHINE(6_0, "6.0", true);
4553 
4554 /*
4555  * pseries-5.2
4556  */
4557 static void spapr_machine_5_2_class_options(MachineClass *mc)
4558 {
4559     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4560 
4561     spapr_machine_6_0_class_options(mc);
4562     compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len);
4563     smc->pre_6_0_memory_unplug = true;
4564 }
4565 
4566 DEFINE_SPAPR_MACHINE(5_2, "5.2", false);
4567 
4568 /*
4569  * pseries-5.1
4570  */
4571 static void spapr_machine_5_1_class_options(MachineClass *mc)
4572 {
4573     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4574 
4575     spapr_machine_5_2_class_options(mc);
4576     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4577     smc->pre_5_2_numa_associativity = true;
4578 }
4579 
4580 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4581 
4582 /*
4583  * pseries-5.0
4584  */
4585 static void spapr_machine_5_0_class_options(MachineClass *mc)
4586 {
4587     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4588     static GlobalProperty compat[] = {
4589         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4590     };
4591 
4592     spapr_machine_5_1_class_options(mc);
4593     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4594     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4595     mc->numa_mem_supported = true;
4596     smc->pre_5_1_assoc_refpoints = true;
4597 }
4598 
4599 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4600 
4601 /*
4602  * pseries-4.2
4603  */
4604 static void spapr_machine_4_2_class_options(MachineClass *mc)
4605 {
4606     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4607 
4608     spapr_machine_5_0_class_options(mc);
4609     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4610     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4611     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4612     smc->rma_limit = 16 * GiB;
4613     mc->nvdimm_supported = false;
4614 }
4615 
4616 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4617 
4618 /*
4619  * pseries-4.1
4620  */
4621 static void spapr_machine_4_1_class_options(MachineClass *mc)
4622 {
4623     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4624     static GlobalProperty compat[] = {
4625         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4626         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4627     };
4628 
4629     spapr_machine_4_2_class_options(mc);
4630     smc->linux_pci_probe = false;
4631     smc->smp_threads_vsmt = false;
4632     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4633     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4634 }
4635 
4636 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4637 
4638 /*
4639  * pseries-4.0
4640  */
4641 static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4642                               uint64_t *buid, hwaddr *pio,
4643                               hwaddr *mmio32, hwaddr *mmio64,
4644                               unsigned n_dma, uint32_t *liobns,
4645                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4646 {
4647     if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma,
4648                              liobns, nv2gpa, nv2atsd, errp)) {
4649         return false;
4650     }
4651 
4652     *nv2gpa = 0;
4653     *nv2atsd = 0;
4654     return true;
4655 }
4656 static void spapr_machine_4_0_class_options(MachineClass *mc)
4657 {
4658     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4659 
4660     spapr_machine_4_1_class_options(mc);
4661     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4662     smc->phb_placement = phb_placement_4_0;
4663     smc->irq = &spapr_irq_xics;
4664     smc->pre_4_1_migration = true;
4665 }
4666 
4667 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4668 
4669 /*
4670  * pseries-3.1
4671  */
4672 static void spapr_machine_3_1_class_options(MachineClass *mc)
4673 {
4674     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4675 
4676     spapr_machine_4_0_class_options(mc);
4677     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4678 
4679     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4680     smc->update_dt_enabled = false;
4681     smc->dr_phb_enabled = false;
4682     smc->broken_host_serial_model = true;
4683     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4684     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4685     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4686     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4687 }
4688 
4689 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4690 
4691 /*
4692  * pseries-3.0
4693  */
4694 
4695 static void spapr_machine_3_0_class_options(MachineClass *mc)
4696 {
4697     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4698 
4699     spapr_machine_3_1_class_options(mc);
4700     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4701 
4702     smc->legacy_irq_allocation = true;
4703     smc->nr_xirqs = 0x400;
4704     smc->irq = &spapr_irq_xics_legacy;
4705 }
4706 
4707 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4708 
4709 /*
4710  * pseries-2.12
4711  */
4712 static void spapr_machine_2_12_class_options(MachineClass *mc)
4713 {
4714     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4715     static GlobalProperty compat[] = {
4716         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4717         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4718     };
4719 
4720     spapr_machine_3_0_class_options(mc);
4721     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4722     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4723 
4724     /* We depend on kvm_enabled() to choose a default value for the
4725      * hpt-max-page-size capability. Of course we can't do it here
4726      * because this is too early and the HW accelerator isn't initialzed
4727      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4728      */
4729     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4730 }
4731 
4732 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4733 
4734 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4735 {
4736     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4737 
4738     spapr_machine_2_12_class_options(mc);
4739     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4740     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4741     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4742 }
4743 
4744 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4745 
4746 /*
4747  * pseries-2.11
4748  */
4749 
4750 static void spapr_machine_2_11_class_options(MachineClass *mc)
4751 {
4752     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4753 
4754     spapr_machine_2_12_class_options(mc);
4755     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4756     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4757 }
4758 
4759 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4760 
4761 /*
4762  * pseries-2.10
4763  */
4764 
4765 static void spapr_machine_2_10_class_options(MachineClass *mc)
4766 {
4767     spapr_machine_2_11_class_options(mc);
4768     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4769 }
4770 
4771 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4772 
4773 /*
4774  * pseries-2.9
4775  */
4776 
4777 static void spapr_machine_2_9_class_options(MachineClass *mc)
4778 {
4779     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4780     static GlobalProperty compat[] = {
4781         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4782     };
4783 
4784     spapr_machine_2_10_class_options(mc);
4785     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4786     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4787     smc->pre_2_10_has_unused_icps = true;
4788     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4789 }
4790 
4791 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4792 
4793 /*
4794  * pseries-2.8
4795  */
4796 
4797 static void spapr_machine_2_8_class_options(MachineClass *mc)
4798 {
4799     static GlobalProperty compat[] = {
4800         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4801     };
4802 
4803     spapr_machine_2_9_class_options(mc);
4804     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4805     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4806     mc->numa_mem_align_shift = 23;
4807 }
4808 
4809 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4810 
4811 /*
4812  * pseries-2.7
4813  */
4814 
4815 static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4816                               uint64_t *buid, hwaddr *pio,
4817                               hwaddr *mmio32, hwaddr *mmio64,
4818                               unsigned n_dma, uint32_t *liobns,
4819                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4820 {
4821     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4822     const uint64_t base_buid = 0x800000020000000ULL;
4823     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4824     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4825     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4826     const uint32_t max_index = 255;
4827     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4828 
4829     uint64_t ram_top = MACHINE(spapr)->ram_size;
4830     hwaddr phb0_base, phb_base;
4831     int i;
4832 
4833     /* Do we have device memory? */
4834     if (MACHINE(spapr)->maxram_size > ram_top) {
4835         /* Can't just use maxram_size, because there may be an
4836          * alignment gap between normal and device memory regions
4837          */
4838         ram_top = MACHINE(spapr)->device_memory->base +
4839             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4840     }
4841 
4842     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4843 
4844     if (index > max_index) {
4845         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4846                    max_index);
4847         return false;
4848     }
4849 
4850     *buid = base_buid + index;
4851     for (i = 0; i < n_dma; ++i) {
4852         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4853     }
4854 
4855     phb_base = phb0_base + index * phb_spacing;
4856     *pio = phb_base + pio_offset;
4857     *mmio32 = phb_base + mmio_offset;
4858     /*
4859      * We don't set the 64-bit MMIO window, relying on the PHB's
4860      * fallback behaviour of automatically splitting a large "32-bit"
4861      * window into contiguous 32-bit and 64-bit windows
4862      */
4863 
4864     *nv2gpa = 0;
4865     *nv2atsd = 0;
4866     return true;
4867 }
4868 
4869 static void spapr_machine_2_7_class_options(MachineClass *mc)
4870 {
4871     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4872     static GlobalProperty compat[] = {
4873         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4874         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4875         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4876         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4877     };
4878 
4879     spapr_machine_2_8_class_options(mc);
4880     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4881     mc->default_machine_opts = "modern-hotplug-events=off";
4882     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4883     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4884     smc->phb_placement = phb_placement_2_7;
4885 }
4886 
4887 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4888 
4889 /*
4890  * pseries-2.6
4891  */
4892 
4893 static void spapr_machine_2_6_class_options(MachineClass *mc)
4894 {
4895     static GlobalProperty compat[] = {
4896         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4897     };
4898 
4899     spapr_machine_2_7_class_options(mc);
4900     mc->has_hotpluggable_cpus = false;
4901     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4902     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4903 }
4904 
4905 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4906 
4907 /*
4908  * pseries-2.5
4909  */
4910 
4911 static void spapr_machine_2_5_class_options(MachineClass *mc)
4912 {
4913     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4914     static GlobalProperty compat[] = {
4915         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4916     };
4917 
4918     spapr_machine_2_6_class_options(mc);
4919     smc->use_ohci_by_default = true;
4920     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4921     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4922 }
4923 
4924 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4925 
4926 /*
4927  * pseries-2.4
4928  */
4929 
4930 static void spapr_machine_2_4_class_options(MachineClass *mc)
4931 {
4932     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4933 
4934     spapr_machine_2_5_class_options(mc);
4935     smc->dr_lmb_enabled = false;
4936     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4937 }
4938 
4939 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4940 
4941 /*
4942  * pseries-2.3
4943  */
4944 
4945 static void spapr_machine_2_3_class_options(MachineClass *mc)
4946 {
4947     static GlobalProperty compat[] = {
4948         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4949     };
4950     spapr_machine_2_4_class_options(mc);
4951     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4952     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4953 }
4954 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4955 
4956 /*
4957  * pseries-2.2
4958  */
4959 
4960 static void spapr_machine_2_2_class_options(MachineClass *mc)
4961 {
4962     static GlobalProperty compat[] = {
4963         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4964     };
4965 
4966     spapr_machine_2_3_class_options(mc);
4967     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4968     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4969     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4970 }
4971 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4972 
4973 /*
4974  * pseries-2.1
4975  */
4976 
4977 static void spapr_machine_2_1_class_options(MachineClass *mc)
4978 {
4979     spapr_machine_2_2_class_options(mc);
4980     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4981 }
4982 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4983 
4984 static void spapr_machine_register_types(void)
4985 {
4986     type_register_static(&spapr_machine_info);
4987 }
4988 
4989 type_init(spapr_machine_register_types)
4990