xref: /qemu/hw/ppc/spapr.c (revision 0fb6bd07323019dc8d3f2c124323f71e2ddfc9f4)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "mmu-hash64.h"
50 #include "mmu-book3s-v3.h"
51 #include "cpu-models.h"
52 #include "qom/cpu.h"
53 
54 #include "hw/boards.h"
55 #include "hw/ppc/ppc.h"
56 #include "hw/loader.h"
57 
58 #include "hw/ppc/fdt.h"
59 #include "hw/ppc/spapr.h"
60 #include "hw/ppc/spapr_vio.h"
61 #include "hw/qdev-properties.h"
62 #include "hw/pci-host/spapr.h"
63 #include "hw/pci/msi.h"
64 
65 #include "hw/pci/pci.h"
66 #include "hw/scsi/scsi.h"
67 #include "hw/virtio/virtio-scsi.h"
68 #include "hw/virtio/vhost-scsi-common.h"
69 
70 #include "exec/address-spaces.h"
71 #include "exec/ram_addr.h"
72 #include "hw/usb.h"
73 #include "qemu/config-file.h"
74 #include "qemu/error-report.h"
75 #include "trace.h"
76 #include "hw/nmi.h"
77 #include "hw/intc/intc.h"
78 
79 #include "qemu/cutils.h"
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 
84 #include <libfdt.h>
85 
86 /* SLOF memory layout:
87  *
88  * SLOF raw image loaded at 0, copies its romfs right below the flat
89  * device-tree, then position SLOF itself 31M below that
90  *
91  * So we set FW_OVERHEAD to 40MB which should account for all of that
92  * and more
93  *
94  * We load our kernel at 4M, leaving space for SLOF initial image
95  */
96 #define FDT_MAX_SIZE            0x100000
97 #define RTAS_MAX_SIZE           0x10000
98 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
99 #define FW_MAX_SIZE             0x400000
100 #define FW_FILE_NAME            "slof.bin"
101 #define FW_OVERHEAD             0x2800000
102 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
103 
104 #define MIN_RMA_SLOF            128UL
105 
106 #define PHANDLE_INTC            0x00001111
107 
108 /* These two functions implement the VCPU id numbering: one to compute them
109  * all and one to identify thread 0 of a VCORE. Any change to the first one
110  * is likely to have an impact on the second one, so let's keep them close.
111  */
112 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
113 {
114     MachineState *ms = MACHINE(spapr);
115     unsigned int smp_threads = ms->smp.threads;
116 
117     assert(spapr->vsmt);
118     return
119         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
120 }
121 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
122                                       PowerPCCPU *cpu)
123 {
124     assert(spapr->vsmt);
125     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
126 }
127 
128 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
129 {
130     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
131      * and newer QEMUs don't even have them. In both cases, we don't want
132      * to send anything on the wire.
133      */
134     return false;
135 }
136 
137 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
138     .name = "icp/server",
139     .version_id = 1,
140     .minimum_version_id = 1,
141     .needed = pre_2_10_vmstate_dummy_icp_needed,
142     .fields = (VMStateField[]) {
143         VMSTATE_UNUSED(4), /* uint32_t xirr */
144         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
145         VMSTATE_UNUSED(1), /* uint8_t mfrr */
146         VMSTATE_END_OF_LIST()
147     },
148 };
149 
150 static void pre_2_10_vmstate_register_dummy_icp(int i)
151 {
152     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
153                      (void *)(uintptr_t) i);
154 }
155 
156 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
157 {
158     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
159                        (void *)(uintptr_t) i);
160 }
161 
162 int spapr_max_server_number(SpaprMachineState *spapr)
163 {
164     MachineState *ms = MACHINE(spapr);
165 
166     assert(spapr->vsmt);
167     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
168 }
169 
170 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
171                                   int smt_threads)
172 {
173     int i, ret = 0;
174     uint32_t servers_prop[smt_threads];
175     uint32_t gservers_prop[smt_threads * 2];
176     int index = spapr_get_vcpu_id(cpu);
177 
178     if (cpu->compat_pvr) {
179         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
180         if (ret < 0) {
181             return ret;
182         }
183     }
184 
185     /* Build interrupt servers and gservers properties */
186     for (i = 0; i < smt_threads; i++) {
187         servers_prop[i] = cpu_to_be32(index + i);
188         /* Hack, direct the group queues back to cpu 0 */
189         gservers_prop[i*2] = cpu_to_be32(index + i);
190         gservers_prop[i*2 + 1] = 0;
191     }
192     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
193                       servers_prop, sizeof(servers_prop));
194     if (ret < 0) {
195         return ret;
196     }
197     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
198                       gservers_prop, sizeof(gservers_prop));
199 
200     return ret;
201 }
202 
203 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
204 {
205     int index = spapr_get_vcpu_id(cpu);
206     uint32_t associativity[] = {cpu_to_be32(0x5),
207                                 cpu_to_be32(0x0),
208                                 cpu_to_be32(0x0),
209                                 cpu_to_be32(0x0),
210                                 cpu_to_be32(cpu->node_id),
211                                 cpu_to_be32(index)};
212 
213     /* Advertise NUMA via ibm,associativity */
214     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
215                           sizeof(associativity));
216 }
217 
218 /* Populate the "ibm,pa-features" property */
219 static void spapr_populate_pa_features(SpaprMachineState *spapr,
220                                        PowerPCCPU *cpu,
221                                        void *fdt, int offset,
222                                        bool legacy_guest)
223 {
224     uint8_t pa_features_206[] = { 6, 0,
225         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
226     uint8_t pa_features_207[] = { 24, 0,
227         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
228         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
229         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
230         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
231     uint8_t pa_features_300[] = { 66, 0,
232         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
233         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
234         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
235         /* 6: DS207 */
236         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
237         /* 16: Vector */
238         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
239         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
240         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
241         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
242         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
243         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
244         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
245         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
246         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
247         /* 42: PM, 44: PC RA, 46: SC vec'd */
248         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
249         /* 48: SIMD, 50: QP BFP, 52: String */
250         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
251         /* 54: DecFP, 56: DecI, 58: SHA */
252         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
253         /* 60: NM atomic, 62: RNG */
254         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
255     };
256     uint8_t *pa_features = NULL;
257     size_t pa_size;
258 
259     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
260         pa_features = pa_features_206;
261         pa_size = sizeof(pa_features_206);
262     }
263     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
264         pa_features = pa_features_207;
265         pa_size = sizeof(pa_features_207);
266     }
267     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
268         pa_features = pa_features_300;
269         pa_size = sizeof(pa_features_300);
270     }
271     if (!pa_features) {
272         return;
273     }
274 
275     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
276         /*
277          * Note: we keep CI large pages off by default because a 64K capable
278          * guest provisioned with large pages might otherwise try to map a qemu
279          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
280          * even if that qemu runs on a 4k host.
281          * We dd this bit back here if we are confident this is not an issue
282          */
283         pa_features[3] |= 0x20;
284     }
285     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
286         pa_features[24] |= 0x80;    /* Transactional memory support */
287     }
288     if (legacy_guest && pa_size > 40) {
289         /* Workaround for broken kernels that attempt (guest) radix
290          * mode when they can't handle it, if they see the radix bit set
291          * in pa-features. So hide it from them. */
292         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
293     }
294 
295     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
296 }
297 
298 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr)
299 {
300     MachineState *ms = MACHINE(spapr);
301     int ret = 0, offset, cpus_offset;
302     CPUState *cs;
303     char cpu_model[32];
304     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
305 
306     CPU_FOREACH(cs) {
307         PowerPCCPU *cpu = POWERPC_CPU(cs);
308         DeviceClass *dc = DEVICE_GET_CLASS(cs);
309         int index = spapr_get_vcpu_id(cpu);
310         int compat_smt = MIN(ms->smp.threads, ppc_compat_max_vthreads(cpu));
311 
312         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
313             continue;
314         }
315 
316         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
317 
318         cpus_offset = fdt_path_offset(fdt, "/cpus");
319         if (cpus_offset < 0) {
320             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
321             if (cpus_offset < 0) {
322                 return cpus_offset;
323             }
324         }
325         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
326         if (offset < 0) {
327             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
328             if (offset < 0) {
329                 return offset;
330             }
331         }
332 
333         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
334                           pft_size_prop, sizeof(pft_size_prop));
335         if (ret < 0) {
336             return ret;
337         }
338 
339         if (nb_numa_nodes > 1) {
340             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
341             if (ret < 0) {
342                 return ret;
343             }
344         }
345 
346         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
347         if (ret < 0) {
348             return ret;
349         }
350 
351         spapr_populate_pa_features(spapr, cpu, fdt, offset,
352                                    spapr->cas_legacy_guest_workaround);
353     }
354     return ret;
355 }
356 
357 static hwaddr spapr_node0_size(MachineState *machine)
358 {
359     if (nb_numa_nodes) {
360         int i;
361         for (i = 0; i < nb_numa_nodes; ++i) {
362             if (numa_info[i].node_mem) {
363                 return MIN(pow2floor(numa_info[i].node_mem),
364                            machine->ram_size);
365             }
366         }
367     }
368     return machine->ram_size;
369 }
370 
371 static void add_str(GString *s, const gchar *s1)
372 {
373     g_string_append_len(s, s1, strlen(s1) + 1);
374 }
375 
376 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
377                                        hwaddr size)
378 {
379     uint32_t associativity[] = {
380         cpu_to_be32(0x4), /* length */
381         cpu_to_be32(0x0), cpu_to_be32(0x0),
382         cpu_to_be32(0x0), cpu_to_be32(nodeid)
383     };
384     char mem_name[32];
385     uint64_t mem_reg_property[2];
386     int off;
387 
388     mem_reg_property[0] = cpu_to_be64(start);
389     mem_reg_property[1] = cpu_to_be64(size);
390 
391     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
392     off = fdt_add_subnode(fdt, 0, mem_name);
393     _FDT(off);
394     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
395     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
396                       sizeof(mem_reg_property))));
397     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
398                       sizeof(associativity))));
399     return off;
400 }
401 
402 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt)
403 {
404     MachineState *machine = MACHINE(spapr);
405     hwaddr mem_start, node_size;
406     int i, nb_nodes = nb_numa_nodes;
407     NodeInfo *nodes = numa_info;
408     NodeInfo ramnode;
409 
410     /* No NUMA nodes, assume there is just one node with whole RAM */
411     if (!nb_numa_nodes) {
412         nb_nodes = 1;
413         ramnode.node_mem = machine->ram_size;
414         nodes = &ramnode;
415     }
416 
417     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
418         if (!nodes[i].node_mem) {
419             continue;
420         }
421         if (mem_start >= machine->ram_size) {
422             node_size = 0;
423         } else {
424             node_size = nodes[i].node_mem;
425             if (node_size > machine->ram_size - mem_start) {
426                 node_size = machine->ram_size - mem_start;
427             }
428         }
429         if (!mem_start) {
430             /* spapr_machine_init() checks for rma_size <= node0_size
431              * already */
432             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
433             mem_start += spapr->rma_size;
434             node_size -= spapr->rma_size;
435         }
436         for ( ; node_size; ) {
437             hwaddr sizetmp = pow2floor(node_size);
438 
439             /* mem_start != 0 here */
440             if (ctzl(mem_start) < ctzl(sizetmp)) {
441                 sizetmp = 1ULL << ctzl(mem_start);
442             }
443 
444             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
445             node_size -= sizetmp;
446             mem_start += sizetmp;
447         }
448     }
449 
450     return 0;
451 }
452 
453 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
454                                   SpaprMachineState *spapr)
455 {
456     MachineState *ms = MACHINE(spapr);
457     PowerPCCPU *cpu = POWERPC_CPU(cs);
458     CPUPPCState *env = &cpu->env;
459     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
460     int index = spapr_get_vcpu_id(cpu);
461     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
462                        0xffffffff, 0xffffffff};
463     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
464         : SPAPR_TIMEBASE_FREQ;
465     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
466     uint32_t page_sizes_prop[64];
467     size_t page_sizes_prop_size;
468     unsigned int smp_threads = ms->smp.threads;
469     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
470     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
471     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
472     SpaprDrc *drc;
473     int drc_index;
474     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
475     int i;
476 
477     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
478     if (drc) {
479         drc_index = spapr_drc_index(drc);
480         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
481     }
482 
483     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
484     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
485 
486     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
487     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
488                            env->dcache_line_size)));
489     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
490                            env->dcache_line_size)));
491     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
492                            env->icache_line_size)));
493     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
494                            env->icache_line_size)));
495 
496     if (pcc->l1_dcache_size) {
497         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
498                                pcc->l1_dcache_size)));
499     } else {
500         warn_report("Unknown L1 dcache size for cpu");
501     }
502     if (pcc->l1_icache_size) {
503         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
504                                pcc->l1_icache_size)));
505     } else {
506         warn_report("Unknown L1 icache size for cpu");
507     }
508 
509     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
510     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
511     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
512     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
513     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
514     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
515 
516     if (env->spr_cb[SPR_PURR].oea_read) {
517         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
518     }
519     if (env->spr_cb[SPR_SPURR].oea_read) {
520         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
521     }
522 
523     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
524         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
525                           segs, sizeof(segs))));
526     }
527 
528     /* Advertise VSX (vector extensions) if available
529      *   1               == VMX / Altivec available
530      *   2               == VSX available
531      *
532      * Only CPUs for which we create core types in spapr_cpu_core.c
533      * are possible, and all of those have VMX */
534     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
535         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
536     } else {
537         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
538     }
539 
540     /* Advertise DFP (Decimal Floating Point) if available
541      *   0 / no property == no DFP
542      *   1               == DFP available */
543     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
544         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
545     }
546 
547     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
548                                                       sizeof(page_sizes_prop));
549     if (page_sizes_prop_size) {
550         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
551                           page_sizes_prop, page_sizes_prop_size)));
552     }
553 
554     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
555 
556     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
557                            cs->cpu_index / vcpus_per_socket)));
558 
559     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
560                       pft_size_prop, sizeof(pft_size_prop))));
561 
562     if (nb_numa_nodes > 1) {
563         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
564     }
565 
566     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
567 
568     if (pcc->radix_page_info) {
569         for (i = 0; i < pcc->radix_page_info->count; i++) {
570             radix_AP_encodings[i] =
571                 cpu_to_be32(pcc->radix_page_info->entries[i]);
572         }
573         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
574                           radix_AP_encodings,
575                           pcc->radix_page_info->count *
576                           sizeof(radix_AP_encodings[0]))));
577     }
578 
579     /*
580      * We set this property to let the guest know that it can use the large
581      * decrementer and its width in bits.
582      */
583     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
584         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
585                               pcc->lrg_decr_bits)));
586 }
587 
588 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr)
589 {
590     CPUState **rev;
591     CPUState *cs;
592     int n_cpus;
593     int cpus_offset;
594     char *nodename;
595     int i;
596 
597     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
598     _FDT(cpus_offset);
599     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
600     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
601 
602     /*
603      * We walk the CPUs in reverse order to ensure that CPU DT nodes
604      * created by fdt_add_subnode() end up in the right order in FDT
605      * for the guest kernel the enumerate the CPUs correctly.
606      *
607      * The CPU list cannot be traversed in reverse order, so we need
608      * to do extra work.
609      */
610     n_cpus = 0;
611     rev = NULL;
612     CPU_FOREACH(cs) {
613         rev = g_renew(CPUState *, rev, n_cpus + 1);
614         rev[n_cpus++] = cs;
615     }
616 
617     for (i = n_cpus - 1; i >= 0; i--) {
618         CPUState *cs = rev[i];
619         PowerPCCPU *cpu = POWERPC_CPU(cs);
620         int index = spapr_get_vcpu_id(cpu);
621         DeviceClass *dc = DEVICE_GET_CLASS(cs);
622         int offset;
623 
624         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
625             continue;
626         }
627 
628         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
629         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
630         g_free(nodename);
631         _FDT(offset);
632         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
633     }
634 
635     g_free(rev);
636 }
637 
638 static int spapr_rng_populate_dt(void *fdt)
639 {
640     int node;
641     int ret;
642 
643     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
644     if (node <= 0) {
645         return -1;
646     }
647     ret = fdt_setprop_string(fdt, node, "device_type",
648                              "ibm,platform-facilities");
649     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
650     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
651 
652     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
653     if (node <= 0) {
654         return -1;
655     }
656     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
657 
658     return ret ? -1 : 0;
659 }
660 
661 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
662 {
663     MemoryDeviceInfoList *info;
664 
665     for (info = list; info; info = info->next) {
666         MemoryDeviceInfo *value = info->value;
667 
668         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
669             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
670 
671             if (addr >= pcdimm_info->addr &&
672                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
673                 return pcdimm_info->node;
674             }
675         }
676     }
677 
678     return -1;
679 }
680 
681 struct sPAPRDrconfCellV2 {
682      uint32_t seq_lmbs;
683      uint64_t base_addr;
684      uint32_t drc_index;
685      uint32_t aa_index;
686      uint32_t flags;
687 } QEMU_PACKED;
688 
689 typedef struct DrconfCellQueue {
690     struct sPAPRDrconfCellV2 cell;
691     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
692 } DrconfCellQueue;
693 
694 static DrconfCellQueue *
695 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
696                       uint32_t drc_index, uint32_t aa_index,
697                       uint32_t flags)
698 {
699     DrconfCellQueue *elem;
700 
701     elem = g_malloc0(sizeof(*elem));
702     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
703     elem->cell.base_addr = cpu_to_be64(base_addr);
704     elem->cell.drc_index = cpu_to_be32(drc_index);
705     elem->cell.aa_index = cpu_to_be32(aa_index);
706     elem->cell.flags = cpu_to_be32(flags);
707 
708     return elem;
709 }
710 
711 /* ibm,dynamic-memory-v2 */
712 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt,
713                                    int offset, MemoryDeviceInfoList *dimms)
714 {
715     MachineState *machine = MACHINE(spapr);
716     uint8_t *int_buf, *cur_index;
717     int ret;
718     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
719     uint64_t addr, cur_addr, size;
720     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
721     uint64_t mem_end = machine->device_memory->base +
722                        memory_region_size(&machine->device_memory->mr);
723     uint32_t node, buf_len, nr_entries = 0;
724     SpaprDrc *drc;
725     DrconfCellQueue *elem, *next;
726     MemoryDeviceInfoList *info;
727     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
728         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
729 
730     /* Entry to cover RAM and the gap area */
731     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
732                                  SPAPR_LMB_FLAGS_RESERVED |
733                                  SPAPR_LMB_FLAGS_DRC_INVALID);
734     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
735     nr_entries++;
736 
737     cur_addr = machine->device_memory->base;
738     for (info = dimms; info; info = info->next) {
739         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
740 
741         addr = di->addr;
742         size = di->size;
743         node = di->node;
744 
745         /* Entry for hot-pluggable area */
746         if (cur_addr < addr) {
747             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
748             g_assert(drc);
749             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
750                                          cur_addr, spapr_drc_index(drc), -1, 0);
751             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
752             nr_entries++;
753         }
754 
755         /* Entry for DIMM */
756         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
757         g_assert(drc);
758         elem = spapr_get_drconf_cell(size / lmb_size, addr,
759                                      spapr_drc_index(drc), node,
760                                      SPAPR_LMB_FLAGS_ASSIGNED);
761         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
762         nr_entries++;
763         cur_addr = addr + size;
764     }
765 
766     /* Entry for remaining hotpluggable area */
767     if (cur_addr < mem_end) {
768         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
769         g_assert(drc);
770         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
771                                      cur_addr, spapr_drc_index(drc), -1, 0);
772         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
773         nr_entries++;
774     }
775 
776     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
777     int_buf = cur_index = g_malloc0(buf_len);
778     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
779     cur_index += sizeof(nr_entries);
780 
781     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
782         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
783         cur_index += sizeof(elem->cell);
784         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
785         g_free(elem);
786     }
787 
788     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
789     g_free(int_buf);
790     if (ret < 0) {
791         return -1;
792     }
793     return 0;
794 }
795 
796 /* ibm,dynamic-memory */
797 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt,
798                                    int offset, MemoryDeviceInfoList *dimms)
799 {
800     MachineState *machine = MACHINE(spapr);
801     int i, ret;
802     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
803     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
804     uint32_t nr_lmbs = (machine->device_memory->base +
805                        memory_region_size(&machine->device_memory->mr)) /
806                        lmb_size;
807     uint32_t *int_buf, *cur_index, buf_len;
808 
809     /*
810      * Allocate enough buffer size to fit in ibm,dynamic-memory
811      */
812     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
813     cur_index = int_buf = g_malloc0(buf_len);
814     int_buf[0] = cpu_to_be32(nr_lmbs);
815     cur_index++;
816     for (i = 0; i < nr_lmbs; i++) {
817         uint64_t addr = i * lmb_size;
818         uint32_t *dynamic_memory = cur_index;
819 
820         if (i >= device_lmb_start) {
821             SpaprDrc *drc;
822 
823             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
824             g_assert(drc);
825 
826             dynamic_memory[0] = cpu_to_be32(addr >> 32);
827             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
828             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
829             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
830             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
831             if (memory_region_present(get_system_memory(), addr)) {
832                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
833             } else {
834                 dynamic_memory[5] = cpu_to_be32(0);
835             }
836         } else {
837             /*
838              * LMB information for RMA, boot time RAM and gap b/n RAM and
839              * device memory region -- all these are marked as reserved
840              * and as having no valid DRC.
841              */
842             dynamic_memory[0] = cpu_to_be32(addr >> 32);
843             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
844             dynamic_memory[2] = cpu_to_be32(0);
845             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
846             dynamic_memory[4] = cpu_to_be32(-1);
847             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
848                                             SPAPR_LMB_FLAGS_DRC_INVALID);
849         }
850 
851         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
852     }
853     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
854     g_free(int_buf);
855     if (ret < 0) {
856         return -1;
857     }
858     return 0;
859 }
860 
861 /*
862  * Adds ibm,dynamic-reconfiguration-memory node.
863  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
864  * of this device tree node.
865  */
866 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt)
867 {
868     MachineState *machine = MACHINE(spapr);
869     int ret, i, offset;
870     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
871     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
872     uint32_t *int_buf, *cur_index, buf_len;
873     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
874     MemoryDeviceInfoList *dimms = NULL;
875 
876     /*
877      * Don't create the node if there is no device memory
878      */
879     if (machine->ram_size == machine->maxram_size) {
880         return 0;
881     }
882 
883     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
884 
885     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
886                     sizeof(prop_lmb_size));
887     if (ret < 0) {
888         return ret;
889     }
890 
891     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
892     if (ret < 0) {
893         return ret;
894     }
895 
896     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
897     if (ret < 0) {
898         return ret;
899     }
900 
901     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
902     dimms = qmp_memory_device_list();
903     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
904         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
905     } else {
906         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
907     }
908     qapi_free_MemoryDeviceInfoList(dimms);
909 
910     if (ret < 0) {
911         return ret;
912     }
913 
914     /* ibm,associativity-lookup-arrays */
915     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
916     cur_index = int_buf = g_malloc0(buf_len);
917     int_buf[0] = cpu_to_be32(nr_nodes);
918     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
919     cur_index += 2;
920     for (i = 0; i < nr_nodes; i++) {
921         uint32_t associativity[] = {
922             cpu_to_be32(0x0),
923             cpu_to_be32(0x0),
924             cpu_to_be32(0x0),
925             cpu_to_be32(i)
926         };
927         memcpy(cur_index, associativity, sizeof(associativity));
928         cur_index += 4;
929     }
930     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
931             (cur_index - int_buf) * sizeof(uint32_t));
932     g_free(int_buf);
933 
934     return ret;
935 }
936 
937 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt,
938                                 SpaprOptionVector *ov5_updates)
939 {
940     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
941     int ret = 0, offset;
942 
943     /* Generate ibm,dynamic-reconfiguration-memory node if required */
944     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
945         g_assert(smc->dr_lmb_enabled);
946         ret = spapr_populate_drconf_memory(spapr, fdt);
947         if (ret) {
948             goto out;
949         }
950     }
951 
952     offset = fdt_path_offset(fdt, "/chosen");
953     if (offset < 0) {
954         offset = fdt_add_subnode(fdt, 0, "chosen");
955         if (offset < 0) {
956             return offset;
957         }
958     }
959     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
960                                  "ibm,architecture-vec-5");
961 
962 out:
963     return ret;
964 }
965 
966 static bool spapr_hotplugged_dev_before_cas(void)
967 {
968     Object *drc_container, *obj;
969     ObjectProperty *prop;
970     ObjectPropertyIterator iter;
971 
972     drc_container = container_get(object_get_root(), "/dr-connector");
973     object_property_iter_init(&iter, drc_container);
974     while ((prop = object_property_iter_next(&iter))) {
975         if (!strstart(prop->type, "link<", NULL)) {
976             continue;
977         }
978         obj = object_property_get_link(drc_container, prop->name, NULL);
979         if (spapr_drc_needed(obj)) {
980             return true;
981         }
982     }
983     return false;
984 }
985 
986 int spapr_h_cas_compose_response(SpaprMachineState *spapr,
987                                  target_ulong addr, target_ulong size,
988                                  SpaprOptionVector *ov5_updates)
989 {
990     void *fdt, *fdt_skel;
991     SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 };
992 
993     if (spapr_hotplugged_dev_before_cas()) {
994         return 1;
995     }
996 
997     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
998         error_report("SLOF provided an unexpected CAS buffer size "
999                      TARGET_FMT_lu " (min: %zu, max: %u)",
1000                      size, sizeof(hdr), FW_MAX_SIZE);
1001         exit(EXIT_FAILURE);
1002     }
1003 
1004     size -= sizeof(hdr);
1005 
1006     /* Create skeleton */
1007     fdt_skel = g_malloc0(size);
1008     _FDT((fdt_create(fdt_skel, size)));
1009     _FDT((fdt_finish_reservemap(fdt_skel)));
1010     _FDT((fdt_begin_node(fdt_skel, "")));
1011     _FDT((fdt_end_node(fdt_skel)));
1012     _FDT((fdt_finish(fdt_skel)));
1013     fdt = g_malloc0(size);
1014     _FDT((fdt_open_into(fdt_skel, fdt, size)));
1015     g_free(fdt_skel);
1016 
1017     /* Fixup cpu nodes */
1018     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
1019 
1020     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
1021         return -1;
1022     }
1023 
1024     /* Pack resulting tree */
1025     _FDT((fdt_pack(fdt)));
1026 
1027     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1028         trace_spapr_cas_failed(size);
1029         return -1;
1030     }
1031 
1032     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1033     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1034     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1035     g_free(fdt);
1036 
1037     return 0;
1038 }
1039 
1040 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
1041 {
1042     MachineState *ms = MACHINE(spapr);
1043     int rtas;
1044     GString *hypertas = g_string_sized_new(256);
1045     GString *qemu_hypertas = g_string_sized_new(256);
1046     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1047     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1048         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1049     uint32_t lrdr_capacity[] = {
1050         cpu_to_be32(max_device_addr >> 32),
1051         cpu_to_be32(max_device_addr & 0xffffffff),
1052         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1053         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
1054     };
1055     uint32_t maxdomain = cpu_to_be32(spapr->gpu_numa_id > 1 ? 1 : 0);
1056     uint32_t maxdomains[] = {
1057         cpu_to_be32(4),
1058         maxdomain,
1059         maxdomain,
1060         maxdomain,
1061         cpu_to_be32(spapr->gpu_numa_id),
1062     };
1063 
1064     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1065 
1066     /* hypertas */
1067     add_str(hypertas, "hcall-pft");
1068     add_str(hypertas, "hcall-term");
1069     add_str(hypertas, "hcall-dabr");
1070     add_str(hypertas, "hcall-interrupt");
1071     add_str(hypertas, "hcall-tce");
1072     add_str(hypertas, "hcall-vio");
1073     add_str(hypertas, "hcall-splpar");
1074     add_str(hypertas, "hcall-join");
1075     add_str(hypertas, "hcall-bulk");
1076     add_str(hypertas, "hcall-set-mode");
1077     add_str(hypertas, "hcall-sprg0");
1078     add_str(hypertas, "hcall-copy");
1079     add_str(hypertas, "hcall-debug");
1080     add_str(hypertas, "hcall-vphn");
1081     add_str(qemu_hypertas, "hcall-memop1");
1082 
1083     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1084         add_str(hypertas, "hcall-multi-tce");
1085     }
1086 
1087     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1088         add_str(hypertas, "hcall-hpt-resize");
1089     }
1090 
1091     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1092                      hypertas->str, hypertas->len));
1093     g_string_free(hypertas, TRUE);
1094     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1095                      qemu_hypertas->str, qemu_hypertas->len));
1096     g_string_free(qemu_hypertas, TRUE);
1097 
1098     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1099                      refpoints, sizeof(refpoints)));
1100 
1101     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1102                      maxdomains, sizeof(maxdomains)));
1103 
1104     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1105                           RTAS_ERROR_LOG_MAX));
1106     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1107                           RTAS_EVENT_SCAN_RATE));
1108 
1109     g_assert(msi_nonbroken);
1110     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1111 
1112     /*
1113      * According to PAPR, rtas ibm,os-term does not guarantee a return
1114      * back to the guest cpu.
1115      *
1116      * While an additional ibm,extended-os-term property indicates
1117      * that rtas call return will always occur. Set this property.
1118      */
1119     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1120 
1121     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1122                      lrdr_capacity, sizeof(lrdr_capacity)));
1123 
1124     spapr_dt_rtas_tokens(fdt, rtas);
1125 }
1126 
1127 /*
1128  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1129  * and the XIVE features that the guest may request and thus the valid
1130  * values for bytes 23..26 of option vector 5:
1131  */
1132 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
1133                                           int chosen)
1134 {
1135     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1136 
1137     char val[2 * 4] = {
1138         23, spapr->irq->ov5, /* Xive mode. */
1139         24, 0x00, /* Hash/Radix, filled in below. */
1140         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1141         26, 0x40, /* Radix options: GTSE == yes. */
1142     };
1143 
1144     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1145                           first_ppc_cpu->compat_pvr)) {
1146         /*
1147          * If we're in a pre POWER9 compat mode then the guest should
1148          * do hash and use the legacy interrupt mode
1149          */
1150         val[1] = 0x00; /* XICS */
1151         val[3] = 0x00; /* Hash */
1152     } else if (kvm_enabled()) {
1153         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1154             val[3] = 0x80; /* OV5_MMU_BOTH */
1155         } else if (kvmppc_has_cap_mmu_radix()) {
1156             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1157         } else {
1158             val[3] = 0x00; /* Hash */
1159         }
1160     } else {
1161         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1162         val[3] = 0xC0;
1163     }
1164     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1165                      val, sizeof(val)));
1166 }
1167 
1168 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt)
1169 {
1170     MachineState *machine = MACHINE(spapr);
1171     int chosen;
1172     const char *boot_device = machine->boot_order;
1173     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1174     size_t cb = 0;
1175     char *bootlist = get_boot_devices_list(&cb);
1176 
1177     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1178 
1179     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1180     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1181                           spapr->initrd_base));
1182     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1183                           spapr->initrd_base + spapr->initrd_size));
1184 
1185     if (spapr->kernel_size) {
1186         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1187                               cpu_to_be64(spapr->kernel_size) };
1188 
1189         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1190                          &kprop, sizeof(kprop)));
1191         if (spapr->kernel_le) {
1192             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1193         }
1194     }
1195     if (boot_menu) {
1196         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1197     }
1198     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1199     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1200     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1201 
1202     if (cb && bootlist) {
1203         int i;
1204 
1205         for (i = 0; i < cb; i++) {
1206             if (bootlist[i] == '\n') {
1207                 bootlist[i] = ' ';
1208             }
1209         }
1210         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1211     }
1212 
1213     if (boot_device && strlen(boot_device)) {
1214         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1215     }
1216 
1217     if (!spapr->has_graphics && stdout_path) {
1218         /*
1219          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1220          * kernel. New platforms should only use the "stdout-path" property. Set
1221          * the new property and continue using older property to remain
1222          * compatible with the existing firmware.
1223          */
1224         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1225         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1226     }
1227 
1228     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1229 
1230     g_free(stdout_path);
1231     g_free(bootlist);
1232 }
1233 
1234 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1235 {
1236     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1237      * KVM to work under pHyp with some guest co-operation */
1238     int hypervisor;
1239     uint8_t hypercall[16];
1240 
1241     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1242     /* indicate KVM hypercall interface */
1243     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1244     if (kvmppc_has_cap_fixup_hcalls()) {
1245         /*
1246          * Older KVM versions with older guest kernels were broken
1247          * with the magic page, don't allow the guest to map it.
1248          */
1249         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1250                                   sizeof(hypercall))) {
1251             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1252                              hypercall, sizeof(hypercall)));
1253         }
1254     }
1255 }
1256 
1257 static void *spapr_build_fdt(SpaprMachineState *spapr)
1258 {
1259     MachineState *machine = MACHINE(spapr);
1260     MachineClass *mc = MACHINE_GET_CLASS(machine);
1261     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1262     int ret;
1263     void *fdt;
1264     SpaprPhbState *phb;
1265     char *buf;
1266 
1267     fdt = g_malloc0(FDT_MAX_SIZE);
1268     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1269 
1270     /* Root node */
1271     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1272     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1273     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1274 
1275     /* Guest UUID & Name*/
1276     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1277     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1278     if (qemu_uuid_set) {
1279         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1280     }
1281     g_free(buf);
1282 
1283     if (qemu_get_vm_name()) {
1284         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1285                                 qemu_get_vm_name()));
1286     }
1287 
1288     /* Host Model & Serial Number */
1289     if (spapr->host_model) {
1290         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1291     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1292         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1293         g_free(buf);
1294     }
1295 
1296     if (spapr->host_serial) {
1297         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1298     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1299         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1300         g_free(buf);
1301     }
1302 
1303     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1304     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1305 
1306     /* /interrupt controller */
1307     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1308                           PHANDLE_INTC);
1309 
1310     ret = spapr_populate_memory(spapr, fdt);
1311     if (ret < 0) {
1312         error_report("couldn't setup memory nodes in fdt");
1313         exit(1);
1314     }
1315 
1316     /* /vdevice */
1317     spapr_dt_vdevice(spapr->vio_bus, fdt);
1318 
1319     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1320         ret = spapr_rng_populate_dt(fdt);
1321         if (ret < 0) {
1322             error_report("could not set up rng device in the fdt");
1323             exit(1);
1324         }
1325     }
1326 
1327     QLIST_FOREACH(phb, &spapr->phbs, list) {
1328         ret = spapr_dt_phb(phb, PHANDLE_INTC, fdt, spapr->irq->nr_msis, NULL);
1329         if (ret < 0) {
1330             error_report("couldn't setup PCI devices in fdt");
1331             exit(1);
1332         }
1333     }
1334 
1335     /* cpus */
1336     spapr_populate_cpus_dt_node(fdt, spapr);
1337 
1338     if (smc->dr_lmb_enabled) {
1339         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1340     }
1341 
1342     if (mc->has_hotpluggable_cpus) {
1343         int offset = fdt_path_offset(fdt, "/cpus");
1344         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1345         if (ret < 0) {
1346             error_report("Couldn't set up CPU DR device tree properties");
1347             exit(1);
1348         }
1349     }
1350 
1351     /* /event-sources */
1352     spapr_dt_events(spapr, fdt);
1353 
1354     /* /rtas */
1355     spapr_dt_rtas(spapr, fdt);
1356 
1357     /* /chosen */
1358     spapr_dt_chosen(spapr, fdt);
1359 
1360     /* /hypervisor */
1361     if (kvm_enabled()) {
1362         spapr_dt_hypervisor(spapr, fdt);
1363     }
1364 
1365     /* Build memory reserve map */
1366     if (spapr->kernel_size) {
1367         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1368     }
1369     if (spapr->initrd_size) {
1370         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1371     }
1372 
1373     /* ibm,client-architecture-support updates */
1374     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1375     if (ret < 0) {
1376         error_report("couldn't setup CAS properties fdt");
1377         exit(1);
1378     }
1379 
1380     if (smc->dr_phb_enabled) {
1381         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1382         if (ret < 0) {
1383             error_report("Couldn't set up PHB DR device tree properties");
1384             exit(1);
1385         }
1386     }
1387 
1388     return fdt;
1389 }
1390 
1391 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1392 {
1393     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1394 }
1395 
1396 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1397                                     PowerPCCPU *cpu)
1398 {
1399     CPUPPCState *env = &cpu->env;
1400 
1401     /* The TCG path should also be holding the BQL at this point */
1402     g_assert(qemu_mutex_iothread_locked());
1403 
1404     if (msr_pr) {
1405         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1406         env->gpr[3] = H_PRIVILEGE;
1407     } else {
1408         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1409     }
1410 }
1411 
1412 struct LPCRSyncState {
1413     target_ulong value;
1414     target_ulong mask;
1415 };
1416 
1417 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1418 {
1419     struct LPCRSyncState *s = arg.host_ptr;
1420     PowerPCCPU *cpu = POWERPC_CPU(cs);
1421     CPUPPCState *env = &cpu->env;
1422     target_ulong lpcr;
1423 
1424     cpu_synchronize_state(cs);
1425     lpcr = env->spr[SPR_LPCR];
1426     lpcr &= ~s->mask;
1427     lpcr |= s->value;
1428     ppc_store_lpcr(cpu, lpcr);
1429 }
1430 
1431 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1432 {
1433     CPUState *cs;
1434     struct LPCRSyncState s = {
1435         .value = value,
1436         .mask = mask
1437     };
1438     CPU_FOREACH(cs) {
1439         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1440     }
1441 }
1442 
1443 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1444 {
1445     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1446 
1447     /* Copy PATE1:GR into PATE0:HR */
1448     entry->dw0 = spapr->patb_entry & PATE0_HR;
1449     entry->dw1 = spapr->patb_entry;
1450 }
1451 
1452 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1453 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1454 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1455 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1456 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1457 
1458 /*
1459  * Get the fd to access the kernel htab, re-opening it if necessary
1460  */
1461 static int get_htab_fd(SpaprMachineState *spapr)
1462 {
1463     Error *local_err = NULL;
1464 
1465     if (spapr->htab_fd >= 0) {
1466         return spapr->htab_fd;
1467     }
1468 
1469     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1470     if (spapr->htab_fd < 0) {
1471         error_report_err(local_err);
1472     }
1473 
1474     return spapr->htab_fd;
1475 }
1476 
1477 void close_htab_fd(SpaprMachineState *spapr)
1478 {
1479     if (spapr->htab_fd >= 0) {
1480         close(spapr->htab_fd);
1481     }
1482     spapr->htab_fd = -1;
1483 }
1484 
1485 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1486 {
1487     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1488 
1489     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1490 }
1491 
1492 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1493 {
1494     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1495 
1496     assert(kvm_enabled());
1497 
1498     if (!spapr->htab) {
1499         return 0;
1500     }
1501 
1502     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1503 }
1504 
1505 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1506                                                 hwaddr ptex, int n)
1507 {
1508     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1509     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1510 
1511     if (!spapr->htab) {
1512         /*
1513          * HTAB is controlled by KVM. Fetch into temporary buffer
1514          */
1515         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1516         kvmppc_read_hptes(hptes, ptex, n);
1517         return hptes;
1518     }
1519 
1520     /*
1521      * HTAB is controlled by QEMU. Just point to the internally
1522      * accessible PTEG.
1523      */
1524     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1525 }
1526 
1527 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1528                               const ppc_hash_pte64_t *hptes,
1529                               hwaddr ptex, int n)
1530 {
1531     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1532 
1533     if (!spapr->htab) {
1534         g_free((void *)hptes);
1535     }
1536 
1537     /* Nothing to do for qemu managed HPT */
1538 }
1539 
1540 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1541                       uint64_t pte0, uint64_t pte1)
1542 {
1543     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1544     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1545 
1546     if (!spapr->htab) {
1547         kvmppc_write_hpte(ptex, pte0, pte1);
1548     } else {
1549         if (pte0 & HPTE64_V_VALID) {
1550             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1551             /*
1552              * When setting valid, we write PTE1 first. This ensures
1553              * proper synchronization with the reading code in
1554              * ppc_hash64_pteg_search()
1555              */
1556             smp_wmb();
1557             stq_p(spapr->htab + offset, pte0);
1558         } else {
1559             stq_p(spapr->htab + offset, pte0);
1560             /*
1561              * When clearing it we set PTE0 first. This ensures proper
1562              * synchronization with the reading code in
1563              * ppc_hash64_pteg_search()
1564              */
1565             smp_wmb();
1566             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1567         }
1568     }
1569 }
1570 
1571 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1572                              uint64_t pte1)
1573 {
1574     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1575     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1576 
1577     if (!spapr->htab) {
1578         /* There should always be a hash table when this is called */
1579         error_report("spapr_hpte_set_c called with no hash table !");
1580         return;
1581     }
1582 
1583     /* The HW performs a non-atomic byte update */
1584     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1585 }
1586 
1587 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1588                              uint64_t pte1)
1589 {
1590     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1591     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1592 
1593     if (!spapr->htab) {
1594         /* There should always be a hash table when this is called */
1595         error_report("spapr_hpte_set_r called with no hash table !");
1596         return;
1597     }
1598 
1599     /* The HW performs a non-atomic byte update */
1600     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1601 }
1602 
1603 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1604 {
1605     int shift;
1606 
1607     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1608      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1609      * that's much more than is needed for Linux guests */
1610     shift = ctz64(pow2ceil(ramsize)) - 7;
1611     shift = MAX(shift, 18); /* Minimum architected size */
1612     shift = MIN(shift, 46); /* Maximum architected size */
1613     return shift;
1614 }
1615 
1616 void spapr_free_hpt(SpaprMachineState *spapr)
1617 {
1618     g_free(spapr->htab);
1619     spapr->htab = NULL;
1620     spapr->htab_shift = 0;
1621     close_htab_fd(spapr);
1622 }
1623 
1624 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1625                           Error **errp)
1626 {
1627     long rc;
1628 
1629     /* Clean up any HPT info from a previous boot */
1630     spapr_free_hpt(spapr);
1631 
1632     rc = kvmppc_reset_htab(shift);
1633     if (rc < 0) {
1634         /* kernel-side HPT needed, but couldn't allocate one */
1635         error_setg_errno(errp, errno,
1636                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1637                          shift);
1638         /* This is almost certainly fatal, but if the caller really
1639          * wants to carry on with shift == 0, it's welcome to try */
1640     } else if (rc > 0) {
1641         /* kernel-side HPT allocated */
1642         if (rc != shift) {
1643             error_setg(errp,
1644                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1645                        shift, rc);
1646         }
1647 
1648         spapr->htab_shift = shift;
1649         spapr->htab = NULL;
1650     } else {
1651         /* kernel-side HPT not needed, allocate in userspace instead */
1652         size_t size = 1ULL << shift;
1653         int i;
1654 
1655         spapr->htab = qemu_memalign(size, size);
1656         if (!spapr->htab) {
1657             error_setg_errno(errp, errno,
1658                              "Could not allocate HPT of order %d", shift);
1659             return;
1660         }
1661 
1662         memset(spapr->htab, 0, size);
1663         spapr->htab_shift = shift;
1664 
1665         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1666             DIRTY_HPTE(HPTE(spapr->htab, i));
1667         }
1668     }
1669     /* We're setting up a hash table, so that means we're not radix */
1670     spapr->patb_entry = 0;
1671     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1672 }
1673 
1674 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr)
1675 {
1676     int hpt_shift;
1677 
1678     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1679         || (spapr->cas_reboot
1680             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1681         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1682     } else {
1683         uint64_t current_ram_size;
1684 
1685         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1686         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1687     }
1688     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1689 
1690     if (spapr->vrma_adjust) {
1691         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1692                                           spapr->htab_shift);
1693     }
1694 }
1695 
1696 static int spapr_reset_drcs(Object *child, void *opaque)
1697 {
1698     SpaprDrc *drc =
1699         (SpaprDrc *) object_dynamic_cast(child,
1700                                                  TYPE_SPAPR_DR_CONNECTOR);
1701 
1702     if (drc) {
1703         spapr_drc_reset(drc);
1704     }
1705 
1706     return 0;
1707 }
1708 
1709 static void spapr_machine_reset(MachineState *machine)
1710 {
1711     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1712     PowerPCCPU *first_ppc_cpu;
1713     uint32_t rtas_limit;
1714     hwaddr rtas_addr, fdt_addr;
1715     void *fdt;
1716     int rc;
1717 
1718     spapr_caps_apply(spapr);
1719 
1720     first_ppc_cpu = POWERPC_CPU(first_cpu);
1721     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1722         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1723                               spapr->max_compat_pvr)) {
1724         /*
1725          * If using KVM with radix mode available, VCPUs can be started
1726          * without a HPT because KVM will start them in radix mode.
1727          * Set the GR bit in PATE so that we know there is no HPT.
1728          */
1729         spapr->patb_entry = PATE1_GR;
1730         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1731     } else {
1732         spapr_setup_hpt_and_vrma(spapr);
1733     }
1734 
1735     /*
1736      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
1737      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
1738      * called from vPHB reset handler so we initialize the counter here.
1739      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
1740      * must be equally distant from any other node.
1741      * The final value of spapr->gpu_numa_id is going to be written to
1742      * max-associativity-domains in spapr_build_fdt().
1743      */
1744     spapr->gpu_numa_id = MAX(1, nb_numa_nodes);
1745     qemu_devices_reset();
1746 
1747     /*
1748      * If this reset wasn't generated by CAS, we should reset our
1749      * negotiated options and start from scratch
1750      */
1751     if (!spapr->cas_reboot) {
1752         spapr_ovec_cleanup(spapr->ov5_cas);
1753         spapr->ov5_cas = spapr_ovec_new();
1754 
1755         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1756     }
1757 
1758     if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1759         spapr_irq_msi_reset(spapr);
1760     }
1761 
1762     /*
1763      * This is fixing some of the default configuration of the XIVE
1764      * devices. To be called after the reset of the machine devices.
1765      */
1766     spapr_irq_reset(spapr, &error_fatal);
1767 
1768     /*
1769      * There is no CAS under qtest. Simulate one to please the code that
1770      * depends on spapr->ov5_cas. This is especially needed to test device
1771      * unplug, so we do that before resetting the DRCs.
1772      */
1773     if (qtest_enabled()) {
1774         spapr_ovec_cleanup(spapr->ov5_cas);
1775         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1776     }
1777 
1778     /* DRC reset may cause a device to be unplugged. This will cause troubles
1779      * if this device is used by another device (eg, a running vhost backend
1780      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1781      * situations, we reset DRCs after all devices have been reset.
1782      */
1783     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1784 
1785     spapr_clear_pending_events(spapr);
1786 
1787     /*
1788      * We place the device tree and RTAS just below either the top of the RMA,
1789      * or just below 2GB, whichever is lower, so that it can be
1790      * processed with 32-bit real mode code if necessary
1791      */
1792     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1793     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1794     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1795 
1796     fdt = spapr_build_fdt(spapr);
1797 
1798     spapr_load_rtas(spapr, fdt, rtas_addr);
1799 
1800     rc = fdt_pack(fdt);
1801 
1802     /* Should only fail if we've built a corrupted tree */
1803     assert(rc == 0);
1804 
1805     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1806         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1807                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1808         exit(1);
1809     }
1810 
1811     /* Load the fdt */
1812     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1813     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1814     g_free(spapr->fdt_blob);
1815     spapr->fdt_size = fdt_totalsize(fdt);
1816     spapr->fdt_initial_size = spapr->fdt_size;
1817     spapr->fdt_blob = fdt;
1818 
1819     /* Set up the entry state */
1820     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1821     first_ppc_cpu->env.gpr[5] = 0;
1822 
1823     spapr->cas_reboot = false;
1824 }
1825 
1826 static void spapr_create_nvram(SpaprMachineState *spapr)
1827 {
1828     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1829     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1830 
1831     if (dinfo) {
1832         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1833                             &error_fatal);
1834     }
1835 
1836     qdev_init_nofail(dev);
1837 
1838     spapr->nvram = (struct SpaprNvram *)dev;
1839 }
1840 
1841 static void spapr_rtc_create(SpaprMachineState *spapr)
1842 {
1843     object_initialize_child(OBJECT(spapr), "rtc",
1844                             &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1845                             &error_fatal, NULL);
1846     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1847                               &error_fatal);
1848     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1849                               "date", &error_fatal);
1850 }
1851 
1852 /* Returns whether we want to use VGA or not */
1853 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1854 {
1855     switch (vga_interface_type) {
1856     case VGA_NONE:
1857         return false;
1858     case VGA_DEVICE:
1859         return true;
1860     case VGA_STD:
1861     case VGA_VIRTIO:
1862     case VGA_CIRRUS:
1863         return pci_vga_init(pci_bus) != NULL;
1864     default:
1865         error_setg(errp,
1866                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1867         return false;
1868     }
1869 }
1870 
1871 static int spapr_pre_load(void *opaque)
1872 {
1873     int rc;
1874 
1875     rc = spapr_caps_pre_load(opaque);
1876     if (rc) {
1877         return rc;
1878     }
1879 
1880     return 0;
1881 }
1882 
1883 static int spapr_post_load(void *opaque, int version_id)
1884 {
1885     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1886     int err = 0;
1887 
1888     err = spapr_caps_post_migration(spapr);
1889     if (err) {
1890         return err;
1891     }
1892 
1893     /*
1894      * In earlier versions, there was no separate qdev for the PAPR
1895      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1896      * So when migrating from those versions, poke the incoming offset
1897      * value into the RTC device
1898      */
1899     if (version_id < 3) {
1900         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1901         if (err) {
1902             return err;
1903         }
1904     }
1905 
1906     if (kvm_enabled() && spapr->patb_entry) {
1907         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1908         bool radix = !!(spapr->patb_entry & PATE1_GR);
1909         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1910 
1911         /*
1912          * Update LPCR:HR and UPRT as they may not be set properly in
1913          * the stream
1914          */
1915         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1916                             LPCR_HR | LPCR_UPRT);
1917 
1918         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1919         if (err) {
1920             error_report("Process table config unsupported by the host");
1921             return -EINVAL;
1922         }
1923     }
1924 
1925     err = spapr_irq_post_load(spapr, version_id);
1926     if (err) {
1927         return err;
1928     }
1929 
1930     return err;
1931 }
1932 
1933 static int spapr_pre_save(void *opaque)
1934 {
1935     int rc;
1936 
1937     rc = spapr_caps_pre_save(opaque);
1938     if (rc) {
1939         return rc;
1940     }
1941 
1942     return 0;
1943 }
1944 
1945 static bool version_before_3(void *opaque, int version_id)
1946 {
1947     return version_id < 3;
1948 }
1949 
1950 static bool spapr_pending_events_needed(void *opaque)
1951 {
1952     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1953     return !QTAILQ_EMPTY(&spapr->pending_events);
1954 }
1955 
1956 static const VMStateDescription vmstate_spapr_event_entry = {
1957     .name = "spapr_event_log_entry",
1958     .version_id = 1,
1959     .minimum_version_id = 1,
1960     .fields = (VMStateField[]) {
1961         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1962         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1963         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1964                                      NULL, extended_length),
1965         VMSTATE_END_OF_LIST()
1966     },
1967 };
1968 
1969 static const VMStateDescription vmstate_spapr_pending_events = {
1970     .name = "spapr_pending_events",
1971     .version_id = 1,
1972     .minimum_version_id = 1,
1973     .needed = spapr_pending_events_needed,
1974     .fields = (VMStateField[]) {
1975         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1976                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1977         VMSTATE_END_OF_LIST()
1978     },
1979 };
1980 
1981 static bool spapr_ov5_cas_needed(void *opaque)
1982 {
1983     SpaprMachineState *spapr = opaque;
1984     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1985     SpaprOptionVector *ov5_legacy = spapr_ovec_new();
1986     SpaprOptionVector *ov5_removed = spapr_ovec_new();
1987     bool cas_needed;
1988 
1989     /* Prior to the introduction of SpaprOptionVector, we had two option
1990      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1991      * Both of these options encode machine topology into the device-tree
1992      * in such a way that the now-booted OS should still be able to interact
1993      * appropriately with QEMU regardless of what options were actually
1994      * negotiatied on the source side.
1995      *
1996      * As such, we can avoid migrating the CAS-negotiated options if these
1997      * are the only options available on the current machine/platform.
1998      * Since these are the only options available for pseries-2.7 and
1999      * earlier, this allows us to maintain old->new/new->old migration
2000      * compatibility.
2001      *
2002      * For QEMU 2.8+, there are additional CAS-negotiatable options available
2003      * via default pseries-2.8 machines and explicit command-line parameters.
2004      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
2005      * of the actual CAS-negotiated values to continue working properly. For
2006      * example, availability of memory unplug depends on knowing whether
2007      * OV5_HP_EVT was negotiated via CAS.
2008      *
2009      * Thus, for any cases where the set of available CAS-negotiatable
2010      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
2011      * include the CAS-negotiated options in the migration stream, unless
2012      * if they affect boot time behaviour only.
2013      */
2014     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
2015     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
2016     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
2017 
2018     /* spapr_ovec_diff returns true if bits were removed. we avoid using
2019      * the mask itself since in the future it's possible "legacy" bits may be
2020      * removed via machine options, which could generate a false positive
2021      * that breaks migration.
2022      */
2023     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
2024     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
2025 
2026     spapr_ovec_cleanup(ov5_mask);
2027     spapr_ovec_cleanup(ov5_legacy);
2028     spapr_ovec_cleanup(ov5_removed);
2029 
2030     return cas_needed;
2031 }
2032 
2033 static const VMStateDescription vmstate_spapr_ov5_cas = {
2034     .name = "spapr_option_vector_ov5_cas",
2035     .version_id = 1,
2036     .minimum_version_id = 1,
2037     .needed = spapr_ov5_cas_needed,
2038     .fields = (VMStateField[]) {
2039         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
2040                                  vmstate_spapr_ovec, SpaprOptionVector),
2041         VMSTATE_END_OF_LIST()
2042     },
2043 };
2044 
2045 static bool spapr_patb_entry_needed(void *opaque)
2046 {
2047     SpaprMachineState *spapr = opaque;
2048 
2049     return !!spapr->patb_entry;
2050 }
2051 
2052 static const VMStateDescription vmstate_spapr_patb_entry = {
2053     .name = "spapr_patb_entry",
2054     .version_id = 1,
2055     .minimum_version_id = 1,
2056     .needed = spapr_patb_entry_needed,
2057     .fields = (VMStateField[]) {
2058         VMSTATE_UINT64(patb_entry, SpaprMachineState),
2059         VMSTATE_END_OF_LIST()
2060     },
2061 };
2062 
2063 static bool spapr_irq_map_needed(void *opaque)
2064 {
2065     SpaprMachineState *spapr = opaque;
2066 
2067     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
2068 }
2069 
2070 static const VMStateDescription vmstate_spapr_irq_map = {
2071     .name = "spapr_irq_map",
2072     .version_id = 1,
2073     .minimum_version_id = 1,
2074     .needed = spapr_irq_map_needed,
2075     .fields = (VMStateField[]) {
2076         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
2077         VMSTATE_END_OF_LIST()
2078     },
2079 };
2080 
2081 static bool spapr_dtb_needed(void *opaque)
2082 {
2083     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
2084 
2085     return smc->update_dt_enabled;
2086 }
2087 
2088 static int spapr_dtb_pre_load(void *opaque)
2089 {
2090     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
2091 
2092     g_free(spapr->fdt_blob);
2093     spapr->fdt_blob = NULL;
2094     spapr->fdt_size = 0;
2095 
2096     return 0;
2097 }
2098 
2099 static const VMStateDescription vmstate_spapr_dtb = {
2100     .name = "spapr_dtb",
2101     .version_id = 1,
2102     .minimum_version_id = 1,
2103     .needed = spapr_dtb_needed,
2104     .pre_load = spapr_dtb_pre_load,
2105     .fields = (VMStateField[]) {
2106         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
2107         VMSTATE_UINT32(fdt_size, SpaprMachineState),
2108         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
2109                                      fdt_size),
2110         VMSTATE_END_OF_LIST()
2111     },
2112 };
2113 
2114 static const VMStateDescription vmstate_spapr = {
2115     .name = "spapr",
2116     .version_id = 3,
2117     .minimum_version_id = 1,
2118     .pre_load = spapr_pre_load,
2119     .post_load = spapr_post_load,
2120     .pre_save = spapr_pre_save,
2121     .fields = (VMStateField[]) {
2122         /* used to be @next_irq */
2123         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2124 
2125         /* RTC offset */
2126         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2127 
2128         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2129         VMSTATE_END_OF_LIST()
2130     },
2131     .subsections = (const VMStateDescription*[]) {
2132         &vmstate_spapr_ov5_cas,
2133         &vmstate_spapr_patb_entry,
2134         &vmstate_spapr_pending_events,
2135         &vmstate_spapr_cap_htm,
2136         &vmstate_spapr_cap_vsx,
2137         &vmstate_spapr_cap_dfp,
2138         &vmstate_spapr_cap_cfpc,
2139         &vmstate_spapr_cap_sbbc,
2140         &vmstate_spapr_cap_ibs,
2141         &vmstate_spapr_cap_hpt_maxpagesize,
2142         &vmstate_spapr_irq_map,
2143         &vmstate_spapr_cap_nested_kvm_hv,
2144         &vmstate_spapr_dtb,
2145         &vmstate_spapr_cap_large_decr,
2146         &vmstate_spapr_cap_ccf_assist,
2147         NULL
2148     }
2149 };
2150 
2151 static int htab_save_setup(QEMUFile *f, void *opaque)
2152 {
2153     SpaprMachineState *spapr = opaque;
2154 
2155     /* "Iteration" header */
2156     if (!spapr->htab_shift) {
2157         qemu_put_be32(f, -1);
2158     } else {
2159         qemu_put_be32(f, spapr->htab_shift);
2160     }
2161 
2162     if (spapr->htab) {
2163         spapr->htab_save_index = 0;
2164         spapr->htab_first_pass = true;
2165     } else {
2166         if (spapr->htab_shift) {
2167             assert(kvm_enabled());
2168         }
2169     }
2170 
2171 
2172     return 0;
2173 }
2174 
2175 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2176                             int chunkstart, int n_valid, int n_invalid)
2177 {
2178     qemu_put_be32(f, chunkstart);
2179     qemu_put_be16(f, n_valid);
2180     qemu_put_be16(f, n_invalid);
2181     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2182                     HASH_PTE_SIZE_64 * n_valid);
2183 }
2184 
2185 static void htab_save_end_marker(QEMUFile *f)
2186 {
2187     qemu_put_be32(f, 0);
2188     qemu_put_be16(f, 0);
2189     qemu_put_be16(f, 0);
2190 }
2191 
2192 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2193                                  int64_t max_ns)
2194 {
2195     bool has_timeout = max_ns != -1;
2196     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2197     int index = spapr->htab_save_index;
2198     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2199 
2200     assert(spapr->htab_first_pass);
2201 
2202     do {
2203         int chunkstart;
2204 
2205         /* Consume invalid HPTEs */
2206         while ((index < htabslots)
2207                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2208             CLEAN_HPTE(HPTE(spapr->htab, index));
2209             index++;
2210         }
2211 
2212         /* Consume valid HPTEs */
2213         chunkstart = index;
2214         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2215                && HPTE_VALID(HPTE(spapr->htab, index))) {
2216             CLEAN_HPTE(HPTE(spapr->htab, index));
2217             index++;
2218         }
2219 
2220         if (index > chunkstart) {
2221             int n_valid = index - chunkstart;
2222 
2223             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2224 
2225             if (has_timeout &&
2226                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2227                 break;
2228             }
2229         }
2230     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2231 
2232     if (index >= htabslots) {
2233         assert(index == htabslots);
2234         index = 0;
2235         spapr->htab_first_pass = false;
2236     }
2237     spapr->htab_save_index = index;
2238 }
2239 
2240 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2241                                 int64_t max_ns)
2242 {
2243     bool final = max_ns < 0;
2244     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2245     int examined = 0, sent = 0;
2246     int index = spapr->htab_save_index;
2247     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2248 
2249     assert(!spapr->htab_first_pass);
2250 
2251     do {
2252         int chunkstart, invalidstart;
2253 
2254         /* Consume non-dirty HPTEs */
2255         while ((index < htabslots)
2256                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2257             index++;
2258             examined++;
2259         }
2260 
2261         chunkstart = index;
2262         /* Consume valid dirty HPTEs */
2263         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2264                && HPTE_DIRTY(HPTE(spapr->htab, index))
2265                && HPTE_VALID(HPTE(spapr->htab, index))) {
2266             CLEAN_HPTE(HPTE(spapr->htab, index));
2267             index++;
2268             examined++;
2269         }
2270 
2271         invalidstart = index;
2272         /* Consume invalid dirty HPTEs */
2273         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2274                && HPTE_DIRTY(HPTE(spapr->htab, index))
2275                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2276             CLEAN_HPTE(HPTE(spapr->htab, index));
2277             index++;
2278             examined++;
2279         }
2280 
2281         if (index > chunkstart) {
2282             int n_valid = invalidstart - chunkstart;
2283             int n_invalid = index - invalidstart;
2284 
2285             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2286             sent += index - chunkstart;
2287 
2288             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2289                 break;
2290             }
2291         }
2292 
2293         if (examined >= htabslots) {
2294             break;
2295         }
2296 
2297         if (index >= htabslots) {
2298             assert(index == htabslots);
2299             index = 0;
2300         }
2301     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2302 
2303     if (index >= htabslots) {
2304         assert(index == htabslots);
2305         index = 0;
2306     }
2307 
2308     spapr->htab_save_index = index;
2309 
2310     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2311 }
2312 
2313 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2314 #define MAX_KVM_BUF_SIZE    2048
2315 
2316 static int htab_save_iterate(QEMUFile *f, void *opaque)
2317 {
2318     SpaprMachineState *spapr = opaque;
2319     int fd;
2320     int rc = 0;
2321 
2322     /* Iteration header */
2323     if (!spapr->htab_shift) {
2324         qemu_put_be32(f, -1);
2325         return 1;
2326     } else {
2327         qemu_put_be32(f, 0);
2328     }
2329 
2330     if (!spapr->htab) {
2331         assert(kvm_enabled());
2332 
2333         fd = get_htab_fd(spapr);
2334         if (fd < 0) {
2335             return fd;
2336         }
2337 
2338         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2339         if (rc < 0) {
2340             return rc;
2341         }
2342     } else  if (spapr->htab_first_pass) {
2343         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2344     } else {
2345         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2346     }
2347 
2348     htab_save_end_marker(f);
2349 
2350     return rc;
2351 }
2352 
2353 static int htab_save_complete(QEMUFile *f, void *opaque)
2354 {
2355     SpaprMachineState *spapr = opaque;
2356     int fd;
2357 
2358     /* Iteration header */
2359     if (!spapr->htab_shift) {
2360         qemu_put_be32(f, -1);
2361         return 0;
2362     } else {
2363         qemu_put_be32(f, 0);
2364     }
2365 
2366     if (!spapr->htab) {
2367         int rc;
2368 
2369         assert(kvm_enabled());
2370 
2371         fd = get_htab_fd(spapr);
2372         if (fd < 0) {
2373             return fd;
2374         }
2375 
2376         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2377         if (rc < 0) {
2378             return rc;
2379         }
2380     } else {
2381         if (spapr->htab_first_pass) {
2382             htab_save_first_pass(f, spapr, -1);
2383         }
2384         htab_save_later_pass(f, spapr, -1);
2385     }
2386 
2387     /* End marker */
2388     htab_save_end_marker(f);
2389 
2390     return 0;
2391 }
2392 
2393 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2394 {
2395     SpaprMachineState *spapr = opaque;
2396     uint32_t section_hdr;
2397     int fd = -1;
2398     Error *local_err = NULL;
2399 
2400     if (version_id < 1 || version_id > 1) {
2401         error_report("htab_load() bad version");
2402         return -EINVAL;
2403     }
2404 
2405     section_hdr = qemu_get_be32(f);
2406 
2407     if (section_hdr == -1) {
2408         spapr_free_hpt(spapr);
2409         return 0;
2410     }
2411 
2412     if (section_hdr) {
2413         /* First section gives the htab size */
2414         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2415         if (local_err) {
2416             error_report_err(local_err);
2417             return -EINVAL;
2418         }
2419         return 0;
2420     }
2421 
2422     if (!spapr->htab) {
2423         assert(kvm_enabled());
2424 
2425         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2426         if (fd < 0) {
2427             error_report_err(local_err);
2428             return fd;
2429         }
2430     }
2431 
2432     while (true) {
2433         uint32_t index;
2434         uint16_t n_valid, n_invalid;
2435 
2436         index = qemu_get_be32(f);
2437         n_valid = qemu_get_be16(f);
2438         n_invalid = qemu_get_be16(f);
2439 
2440         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2441             /* End of Stream */
2442             break;
2443         }
2444 
2445         if ((index + n_valid + n_invalid) >
2446             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2447             /* Bad index in stream */
2448             error_report(
2449                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2450                 index, n_valid, n_invalid, spapr->htab_shift);
2451             return -EINVAL;
2452         }
2453 
2454         if (spapr->htab) {
2455             if (n_valid) {
2456                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2457                                 HASH_PTE_SIZE_64 * n_valid);
2458             }
2459             if (n_invalid) {
2460                 memset(HPTE(spapr->htab, index + n_valid), 0,
2461                        HASH_PTE_SIZE_64 * n_invalid);
2462             }
2463         } else {
2464             int rc;
2465 
2466             assert(fd >= 0);
2467 
2468             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2469             if (rc < 0) {
2470                 return rc;
2471             }
2472         }
2473     }
2474 
2475     if (!spapr->htab) {
2476         assert(fd >= 0);
2477         close(fd);
2478     }
2479 
2480     return 0;
2481 }
2482 
2483 static void htab_save_cleanup(void *opaque)
2484 {
2485     SpaprMachineState *spapr = opaque;
2486 
2487     close_htab_fd(spapr);
2488 }
2489 
2490 static SaveVMHandlers savevm_htab_handlers = {
2491     .save_setup = htab_save_setup,
2492     .save_live_iterate = htab_save_iterate,
2493     .save_live_complete_precopy = htab_save_complete,
2494     .save_cleanup = htab_save_cleanup,
2495     .load_state = htab_load,
2496 };
2497 
2498 static void spapr_boot_set(void *opaque, const char *boot_device,
2499                            Error **errp)
2500 {
2501     MachineState *machine = MACHINE(opaque);
2502     machine->boot_order = g_strdup(boot_device);
2503 }
2504 
2505 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2506 {
2507     MachineState *machine = MACHINE(spapr);
2508     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2509     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2510     int i;
2511 
2512     for (i = 0; i < nr_lmbs; i++) {
2513         uint64_t addr;
2514 
2515         addr = i * lmb_size + machine->device_memory->base;
2516         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2517                                addr / lmb_size);
2518     }
2519 }
2520 
2521 /*
2522  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2523  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2524  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2525  */
2526 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2527 {
2528     int i;
2529 
2530     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2531         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2532                    " is not aligned to %" PRIu64 " MiB",
2533                    machine->ram_size,
2534                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2535         return;
2536     }
2537 
2538     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2539         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2540                    " is not aligned to %" PRIu64 " MiB",
2541                    machine->ram_size,
2542                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2543         return;
2544     }
2545 
2546     for (i = 0; i < nb_numa_nodes; i++) {
2547         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2548             error_setg(errp,
2549                        "Node %d memory size 0x%" PRIx64
2550                        " is not aligned to %" PRIu64 " MiB",
2551                        i, numa_info[i].node_mem,
2552                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2553             return;
2554         }
2555     }
2556 }
2557 
2558 /* find cpu slot in machine->possible_cpus by core_id */
2559 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2560 {
2561     int index = id / ms->smp.threads;
2562 
2563     if (index >= ms->possible_cpus->len) {
2564         return NULL;
2565     }
2566     if (idx) {
2567         *idx = index;
2568     }
2569     return &ms->possible_cpus->cpus[index];
2570 }
2571 
2572 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2573 {
2574     MachineState *ms = MACHINE(spapr);
2575     Error *local_err = NULL;
2576     bool vsmt_user = !!spapr->vsmt;
2577     int kvm_smt = kvmppc_smt_threads();
2578     int ret;
2579     unsigned int smp_threads = ms->smp.threads;
2580 
2581     if (!kvm_enabled() && (smp_threads > 1)) {
2582         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2583                      "on a pseries machine");
2584         goto out;
2585     }
2586     if (!is_power_of_2(smp_threads)) {
2587         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2588                      "machine because it must be a power of 2", smp_threads);
2589         goto out;
2590     }
2591 
2592     /* Detemine the VSMT mode to use: */
2593     if (vsmt_user) {
2594         if (spapr->vsmt < smp_threads) {
2595             error_setg(&local_err, "Cannot support VSMT mode %d"
2596                          " because it must be >= threads/core (%d)",
2597                          spapr->vsmt, smp_threads);
2598             goto out;
2599         }
2600         /* In this case, spapr->vsmt has been set by the command line */
2601     } else {
2602         /*
2603          * Default VSMT value is tricky, because we need it to be as
2604          * consistent as possible (for migration), but this requires
2605          * changing it for at least some existing cases.  We pick 8 as
2606          * the value that we'd get with KVM on POWER8, the
2607          * overwhelmingly common case in production systems.
2608          */
2609         spapr->vsmt = MAX(8, smp_threads);
2610     }
2611 
2612     /* KVM: If necessary, set the SMT mode: */
2613     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2614         ret = kvmppc_set_smt_threads(spapr->vsmt);
2615         if (ret) {
2616             /* Looks like KVM isn't able to change VSMT mode */
2617             error_setg(&local_err,
2618                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2619                        spapr->vsmt, ret);
2620             /* We can live with that if the default one is big enough
2621              * for the number of threads, and a submultiple of the one
2622              * we want.  In this case we'll waste some vcpu ids, but
2623              * behaviour will be correct */
2624             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2625                 warn_report_err(local_err);
2626                 local_err = NULL;
2627                 goto out;
2628             } else {
2629                 if (!vsmt_user) {
2630                     error_append_hint(&local_err,
2631                                       "On PPC, a VM with %d threads/core"
2632                                       " on a host with %d threads/core"
2633                                       " requires the use of VSMT mode %d.\n",
2634                                       smp_threads, kvm_smt, spapr->vsmt);
2635                 }
2636                 kvmppc_hint_smt_possible(&local_err);
2637                 goto out;
2638             }
2639         }
2640     }
2641     /* else TCG: nothing to do currently */
2642 out:
2643     error_propagate(errp, local_err);
2644 }
2645 
2646 static void spapr_init_cpus(SpaprMachineState *spapr)
2647 {
2648     MachineState *machine = MACHINE(spapr);
2649     MachineClass *mc = MACHINE_GET_CLASS(machine);
2650     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2651     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2652     const CPUArchIdList *possible_cpus;
2653     unsigned int smp_cpus = machine->smp.cpus;
2654     unsigned int smp_threads = machine->smp.threads;
2655     unsigned int max_cpus = machine->smp.max_cpus;
2656     int boot_cores_nr = smp_cpus / smp_threads;
2657     int i;
2658 
2659     possible_cpus = mc->possible_cpu_arch_ids(machine);
2660     if (mc->has_hotpluggable_cpus) {
2661         if (smp_cpus % smp_threads) {
2662             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2663                          smp_cpus, smp_threads);
2664             exit(1);
2665         }
2666         if (max_cpus % smp_threads) {
2667             error_report("max_cpus (%u) must be multiple of threads (%u)",
2668                          max_cpus, smp_threads);
2669             exit(1);
2670         }
2671     } else {
2672         if (max_cpus != smp_cpus) {
2673             error_report("This machine version does not support CPU hotplug");
2674             exit(1);
2675         }
2676         boot_cores_nr = possible_cpus->len;
2677     }
2678 
2679     if (smc->pre_2_10_has_unused_icps) {
2680         int i;
2681 
2682         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2683             /* Dummy entries get deregistered when real ICPState objects
2684              * are registered during CPU core hotplug.
2685              */
2686             pre_2_10_vmstate_register_dummy_icp(i);
2687         }
2688     }
2689 
2690     for (i = 0; i < possible_cpus->len; i++) {
2691         int core_id = i * smp_threads;
2692 
2693         if (mc->has_hotpluggable_cpus) {
2694             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2695                                    spapr_vcpu_id(spapr, core_id));
2696         }
2697 
2698         if (i < boot_cores_nr) {
2699             Object *core  = object_new(type);
2700             int nr_threads = smp_threads;
2701 
2702             /* Handle the partially filled core for older machine types */
2703             if ((i + 1) * smp_threads >= smp_cpus) {
2704                 nr_threads = smp_cpus - i * smp_threads;
2705             }
2706 
2707             object_property_set_int(core, nr_threads, "nr-threads",
2708                                     &error_fatal);
2709             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2710                                     &error_fatal);
2711             object_property_set_bool(core, true, "realized", &error_fatal);
2712 
2713             object_unref(core);
2714         }
2715     }
2716 }
2717 
2718 static PCIHostState *spapr_create_default_phb(void)
2719 {
2720     DeviceState *dev;
2721 
2722     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2723     qdev_prop_set_uint32(dev, "index", 0);
2724     qdev_init_nofail(dev);
2725 
2726     return PCI_HOST_BRIDGE(dev);
2727 }
2728 
2729 /* pSeries LPAR / sPAPR hardware init */
2730 static void spapr_machine_init(MachineState *machine)
2731 {
2732     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2733     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2734     const char *kernel_filename = machine->kernel_filename;
2735     const char *initrd_filename = machine->initrd_filename;
2736     PCIHostState *phb;
2737     int i;
2738     MemoryRegion *sysmem = get_system_memory();
2739     MemoryRegion *ram = g_new(MemoryRegion, 1);
2740     hwaddr node0_size = spapr_node0_size(machine);
2741     long load_limit, fw_size;
2742     char *filename;
2743     Error *resize_hpt_err = NULL;
2744 
2745     msi_nonbroken = true;
2746 
2747     QLIST_INIT(&spapr->phbs);
2748     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2749 
2750     /* Determine capabilities to run with */
2751     spapr_caps_init(spapr);
2752 
2753     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2754     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2755         /*
2756          * If the user explicitly requested a mode we should either
2757          * supply it, or fail completely (which we do below).  But if
2758          * it's not set explicitly, we reset our mode to something
2759          * that works
2760          */
2761         if (resize_hpt_err) {
2762             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2763             error_free(resize_hpt_err);
2764             resize_hpt_err = NULL;
2765         } else {
2766             spapr->resize_hpt = smc->resize_hpt_default;
2767         }
2768     }
2769 
2770     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2771 
2772     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2773         /*
2774          * User requested HPT resize, but this host can't supply it.  Bail out
2775          */
2776         error_report_err(resize_hpt_err);
2777         exit(1);
2778     }
2779 
2780     spapr->rma_size = node0_size;
2781 
2782     /* With KVM, we don't actually know whether KVM supports an
2783      * unbounded RMA (PR KVM) or is limited by the hash table size
2784      * (HV KVM using VRMA), so we always assume the latter
2785      *
2786      * In that case, we also limit the initial allocations for RTAS
2787      * etc... to 256M since we have no way to know what the VRMA size
2788      * is going to be as it depends on the size of the hash table
2789      * which isn't determined yet.
2790      */
2791     if (kvm_enabled()) {
2792         spapr->vrma_adjust = 1;
2793         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2794     }
2795 
2796     /* Actually we don't support unbounded RMA anymore since we added
2797      * proper emulation of HV mode. The max we can get is 16G which
2798      * also happens to be what we configure for PAPR mode so make sure
2799      * we don't do anything bigger than that
2800      */
2801     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2802 
2803     if (spapr->rma_size > node0_size) {
2804         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2805                      spapr->rma_size);
2806         exit(1);
2807     }
2808 
2809     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2810     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2811 
2812     /*
2813      * VSMT must be set in order to be able to compute VCPU ids, ie to
2814      * call spapr_max_server_number() or spapr_vcpu_id().
2815      */
2816     spapr_set_vsmt_mode(spapr, &error_fatal);
2817 
2818     /* Set up Interrupt Controller before we create the VCPUs */
2819     spapr_irq_init(spapr, &error_fatal);
2820 
2821     /* Set up containers for ibm,client-architecture-support negotiated options
2822      */
2823     spapr->ov5 = spapr_ovec_new();
2824     spapr->ov5_cas = spapr_ovec_new();
2825 
2826     if (smc->dr_lmb_enabled) {
2827         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2828         spapr_validate_node_memory(machine, &error_fatal);
2829     }
2830 
2831     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2832 
2833     /* advertise support for dedicated HP event source to guests */
2834     if (spapr->use_hotplug_event_source) {
2835         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2836     }
2837 
2838     /* advertise support for HPT resizing */
2839     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2840         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2841     }
2842 
2843     /* advertise support for ibm,dyamic-memory-v2 */
2844     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2845 
2846     /* advertise XIVE on POWER9 machines */
2847     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2848         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2849     }
2850 
2851     /* init CPUs */
2852     spapr_init_cpus(spapr);
2853 
2854     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2855         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2856                               spapr->max_compat_pvr)) {
2857         /* KVM and TCG always allow GTSE with radix... */
2858         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2859     }
2860     /* ... but not with hash (currently). */
2861 
2862     if (kvm_enabled()) {
2863         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2864         kvmppc_enable_logical_ci_hcalls();
2865         kvmppc_enable_set_mode_hcall();
2866 
2867         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2868         kvmppc_enable_clear_ref_mod_hcalls();
2869 
2870         /* Enable H_PAGE_INIT */
2871         kvmppc_enable_h_page_init();
2872     }
2873 
2874     /* allocate RAM */
2875     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2876                                          machine->ram_size);
2877     memory_region_add_subregion(sysmem, 0, ram);
2878 
2879     /* always allocate the device memory information */
2880     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2881 
2882     /* initialize hotplug memory address space */
2883     if (machine->ram_size < machine->maxram_size) {
2884         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2885         /*
2886          * Limit the number of hotpluggable memory slots to half the number
2887          * slots that KVM supports, leaving the other half for PCI and other
2888          * devices. However ensure that number of slots doesn't drop below 32.
2889          */
2890         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2891                            SPAPR_MAX_RAM_SLOTS;
2892 
2893         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2894             max_memslots = SPAPR_MAX_RAM_SLOTS;
2895         }
2896         if (machine->ram_slots > max_memslots) {
2897             error_report("Specified number of memory slots %"
2898                          PRIu64" exceeds max supported %d",
2899                          machine->ram_slots, max_memslots);
2900             exit(1);
2901         }
2902 
2903         machine->device_memory->base = ROUND_UP(machine->ram_size,
2904                                                 SPAPR_DEVICE_MEM_ALIGN);
2905         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2906                            "device-memory", device_mem_size);
2907         memory_region_add_subregion(sysmem, machine->device_memory->base,
2908                                     &machine->device_memory->mr);
2909     }
2910 
2911     if (smc->dr_lmb_enabled) {
2912         spapr_create_lmb_dr_connectors(spapr);
2913     }
2914 
2915     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2916     if (!filename) {
2917         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2918         exit(1);
2919     }
2920     spapr->rtas_size = get_image_size(filename);
2921     if (spapr->rtas_size < 0) {
2922         error_report("Could not get size of LPAR rtas '%s'", filename);
2923         exit(1);
2924     }
2925     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2926     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2927         error_report("Could not load LPAR rtas '%s'", filename);
2928         exit(1);
2929     }
2930     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2931         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2932                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2933         exit(1);
2934     }
2935     g_free(filename);
2936 
2937     /* Set up RTAS event infrastructure */
2938     spapr_events_init(spapr);
2939 
2940     /* Set up the RTC RTAS interfaces */
2941     spapr_rtc_create(spapr);
2942 
2943     /* Set up VIO bus */
2944     spapr->vio_bus = spapr_vio_bus_init();
2945 
2946     for (i = 0; i < serial_max_hds(); i++) {
2947         if (serial_hd(i)) {
2948             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2949         }
2950     }
2951 
2952     /* We always have at least the nvram device on VIO */
2953     spapr_create_nvram(spapr);
2954 
2955     /*
2956      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2957      * connectors (described in root DT node's "ibm,drc-types" property)
2958      * are pre-initialized here. additional child connectors (such as
2959      * connectors for a PHBs PCI slots) are added as needed during their
2960      * parent's realization.
2961      */
2962     if (smc->dr_phb_enabled) {
2963         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2964             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2965         }
2966     }
2967 
2968     /* Set up PCI */
2969     spapr_pci_rtas_init();
2970 
2971     phb = spapr_create_default_phb();
2972 
2973     for (i = 0; i < nb_nics; i++) {
2974         NICInfo *nd = &nd_table[i];
2975 
2976         if (!nd->model) {
2977             nd->model = g_strdup("spapr-vlan");
2978         }
2979 
2980         if (g_str_equal(nd->model, "spapr-vlan") ||
2981             g_str_equal(nd->model, "ibmveth")) {
2982             spapr_vlan_create(spapr->vio_bus, nd);
2983         } else {
2984             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2985         }
2986     }
2987 
2988     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2989         spapr_vscsi_create(spapr->vio_bus);
2990     }
2991 
2992     /* Graphics */
2993     if (spapr_vga_init(phb->bus, &error_fatal)) {
2994         spapr->has_graphics = true;
2995         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2996     }
2997 
2998     if (machine->usb) {
2999         if (smc->use_ohci_by_default) {
3000             pci_create_simple(phb->bus, -1, "pci-ohci");
3001         } else {
3002             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
3003         }
3004 
3005         if (spapr->has_graphics) {
3006             USBBus *usb_bus = usb_bus_find(-1);
3007 
3008             usb_create_simple(usb_bus, "usb-kbd");
3009             usb_create_simple(usb_bus, "usb-mouse");
3010         }
3011     }
3012 
3013     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
3014         error_report(
3015             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
3016             MIN_RMA_SLOF);
3017         exit(1);
3018     }
3019 
3020     if (kernel_filename) {
3021         uint64_t lowaddr = 0;
3022 
3023         spapr->kernel_size = load_elf(kernel_filename, NULL,
3024                                       translate_kernel_address, NULL,
3025                                       NULL, &lowaddr, NULL, 1,
3026                                       PPC_ELF_MACHINE, 0, 0);
3027         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
3028             spapr->kernel_size = load_elf(kernel_filename, NULL,
3029                                           translate_kernel_address, NULL, NULL,
3030                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
3031                                           0, 0);
3032             spapr->kernel_le = spapr->kernel_size > 0;
3033         }
3034         if (spapr->kernel_size < 0) {
3035             error_report("error loading %s: %s", kernel_filename,
3036                          load_elf_strerror(spapr->kernel_size));
3037             exit(1);
3038         }
3039 
3040         /* load initrd */
3041         if (initrd_filename) {
3042             /* Try to locate the initrd in the gap between the kernel
3043              * and the firmware. Add a bit of space just in case
3044              */
3045             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
3046                                   + 0x1ffff) & ~0xffff;
3047             spapr->initrd_size = load_image_targphys(initrd_filename,
3048                                                      spapr->initrd_base,
3049                                                      load_limit
3050                                                      - spapr->initrd_base);
3051             if (spapr->initrd_size < 0) {
3052                 error_report("could not load initial ram disk '%s'",
3053                              initrd_filename);
3054                 exit(1);
3055             }
3056         }
3057     }
3058 
3059     if (bios_name == NULL) {
3060         bios_name = FW_FILE_NAME;
3061     }
3062     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
3063     if (!filename) {
3064         error_report("Could not find LPAR firmware '%s'", bios_name);
3065         exit(1);
3066     }
3067     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
3068     if (fw_size <= 0) {
3069         error_report("Could not load LPAR firmware '%s'", filename);
3070         exit(1);
3071     }
3072     g_free(filename);
3073 
3074     /* FIXME: Should register things through the MachineState's qdev
3075      * interface, this is a legacy from the sPAPREnvironment structure
3076      * which predated MachineState but had a similar function */
3077     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3078     register_savevm_live(NULL, "spapr/htab", -1, 1,
3079                          &savevm_htab_handlers, spapr);
3080 
3081     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine),
3082                              &error_fatal);
3083 
3084     qemu_register_boot_set(spapr_boot_set, spapr);
3085 
3086     if (kvm_enabled()) {
3087         /* to stop and start vmclock */
3088         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3089                                          &spapr->tb);
3090 
3091         kvmppc_spapr_enable_inkernel_multitce();
3092     }
3093 }
3094 
3095 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3096 {
3097     if (!vm_type) {
3098         return 0;
3099     }
3100 
3101     if (!strcmp(vm_type, "HV")) {
3102         return 1;
3103     }
3104 
3105     if (!strcmp(vm_type, "PR")) {
3106         return 2;
3107     }
3108 
3109     error_report("Unknown kvm-type specified '%s'", vm_type);
3110     exit(1);
3111 }
3112 
3113 /*
3114  * Implementation of an interface to adjust firmware path
3115  * for the bootindex property handling.
3116  */
3117 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3118                                    DeviceState *dev)
3119 {
3120 #define CAST(type, obj, name) \
3121     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3122     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3123     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3124     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3125 
3126     if (d) {
3127         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3128         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3129         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3130 
3131         if (spapr) {
3132             /*
3133              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3134              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3135              * 0x8000 | (target << 8) | (bus << 5) | lun
3136              * (see the "Logical unit addressing format" table in SAM5)
3137              */
3138             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3139             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3140                                    (uint64_t)id << 48);
3141         } else if (virtio) {
3142             /*
3143              * We use SRP luns of the form 01000000 | (target << 8) | lun
3144              * in the top 32 bits of the 64-bit LUN
3145              * Note: the quote above is from SLOF and it is wrong,
3146              * the actual binding is:
3147              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3148              */
3149             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3150             if (d->lun >= 256) {
3151                 /* Use the LUN "flat space addressing method" */
3152                 id |= 0x4000;
3153             }
3154             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3155                                    (uint64_t)id << 32);
3156         } else if (usb) {
3157             /*
3158              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3159              * in the top 32 bits of the 64-bit LUN
3160              */
3161             unsigned usb_port = atoi(usb->port->path);
3162             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3163             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3164                                    (uint64_t)id << 32);
3165         }
3166     }
3167 
3168     /*
3169      * SLOF probes the USB devices, and if it recognizes that the device is a
3170      * storage device, it changes its name to "storage" instead of "usb-host",
3171      * and additionally adds a child node for the SCSI LUN, so the correct
3172      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3173      */
3174     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3175         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3176         if (usb_host_dev_is_scsi_storage(usbdev)) {
3177             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3178         }
3179     }
3180 
3181     if (phb) {
3182         /* Replace "pci" with "pci@800000020000000" */
3183         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3184     }
3185 
3186     if (vsc) {
3187         /* Same logic as virtio above */
3188         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3189         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3190     }
3191 
3192     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3193         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3194         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3195         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3196     }
3197 
3198     return NULL;
3199 }
3200 
3201 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3202 {
3203     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3204 
3205     return g_strdup(spapr->kvm_type);
3206 }
3207 
3208 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3209 {
3210     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3211 
3212     g_free(spapr->kvm_type);
3213     spapr->kvm_type = g_strdup(value);
3214 }
3215 
3216 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3217 {
3218     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3219 
3220     return spapr->use_hotplug_event_source;
3221 }
3222 
3223 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3224                                             Error **errp)
3225 {
3226     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3227 
3228     spapr->use_hotplug_event_source = value;
3229 }
3230 
3231 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3232 {
3233     return true;
3234 }
3235 
3236 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3237 {
3238     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3239 
3240     switch (spapr->resize_hpt) {
3241     case SPAPR_RESIZE_HPT_DEFAULT:
3242         return g_strdup("default");
3243     case SPAPR_RESIZE_HPT_DISABLED:
3244         return g_strdup("disabled");
3245     case SPAPR_RESIZE_HPT_ENABLED:
3246         return g_strdup("enabled");
3247     case SPAPR_RESIZE_HPT_REQUIRED:
3248         return g_strdup("required");
3249     }
3250     g_assert_not_reached();
3251 }
3252 
3253 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3254 {
3255     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3256 
3257     if (strcmp(value, "default") == 0) {
3258         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3259     } else if (strcmp(value, "disabled") == 0) {
3260         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3261     } else if (strcmp(value, "enabled") == 0) {
3262         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3263     } else if (strcmp(value, "required") == 0) {
3264         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3265     } else {
3266         error_setg(errp, "Bad value for \"resize-hpt\" property");
3267     }
3268 }
3269 
3270 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3271                                    void *opaque, Error **errp)
3272 {
3273     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3274 }
3275 
3276 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3277                                    void *opaque, Error **errp)
3278 {
3279     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3280 }
3281 
3282 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3283 {
3284     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3285 
3286     if (spapr->irq == &spapr_irq_xics_legacy) {
3287         return g_strdup("legacy");
3288     } else if (spapr->irq == &spapr_irq_xics) {
3289         return g_strdup("xics");
3290     } else if (spapr->irq == &spapr_irq_xive) {
3291         return g_strdup("xive");
3292     } else if (spapr->irq == &spapr_irq_dual) {
3293         return g_strdup("dual");
3294     }
3295     g_assert_not_reached();
3296 }
3297 
3298 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3299 {
3300     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3301 
3302     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3303         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3304         return;
3305     }
3306 
3307     /* The legacy IRQ backend can not be set */
3308     if (strcmp(value, "xics") == 0) {
3309         spapr->irq = &spapr_irq_xics;
3310     } else if (strcmp(value, "xive") == 0) {
3311         spapr->irq = &spapr_irq_xive;
3312     } else if (strcmp(value, "dual") == 0) {
3313         spapr->irq = &spapr_irq_dual;
3314     } else {
3315         error_setg(errp, "Bad value for \"ic-mode\" property");
3316     }
3317 }
3318 
3319 static char *spapr_get_host_model(Object *obj, Error **errp)
3320 {
3321     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3322 
3323     return g_strdup(spapr->host_model);
3324 }
3325 
3326 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3327 {
3328     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3329 
3330     g_free(spapr->host_model);
3331     spapr->host_model = g_strdup(value);
3332 }
3333 
3334 static char *spapr_get_host_serial(Object *obj, Error **errp)
3335 {
3336     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3337 
3338     return g_strdup(spapr->host_serial);
3339 }
3340 
3341 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3342 {
3343     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3344 
3345     g_free(spapr->host_serial);
3346     spapr->host_serial = g_strdup(value);
3347 }
3348 
3349 static void spapr_instance_init(Object *obj)
3350 {
3351     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3352     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3353 
3354     spapr->htab_fd = -1;
3355     spapr->use_hotplug_event_source = true;
3356     object_property_add_str(obj, "kvm-type",
3357                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3358     object_property_set_description(obj, "kvm-type",
3359                                     "Specifies the KVM virtualization mode (HV, PR)",
3360                                     NULL);
3361     object_property_add_bool(obj, "modern-hotplug-events",
3362                             spapr_get_modern_hotplug_events,
3363                             spapr_set_modern_hotplug_events,
3364                             NULL);
3365     object_property_set_description(obj, "modern-hotplug-events",
3366                                     "Use dedicated hotplug event mechanism in"
3367                                     " place of standard EPOW events when possible"
3368                                     " (required for memory hot-unplug support)",
3369                                     NULL);
3370     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3371                             "Maximum permitted CPU compatibility mode",
3372                             &error_fatal);
3373 
3374     object_property_add_str(obj, "resize-hpt",
3375                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3376     object_property_set_description(obj, "resize-hpt",
3377                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3378                                     NULL);
3379     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3380                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3381     object_property_set_description(obj, "vsmt",
3382                                     "Virtual SMT: KVM behaves as if this were"
3383                                     " the host's SMT mode", &error_abort);
3384     object_property_add_bool(obj, "vfio-no-msix-emulation",
3385                              spapr_get_msix_emulation, NULL, NULL);
3386 
3387     /* The machine class defines the default interrupt controller mode */
3388     spapr->irq = smc->irq;
3389     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3390                             spapr_set_ic_mode, NULL);
3391     object_property_set_description(obj, "ic-mode",
3392                  "Specifies the interrupt controller mode (xics, xive, dual)",
3393                  NULL);
3394 
3395     object_property_add_str(obj, "host-model",
3396         spapr_get_host_model, spapr_set_host_model,
3397         &error_abort);
3398     object_property_set_description(obj, "host-model",
3399         "Host model to advertise in guest device tree", &error_abort);
3400     object_property_add_str(obj, "host-serial",
3401         spapr_get_host_serial, spapr_set_host_serial,
3402         &error_abort);
3403     object_property_set_description(obj, "host-serial",
3404         "Host serial number to advertise in guest device tree", &error_abort);
3405 }
3406 
3407 static void spapr_machine_finalizefn(Object *obj)
3408 {
3409     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3410 
3411     g_free(spapr->kvm_type);
3412 }
3413 
3414 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3415 {
3416     cpu_synchronize_state(cs);
3417     ppc_cpu_do_system_reset(cs);
3418 }
3419 
3420 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3421 {
3422     CPUState *cs;
3423 
3424     CPU_FOREACH(cs) {
3425         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3426     }
3427 }
3428 
3429 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3430                           void *fdt, int *fdt_start_offset, Error **errp)
3431 {
3432     uint64_t addr;
3433     uint32_t node;
3434 
3435     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3436     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3437                                     &error_abort);
3438     *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr,
3439                                                    SPAPR_MEMORY_BLOCK_SIZE);
3440     return 0;
3441 }
3442 
3443 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3444                            bool dedicated_hp_event_source, Error **errp)
3445 {
3446     SpaprDrc *drc;
3447     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3448     int i;
3449     uint64_t addr = addr_start;
3450     bool hotplugged = spapr_drc_hotplugged(dev);
3451     Error *local_err = NULL;
3452 
3453     for (i = 0; i < nr_lmbs; i++) {
3454         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3455                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3456         g_assert(drc);
3457 
3458         spapr_drc_attach(drc, dev, &local_err);
3459         if (local_err) {
3460             while (addr > addr_start) {
3461                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3462                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3463                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3464                 spapr_drc_detach(drc);
3465             }
3466             error_propagate(errp, local_err);
3467             return;
3468         }
3469         if (!hotplugged) {
3470             spapr_drc_reset(drc);
3471         }
3472         addr += SPAPR_MEMORY_BLOCK_SIZE;
3473     }
3474     /* send hotplug notification to the
3475      * guest only in case of hotplugged memory
3476      */
3477     if (hotplugged) {
3478         if (dedicated_hp_event_source) {
3479             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3480                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3481             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3482                                                    nr_lmbs,
3483                                                    spapr_drc_index(drc));
3484         } else {
3485             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3486                                            nr_lmbs);
3487         }
3488     }
3489 }
3490 
3491 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3492                               Error **errp)
3493 {
3494     Error *local_err = NULL;
3495     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3496     PCDIMMDevice *dimm = PC_DIMM(dev);
3497     uint64_t size, addr;
3498 
3499     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3500 
3501     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3502     if (local_err) {
3503         goto out;
3504     }
3505 
3506     addr = object_property_get_uint(OBJECT(dimm),
3507                                     PC_DIMM_ADDR_PROP, &local_err);
3508     if (local_err) {
3509         goto out_unplug;
3510     }
3511 
3512     spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3513                    &local_err);
3514     if (local_err) {
3515         goto out_unplug;
3516     }
3517 
3518     return;
3519 
3520 out_unplug:
3521     pc_dimm_unplug(dimm, MACHINE(ms));
3522 out:
3523     error_propagate(errp, local_err);
3524 }
3525 
3526 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3527                                   Error **errp)
3528 {
3529     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3530     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3531     PCDIMMDevice *dimm = PC_DIMM(dev);
3532     Error *local_err = NULL;
3533     uint64_t size;
3534     Object *memdev;
3535     hwaddr pagesize;
3536 
3537     if (!smc->dr_lmb_enabled) {
3538         error_setg(errp, "Memory hotplug not supported for this machine");
3539         return;
3540     }
3541 
3542     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3543     if (local_err) {
3544         error_propagate(errp, local_err);
3545         return;
3546     }
3547 
3548     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3549         error_setg(errp, "Hotplugged memory size must be a multiple of "
3550                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3551         return;
3552     }
3553 
3554     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3555                                       &error_abort);
3556     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3557     spapr_check_pagesize(spapr, pagesize, &local_err);
3558     if (local_err) {
3559         error_propagate(errp, local_err);
3560         return;
3561     }
3562 
3563     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3564 }
3565 
3566 struct SpaprDimmState {
3567     PCDIMMDevice *dimm;
3568     uint32_t nr_lmbs;
3569     QTAILQ_ENTRY(SpaprDimmState) next;
3570 };
3571 
3572 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3573                                                        PCDIMMDevice *dimm)
3574 {
3575     SpaprDimmState *dimm_state = NULL;
3576 
3577     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3578         if (dimm_state->dimm == dimm) {
3579             break;
3580         }
3581     }
3582     return dimm_state;
3583 }
3584 
3585 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3586                                                       uint32_t nr_lmbs,
3587                                                       PCDIMMDevice *dimm)
3588 {
3589     SpaprDimmState *ds = NULL;
3590 
3591     /*
3592      * If this request is for a DIMM whose removal had failed earlier
3593      * (due to guest's refusal to remove the LMBs), we would have this
3594      * dimm already in the pending_dimm_unplugs list. In that
3595      * case don't add again.
3596      */
3597     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3598     if (!ds) {
3599         ds = g_malloc0(sizeof(SpaprDimmState));
3600         ds->nr_lmbs = nr_lmbs;
3601         ds->dimm = dimm;
3602         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3603     }
3604     return ds;
3605 }
3606 
3607 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3608                                               SpaprDimmState *dimm_state)
3609 {
3610     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3611     g_free(dimm_state);
3612 }
3613 
3614 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3615                                                         PCDIMMDevice *dimm)
3616 {
3617     SpaprDrc *drc;
3618     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3619                                                   &error_abort);
3620     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3621     uint32_t avail_lmbs = 0;
3622     uint64_t addr_start, addr;
3623     int i;
3624 
3625     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3626                                          &error_abort);
3627 
3628     addr = addr_start;
3629     for (i = 0; i < nr_lmbs; i++) {
3630         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3631                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3632         g_assert(drc);
3633         if (drc->dev) {
3634             avail_lmbs++;
3635         }
3636         addr += SPAPR_MEMORY_BLOCK_SIZE;
3637     }
3638 
3639     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3640 }
3641 
3642 /* Callback to be called during DRC release. */
3643 void spapr_lmb_release(DeviceState *dev)
3644 {
3645     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3646     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3647     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3648 
3649     /* This information will get lost if a migration occurs
3650      * during the unplug process. In this case recover it. */
3651     if (ds == NULL) {
3652         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3653         g_assert(ds);
3654         /* The DRC being examined by the caller at least must be counted */
3655         g_assert(ds->nr_lmbs);
3656     }
3657 
3658     if (--ds->nr_lmbs) {
3659         return;
3660     }
3661 
3662     /*
3663      * Now that all the LMBs have been removed by the guest, call the
3664      * unplug handler chain. This can never fail.
3665      */
3666     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3667     object_unparent(OBJECT(dev));
3668 }
3669 
3670 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3671 {
3672     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3673     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3674 
3675     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3676     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3677     spapr_pending_dimm_unplugs_remove(spapr, ds);
3678 }
3679 
3680 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3681                                         DeviceState *dev, Error **errp)
3682 {
3683     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3684     Error *local_err = NULL;
3685     PCDIMMDevice *dimm = PC_DIMM(dev);
3686     uint32_t nr_lmbs;
3687     uint64_t size, addr_start, addr;
3688     int i;
3689     SpaprDrc *drc;
3690 
3691     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3692     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3693 
3694     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3695                                          &local_err);
3696     if (local_err) {
3697         goto out;
3698     }
3699 
3700     /*
3701      * An existing pending dimm state for this DIMM means that there is an
3702      * unplug operation in progress, waiting for the spapr_lmb_release
3703      * callback to complete the job (BQL can't cover that far). In this case,
3704      * bail out to avoid detaching DRCs that were already released.
3705      */
3706     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3707         error_setg(&local_err,
3708                    "Memory unplug already in progress for device %s",
3709                    dev->id);
3710         goto out;
3711     }
3712 
3713     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3714 
3715     addr = addr_start;
3716     for (i = 0; i < nr_lmbs; i++) {
3717         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3718                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3719         g_assert(drc);
3720 
3721         spapr_drc_detach(drc);
3722         addr += SPAPR_MEMORY_BLOCK_SIZE;
3723     }
3724 
3725     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3726                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3727     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3728                                               nr_lmbs, spapr_drc_index(drc));
3729 out:
3730     error_propagate(errp, local_err);
3731 }
3732 
3733 /* Callback to be called during DRC release. */
3734 void spapr_core_release(DeviceState *dev)
3735 {
3736     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3737 
3738     /* Call the unplug handler chain. This can never fail. */
3739     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3740     object_unparent(OBJECT(dev));
3741 }
3742 
3743 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3744 {
3745     MachineState *ms = MACHINE(hotplug_dev);
3746     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3747     CPUCore *cc = CPU_CORE(dev);
3748     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3749 
3750     if (smc->pre_2_10_has_unused_icps) {
3751         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3752         int i;
3753 
3754         for (i = 0; i < cc->nr_threads; i++) {
3755             CPUState *cs = CPU(sc->threads[i]);
3756 
3757             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3758         }
3759     }
3760 
3761     assert(core_slot);
3762     core_slot->cpu = NULL;
3763     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
3764 }
3765 
3766 static
3767 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3768                                Error **errp)
3769 {
3770     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3771     int index;
3772     SpaprDrc *drc;
3773     CPUCore *cc = CPU_CORE(dev);
3774 
3775     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3776         error_setg(errp, "Unable to find CPU core with core-id: %d",
3777                    cc->core_id);
3778         return;
3779     }
3780     if (index == 0) {
3781         error_setg(errp, "Boot CPU core may not be unplugged");
3782         return;
3783     }
3784 
3785     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3786                           spapr_vcpu_id(spapr, cc->core_id));
3787     g_assert(drc);
3788 
3789     spapr_drc_detach(drc);
3790 
3791     spapr_hotplug_req_remove_by_index(drc);
3792 }
3793 
3794 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3795                            void *fdt, int *fdt_start_offset, Error **errp)
3796 {
3797     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3798     CPUState *cs = CPU(core->threads[0]);
3799     PowerPCCPU *cpu = POWERPC_CPU(cs);
3800     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3801     int id = spapr_get_vcpu_id(cpu);
3802     char *nodename;
3803     int offset;
3804 
3805     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3806     offset = fdt_add_subnode(fdt, 0, nodename);
3807     g_free(nodename);
3808 
3809     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3810 
3811     *fdt_start_offset = offset;
3812     return 0;
3813 }
3814 
3815 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3816                             Error **errp)
3817 {
3818     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3819     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3820     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3821     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3822     CPUCore *cc = CPU_CORE(dev);
3823     CPUState *cs;
3824     SpaprDrc *drc;
3825     Error *local_err = NULL;
3826     CPUArchId *core_slot;
3827     int index;
3828     bool hotplugged = spapr_drc_hotplugged(dev);
3829 
3830     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3831     if (!core_slot) {
3832         error_setg(errp, "Unable to find CPU core with core-id: %d",
3833                    cc->core_id);
3834         return;
3835     }
3836     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3837                           spapr_vcpu_id(spapr, cc->core_id));
3838 
3839     g_assert(drc || !mc->has_hotpluggable_cpus);
3840 
3841     if (drc) {
3842         spapr_drc_attach(drc, dev, &local_err);
3843         if (local_err) {
3844             error_propagate(errp, local_err);
3845             return;
3846         }
3847 
3848         if (hotplugged) {
3849             /*
3850              * Send hotplug notification interrupt to the guest only
3851              * in case of hotplugged CPUs.
3852              */
3853             spapr_hotplug_req_add_by_index(drc);
3854         } else {
3855             spapr_drc_reset(drc);
3856         }
3857     }
3858 
3859     core_slot->cpu = OBJECT(dev);
3860 
3861     if (smc->pre_2_10_has_unused_icps) {
3862         int i;
3863 
3864         for (i = 0; i < cc->nr_threads; i++) {
3865             cs = CPU(core->threads[i]);
3866             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3867         }
3868     }
3869 }
3870 
3871 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3872                                 Error **errp)
3873 {
3874     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3875     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3876     Error *local_err = NULL;
3877     CPUCore *cc = CPU_CORE(dev);
3878     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3879     const char *type = object_get_typename(OBJECT(dev));
3880     CPUArchId *core_slot;
3881     int index;
3882     unsigned int smp_threads = machine->smp.threads;
3883 
3884     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3885         error_setg(&local_err, "CPU hotplug not supported for this machine");
3886         goto out;
3887     }
3888 
3889     if (strcmp(base_core_type, type)) {
3890         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3891         goto out;
3892     }
3893 
3894     if (cc->core_id % smp_threads) {
3895         error_setg(&local_err, "invalid core id %d", cc->core_id);
3896         goto out;
3897     }
3898 
3899     /*
3900      * In general we should have homogeneous threads-per-core, but old
3901      * (pre hotplug support) machine types allow the last core to have
3902      * reduced threads as a compatibility hack for when we allowed
3903      * total vcpus not a multiple of threads-per-core.
3904      */
3905     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3906         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3907                    cc->nr_threads, smp_threads);
3908         goto out;
3909     }
3910 
3911     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3912     if (!core_slot) {
3913         error_setg(&local_err, "core id %d out of range", cc->core_id);
3914         goto out;
3915     }
3916 
3917     if (core_slot->cpu) {
3918         error_setg(&local_err, "core %d already populated", cc->core_id);
3919         goto out;
3920     }
3921 
3922     numa_cpu_pre_plug(core_slot, dev, &local_err);
3923 
3924 out:
3925     error_propagate(errp, local_err);
3926 }
3927 
3928 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3929                           void *fdt, int *fdt_start_offset, Error **errp)
3930 {
3931     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3932     int intc_phandle;
3933 
3934     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3935     if (intc_phandle <= 0) {
3936         return -1;
3937     }
3938 
3939     if (spapr_dt_phb(sphb, intc_phandle, fdt, spapr->irq->nr_msis,
3940                      fdt_start_offset)) {
3941         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3942         return -1;
3943     }
3944 
3945     /* generally SLOF creates these, for hotplug it's up to QEMU */
3946     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3947 
3948     return 0;
3949 }
3950 
3951 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3952                                Error **errp)
3953 {
3954     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3955     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3956     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3957     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3958 
3959     if (dev->hotplugged && !smc->dr_phb_enabled) {
3960         error_setg(errp, "PHB hotplug not supported for this machine");
3961         return;
3962     }
3963 
3964     if (sphb->index == (uint32_t)-1) {
3965         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3966         return;
3967     }
3968 
3969     /*
3970      * This will check that sphb->index doesn't exceed the maximum number of
3971      * PHBs for the current machine type.
3972      */
3973     smc->phb_placement(spapr, sphb->index,
3974                        &sphb->buid, &sphb->io_win_addr,
3975                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3976                        windows_supported, sphb->dma_liobn,
3977                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3978                        errp);
3979 }
3980 
3981 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3982                            Error **errp)
3983 {
3984     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3985     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3986     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3987     SpaprDrc *drc;
3988     bool hotplugged = spapr_drc_hotplugged(dev);
3989     Error *local_err = NULL;
3990 
3991     if (!smc->dr_phb_enabled) {
3992         return;
3993     }
3994 
3995     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3996     /* hotplug hooks should check it's enabled before getting this far */
3997     assert(drc);
3998 
3999     spapr_drc_attach(drc, DEVICE(dev), &local_err);
4000     if (local_err) {
4001         error_propagate(errp, local_err);
4002         return;
4003     }
4004 
4005     if (hotplugged) {
4006         spapr_hotplug_req_add_by_index(drc);
4007     } else {
4008         spapr_drc_reset(drc);
4009     }
4010 }
4011 
4012 void spapr_phb_release(DeviceState *dev)
4013 {
4014     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
4015 
4016     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
4017     object_unparent(OBJECT(dev));
4018 }
4019 
4020 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4021 {
4022     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4023 }
4024 
4025 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
4026                                      DeviceState *dev, Error **errp)
4027 {
4028     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
4029     SpaprDrc *drc;
4030 
4031     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
4032     assert(drc);
4033 
4034     if (!spapr_drc_unplug_requested(drc)) {
4035         spapr_drc_detach(drc);
4036         spapr_hotplug_req_remove_by_index(drc);
4037     }
4038 }
4039 
4040 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
4041                                  Error **errp)
4042 {
4043     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4044     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
4045 
4046     if (spapr->tpm_proxy != NULL) {
4047         error_setg(errp, "Only one TPM proxy can be specified for this machine");
4048         return;
4049     }
4050 
4051     spapr->tpm_proxy = tpm_proxy;
4052 }
4053 
4054 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4055 {
4056     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4057 
4058     object_property_set_bool(OBJECT(dev), false, "realized", NULL);
4059     object_unparent(OBJECT(dev));
4060     spapr->tpm_proxy = NULL;
4061 }
4062 
4063 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4064                                       DeviceState *dev, Error **errp)
4065 {
4066     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4067         spapr_memory_plug(hotplug_dev, dev, errp);
4068     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4069         spapr_core_plug(hotplug_dev, dev, errp);
4070     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4071         spapr_phb_plug(hotplug_dev, dev, errp);
4072     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4073         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4074     }
4075 }
4076 
4077 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4078                                         DeviceState *dev, Error **errp)
4079 {
4080     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4081         spapr_memory_unplug(hotplug_dev, dev);
4082     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4083         spapr_core_unplug(hotplug_dev, dev);
4084     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4085         spapr_phb_unplug(hotplug_dev, dev);
4086     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4087         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4088     }
4089 }
4090 
4091 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4092                                                 DeviceState *dev, Error **errp)
4093 {
4094     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4095     MachineClass *mc = MACHINE_GET_CLASS(sms);
4096     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4097 
4098     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4099         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4100             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4101         } else {
4102             /* NOTE: this means there is a window after guest reset, prior to
4103              * CAS negotiation, where unplug requests will fail due to the
4104              * capability not being detected yet. This is a bit different than
4105              * the case with PCI unplug, where the events will be queued and
4106              * eventually handled by the guest after boot
4107              */
4108             error_setg(errp, "Memory hot unplug not supported for this guest");
4109         }
4110     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4111         if (!mc->has_hotpluggable_cpus) {
4112             error_setg(errp, "CPU hot unplug not supported on this machine");
4113             return;
4114         }
4115         spapr_core_unplug_request(hotplug_dev, dev, errp);
4116     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4117         if (!smc->dr_phb_enabled) {
4118             error_setg(errp, "PHB hot unplug not supported on this machine");
4119             return;
4120         }
4121         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4122     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4123         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4124     }
4125 }
4126 
4127 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4128                                           DeviceState *dev, Error **errp)
4129 {
4130     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4131         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4132     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4133         spapr_core_pre_plug(hotplug_dev, dev, errp);
4134     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4135         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4136     }
4137 }
4138 
4139 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4140                                                  DeviceState *dev)
4141 {
4142     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4143         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4144         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4145         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4146         return HOTPLUG_HANDLER(machine);
4147     }
4148     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4149         PCIDevice *pcidev = PCI_DEVICE(dev);
4150         PCIBus *root = pci_device_root_bus(pcidev);
4151         SpaprPhbState *phb =
4152             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4153                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4154 
4155         if (phb) {
4156             return HOTPLUG_HANDLER(phb);
4157         }
4158     }
4159     return NULL;
4160 }
4161 
4162 static CpuInstanceProperties
4163 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4164 {
4165     CPUArchId *core_slot;
4166     MachineClass *mc = MACHINE_GET_CLASS(machine);
4167 
4168     /* make sure possible_cpu are intialized */
4169     mc->possible_cpu_arch_ids(machine);
4170     /* get CPU core slot containing thread that matches cpu_index */
4171     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4172     assert(core_slot);
4173     return core_slot->props;
4174 }
4175 
4176 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4177 {
4178     return idx / ms->smp.cores % nb_numa_nodes;
4179 }
4180 
4181 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4182 {
4183     int i;
4184     unsigned int smp_threads = machine->smp.threads;
4185     unsigned int smp_cpus = machine->smp.cpus;
4186     const char *core_type;
4187     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4188     MachineClass *mc = MACHINE_GET_CLASS(machine);
4189 
4190     if (!mc->has_hotpluggable_cpus) {
4191         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4192     }
4193     if (machine->possible_cpus) {
4194         assert(machine->possible_cpus->len == spapr_max_cores);
4195         return machine->possible_cpus;
4196     }
4197 
4198     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4199     if (!core_type) {
4200         error_report("Unable to find sPAPR CPU Core definition");
4201         exit(1);
4202     }
4203 
4204     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4205                              sizeof(CPUArchId) * spapr_max_cores);
4206     machine->possible_cpus->len = spapr_max_cores;
4207     for (i = 0; i < machine->possible_cpus->len; i++) {
4208         int core_id = i * smp_threads;
4209 
4210         machine->possible_cpus->cpus[i].type = core_type;
4211         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4212         machine->possible_cpus->cpus[i].arch_id = core_id;
4213         machine->possible_cpus->cpus[i].props.has_core_id = true;
4214         machine->possible_cpus->cpus[i].props.core_id = core_id;
4215     }
4216     return machine->possible_cpus;
4217 }
4218 
4219 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4220                                 uint64_t *buid, hwaddr *pio,
4221                                 hwaddr *mmio32, hwaddr *mmio64,
4222                                 unsigned n_dma, uint32_t *liobns,
4223                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4224 {
4225     /*
4226      * New-style PHB window placement.
4227      *
4228      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4229      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4230      * windows.
4231      *
4232      * Some guest kernels can't work with MMIO windows above 1<<46
4233      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4234      *
4235      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4236      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4237      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4238      * 1TiB 64-bit MMIO windows for each PHB.
4239      */
4240     const uint64_t base_buid = 0x800000020000000ULL;
4241     int i;
4242 
4243     /* Sanity check natural alignments */
4244     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4245     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4246     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4247     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4248     /* Sanity check bounds */
4249     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4250                       SPAPR_PCI_MEM32_WIN_SIZE);
4251     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4252                       SPAPR_PCI_MEM64_WIN_SIZE);
4253 
4254     if (index >= SPAPR_MAX_PHBS) {
4255         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4256                    SPAPR_MAX_PHBS - 1);
4257         return;
4258     }
4259 
4260     *buid = base_buid + index;
4261     for (i = 0; i < n_dma; ++i) {
4262         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4263     }
4264 
4265     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4266     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4267     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4268 
4269     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4270     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4271 }
4272 
4273 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4274 {
4275     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4276 
4277     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4278 }
4279 
4280 static void spapr_ics_resend(XICSFabric *dev)
4281 {
4282     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4283 
4284     ics_resend(spapr->ics);
4285 }
4286 
4287 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4288 {
4289     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4290 
4291     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4292 }
4293 
4294 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4295                                  Monitor *mon)
4296 {
4297     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4298 
4299     spapr->irq->print_info(spapr, mon);
4300 }
4301 
4302 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4303 {
4304     return cpu->vcpu_id;
4305 }
4306 
4307 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4308 {
4309     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4310     MachineState *ms = MACHINE(spapr);
4311     int vcpu_id;
4312 
4313     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4314 
4315     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4316         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4317         error_append_hint(errp, "Adjust the number of cpus to %d "
4318                           "or try to raise the number of threads per core\n",
4319                           vcpu_id * ms->smp.threads / spapr->vsmt);
4320         return;
4321     }
4322 
4323     cpu->vcpu_id = vcpu_id;
4324 }
4325 
4326 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4327 {
4328     CPUState *cs;
4329 
4330     CPU_FOREACH(cs) {
4331         PowerPCCPU *cpu = POWERPC_CPU(cs);
4332 
4333         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4334             return cpu;
4335         }
4336     }
4337 
4338     return NULL;
4339 }
4340 
4341 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4342 {
4343     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4344 
4345     /* These are only called by TCG, KVM maintains dispatch state */
4346 
4347     spapr_cpu->prod = false;
4348     if (spapr_cpu->vpa_addr) {
4349         CPUState *cs = CPU(cpu);
4350         uint32_t dispatch;
4351 
4352         dispatch = ldl_be_phys(cs->as,
4353                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4354         dispatch++;
4355         if ((dispatch & 1) != 0) {
4356             qemu_log_mask(LOG_GUEST_ERROR,
4357                           "VPA: incorrect dispatch counter value for "
4358                           "dispatched partition %u, correcting.\n", dispatch);
4359             dispatch++;
4360         }
4361         stl_be_phys(cs->as,
4362                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4363     }
4364 }
4365 
4366 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4367 {
4368     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4369 
4370     if (spapr_cpu->vpa_addr) {
4371         CPUState *cs = CPU(cpu);
4372         uint32_t dispatch;
4373 
4374         dispatch = ldl_be_phys(cs->as,
4375                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4376         dispatch++;
4377         if ((dispatch & 1) != 1) {
4378             qemu_log_mask(LOG_GUEST_ERROR,
4379                           "VPA: incorrect dispatch counter value for "
4380                           "preempted partition %u, correcting.\n", dispatch);
4381             dispatch++;
4382         }
4383         stl_be_phys(cs->as,
4384                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4385     }
4386 }
4387 
4388 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4389 {
4390     MachineClass *mc = MACHINE_CLASS(oc);
4391     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4392     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4393     NMIClass *nc = NMI_CLASS(oc);
4394     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4395     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4396     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4397     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4398 
4399     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4400     mc->ignore_boot_device_suffixes = true;
4401 
4402     /*
4403      * We set up the default / latest behaviour here.  The class_init
4404      * functions for the specific versioned machine types can override
4405      * these details for backwards compatibility
4406      */
4407     mc->init = spapr_machine_init;
4408     mc->reset = spapr_machine_reset;
4409     mc->block_default_type = IF_SCSI;
4410     mc->max_cpus = 1024;
4411     mc->no_parallel = 1;
4412     mc->default_boot_order = "";
4413     mc->default_ram_size = 512 * MiB;
4414     mc->default_display = "std";
4415     mc->kvm_type = spapr_kvm_type;
4416     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4417     mc->pci_allow_0_address = true;
4418     assert(!mc->get_hotplug_handler);
4419     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4420     hc->pre_plug = spapr_machine_device_pre_plug;
4421     hc->plug = spapr_machine_device_plug;
4422     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4423     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4424     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4425     hc->unplug_request = spapr_machine_device_unplug_request;
4426     hc->unplug = spapr_machine_device_unplug;
4427 
4428     smc->dr_lmb_enabled = true;
4429     smc->update_dt_enabled = true;
4430     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4431     mc->has_hotpluggable_cpus = true;
4432     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4433     fwc->get_dev_path = spapr_get_fw_dev_path;
4434     nc->nmi_monitor_handler = spapr_nmi;
4435     smc->phb_placement = spapr_phb_placement;
4436     vhc->hypercall = emulate_spapr_hypercall;
4437     vhc->hpt_mask = spapr_hpt_mask;
4438     vhc->map_hptes = spapr_map_hptes;
4439     vhc->unmap_hptes = spapr_unmap_hptes;
4440     vhc->hpte_set_c = spapr_hpte_set_c;
4441     vhc->hpte_set_r = spapr_hpte_set_r;
4442     vhc->get_pate = spapr_get_pate;
4443     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4444     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4445     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4446     xic->ics_get = spapr_ics_get;
4447     xic->ics_resend = spapr_ics_resend;
4448     xic->icp_get = spapr_icp_get;
4449     ispc->print_info = spapr_pic_print_info;
4450     /* Force NUMA node memory size to be a multiple of
4451      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4452      * in which LMBs are represented and hot-added
4453      */
4454     mc->numa_mem_align_shift = 28;
4455     mc->numa_mem_supported = true;
4456 
4457     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4458     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4459     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4460     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4461     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4462     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4463     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4464     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4465     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4466     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4467     spapr_caps_add_properties(smc, &error_abort);
4468     smc->irq = &spapr_irq_dual;
4469     smc->dr_phb_enabled = true;
4470 }
4471 
4472 static const TypeInfo spapr_machine_info = {
4473     .name          = TYPE_SPAPR_MACHINE,
4474     .parent        = TYPE_MACHINE,
4475     .abstract      = true,
4476     .instance_size = sizeof(SpaprMachineState),
4477     .instance_init = spapr_instance_init,
4478     .instance_finalize = spapr_machine_finalizefn,
4479     .class_size    = sizeof(SpaprMachineClass),
4480     .class_init    = spapr_machine_class_init,
4481     .interfaces = (InterfaceInfo[]) {
4482         { TYPE_FW_PATH_PROVIDER },
4483         { TYPE_NMI },
4484         { TYPE_HOTPLUG_HANDLER },
4485         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4486         { TYPE_XICS_FABRIC },
4487         { TYPE_INTERRUPT_STATS_PROVIDER },
4488         { }
4489     },
4490 };
4491 
4492 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4493     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4494                                                     void *data)      \
4495     {                                                                \
4496         MachineClass *mc = MACHINE_CLASS(oc);                        \
4497         spapr_machine_##suffix##_class_options(mc);                  \
4498         if (latest) {                                                \
4499             mc->alias = "pseries";                                   \
4500             mc->is_default = 1;                                      \
4501         }                                                            \
4502     }                                                                \
4503     static const TypeInfo spapr_machine_##suffix##_info = {          \
4504         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4505         .parent = TYPE_SPAPR_MACHINE,                                \
4506         .class_init = spapr_machine_##suffix##_class_init,           \
4507     };                                                               \
4508     static void spapr_machine_register_##suffix(void)                \
4509     {                                                                \
4510         type_register(&spapr_machine_##suffix##_info);               \
4511     }                                                                \
4512     type_init(spapr_machine_register_##suffix)
4513 
4514 /*
4515  * pseries-4.2
4516  */
4517 static void spapr_machine_4_2_class_options(MachineClass *mc)
4518 {
4519     /* Defaults for the latest behaviour inherited from the base class */
4520 }
4521 
4522 DEFINE_SPAPR_MACHINE(4_2, "4.2", true);
4523 
4524 /*
4525  * pseries-4.1
4526  */
4527 static void spapr_machine_4_1_class_options(MachineClass *mc)
4528 {
4529     static GlobalProperty compat[] = {
4530         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4531         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4532     };
4533 
4534     spapr_machine_4_2_class_options(mc);
4535     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4536     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4537 }
4538 
4539 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4540 
4541 /*
4542  * pseries-4.0
4543  */
4544 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4545                               uint64_t *buid, hwaddr *pio,
4546                               hwaddr *mmio32, hwaddr *mmio64,
4547                               unsigned n_dma, uint32_t *liobns,
4548                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4549 {
4550     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4551                         nv2gpa, nv2atsd, errp);
4552     *nv2gpa = 0;
4553     *nv2atsd = 0;
4554 }
4555 
4556 static void spapr_machine_4_0_class_options(MachineClass *mc)
4557 {
4558     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4559 
4560     spapr_machine_4_1_class_options(mc);
4561     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4562     smc->phb_placement = phb_placement_4_0;
4563     smc->irq = &spapr_irq_xics;
4564     smc->pre_4_1_migration = true;
4565 }
4566 
4567 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4568 
4569 /*
4570  * pseries-3.1
4571  */
4572 static void spapr_machine_3_1_class_options(MachineClass *mc)
4573 {
4574     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4575 
4576     spapr_machine_4_0_class_options(mc);
4577     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4578 
4579     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4580     smc->update_dt_enabled = false;
4581     smc->dr_phb_enabled = false;
4582     smc->broken_host_serial_model = true;
4583     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4584     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4585     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4586     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4587 }
4588 
4589 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4590 
4591 /*
4592  * pseries-3.0
4593  */
4594 
4595 static void spapr_machine_3_0_class_options(MachineClass *mc)
4596 {
4597     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4598 
4599     spapr_machine_3_1_class_options(mc);
4600     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4601 
4602     smc->legacy_irq_allocation = true;
4603     smc->irq = &spapr_irq_xics_legacy;
4604 }
4605 
4606 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4607 
4608 /*
4609  * pseries-2.12
4610  */
4611 static void spapr_machine_2_12_class_options(MachineClass *mc)
4612 {
4613     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4614     static GlobalProperty compat[] = {
4615         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4616         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4617     };
4618 
4619     spapr_machine_3_0_class_options(mc);
4620     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4621     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4622 
4623     /* We depend on kvm_enabled() to choose a default value for the
4624      * hpt-max-page-size capability. Of course we can't do it here
4625      * because this is too early and the HW accelerator isn't initialzed
4626      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4627      */
4628     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4629 }
4630 
4631 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4632 
4633 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4634 {
4635     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4636 
4637     spapr_machine_2_12_class_options(mc);
4638     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4639     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4640     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4641 }
4642 
4643 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4644 
4645 /*
4646  * pseries-2.11
4647  */
4648 
4649 static void spapr_machine_2_11_class_options(MachineClass *mc)
4650 {
4651     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4652 
4653     spapr_machine_2_12_class_options(mc);
4654     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4655     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4656 }
4657 
4658 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4659 
4660 /*
4661  * pseries-2.10
4662  */
4663 
4664 static void spapr_machine_2_10_class_options(MachineClass *mc)
4665 {
4666     spapr_machine_2_11_class_options(mc);
4667     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4668 }
4669 
4670 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4671 
4672 /*
4673  * pseries-2.9
4674  */
4675 
4676 static void spapr_machine_2_9_class_options(MachineClass *mc)
4677 {
4678     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4679     static GlobalProperty compat[] = {
4680         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4681     };
4682 
4683     spapr_machine_2_10_class_options(mc);
4684     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4685     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4686     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4687     smc->pre_2_10_has_unused_icps = true;
4688     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4689 }
4690 
4691 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4692 
4693 /*
4694  * pseries-2.8
4695  */
4696 
4697 static void spapr_machine_2_8_class_options(MachineClass *mc)
4698 {
4699     static GlobalProperty compat[] = {
4700         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4701     };
4702 
4703     spapr_machine_2_9_class_options(mc);
4704     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4705     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4706     mc->numa_mem_align_shift = 23;
4707 }
4708 
4709 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4710 
4711 /*
4712  * pseries-2.7
4713  */
4714 
4715 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4716                               uint64_t *buid, hwaddr *pio,
4717                               hwaddr *mmio32, hwaddr *mmio64,
4718                               unsigned n_dma, uint32_t *liobns,
4719                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4720 {
4721     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4722     const uint64_t base_buid = 0x800000020000000ULL;
4723     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4724     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4725     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4726     const uint32_t max_index = 255;
4727     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4728 
4729     uint64_t ram_top = MACHINE(spapr)->ram_size;
4730     hwaddr phb0_base, phb_base;
4731     int i;
4732 
4733     /* Do we have device memory? */
4734     if (MACHINE(spapr)->maxram_size > ram_top) {
4735         /* Can't just use maxram_size, because there may be an
4736          * alignment gap between normal and device memory regions
4737          */
4738         ram_top = MACHINE(spapr)->device_memory->base +
4739             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4740     }
4741 
4742     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4743 
4744     if (index > max_index) {
4745         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4746                    max_index);
4747         return;
4748     }
4749 
4750     *buid = base_buid + index;
4751     for (i = 0; i < n_dma; ++i) {
4752         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4753     }
4754 
4755     phb_base = phb0_base + index * phb_spacing;
4756     *pio = phb_base + pio_offset;
4757     *mmio32 = phb_base + mmio_offset;
4758     /*
4759      * We don't set the 64-bit MMIO window, relying on the PHB's
4760      * fallback behaviour of automatically splitting a large "32-bit"
4761      * window into contiguous 32-bit and 64-bit windows
4762      */
4763 
4764     *nv2gpa = 0;
4765     *nv2atsd = 0;
4766 }
4767 
4768 static void spapr_machine_2_7_class_options(MachineClass *mc)
4769 {
4770     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4771     static GlobalProperty compat[] = {
4772         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4773         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4774         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4775         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4776     };
4777 
4778     spapr_machine_2_8_class_options(mc);
4779     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4780     mc->default_machine_opts = "modern-hotplug-events=off";
4781     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4782     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4783     smc->phb_placement = phb_placement_2_7;
4784 }
4785 
4786 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4787 
4788 /*
4789  * pseries-2.6
4790  */
4791 
4792 static void spapr_machine_2_6_class_options(MachineClass *mc)
4793 {
4794     static GlobalProperty compat[] = {
4795         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4796     };
4797 
4798     spapr_machine_2_7_class_options(mc);
4799     mc->has_hotpluggable_cpus = false;
4800     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4801     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4802 }
4803 
4804 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4805 
4806 /*
4807  * pseries-2.5
4808  */
4809 
4810 static void spapr_machine_2_5_class_options(MachineClass *mc)
4811 {
4812     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4813     static GlobalProperty compat[] = {
4814         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4815     };
4816 
4817     spapr_machine_2_6_class_options(mc);
4818     smc->use_ohci_by_default = true;
4819     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4820     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4821 }
4822 
4823 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4824 
4825 /*
4826  * pseries-2.4
4827  */
4828 
4829 static void spapr_machine_2_4_class_options(MachineClass *mc)
4830 {
4831     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4832 
4833     spapr_machine_2_5_class_options(mc);
4834     smc->dr_lmb_enabled = false;
4835     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4836 }
4837 
4838 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4839 
4840 /*
4841  * pseries-2.3
4842  */
4843 
4844 static void spapr_machine_2_3_class_options(MachineClass *mc)
4845 {
4846     static GlobalProperty compat[] = {
4847         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4848     };
4849     spapr_machine_2_4_class_options(mc);
4850     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4851     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4852 }
4853 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4854 
4855 /*
4856  * pseries-2.2
4857  */
4858 
4859 static void spapr_machine_2_2_class_options(MachineClass *mc)
4860 {
4861     static GlobalProperty compat[] = {
4862         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4863     };
4864 
4865     spapr_machine_2_3_class_options(mc);
4866     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4867     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4868     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4869 }
4870 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4871 
4872 /*
4873  * pseries-2.1
4874  */
4875 
4876 static void spapr_machine_2_1_class_options(MachineClass *mc)
4877 {
4878     spapr_machine_2_2_class_options(mc);
4879     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4880 }
4881 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4882 
4883 static void spapr_machine_register_types(void)
4884 {
4885     type_register_static(&spapr_machine_info);
4886 }
4887 
4888 type_init(spapr_machine_register_types)
4889