1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "sysemu/qtest.h" 33 #include "hw/hw.h" 34 #include "qemu/log.h" 35 #include "hw/fw-path-provider.h" 36 #include "elf.h" 37 #include "net/net.h" 38 #include "sysemu/device_tree.h" 39 #include "sysemu/cpus.h" 40 #include "sysemu/hw_accel.h" 41 #include "kvm_ppc.h" 42 #include "migration/misc.h" 43 #include "migration/global_state.h" 44 #include "migration/register.h" 45 #include "mmu-hash64.h" 46 #include "mmu-book3s-v3.h" 47 #include "cpu-models.h" 48 #include "qom/cpu.h" 49 50 #include "hw/boards.h" 51 #include "hw/ppc/ppc.h" 52 #include "hw/loader.h" 53 54 #include "hw/ppc/fdt.h" 55 #include "hw/ppc/spapr.h" 56 #include "hw/ppc/spapr_vio.h" 57 #include "hw/pci-host/spapr.h" 58 #include "hw/pci/msi.h" 59 60 #include "hw/pci/pci.h" 61 #include "hw/scsi/scsi.h" 62 #include "hw/virtio/virtio-scsi.h" 63 #include "hw/virtio/vhost-scsi-common.h" 64 65 #include "exec/address-spaces.h" 66 #include "exec/ram_addr.h" 67 #include "hw/usb.h" 68 #include "qemu/config-file.h" 69 #include "qemu/error-report.h" 70 #include "trace.h" 71 #include "hw/nmi.h" 72 #include "hw/intc/intc.h" 73 74 #include "qemu/cutils.h" 75 #include "hw/ppc/spapr_cpu_core.h" 76 #include "hw/mem/memory-device.h" 77 78 #include <libfdt.h> 79 80 /* SLOF memory layout: 81 * 82 * SLOF raw image loaded at 0, copies its romfs right below the flat 83 * device-tree, then position SLOF itself 31M below that 84 * 85 * So we set FW_OVERHEAD to 40MB which should account for all of that 86 * and more 87 * 88 * We load our kernel at 4M, leaving space for SLOF initial image 89 */ 90 #define FDT_MAX_SIZE 0x100000 91 #define RTAS_MAX_SIZE 0x10000 92 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 93 #define FW_MAX_SIZE 0x400000 94 #define FW_FILE_NAME "slof.bin" 95 #define FW_OVERHEAD 0x2800000 96 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 97 98 #define MIN_RMA_SLOF 128UL 99 100 #define PHANDLE_INTC 0x00001111 101 102 /* These two functions implement the VCPU id numbering: one to compute them 103 * all and one to identify thread 0 of a VCORE. Any change to the first one 104 * is likely to have an impact on the second one, so let's keep them close. 105 */ 106 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) 107 { 108 assert(spapr->vsmt); 109 return 110 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 111 } 112 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, 113 PowerPCCPU *cpu) 114 { 115 assert(spapr->vsmt); 116 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 117 } 118 119 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 120 { 121 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 122 * and newer QEMUs don't even have them. In both cases, we don't want 123 * to send anything on the wire. 124 */ 125 return false; 126 } 127 128 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 129 .name = "icp/server", 130 .version_id = 1, 131 .minimum_version_id = 1, 132 .needed = pre_2_10_vmstate_dummy_icp_needed, 133 .fields = (VMStateField[]) { 134 VMSTATE_UNUSED(4), /* uint32_t xirr */ 135 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 136 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 137 VMSTATE_END_OF_LIST() 138 }, 139 }; 140 141 static void pre_2_10_vmstate_register_dummy_icp(int i) 142 { 143 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 144 (void *)(uintptr_t) i); 145 } 146 147 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 148 { 149 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 150 (void *)(uintptr_t) i); 151 } 152 153 int spapr_max_server_number(SpaprMachineState *spapr) 154 { 155 assert(spapr->vsmt); 156 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 157 } 158 159 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 160 int smt_threads) 161 { 162 int i, ret = 0; 163 uint32_t servers_prop[smt_threads]; 164 uint32_t gservers_prop[smt_threads * 2]; 165 int index = spapr_get_vcpu_id(cpu); 166 167 if (cpu->compat_pvr) { 168 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 169 if (ret < 0) { 170 return ret; 171 } 172 } 173 174 /* Build interrupt servers and gservers properties */ 175 for (i = 0; i < smt_threads; i++) { 176 servers_prop[i] = cpu_to_be32(index + i); 177 /* Hack, direct the group queues back to cpu 0 */ 178 gservers_prop[i*2] = cpu_to_be32(index + i); 179 gservers_prop[i*2 + 1] = 0; 180 } 181 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 182 servers_prop, sizeof(servers_prop)); 183 if (ret < 0) { 184 return ret; 185 } 186 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 187 gservers_prop, sizeof(gservers_prop)); 188 189 return ret; 190 } 191 192 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 193 { 194 int index = spapr_get_vcpu_id(cpu); 195 uint32_t associativity[] = {cpu_to_be32(0x5), 196 cpu_to_be32(0x0), 197 cpu_to_be32(0x0), 198 cpu_to_be32(0x0), 199 cpu_to_be32(cpu->node_id), 200 cpu_to_be32(index)}; 201 202 /* Advertise NUMA via ibm,associativity */ 203 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 204 sizeof(associativity)); 205 } 206 207 /* Populate the "ibm,pa-features" property */ 208 static void spapr_populate_pa_features(SpaprMachineState *spapr, 209 PowerPCCPU *cpu, 210 void *fdt, int offset, 211 bool legacy_guest) 212 { 213 uint8_t pa_features_206[] = { 6, 0, 214 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 215 uint8_t pa_features_207[] = { 24, 0, 216 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 217 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 218 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 219 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 220 uint8_t pa_features_300[] = { 66, 0, 221 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 222 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 223 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 224 /* 6: DS207 */ 225 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 226 /* 16: Vector */ 227 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 228 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 229 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 230 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 231 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 232 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 233 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 234 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 235 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 236 /* 42: PM, 44: PC RA, 46: SC vec'd */ 237 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 238 /* 48: SIMD, 50: QP BFP, 52: String */ 239 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 240 /* 54: DecFP, 56: DecI, 58: SHA */ 241 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 242 /* 60: NM atomic, 62: RNG */ 243 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 244 }; 245 uint8_t *pa_features = NULL; 246 size_t pa_size; 247 248 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 249 pa_features = pa_features_206; 250 pa_size = sizeof(pa_features_206); 251 } 252 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 253 pa_features = pa_features_207; 254 pa_size = sizeof(pa_features_207); 255 } 256 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 257 pa_features = pa_features_300; 258 pa_size = sizeof(pa_features_300); 259 } 260 if (!pa_features) { 261 return; 262 } 263 264 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 265 /* 266 * Note: we keep CI large pages off by default because a 64K capable 267 * guest provisioned with large pages might otherwise try to map a qemu 268 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 269 * even if that qemu runs on a 4k host. 270 * We dd this bit back here if we are confident this is not an issue 271 */ 272 pa_features[3] |= 0x20; 273 } 274 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 275 pa_features[24] |= 0x80; /* Transactional memory support */ 276 } 277 if (legacy_guest && pa_size > 40) { 278 /* Workaround for broken kernels that attempt (guest) radix 279 * mode when they can't handle it, if they see the radix bit set 280 * in pa-features. So hide it from them. */ 281 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 282 } 283 284 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 285 } 286 287 static int spapr_fixup_cpu_dt(void *fdt, SpaprMachineState *spapr) 288 { 289 int ret = 0, offset, cpus_offset; 290 CPUState *cs; 291 char cpu_model[32]; 292 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 293 294 CPU_FOREACH(cs) { 295 PowerPCCPU *cpu = POWERPC_CPU(cs); 296 DeviceClass *dc = DEVICE_GET_CLASS(cs); 297 int index = spapr_get_vcpu_id(cpu); 298 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 299 300 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 301 continue; 302 } 303 304 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 305 306 cpus_offset = fdt_path_offset(fdt, "/cpus"); 307 if (cpus_offset < 0) { 308 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 309 if (cpus_offset < 0) { 310 return cpus_offset; 311 } 312 } 313 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 314 if (offset < 0) { 315 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 316 if (offset < 0) { 317 return offset; 318 } 319 } 320 321 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 322 pft_size_prop, sizeof(pft_size_prop)); 323 if (ret < 0) { 324 return ret; 325 } 326 327 if (nb_numa_nodes > 1) { 328 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 329 if (ret < 0) { 330 return ret; 331 } 332 } 333 334 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 335 if (ret < 0) { 336 return ret; 337 } 338 339 spapr_populate_pa_features(spapr, cpu, fdt, offset, 340 spapr->cas_legacy_guest_workaround); 341 } 342 return ret; 343 } 344 345 static hwaddr spapr_node0_size(MachineState *machine) 346 { 347 if (nb_numa_nodes) { 348 int i; 349 for (i = 0; i < nb_numa_nodes; ++i) { 350 if (numa_info[i].node_mem) { 351 return MIN(pow2floor(numa_info[i].node_mem), 352 machine->ram_size); 353 } 354 } 355 } 356 return machine->ram_size; 357 } 358 359 static void add_str(GString *s, const gchar *s1) 360 { 361 g_string_append_len(s, s1, strlen(s1) + 1); 362 } 363 364 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 365 hwaddr size) 366 { 367 uint32_t associativity[] = { 368 cpu_to_be32(0x4), /* length */ 369 cpu_to_be32(0x0), cpu_to_be32(0x0), 370 cpu_to_be32(0x0), cpu_to_be32(nodeid) 371 }; 372 char mem_name[32]; 373 uint64_t mem_reg_property[2]; 374 int off; 375 376 mem_reg_property[0] = cpu_to_be64(start); 377 mem_reg_property[1] = cpu_to_be64(size); 378 379 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 380 off = fdt_add_subnode(fdt, 0, mem_name); 381 _FDT(off); 382 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 383 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 384 sizeof(mem_reg_property)))); 385 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 386 sizeof(associativity)))); 387 return off; 388 } 389 390 static int spapr_populate_memory(SpaprMachineState *spapr, void *fdt) 391 { 392 MachineState *machine = MACHINE(spapr); 393 hwaddr mem_start, node_size; 394 int i, nb_nodes = nb_numa_nodes; 395 NodeInfo *nodes = numa_info; 396 NodeInfo ramnode; 397 398 /* No NUMA nodes, assume there is just one node with whole RAM */ 399 if (!nb_numa_nodes) { 400 nb_nodes = 1; 401 ramnode.node_mem = machine->ram_size; 402 nodes = &ramnode; 403 } 404 405 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 406 if (!nodes[i].node_mem) { 407 continue; 408 } 409 if (mem_start >= machine->ram_size) { 410 node_size = 0; 411 } else { 412 node_size = nodes[i].node_mem; 413 if (node_size > machine->ram_size - mem_start) { 414 node_size = machine->ram_size - mem_start; 415 } 416 } 417 if (!mem_start) { 418 /* spapr_machine_init() checks for rma_size <= node0_size 419 * already */ 420 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 421 mem_start += spapr->rma_size; 422 node_size -= spapr->rma_size; 423 } 424 for ( ; node_size; ) { 425 hwaddr sizetmp = pow2floor(node_size); 426 427 /* mem_start != 0 here */ 428 if (ctzl(mem_start) < ctzl(sizetmp)) { 429 sizetmp = 1ULL << ctzl(mem_start); 430 } 431 432 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 433 node_size -= sizetmp; 434 mem_start += sizetmp; 435 } 436 } 437 438 return 0; 439 } 440 441 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 442 SpaprMachineState *spapr) 443 { 444 PowerPCCPU *cpu = POWERPC_CPU(cs); 445 CPUPPCState *env = &cpu->env; 446 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 447 int index = spapr_get_vcpu_id(cpu); 448 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 449 0xffffffff, 0xffffffff}; 450 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 451 : SPAPR_TIMEBASE_FREQ; 452 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 453 uint32_t page_sizes_prop[64]; 454 size_t page_sizes_prop_size; 455 uint32_t vcpus_per_socket = smp_threads * smp_cores; 456 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 457 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 458 SpaprDrc *drc; 459 int drc_index; 460 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 461 int i; 462 463 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 464 if (drc) { 465 drc_index = spapr_drc_index(drc); 466 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 467 } 468 469 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 470 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 471 472 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 473 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 474 env->dcache_line_size))); 475 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 476 env->dcache_line_size))); 477 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 478 env->icache_line_size))); 479 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 480 env->icache_line_size))); 481 482 if (pcc->l1_dcache_size) { 483 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 484 pcc->l1_dcache_size))); 485 } else { 486 warn_report("Unknown L1 dcache size for cpu"); 487 } 488 if (pcc->l1_icache_size) { 489 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 490 pcc->l1_icache_size))); 491 } else { 492 warn_report("Unknown L1 icache size for cpu"); 493 } 494 495 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 496 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 497 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 498 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 499 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 500 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 501 502 if (env->spr_cb[SPR_PURR].oea_read) { 503 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 504 } 505 506 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 507 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 508 segs, sizeof(segs)))); 509 } 510 511 /* Advertise VSX (vector extensions) if available 512 * 1 == VMX / Altivec available 513 * 2 == VSX available 514 * 515 * Only CPUs for which we create core types in spapr_cpu_core.c 516 * are possible, and all of those have VMX */ 517 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 518 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 519 } else { 520 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 521 } 522 523 /* Advertise DFP (Decimal Floating Point) if available 524 * 0 / no property == no DFP 525 * 1 == DFP available */ 526 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 527 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 528 } 529 530 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 531 sizeof(page_sizes_prop)); 532 if (page_sizes_prop_size) { 533 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 534 page_sizes_prop, page_sizes_prop_size))); 535 } 536 537 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 538 539 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 540 cs->cpu_index / vcpus_per_socket))); 541 542 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 543 pft_size_prop, sizeof(pft_size_prop)))); 544 545 if (nb_numa_nodes > 1) { 546 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 547 } 548 549 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 550 551 if (pcc->radix_page_info) { 552 for (i = 0; i < pcc->radix_page_info->count; i++) { 553 radix_AP_encodings[i] = 554 cpu_to_be32(pcc->radix_page_info->entries[i]); 555 } 556 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 557 radix_AP_encodings, 558 pcc->radix_page_info->count * 559 sizeof(radix_AP_encodings[0])))); 560 } 561 562 /* 563 * We set this property to let the guest know that it can use the large 564 * decrementer and its width in bits. 565 */ 566 if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) 567 _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", 568 pcc->lrg_decr_bits))); 569 } 570 571 static void spapr_populate_cpus_dt_node(void *fdt, SpaprMachineState *spapr) 572 { 573 CPUState **rev; 574 CPUState *cs; 575 int n_cpus; 576 int cpus_offset; 577 char *nodename; 578 int i; 579 580 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 581 _FDT(cpus_offset); 582 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 583 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 584 585 /* 586 * We walk the CPUs in reverse order to ensure that CPU DT nodes 587 * created by fdt_add_subnode() end up in the right order in FDT 588 * for the guest kernel the enumerate the CPUs correctly. 589 * 590 * The CPU list cannot be traversed in reverse order, so we need 591 * to do extra work. 592 */ 593 n_cpus = 0; 594 rev = NULL; 595 CPU_FOREACH(cs) { 596 rev = g_renew(CPUState *, rev, n_cpus + 1); 597 rev[n_cpus++] = cs; 598 } 599 600 for (i = n_cpus - 1; i >= 0; i--) { 601 CPUState *cs = rev[i]; 602 PowerPCCPU *cpu = POWERPC_CPU(cs); 603 int index = spapr_get_vcpu_id(cpu); 604 DeviceClass *dc = DEVICE_GET_CLASS(cs); 605 int offset; 606 607 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 608 continue; 609 } 610 611 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 612 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 613 g_free(nodename); 614 _FDT(offset); 615 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 616 } 617 618 g_free(rev); 619 } 620 621 static int spapr_rng_populate_dt(void *fdt) 622 { 623 int node; 624 int ret; 625 626 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 627 if (node <= 0) { 628 return -1; 629 } 630 ret = fdt_setprop_string(fdt, node, "device_type", 631 "ibm,platform-facilities"); 632 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 633 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 634 635 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 636 if (node <= 0) { 637 return -1; 638 } 639 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 640 641 return ret ? -1 : 0; 642 } 643 644 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 645 { 646 MemoryDeviceInfoList *info; 647 648 for (info = list; info; info = info->next) { 649 MemoryDeviceInfo *value = info->value; 650 651 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 652 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 653 654 if (addr >= pcdimm_info->addr && 655 addr < (pcdimm_info->addr + pcdimm_info->size)) { 656 return pcdimm_info->node; 657 } 658 } 659 } 660 661 return -1; 662 } 663 664 struct sPAPRDrconfCellV2 { 665 uint32_t seq_lmbs; 666 uint64_t base_addr; 667 uint32_t drc_index; 668 uint32_t aa_index; 669 uint32_t flags; 670 } QEMU_PACKED; 671 672 typedef struct DrconfCellQueue { 673 struct sPAPRDrconfCellV2 cell; 674 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 675 } DrconfCellQueue; 676 677 static DrconfCellQueue * 678 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 679 uint32_t drc_index, uint32_t aa_index, 680 uint32_t flags) 681 { 682 DrconfCellQueue *elem; 683 684 elem = g_malloc0(sizeof(*elem)); 685 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 686 elem->cell.base_addr = cpu_to_be64(base_addr); 687 elem->cell.drc_index = cpu_to_be32(drc_index); 688 elem->cell.aa_index = cpu_to_be32(aa_index); 689 elem->cell.flags = cpu_to_be32(flags); 690 691 return elem; 692 } 693 694 /* ibm,dynamic-memory-v2 */ 695 static int spapr_populate_drmem_v2(SpaprMachineState *spapr, void *fdt, 696 int offset, MemoryDeviceInfoList *dimms) 697 { 698 MachineState *machine = MACHINE(spapr); 699 uint8_t *int_buf, *cur_index; 700 int ret; 701 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 702 uint64_t addr, cur_addr, size; 703 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 704 uint64_t mem_end = machine->device_memory->base + 705 memory_region_size(&machine->device_memory->mr); 706 uint32_t node, buf_len, nr_entries = 0; 707 SpaprDrc *drc; 708 DrconfCellQueue *elem, *next; 709 MemoryDeviceInfoList *info; 710 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 711 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 712 713 /* Entry to cover RAM and the gap area */ 714 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 715 SPAPR_LMB_FLAGS_RESERVED | 716 SPAPR_LMB_FLAGS_DRC_INVALID); 717 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 718 nr_entries++; 719 720 cur_addr = machine->device_memory->base; 721 for (info = dimms; info; info = info->next) { 722 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 723 724 addr = di->addr; 725 size = di->size; 726 node = di->node; 727 728 /* Entry for hot-pluggable area */ 729 if (cur_addr < addr) { 730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 731 g_assert(drc); 732 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 733 cur_addr, spapr_drc_index(drc), -1, 0); 734 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 735 nr_entries++; 736 } 737 738 /* Entry for DIMM */ 739 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 740 g_assert(drc); 741 elem = spapr_get_drconf_cell(size / lmb_size, addr, 742 spapr_drc_index(drc), node, 743 SPAPR_LMB_FLAGS_ASSIGNED); 744 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 745 nr_entries++; 746 cur_addr = addr + size; 747 } 748 749 /* Entry for remaining hotpluggable area */ 750 if (cur_addr < mem_end) { 751 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 752 g_assert(drc); 753 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 754 cur_addr, spapr_drc_index(drc), -1, 0); 755 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 756 nr_entries++; 757 } 758 759 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 760 int_buf = cur_index = g_malloc0(buf_len); 761 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 762 cur_index += sizeof(nr_entries); 763 764 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 765 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 766 cur_index += sizeof(elem->cell); 767 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 768 g_free(elem); 769 } 770 771 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 772 g_free(int_buf); 773 if (ret < 0) { 774 return -1; 775 } 776 return 0; 777 } 778 779 /* ibm,dynamic-memory */ 780 static int spapr_populate_drmem_v1(SpaprMachineState *spapr, void *fdt, 781 int offset, MemoryDeviceInfoList *dimms) 782 { 783 MachineState *machine = MACHINE(spapr); 784 int i, ret; 785 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 786 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 787 uint32_t nr_lmbs = (machine->device_memory->base + 788 memory_region_size(&machine->device_memory->mr)) / 789 lmb_size; 790 uint32_t *int_buf, *cur_index, buf_len; 791 792 /* 793 * Allocate enough buffer size to fit in ibm,dynamic-memory 794 */ 795 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 796 cur_index = int_buf = g_malloc0(buf_len); 797 int_buf[0] = cpu_to_be32(nr_lmbs); 798 cur_index++; 799 for (i = 0; i < nr_lmbs; i++) { 800 uint64_t addr = i * lmb_size; 801 uint32_t *dynamic_memory = cur_index; 802 803 if (i >= device_lmb_start) { 804 SpaprDrc *drc; 805 806 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 807 g_assert(drc); 808 809 dynamic_memory[0] = cpu_to_be32(addr >> 32); 810 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 811 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 812 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 813 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 814 if (memory_region_present(get_system_memory(), addr)) { 815 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 816 } else { 817 dynamic_memory[5] = cpu_to_be32(0); 818 } 819 } else { 820 /* 821 * LMB information for RMA, boot time RAM and gap b/n RAM and 822 * device memory region -- all these are marked as reserved 823 * and as having no valid DRC. 824 */ 825 dynamic_memory[0] = cpu_to_be32(addr >> 32); 826 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 827 dynamic_memory[2] = cpu_to_be32(0); 828 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 829 dynamic_memory[4] = cpu_to_be32(-1); 830 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 831 SPAPR_LMB_FLAGS_DRC_INVALID); 832 } 833 834 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 835 } 836 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 837 g_free(int_buf); 838 if (ret < 0) { 839 return -1; 840 } 841 return 0; 842 } 843 844 /* 845 * Adds ibm,dynamic-reconfiguration-memory node. 846 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 847 * of this device tree node. 848 */ 849 static int spapr_populate_drconf_memory(SpaprMachineState *spapr, void *fdt) 850 { 851 MachineState *machine = MACHINE(spapr); 852 int ret, i, offset; 853 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 854 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 855 uint32_t *int_buf, *cur_index, buf_len; 856 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 857 MemoryDeviceInfoList *dimms = NULL; 858 859 /* 860 * Don't create the node if there is no device memory 861 */ 862 if (machine->ram_size == machine->maxram_size) { 863 return 0; 864 } 865 866 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 867 868 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 869 sizeof(prop_lmb_size)); 870 if (ret < 0) { 871 return ret; 872 } 873 874 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 875 if (ret < 0) { 876 return ret; 877 } 878 879 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 880 if (ret < 0) { 881 return ret; 882 } 883 884 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 885 dimms = qmp_memory_device_list(); 886 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 887 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 888 } else { 889 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 890 } 891 qapi_free_MemoryDeviceInfoList(dimms); 892 893 if (ret < 0) { 894 return ret; 895 } 896 897 /* ibm,associativity-lookup-arrays */ 898 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 899 cur_index = int_buf = g_malloc0(buf_len); 900 int_buf[0] = cpu_to_be32(nr_nodes); 901 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 902 cur_index += 2; 903 for (i = 0; i < nr_nodes; i++) { 904 uint32_t associativity[] = { 905 cpu_to_be32(0x0), 906 cpu_to_be32(0x0), 907 cpu_to_be32(0x0), 908 cpu_to_be32(i) 909 }; 910 memcpy(cur_index, associativity, sizeof(associativity)); 911 cur_index += 4; 912 } 913 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 914 (cur_index - int_buf) * sizeof(uint32_t)); 915 g_free(int_buf); 916 917 return ret; 918 } 919 920 static int spapr_dt_cas_updates(SpaprMachineState *spapr, void *fdt, 921 SpaprOptionVector *ov5_updates) 922 { 923 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 924 int ret = 0, offset; 925 926 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 927 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 928 g_assert(smc->dr_lmb_enabled); 929 ret = spapr_populate_drconf_memory(spapr, fdt); 930 if (ret) { 931 goto out; 932 } 933 } 934 935 offset = fdt_path_offset(fdt, "/chosen"); 936 if (offset < 0) { 937 offset = fdt_add_subnode(fdt, 0, "chosen"); 938 if (offset < 0) { 939 return offset; 940 } 941 } 942 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 943 "ibm,architecture-vec-5"); 944 945 out: 946 return ret; 947 } 948 949 static bool spapr_hotplugged_dev_before_cas(void) 950 { 951 Object *drc_container, *obj; 952 ObjectProperty *prop; 953 ObjectPropertyIterator iter; 954 955 drc_container = container_get(object_get_root(), "/dr-connector"); 956 object_property_iter_init(&iter, drc_container); 957 while ((prop = object_property_iter_next(&iter))) { 958 if (!strstart(prop->type, "link<", NULL)) { 959 continue; 960 } 961 obj = object_property_get_link(drc_container, prop->name, NULL); 962 if (spapr_drc_needed(obj)) { 963 return true; 964 } 965 } 966 return false; 967 } 968 969 int spapr_h_cas_compose_response(SpaprMachineState *spapr, 970 target_ulong addr, target_ulong size, 971 SpaprOptionVector *ov5_updates) 972 { 973 void *fdt, *fdt_skel; 974 SpaprDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 975 976 if (spapr_hotplugged_dev_before_cas()) { 977 return 1; 978 } 979 980 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 981 error_report("SLOF provided an unexpected CAS buffer size " 982 TARGET_FMT_lu " (min: %zu, max: %u)", 983 size, sizeof(hdr), FW_MAX_SIZE); 984 exit(EXIT_FAILURE); 985 } 986 987 size -= sizeof(hdr); 988 989 /* Create skeleton */ 990 fdt_skel = g_malloc0(size); 991 _FDT((fdt_create(fdt_skel, size))); 992 _FDT((fdt_finish_reservemap(fdt_skel))); 993 _FDT((fdt_begin_node(fdt_skel, ""))); 994 _FDT((fdt_end_node(fdt_skel))); 995 _FDT((fdt_finish(fdt_skel))); 996 fdt = g_malloc0(size); 997 _FDT((fdt_open_into(fdt_skel, fdt, size))); 998 g_free(fdt_skel); 999 1000 /* Fixup cpu nodes */ 1001 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 1002 1003 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 1004 return -1; 1005 } 1006 1007 /* Pack resulting tree */ 1008 _FDT((fdt_pack(fdt))); 1009 1010 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1011 trace_spapr_cas_failed(size); 1012 return -1; 1013 } 1014 1015 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1016 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1017 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1018 g_free(fdt); 1019 1020 return 0; 1021 } 1022 1023 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) 1024 { 1025 int rtas; 1026 GString *hypertas = g_string_sized_new(256); 1027 GString *qemu_hypertas = g_string_sized_new(256); 1028 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1029 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1030 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1031 uint32_t lrdr_capacity[] = { 1032 cpu_to_be32(max_device_addr >> 32), 1033 cpu_to_be32(max_device_addr & 0xffffffff), 1034 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1035 cpu_to_be32(max_cpus / smp_threads), 1036 }; 1037 uint32_t maxdomains[] = { 1038 cpu_to_be32(4), 1039 cpu_to_be32(0), 1040 cpu_to_be32(0), 1041 cpu_to_be32(0), 1042 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1), 1043 }; 1044 1045 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1046 1047 /* hypertas */ 1048 add_str(hypertas, "hcall-pft"); 1049 add_str(hypertas, "hcall-term"); 1050 add_str(hypertas, "hcall-dabr"); 1051 add_str(hypertas, "hcall-interrupt"); 1052 add_str(hypertas, "hcall-tce"); 1053 add_str(hypertas, "hcall-vio"); 1054 add_str(hypertas, "hcall-splpar"); 1055 add_str(hypertas, "hcall-bulk"); 1056 add_str(hypertas, "hcall-set-mode"); 1057 add_str(hypertas, "hcall-sprg0"); 1058 add_str(hypertas, "hcall-copy"); 1059 add_str(hypertas, "hcall-debug"); 1060 add_str(hypertas, "hcall-vphn"); 1061 add_str(qemu_hypertas, "hcall-memop1"); 1062 1063 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1064 add_str(hypertas, "hcall-multi-tce"); 1065 } 1066 1067 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1068 add_str(hypertas, "hcall-hpt-resize"); 1069 } 1070 1071 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1072 hypertas->str, hypertas->len)); 1073 g_string_free(hypertas, TRUE); 1074 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1075 qemu_hypertas->str, qemu_hypertas->len)); 1076 g_string_free(qemu_hypertas, TRUE); 1077 1078 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1079 refpoints, sizeof(refpoints))); 1080 1081 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1082 maxdomains, sizeof(maxdomains))); 1083 1084 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1085 RTAS_ERROR_LOG_MAX)); 1086 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1087 RTAS_EVENT_SCAN_RATE)); 1088 1089 g_assert(msi_nonbroken); 1090 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1091 1092 /* 1093 * According to PAPR, rtas ibm,os-term does not guarantee a return 1094 * back to the guest cpu. 1095 * 1096 * While an additional ibm,extended-os-term property indicates 1097 * that rtas call return will always occur. Set this property. 1098 */ 1099 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1100 1101 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1102 lrdr_capacity, sizeof(lrdr_capacity))); 1103 1104 spapr_dt_rtas_tokens(fdt, rtas); 1105 } 1106 1107 /* 1108 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1109 * and the XIVE features that the guest may request and thus the valid 1110 * values for bytes 23..26 of option vector 5: 1111 */ 1112 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, 1113 int chosen) 1114 { 1115 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1116 1117 char val[2 * 4] = { 1118 23, spapr->irq->ov5, /* Xive mode. */ 1119 24, 0x00, /* Hash/Radix, filled in below. */ 1120 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1121 26, 0x40, /* Radix options: GTSE == yes. */ 1122 }; 1123 1124 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1125 first_ppc_cpu->compat_pvr)) { 1126 /* 1127 * If we're in a pre POWER9 compat mode then the guest should 1128 * do hash and use the legacy interrupt mode 1129 */ 1130 val[1] = 0x00; /* XICS */ 1131 val[3] = 0x00; /* Hash */ 1132 } else if (kvm_enabled()) { 1133 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1134 val[3] = 0x80; /* OV5_MMU_BOTH */ 1135 } else if (kvmppc_has_cap_mmu_radix()) { 1136 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1137 } else { 1138 val[3] = 0x00; /* Hash */ 1139 } 1140 } else { 1141 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1142 val[3] = 0xC0; 1143 } 1144 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1145 val, sizeof(val))); 1146 } 1147 1148 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt) 1149 { 1150 MachineState *machine = MACHINE(spapr); 1151 int chosen; 1152 const char *boot_device = machine->boot_order; 1153 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1154 size_t cb = 0; 1155 char *bootlist = get_boot_devices_list(&cb); 1156 1157 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1158 1159 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1160 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1161 spapr->initrd_base)); 1162 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1163 spapr->initrd_base + spapr->initrd_size)); 1164 1165 if (spapr->kernel_size) { 1166 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1167 cpu_to_be64(spapr->kernel_size) }; 1168 1169 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1170 &kprop, sizeof(kprop))); 1171 if (spapr->kernel_le) { 1172 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1173 } 1174 } 1175 if (boot_menu) { 1176 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1177 } 1178 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1179 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1180 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1181 1182 if (cb && bootlist) { 1183 int i; 1184 1185 for (i = 0; i < cb; i++) { 1186 if (bootlist[i] == '\n') { 1187 bootlist[i] = ' '; 1188 } 1189 } 1190 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1191 } 1192 1193 if (boot_device && strlen(boot_device)) { 1194 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1195 } 1196 1197 if (!spapr->has_graphics && stdout_path) { 1198 /* 1199 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1200 * kernel. New platforms should only use the "stdout-path" property. Set 1201 * the new property and continue using older property to remain 1202 * compatible with the existing firmware. 1203 */ 1204 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1205 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1206 } 1207 1208 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1209 1210 g_free(stdout_path); 1211 g_free(bootlist); 1212 } 1213 1214 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) 1215 { 1216 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1217 * KVM to work under pHyp with some guest co-operation */ 1218 int hypervisor; 1219 uint8_t hypercall[16]; 1220 1221 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1222 /* indicate KVM hypercall interface */ 1223 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1224 if (kvmppc_has_cap_fixup_hcalls()) { 1225 /* 1226 * Older KVM versions with older guest kernels were broken 1227 * with the magic page, don't allow the guest to map it. 1228 */ 1229 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1230 sizeof(hypercall))) { 1231 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1232 hypercall, sizeof(hypercall))); 1233 } 1234 } 1235 } 1236 1237 static void *spapr_build_fdt(SpaprMachineState *spapr) 1238 { 1239 MachineState *machine = MACHINE(spapr); 1240 MachineClass *mc = MACHINE_GET_CLASS(machine); 1241 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1242 int ret; 1243 void *fdt; 1244 SpaprPhbState *phb; 1245 char *buf; 1246 1247 fdt = g_malloc0(FDT_MAX_SIZE); 1248 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1249 1250 /* Root node */ 1251 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1252 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1253 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1254 1255 /* Guest UUID & Name*/ 1256 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1257 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1258 if (qemu_uuid_set) { 1259 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1260 } 1261 g_free(buf); 1262 1263 if (qemu_get_vm_name()) { 1264 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1265 qemu_get_vm_name())); 1266 } 1267 1268 /* Host Model & Serial Number */ 1269 if (spapr->host_model) { 1270 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1271 } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { 1272 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1273 g_free(buf); 1274 } 1275 1276 if (spapr->host_serial) { 1277 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1278 } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { 1279 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1280 g_free(buf); 1281 } 1282 1283 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1284 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1285 1286 /* /interrupt controller */ 1287 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1288 PHANDLE_INTC); 1289 1290 ret = spapr_populate_memory(spapr, fdt); 1291 if (ret < 0) { 1292 error_report("couldn't setup memory nodes in fdt"); 1293 exit(1); 1294 } 1295 1296 /* /vdevice */ 1297 spapr_dt_vdevice(spapr->vio_bus, fdt); 1298 1299 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1300 ret = spapr_rng_populate_dt(fdt); 1301 if (ret < 0) { 1302 error_report("could not set up rng device in the fdt"); 1303 exit(1); 1304 } 1305 } 1306 1307 QLIST_FOREACH(phb, &spapr->phbs, list) { 1308 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt, 1309 spapr->irq->nr_msis, NULL); 1310 if (ret < 0) { 1311 error_report("couldn't setup PCI devices in fdt"); 1312 exit(1); 1313 } 1314 } 1315 1316 /* cpus */ 1317 spapr_populate_cpus_dt_node(fdt, spapr); 1318 1319 if (smc->dr_lmb_enabled) { 1320 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1321 } 1322 1323 if (mc->has_hotpluggable_cpus) { 1324 int offset = fdt_path_offset(fdt, "/cpus"); 1325 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1326 SPAPR_DR_CONNECTOR_TYPE_CPU); 1327 if (ret < 0) { 1328 error_report("Couldn't set up CPU DR device tree properties"); 1329 exit(1); 1330 } 1331 } 1332 1333 /* /event-sources */ 1334 spapr_dt_events(spapr, fdt); 1335 1336 /* /rtas */ 1337 spapr_dt_rtas(spapr, fdt); 1338 1339 /* /chosen */ 1340 spapr_dt_chosen(spapr, fdt); 1341 1342 /* /hypervisor */ 1343 if (kvm_enabled()) { 1344 spapr_dt_hypervisor(spapr, fdt); 1345 } 1346 1347 /* Build memory reserve map */ 1348 if (spapr->kernel_size) { 1349 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1350 } 1351 if (spapr->initrd_size) { 1352 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1353 } 1354 1355 /* ibm,client-architecture-support updates */ 1356 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1357 if (ret < 0) { 1358 error_report("couldn't setup CAS properties fdt"); 1359 exit(1); 1360 } 1361 1362 if (smc->dr_phb_enabled) { 1363 ret = spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB); 1364 if (ret < 0) { 1365 error_report("Couldn't set up PHB DR device tree properties"); 1366 exit(1); 1367 } 1368 } 1369 1370 return fdt; 1371 } 1372 1373 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1374 { 1375 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1376 } 1377 1378 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1379 PowerPCCPU *cpu) 1380 { 1381 CPUPPCState *env = &cpu->env; 1382 1383 /* The TCG path should also be holding the BQL at this point */ 1384 g_assert(qemu_mutex_iothread_locked()); 1385 1386 if (msr_pr) { 1387 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1388 env->gpr[3] = H_PRIVILEGE; 1389 } else { 1390 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1391 } 1392 } 1393 1394 struct LPCRSyncState { 1395 target_ulong value; 1396 target_ulong mask; 1397 }; 1398 1399 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1400 { 1401 struct LPCRSyncState *s = arg.host_ptr; 1402 PowerPCCPU *cpu = POWERPC_CPU(cs); 1403 CPUPPCState *env = &cpu->env; 1404 target_ulong lpcr; 1405 1406 cpu_synchronize_state(cs); 1407 lpcr = env->spr[SPR_LPCR]; 1408 lpcr &= ~s->mask; 1409 lpcr |= s->value; 1410 ppc_store_lpcr(cpu, lpcr); 1411 } 1412 1413 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1414 { 1415 CPUState *cs; 1416 struct LPCRSyncState s = { 1417 .value = value, 1418 .mask = mask 1419 }; 1420 CPU_FOREACH(cs) { 1421 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1422 } 1423 } 1424 1425 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry) 1426 { 1427 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1428 1429 /* Copy PATE1:GR into PATE0:HR */ 1430 entry->dw0 = spapr->patb_entry & PATE0_HR; 1431 entry->dw1 = spapr->patb_entry; 1432 } 1433 1434 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1435 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1436 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1437 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1438 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1439 1440 /* 1441 * Get the fd to access the kernel htab, re-opening it if necessary 1442 */ 1443 static int get_htab_fd(SpaprMachineState *spapr) 1444 { 1445 Error *local_err = NULL; 1446 1447 if (spapr->htab_fd >= 0) { 1448 return spapr->htab_fd; 1449 } 1450 1451 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1452 if (spapr->htab_fd < 0) { 1453 error_report_err(local_err); 1454 } 1455 1456 return spapr->htab_fd; 1457 } 1458 1459 void close_htab_fd(SpaprMachineState *spapr) 1460 { 1461 if (spapr->htab_fd >= 0) { 1462 close(spapr->htab_fd); 1463 } 1464 spapr->htab_fd = -1; 1465 } 1466 1467 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1468 { 1469 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1470 1471 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1472 } 1473 1474 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1475 { 1476 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1477 1478 assert(kvm_enabled()); 1479 1480 if (!spapr->htab) { 1481 return 0; 1482 } 1483 1484 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1485 } 1486 1487 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1488 hwaddr ptex, int n) 1489 { 1490 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1491 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1492 1493 if (!spapr->htab) { 1494 /* 1495 * HTAB is controlled by KVM. Fetch into temporary buffer 1496 */ 1497 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1498 kvmppc_read_hptes(hptes, ptex, n); 1499 return hptes; 1500 } 1501 1502 /* 1503 * HTAB is controlled by QEMU. Just point to the internally 1504 * accessible PTEG. 1505 */ 1506 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1507 } 1508 1509 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1510 const ppc_hash_pte64_t *hptes, 1511 hwaddr ptex, int n) 1512 { 1513 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1514 1515 if (!spapr->htab) { 1516 g_free((void *)hptes); 1517 } 1518 1519 /* Nothing to do for qemu managed HPT */ 1520 } 1521 1522 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1523 uint64_t pte0, uint64_t pte1) 1524 { 1525 SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); 1526 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1527 1528 if (!spapr->htab) { 1529 kvmppc_write_hpte(ptex, pte0, pte1); 1530 } else { 1531 if (pte0 & HPTE64_V_VALID) { 1532 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1533 /* 1534 * When setting valid, we write PTE1 first. This ensures 1535 * proper synchronization with the reading code in 1536 * ppc_hash64_pteg_search() 1537 */ 1538 smp_wmb(); 1539 stq_p(spapr->htab + offset, pte0); 1540 } else { 1541 stq_p(spapr->htab + offset, pte0); 1542 /* 1543 * When clearing it we set PTE0 first. This ensures proper 1544 * synchronization with the reading code in 1545 * ppc_hash64_pteg_search() 1546 */ 1547 smp_wmb(); 1548 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1549 } 1550 } 1551 } 1552 1553 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1554 { 1555 int shift; 1556 1557 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1558 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1559 * that's much more than is needed for Linux guests */ 1560 shift = ctz64(pow2ceil(ramsize)) - 7; 1561 shift = MAX(shift, 18); /* Minimum architected size */ 1562 shift = MIN(shift, 46); /* Maximum architected size */ 1563 return shift; 1564 } 1565 1566 void spapr_free_hpt(SpaprMachineState *spapr) 1567 { 1568 g_free(spapr->htab); 1569 spapr->htab = NULL; 1570 spapr->htab_shift = 0; 1571 close_htab_fd(spapr); 1572 } 1573 1574 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, 1575 Error **errp) 1576 { 1577 long rc; 1578 1579 /* Clean up any HPT info from a previous boot */ 1580 spapr_free_hpt(spapr); 1581 1582 rc = kvmppc_reset_htab(shift); 1583 if (rc < 0) { 1584 /* kernel-side HPT needed, but couldn't allocate one */ 1585 error_setg_errno(errp, errno, 1586 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1587 shift); 1588 /* This is almost certainly fatal, but if the caller really 1589 * wants to carry on with shift == 0, it's welcome to try */ 1590 } else if (rc > 0) { 1591 /* kernel-side HPT allocated */ 1592 if (rc != shift) { 1593 error_setg(errp, 1594 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1595 shift, rc); 1596 } 1597 1598 spapr->htab_shift = shift; 1599 spapr->htab = NULL; 1600 } else { 1601 /* kernel-side HPT not needed, allocate in userspace instead */ 1602 size_t size = 1ULL << shift; 1603 int i; 1604 1605 spapr->htab = qemu_memalign(size, size); 1606 if (!spapr->htab) { 1607 error_setg_errno(errp, errno, 1608 "Could not allocate HPT of order %d", shift); 1609 return; 1610 } 1611 1612 memset(spapr->htab, 0, size); 1613 spapr->htab_shift = shift; 1614 1615 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1616 DIRTY_HPTE(HPTE(spapr->htab, i)); 1617 } 1618 } 1619 /* We're setting up a hash table, so that means we're not radix */ 1620 spapr->patb_entry = 0; 1621 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1622 } 1623 1624 void spapr_setup_hpt_and_vrma(SpaprMachineState *spapr) 1625 { 1626 int hpt_shift; 1627 1628 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1629 || (spapr->cas_reboot 1630 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1631 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1632 } else { 1633 uint64_t current_ram_size; 1634 1635 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1636 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1637 } 1638 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1639 1640 if (spapr->vrma_adjust) { 1641 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1642 spapr->htab_shift); 1643 } 1644 } 1645 1646 static int spapr_reset_drcs(Object *child, void *opaque) 1647 { 1648 SpaprDrc *drc = 1649 (SpaprDrc *) object_dynamic_cast(child, 1650 TYPE_SPAPR_DR_CONNECTOR); 1651 1652 if (drc) { 1653 spapr_drc_reset(drc); 1654 } 1655 1656 return 0; 1657 } 1658 1659 static void spapr_machine_reset(void) 1660 { 1661 MachineState *machine = MACHINE(qdev_get_machine()); 1662 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 1663 PowerPCCPU *first_ppc_cpu; 1664 uint32_t rtas_limit; 1665 hwaddr rtas_addr, fdt_addr; 1666 void *fdt; 1667 int rc; 1668 1669 spapr_caps_apply(spapr); 1670 1671 first_ppc_cpu = POWERPC_CPU(first_cpu); 1672 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1673 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1674 spapr->max_compat_pvr)) { 1675 /* 1676 * If using KVM with radix mode available, VCPUs can be started 1677 * without a HPT because KVM will start them in radix mode. 1678 * Set the GR bit in PATE so that we know there is no HPT. 1679 */ 1680 spapr->patb_entry = PATE1_GR; 1681 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1682 } else { 1683 spapr_setup_hpt_and_vrma(spapr); 1684 } 1685 1686 /* 1687 * If this reset wasn't generated by CAS, we should reset our 1688 * negotiated options and start from scratch 1689 */ 1690 if (!spapr->cas_reboot) { 1691 spapr_ovec_cleanup(spapr->ov5_cas); 1692 spapr->ov5_cas = spapr_ovec_new(); 1693 1694 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1695 } 1696 1697 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1698 spapr_irq_msi_reset(spapr); 1699 } 1700 1701 qemu_devices_reset(); 1702 1703 /* 1704 * This is fixing some of the default configuration of the XIVE 1705 * devices. To be called after the reset of the machine devices. 1706 */ 1707 spapr_irq_reset(spapr, &error_fatal); 1708 1709 /* 1710 * There is no CAS under qtest. Simulate one to please the code that 1711 * depends on spapr->ov5_cas. This is especially needed to test device 1712 * unplug, so we do that before resetting the DRCs. 1713 */ 1714 if (qtest_enabled()) { 1715 spapr_ovec_cleanup(spapr->ov5_cas); 1716 spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); 1717 } 1718 1719 /* DRC reset may cause a device to be unplugged. This will cause troubles 1720 * if this device is used by another device (eg, a running vhost backend 1721 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1722 * situations, we reset DRCs after all devices have been reset. 1723 */ 1724 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1725 1726 spapr_clear_pending_events(spapr); 1727 1728 /* 1729 * We place the device tree and RTAS just below either the top of the RMA, 1730 * or just below 2GB, whichever is lower, so that it can be 1731 * processed with 32-bit real mode code if necessary 1732 */ 1733 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1734 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1735 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1736 1737 fdt = spapr_build_fdt(spapr); 1738 1739 spapr_load_rtas(spapr, fdt, rtas_addr); 1740 1741 rc = fdt_pack(fdt); 1742 1743 /* Should only fail if we've built a corrupted tree */ 1744 assert(rc == 0); 1745 1746 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1747 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1748 fdt_totalsize(fdt), FDT_MAX_SIZE); 1749 exit(1); 1750 } 1751 1752 /* Load the fdt */ 1753 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1754 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1755 g_free(spapr->fdt_blob); 1756 spapr->fdt_size = fdt_totalsize(fdt); 1757 spapr->fdt_initial_size = spapr->fdt_size; 1758 spapr->fdt_blob = fdt; 1759 1760 /* Set up the entry state */ 1761 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1762 first_ppc_cpu->env.gpr[5] = 0; 1763 1764 spapr->cas_reboot = false; 1765 } 1766 1767 static void spapr_create_nvram(SpaprMachineState *spapr) 1768 { 1769 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1770 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1771 1772 if (dinfo) { 1773 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1774 &error_fatal); 1775 } 1776 1777 qdev_init_nofail(dev); 1778 1779 spapr->nvram = (struct SpaprNvram *)dev; 1780 } 1781 1782 static void spapr_rtc_create(SpaprMachineState *spapr) 1783 { 1784 object_initialize_child(OBJECT(spapr), "rtc", 1785 &spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC, 1786 &error_fatal, NULL); 1787 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1788 &error_fatal); 1789 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1790 "date", &error_fatal); 1791 } 1792 1793 /* Returns whether we want to use VGA or not */ 1794 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1795 { 1796 switch (vga_interface_type) { 1797 case VGA_NONE: 1798 return false; 1799 case VGA_DEVICE: 1800 return true; 1801 case VGA_STD: 1802 case VGA_VIRTIO: 1803 case VGA_CIRRUS: 1804 return pci_vga_init(pci_bus) != NULL; 1805 default: 1806 error_setg(errp, 1807 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1808 return false; 1809 } 1810 } 1811 1812 static int spapr_pre_load(void *opaque) 1813 { 1814 int rc; 1815 1816 rc = spapr_caps_pre_load(opaque); 1817 if (rc) { 1818 return rc; 1819 } 1820 1821 return 0; 1822 } 1823 1824 static int spapr_post_load(void *opaque, int version_id) 1825 { 1826 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1827 int err = 0; 1828 1829 err = spapr_caps_post_migration(spapr); 1830 if (err) { 1831 return err; 1832 } 1833 1834 /* 1835 * In earlier versions, there was no separate qdev for the PAPR 1836 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1837 * So when migrating from those versions, poke the incoming offset 1838 * value into the RTC device 1839 */ 1840 if (version_id < 3) { 1841 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1842 if (err) { 1843 return err; 1844 } 1845 } 1846 1847 if (kvm_enabled() && spapr->patb_entry) { 1848 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1849 bool radix = !!(spapr->patb_entry & PATE1_GR); 1850 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1851 1852 /* 1853 * Update LPCR:HR and UPRT as they may not be set properly in 1854 * the stream 1855 */ 1856 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1857 LPCR_HR | LPCR_UPRT); 1858 1859 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1860 if (err) { 1861 error_report("Process table config unsupported by the host"); 1862 return -EINVAL; 1863 } 1864 } 1865 1866 err = spapr_irq_post_load(spapr, version_id); 1867 if (err) { 1868 return err; 1869 } 1870 1871 return err; 1872 } 1873 1874 static int spapr_pre_save(void *opaque) 1875 { 1876 int rc; 1877 1878 rc = spapr_caps_pre_save(opaque); 1879 if (rc) { 1880 return rc; 1881 } 1882 1883 return 0; 1884 } 1885 1886 static bool version_before_3(void *opaque, int version_id) 1887 { 1888 return version_id < 3; 1889 } 1890 1891 static bool spapr_pending_events_needed(void *opaque) 1892 { 1893 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 1894 return !QTAILQ_EMPTY(&spapr->pending_events); 1895 } 1896 1897 static const VMStateDescription vmstate_spapr_event_entry = { 1898 .name = "spapr_event_log_entry", 1899 .version_id = 1, 1900 .minimum_version_id = 1, 1901 .fields = (VMStateField[]) { 1902 VMSTATE_UINT32(summary, SpaprEventLogEntry), 1903 VMSTATE_UINT32(extended_length, SpaprEventLogEntry), 1904 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, 1905 NULL, extended_length), 1906 VMSTATE_END_OF_LIST() 1907 }, 1908 }; 1909 1910 static const VMStateDescription vmstate_spapr_pending_events = { 1911 .name = "spapr_pending_events", 1912 .version_id = 1, 1913 .minimum_version_id = 1, 1914 .needed = spapr_pending_events_needed, 1915 .fields = (VMStateField[]) { 1916 VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, 1917 vmstate_spapr_event_entry, SpaprEventLogEntry, next), 1918 VMSTATE_END_OF_LIST() 1919 }, 1920 }; 1921 1922 static bool spapr_ov5_cas_needed(void *opaque) 1923 { 1924 SpaprMachineState *spapr = opaque; 1925 SpaprOptionVector *ov5_mask = spapr_ovec_new(); 1926 SpaprOptionVector *ov5_legacy = spapr_ovec_new(); 1927 SpaprOptionVector *ov5_removed = spapr_ovec_new(); 1928 bool cas_needed; 1929 1930 /* Prior to the introduction of SpaprOptionVector, we had two option 1931 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1932 * Both of these options encode machine topology into the device-tree 1933 * in such a way that the now-booted OS should still be able to interact 1934 * appropriately with QEMU regardless of what options were actually 1935 * negotiatied on the source side. 1936 * 1937 * As such, we can avoid migrating the CAS-negotiated options if these 1938 * are the only options available on the current machine/platform. 1939 * Since these are the only options available for pseries-2.7 and 1940 * earlier, this allows us to maintain old->new/new->old migration 1941 * compatibility. 1942 * 1943 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1944 * via default pseries-2.8 machines and explicit command-line parameters. 1945 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1946 * of the actual CAS-negotiated values to continue working properly. For 1947 * example, availability of memory unplug depends on knowing whether 1948 * OV5_HP_EVT was negotiated via CAS. 1949 * 1950 * Thus, for any cases where the set of available CAS-negotiatable 1951 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1952 * include the CAS-negotiated options in the migration stream, unless 1953 * if they affect boot time behaviour only. 1954 */ 1955 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1956 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1957 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1958 1959 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1960 * the mask itself since in the future it's possible "legacy" bits may be 1961 * removed via machine options, which could generate a false positive 1962 * that breaks migration. 1963 */ 1964 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1965 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1966 1967 spapr_ovec_cleanup(ov5_mask); 1968 spapr_ovec_cleanup(ov5_legacy); 1969 spapr_ovec_cleanup(ov5_removed); 1970 1971 return cas_needed; 1972 } 1973 1974 static const VMStateDescription vmstate_spapr_ov5_cas = { 1975 .name = "spapr_option_vector_ov5_cas", 1976 .version_id = 1, 1977 .minimum_version_id = 1, 1978 .needed = spapr_ov5_cas_needed, 1979 .fields = (VMStateField[]) { 1980 VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, 1981 vmstate_spapr_ovec, SpaprOptionVector), 1982 VMSTATE_END_OF_LIST() 1983 }, 1984 }; 1985 1986 static bool spapr_patb_entry_needed(void *opaque) 1987 { 1988 SpaprMachineState *spapr = opaque; 1989 1990 return !!spapr->patb_entry; 1991 } 1992 1993 static const VMStateDescription vmstate_spapr_patb_entry = { 1994 .name = "spapr_patb_entry", 1995 .version_id = 1, 1996 .minimum_version_id = 1, 1997 .needed = spapr_patb_entry_needed, 1998 .fields = (VMStateField[]) { 1999 VMSTATE_UINT64(patb_entry, SpaprMachineState), 2000 VMSTATE_END_OF_LIST() 2001 }, 2002 }; 2003 2004 static bool spapr_irq_map_needed(void *opaque) 2005 { 2006 SpaprMachineState *spapr = opaque; 2007 2008 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 2009 } 2010 2011 static const VMStateDescription vmstate_spapr_irq_map = { 2012 .name = "spapr_irq_map", 2013 .version_id = 1, 2014 .minimum_version_id = 1, 2015 .needed = spapr_irq_map_needed, 2016 .fields = (VMStateField[]) { 2017 VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), 2018 VMSTATE_END_OF_LIST() 2019 }, 2020 }; 2021 2022 static bool spapr_dtb_needed(void *opaque) 2023 { 2024 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 2025 2026 return smc->update_dt_enabled; 2027 } 2028 2029 static int spapr_dtb_pre_load(void *opaque) 2030 { 2031 SpaprMachineState *spapr = (SpaprMachineState *)opaque; 2032 2033 g_free(spapr->fdt_blob); 2034 spapr->fdt_blob = NULL; 2035 spapr->fdt_size = 0; 2036 2037 return 0; 2038 } 2039 2040 static const VMStateDescription vmstate_spapr_dtb = { 2041 .name = "spapr_dtb", 2042 .version_id = 1, 2043 .minimum_version_id = 1, 2044 .needed = spapr_dtb_needed, 2045 .pre_load = spapr_dtb_pre_load, 2046 .fields = (VMStateField[]) { 2047 VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), 2048 VMSTATE_UINT32(fdt_size, SpaprMachineState), 2049 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, 2050 fdt_size), 2051 VMSTATE_END_OF_LIST() 2052 }, 2053 }; 2054 2055 static const VMStateDescription vmstate_spapr = { 2056 .name = "spapr", 2057 .version_id = 3, 2058 .minimum_version_id = 1, 2059 .pre_load = spapr_pre_load, 2060 .post_load = spapr_post_load, 2061 .pre_save = spapr_pre_save, 2062 .fields = (VMStateField[]) { 2063 /* used to be @next_irq */ 2064 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2065 2066 /* RTC offset */ 2067 VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), 2068 2069 VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), 2070 VMSTATE_END_OF_LIST() 2071 }, 2072 .subsections = (const VMStateDescription*[]) { 2073 &vmstate_spapr_ov5_cas, 2074 &vmstate_spapr_patb_entry, 2075 &vmstate_spapr_pending_events, 2076 &vmstate_spapr_cap_htm, 2077 &vmstate_spapr_cap_vsx, 2078 &vmstate_spapr_cap_dfp, 2079 &vmstate_spapr_cap_cfpc, 2080 &vmstate_spapr_cap_sbbc, 2081 &vmstate_spapr_cap_ibs, 2082 &vmstate_spapr_irq_map, 2083 &vmstate_spapr_cap_nested_kvm_hv, 2084 &vmstate_spapr_dtb, 2085 &vmstate_spapr_cap_large_decr, 2086 &vmstate_spapr_cap_ccf_assist, 2087 NULL 2088 } 2089 }; 2090 2091 static int htab_save_setup(QEMUFile *f, void *opaque) 2092 { 2093 SpaprMachineState *spapr = opaque; 2094 2095 /* "Iteration" header */ 2096 if (!spapr->htab_shift) { 2097 qemu_put_be32(f, -1); 2098 } else { 2099 qemu_put_be32(f, spapr->htab_shift); 2100 } 2101 2102 if (spapr->htab) { 2103 spapr->htab_save_index = 0; 2104 spapr->htab_first_pass = true; 2105 } else { 2106 if (spapr->htab_shift) { 2107 assert(kvm_enabled()); 2108 } 2109 } 2110 2111 2112 return 0; 2113 } 2114 2115 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, 2116 int chunkstart, int n_valid, int n_invalid) 2117 { 2118 qemu_put_be32(f, chunkstart); 2119 qemu_put_be16(f, n_valid); 2120 qemu_put_be16(f, n_invalid); 2121 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2122 HASH_PTE_SIZE_64 * n_valid); 2123 } 2124 2125 static void htab_save_end_marker(QEMUFile *f) 2126 { 2127 qemu_put_be32(f, 0); 2128 qemu_put_be16(f, 0); 2129 qemu_put_be16(f, 0); 2130 } 2131 2132 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, 2133 int64_t max_ns) 2134 { 2135 bool has_timeout = max_ns != -1; 2136 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2137 int index = spapr->htab_save_index; 2138 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2139 2140 assert(spapr->htab_first_pass); 2141 2142 do { 2143 int chunkstart; 2144 2145 /* Consume invalid HPTEs */ 2146 while ((index < htabslots) 2147 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2148 CLEAN_HPTE(HPTE(spapr->htab, index)); 2149 index++; 2150 } 2151 2152 /* Consume valid HPTEs */ 2153 chunkstart = index; 2154 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2155 && HPTE_VALID(HPTE(spapr->htab, index))) { 2156 CLEAN_HPTE(HPTE(spapr->htab, index)); 2157 index++; 2158 } 2159 2160 if (index > chunkstart) { 2161 int n_valid = index - chunkstart; 2162 2163 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2164 2165 if (has_timeout && 2166 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2167 break; 2168 } 2169 } 2170 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2171 2172 if (index >= htabslots) { 2173 assert(index == htabslots); 2174 index = 0; 2175 spapr->htab_first_pass = false; 2176 } 2177 spapr->htab_save_index = index; 2178 } 2179 2180 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, 2181 int64_t max_ns) 2182 { 2183 bool final = max_ns < 0; 2184 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2185 int examined = 0, sent = 0; 2186 int index = spapr->htab_save_index; 2187 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2188 2189 assert(!spapr->htab_first_pass); 2190 2191 do { 2192 int chunkstart, invalidstart; 2193 2194 /* Consume non-dirty HPTEs */ 2195 while ((index < htabslots) 2196 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2197 index++; 2198 examined++; 2199 } 2200 2201 chunkstart = index; 2202 /* Consume valid dirty HPTEs */ 2203 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2204 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2205 && HPTE_VALID(HPTE(spapr->htab, index))) { 2206 CLEAN_HPTE(HPTE(spapr->htab, index)); 2207 index++; 2208 examined++; 2209 } 2210 2211 invalidstart = index; 2212 /* Consume invalid dirty HPTEs */ 2213 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2214 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2215 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2216 CLEAN_HPTE(HPTE(spapr->htab, index)); 2217 index++; 2218 examined++; 2219 } 2220 2221 if (index > chunkstart) { 2222 int n_valid = invalidstart - chunkstart; 2223 int n_invalid = index - invalidstart; 2224 2225 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2226 sent += index - chunkstart; 2227 2228 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2229 break; 2230 } 2231 } 2232 2233 if (examined >= htabslots) { 2234 break; 2235 } 2236 2237 if (index >= htabslots) { 2238 assert(index == htabslots); 2239 index = 0; 2240 } 2241 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2242 2243 if (index >= htabslots) { 2244 assert(index == htabslots); 2245 index = 0; 2246 } 2247 2248 spapr->htab_save_index = index; 2249 2250 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2251 } 2252 2253 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2254 #define MAX_KVM_BUF_SIZE 2048 2255 2256 static int htab_save_iterate(QEMUFile *f, void *opaque) 2257 { 2258 SpaprMachineState *spapr = opaque; 2259 int fd; 2260 int rc = 0; 2261 2262 /* Iteration header */ 2263 if (!spapr->htab_shift) { 2264 qemu_put_be32(f, -1); 2265 return 1; 2266 } else { 2267 qemu_put_be32(f, 0); 2268 } 2269 2270 if (!spapr->htab) { 2271 assert(kvm_enabled()); 2272 2273 fd = get_htab_fd(spapr); 2274 if (fd < 0) { 2275 return fd; 2276 } 2277 2278 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2279 if (rc < 0) { 2280 return rc; 2281 } 2282 } else if (spapr->htab_first_pass) { 2283 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2284 } else { 2285 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2286 } 2287 2288 htab_save_end_marker(f); 2289 2290 return rc; 2291 } 2292 2293 static int htab_save_complete(QEMUFile *f, void *opaque) 2294 { 2295 SpaprMachineState *spapr = opaque; 2296 int fd; 2297 2298 /* Iteration header */ 2299 if (!spapr->htab_shift) { 2300 qemu_put_be32(f, -1); 2301 return 0; 2302 } else { 2303 qemu_put_be32(f, 0); 2304 } 2305 2306 if (!spapr->htab) { 2307 int rc; 2308 2309 assert(kvm_enabled()); 2310 2311 fd = get_htab_fd(spapr); 2312 if (fd < 0) { 2313 return fd; 2314 } 2315 2316 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2317 if (rc < 0) { 2318 return rc; 2319 } 2320 } else { 2321 if (spapr->htab_first_pass) { 2322 htab_save_first_pass(f, spapr, -1); 2323 } 2324 htab_save_later_pass(f, spapr, -1); 2325 } 2326 2327 /* End marker */ 2328 htab_save_end_marker(f); 2329 2330 return 0; 2331 } 2332 2333 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2334 { 2335 SpaprMachineState *spapr = opaque; 2336 uint32_t section_hdr; 2337 int fd = -1; 2338 Error *local_err = NULL; 2339 2340 if (version_id < 1 || version_id > 1) { 2341 error_report("htab_load() bad version"); 2342 return -EINVAL; 2343 } 2344 2345 section_hdr = qemu_get_be32(f); 2346 2347 if (section_hdr == -1) { 2348 spapr_free_hpt(spapr); 2349 return 0; 2350 } 2351 2352 if (section_hdr) { 2353 /* First section gives the htab size */ 2354 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2355 if (local_err) { 2356 error_report_err(local_err); 2357 return -EINVAL; 2358 } 2359 return 0; 2360 } 2361 2362 if (!spapr->htab) { 2363 assert(kvm_enabled()); 2364 2365 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2366 if (fd < 0) { 2367 error_report_err(local_err); 2368 return fd; 2369 } 2370 } 2371 2372 while (true) { 2373 uint32_t index; 2374 uint16_t n_valid, n_invalid; 2375 2376 index = qemu_get_be32(f); 2377 n_valid = qemu_get_be16(f); 2378 n_invalid = qemu_get_be16(f); 2379 2380 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2381 /* End of Stream */ 2382 break; 2383 } 2384 2385 if ((index + n_valid + n_invalid) > 2386 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2387 /* Bad index in stream */ 2388 error_report( 2389 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2390 index, n_valid, n_invalid, spapr->htab_shift); 2391 return -EINVAL; 2392 } 2393 2394 if (spapr->htab) { 2395 if (n_valid) { 2396 qemu_get_buffer(f, HPTE(spapr->htab, index), 2397 HASH_PTE_SIZE_64 * n_valid); 2398 } 2399 if (n_invalid) { 2400 memset(HPTE(spapr->htab, index + n_valid), 0, 2401 HASH_PTE_SIZE_64 * n_invalid); 2402 } 2403 } else { 2404 int rc; 2405 2406 assert(fd >= 0); 2407 2408 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2409 if (rc < 0) { 2410 return rc; 2411 } 2412 } 2413 } 2414 2415 if (!spapr->htab) { 2416 assert(fd >= 0); 2417 close(fd); 2418 } 2419 2420 return 0; 2421 } 2422 2423 static void htab_save_cleanup(void *opaque) 2424 { 2425 SpaprMachineState *spapr = opaque; 2426 2427 close_htab_fd(spapr); 2428 } 2429 2430 static SaveVMHandlers savevm_htab_handlers = { 2431 .save_setup = htab_save_setup, 2432 .save_live_iterate = htab_save_iterate, 2433 .save_live_complete_precopy = htab_save_complete, 2434 .save_cleanup = htab_save_cleanup, 2435 .load_state = htab_load, 2436 }; 2437 2438 static void spapr_boot_set(void *opaque, const char *boot_device, 2439 Error **errp) 2440 { 2441 MachineState *machine = MACHINE(opaque); 2442 machine->boot_order = g_strdup(boot_device); 2443 } 2444 2445 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) 2446 { 2447 MachineState *machine = MACHINE(spapr); 2448 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2449 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2450 int i; 2451 2452 for (i = 0; i < nr_lmbs; i++) { 2453 uint64_t addr; 2454 2455 addr = i * lmb_size + machine->device_memory->base; 2456 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2457 addr / lmb_size); 2458 } 2459 } 2460 2461 /* 2462 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2463 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2464 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2465 */ 2466 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2467 { 2468 int i; 2469 2470 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2471 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2472 " is not aligned to %" PRIu64 " MiB", 2473 machine->ram_size, 2474 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2475 return; 2476 } 2477 2478 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2479 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2480 " is not aligned to %" PRIu64 " MiB", 2481 machine->ram_size, 2482 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2483 return; 2484 } 2485 2486 for (i = 0; i < nb_numa_nodes; i++) { 2487 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2488 error_setg(errp, 2489 "Node %d memory size 0x%" PRIx64 2490 " is not aligned to %" PRIu64 " MiB", 2491 i, numa_info[i].node_mem, 2492 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2493 return; 2494 } 2495 } 2496 } 2497 2498 /* find cpu slot in machine->possible_cpus by core_id */ 2499 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2500 { 2501 int index = id / smp_threads; 2502 2503 if (index >= ms->possible_cpus->len) { 2504 return NULL; 2505 } 2506 if (idx) { 2507 *idx = index; 2508 } 2509 return &ms->possible_cpus->cpus[index]; 2510 } 2511 2512 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) 2513 { 2514 Error *local_err = NULL; 2515 bool vsmt_user = !!spapr->vsmt; 2516 int kvm_smt = kvmppc_smt_threads(); 2517 int ret; 2518 2519 if (!kvm_enabled() && (smp_threads > 1)) { 2520 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2521 "on a pseries machine"); 2522 goto out; 2523 } 2524 if (!is_power_of_2(smp_threads)) { 2525 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2526 "machine because it must be a power of 2", smp_threads); 2527 goto out; 2528 } 2529 2530 /* Detemine the VSMT mode to use: */ 2531 if (vsmt_user) { 2532 if (spapr->vsmt < smp_threads) { 2533 error_setg(&local_err, "Cannot support VSMT mode %d" 2534 " because it must be >= threads/core (%d)", 2535 spapr->vsmt, smp_threads); 2536 goto out; 2537 } 2538 /* In this case, spapr->vsmt has been set by the command line */ 2539 } else { 2540 /* 2541 * Default VSMT value is tricky, because we need it to be as 2542 * consistent as possible (for migration), but this requires 2543 * changing it for at least some existing cases. We pick 8 as 2544 * the value that we'd get with KVM on POWER8, the 2545 * overwhelmingly common case in production systems. 2546 */ 2547 spapr->vsmt = MAX(8, smp_threads); 2548 } 2549 2550 /* KVM: If necessary, set the SMT mode: */ 2551 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2552 ret = kvmppc_set_smt_threads(spapr->vsmt); 2553 if (ret) { 2554 /* Looks like KVM isn't able to change VSMT mode */ 2555 error_setg(&local_err, 2556 "Failed to set KVM's VSMT mode to %d (errno %d)", 2557 spapr->vsmt, ret); 2558 /* We can live with that if the default one is big enough 2559 * for the number of threads, and a submultiple of the one 2560 * we want. In this case we'll waste some vcpu ids, but 2561 * behaviour will be correct */ 2562 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2563 warn_report_err(local_err); 2564 local_err = NULL; 2565 goto out; 2566 } else { 2567 if (!vsmt_user) { 2568 error_append_hint(&local_err, 2569 "On PPC, a VM with %d threads/core" 2570 " on a host with %d threads/core" 2571 " requires the use of VSMT mode %d.\n", 2572 smp_threads, kvm_smt, spapr->vsmt); 2573 } 2574 kvmppc_hint_smt_possible(&local_err); 2575 goto out; 2576 } 2577 } 2578 } 2579 /* else TCG: nothing to do currently */ 2580 out: 2581 error_propagate(errp, local_err); 2582 } 2583 2584 static void spapr_init_cpus(SpaprMachineState *spapr) 2585 { 2586 MachineState *machine = MACHINE(spapr); 2587 MachineClass *mc = MACHINE_GET_CLASS(machine); 2588 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2589 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2590 const CPUArchIdList *possible_cpus; 2591 int boot_cores_nr = smp_cpus / smp_threads; 2592 int i; 2593 2594 possible_cpus = mc->possible_cpu_arch_ids(machine); 2595 if (mc->has_hotpluggable_cpus) { 2596 if (smp_cpus % smp_threads) { 2597 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2598 smp_cpus, smp_threads); 2599 exit(1); 2600 } 2601 if (max_cpus % smp_threads) { 2602 error_report("max_cpus (%u) must be multiple of threads (%u)", 2603 max_cpus, smp_threads); 2604 exit(1); 2605 } 2606 } else { 2607 if (max_cpus != smp_cpus) { 2608 error_report("This machine version does not support CPU hotplug"); 2609 exit(1); 2610 } 2611 boot_cores_nr = possible_cpus->len; 2612 } 2613 2614 if (smc->pre_2_10_has_unused_icps) { 2615 int i; 2616 2617 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2618 /* Dummy entries get deregistered when real ICPState objects 2619 * are registered during CPU core hotplug. 2620 */ 2621 pre_2_10_vmstate_register_dummy_icp(i); 2622 } 2623 } 2624 2625 for (i = 0; i < possible_cpus->len; i++) { 2626 int core_id = i * smp_threads; 2627 2628 if (mc->has_hotpluggable_cpus) { 2629 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2630 spapr_vcpu_id(spapr, core_id)); 2631 } 2632 2633 if (i < boot_cores_nr) { 2634 Object *core = object_new(type); 2635 int nr_threads = smp_threads; 2636 2637 /* Handle the partially filled core for older machine types */ 2638 if ((i + 1) * smp_threads >= smp_cpus) { 2639 nr_threads = smp_cpus - i * smp_threads; 2640 } 2641 2642 object_property_set_int(core, nr_threads, "nr-threads", 2643 &error_fatal); 2644 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2645 &error_fatal); 2646 object_property_set_bool(core, true, "realized", &error_fatal); 2647 2648 object_unref(core); 2649 } 2650 } 2651 } 2652 2653 static PCIHostState *spapr_create_default_phb(void) 2654 { 2655 DeviceState *dev; 2656 2657 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2658 qdev_prop_set_uint32(dev, "index", 0); 2659 qdev_init_nofail(dev); 2660 2661 return PCI_HOST_BRIDGE(dev); 2662 } 2663 2664 /* pSeries LPAR / sPAPR hardware init */ 2665 static void spapr_machine_init(MachineState *machine) 2666 { 2667 SpaprMachineState *spapr = SPAPR_MACHINE(machine); 2668 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2669 const char *kernel_filename = machine->kernel_filename; 2670 const char *initrd_filename = machine->initrd_filename; 2671 PCIHostState *phb; 2672 int i; 2673 MemoryRegion *sysmem = get_system_memory(); 2674 MemoryRegion *ram = g_new(MemoryRegion, 1); 2675 hwaddr node0_size = spapr_node0_size(machine); 2676 long load_limit, fw_size; 2677 char *filename; 2678 Error *resize_hpt_err = NULL; 2679 2680 msi_nonbroken = true; 2681 2682 QLIST_INIT(&spapr->phbs); 2683 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2684 2685 /* Determine capabilities to run with */ 2686 spapr_caps_init(spapr); 2687 2688 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2689 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2690 /* 2691 * If the user explicitly requested a mode we should either 2692 * supply it, or fail completely (which we do below). But if 2693 * it's not set explicitly, we reset our mode to something 2694 * that works 2695 */ 2696 if (resize_hpt_err) { 2697 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2698 error_free(resize_hpt_err); 2699 resize_hpt_err = NULL; 2700 } else { 2701 spapr->resize_hpt = smc->resize_hpt_default; 2702 } 2703 } 2704 2705 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2706 2707 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2708 /* 2709 * User requested HPT resize, but this host can't supply it. Bail out 2710 */ 2711 error_report_err(resize_hpt_err); 2712 exit(1); 2713 } 2714 2715 spapr->rma_size = node0_size; 2716 2717 /* With KVM, we don't actually know whether KVM supports an 2718 * unbounded RMA (PR KVM) or is limited by the hash table size 2719 * (HV KVM using VRMA), so we always assume the latter 2720 * 2721 * In that case, we also limit the initial allocations for RTAS 2722 * etc... to 256M since we have no way to know what the VRMA size 2723 * is going to be as it depends on the size of the hash table 2724 * which isn't determined yet. 2725 */ 2726 if (kvm_enabled()) { 2727 spapr->vrma_adjust = 1; 2728 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2729 } 2730 2731 /* Actually we don't support unbounded RMA anymore since we added 2732 * proper emulation of HV mode. The max we can get is 16G which 2733 * also happens to be what we configure for PAPR mode so make sure 2734 * we don't do anything bigger than that 2735 */ 2736 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2737 2738 if (spapr->rma_size > node0_size) { 2739 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2740 spapr->rma_size); 2741 exit(1); 2742 } 2743 2744 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2745 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2746 2747 /* 2748 * VSMT must be set in order to be able to compute VCPU ids, ie to 2749 * call spapr_max_server_number() or spapr_vcpu_id(). 2750 */ 2751 spapr_set_vsmt_mode(spapr, &error_fatal); 2752 2753 /* Set up Interrupt Controller before we create the VCPUs */ 2754 spapr_irq_init(spapr, &error_fatal); 2755 2756 /* Set up containers for ibm,client-architecture-support negotiated options 2757 */ 2758 spapr->ov5 = spapr_ovec_new(); 2759 spapr->ov5_cas = spapr_ovec_new(); 2760 2761 if (smc->dr_lmb_enabled) { 2762 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2763 spapr_validate_node_memory(machine, &error_fatal); 2764 } 2765 2766 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2767 2768 /* advertise support for dedicated HP event source to guests */ 2769 if (spapr->use_hotplug_event_source) { 2770 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2771 } 2772 2773 /* advertise support for HPT resizing */ 2774 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2775 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2776 } 2777 2778 /* advertise support for ibm,dyamic-memory-v2 */ 2779 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2780 2781 /* advertise XIVE on POWER9 machines */ 2782 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2783 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 2784 0, spapr->max_compat_pvr)) { 2785 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2786 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) { 2787 error_report("XIVE-only machines require a POWER9 CPU"); 2788 exit(1); 2789 } 2790 } 2791 2792 /* init CPUs */ 2793 spapr_init_cpus(spapr); 2794 2795 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2796 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2797 spapr->max_compat_pvr)) { 2798 /* KVM and TCG always allow GTSE with radix... */ 2799 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2800 } 2801 /* ... but not with hash (currently). */ 2802 2803 if (kvm_enabled()) { 2804 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2805 kvmppc_enable_logical_ci_hcalls(); 2806 kvmppc_enable_set_mode_hcall(); 2807 2808 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2809 kvmppc_enable_clear_ref_mod_hcalls(); 2810 2811 /* Enable H_PAGE_INIT */ 2812 kvmppc_enable_h_page_init(); 2813 } 2814 2815 /* allocate RAM */ 2816 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2817 machine->ram_size); 2818 memory_region_add_subregion(sysmem, 0, ram); 2819 2820 /* always allocate the device memory information */ 2821 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2822 2823 /* initialize hotplug memory address space */ 2824 if (machine->ram_size < machine->maxram_size) { 2825 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2826 /* 2827 * Limit the number of hotpluggable memory slots to half the number 2828 * slots that KVM supports, leaving the other half for PCI and other 2829 * devices. However ensure that number of slots doesn't drop below 32. 2830 */ 2831 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2832 SPAPR_MAX_RAM_SLOTS; 2833 2834 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2835 max_memslots = SPAPR_MAX_RAM_SLOTS; 2836 } 2837 if (machine->ram_slots > max_memslots) { 2838 error_report("Specified number of memory slots %" 2839 PRIu64" exceeds max supported %d", 2840 machine->ram_slots, max_memslots); 2841 exit(1); 2842 } 2843 2844 machine->device_memory->base = ROUND_UP(machine->ram_size, 2845 SPAPR_DEVICE_MEM_ALIGN); 2846 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2847 "device-memory", device_mem_size); 2848 memory_region_add_subregion(sysmem, machine->device_memory->base, 2849 &machine->device_memory->mr); 2850 } 2851 2852 if (smc->dr_lmb_enabled) { 2853 spapr_create_lmb_dr_connectors(spapr); 2854 } 2855 2856 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2857 if (!filename) { 2858 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2859 exit(1); 2860 } 2861 spapr->rtas_size = get_image_size(filename); 2862 if (spapr->rtas_size < 0) { 2863 error_report("Could not get size of LPAR rtas '%s'", filename); 2864 exit(1); 2865 } 2866 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2867 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2868 error_report("Could not load LPAR rtas '%s'", filename); 2869 exit(1); 2870 } 2871 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2872 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2873 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2874 exit(1); 2875 } 2876 g_free(filename); 2877 2878 /* Set up RTAS event infrastructure */ 2879 spapr_events_init(spapr); 2880 2881 /* Set up the RTC RTAS interfaces */ 2882 spapr_rtc_create(spapr); 2883 2884 /* Set up VIO bus */ 2885 spapr->vio_bus = spapr_vio_bus_init(); 2886 2887 for (i = 0; i < serial_max_hds(); i++) { 2888 if (serial_hd(i)) { 2889 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2890 } 2891 } 2892 2893 /* We always have at least the nvram device on VIO */ 2894 spapr_create_nvram(spapr); 2895 2896 /* 2897 * Setup hotplug / dynamic-reconfiguration connectors. top-level 2898 * connectors (described in root DT node's "ibm,drc-types" property) 2899 * are pre-initialized here. additional child connectors (such as 2900 * connectors for a PHBs PCI slots) are added as needed during their 2901 * parent's realization. 2902 */ 2903 if (smc->dr_phb_enabled) { 2904 for (i = 0; i < SPAPR_MAX_PHBS; i++) { 2905 spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); 2906 } 2907 } 2908 2909 /* Set up PCI */ 2910 spapr_pci_rtas_init(); 2911 2912 phb = spapr_create_default_phb(); 2913 2914 for (i = 0; i < nb_nics; i++) { 2915 NICInfo *nd = &nd_table[i]; 2916 2917 if (!nd->model) { 2918 nd->model = g_strdup("spapr-vlan"); 2919 } 2920 2921 if (g_str_equal(nd->model, "spapr-vlan") || 2922 g_str_equal(nd->model, "ibmveth")) { 2923 spapr_vlan_create(spapr->vio_bus, nd); 2924 } else { 2925 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2926 } 2927 } 2928 2929 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2930 spapr_vscsi_create(spapr->vio_bus); 2931 } 2932 2933 /* Graphics */ 2934 if (spapr_vga_init(phb->bus, &error_fatal)) { 2935 spapr->has_graphics = true; 2936 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2937 } 2938 2939 if (machine->usb) { 2940 if (smc->use_ohci_by_default) { 2941 pci_create_simple(phb->bus, -1, "pci-ohci"); 2942 } else { 2943 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2944 } 2945 2946 if (spapr->has_graphics) { 2947 USBBus *usb_bus = usb_bus_find(-1); 2948 2949 usb_create_simple(usb_bus, "usb-kbd"); 2950 usb_create_simple(usb_bus, "usb-mouse"); 2951 } 2952 } 2953 2954 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2955 error_report( 2956 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2957 MIN_RMA_SLOF); 2958 exit(1); 2959 } 2960 2961 if (kernel_filename) { 2962 uint64_t lowaddr = 0; 2963 2964 spapr->kernel_size = load_elf(kernel_filename, NULL, 2965 translate_kernel_address, NULL, 2966 NULL, &lowaddr, NULL, 1, 2967 PPC_ELF_MACHINE, 0, 0); 2968 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2969 spapr->kernel_size = load_elf(kernel_filename, NULL, 2970 translate_kernel_address, NULL, NULL, 2971 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2972 0, 0); 2973 spapr->kernel_le = spapr->kernel_size > 0; 2974 } 2975 if (spapr->kernel_size < 0) { 2976 error_report("error loading %s: %s", kernel_filename, 2977 load_elf_strerror(spapr->kernel_size)); 2978 exit(1); 2979 } 2980 2981 /* load initrd */ 2982 if (initrd_filename) { 2983 /* Try to locate the initrd in the gap between the kernel 2984 * and the firmware. Add a bit of space just in case 2985 */ 2986 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2987 + 0x1ffff) & ~0xffff; 2988 spapr->initrd_size = load_image_targphys(initrd_filename, 2989 spapr->initrd_base, 2990 load_limit 2991 - spapr->initrd_base); 2992 if (spapr->initrd_size < 0) { 2993 error_report("could not load initial ram disk '%s'", 2994 initrd_filename); 2995 exit(1); 2996 } 2997 } 2998 } 2999 3000 if (bios_name == NULL) { 3001 bios_name = FW_FILE_NAME; 3002 } 3003 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 3004 if (!filename) { 3005 error_report("Could not find LPAR firmware '%s'", bios_name); 3006 exit(1); 3007 } 3008 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 3009 if (fw_size <= 0) { 3010 error_report("Could not load LPAR firmware '%s'", filename); 3011 exit(1); 3012 } 3013 g_free(filename); 3014 3015 /* FIXME: Should register things through the MachineState's qdev 3016 * interface, this is a legacy from the sPAPREnvironment structure 3017 * which predated MachineState but had a similar function */ 3018 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 3019 register_savevm_live(NULL, "spapr/htab", -1, 1, 3020 &savevm_htab_handlers, spapr); 3021 3022 qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine), 3023 &error_fatal); 3024 3025 qemu_register_boot_set(spapr_boot_set, spapr); 3026 3027 if (kvm_enabled()) { 3028 /* to stop and start vmclock */ 3029 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 3030 &spapr->tb); 3031 3032 kvmppc_spapr_enable_inkernel_multitce(); 3033 } 3034 } 3035 3036 static int spapr_kvm_type(MachineState *machine, const char *vm_type) 3037 { 3038 if (!vm_type) { 3039 return 0; 3040 } 3041 3042 if (!strcmp(vm_type, "HV")) { 3043 return 1; 3044 } 3045 3046 if (!strcmp(vm_type, "PR")) { 3047 return 2; 3048 } 3049 3050 error_report("Unknown kvm-type specified '%s'", vm_type); 3051 exit(1); 3052 } 3053 3054 /* 3055 * Implementation of an interface to adjust firmware path 3056 * for the bootindex property handling. 3057 */ 3058 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3059 DeviceState *dev) 3060 { 3061 #define CAST(type, obj, name) \ 3062 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3063 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3064 SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3065 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3066 3067 if (d) { 3068 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3069 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3070 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3071 3072 if (spapr) { 3073 /* 3074 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3075 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3076 * 0x8000 | (target << 8) | (bus << 5) | lun 3077 * (see the "Logical unit addressing format" table in SAM5) 3078 */ 3079 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3080 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3081 (uint64_t)id << 48); 3082 } else if (virtio) { 3083 /* 3084 * We use SRP luns of the form 01000000 | (target << 8) | lun 3085 * in the top 32 bits of the 64-bit LUN 3086 * Note: the quote above is from SLOF and it is wrong, 3087 * the actual binding is: 3088 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3089 */ 3090 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3091 if (d->lun >= 256) { 3092 /* Use the LUN "flat space addressing method" */ 3093 id |= 0x4000; 3094 } 3095 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3096 (uint64_t)id << 32); 3097 } else if (usb) { 3098 /* 3099 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3100 * in the top 32 bits of the 64-bit LUN 3101 */ 3102 unsigned usb_port = atoi(usb->port->path); 3103 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3104 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3105 (uint64_t)id << 32); 3106 } 3107 } 3108 3109 /* 3110 * SLOF probes the USB devices, and if it recognizes that the device is a 3111 * storage device, it changes its name to "storage" instead of "usb-host", 3112 * and additionally adds a child node for the SCSI LUN, so the correct 3113 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3114 */ 3115 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3116 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3117 if (usb_host_dev_is_scsi_storage(usbdev)) { 3118 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3119 } 3120 } 3121 3122 if (phb) { 3123 /* Replace "pci" with "pci@800000020000000" */ 3124 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3125 } 3126 3127 if (vsc) { 3128 /* Same logic as virtio above */ 3129 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3130 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3131 } 3132 3133 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3134 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3135 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3136 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3137 } 3138 3139 return NULL; 3140 } 3141 3142 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3143 { 3144 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3145 3146 return g_strdup(spapr->kvm_type); 3147 } 3148 3149 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3150 { 3151 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3152 3153 g_free(spapr->kvm_type); 3154 spapr->kvm_type = g_strdup(value); 3155 } 3156 3157 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3158 { 3159 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3160 3161 return spapr->use_hotplug_event_source; 3162 } 3163 3164 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3165 Error **errp) 3166 { 3167 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3168 3169 spapr->use_hotplug_event_source = value; 3170 } 3171 3172 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3173 { 3174 return true; 3175 } 3176 3177 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3178 { 3179 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3180 3181 switch (spapr->resize_hpt) { 3182 case SPAPR_RESIZE_HPT_DEFAULT: 3183 return g_strdup("default"); 3184 case SPAPR_RESIZE_HPT_DISABLED: 3185 return g_strdup("disabled"); 3186 case SPAPR_RESIZE_HPT_ENABLED: 3187 return g_strdup("enabled"); 3188 case SPAPR_RESIZE_HPT_REQUIRED: 3189 return g_strdup("required"); 3190 } 3191 g_assert_not_reached(); 3192 } 3193 3194 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3195 { 3196 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3197 3198 if (strcmp(value, "default") == 0) { 3199 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3200 } else if (strcmp(value, "disabled") == 0) { 3201 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3202 } else if (strcmp(value, "enabled") == 0) { 3203 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3204 } else if (strcmp(value, "required") == 0) { 3205 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3206 } else { 3207 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3208 } 3209 } 3210 3211 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3212 void *opaque, Error **errp) 3213 { 3214 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3215 } 3216 3217 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3218 void *opaque, Error **errp) 3219 { 3220 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3221 } 3222 3223 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3224 { 3225 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3226 3227 if (spapr->irq == &spapr_irq_xics_legacy) { 3228 return g_strdup("legacy"); 3229 } else if (spapr->irq == &spapr_irq_xics) { 3230 return g_strdup("xics"); 3231 } else if (spapr->irq == &spapr_irq_xive) { 3232 return g_strdup("xive"); 3233 } else if (spapr->irq == &spapr_irq_dual) { 3234 return g_strdup("dual"); 3235 } 3236 g_assert_not_reached(); 3237 } 3238 3239 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3240 { 3241 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3242 3243 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3244 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3245 return; 3246 } 3247 3248 /* The legacy IRQ backend can not be set */ 3249 if (strcmp(value, "xics") == 0) { 3250 spapr->irq = &spapr_irq_xics; 3251 } else if (strcmp(value, "xive") == 0) { 3252 spapr->irq = &spapr_irq_xive; 3253 } else if (strcmp(value, "dual") == 0) { 3254 spapr->irq = &spapr_irq_dual; 3255 } else { 3256 error_setg(errp, "Bad value for \"ic-mode\" property"); 3257 } 3258 } 3259 3260 static char *spapr_get_host_model(Object *obj, Error **errp) 3261 { 3262 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3263 3264 return g_strdup(spapr->host_model); 3265 } 3266 3267 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3268 { 3269 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3270 3271 g_free(spapr->host_model); 3272 spapr->host_model = g_strdup(value); 3273 } 3274 3275 static char *spapr_get_host_serial(Object *obj, Error **errp) 3276 { 3277 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3278 3279 return g_strdup(spapr->host_serial); 3280 } 3281 3282 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3283 { 3284 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3285 3286 g_free(spapr->host_serial); 3287 spapr->host_serial = g_strdup(value); 3288 } 3289 3290 static void spapr_instance_init(Object *obj) 3291 { 3292 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3293 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3294 3295 spapr->htab_fd = -1; 3296 spapr->use_hotplug_event_source = true; 3297 object_property_add_str(obj, "kvm-type", 3298 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3299 object_property_set_description(obj, "kvm-type", 3300 "Specifies the KVM virtualization mode (HV, PR)", 3301 NULL); 3302 object_property_add_bool(obj, "modern-hotplug-events", 3303 spapr_get_modern_hotplug_events, 3304 spapr_set_modern_hotplug_events, 3305 NULL); 3306 object_property_set_description(obj, "modern-hotplug-events", 3307 "Use dedicated hotplug event mechanism in" 3308 " place of standard EPOW events when possible" 3309 " (required for memory hot-unplug support)", 3310 NULL); 3311 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3312 "Maximum permitted CPU compatibility mode", 3313 &error_fatal); 3314 3315 object_property_add_str(obj, "resize-hpt", 3316 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3317 object_property_set_description(obj, "resize-hpt", 3318 "Resizing of the Hash Page Table (enabled, disabled, required)", 3319 NULL); 3320 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3321 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3322 object_property_set_description(obj, "vsmt", 3323 "Virtual SMT: KVM behaves as if this were" 3324 " the host's SMT mode", &error_abort); 3325 object_property_add_bool(obj, "vfio-no-msix-emulation", 3326 spapr_get_msix_emulation, NULL, NULL); 3327 3328 /* The machine class defines the default interrupt controller mode */ 3329 spapr->irq = smc->irq; 3330 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3331 spapr_set_ic_mode, NULL); 3332 object_property_set_description(obj, "ic-mode", 3333 "Specifies the interrupt controller mode (xics, xive, dual)", 3334 NULL); 3335 3336 object_property_add_str(obj, "host-model", 3337 spapr_get_host_model, spapr_set_host_model, 3338 &error_abort); 3339 object_property_set_description(obj, "host-model", 3340 "Host model to advertise in guest device tree", &error_abort); 3341 object_property_add_str(obj, "host-serial", 3342 spapr_get_host_serial, spapr_set_host_serial, 3343 &error_abort); 3344 object_property_set_description(obj, "host-serial", 3345 "Host serial number to advertise in guest device tree", &error_abort); 3346 } 3347 3348 static void spapr_machine_finalizefn(Object *obj) 3349 { 3350 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 3351 3352 g_free(spapr->kvm_type); 3353 } 3354 3355 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3356 { 3357 cpu_synchronize_state(cs); 3358 ppc_cpu_do_system_reset(cs); 3359 } 3360 3361 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3362 { 3363 CPUState *cs; 3364 3365 CPU_FOREACH(cs) { 3366 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3367 } 3368 } 3369 3370 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3371 void *fdt, int *fdt_start_offset, Error **errp) 3372 { 3373 uint64_t addr; 3374 uint32_t node; 3375 3376 addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; 3377 node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, 3378 &error_abort); 3379 *fdt_start_offset = spapr_populate_memory_node(fdt, node, addr, 3380 SPAPR_MEMORY_BLOCK_SIZE); 3381 return 0; 3382 } 3383 3384 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3385 bool dedicated_hp_event_source, Error **errp) 3386 { 3387 SpaprDrc *drc; 3388 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3389 int i; 3390 uint64_t addr = addr_start; 3391 bool hotplugged = spapr_drc_hotplugged(dev); 3392 Error *local_err = NULL; 3393 3394 for (i = 0; i < nr_lmbs; i++) { 3395 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3396 addr / SPAPR_MEMORY_BLOCK_SIZE); 3397 g_assert(drc); 3398 3399 spapr_drc_attach(drc, dev, &local_err); 3400 if (local_err) { 3401 while (addr > addr_start) { 3402 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3403 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3404 addr / SPAPR_MEMORY_BLOCK_SIZE); 3405 spapr_drc_detach(drc); 3406 } 3407 error_propagate(errp, local_err); 3408 return; 3409 } 3410 if (!hotplugged) { 3411 spapr_drc_reset(drc); 3412 } 3413 addr += SPAPR_MEMORY_BLOCK_SIZE; 3414 } 3415 /* send hotplug notification to the 3416 * guest only in case of hotplugged memory 3417 */ 3418 if (hotplugged) { 3419 if (dedicated_hp_event_source) { 3420 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3421 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3422 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3423 nr_lmbs, 3424 spapr_drc_index(drc)); 3425 } else { 3426 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3427 nr_lmbs); 3428 } 3429 } 3430 } 3431 3432 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3433 Error **errp) 3434 { 3435 Error *local_err = NULL; 3436 SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3437 PCDIMMDevice *dimm = PC_DIMM(dev); 3438 uint64_t size, addr; 3439 3440 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3441 3442 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3443 if (local_err) { 3444 goto out; 3445 } 3446 3447 addr = object_property_get_uint(OBJECT(dimm), 3448 PC_DIMM_ADDR_PROP, &local_err); 3449 if (local_err) { 3450 goto out_unplug; 3451 } 3452 3453 spapr_add_lmbs(dev, addr, size, spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3454 &local_err); 3455 if (local_err) { 3456 goto out_unplug; 3457 } 3458 3459 return; 3460 3461 out_unplug: 3462 pc_dimm_unplug(dimm, MACHINE(ms)); 3463 out: 3464 error_propagate(errp, local_err); 3465 } 3466 3467 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3468 Error **errp) 3469 { 3470 const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3471 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3472 PCDIMMDevice *dimm = PC_DIMM(dev); 3473 Error *local_err = NULL; 3474 uint64_t size; 3475 Object *memdev; 3476 hwaddr pagesize; 3477 3478 if (!smc->dr_lmb_enabled) { 3479 error_setg(errp, "Memory hotplug not supported for this machine"); 3480 return; 3481 } 3482 3483 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3484 if (local_err) { 3485 error_propagate(errp, local_err); 3486 return; 3487 } 3488 3489 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3490 error_setg(errp, "Hotplugged memory size must be a multiple of " 3491 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3492 return; 3493 } 3494 3495 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3496 &error_abort); 3497 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3498 spapr_check_pagesize(spapr, pagesize, &local_err); 3499 if (local_err) { 3500 error_propagate(errp, local_err); 3501 return; 3502 } 3503 3504 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3505 } 3506 3507 struct SpaprDimmState { 3508 PCDIMMDevice *dimm; 3509 uint32_t nr_lmbs; 3510 QTAILQ_ENTRY(SpaprDimmState) next; 3511 }; 3512 3513 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, 3514 PCDIMMDevice *dimm) 3515 { 3516 SpaprDimmState *dimm_state = NULL; 3517 3518 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3519 if (dimm_state->dimm == dimm) { 3520 break; 3521 } 3522 } 3523 return dimm_state; 3524 } 3525 3526 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, 3527 uint32_t nr_lmbs, 3528 PCDIMMDevice *dimm) 3529 { 3530 SpaprDimmState *ds = NULL; 3531 3532 /* 3533 * If this request is for a DIMM whose removal had failed earlier 3534 * (due to guest's refusal to remove the LMBs), we would have this 3535 * dimm already in the pending_dimm_unplugs list. In that 3536 * case don't add again. 3537 */ 3538 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3539 if (!ds) { 3540 ds = g_malloc0(sizeof(SpaprDimmState)); 3541 ds->nr_lmbs = nr_lmbs; 3542 ds->dimm = dimm; 3543 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3544 } 3545 return ds; 3546 } 3547 3548 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, 3549 SpaprDimmState *dimm_state) 3550 { 3551 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3552 g_free(dimm_state); 3553 } 3554 3555 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, 3556 PCDIMMDevice *dimm) 3557 { 3558 SpaprDrc *drc; 3559 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3560 &error_abort); 3561 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3562 uint32_t avail_lmbs = 0; 3563 uint64_t addr_start, addr; 3564 int i; 3565 3566 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3567 &error_abort); 3568 3569 addr = addr_start; 3570 for (i = 0; i < nr_lmbs; i++) { 3571 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3572 addr / SPAPR_MEMORY_BLOCK_SIZE); 3573 g_assert(drc); 3574 if (drc->dev) { 3575 avail_lmbs++; 3576 } 3577 addr += SPAPR_MEMORY_BLOCK_SIZE; 3578 } 3579 3580 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3581 } 3582 3583 /* Callback to be called during DRC release. */ 3584 void spapr_lmb_release(DeviceState *dev) 3585 { 3586 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3587 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3588 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3589 3590 /* This information will get lost if a migration occurs 3591 * during the unplug process. In this case recover it. */ 3592 if (ds == NULL) { 3593 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3594 g_assert(ds); 3595 /* The DRC being examined by the caller at least must be counted */ 3596 g_assert(ds->nr_lmbs); 3597 } 3598 3599 if (--ds->nr_lmbs) { 3600 return; 3601 } 3602 3603 /* 3604 * Now that all the LMBs have been removed by the guest, call the 3605 * unplug handler chain. This can never fail. 3606 */ 3607 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3608 object_unparent(OBJECT(dev)); 3609 } 3610 3611 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3612 { 3613 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3614 SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3615 3616 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3617 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3618 spapr_pending_dimm_unplugs_remove(spapr, ds); 3619 } 3620 3621 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3622 DeviceState *dev, Error **errp) 3623 { 3624 SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3625 Error *local_err = NULL; 3626 PCDIMMDevice *dimm = PC_DIMM(dev); 3627 uint32_t nr_lmbs; 3628 uint64_t size, addr_start, addr; 3629 int i; 3630 SpaprDrc *drc; 3631 3632 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3633 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3634 3635 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3636 &local_err); 3637 if (local_err) { 3638 goto out; 3639 } 3640 3641 /* 3642 * An existing pending dimm state for this DIMM means that there is an 3643 * unplug operation in progress, waiting for the spapr_lmb_release 3644 * callback to complete the job (BQL can't cover that far). In this case, 3645 * bail out to avoid detaching DRCs that were already released. 3646 */ 3647 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3648 error_setg(&local_err, 3649 "Memory unplug already in progress for device %s", 3650 dev->id); 3651 goto out; 3652 } 3653 3654 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3655 3656 addr = addr_start; 3657 for (i = 0; i < nr_lmbs; i++) { 3658 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3659 addr / SPAPR_MEMORY_BLOCK_SIZE); 3660 g_assert(drc); 3661 3662 spapr_drc_detach(drc); 3663 addr += SPAPR_MEMORY_BLOCK_SIZE; 3664 } 3665 3666 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3667 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3668 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3669 nr_lmbs, spapr_drc_index(drc)); 3670 out: 3671 error_propagate(errp, local_err); 3672 } 3673 3674 /* Callback to be called during DRC release. */ 3675 void spapr_core_release(DeviceState *dev) 3676 { 3677 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3678 3679 /* Call the unplug handler chain. This can never fail. */ 3680 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3681 object_unparent(OBJECT(dev)); 3682 } 3683 3684 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3685 { 3686 MachineState *ms = MACHINE(hotplug_dev); 3687 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3688 CPUCore *cc = CPU_CORE(dev); 3689 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3690 3691 if (smc->pre_2_10_has_unused_icps) { 3692 SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3693 int i; 3694 3695 for (i = 0; i < cc->nr_threads; i++) { 3696 CPUState *cs = CPU(sc->threads[i]); 3697 3698 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3699 } 3700 } 3701 3702 assert(core_slot); 3703 core_slot->cpu = NULL; 3704 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3705 } 3706 3707 static 3708 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3709 Error **errp) 3710 { 3711 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3712 int index; 3713 SpaprDrc *drc; 3714 CPUCore *cc = CPU_CORE(dev); 3715 3716 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3717 error_setg(errp, "Unable to find CPU core with core-id: %d", 3718 cc->core_id); 3719 return; 3720 } 3721 if (index == 0) { 3722 error_setg(errp, "Boot CPU core may not be unplugged"); 3723 return; 3724 } 3725 3726 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3727 spapr_vcpu_id(spapr, cc->core_id)); 3728 g_assert(drc); 3729 3730 spapr_drc_detach(drc); 3731 3732 spapr_hotplug_req_remove_by_index(drc); 3733 } 3734 3735 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3736 void *fdt, int *fdt_start_offset, Error **errp) 3737 { 3738 SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); 3739 CPUState *cs = CPU(core->threads[0]); 3740 PowerPCCPU *cpu = POWERPC_CPU(cs); 3741 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3742 int id = spapr_get_vcpu_id(cpu); 3743 char *nodename; 3744 int offset; 3745 3746 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3747 offset = fdt_add_subnode(fdt, 0, nodename); 3748 g_free(nodename); 3749 3750 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3751 3752 *fdt_start_offset = offset; 3753 return 0; 3754 } 3755 3756 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3757 Error **errp) 3758 { 3759 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3760 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3761 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3762 SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3763 CPUCore *cc = CPU_CORE(dev); 3764 CPUState *cs; 3765 SpaprDrc *drc; 3766 Error *local_err = NULL; 3767 CPUArchId *core_slot; 3768 int index; 3769 bool hotplugged = spapr_drc_hotplugged(dev); 3770 3771 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3772 if (!core_slot) { 3773 error_setg(errp, "Unable to find CPU core with core-id: %d", 3774 cc->core_id); 3775 return; 3776 } 3777 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3778 spapr_vcpu_id(spapr, cc->core_id)); 3779 3780 g_assert(drc || !mc->has_hotpluggable_cpus); 3781 3782 if (drc) { 3783 spapr_drc_attach(drc, dev, &local_err); 3784 if (local_err) { 3785 error_propagate(errp, local_err); 3786 return; 3787 } 3788 3789 if (hotplugged) { 3790 /* 3791 * Send hotplug notification interrupt to the guest only 3792 * in case of hotplugged CPUs. 3793 */ 3794 spapr_hotplug_req_add_by_index(drc); 3795 } else { 3796 spapr_drc_reset(drc); 3797 } 3798 } 3799 3800 core_slot->cpu = OBJECT(dev); 3801 3802 if (smc->pre_2_10_has_unused_icps) { 3803 int i; 3804 3805 for (i = 0; i < cc->nr_threads; i++) { 3806 cs = CPU(core->threads[i]); 3807 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3808 } 3809 } 3810 } 3811 3812 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3813 Error **errp) 3814 { 3815 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3816 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3817 Error *local_err = NULL; 3818 CPUCore *cc = CPU_CORE(dev); 3819 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3820 const char *type = object_get_typename(OBJECT(dev)); 3821 CPUArchId *core_slot; 3822 int index; 3823 3824 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3825 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3826 goto out; 3827 } 3828 3829 if (strcmp(base_core_type, type)) { 3830 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3831 goto out; 3832 } 3833 3834 if (cc->core_id % smp_threads) { 3835 error_setg(&local_err, "invalid core id %d", cc->core_id); 3836 goto out; 3837 } 3838 3839 /* 3840 * In general we should have homogeneous threads-per-core, but old 3841 * (pre hotplug support) machine types allow the last core to have 3842 * reduced threads as a compatibility hack for when we allowed 3843 * total vcpus not a multiple of threads-per-core. 3844 */ 3845 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3846 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3847 cc->nr_threads, smp_threads); 3848 goto out; 3849 } 3850 3851 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3852 if (!core_slot) { 3853 error_setg(&local_err, "core id %d out of range", cc->core_id); 3854 goto out; 3855 } 3856 3857 if (core_slot->cpu) { 3858 error_setg(&local_err, "core %d already populated", cc->core_id); 3859 goto out; 3860 } 3861 3862 numa_cpu_pre_plug(core_slot, dev, &local_err); 3863 3864 out: 3865 error_propagate(errp, local_err); 3866 } 3867 3868 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, 3869 void *fdt, int *fdt_start_offset, Error **errp) 3870 { 3871 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); 3872 int intc_phandle; 3873 3874 intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); 3875 if (intc_phandle <= 0) { 3876 return -1; 3877 } 3878 3879 if (spapr_populate_pci_dt(sphb, intc_phandle, fdt, spapr->irq->nr_msis, 3880 fdt_start_offset)) { 3881 error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); 3882 return -1; 3883 } 3884 3885 /* generally SLOF creates these, for hotplug it's up to QEMU */ 3886 _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); 3887 3888 return 0; 3889 } 3890 3891 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3892 Error **errp) 3893 { 3894 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3895 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3896 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3897 const unsigned windows_supported = spapr_phb_windows_supported(sphb); 3898 3899 if (dev->hotplugged && !smc->dr_phb_enabled) { 3900 error_setg(errp, "PHB hotplug not supported for this machine"); 3901 return; 3902 } 3903 3904 if (sphb->index == (uint32_t)-1) { 3905 error_setg(errp, "\"index\" for PAPR PHB is mandatory"); 3906 return; 3907 } 3908 3909 /* 3910 * This will check that sphb->index doesn't exceed the maximum number of 3911 * PHBs for the current machine type. 3912 */ 3913 smc->phb_placement(spapr, sphb->index, 3914 &sphb->buid, &sphb->io_win_addr, 3915 &sphb->mem_win_addr, &sphb->mem64_win_addr, 3916 windows_supported, sphb->dma_liobn, errp); 3917 } 3918 3919 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3920 Error **errp) 3921 { 3922 SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3923 SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3924 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3925 SpaprDrc *drc; 3926 bool hotplugged = spapr_drc_hotplugged(dev); 3927 Error *local_err = NULL; 3928 3929 if (!smc->dr_phb_enabled) { 3930 return; 3931 } 3932 3933 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3934 /* hotplug hooks should check it's enabled before getting this far */ 3935 assert(drc); 3936 3937 spapr_drc_attach(drc, DEVICE(dev), &local_err); 3938 if (local_err) { 3939 error_propagate(errp, local_err); 3940 return; 3941 } 3942 3943 if (hotplugged) { 3944 spapr_hotplug_req_add_by_index(drc); 3945 } else { 3946 spapr_drc_reset(drc); 3947 } 3948 } 3949 3950 void spapr_phb_release(DeviceState *dev) 3951 { 3952 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3953 3954 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3955 object_unparent(OBJECT(dev)); 3956 } 3957 3958 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3959 { 3960 object_property_set_bool(OBJECT(dev), false, "realized", NULL); 3961 } 3962 3963 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, 3964 DeviceState *dev, Error **errp) 3965 { 3966 SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); 3967 SpaprDrc *drc; 3968 3969 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); 3970 assert(drc); 3971 3972 if (!spapr_drc_unplug_requested(drc)) { 3973 spapr_drc_detach(drc); 3974 spapr_hotplug_req_remove_by_index(drc); 3975 } 3976 } 3977 3978 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3979 DeviceState *dev, Error **errp) 3980 { 3981 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3982 spapr_memory_plug(hotplug_dev, dev, errp); 3983 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3984 spapr_core_plug(hotplug_dev, dev, errp); 3985 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 3986 spapr_phb_plug(hotplug_dev, dev, errp); 3987 } 3988 } 3989 3990 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 3991 DeviceState *dev, Error **errp) 3992 { 3993 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3994 spapr_memory_unplug(hotplug_dev, dev); 3995 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3996 spapr_core_unplug(hotplug_dev, dev); 3997 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 3998 spapr_phb_unplug(hotplug_dev, dev); 3999 } 4000 } 4001 4002 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 4003 DeviceState *dev, Error **errp) 4004 { 4005 SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 4006 MachineClass *mc = MACHINE_GET_CLASS(sms); 4007 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4008 4009 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4010 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 4011 spapr_memory_unplug_request(hotplug_dev, dev, errp); 4012 } else { 4013 /* NOTE: this means there is a window after guest reset, prior to 4014 * CAS negotiation, where unplug requests will fail due to the 4015 * capability not being detected yet. This is a bit different than 4016 * the case with PCI unplug, where the events will be queued and 4017 * eventually handled by the guest after boot 4018 */ 4019 error_setg(errp, "Memory hot unplug not supported for this guest"); 4020 } 4021 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4022 if (!mc->has_hotpluggable_cpus) { 4023 error_setg(errp, "CPU hot unplug not supported on this machine"); 4024 return; 4025 } 4026 spapr_core_unplug_request(hotplug_dev, dev, errp); 4027 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4028 if (!smc->dr_phb_enabled) { 4029 error_setg(errp, "PHB hot unplug not supported on this machine"); 4030 return; 4031 } 4032 spapr_phb_unplug_request(hotplug_dev, dev, errp); 4033 } 4034 } 4035 4036 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 4037 DeviceState *dev, Error **errp) 4038 { 4039 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 4040 spapr_memory_pre_plug(hotplug_dev, dev, errp); 4041 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 4042 spapr_core_pre_plug(hotplug_dev, dev, errp); 4043 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4044 spapr_phb_pre_plug(hotplug_dev, dev, errp); 4045 } 4046 } 4047 4048 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 4049 DeviceState *dev) 4050 { 4051 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 4052 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || 4053 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { 4054 return HOTPLUG_HANDLER(machine); 4055 } 4056 return NULL; 4057 } 4058 4059 static CpuInstanceProperties 4060 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 4061 { 4062 CPUArchId *core_slot; 4063 MachineClass *mc = MACHINE_GET_CLASS(machine); 4064 4065 /* make sure possible_cpu are intialized */ 4066 mc->possible_cpu_arch_ids(machine); 4067 /* get CPU core slot containing thread that matches cpu_index */ 4068 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 4069 assert(core_slot); 4070 return core_slot->props; 4071 } 4072 4073 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 4074 { 4075 return idx / smp_cores % nb_numa_nodes; 4076 } 4077 4078 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 4079 { 4080 int i; 4081 const char *core_type; 4082 int spapr_max_cores = max_cpus / smp_threads; 4083 MachineClass *mc = MACHINE_GET_CLASS(machine); 4084 4085 if (!mc->has_hotpluggable_cpus) { 4086 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 4087 } 4088 if (machine->possible_cpus) { 4089 assert(machine->possible_cpus->len == spapr_max_cores); 4090 return machine->possible_cpus; 4091 } 4092 4093 core_type = spapr_get_cpu_core_type(machine->cpu_type); 4094 if (!core_type) { 4095 error_report("Unable to find sPAPR CPU Core definition"); 4096 exit(1); 4097 } 4098 4099 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 4100 sizeof(CPUArchId) * spapr_max_cores); 4101 machine->possible_cpus->len = spapr_max_cores; 4102 for (i = 0; i < machine->possible_cpus->len; i++) { 4103 int core_id = i * smp_threads; 4104 4105 machine->possible_cpus->cpus[i].type = core_type; 4106 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 4107 machine->possible_cpus->cpus[i].arch_id = core_id; 4108 machine->possible_cpus->cpus[i].props.has_core_id = true; 4109 machine->possible_cpus->cpus[i].props.core_id = core_id; 4110 } 4111 return machine->possible_cpus; 4112 } 4113 4114 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, 4115 uint64_t *buid, hwaddr *pio, 4116 hwaddr *mmio32, hwaddr *mmio64, 4117 unsigned n_dma, uint32_t *liobns, Error **errp) 4118 { 4119 /* 4120 * New-style PHB window placement. 4121 * 4122 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 4123 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 4124 * windows. 4125 * 4126 * Some guest kernels can't work with MMIO windows above 1<<46 4127 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 4128 * 4129 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 4130 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 4131 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 4132 * 1TiB 64-bit MMIO windows for each PHB. 4133 */ 4134 const uint64_t base_buid = 0x800000020000000ULL; 4135 int i; 4136 4137 /* Sanity check natural alignments */ 4138 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4139 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 4140 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 4141 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 4142 /* Sanity check bounds */ 4143 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 4144 SPAPR_PCI_MEM32_WIN_SIZE); 4145 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 4146 SPAPR_PCI_MEM64_WIN_SIZE); 4147 4148 if (index >= SPAPR_MAX_PHBS) { 4149 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 4150 SPAPR_MAX_PHBS - 1); 4151 return; 4152 } 4153 4154 *buid = base_buid + index; 4155 for (i = 0; i < n_dma; ++i) { 4156 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4157 } 4158 4159 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 4160 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 4161 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 4162 } 4163 4164 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 4165 { 4166 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4167 4168 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 4169 } 4170 4171 static void spapr_ics_resend(XICSFabric *dev) 4172 { 4173 SpaprMachineState *spapr = SPAPR_MACHINE(dev); 4174 4175 ics_resend(spapr->ics); 4176 } 4177 4178 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 4179 { 4180 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4181 4182 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4183 } 4184 4185 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4186 Monitor *mon) 4187 { 4188 SpaprMachineState *spapr = SPAPR_MACHINE(obj); 4189 4190 spapr->irq->print_info(spapr, mon); 4191 } 4192 4193 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4194 { 4195 return cpu->vcpu_id; 4196 } 4197 4198 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4199 { 4200 SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4201 int vcpu_id; 4202 4203 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4204 4205 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4206 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4207 error_append_hint(errp, "Adjust the number of cpus to %d " 4208 "or try to raise the number of threads per core\n", 4209 vcpu_id * smp_threads / spapr->vsmt); 4210 return; 4211 } 4212 4213 cpu->vcpu_id = vcpu_id; 4214 } 4215 4216 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4217 { 4218 CPUState *cs; 4219 4220 CPU_FOREACH(cs) { 4221 PowerPCCPU *cpu = POWERPC_CPU(cs); 4222 4223 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4224 return cpu; 4225 } 4226 } 4227 4228 return NULL; 4229 } 4230 4231 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4232 { 4233 MachineClass *mc = MACHINE_CLASS(oc); 4234 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4235 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4236 NMIClass *nc = NMI_CLASS(oc); 4237 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4238 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4239 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4240 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4241 4242 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4243 mc->ignore_boot_device_suffixes = true; 4244 4245 /* 4246 * We set up the default / latest behaviour here. The class_init 4247 * functions for the specific versioned machine types can override 4248 * these details for backwards compatibility 4249 */ 4250 mc->init = spapr_machine_init; 4251 mc->reset = spapr_machine_reset; 4252 mc->block_default_type = IF_SCSI; 4253 mc->max_cpus = 1024; 4254 mc->no_parallel = 1; 4255 mc->default_boot_order = ""; 4256 mc->default_ram_size = 512 * MiB; 4257 mc->default_display = "std"; 4258 mc->kvm_type = spapr_kvm_type; 4259 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4260 mc->pci_allow_0_address = true; 4261 assert(!mc->get_hotplug_handler); 4262 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4263 hc->pre_plug = spapr_machine_device_pre_plug; 4264 hc->plug = spapr_machine_device_plug; 4265 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4266 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4267 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4268 hc->unplug_request = spapr_machine_device_unplug_request; 4269 hc->unplug = spapr_machine_device_unplug; 4270 4271 smc->dr_lmb_enabled = true; 4272 smc->update_dt_enabled = true; 4273 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4274 mc->has_hotpluggable_cpus = true; 4275 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4276 fwc->get_dev_path = spapr_get_fw_dev_path; 4277 nc->nmi_monitor_handler = spapr_nmi; 4278 smc->phb_placement = spapr_phb_placement; 4279 vhc->hypercall = emulate_spapr_hypercall; 4280 vhc->hpt_mask = spapr_hpt_mask; 4281 vhc->map_hptes = spapr_map_hptes; 4282 vhc->unmap_hptes = spapr_unmap_hptes; 4283 vhc->store_hpte = spapr_store_hpte; 4284 vhc->get_pate = spapr_get_pate; 4285 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4286 xic->ics_get = spapr_ics_get; 4287 xic->ics_resend = spapr_ics_resend; 4288 xic->icp_get = spapr_icp_get; 4289 ispc->print_info = spapr_pic_print_info; 4290 /* Force NUMA node memory size to be a multiple of 4291 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4292 * in which LMBs are represented and hot-added 4293 */ 4294 mc->numa_mem_align_shift = 28; 4295 4296 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4297 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4298 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4299 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4300 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4301 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; 4302 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4303 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4304 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; 4305 smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; 4306 spapr_caps_add_properties(smc, &error_abort); 4307 smc->irq = &spapr_irq_xics; 4308 smc->dr_phb_enabled = true; 4309 } 4310 4311 static const TypeInfo spapr_machine_info = { 4312 .name = TYPE_SPAPR_MACHINE, 4313 .parent = TYPE_MACHINE, 4314 .abstract = true, 4315 .instance_size = sizeof(SpaprMachineState), 4316 .instance_init = spapr_instance_init, 4317 .instance_finalize = spapr_machine_finalizefn, 4318 .class_size = sizeof(SpaprMachineClass), 4319 .class_init = spapr_machine_class_init, 4320 .interfaces = (InterfaceInfo[]) { 4321 { TYPE_FW_PATH_PROVIDER }, 4322 { TYPE_NMI }, 4323 { TYPE_HOTPLUG_HANDLER }, 4324 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4325 { TYPE_XICS_FABRIC }, 4326 { TYPE_INTERRUPT_STATS_PROVIDER }, 4327 { } 4328 }, 4329 }; 4330 4331 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4332 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4333 void *data) \ 4334 { \ 4335 MachineClass *mc = MACHINE_CLASS(oc); \ 4336 spapr_machine_##suffix##_class_options(mc); \ 4337 if (latest) { \ 4338 mc->alias = "pseries"; \ 4339 mc->is_default = 1; \ 4340 } \ 4341 } \ 4342 static const TypeInfo spapr_machine_##suffix##_info = { \ 4343 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4344 .parent = TYPE_SPAPR_MACHINE, \ 4345 .class_init = spapr_machine_##suffix##_class_init, \ 4346 }; \ 4347 static void spapr_machine_register_##suffix(void) \ 4348 { \ 4349 type_register(&spapr_machine_##suffix##_info); \ 4350 } \ 4351 type_init(spapr_machine_register_##suffix) 4352 4353 /* 4354 * pseries-4.0 4355 */ 4356 static void spapr_machine_4_0_class_options(MachineClass *mc) 4357 { 4358 /* Defaults for the latest behaviour inherited from the base class */ 4359 } 4360 4361 DEFINE_SPAPR_MACHINE(4_0, "4.0", true); 4362 4363 /* 4364 * pseries-3.1 4365 */ 4366 static void spapr_machine_3_1_class_options(MachineClass *mc) 4367 { 4368 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4369 4370 spapr_machine_4_0_class_options(mc); 4371 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4372 4373 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4374 smc->update_dt_enabled = false; 4375 smc->dr_phb_enabled = false; 4376 smc->broken_host_serial_model = true; 4377 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4378 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4379 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4380 smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; 4381 } 4382 4383 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4384 4385 /* 4386 * pseries-3.0 4387 */ 4388 4389 static void spapr_machine_3_0_class_options(MachineClass *mc) 4390 { 4391 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4392 4393 spapr_machine_3_1_class_options(mc); 4394 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4395 4396 smc->legacy_irq_allocation = true; 4397 smc->irq = &spapr_irq_xics_legacy; 4398 } 4399 4400 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4401 4402 /* 4403 * pseries-2.12 4404 */ 4405 static void spapr_machine_2_12_class_options(MachineClass *mc) 4406 { 4407 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4408 static GlobalProperty compat[] = { 4409 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4410 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4411 }; 4412 4413 spapr_machine_3_0_class_options(mc); 4414 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4415 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4416 4417 /* We depend on kvm_enabled() to choose a default value for the 4418 * hpt-max-page-size capability. Of course we can't do it here 4419 * because this is too early and the HW accelerator isn't initialzed 4420 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4421 */ 4422 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4423 } 4424 4425 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4426 4427 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4428 { 4429 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4430 4431 spapr_machine_2_12_class_options(mc); 4432 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4433 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4434 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4435 } 4436 4437 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4438 4439 /* 4440 * pseries-2.11 4441 */ 4442 4443 static void spapr_machine_2_11_class_options(MachineClass *mc) 4444 { 4445 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4446 4447 spapr_machine_2_12_class_options(mc); 4448 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4449 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4450 } 4451 4452 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4453 4454 /* 4455 * pseries-2.10 4456 */ 4457 4458 static void spapr_machine_2_10_class_options(MachineClass *mc) 4459 { 4460 spapr_machine_2_11_class_options(mc); 4461 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4462 } 4463 4464 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4465 4466 /* 4467 * pseries-2.9 4468 */ 4469 4470 static void spapr_machine_2_9_class_options(MachineClass *mc) 4471 { 4472 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4473 static GlobalProperty compat[] = { 4474 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4475 }; 4476 4477 spapr_machine_2_10_class_options(mc); 4478 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4479 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4480 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4481 smc->pre_2_10_has_unused_icps = true; 4482 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4483 } 4484 4485 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4486 4487 /* 4488 * pseries-2.8 4489 */ 4490 4491 static void spapr_machine_2_8_class_options(MachineClass *mc) 4492 { 4493 static GlobalProperty compat[] = { 4494 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4495 }; 4496 4497 spapr_machine_2_9_class_options(mc); 4498 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4499 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4500 mc->numa_mem_align_shift = 23; 4501 } 4502 4503 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4504 4505 /* 4506 * pseries-2.7 4507 */ 4508 4509 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, 4510 uint64_t *buid, hwaddr *pio, 4511 hwaddr *mmio32, hwaddr *mmio64, 4512 unsigned n_dma, uint32_t *liobns, Error **errp) 4513 { 4514 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4515 const uint64_t base_buid = 0x800000020000000ULL; 4516 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4517 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4518 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4519 const uint32_t max_index = 255; 4520 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4521 4522 uint64_t ram_top = MACHINE(spapr)->ram_size; 4523 hwaddr phb0_base, phb_base; 4524 int i; 4525 4526 /* Do we have device memory? */ 4527 if (MACHINE(spapr)->maxram_size > ram_top) { 4528 /* Can't just use maxram_size, because there may be an 4529 * alignment gap between normal and device memory regions 4530 */ 4531 ram_top = MACHINE(spapr)->device_memory->base + 4532 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4533 } 4534 4535 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4536 4537 if (index > max_index) { 4538 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4539 max_index); 4540 return; 4541 } 4542 4543 *buid = base_buid + index; 4544 for (i = 0; i < n_dma; ++i) { 4545 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4546 } 4547 4548 phb_base = phb0_base + index * phb_spacing; 4549 *pio = phb_base + pio_offset; 4550 *mmio32 = phb_base + mmio_offset; 4551 /* 4552 * We don't set the 64-bit MMIO window, relying on the PHB's 4553 * fallback behaviour of automatically splitting a large "32-bit" 4554 * window into contiguous 32-bit and 64-bit windows 4555 */ 4556 } 4557 4558 static void spapr_machine_2_7_class_options(MachineClass *mc) 4559 { 4560 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4561 static GlobalProperty compat[] = { 4562 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4563 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4564 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4565 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4566 }; 4567 4568 spapr_machine_2_8_class_options(mc); 4569 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4570 mc->default_machine_opts = "modern-hotplug-events=off"; 4571 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4572 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4573 smc->phb_placement = phb_placement_2_7; 4574 } 4575 4576 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4577 4578 /* 4579 * pseries-2.6 4580 */ 4581 4582 static void spapr_machine_2_6_class_options(MachineClass *mc) 4583 { 4584 static GlobalProperty compat[] = { 4585 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4586 }; 4587 4588 spapr_machine_2_7_class_options(mc); 4589 mc->has_hotpluggable_cpus = false; 4590 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4591 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4592 } 4593 4594 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4595 4596 /* 4597 * pseries-2.5 4598 */ 4599 4600 static void spapr_machine_2_5_class_options(MachineClass *mc) 4601 { 4602 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4603 static GlobalProperty compat[] = { 4604 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4605 }; 4606 4607 spapr_machine_2_6_class_options(mc); 4608 smc->use_ohci_by_default = true; 4609 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4610 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4611 } 4612 4613 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4614 4615 /* 4616 * pseries-2.4 4617 */ 4618 4619 static void spapr_machine_2_4_class_options(MachineClass *mc) 4620 { 4621 SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4622 4623 spapr_machine_2_5_class_options(mc); 4624 smc->dr_lmb_enabled = false; 4625 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4626 } 4627 4628 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4629 4630 /* 4631 * pseries-2.3 4632 */ 4633 4634 static void spapr_machine_2_3_class_options(MachineClass *mc) 4635 { 4636 static GlobalProperty compat[] = { 4637 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4638 }; 4639 spapr_machine_2_4_class_options(mc); 4640 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4641 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4642 } 4643 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4644 4645 /* 4646 * pseries-2.2 4647 */ 4648 4649 static void spapr_machine_2_2_class_options(MachineClass *mc) 4650 { 4651 static GlobalProperty compat[] = { 4652 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4653 }; 4654 4655 spapr_machine_2_3_class_options(mc); 4656 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4657 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4658 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4659 } 4660 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4661 4662 /* 4663 * pseries-2.1 4664 */ 4665 4666 static void spapr_machine_2_1_class_options(MachineClass *mc) 4667 { 4668 spapr_machine_2_2_class_options(mc); 4669 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4670 } 4671 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4672 4673 static void spapr_machine_register_types(void) 4674 { 4675 type_register_static(&spapr_machine_info); 4676 } 4677 4678 type_init(spapr_machine_register_types) 4679