xref: /qemu/hw/ppc/spapr.c (revision 0a06e4d6267ca150d62fbc371afab2fbb5586cb8)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "qemu-common.h"
29 #include "qapi/error.h"
30 #include "qapi/visitor.h"
31 #include "sysemu/sysemu.h"
32 #include "sysemu/hostmem.h"
33 #include "sysemu/numa.h"
34 #include "sysemu/qtest.h"
35 #include "sysemu/reset.h"
36 #include "sysemu/runstate.h"
37 #include "qemu/log.h"
38 #include "hw/fw-path-provider.h"
39 #include "elf.h"
40 #include "net/net.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/cpus.h"
43 #include "sysemu/hw_accel.h"
44 #include "kvm_ppc.h"
45 #include "migration/misc.h"
46 #include "migration/qemu-file-types.h"
47 #include "migration/global_state.h"
48 #include "migration/register.h"
49 #include "migration/blocker.h"
50 #include "mmu-hash64.h"
51 #include "mmu-book3s-v3.h"
52 #include "cpu-models.h"
53 #include "hw/core/cpu.h"
54 
55 #include "hw/boards.h"
56 #include "hw/ppc/ppc.h"
57 #include "hw/loader.h"
58 
59 #include "hw/ppc/fdt.h"
60 #include "hw/ppc/spapr.h"
61 #include "hw/ppc/spapr_vio.h"
62 #include "hw/qdev-properties.h"
63 #include "hw/pci-host/spapr.h"
64 #include "hw/pci/msi.h"
65 
66 #include "hw/pci/pci.h"
67 #include "hw/scsi/scsi.h"
68 #include "hw/virtio/virtio-scsi.h"
69 #include "hw/virtio/vhost-scsi-common.h"
70 
71 #include "exec/address-spaces.h"
72 #include "exec/ram_addr.h"
73 #include "hw/usb.h"
74 #include "qemu/config-file.h"
75 #include "qemu/error-report.h"
76 #include "trace.h"
77 #include "hw/nmi.h"
78 #include "hw/intc/intc.h"
79 
80 #include "hw/ppc/spapr_cpu_core.h"
81 #include "hw/mem/memory-device.h"
82 #include "hw/ppc/spapr_tpm_proxy.h"
83 #include "hw/ppc/spapr_nvdimm.h"
84 #include "hw/ppc/spapr_numa.h"
85 
86 #include "monitor/monitor.h"
87 
88 #include <libfdt.h>
89 
90 /* SLOF memory layout:
91  *
92  * SLOF raw image loaded at 0, copies its romfs right below the flat
93  * device-tree, then position SLOF itself 31M below that
94  *
95  * So we set FW_OVERHEAD to 40MB which should account for all of that
96  * and more
97  *
98  * We load our kernel at 4M, leaving space for SLOF initial image
99  */
100 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
101 #define FW_MAX_SIZE             0x400000
102 #define FW_FILE_NAME            "slof.bin"
103 #define FW_OVERHEAD             0x2800000
104 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
105 
106 #define MIN_RMA_SLOF            (128 * MiB)
107 
108 #define PHANDLE_INTC            0x00001111
109 
110 /* These two functions implement the VCPU id numbering: one to compute them
111  * all and one to identify thread 0 of a VCORE. Any change to the first one
112  * is likely to have an impact on the second one, so let's keep them close.
113  */
114 static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index)
115 {
116     MachineState *ms = MACHINE(spapr);
117     unsigned int smp_threads = ms->smp.threads;
118 
119     assert(spapr->vsmt);
120     return
121         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
122 }
123 static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr,
124                                       PowerPCCPU *cpu)
125 {
126     assert(spapr->vsmt);
127     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
128 }
129 
130 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
131 {
132     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
133      * and newer QEMUs don't even have them. In both cases, we don't want
134      * to send anything on the wire.
135      */
136     return false;
137 }
138 
139 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
140     .name = "icp/server",
141     .version_id = 1,
142     .minimum_version_id = 1,
143     .needed = pre_2_10_vmstate_dummy_icp_needed,
144     .fields = (VMStateField[]) {
145         VMSTATE_UNUSED(4), /* uint32_t xirr */
146         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
147         VMSTATE_UNUSED(1), /* uint8_t mfrr */
148         VMSTATE_END_OF_LIST()
149     },
150 };
151 
152 static void pre_2_10_vmstate_register_dummy_icp(int i)
153 {
154     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
155                      (void *)(uintptr_t) i);
156 }
157 
158 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
159 {
160     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
161                        (void *)(uintptr_t) i);
162 }
163 
164 int spapr_max_server_number(SpaprMachineState *spapr)
165 {
166     MachineState *ms = MACHINE(spapr);
167 
168     assert(spapr->vsmt);
169     return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads);
170 }
171 
172 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
173                                   int smt_threads)
174 {
175     int i, ret = 0;
176     uint32_t servers_prop[smt_threads];
177     uint32_t gservers_prop[smt_threads * 2];
178     int index = spapr_get_vcpu_id(cpu);
179 
180     if (cpu->compat_pvr) {
181         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
182         if (ret < 0) {
183             return ret;
184         }
185     }
186 
187     /* Build interrupt servers and gservers properties */
188     for (i = 0; i < smt_threads; i++) {
189         servers_prop[i] = cpu_to_be32(index + i);
190         /* Hack, direct the group queues back to cpu 0 */
191         gservers_prop[i*2] = cpu_to_be32(index + i);
192         gservers_prop[i*2 + 1] = 0;
193     }
194     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
195                       servers_prop, sizeof(servers_prop));
196     if (ret < 0) {
197         return ret;
198     }
199     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
200                       gservers_prop, sizeof(gservers_prop));
201 
202     return ret;
203 }
204 
205 static void spapr_dt_pa_features(SpaprMachineState *spapr,
206                                  PowerPCCPU *cpu,
207                                  void *fdt, int offset)
208 {
209     uint8_t pa_features_206[] = { 6, 0,
210         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
211     uint8_t pa_features_207[] = { 24, 0,
212         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
213         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
214         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
215         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
216     uint8_t pa_features_300[] = { 66, 0,
217         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
218         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
219         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
220         /* 6: DS207 */
221         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
222         /* 16: Vector */
223         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
224         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
225         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
226         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
227         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
228         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
229         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
230         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
231         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
232         /* 42: PM, 44: PC RA, 46: SC vec'd */
233         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
234         /* 48: SIMD, 50: QP BFP, 52: String */
235         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
236         /* 54: DecFP, 56: DecI, 58: SHA */
237         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
238         /* 60: NM atomic, 62: RNG */
239         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
240     };
241     uint8_t *pa_features = NULL;
242     size_t pa_size;
243 
244     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
245         pa_features = pa_features_206;
246         pa_size = sizeof(pa_features_206);
247     }
248     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
249         pa_features = pa_features_207;
250         pa_size = sizeof(pa_features_207);
251     }
252     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
253         pa_features = pa_features_300;
254         pa_size = sizeof(pa_features_300);
255     }
256     if (!pa_features) {
257         return;
258     }
259 
260     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
261         /*
262          * Note: we keep CI large pages off by default because a 64K capable
263          * guest provisioned with large pages might otherwise try to map a qemu
264          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
265          * even if that qemu runs on a 4k host.
266          * We dd this bit back here if we are confident this is not an issue
267          */
268         pa_features[3] |= 0x20;
269     }
270     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
271         pa_features[24] |= 0x80;    /* Transactional memory support */
272     }
273     if (spapr->cas_pre_isa3_guest && pa_size > 40) {
274         /* Workaround for broken kernels that attempt (guest) radix
275          * mode when they can't handle it, if they see the radix bit set
276          * in pa-features. So hide it from them. */
277         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
278     }
279 
280     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
281 }
282 
283 static hwaddr spapr_node0_size(MachineState *machine)
284 {
285     if (machine->numa_state->num_nodes) {
286         int i;
287         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
288             if (machine->numa_state->nodes[i].node_mem) {
289                 return MIN(pow2floor(machine->numa_state->nodes[i].node_mem),
290                            machine->ram_size);
291             }
292         }
293     }
294     return machine->ram_size;
295 }
296 
297 bool spapr_machine_using_legacy_numa(SpaprMachineState *spapr)
298 {
299     MachineState *machine = MACHINE(spapr);
300     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
301 
302     return smc->pre_5_2_numa_associativity ||
303            machine->numa_state->num_nodes <= 1;
304 }
305 
306 static void add_str(GString *s, const gchar *s1)
307 {
308     g_string_append_len(s, s1, strlen(s1) + 1);
309 }
310 
311 static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid,
312                                 hwaddr start, hwaddr size)
313 {
314     char mem_name[32];
315     uint64_t mem_reg_property[2];
316     int off;
317 
318     mem_reg_property[0] = cpu_to_be64(start);
319     mem_reg_property[1] = cpu_to_be64(size);
320 
321     sprintf(mem_name, "memory@%" HWADDR_PRIx, start);
322     off = fdt_add_subnode(fdt, 0, mem_name);
323     _FDT(off);
324     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
325     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
326                       sizeof(mem_reg_property))));
327     spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid);
328     return off;
329 }
330 
331 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
332 {
333     MemoryDeviceInfoList *info;
334 
335     for (info = list; info; info = info->next) {
336         MemoryDeviceInfo *value = info->value;
337 
338         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
339             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
340 
341             if (addr >= pcdimm_info->addr &&
342                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
343                 return pcdimm_info->node;
344             }
345         }
346     }
347 
348     return -1;
349 }
350 
351 struct sPAPRDrconfCellV2 {
352      uint32_t seq_lmbs;
353      uint64_t base_addr;
354      uint32_t drc_index;
355      uint32_t aa_index;
356      uint32_t flags;
357 } QEMU_PACKED;
358 
359 typedef struct DrconfCellQueue {
360     struct sPAPRDrconfCellV2 cell;
361     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
362 } DrconfCellQueue;
363 
364 static DrconfCellQueue *
365 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
366                       uint32_t drc_index, uint32_t aa_index,
367                       uint32_t flags)
368 {
369     DrconfCellQueue *elem;
370 
371     elem = g_malloc0(sizeof(*elem));
372     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
373     elem->cell.base_addr = cpu_to_be64(base_addr);
374     elem->cell.drc_index = cpu_to_be32(drc_index);
375     elem->cell.aa_index = cpu_to_be32(aa_index);
376     elem->cell.flags = cpu_to_be32(flags);
377 
378     return elem;
379 }
380 
381 static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt,
382                                       int offset, MemoryDeviceInfoList *dimms)
383 {
384     MachineState *machine = MACHINE(spapr);
385     uint8_t *int_buf, *cur_index;
386     int ret;
387     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
388     uint64_t addr, cur_addr, size;
389     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
390     uint64_t mem_end = machine->device_memory->base +
391                        memory_region_size(&machine->device_memory->mr);
392     uint32_t node, buf_len, nr_entries = 0;
393     SpaprDrc *drc;
394     DrconfCellQueue *elem, *next;
395     MemoryDeviceInfoList *info;
396     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
397         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
398 
399     /* Entry to cover RAM and the gap area */
400     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
401                                  SPAPR_LMB_FLAGS_RESERVED |
402                                  SPAPR_LMB_FLAGS_DRC_INVALID);
403     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
404     nr_entries++;
405 
406     cur_addr = machine->device_memory->base;
407     for (info = dimms; info; info = info->next) {
408         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
409 
410         addr = di->addr;
411         size = di->size;
412         node = di->node;
413 
414         /*
415          * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The
416          * area is marked hotpluggable in the next iteration for the bigger
417          * chunk including the NVDIMM occupied area.
418          */
419         if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM)
420             continue;
421 
422         /* Entry for hot-pluggable area */
423         if (cur_addr < addr) {
424             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
425             g_assert(drc);
426             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
427                                          cur_addr, spapr_drc_index(drc), -1, 0);
428             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
429             nr_entries++;
430         }
431 
432         /* Entry for DIMM */
433         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
434         g_assert(drc);
435         elem = spapr_get_drconf_cell(size / lmb_size, addr,
436                                      spapr_drc_index(drc), node,
437                                      (SPAPR_LMB_FLAGS_ASSIGNED |
438                                       SPAPR_LMB_FLAGS_HOTREMOVABLE));
439         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
440         nr_entries++;
441         cur_addr = addr + size;
442     }
443 
444     /* Entry for remaining hotpluggable area */
445     if (cur_addr < mem_end) {
446         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
447         g_assert(drc);
448         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
449                                      cur_addr, spapr_drc_index(drc), -1, 0);
450         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
451         nr_entries++;
452     }
453 
454     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
455     int_buf = cur_index = g_malloc0(buf_len);
456     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
457     cur_index += sizeof(nr_entries);
458 
459     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
460         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
461         cur_index += sizeof(elem->cell);
462         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
463         g_free(elem);
464     }
465 
466     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
467     g_free(int_buf);
468     if (ret < 0) {
469         return -1;
470     }
471     return 0;
472 }
473 
474 static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt,
475                                    int offset, MemoryDeviceInfoList *dimms)
476 {
477     MachineState *machine = MACHINE(spapr);
478     int i, ret;
479     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
480     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
481     uint32_t nr_lmbs = (machine->device_memory->base +
482                        memory_region_size(&machine->device_memory->mr)) /
483                        lmb_size;
484     uint32_t *int_buf, *cur_index, buf_len;
485 
486     /*
487      * Allocate enough buffer size to fit in ibm,dynamic-memory
488      */
489     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
490     cur_index = int_buf = g_malloc0(buf_len);
491     int_buf[0] = cpu_to_be32(nr_lmbs);
492     cur_index++;
493     for (i = 0; i < nr_lmbs; i++) {
494         uint64_t addr = i * lmb_size;
495         uint32_t *dynamic_memory = cur_index;
496 
497         if (i >= device_lmb_start) {
498             SpaprDrc *drc;
499 
500             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
501             g_assert(drc);
502 
503             dynamic_memory[0] = cpu_to_be32(addr >> 32);
504             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
505             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
506             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
507             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
508             if (memory_region_present(get_system_memory(), addr)) {
509                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
510             } else {
511                 dynamic_memory[5] = cpu_to_be32(0);
512             }
513         } else {
514             /*
515              * LMB information for RMA, boot time RAM and gap b/n RAM and
516              * device memory region -- all these are marked as reserved
517              * and as having no valid DRC.
518              */
519             dynamic_memory[0] = cpu_to_be32(addr >> 32);
520             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
521             dynamic_memory[2] = cpu_to_be32(0);
522             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
523             dynamic_memory[4] = cpu_to_be32(-1);
524             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
525                                             SPAPR_LMB_FLAGS_DRC_INVALID);
526         }
527 
528         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
529     }
530     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
531     g_free(int_buf);
532     if (ret < 0) {
533         return -1;
534     }
535     return 0;
536 }
537 
538 /*
539  * Adds ibm,dynamic-reconfiguration-memory node.
540  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
541  * of this device tree node.
542  */
543 static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr,
544                                                    void *fdt)
545 {
546     MachineState *machine = MACHINE(spapr);
547     int ret, offset;
548     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
549     uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32),
550                                 cpu_to_be32(lmb_size & 0xffffffff)};
551     MemoryDeviceInfoList *dimms = NULL;
552 
553     /*
554      * Don't create the node if there is no device memory
555      */
556     if (machine->ram_size == machine->maxram_size) {
557         return 0;
558     }
559 
560     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
561 
562     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
563                     sizeof(prop_lmb_size));
564     if (ret < 0) {
565         return ret;
566     }
567 
568     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
569     if (ret < 0) {
570         return ret;
571     }
572 
573     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
574     if (ret < 0) {
575         return ret;
576     }
577 
578     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
579     dimms = qmp_memory_device_list();
580     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
581         ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms);
582     } else {
583         ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms);
584     }
585     qapi_free_MemoryDeviceInfoList(dimms);
586 
587     if (ret < 0) {
588         return ret;
589     }
590 
591     ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset);
592 
593     return ret;
594 }
595 
596 static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt)
597 {
598     MachineState *machine = MACHINE(spapr);
599     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
600     hwaddr mem_start, node_size;
601     int i, nb_nodes = machine->numa_state->num_nodes;
602     NodeInfo *nodes = machine->numa_state->nodes;
603 
604     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
605         if (!nodes[i].node_mem) {
606             continue;
607         }
608         if (mem_start >= machine->ram_size) {
609             node_size = 0;
610         } else {
611             node_size = nodes[i].node_mem;
612             if (node_size > machine->ram_size - mem_start) {
613                 node_size = machine->ram_size - mem_start;
614             }
615         }
616         if (!mem_start) {
617             /* spapr_machine_init() checks for rma_size <= node0_size
618              * already */
619             spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size);
620             mem_start += spapr->rma_size;
621             node_size -= spapr->rma_size;
622         }
623         for ( ; node_size; ) {
624             hwaddr sizetmp = pow2floor(node_size);
625 
626             /* mem_start != 0 here */
627             if (ctzl(mem_start) < ctzl(sizetmp)) {
628                 sizetmp = 1ULL << ctzl(mem_start);
629             }
630 
631             spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp);
632             node_size -= sizetmp;
633             mem_start += sizetmp;
634         }
635     }
636 
637     /* Generate ibm,dynamic-reconfiguration-memory node if required */
638     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) {
639         int ret;
640 
641         g_assert(smc->dr_lmb_enabled);
642         ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt);
643         if (ret) {
644             return ret;
645         }
646     }
647 
648     return 0;
649 }
650 
651 static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset,
652                          SpaprMachineState *spapr)
653 {
654     MachineState *ms = MACHINE(spapr);
655     PowerPCCPU *cpu = POWERPC_CPU(cs);
656     CPUPPCState *env = &cpu->env;
657     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
658     int index = spapr_get_vcpu_id(cpu);
659     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
660                        0xffffffff, 0xffffffff};
661     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
662         : SPAPR_TIMEBASE_FREQ;
663     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
664     uint32_t page_sizes_prop[64];
665     size_t page_sizes_prop_size;
666     unsigned int smp_threads = ms->smp.threads;
667     uint32_t vcpus_per_socket = smp_threads * ms->smp.cores;
668     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
669     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
670     SpaprDrc *drc;
671     int drc_index;
672     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
673     int i;
674 
675     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
676     if (drc) {
677         drc_index = spapr_drc_index(drc);
678         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
679     }
680 
681     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
682     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
683 
684     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
685     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
686                            env->dcache_line_size)));
687     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
688                            env->dcache_line_size)));
689     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
690                            env->icache_line_size)));
691     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
692                            env->icache_line_size)));
693 
694     if (pcc->l1_dcache_size) {
695         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
696                                pcc->l1_dcache_size)));
697     } else {
698         warn_report("Unknown L1 dcache size for cpu");
699     }
700     if (pcc->l1_icache_size) {
701         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
702                                pcc->l1_icache_size)));
703     } else {
704         warn_report("Unknown L1 icache size for cpu");
705     }
706 
707     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
708     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
709     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
710     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
711     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
712     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
713 
714     if (env->spr_cb[SPR_PURR].oea_read) {
715         _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1)));
716     }
717     if (env->spr_cb[SPR_SPURR].oea_read) {
718         _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1)));
719     }
720 
721     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
722         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
723                           segs, sizeof(segs))));
724     }
725 
726     /* Advertise VSX (vector extensions) if available
727      *   1               == VMX / Altivec available
728      *   2               == VSX available
729      *
730      * Only CPUs for which we create core types in spapr_cpu_core.c
731      * are possible, and all of those have VMX */
732     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
733         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
734     } else {
735         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
736     }
737 
738     /* Advertise DFP (Decimal Floating Point) if available
739      *   0 / no property == no DFP
740      *   1               == DFP available */
741     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
742         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
743     }
744 
745     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
746                                                       sizeof(page_sizes_prop));
747     if (page_sizes_prop_size) {
748         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
749                           page_sizes_prop, page_sizes_prop_size)));
750     }
751 
752     spapr_dt_pa_features(spapr, cpu, fdt, offset);
753 
754     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
755                            cs->cpu_index / vcpus_per_socket)));
756 
757     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
758                       pft_size_prop, sizeof(pft_size_prop))));
759 
760     if (ms->numa_state->num_nodes > 1) {
761         _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu));
762     }
763 
764     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
765 
766     if (pcc->radix_page_info) {
767         for (i = 0; i < pcc->radix_page_info->count; i++) {
768             radix_AP_encodings[i] =
769                 cpu_to_be32(pcc->radix_page_info->entries[i]);
770         }
771         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
772                           radix_AP_encodings,
773                           pcc->radix_page_info->count *
774                           sizeof(radix_AP_encodings[0]))));
775     }
776 
777     /*
778      * We set this property to let the guest know that it can use the large
779      * decrementer and its width in bits.
780      */
781     if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF)
782         _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits",
783                               pcc->lrg_decr_bits)));
784 }
785 
786 static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr)
787 {
788     CPUState **rev;
789     CPUState *cs;
790     int n_cpus;
791     int cpus_offset;
792     char *nodename;
793     int i;
794 
795     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
796     _FDT(cpus_offset);
797     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
798     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
799 
800     /*
801      * We walk the CPUs in reverse order to ensure that CPU DT nodes
802      * created by fdt_add_subnode() end up in the right order in FDT
803      * for the guest kernel the enumerate the CPUs correctly.
804      *
805      * The CPU list cannot be traversed in reverse order, so we need
806      * to do extra work.
807      */
808     n_cpus = 0;
809     rev = NULL;
810     CPU_FOREACH(cs) {
811         rev = g_renew(CPUState *, rev, n_cpus + 1);
812         rev[n_cpus++] = cs;
813     }
814 
815     for (i = n_cpus - 1; i >= 0; i--) {
816         CPUState *cs = rev[i];
817         PowerPCCPU *cpu = POWERPC_CPU(cs);
818         int index = spapr_get_vcpu_id(cpu);
819         DeviceClass *dc = DEVICE_GET_CLASS(cs);
820         int offset;
821 
822         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
823             continue;
824         }
825 
826         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
827         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
828         g_free(nodename);
829         _FDT(offset);
830         spapr_dt_cpu(cs, fdt, offset, spapr);
831     }
832 
833     g_free(rev);
834 }
835 
836 static int spapr_dt_rng(void *fdt)
837 {
838     int node;
839     int ret;
840 
841     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
842     if (node <= 0) {
843         return -1;
844     }
845     ret = fdt_setprop_string(fdt, node, "device_type",
846                              "ibm,platform-facilities");
847     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
848     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
849 
850     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
851     if (node <= 0) {
852         return -1;
853     }
854     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
855 
856     return ret ? -1 : 0;
857 }
858 
859 static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt)
860 {
861     MachineState *ms = MACHINE(spapr);
862     int rtas;
863     GString *hypertas = g_string_sized_new(256);
864     GString *qemu_hypertas = g_string_sized_new(256);
865     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
866         memory_region_size(&MACHINE(spapr)->device_memory->mr);
867     uint32_t lrdr_capacity[] = {
868         cpu_to_be32(max_device_addr >> 32),
869         cpu_to_be32(max_device_addr & 0xffffffff),
870         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32),
871         cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff),
872         cpu_to_be32(ms->smp.max_cpus / ms->smp.threads),
873     };
874 
875     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
876 
877     /* hypertas */
878     add_str(hypertas, "hcall-pft");
879     add_str(hypertas, "hcall-term");
880     add_str(hypertas, "hcall-dabr");
881     add_str(hypertas, "hcall-interrupt");
882     add_str(hypertas, "hcall-tce");
883     add_str(hypertas, "hcall-vio");
884     add_str(hypertas, "hcall-splpar");
885     add_str(hypertas, "hcall-join");
886     add_str(hypertas, "hcall-bulk");
887     add_str(hypertas, "hcall-set-mode");
888     add_str(hypertas, "hcall-sprg0");
889     add_str(hypertas, "hcall-copy");
890     add_str(hypertas, "hcall-debug");
891     add_str(hypertas, "hcall-vphn");
892     add_str(qemu_hypertas, "hcall-memop1");
893 
894     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
895         add_str(hypertas, "hcall-multi-tce");
896     }
897 
898     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
899         add_str(hypertas, "hcall-hpt-resize");
900     }
901 
902     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
903                      hypertas->str, hypertas->len));
904     g_string_free(hypertas, TRUE);
905     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
906                      qemu_hypertas->str, qemu_hypertas->len));
907     g_string_free(qemu_hypertas, TRUE);
908 
909     spapr_numa_write_rtas_dt(spapr, fdt, rtas);
910 
911     /*
912      * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log,
913      * and 16 bytes per CPU for system reset error log plus an extra 8 bytes.
914      *
915      * The system reset requirements are driven by existing Linux and PowerVM
916      * implementation which (contrary to PAPR) saves r3 in the error log
917      * structure like machine check, so Linux expects to find the saved r3
918      * value at the address in r3 upon FWNMI-enabled sreset interrupt (and
919      * does not look at the error value).
920      *
921      * System reset interrupts are not subject to interlock like machine
922      * check, so this memory area could be corrupted if the sreset is
923      * interrupted by a machine check (or vice versa) if it was shared. To
924      * prevent this, system reset uses per-CPU areas for the sreset save
925      * area. A system reset that interrupts a system reset handler could
926      * still overwrite this area, but Linux doesn't try to recover in that
927      * case anyway.
928      *
929      * The extra 8 bytes is required because Linux's FWNMI error log check
930      * is off-by-one.
931      */
932     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_ERROR_LOG_MAX +
933 			  ms->smp.max_cpus * sizeof(uint64_t)*2 + sizeof(uint64_t)));
934     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
935                           RTAS_ERROR_LOG_MAX));
936     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
937                           RTAS_EVENT_SCAN_RATE));
938 
939     g_assert(msi_nonbroken);
940     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
941 
942     /*
943      * According to PAPR, rtas ibm,os-term does not guarantee a return
944      * back to the guest cpu.
945      *
946      * While an additional ibm,extended-os-term property indicates
947      * that rtas call return will always occur. Set this property.
948      */
949     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
950 
951     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
952                      lrdr_capacity, sizeof(lrdr_capacity)));
953 
954     spapr_dt_rtas_tokens(fdt, rtas);
955 }
956 
957 /*
958  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
959  * and the XIVE features that the guest may request and thus the valid
960  * values for bytes 23..26 of option vector 5:
961  */
962 static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt,
963                                           int chosen)
964 {
965     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
966 
967     char val[2 * 4] = {
968         23, 0x00, /* XICS / XIVE mode */
969         24, 0x00, /* Hash/Radix, filled in below. */
970         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
971         26, 0x40, /* Radix options: GTSE == yes. */
972     };
973 
974     if (spapr->irq->xics && spapr->irq->xive) {
975         val[1] = SPAPR_OV5_XIVE_BOTH;
976     } else if (spapr->irq->xive) {
977         val[1] = SPAPR_OV5_XIVE_EXPLOIT;
978     } else {
979         assert(spapr->irq->xics);
980         val[1] = SPAPR_OV5_XIVE_LEGACY;
981     }
982 
983     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
984                           first_ppc_cpu->compat_pvr)) {
985         /*
986          * If we're in a pre POWER9 compat mode then the guest should
987          * do hash and use the legacy interrupt mode
988          */
989         val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */
990         val[3] = 0x00; /* Hash */
991     } else if (kvm_enabled()) {
992         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
993             val[3] = 0x80; /* OV5_MMU_BOTH */
994         } else if (kvmppc_has_cap_mmu_radix()) {
995             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
996         } else {
997             val[3] = 0x00; /* Hash */
998         }
999     } else {
1000         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1001         val[3] = 0xC0;
1002     }
1003     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1004                      val, sizeof(val)));
1005 }
1006 
1007 static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset)
1008 {
1009     MachineState *machine = MACHINE(spapr);
1010     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1011     int chosen;
1012 
1013     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1014 
1015     if (reset) {
1016         const char *boot_device = machine->boot_order;
1017         char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1018         size_t cb = 0;
1019         char *bootlist = get_boot_devices_list(&cb);
1020 
1021         if (machine->kernel_cmdline && machine->kernel_cmdline[0]) {
1022             _FDT(fdt_setprop_string(fdt, chosen, "bootargs",
1023                                     machine->kernel_cmdline));
1024         }
1025 
1026         if (spapr->initrd_size) {
1027             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1028                                   spapr->initrd_base));
1029             _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1030                                   spapr->initrd_base + spapr->initrd_size));
1031         }
1032 
1033         if (spapr->kernel_size) {
1034             uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr),
1035                                   cpu_to_be64(spapr->kernel_size) };
1036 
1037             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1038                          &kprop, sizeof(kprop)));
1039             if (spapr->kernel_le) {
1040                 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1041             }
1042         }
1043         if (boot_menu) {
1044             _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1045         }
1046         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1047         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1048         _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1049 
1050         if (cb && bootlist) {
1051             int i;
1052 
1053             for (i = 0; i < cb; i++) {
1054                 if (bootlist[i] == '\n') {
1055                     bootlist[i] = ' ';
1056                 }
1057             }
1058             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1059         }
1060 
1061         if (boot_device && strlen(boot_device)) {
1062             _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1063         }
1064 
1065         if (!spapr->has_graphics && stdout_path) {
1066             /*
1067              * "linux,stdout-path" and "stdout" properties are
1068              * deprecated by linux kernel. New platforms should only
1069              * use the "stdout-path" property. Set the new property
1070              * and continue using older property to remain compatible
1071              * with the existing firmware.
1072              */
1073             _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1074             _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1075         }
1076 
1077         /*
1078          * We can deal with BAR reallocation just fine, advertise it
1079          * to the guest
1080          */
1081         if (smc->linux_pci_probe) {
1082             _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0));
1083         }
1084 
1085         spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1086 
1087         g_free(stdout_path);
1088         g_free(bootlist);
1089     }
1090 
1091     _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5"));
1092 }
1093 
1094 static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt)
1095 {
1096     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1097      * KVM to work under pHyp with some guest co-operation */
1098     int hypervisor;
1099     uint8_t hypercall[16];
1100 
1101     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1102     /* indicate KVM hypercall interface */
1103     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1104     if (kvmppc_has_cap_fixup_hcalls()) {
1105         /*
1106          * Older KVM versions with older guest kernels were broken
1107          * with the magic page, don't allow the guest to map it.
1108          */
1109         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1110                                   sizeof(hypercall))) {
1111             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1112                              hypercall, sizeof(hypercall)));
1113         }
1114     }
1115 }
1116 
1117 void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space)
1118 {
1119     MachineState *machine = MACHINE(spapr);
1120     MachineClass *mc = MACHINE_GET_CLASS(machine);
1121     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1122     int ret;
1123     void *fdt;
1124     SpaprPhbState *phb;
1125     char *buf;
1126 
1127     fdt = g_malloc0(space);
1128     _FDT((fdt_create_empty_tree(fdt, space)));
1129 
1130     /* Root node */
1131     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1132     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1133     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1134 
1135     /* Guest UUID & Name*/
1136     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1137     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1138     if (qemu_uuid_set) {
1139         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1140     }
1141     g_free(buf);
1142 
1143     if (qemu_get_vm_name()) {
1144         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1145                                 qemu_get_vm_name()));
1146     }
1147 
1148     /* Host Model & Serial Number */
1149     if (spapr->host_model) {
1150         _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1151     } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) {
1152         _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1153         g_free(buf);
1154     }
1155 
1156     if (spapr->host_serial) {
1157         _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1158     } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) {
1159         _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1160         g_free(buf);
1161     }
1162 
1163     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1164     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1165 
1166     /* /interrupt controller */
1167     spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC);
1168 
1169     ret = spapr_dt_memory(spapr, fdt);
1170     if (ret < 0) {
1171         error_report("couldn't setup memory nodes in fdt");
1172         exit(1);
1173     }
1174 
1175     /* /vdevice */
1176     spapr_dt_vdevice(spapr->vio_bus, fdt);
1177 
1178     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1179         ret = spapr_dt_rng(fdt);
1180         if (ret < 0) {
1181             error_report("could not set up rng device in the fdt");
1182             exit(1);
1183         }
1184     }
1185 
1186     QLIST_FOREACH(phb, &spapr->phbs, list) {
1187         ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL);
1188         if (ret < 0) {
1189             error_report("couldn't setup PCI devices in fdt");
1190             exit(1);
1191         }
1192     }
1193 
1194     spapr_dt_cpus(fdt, spapr);
1195 
1196     if (smc->dr_lmb_enabled) {
1197         _FDT(spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1198     }
1199 
1200     if (mc->has_hotpluggable_cpus) {
1201         int offset = fdt_path_offset(fdt, "/cpus");
1202         ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU);
1203         if (ret < 0) {
1204             error_report("Couldn't set up CPU DR device tree properties");
1205             exit(1);
1206         }
1207     }
1208 
1209     /* /event-sources */
1210     spapr_dt_events(spapr, fdt);
1211 
1212     /* /rtas */
1213     spapr_dt_rtas(spapr, fdt);
1214 
1215     /* /chosen */
1216     spapr_dt_chosen(spapr, fdt, reset);
1217 
1218     /* /hypervisor */
1219     if (kvm_enabled()) {
1220         spapr_dt_hypervisor(spapr, fdt);
1221     }
1222 
1223     /* Build memory reserve map */
1224     if (reset) {
1225         if (spapr->kernel_size) {
1226             _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr,
1227                                   spapr->kernel_size)));
1228         }
1229         if (spapr->initrd_size) {
1230             _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base,
1231                                   spapr->initrd_size)));
1232         }
1233     }
1234 
1235     if (smc->dr_phb_enabled) {
1236         ret = spapr_dt_drc(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_PHB);
1237         if (ret < 0) {
1238             error_report("Couldn't set up PHB DR device tree properties");
1239             exit(1);
1240         }
1241     }
1242 
1243     /* NVDIMM devices */
1244     if (mc->nvdimm_supported) {
1245         spapr_dt_persistent_memory(spapr, fdt);
1246     }
1247 
1248     return fdt;
1249 }
1250 
1251 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1252 {
1253     SpaprMachineState *spapr = opaque;
1254 
1255     return (addr & 0x0fffffff) + spapr->kernel_addr;
1256 }
1257 
1258 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1259                                     PowerPCCPU *cpu)
1260 {
1261     CPUPPCState *env = &cpu->env;
1262 
1263     /* The TCG path should also be holding the BQL at this point */
1264     g_assert(qemu_mutex_iothread_locked());
1265 
1266     if (msr_pr) {
1267         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1268         env->gpr[3] = H_PRIVILEGE;
1269     } else {
1270         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1271     }
1272 }
1273 
1274 struct LPCRSyncState {
1275     target_ulong value;
1276     target_ulong mask;
1277 };
1278 
1279 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1280 {
1281     struct LPCRSyncState *s = arg.host_ptr;
1282     PowerPCCPU *cpu = POWERPC_CPU(cs);
1283     CPUPPCState *env = &cpu->env;
1284     target_ulong lpcr;
1285 
1286     cpu_synchronize_state(cs);
1287     lpcr = env->spr[SPR_LPCR];
1288     lpcr &= ~s->mask;
1289     lpcr |= s->value;
1290     ppc_store_lpcr(cpu, lpcr);
1291 }
1292 
1293 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1294 {
1295     CPUState *cs;
1296     struct LPCRSyncState s = {
1297         .value = value,
1298         .mask = mask
1299     };
1300     CPU_FOREACH(cs) {
1301         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1302     }
1303 }
1304 
1305 static void spapr_get_pate(PPCVirtualHypervisor *vhyp, ppc_v3_pate_t *entry)
1306 {
1307     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1308 
1309     /* Copy PATE1:GR into PATE0:HR */
1310     entry->dw0 = spapr->patb_entry & PATE0_HR;
1311     entry->dw1 = spapr->patb_entry;
1312 }
1313 
1314 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1315 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1316 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1317 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1318 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1319 
1320 /*
1321  * Get the fd to access the kernel htab, re-opening it if necessary
1322  */
1323 static int get_htab_fd(SpaprMachineState *spapr)
1324 {
1325     Error *local_err = NULL;
1326 
1327     if (spapr->htab_fd >= 0) {
1328         return spapr->htab_fd;
1329     }
1330 
1331     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1332     if (spapr->htab_fd < 0) {
1333         error_report_err(local_err);
1334     }
1335 
1336     return spapr->htab_fd;
1337 }
1338 
1339 void close_htab_fd(SpaprMachineState *spapr)
1340 {
1341     if (spapr->htab_fd >= 0) {
1342         close(spapr->htab_fd);
1343     }
1344     spapr->htab_fd = -1;
1345 }
1346 
1347 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1348 {
1349     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1350 
1351     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1352 }
1353 
1354 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1355 {
1356     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1357 
1358     assert(kvm_enabled());
1359 
1360     if (!spapr->htab) {
1361         return 0;
1362     }
1363 
1364     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1365 }
1366 
1367 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1368                                                 hwaddr ptex, int n)
1369 {
1370     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1371     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1372 
1373     if (!spapr->htab) {
1374         /*
1375          * HTAB is controlled by KVM. Fetch into temporary buffer
1376          */
1377         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1378         kvmppc_read_hptes(hptes, ptex, n);
1379         return hptes;
1380     }
1381 
1382     /*
1383      * HTAB is controlled by QEMU. Just point to the internally
1384      * accessible PTEG.
1385      */
1386     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1387 }
1388 
1389 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1390                               const ppc_hash_pte64_t *hptes,
1391                               hwaddr ptex, int n)
1392 {
1393     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1394 
1395     if (!spapr->htab) {
1396         g_free((void *)hptes);
1397     }
1398 
1399     /* Nothing to do for qemu managed HPT */
1400 }
1401 
1402 void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex,
1403                       uint64_t pte0, uint64_t pte1)
1404 {
1405     SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp);
1406     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1407 
1408     if (!spapr->htab) {
1409         kvmppc_write_hpte(ptex, pte0, pte1);
1410     } else {
1411         if (pte0 & HPTE64_V_VALID) {
1412             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1413             /*
1414              * When setting valid, we write PTE1 first. This ensures
1415              * proper synchronization with the reading code in
1416              * ppc_hash64_pteg_search()
1417              */
1418             smp_wmb();
1419             stq_p(spapr->htab + offset, pte0);
1420         } else {
1421             stq_p(spapr->htab + offset, pte0);
1422             /*
1423              * When clearing it we set PTE0 first. This ensures proper
1424              * synchronization with the reading code in
1425              * ppc_hash64_pteg_search()
1426              */
1427             smp_wmb();
1428             stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1429         }
1430     }
1431 }
1432 
1433 static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1434                              uint64_t pte1)
1435 {
1436     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 15;
1437     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1438 
1439     if (!spapr->htab) {
1440         /* There should always be a hash table when this is called */
1441         error_report("spapr_hpte_set_c called with no hash table !");
1442         return;
1443     }
1444 
1445     /* The HW performs a non-atomic byte update */
1446     stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80);
1447 }
1448 
1449 static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1450                              uint64_t pte1)
1451 {
1452     hwaddr offset = ptex * HASH_PTE_SIZE_64 + 14;
1453     SpaprMachineState *spapr = SPAPR_MACHINE(vhyp);
1454 
1455     if (!spapr->htab) {
1456         /* There should always be a hash table when this is called */
1457         error_report("spapr_hpte_set_r called with no hash table !");
1458         return;
1459     }
1460 
1461     /* The HW performs a non-atomic byte update */
1462     stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01);
1463 }
1464 
1465 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1466 {
1467     int shift;
1468 
1469     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1470      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1471      * that's much more than is needed for Linux guests */
1472     shift = ctz64(pow2ceil(ramsize)) - 7;
1473     shift = MAX(shift, 18); /* Minimum architected size */
1474     shift = MIN(shift, 46); /* Maximum architected size */
1475     return shift;
1476 }
1477 
1478 void spapr_free_hpt(SpaprMachineState *spapr)
1479 {
1480     g_free(spapr->htab);
1481     spapr->htab = NULL;
1482     spapr->htab_shift = 0;
1483     close_htab_fd(spapr);
1484 }
1485 
1486 void spapr_reallocate_hpt(SpaprMachineState *spapr, int shift,
1487                           Error **errp)
1488 {
1489     ERRP_GUARD();
1490     long rc;
1491 
1492     /* Clean up any HPT info from a previous boot */
1493     spapr_free_hpt(spapr);
1494 
1495     rc = kvmppc_reset_htab(shift);
1496 
1497     if (rc == -EOPNOTSUPP) {
1498         error_setg(errp, "HPT not supported in nested guests");
1499         return;
1500     }
1501 
1502     if (rc < 0) {
1503         /* kernel-side HPT needed, but couldn't allocate one */
1504         error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d",
1505                          shift);
1506         error_append_hint(errp, "Try smaller maxmem?\n");
1507         /* This is almost certainly fatal, but if the caller really
1508          * wants to carry on with shift == 0, it's welcome to try */
1509     } else if (rc > 0) {
1510         /* kernel-side HPT allocated */
1511         if (rc != shift) {
1512             error_setg(errp,
1513                        "Requested order %d HPT, but kernel allocated order %ld",
1514                        shift, rc);
1515             error_append_hint(errp, "Try smaller maxmem?\n");
1516         }
1517 
1518         spapr->htab_shift = shift;
1519         spapr->htab = NULL;
1520     } else {
1521         /* kernel-side HPT not needed, allocate in userspace instead */
1522         size_t size = 1ULL << shift;
1523         int i;
1524 
1525         spapr->htab = qemu_memalign(size, size);
1526         if (!spapr->htab) {
1527             error_setg_errno(errp, errno,
1528                              "Could not allocate HPT of order %d", shift);
1529             return;
1530         }
1531 
1532         memset(spapr->htab, 0, size);
1533         spapr->htab_shift = shift;
1534 
1535         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1536             DIRTY_HPTE(HPTE(spapr->htab, i));
1537         }
1538     }
1539     /* We're setting up a hash table, so that means we're not radix */
1540     spapr->patb_entry = 0;
1541     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1542 }
1543 
1544 void spapr_setup_hpt(SpaprMachineState *spapr)
1545 {
1546     int hpt_shift;
1547 
1548     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) {
1549         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1550     } else {
1551         uint64_t current_ram_size;
1552 
1553         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1554         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1555     }
1556     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1557 
1558     if (kvm_enabled()) {
1559         hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift);
1560 
1561         /* Check our RMA fits in the possible VRMA */
1562         if (vrma_limit < spapr->rma_size) {
1563             error_report("Unable to create %" HWADDR_PRIu
1564                          "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB",
1565                          spapr->rma_size / MiB, vrma_limit / MiB);
1566             exit(EXIT_FAILURE);
1567         }
1568     }
1569 }
1570 
1571 static int spapr_reset_drcs(Object *child, void *opaque)
1572 {
1573     SpaprDrc *drc =
1574         (SpaprDrc *) object_dynamic_cast(child,
1575                                                  TYPE_SPAPR_DR_CONNECTOR);
1576 
1577     if (drc) {
1578         spapr_drc_reset(drc);
1579     }
1580 
1581     return 0;
1582 }
1583 
1584 static void spapr_machine_reset(MachineState *machine)
1585 {
1586     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
1587     PowerPCCPU *first_ppc_cpu;
1588     hwaddr fdt_addr;
1589     void *fdt;
1590     int rc;
1591 
1592     kvmppc_svm_off(&error_fatal);
1593     spapr_caps_apply(spapr);
1594 
1595     first_ppc_cpu = POWERPC_CPU(first_cpu);
1596     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1597         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1598                               spapr->max_compat_pvr)) {
1599         /*
1600          * If using KVM with radix mode available, VCPUs can be started
1601          * without a HPT because KVM will start them in radix mode.
1602          * Set the GR bit in PATE so that we know there is no HPT.
1603          */
1604         spapr->patb_entry = PATE1_GR;
1605         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1606     } else {
1607         spapr_setup_hpt(spapr);
1608     }
1609 
1610     qemu_devices_reset();
1611 
1612     spapr_ovec_cleanup(spapr->ov5_cas);
1613     spapr->ov5_cas = spapr_ovec_new();
1614 
1615     ppc_set_compat_all(spapr->max_compat_pvr, &error_fatal);
1616 
1617     /*
1618      * This is fixing some of the default configuration of the XIVE
1619      * devices. To be called after the reset of the machine devices.
1620      */
1621     spapr_irq_reset(spapr, &error_fatal);
1622 
1623     /*
1624      * There is no CAS under qtest. Simulate one to please the code that
1625      * depends on spapr->ov5_cas. This is especially needed to test device
1626      * unplug, so we do that before resetting the DRCs.
1627      */
1628     if (qtest_enabled()) {
1629         spapr_ovec_cleanup(spapr->ov5_cas);
1630         spapr->ov5_cas = spapr_ovec_clone(spapr->ov5);
1631     }
1632 
1633     /* DRC reset may cause a device to be unplugged. This will cause troubles
1634      * if this device is used by another device (eg, a running vhost backend
1635      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1636      * situations, we reset DRCs after all devices have been reset.
1637      */
1638     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1639 
1640     spapr_clear_pending_events(spapr);
1641 
1642     /*
1643      * We place the device tree and RTAS just below either the top of the RMA,
1644      * or just below 2GB, whichever is lower, so that it can be
1645      * processed with 32-bit real mode code if necessary
1646      */
1647     fdt_addr = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FDT_MAX_SIZE;
1648 
1649     fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE);
1650 
1651     rc = fdt_pack(fdt);
1652 
1653     /* Should only fail if we've built a corrupted tree */
1654     assert(rc == 0);
1655 
1656     /* Load the fdt */
1657     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1658     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1659     g_free(spapr->fdt_blob);
1660     spapr->fdt_size = fdt_totalsize(fdt);
1661     spapr->fdt_initial_size = spapr->fdt_size;
1662     spapr->fdt_blob = fdt;
1663 
1664     /* Set up the entry state */
1665     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, 0, fdt_addr, 0);
1666     first_ppc_cpu->env.gpr[5] = 0;
1667 
1668     spapr->fwnmi_system_reset_addr = -1;
1669     spapr->fwnmi_machine_check_addr = -1;
1670     spapr->fwnmi_machine_check_interlock = -1;
1671 
1672     /* Signal all vCPUs waiting on this condition */
1673     qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond);
1674 
1675     migrate_del_blocker(spapr->fwnmi_migration_blocker);
1676 }
1677 
1678 static void spapr_create_nvram(SpaprMachineState *spapr)
1679 {
1680     DeviceState *dev = qdev_new("spapr-nvram");
1681     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1682 
1683     if (dinfo) {
1684         qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo),
1685                                 &error_fatal);
1686     }
1687 
1688     qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal);
1689 
1690     spapr->nvram = (struct SpaprNvram *)dev;
1691 }
1692 
1693 static void spapr_rtc_create(SpaprMachineState *spapr)
1694 {
1695     object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc,
1696                                        sizeof(spapr->rtc), TYPE_SPAPR_RTC,
1697                                        &error_fatal, NULL);
1698     qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal);
1699     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1700                               "date");
1701 }
1702 
1703 /* Returns whether we want to use VGA or not */
1704 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1705 {
1706     switch (vga_interface_type) {
1707     case VGA_NONE:
1708         return false;
1709     case VGA_DEVICE:
1710         return true;
1711     case VGA_STD:
1712     case VGA_VIRTIO:
1713     case VGA_CIRRUS:
1714         return pci_vga_init(pci_bus) != NULL;
1715     default:
1716         error_setg(errp,
1717                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1718         return false;
1719     }
1720 }
1721 
1722 static int spapr_pre_load(void *opaque)
1723 {
1724     int rc;
1725 
1726     rc = spapr_caps_pre_load(opaque);
1727     if (rc) {
1728         return rc;
1729     }
1730 
1731     return 0;
1732 }
1733 
1734 static int spapr_post_load(void *opaque, int version_id)
1735 {
1736     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1737     int err = 0;
1738 
1739     err = spapr_caps_post_migration(spapr);
1740     if (err) {
1741         return err;
1742     }
1743 
1744     /*
1745      * In earlier versions, there was no separate qdev for the PAPR
1746      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1747      * So when migrating from those versions, poke the incoming offset
1748      * value into the RTC device
1749      */
1750     if (version_id < 3) {
1751         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1752         if (err) {
1753             return err;
1754         }
1755     }
1756 
1757     if (kvm_enabled() && spapr->patb_entry) {
1758         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1759         bool radix = !!(spapr->patb_entry & PATE1_GR);
1760         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1761 
1762         /*
1763          * Update LPCR:HR and UPRT as they may not be set properly in
1764          * the stream
1765          */
1766         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1767                             LPCR_HR | LPCR_UPRT);
1768 
1769         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1770         if (err) {
1771             error_report("Process table config unsupported by the host");
1772             return -EINVAL;
1773         }
1774     }
1775 
1776     err = spapr_irq_post_load(spapr, version_id);
1777     if (err) {
1778         return err;
1779     }
1780 
1781     return err;
1782 }
1783 
1784 static int spapr_pre_save(void *opaque)
1785 {
1786     int rc;
1787 
1788     rc = spapr_caps_pre_save(opaque);
1789     if (rc) {
1790         return rc;
1791     }
1792 
1793     return 0;
1794 }
1795 
1796 static bool version_before_3(void *opaque, int version_id)
1797 {
1798     return version_id < 3;
1799 }
1800 
1801 static bool spapr_pending_events_needed(void *opaque)
1802 {
1803     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1804     return !QTAILQ_EMPTY(&spapr->pending_events);
1805 }
1806 
1807 static const VMStateDescription vmstate_spapr_event_entry = {
1808     .name = "spapr_event_log_entry",
1809     .version_id = 1,
1810     .minimum_version_id = 1,
1811     .fields = (VMStateField[]) {
1812         VMSTATE_UINT32(summary, SpaprEventLogEntry),
1813         VMSTATE_UINT32(extended_length, SpaprEventLogEntry),
1814         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0,
1815                                      NULL, extended_length),
1816         VMSTATE_END_OF_LIST()
1817     },
1818 };
1819 
1820 static const VMStateDescription vmstate_spapr_pending_events = {
1821     .name = "spapr_pending_events",
1822     .version_id = 1,
1823     .minimum_version_id = 1,
1824     .needed = spapr_pending_events_needed,
1825     .fields = (VMStateField[]) {
1826         VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1,
1827                          vmstate_spapr_event_entry, SpaprEventLogEntry, next),
1828         VMSTATE_END_OF_LIST()
1829     },
1830 };
1831 
1832 static bool spapr_ov5_cas_needed(void *opaque)
1833 {
1834     SpaprMachineState *spapr = opaque;
1835     SpaprOptionVector *ov5_mask = spapr_ovec_new();
1836     bool cas_needed;
1837 
1838     /* Prior to the introduction of SpaprOptionVector, we had two option
1839      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1840      * Both of these options encode machine topology into the device-tree
1841      * in such a way that the now-booted OS should still be able to interact
1842      * appropriately with QEMU regardless of what options were actually
1843      * negotiatied on the source side.
1844      *
1845      * As such, we can avoid migrating the CAS-negotiated options if these
1846      * are the only options available on the current machine/platform.
1847      * Since these are the only options available for pseries-2.7 and
1848      * earlier, this allows us to maintain old->new/new->old migration
1849      * compatibility.
1850      *
1851      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1852      * via default pseries-2.8 machines and explicit command-line parameters.
1853      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1854      * of the actual CAS-negotiated values to continue working properly. For
1855      * example, availability of memory unplug depends on knowing whether
1856      * OV5_HP_EVT was negotiated via CAS.
1857      *
1858      * Thus, for any cases where the set of available CAS-negotiatable
1859      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1860      * include the CAS-negotiated options in the migration stream, unless
1861      * if they affect boot time behaviour only.
1862      */
1863     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1864     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1865     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1866 
1867     /* We need extra information if we have any bits outside the mask
1868      * defined above */
1869     cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask);
1870 
1871     spapr_ovec_cleanup(ov5_mask);
1872 
1873     return cas_needed;
1874 }
1875 
1876 static const VMStateDescription vmstate_spapr_ov5_cas = {
1877     .name = "spapr_option_vector_ov5_cas",
1878     .version_id = 1,
1879     .minimum_version_id = 1,
1880     .needed = spapr_ov5_cas_needed,
1881     .fields = (VMStateField[]) {
1882         VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1,
1883                                  vmstate_spapr_ovec, SpaprOptionVector),
1884         VMSTATE_END_OF_LIST()
1885     },
1886 };
1887 
1888 static bool spapr_patb_entry_needed(void *opaque)
1889 {
1890     SpaprMachineState *spapr = opaque;
1891 
1892     return !!spapr->patb_entry;
1893 }
1894 
1895 static const VMStateDescription vmstate_spapr_patb_entry = {
1896     .name = "spapr_patb_entry",
1897     .version_id = 1,
1898     .minimum_version_id = 1,
1899     .needed = spapr_patb_entry_needed,
1900     .fields = (VMStateField[]) {
1901         VMSTATE_UINT64(patb_entry, SpaprMachineState),
1902         VMSTATE_END_OF_LIST()
1903     },
1904 };
1905 
1906 static bool spapr_irq_map_needed(void *opaque)
1907 {
1908     SpaprMachineState *spapr = opaque;
1909 
1910     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1911 }
1912 
1913 static const VMStateDescription vmstate_spapr_irq_map = {
1914     .name = "spapr_irq_map",
1915     .version_id = 1,
1916     .minimum_version_id = 1,
1917     .needed = spapr_irq_map_needed,
1918     .fields = (VMStateField[]) {
1919         VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr),
1920         VMSTATE_END_OF_LIST()
1921     },
1922 };
1923 
1924 static bool spapr_dtb_needed(void *opaque)
1925 {
1926     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1927 
1928     return smc->update_dt_enabled;
1929 }
1930 
1931 static int spapr_dtb_pre_load(void *opaque)
1932 {
1933     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1934 
1935     g_free(spapr->fdt_blob);
1936     spapr->fdt_blob = NULL;
1937     spapr->fdt_size = 0;
1938 
1939     return 0;
1940 }
1941 
1942 static const VMStateDescription vmstate_spapr_dtb = {
1943     .name = "spapr_dtb",
1944     .version_id = 1,
1945     .minimum_version_id = 1,
1946     .needed = spapr_dtb_needed,
1947     .pre_load = spapr_dtb_pre_load,
1948     .fields = (VMStateField[]) {
1949         VMSTATE_UINT32(fdt_initial_size, SpaprMachineState),
1950         VMSTATE_UINT32(fdt_size, SpaprMachineState),
1951         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL,
1952                                      fdt_size),
1953         VMSTATE_END_OF_LIST()
1954     },
1955 };
1956 
1957 static bool spapr_fwnmi_needed(void *opaque)
1958 {
1959     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1960 
1961     return spapr->fwnmi_machine_check_addr != -1;
1962 }
1963 
1964 static int spapr_fwnmi_pre_save(void *opaque)
1965 {
1966     SpaprMachineState *spapr = (SpaprMachineState *)opaque;
1967 
1968     /*
1969      * Check if machine check handling is in progress and print a
1970      * warning message.
1971      */
1972     if (spapr->fwnmi_machine_check_interlock != -1) {
1973         warn_report("A machine check is being handled during migration. The"
1974                 "handler may run and log hardware error on the destination");
1975     }
1976 
1977     return 0;
1978 }
1979 
1980 static const VMStateDescription vmstate_spapr_fwnmi = {
1981     .name = "spapr_fwnmi",
1982     .version_id = 1,
1983     .minimum_version_id = 1,
1984     .needed = spapr_fwnmi_needed,
1985     .pre_save = spapr_fwnmi_pre_save,
1986     .fields = (VMStateField[]) {
1987         VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState),
1988         VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState),
1989         VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState),
1990         VMSTATE_END_OF_LIST()
1991     },
1992 };
1993 
1994 static const VMStateDescription vmstate_spapr = {
1995     .name = "spapr",
1996     .version_id = 3,
1997     .minimum_version_id = 1,
1998     .pre_load = spapr_pre_load,
1999     .post_load = spapr_post_load,
2000     .pre_save = spapr_pre_save,
2001     .fields = (VMStateField[]) {
2002         /* used to be @next_irq */
2003         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2004 
2005         /* RTC offset */
2006         VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3),
2007 
2008         VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2),
2009         VMSTATE_END_OF_LIST()
2010     },
2011     .subsections = (const VMStateDescription*[]) {
2012         &vmstate_spapr_ov5_cas,
2013         &vmstate_spapr_patb_entry,
2014         &vmstate_spapr_pending_events,
2015         &vmstate_spapr_cap_htm,
2016         &vmstate_spapr_cap_vsx,
2017         &vmstate_spapr_cap_dfp,
2018         &vmstate_spapr_cap_cfpc,
2019         &vmstate_spapr_cap_sbbc,
2020         &vmstate_spapr_cap_ibs,
2021         &vmstate_spapr_cap_hpt_maxpagesize,
2022         &vmstate_spapr_irq_map,
2023         &vmstate_spapr_cap_nested_kvm_hv,
2024         &vmstate_spapr_dtb,
2025         &vmstate_spapr_cap_large_decr,
2026         &vmstate_spapr_cap_ccf_assist,
2027         &vmstate_spapr_cap_fwnmi,
2028         &vmstate_spapr_fwnmi,
2029         NULL
2030     }
2031 };
2032 
2033 static int htab_save_setup(QEMUFile *f, void *opaque)
2034 {
2035     SpaprMachineState *spapr = opaque;
2036 
2037     /* "Iteration" header */
2038     if (!spapr->htab_shift) {
2039         qemu_put_be32(f, -1);
2040     } else {
2041         qemu_put_be32(f, spapr->htab_shift);
2042     }
2043 
2044     if (spapr->htab) {
2045         spapr->htab_save_index = 0;
2046         spapr->htab_first_pass = true;
2047     } else {
2048         if (spapr->htab_shift) {
2049             assert(kvm_enabled());
2050         }
2051     }
2052 
2053 
2054     return 0;
2055 }
2056 
2057 static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr,
2058                             int chunkstart, int n_valid, int n_invalid)
2059 {
2060     qemu_put_be32(f, chunkstart);
2061     qemu_put_be16(f, n_valid);
2062     qemu_put_be16(f, n_invalid);
2063     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2064                     HASH_PTE_SIZE_64 * n_valid);
2065 }
2066 
2067 static void htab_save_end_marker(QEMUFile *f)
2068 {
2069     qemu_put_be32(f, 0);
2070     qemu_put_be16(f, 0);
2071     qemu_put_be16(f, 0);
2072 }
2073 
2074 static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr,
2075                                  int64_t max_ns)
2076 {
2077     bool has_timeout = max_ns != -1;
2078     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2079     int index = spapr->htab_save_index;
2080     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2081 
2082     assert(spapr->htab_first_pass);
2083 
2084     do {
2085         int chunkstart;
2086 
2087         /* Consume invalid HPTEs */
2088         while ((index < htabslots)
2089                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2090             CLEAN_HPTE(HPTE(spapr->htab, index));
2091             index++;
2092         }
2093 
2094         /* Consume valid HPTEs */
2095         chunkstart = index;
2096         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2097                && HPTE_VALID(HPTE(spapr->htab, index))) {
2098             CLEAN_HPTE(HPTE(spapr->htab, index));
2099             index++;
2100         }
2101 
2102         if (index > chunkstart) {
2103             int n_valid = index - chunkstart;
2104 
2105             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2106 
2107             if (has_timeout &&
2108                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2109                 break;
2110             }
2111         }
2112     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2113 
2114     if (index >= htabslots) {
2115         assert(index == htabslots);
2116         index = 0;
2117         spapr->htab_first_pass = false;
2118     }
2119     spapr->htab_save_index = index;
2120 }
2121 
2122 static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr,
2123                                 int64_t max_ns)
2124 {
2125     bool final = max_ns < 0;
2126     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2127     int examined = 0, sent = 0;
2128     int index = spapr->htab_save_index;
2129     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2130 
2131     assert(!spapr->htab_first_pass);
2132 
2133     do {
2134         int chunkstart, invalidstart;
2135 
2136         /* Consume non-dirty HPTEs */
2137         while ((index < htabslots)
2138                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2139             index++;
2140             examined++;
2141         }
2142 
2143         chunkstart = index;
2144         /* Consume valid dirty HPTEs */
2145         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2146                && HPTE_DIRTY(HPTE(spapr->htab, index))
2147                && HPTE_VALID(HPTE(spapr->htab, index))) {
2148             CLEAN_HPTE(HPTE(spapr->htab, index));
2149             index++;
2150             examined++;
2151         }
2152 
2153         invalidstart = index;
2154         /* Consume invalid dirty HPTEs */
2155         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2156                && HPTE_DIRTY(HPTE(spapr->htab, index))
2157                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2158             CLEAN_HPTE(HPTE(spapr->htab, index));
2159             index++;
2160             examined++;
2161         }
2162 
2163         if (index > chunkstart) {
2164             int n_valid = invalidstart - chunkstart;
2165             int n_invalid = index - invalidstart;
2166 
2167             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2168             sent += index - chunkstart;
2169 
2170             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2171                 break;
2172             }
2173         }
2174 
2175         if (examined >= htabslots) {
2176             break;
2177         }
2178 
2179         if (index >= htabslots) {
2180             assert(index == htabslots);
2181             index = 0;
2182         }
2183     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2184 
2185     if (index >= htabslots) {
2186         assert(index == htabslots);
2187         index = 0;
2188     }
2189 
2190     spapr->htab_save_index = index;
2191 
2192     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2193 }
2194 
2195 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2196 #define MAX_KVM_BUF_SIZE    2048
2197 
2198 static int htab_save_iterate(QEMUFile *f, void *opaque)
2199 {
2200     SpaprMachineState *spapr = opaque;
2201     int fd;
2202     int rc = 0;
2203 
2204     /* Iteration header */
2205     if (!spapr->htab_shift) {
2206         qemu_put_be32(f, -1);
2207         return 1;
2208     } else {
2209         qemu_put_be32(f, 0);
2210     }
2211 
2212     if (!spapr->htab) {
2213         assert(kvm_enabled());
2214 
2215         fd = get_htab_fd(spapr);
2216         if (fd < 0) {
2217             return fd;
2218         }
2219 
2220         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2221         if (rc < 0) {
2222             return rc;
2223         }
2224     } else  if (spapr->htab_first_pass) {
2225         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2226     } else {
2227         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2228     }
2229 
2230     htab_save_end_marker(f);
2231 
2232     return rc;
2233 }
2234 
2235 static int htab_save_complete(QEMUFile *f, void *opaque)
2236 {
2237     SpaprMachineState *spapr = opaque;
2238     int fd;
2239 
2240     /* Iteration header */
2241     if (!spapr->htab_shift) {
2242         qemu_put_be32(f, -1);
2243         return 0;
2244     } else {
2245         qemu_put_be32(f, 0);
2246     }
2247 
2248     if (!spapr->htab) {
2249         int rc;
2250 
2251         assert(kvm_enabled());
2252 
2253         fd = get_htab_fd(spapr);
2254         if (fd < 0) {
2255             return fd;
2256         }
2257 
2258         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2259         if (rc < 0) {
2260             return rc;
2261         }
2262     } else {
2263         if (spapr->htab_first_pass) {
2264             htab_save_first_pass(f, spapr, -1);
2265         }
2266         htab_save_later_pass(f, spapr, -1);
2267     }
2268 
2269     /* End marker */
2270     htab_save_end_marker(f);
2271 
2272     return 0;
2273 }
2274 
2275 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2276 {
2277     SpaprMachineState *spapr = opaque;
2278     uint32_t section_hdr;
2279     int fd = -1;
2280     Error *local_err = NULL;
2281 
2282     if (version_id < 1 || version_id > 1) {
2283         error_report("htab_load() bad version");
2284         return -EINVAL;
2285     }
2286 
2287     section_hdr = qemu_get_be32(f);
2288 
2289     if (section_hdr == -1) {
2290         spapr_free_hpt(spapr);
2291         return 0;
2292     }
2293 
2294     if (section_hdr) {
2295         /* First section gives the htab size */
2296         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2297         if (local_err) {
2298             error_report_err(local_err);
2299             return -EINVAL;
2300         }
2301         return 0;
2302     }
2303 
2304     if (!spapr->htab) {
2305         assert(kvm_enabled());
2306 
2307         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2308         if (fd < 0) {
2309             error_report_err(local_err);
2310             return fd;
2311         }
2312     }
2313 
2314     while (true) {
2315         uint32_t index;
2316         uint16_t n_valid, n_invalid;
2317 
2318         index = qemu_get_be32(f);
2319         n_valid = qemu_get_be16(f);
2320         n_invalid = qemu_get_be16(f);
2321 
2322         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2323             /* End of Stream */
2324             break;
2325         }
2326 
2327         if ((index + n_valid + n_invalid) >
2328             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2329             /* Bad index in stream */
2330             error_report(
2331                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2332                 index, n_valid, n_invalid, spapr->htab_shift);
2333             return -EINVAL;
2334         }
2335 
2336         if (spapr->htab) {
2337             if (n_valid) {
2338                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2339                                 HASH_PTE_SIZE_64 * n_valid);
2340             }
2341             if (n_invalid) {
2342                 memset(HPTE(spapr->htab, index + n_valid), 0,
2343                        HASH_PTE_SIZE_64 * n_invalid);
2344             }
2345         } else {
2346             int rc;
2347 
2348             assert(fd >= 0);
2349 
2350             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid,
2351                                         &local_err);
2352             if (rc < 0) {
2353                 error_report_err(local_err);
2354                 return rc;
2355             }
2356         }
2357     }
2358 
2359     if (!spapr->htab) {
2360         assert(fd >= 0);
2361         close(fd);
2362     }
2363 
2364     return 0;
2365 }
2366 
2367 static void htab_save_cleanup(void *opaque)
2368 {
2369     SpaprMachineState *spapr = opaque;
2370 
2371     close_htab_fd(spapr);
2372 }
2373 
2374 static SaveVMHandlers savevm_htab_handlers = {
2375     .save_setup = htab_save_setup,
2376     .save_live_iterate = htab_save_iterate,
2377     .save_live_complete_precopy = htab_save_complete,
2378     .save_cleanup = htab_save_cleanup,
2379     .load_state = htab_load,
2380 };
2381 
2382 static void spapr_boot_set(void *opaque, const char *boot_device,
2383                            Error **errp)
2384 {
2385     MachineState *machine = MACHINE(opaque);
2386     machine->boot_order = g_strdup(boot_device);
2387 }
2388 
2389 static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr)
2390 {
2391     MachineState *machine = MACHINE(spapr);
2392     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2393     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2394     int i;
2395 
2396     for (i = 0; i < nr_lmbs; i++) {
2397         uint64_t addr;
2398 
2399         addr = i * lmb_size + machine->device_memory->base;
2400         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2401                                addr / lmb_size);
2402     }
2403 }
2404 
2405 /*
2406  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2407  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2408  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2409  */
2410 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2411 {
2412     int i;
2413 
2414     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2415         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2416                    " is not aligned to %" PRIu64 " MiB",
2417                    machine->ram_size,
2418                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2419         return;
2420     }
2421 
2422     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2423         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2424                    " is not aligned to %" PRIu64 " MiB",
2425                    machine->ram_size,
2426                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2427         return;
2428     }
2429 
2430     for (i = 0; i < machine->numa_state->num_nodes; i++) {
2431         if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2432             error_setg(errp,
2433                        "Node %d memory size 0x%" PRIx64
2434                        " is not aligned to %" PRIu64 " MiB",
2435                        i, machine->numa_state->nodes[i].node_mem,
2436                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2437             return;
2438         }
2439     }
2440 }
2441 
2442 /* find cpu slot in machine->possible_cpus by core_id */
2443 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2444 {
2445     int index = id / ms->smp.threads;
2446 
2447     if (index >= ms->possible_cpus->len) {
2448         return NULL;
2449     }
2450     if (idx) {
2451         *idx = index;
2452     }
2453     return &ms->possible_cpus->cpus[index];
2454 }
2455 
2456 static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp)
2457 {
2458     MachineState *ms = MACHINE(spapr);
2459     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2460     Error *local_err = NULL;
2461     bool vsmt_user = !!spapr->vsmt;
2462     int kvm_smt = kvmppc_smt_threads();
2463     int ret;
2464     unsigned int smp_threads = ms->smp.threads;
2465 
2466     if (!kvm_enabled() && (smp_threads > 1)) {
2467         error_setg(errp, "TCG cannot support more than 1 thread/core "
2468                    "on a pseries machine");
2469         return;
2470     }
2471     if (!is_power_of_2(smp_threads)) {
2472         error_setg(errp, "Cannot support %d threads/core on a pseries "
2473                    "machine because it must be a power of 2", smp_threads);
2474         return;
2475     }
2476 
2477     /* Detemine the VSMT mode to use: */
2478     if (vsmt_user) {
2479         if (spapr->vsmt < smp_threads) {
2480             error_setg(errp, "Cannot support VSMT mode %d"
2481                        " because it must be >= threads/core (%d)",
2482                        spapr->vsmt, smp_threads);
2483             return;
2484         }
2485         /* In this case, spapr->vsmt has been set by the command line */
2486     } else if (!smc->smp_threads_vsmt) {
2487         /*
2488          * Default VSMT value is tricky, because we need it to be as
2489          * consistent as possible (for migration), but this requires
2490          * changing it for at least some existing cases.  We pick 8 as
2491          * the value that we'd get with KVM on POWER8, the
2492          * overwhelmingly common case in production systems.
2493          */
2494         spapr->vsmt = MAX(8, smp_threads);
2495     } else {
2496         spapr->vsmt = smp_threads;
2497     }
2498 
2499     /* KVM: If necessary, set the SMT mode: */
2500     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2501         ret = kvmppc_set_smt_threads(spapr->vsmt);
2502         if (ret) {
2503             /* Looks like KVM isn't able to change VSMT mode */
2504             error_setg(&local_err,
2505                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2506                        spapr->vsmt, ret);
2507             /* We can live with that if the default one is big enough
2508              * for the number of threads, and a submultiple of the one
2509              * we want.  In this case we'll waste some vcpu ids, but
2510              * behaviour will be correct */
2511             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2512                 warn_report_err(local_err);
2513             } else {
2514                 if (!vsmt_user) {
2515                     error_append_hint(&local_err,
2516                                       "On PPC, a VM with %d threads/core"
2517                                       " on a host with %d threads/core"
2518                                       " requires the use of VSMT mode %d.\n",
2519                                       smp_threads, kvm_smt, spapr->vsmt);
2520                 }
2521                 kvmppc_error_append_smt_possible_hint(&local_err);
2522                 error_propagate(errp, local_err);
2523             }
2524         }
2525     }
2526     /* else TCG: nothing to do currently */
2527 }
2528 
2529 static void spapr_init_cpus(SpaprMachineState *spapr)
2530 {
2531     MachineState *machine = MACHINE(spapr);
2532     MachineClass *mc = MACHINE_GET_CLASS(machine);
2533     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2534     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2535     const CPUArchIdList *possible_cpus;
2536     unsigned int smp_cpus = machine->smp.cpus;
2537     unsigned int smp_threads = machine->smp.threads;
2538     unsigned int max_cpus = machine->smp.max_cpus;
2539     int boot_cores_nr = smp_cpus / smp_threads;
2540     int i;
2541 
2542     possible_cpus = mc->possible_cpu_arch_ids(machine);
2543     if (mc->has_hotpluggable_cpus) {
2544         if (smp_cpus % smp_threads) {
2545             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2546                          smp_cpus, smp_threads);
2547             exit(1);
2548         }
2549         if (max_cpus % smp_threads) {
2550             error_report("max_cpus (%u) must be multiple of threads (%u)",
2551                          max_cpus, smp_threads);
2552             exit(1);
2553         }
2554     } else {
2555         if (max_cpus != smp_cpus) {
2556             error_report("This machine version does not support CPU hotplug");
2557             exit(1);
2558         }
2559         boot_cores_nr = possible_cpus->len;
2560     }
2561 
2562     if (smc->pre_2_10_has_unused_icps) {
2563         int i;
2564 
2565         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2566             /* Dummy entries get deregistered when real ICPState objects
2567              * are registered during CPU core hotplug.
2568              */
2569             pre_2_10_vmstate_register_dummy_icp(i);
2570         }
2571     }
2572 
2573     for (i = 0; i < possible_cpus->len; i++) {
2574         int core_id = i * smp_threads;
2575 
2576         if (mc->has_hotpluggable_cpus) {
2577             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2578                                    spapr_vcpu_id(spapr, core_id));
2579         }
2580 
2581         if (i < boot_cores_nr) {
2582             Object *core  = object_new(type);
2583             int nr_threads = smp_threads;
2584 
2585             /* Handle the partially filled core for older machine types */
2586             if ((i + 1) * smp_threads >= smp_cpus) {
2587                 nr_threads = smp_cpus - i * smp_threads;
2588             }
2589 
2590             object_property_set_int(core, "nr-threads", nr_threads,
2591                                     &error_fatal);
2592             object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id,
2593                                     &error_fatal);
2594             qdev_realize(DEVICE(core), NULL, &error_fatal);
2595 
2596             object_unref(core);
2597         }
2598     }
2599 }
2600 
2601 static PCIHostState *spapr_create_default_phb(void)
2602 {
2603     DeviceState *dev;
2604 
2605     dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE);
2606     qdev_prop_set_uint32(dev, "index", 0);
2607     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
2608 
2609     return PCI_HOST_BRIDGE(dev);
2610 }
2611 
2612 static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp)
2613 {
2614     MachineState *machine = MACHINE(spapr);
2615     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
2616     hwaddr rma_size = machine->ram_size;
2617     hwaddr node0_size = spapr_node0_size(machine);
2618 
2619     /* RMA has to fit in the first NUMA node */
2620     rma_size = MIN(rma_size, node0_size);
2621 
2622     /*
2623      * VRMA access is via a special 1TiB SLB mapping, so the RMA can
2624      * never exceed that
2625      */
2626     rma_size = MIN(rma_size, 1 * TiB);
2627 
2628     /*
2629      * Clamp the RMA size based on machine type.  This is for
2630      * migration compatibility with older qemu versions, which limited
2631      * the RMA size for complicated and mostly bad reasons.
2632      */
2633     if (smc->rma_limit) {
2634         rma_size = MIN(rma_size, smc->rma_limit);
2635     }
2636 
2637     if (rma_size < MIN_RMA_SLOF) {
2638         error_setg(errp,
2639                    "pSeries SLOF firmware requires >= %" HWADDR_PRIx
2640                    "ldMiB guest RMA (Real Mode Area memory)",
2641                    MIN_RMA_SLOF / MiB);
2642         return 0;
2643     }
2644 
2645     return rma_size;
2646 }
2647 
2648 static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr)
2649 {
2650     MachineState *machine = MACHINE(spapr);
2651     int i;
2652 
2653     for (i = 0; i < machine->ram_slots; i++) {
2654         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i);
2655     }
2656 }
2657 
2658 /* pSeries LPAR / sPAPR hardware init */
2659 static void spapr_machine_init(MachineState *machine)
2660 {
2661     SpaprMachineState *spapr = SPAPR_MACHINE(machine);
2662     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2663     MachineClass *mc = MACHINE_GET_CLASS(machine);
2664     const char *kernel_filename = machine->kernel_filename;
2665     const char *initrd_filename = machine->initrd_filename;
2666     PCIHostState *phb;
2667     int i;
2668     MemoryRegion *sysmem = get_system_memory();
2669     long load_limit, fw_size;
2670     char *filename;
2671     Error *resize_hpt_err = NULL;
2672 
2673     msi_nonbroken = true;
2674 
2675     QLIST_INIT(&spapr->phbs);
2676     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2677 
2678     /* Determine capabilities to run with */
2679     spapr_caps_init(spapr);
2680 
2681     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2682     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2683         /*
2684          * If the user explicitly requested a mode we should either
2685          * supply it, or fail completely (which we do below).  But if
2686          * it's not set explicitly, we reset our mode to something
2687          * that works
2688          */
2689         if (resize_hpt_err) {
2690             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2691             error_free(resize_hpt_err);
2692             resize_hpt_err = NULL;
2693         } else {
2694             spapr->resize_hpt = smc->resize_hpt_default;
2695         }
2696     }
2697 
2698     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2699 
2700     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2701         /*
2702          * User requested HPT resize, but this host can't supply it.  Bail out
2703          */
2704         error_report_err(resize_hpt_err);
2705         exit(1);
2706     }
2707     error_free(resize_hpt_err);
2708 
2709     spapr->rma_size = spapr_rma_size(spapr, &error_fatal);
2710 
2711     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2712     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2713 
2714     /*
2715      * VSMT must be set in order to be able to compute VCPU ids, ie to
2716      * call spapr_max_server_number() or spapr_vcpu_id().
2717      */
2718     spapr_set_vsmt_mode(spapr, &error_fatal);
2719 
2720     /* Set up Interrupt Controller before we create the VCPUs */
2721     spapr_irq_init(spapr, &error_fatal);
2722 
2723     /* Set up containers for ibm,client-architecture-support negotiated options
2724      */
2725     spapr->ov5 = spapr_ovec_new();
2726     spapr->ov5_cas = spapr_ovec_new();
2727 
2728     if (smc->dr_lmb_enabled) {
2729         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2730         spapr_validate_node_memory(machine, &error_fatal);
2731     }
2732 
2733     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2734 
2735     /* advertise support for dedicated HP event source to guests */
2736     if (spapr->use_hotplug_event_source) {
2737         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2738     }
2739 
2740     /* advertise support for HPT resizing */
2741     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2742         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2743     }
2744 
2745     /* advertise support for ibm,dyamic-memory-v2 */
2746     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2747 
2748     /* advertise XIVE on POWER9 machines */
2749     if (spapr->irq->xive) {
2750         spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2751     }
2752 
2753     /* init CPUs */
2754     spapr_init_cpus(spapr);
2755 
2756     /*
2757      * check we don't have a memory-less/cpu-less NUMA node
2758      * Firmware relies on the existing memory/cpu topology to provide the
2759      * NUMA topology to the kernel.
2760      * And the linux kernel needs to know the NUMA topology at start
2761      * to be able to hotplug CPUs later.
2762      */
2763     if (machine->numa_state->num_nodes) {
2764         for (i = 0; i < machine->numa_state->num_nodes; ++i) {
2765             /* check for memory-less node */
2766             if (machine->numa_state->nodes[i].node_mem == 0) {
2767                 CPUState *cs;
2768                 int found = 0;
2769                 /* check for cpu-less node */
2770                 CPU_FOREACH(cs) {
2771                     PowerPCCPU *cpu = POWERPC_CPU(cs);
2772                     if (cpu->node_id == i) {
2773                         found = 1;
2774                         break;
2775                     }
2776                 }
2777                 /* memory-less and cpu-less node */
2778                 if (!found) {
2779                     error_report(
2780                        "Memory-less/cpu-less nodes are not supported (node %d)",
2781                                  i);
2782                     exit(1);
2783                 }
2784             }
2785         }
2786 
2787     }
2788 
2789     /*
2790      * NVLink2-connected GPU RAM needs to be placed on a separate NUMA node.
2791      * We assign a new numa ID per GPU in spapr_pci_collect_nvgpu() which is
2792      * called from vPHB reset handler so we initialize the counter here.
2793      * If no NUMA is configured from the QEMU side, we start from 1 as GPU RAM
2794      * must be equally distant from any other node.
2795      * The final value of spapr->gpu_numa_id is going to be written to
2796      * max-associativity-domains in spapr_build_fdt().
2797      */
2798     spapr->gpu_numa_id = MAX(1, machine->numa_state->num_nodes);
2799 
2800     /* Init numa_assoc_array */
2801     spapr_numa_associativity_init(spapr, machine);
2802 
2803     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2804         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2805                               spapr->max_compat_pvr)) {
2806         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300);
2807         /* KVM and TCG always allow GTSE with radix... */
2808         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2809     }
2810     /* ... but not with hash (currently). */
2811 
2812     if (kvm_enabled()) {
2813         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2814         kvmppc_enable_logical_ci_hcalls();
2815         kvmppc_enable_set_mode_hcall();
2816 
2817         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2818         kvmppc_enable_clear_ref_mod_hcalls();
2819 
2820         /* Enable H_PAGE_INIT */
2821         kvmppc_enable_h_page_init();
2822     }
2823 
2824     /* map RAM */
2825     memory_region_add_subregion(sysmem, 0, machine->ram);
2826 
2827     /* always allocate the device memory information */
2828     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2829 
2830     /* initialize hotplug memory address space */
2831     if (machine->ram_size < machine->maxram_size) {
2832         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2833         /*
2834          * Limit the number of hotpluggable memory slots to half the number
2835          * slots that KVM supports, leaving the other half for PCI and other
2836          * devices. However ensure that number of slots doesn't drop below 32.
2837          */
2838         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2839                            SPAPR_MAX_RAM_SLOTS;
2840 
2841         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2842             max_memslots = SPAPR_MAX_RAM_SLOTS;
2843         }
2844         if (machine->ram_slots > max_memslots) {
2845             error_report("Specified number of memory slots %"
2846                          PRIu64" exceeds max supported %d",
2847                          machine->ram_slots, max_memslots);
2848             exit(1);
2849         }
2850 
2851         machine->device_memory->base = ROUND_UP(machine->ram_size,
2852                                                 SPAPR_DEVICE_MEM_ALIGN);
2853         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2854                            "device-memory", device_mem_size);
2855         memory_region_add_subregion(sysmem, machine->device_memory->base,
2856                                     &machine->device_memory->mr);
2857     }
2858 
2859     if (smc->dr_lmb_enabled) {
2860         spapr_create_lmb_dr_connectors(spapr);
2861     }
2862 
2863     if (spapr_get_cap(spapr, SPAPR_CAP_FWNMI) == SPAPR_CAP_ON) {
2864         /* Create the error string for live migration blocker */
2865         error_setg(&spapr->fwnmi_migration_blocker,
2866             "A machine check is being handled during migration. The handler"
2867             "may run and log hardware error on the destination");
2868     }
2869 
2870     if (mc->nvdimm_supported) {
2871         spapr_create_nvdimm_dr_connectors(spapr);
2872     }
2873 
2874     /* Set up RTAS event infrastructure */
2875     spapr_events_init(spapr);
2876 
2877     /* Set up the RTC RTAS interfaces */
2878     spapr_rtc_create(spapr);
2879 
2880     /* Set up VIO bus */
2881     spapr->vio_bus = spapr_vio_bus_init();
2882 
2883     for (i = 0; i < serial_max_hds(); i++) {
2884         if (serial_hd(i)) {
2885             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2886         }
2887     }
2888 
2889     /* We always have at least the nvram device on VIO */
2890     spapr_create_nvram(spapr);
2891 
2892     /*
2893      * Setup hotplug / dynamic-reconfiguration connectors. top-level
2894      * connectors (described in root DT node's "ibm,drc-types" property)
2895      * are pre-initialized here. additional child connectors (such as
2896      * connectors for a PHBs PCI slots) are added as needed during their
2897      * parent's realization.
2898      */
2899     if (smc->dr_phb_enabled) {
2900         for (i = 0; i < SPAPR_MAX_PHBS; i++) {
2901             spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i);
2902         }
2903     }
2904 
2905     /* Set up PCI */
2906     spapr_pci_rtas_init();
2907 
2908     phb = spapr_create_default_phb();
2909 
2910     for (i = 0; i < nb_nics; i++) {
2911         NICInfo *nd = &nd_table[i];
2912 
2913         if (!nd->model) {
2914             nd->model = g_strdup("spapr-vlan");
2915         }
2916 
2917         if (g_str_equal(nd->model, "spapr-vlan") ||
2918             g_str_equal(nd->model, "ibmveth")) {
2919             spapr_vlan_create(spapr->vio_bus, nd);
2920         } else {
2921             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2922         }
2923     }
2924 
2925     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2926         spapr_vscsi_create(spapr->vio_bus);
2927     }
2928 
2929     /* Graphics */
2930     if (spapr_vga_init(phb->bus, &error_fatal)) {
2931         spapr->has_graphics = true;
2932         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2933     }
2934 
2935     if (machine->usb) {
2936         if (smc->use_ohci_by_default) {
2937             pci_create_simple(phb->bus, -1, "pci-ohci");
2938         } else {
2939             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2940         }
2941 
2942         if (spapr->has_graphics) {
2943             USBBus *usb_bus = usb_bus_find(-1);
2944 
2945             usb_create_simple(usb_bus, "usb-kbd");
2946             usb_create_simple(usb_bus, "usb-mouse");
2947         }
2948     }
2949 
2950     if (kernel_filename) {
2951         spapr->kernel_size = load_elf(kernel_filename, NULL,
2952                                       translate_kernel_address, spapr,
2953                                       NULL, NULL, NULL, NULL, 1,
2954                                       PPC_ELF_MACHINE, 0, 0);
2955         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2956             spapr->kernel_size = load_elf(kernel_filename, NULL,
2957                                           translate_kernel_address, spapr,
2958                                           NULL, NULL, NULL, NULL, 0,
2959                                           PPC_ELF_MACHINE, 0, 0);
2960             spapr->kernel_le = spapr->kernel_size > 0;
2961         }
2962         if (spapr->kernel_size < 0) {
2963             error_report("error loading %s: %s", kernel_filename,
2964                          load_elf_strerror(spapr->kernel_size));
2965             exit(1);
2966         }
2967 
2968         /* load initrd */
2969         if (initrd_filename) {
2970             /* Try to locate the initrd in the gap between the kernel
2971              * and the firmware. Add a bit of space just in case
2972              */
2973             spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size
2974                                   + 0x1ffff) & ~0xffff;
2975             spapr->initrd_size = load_image_targphys(initrd_filename,
2976                                                      spapr->initrd_base,
2977                                                      load_limit
2978                                                      - spapr->initrd_base);
2979             if (spapr->initrd_size < 0) {
2980                 error_report("could not load initial ram disk '%s'",
2981                              initrd_filename);
2982                 exit(1);
2983             }
2984         }
2985     }
2986 
2987     if (bios_name == NULL) {
2988         bios_name = FW_FILE_NAME;
2989     }
2990     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2991     if (!filename) {
2992         error_report("Could not find LPAR firmware '%s'", bios_name);
2993         exit(1);
2994     }
2995     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2996     if (fw_size <= 0) {
2997         error_report("Could not load LPAR firmware '%s'", filename);
2998         exit(1);
2999     }
3000     g_free(filename);
3001 
3002     /* FIXME: Should register things through the MachineState's qdev
3003      * interface, this is a legacy from the sPAPREnvironment structure
3004      * which predated MachineState but had a similar function */
3005     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
3006     register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1,
3007                          &savevm_htab_handlers, spapr);
3008 
3009     qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine));
3010 
3011     qemu_register_boot_set(spapr_boot_set, spapr);
3012 
3013     /*
3014      * Nothing needs to be done to resume a suspended guest because
3015      * suspending does not change the machine state, so no need for
3016      * a ->wakeup method.
3017      */
3018     qemu_register_wakeup_support();
3019 
3020     if (kvm_enabled()) {
3021         /* to stop and start vmclock */
3022         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
3023                                          &spapr->tb);
3024 
3025         kvmppc_spapr_enable_inkernel_multitce();
3026     }
3027 
3028     qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond);
3029 }
3030 
3031 static int spapr_kvm_type(MachineState *machine, const char *vm_type)
3032 {
3033     if (!vm_type) {
3034         return 0;
3035     }
3036 
3037     if (!strcmp(vm_type, "HV")) {
3038         return 1;
3039     }
3040 
3041     if (!strcmp(vm_type, "PR")) {
3042         return 2;
3043     }
3044 
3045     error_report("Unknown kvm-type specified '%s'", vm_type);
3046     exit(1);
3047 }
3048 
3049 /*
3050  * Implementation of an interface to adjust firmware path
3051  * for the bootindex property handling.
3052  */
3053 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3054                                    DeviceState *dev)
3055 {
3056 #define CAST(type, obj, name) \
3057     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3058     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3059     SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3060     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3061 
3062     if (d) {
3063         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3064         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3065         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3066 
3067         if (spapr) {
3068             /*
3069              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3070              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3071              * 0x8000 | (target << 8) | (bus << 5) | lun
3072              * (see the "Logical unit addressing format" table in SAM5)
3073              */
3074             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3075             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3076                                    (uint64_t)id << 48);
3077         } else if (virtio) {
3078             /*
3079              * We use SRP luns of the form 01000000 | (target << 8) | lun
3080              * in the top 32 bits of the 64-bit LUN
3081              * Note: the quote above is from SLOF and it is wrong,
3082              * the actual binding is:
3083              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3084              */
3085             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3086             if (d->lun >= 256) {
3087                 /* Use the LUN "flat space addressing method" */
3088                 id |= 0x4000;
3089             }
3090             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3091                                    (uint64_t)id << 32);
3092         } else if (usb) {
3093             /*
3094              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3095              * in the top 32 bits of the 64-bit LUN
3096              */
3097             unsigned usb_port = atoi(usb->port->path);
3098             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3099             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3100                                    (uint64_t)id << 32);
3101         }
3102     }
3103 
3104     /*
3105      * SLOF probes the USB devices, and if it recognizes that the device is a
3106      * storage device, it changes its name to "storage" instead of "usb-host",
3107      * and additionally adds a child node for the SCSI LUN, so the correct
3108      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3109      */
3110     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3111         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3112         if (usb_host_dev_is_scsi_storage(usbdev)) {
3113             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3114         }
3115     }
3116 
3117     if (phb) {
3118         /* Replace "pci" with "pci@800000020000000" */
3119         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3120     }
3121 
3122     if (vsc) {
3123         /* Same logic as virtio above */
3124         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3125         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3126     }
3127 
3128     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3129         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3130         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3131         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3132     }
3133 
3134     return NULL;
3135 }
3136 
3137 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3138 {
3139     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3140 
3141     return g_strdup(spapr->kvm_type);
3142 }
3143 
3144 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3145 {
3146     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3147 
3148     g_free(spapr->kvm_type);
3149     spapr->kvm_type = g_strdup(value);
3150 }
3151 
3152 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3153 {
3154     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3155 
3156     return spapr->use_hotplug_event_source;
3157 }
3158 
3159 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3160                                             Error **errp)
3161 {
3162     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3163 
3164     spapr->use_hotplug_event_source = value;
3165 }
3166 
3167 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3168 {
3169     return true;
3170 }
3171 
3172 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3173 {
3174     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3175 
3176     switch (spapr->resize_hpt) {
3177     case SPAPR_RESIZE_HPT_DEFAULT:
3178         return g_strdup("default");
3179     case SPAPR_RESIZE_HPT_DISABLED:
3180         return g_strdup("disabled");
3181     case SPAPR_RESIZE_HPT_ENABLED:
3182         return g_strdup("enabled");
3183     case SPAPR_RESIZE_HPT_REQUIRED:
3184         return g_strdup("required");
3185     }
3186     g_assert_not_reached();
3187 }
3188 
3189 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3190 {
3191     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3192 
3193     if (strcmp(value, "default") == 0) {
3194         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3195     } else if (strcmp(value, "disabled") == 0) {
3196         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3197     } else if (strcmp(value, "enabled") == 0) {
3198         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3199     } else if (strcmp(value, "required") == 0) {
3200         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3201     } else {
3202         error_setg(errp, "Bad value for \"resize-hpt\" property");
3203     }
3204 }
3205 
3206 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3207 {
3208     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3209 
3210     if (spapr->irq == &spapr_irq_xics_legacy) {
3211         return g_strdup("legacy");
3212     } else if (spapr->irq == &spapr_irq_xics) {
3213         return g_strdup("xics");
3214     } else if (spapr->irq == &spapr_irq_xive) {
3215         return g_strdup("xive");
3216     } else if (spapr->irq == &spapr_irq_dual) {
3217         return g_strdup("dual");
3218     }
3219     g_assert_not_reached();
3220 }
3221 
3222 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3223 {
3224     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3225 
3226     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3227         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3228         return;
3229     }
3230 
3231     /* The legacy IRQ backend can not be set */
3232     if (strcmp(value, "xics") == 0) {
3233         spapr->irq = &spapr_irq_xics;
3234     } else if (strcmp(value, "xive") == 0) {
3235         spapr->irq = &spapr_irq_xive;
3236     } else if (strcmp(value, "dual") == 0) {
3237         spapr->irq = &spapr_irq_dual;
3238     } else {
3239         error_setg(errp, "Bad value for \"ic-mode\" property");
3240     }
3241 }
3242 
3243 static char *spapr_get_host_model(Object *obj, Error **errp)
3244 {
3245     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3246 
3247     return g_strdup(spapr->host_model);
3248 }
3249 
3250 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3251 {
3252     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3253 
3254     g_free(spapr->host_model);
3255     spapr->host_model = g_strdup(value);
3256 }
3257 
3258 static char *spapr_get_host_serial(Object *obj, Error **errp)
3259 {
3260     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3261 
3262     return g_strdup(spapr->host_serial);
3263 }
3264 
3265 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3266 {
3267     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3268 
3269     g_free(spapr->host_serial);
3270     spapr->host_serial = g_strdup(value);
3271 }
3272 
3273 static void spapr_instance_init(Object *obj)
3274 {
3275     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3276     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3277 
3278     spapr->htab_fd = -1;
3279     spapr->use_hotplug_event_source = true;
3280     object_property_add_str(obj, "kvm-type",
3281                             spapr_get_kvm_type, spapr_set_kvm_type);
3282     object_property_set_description(obj, "kvm-type",
3283                                     "Specifies the KVM virtualization mode (HV, PR)");
3284     object_property_add_bool(obj, "modern-hotplug-events",
3285                             spapr_get_modern_hotplug_events,
3286                             spapr_set_modern_hotplug_events);
3287     object_property_set_description(obj, "modern-hotplug-events",
3288                                     "Use dedicated hotplug event mechanism in"
3289                                     " place of standard EPOW events when possible"
3290                                     " (required for memory hot-unplug support)");
3291     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3292                             "Maximum permitted CPU compatibility mode");
3293 
3294     object_property_add_str(obj, "resize-hpt",
3295                             spapr_get_resize_hpt, spapr_set_resize_hpt);
3296     object_property_set_description(obj, "resize-hpt",
3297                                     "Resizing of the Hash Page Table (enabled, disabled, required)");
3298     object_property_add_uint32_ptr(obj, "vsmt",
3299                                    &spapr->vsmt, OBJ_PROP_FLAG_READWRITE);
3300     object_property_set_description(obj, "vsmt",
3301                                     "Virtual SMT: KVM behaves as if this were"
3302                                     " the host's SMT mode");
3303 
3304     object_property_add_bool(obj, "vfio-no-msix-emulation",
3305                              spapr_get_msix_emulation, NULL);
3306 
3307     object_property_add_uint64_ptr(obj, "kernel-addr",
3308                                    &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE);
3309     object_property_set_description(obj, "kernel-addr",
3310                                     stringify(KERNEL_LOAD_ADDR)
3311                                     " for -kernel is the default");
3312     spapr->kernel_addr = KERNEL_LOAD_ADDR;
3313     /* The machine class defines the default interrupt controller mode */
3314     spapr->irq = smc->irq;
3315     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3316                             spapr_set_ic_mode);
3317     object_property_set_description(obj, "ic-mode",
3318                  "Specifies the interrupt controller mode (xics, xive, dual)");
3319 
3320     object_property_add_str(obj, "host-model",
3321         spapr_get_host_model, spapr_set_host_model);
3322     object_property_set_description(obj, "host-model",
3323         "Host model to advertise in guest device tree");
3324     object_property_add_str(obj, "host-serial",
3325         spapr_get_host_serial, spapr_set_host_serial);
3326     object_property_set_description(obj, "host-serial",
3327         "Host serial number to advertise in guest device tree");
3328 }
3329 
3330 static void spapr_machine_finalizefn(Object *obj)
3331 {
3332     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
3333 
3334     g_free(spapr->kvm_type);
3335 }
3336 
3337 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3338 {
3339     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
3340     PowerPCCPU *cpu = POWERPC_CPU(cs);
3341     CPUPPCState *env = &cpu->env;
3342 
3343     cpu_synchronize_state(cs);
3344     /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */
3345     if (spapr->fwnmi_system_reset_addr != -1) {
3346         uint64_t rtas_addr, addr;
3347 
3348         /* get rtas addr from fdt */
3349         rtas_addr = spapr_get_rtas_addr();
3350         if (!rtas_addr) {
3351             qemu_system_guest_panicked(NULL);
3352             return;
3353         }
3354 
3355         addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2;
3356         stq_be_phys(&address_space_memory, addr, env->gpr[3]);
3357         stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0);
3358         env->gpr[3] = addr;
3359     }
3360     ppc_cpu_do_system_reset(cs);
3361     if (spapr->fwnmi_system_reset_addr != -1) {
3362         env->nip = spapr->fwnmi_system_reset_addr;
3363     }
3364 }
3365 
3366 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3367 {
3368     CPUState *cs;
3369 
3370     CPU_FOREACH(cs) {
3371         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3372     }
3373 }
3374 
3375 int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3376                           void *fdt, int *fdt_start_offset, Error **errp)
3377 {
3378     uint64_t addr;
3379     uint32_t node;
3380 
3381     addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE;
3382     node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP,
3383                                     &error_abort);
3384     *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr,
3385                                              SPAPR_MEMORY_BLOCK_SIZE);
3386     return 0;
3387 }
3388 
3389 static bool spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3390                            bool dedicated_hp_event_source, Error **errp)
3391 {
3392     SpaprDrc *drc;
3393     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3394     int i;
3395     uint64_t addr = addr_start;
3396     bool hotplugged = spapr_drc_hotplugged(dev);
3397 
3398     for (i = 0; i < nr_lmbs; i++) {
3399         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3400                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3401         g_assert(drc);
3402 
3403         if (!spapr_drc_attach(drc, dev, errp)) {
3404             while (addr > addr_start) {
3405                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3406                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3407                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3408                 spapr_drc_detach(drc);
3409             }
3410             return false;
3411         }
3412         if (!hotplugged) {
3413             spapr_drc_reset(drc);
3414         }
3415         addr += SPAPR_MEMORY_BLOCK_SIZE;
3416     }
3417     /* send hotplug notification to the
3418      * guest only in case of hotplugged memory
3419      */
3420     if (hotplugged) {
3421         if (dedicated_hp_event_source) {
3422             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3423                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3424             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3425                                                    nr_lmbs,
3426                                                    spapr_drc_index(drc));
3427         } else {
3428             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3429                                            nr_lmbs);
3430         }
3431     }
3432     return true;
3433 }
3434 
3435 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3436                               Error **errp)
3437 {
3438     SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3439     PCDIMMDevice *dimm = PC_DIMM(dev);
3440     uint64_t size, addr;
3441     int64_t slot;
3442     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3443 
3444     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3445 
3446     pc_dimm_plug(dimm, MACHINE(ms));
3447 
3448     if (!is_nvdimm) {
3449         addr = object_property_get_uint(OBJECT(dimm),
3450                                         PC_DIMM_ADDR_PROP, &error_abort);
3451         if (!spapr_add_lmbs(dev, addr, size,
3452                             spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), errp)) {
3453             goto out_unplug;
3454         }
3455     } else {
3456         slot = object_property_get_int(OBJECT(dimm),
3457                                        PC_DIMM_SLOT_PROP, &error_abort);
3458         /* We should have valid slot number at this point */
3459         g_assert(slot >= 0);
3460         if (!spapr_add_nvdimm(dev, slot, errp)) {
3461             goto out_unplug;
3462         }
3463     }
3464 
3465     return;
3466 
3467 out_unplug:
3468     pc_dimm_unplug(dimm, MACHINE(ms));
3469 }
3470 
3471 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3472                                   Error **errp)
3473 {
3474     const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3475     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3476     bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
3477     PCDIMMDevice *dimm = PC_DIMM(dev);
3478     Error *local_err = NULL;
3479     uint64_t size;
3480     Object *memdev;
3481     hwaddr pagesize;
3482 
3483     if (!smc->dr_lmb_enabled) {
3484         error_setg(errp, "Memory hotplug not supported for this machine");
3485         return;
3486     }
3487 
3488     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3489     if (local_err) {
3490         error_propagate(errp, local_err);
3491         return;
3492     }
3493 
3494     if (is_nvdimm) {
3495         if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) {
3496             return;
3497         }
3498     } else if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3499         error_setg(errp, "Hotplugged memory size must be a multiple of "
3500                    "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3501         return;
3502     }
3503 
3504     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3505                                       &error_abort);
3506     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3507     if (!spapr_check_pagesize(spapr, pagesize, errp)) {
3508         return;
3509     }
3510 
3511     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3512 }
3513 
3514 struct SpaprDimmState {
3515     PCDIMMDevice *dimm;
3516     uint32_t nr_lmbs;
3517     QTAILQ_ENTRY(SpaprDimmState) next;
3518 };
3519 
3520 static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s,
3521                                                        PCDIMMDevice *dimm)
3522 {
3523     SpaprDimmState *dimm_state = NULL;
3524 
3525     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3526         if (dimm_state->dimm == dimm) {
3527             break;
3528         }
3529     }
3530     return dimm_state;
3531 }
3532 
3533 static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr,
3534                                                       uint32_t nr_lmbs,
3535                                                       PCDIMMDevice *dimm)
3536 {
3537     SpaprDimmState *ds = NULL;
3538 
3539     /*
3540      * If this request is for a DIMM whose removal had failed earlier
3541      * (due to guest's refusal to remove the LMBs), we would have this
3542      * dimm already in the pending_dimm_unplugs list. In that
3543      * case don't add again.
3544      */
3545     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3546     if (!ds) {
3547         ds = g_malloc0(sizeof(SpaprDimmState));
3548         ds->nr_lmbs = nr_lmbs;
3549         ds->dimm = dimm;
3550         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3551     }
3552     return ds;
3553 }
3554 
3555 static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr,
3556                                               SpaprDimmState *dimm_state)
3557 {
3558     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3559     g_free(dimm_state);
3560 }
3561 
3562 static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms,
3563                                                         PCDIMMDevice *dimm)
3564 {
3565     SpaprDrc *drc;
3566     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3567                                                   &error_abort);
3568     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3569     uint32_t avail_lmbs = 0;
3570     uint64_t addr_start, addr;
3571     int i;
3572 
3573     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3574                                           &error_abort);
3575 
3576     addr = addr_start;
3577     for (i = 0; i < nr_lmbs; i++) {
3578         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3579                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3580         g_assert(drc);
3581         if (drc->dev) {
3582             avail_lmbs++;
3583         }
3584         addr += SPAPR_MEMORY_BLOCK_SIZE;
3585     }
3586 
3587     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3588 }
3589 
3590 /* Callback to be called during DRC release. */
3591 void spapr_lmb_release(DeviceState *dev)
3592 {
3593     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3594     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3595     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3596 
3597     /* This information will get lost if a migration occurs
3598      * during the unplug process. In this case recover it. */
3599     if (ds == NULL) {
3600         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3601         g_assert(ds);
3602         /* The DRC being examined by the caller at least must be counted */
3603         g_assert(ds->nr_lmbs);
3604     }
3605 
3606     if (--ds->nr_lmbs) {
3607         return;
3608     }
3609 
3610     /*
3611      * Now that all the LMBs have been removed by the guest, call the
3612      * unplug handler chain. This can never fail.
3613      */
3614     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3615     object_unparent(OBJECT(dev));
3616 }
3617 
3618 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3619 {
3620     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3621     SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3622 
3623     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3624     qdev_unrealize(dev);
3625     spapr_pending_dimm_unplugs_remove(spapr, ds);
3626 }
3627 
3628 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3629                                         DeviceState *dev, Error **errp)
3630 {
3631     SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3632     PCDIMMDevice *dimm = PC_DIMM(dev);
3633     uint32_t nr_lmbs;
3634     uint64_t size, addr_start, addr;
3635     int i;
3636     SpaprDrc *drc;
3637 
3638     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
3639         error_setg(errp, "nvdimm device hot unplug is not supported yet.");
3640         return;
3641     }
3642 
3643     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3644     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3645 
3646     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3647                                           &error_abort);
3648 
3649     /*
3650      * An existing pending dimm state for this DIMM means that there is an
3651      * unplug operation in progress, waiting for the spapr_lmb_release
3652      * callback to complete the job (BQL can't cover that far). In this case,
3653      * bail out to avoid detaching DRCs that were already released.
3654      */
3655     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3656         error_setg(errp, "Memory unplug already in progress for device %s",
3657                    dev->id);
3658         return;
3659     }
3660 
3661     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3662 
3663     addr = addr_start;
3664     for (i = 0; i < nr_lmbs; i++) {
3665         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3666                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3667         g_assert(drc);
3668 
3669         spapr_drc_detach(drc);
3670         addr += SPAPR_MEMORY_BLOCK_SIZE;
3671     }
3672 
3673     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3674                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3675     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3676                                               nr_lmbs, spapr_drc_index(drc));
3677 }
3678 
3679 /* Callback to be called during DRC release. */
3680 void spapr_core_release(DeviceState *dev)
3681 {
3682     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3683 
3684     /* Call the unplug handler chain. This can never fail. */
3685     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3686     object_unparent(OBJECT(dev));
3687 }
3688 
3689 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3690 {
3691     MachineState *ms = MACHINE(hotplug_dev);
3692     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3693     CPUCore *cc = CPU_CORE(dev);
3694     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3695 
3696     if (smc->pre_2_10_has_unused_icps) {
3697         SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3698         int i;
3699 
3700         for (i = 0; i < cc->nr_threads; i++) {
3701             CPUState *cs = CPU(sc->threads[i]);
3702 
3703             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3704         }
3705     }
3706 
3707     assert(core_slot);
3708     core_slot->cpu = NULL;
3709     qdev_unrealize(dev);
3710 }
3711 
3712 static
3713 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3714                                Error **errp)
3715 {
3716     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3717     int index;
3718     SpaprDrc *drc;
3719     CPUCore *cc = CPU_CORE(dev);
3720 
3721     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3722         error_setg(errp, "Unable to find CPU core with core-id: %d",
3723                    cc->core_id);
3724         return;
3725     }
3726     if (index == 0) {
3727         error_setg(errp, "Boot CPU core may not be unplugged");
3728         return;
3729     }
3730 
3731     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3732                           spapr_vcpu_id(spapr, cc->core_id));
3733     g_assert(drc);
3734 
3735     if (!spapr_drc_unplug_requested(drc)) {
3736         spapr_drc_detach(drc);
3737         spapr_hotplug_req_remove_by_index(drc);
3738     }
3739 }
3740 
3741 int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3742                            void *fdt, int *fdt_start_offset, Error **errp)
3743 {
3744     SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev);
3745     CPUState *cs = CPU(core->threads[0]);
3746     PowerPCCPU *cpu = POWERPC_CPU(cs);
3747     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3748     int id = spapr_get_vcpu_id(cpu);
3749     char *nodename;
3750     int offset;
3751 
3752     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3753     offset = fdt_add_subnode(fdt, 0, nodename);
3754     g_free(nodename);
3755 
3756     spapr_dt_cpu(cs, fdt, offset, spapr);
3757 
3758     *fdt_start_offset = offset;
3759     return 0;
3760 }
3761 
3762 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3763                             Error **errp)
3764 {
3765     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3766     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3767     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3768     SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3769     CPUCore *cc = CPU_CORE(dev);
3770     CPUState *cs;
3771     SpaprDrc *drc;
3772     CPUArchId *core_slot;
3773     int index;
3774     bool hotplugged = spapr_drc_hotplugged(dev);
3775     int i;
3776 
3777     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3778     if (!core_slot) {
3779         error_setg(errp, "Unable to find CPU core with core-id: %d",
3780                    cc->core_id);
3781         return;
3782     }
3783     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3784                           spapr_vcpu_id(spapr, cc->core_id));
3785 
3786     g_assert(drc || !mc->has_hotpluggable_cpus);
3787 
3788     if (drc) {
3789         if (!spapr_drc_attach(drc, dev, errp)) {
3790             return;
3791         }
3792 
3793         if (hotplugged) {
3794             /*
3795              * Send hotplug notification interrupt to the guest only
3796              * in case of hotplugged CPUs.
3797              */
3798             spapr_hotplug_req_add_by_index(drc);
3799         } else {
3800             spapr_drc_reset(drc);
3801         }
3802     }
3803 
3804     core_slot->cpu = OBJECT(dev);
3805 
3806     if (smc->pre_2_10_has_unused_icps) {
3807         for (i = 0; i < cc->nr_threads; i++) {
3808             cs = CPU(core->threads[i]);
3809             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3810         }
3811     }
3812 
3813     /*
3814      * Set compatibility mode to match the boot CPU, which was either set
3815      * by the machine reset code or by CAS.
3816      */
3817     if (hotplugged) {
3818         for (i = 0; i < cc->nr_threads; i++) {
3819             if (ppc_set_compat(core->threads[i],
3820                                POWERPC_CPU(first_cpu)->compat_pvr,
3821                                errp) < 0) {
3822                 return;
3823             }
3824         }
3825     }
3826 }
3827 
3828 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3829                                 Error **errp)
3830 {
3831     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3832     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3833     CPUCore *cc = CPU_CORE(dev);
3834     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3835     const char *type = object_get_typename(OBJECT(dev));
3836     CPUArchId *core_slot;
3837     int index;
3838     unsigned int smp_threads = machine->smp.threads;
3839 
3840     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3841         error_setg(errp, "CPU hotplug not supported for this machine");
3842         return;
3843     }
3844 
3845     if (strcmp(base_core_type, type)) {
3846         error_setg(errp, "CPU core type should be %s", base_core_type);
3847         return;
3848     }
3849 
3850     if (cc->core_id % smp_threads) {
3851         error_setg(errp, "invalid core id %d", cc->core_id);
3852         return;
3853     }
3854 
3855     /*
3856      * In general we should have homogeneous threads-per-core, but old
3857      * (pre hotplug support) machine types allow the last core to have
3858      * reduced threads as a compatibility hack for when we allowed
3859      * total vcpus not a multiple of threads-per-core.
3860      */
3861     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3862         error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads,
3863                    smp_threads);
3864         return;
3865     }
3866 
3867     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3868     if (!core_slot) {
3869         error_setg(errp, "core id %d out of range", cc->core_id);
3870         return;
3871     }
3872 
3873     if (core_slot->cpu) {
3874         error_setg(errp, "core %d already populated", cc->core_id);
3875         return;
3876     }
3877 
3878     numa_cpu_pre_plug(core_slot, dev, errp);
3879 }
3880 
3881 int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr,
3882                           void *fdt, int *fdt_start_offset, Error **errp)
3883 {
3884     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev);
3885     int intc_phandle;
3886 
3887     intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp);
3888     if (intc_phandle <= 0) {
3889         return -1;
3890     }
3891 
3892     if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) {
3893         error_setg(errp, "unable to create FDT node for PHB %d", sphb->index);
3894         return -1;
3895     }
3896 
3897     /* generally SLOF creates these, for hotplug it's up to QEMU */
3898     _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci"));
3899 
3900     return 0;
3901 }
3902 
3903 static void spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3904                                Error **errp)
3905 {
3906     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3907     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3908     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3909     const unsigned windows_supported = spapr_phb_windows_supported(sphb);
3910 
3911     if (dev->hotplugged && !smc->dr_phb_enabled) {
3912         error_setg(errp, "PHB hotplug not supported for this machine");
3913         return;
3914     }
3915 
3916     if (sphb->index == (uint32_t)-1) {
3917         error_setg(errp, "\"index\" for PAPR PHB is mandatory");
3918         return;
3919     }
3920 
3921     /*
3922      * This will check that sphb->index doesn't exceed the maximum number of
3923      * PHBs for the current machine type.
3924      */
3925     smc->phb_placement(spapr, sphb->index,
3926                        &sphb->buid, &sphb->io_win_addr,
3927                        &sphb->mem_win_addr, &sphb->mem64_win_addr,
3928                        windows_supported, sphb->dma_liobn,
3929                        &sphb->nv2_gpa_win_addr, &sphb->nv2_atsd_win_addr,
3930                        errp);
3931 }
3932 
3933 static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3934                            Error **errp)
3935 {
3936     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3937     SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3938     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3939     SpaprDrc *drc;
3940     bool hotplugged = spapr_drc_hotplugged(dev);
3941 
3942     if (!smc->dr_phb_enabled) {
3943         return;
3944     }
3945 
3946     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3947     /* hotplug hooks should check it's enabled before getting this far */
3948     assert(drc);
3949 
3950     if (!spapr_drc_attach(drc, dev, errp)) {
3951         return;
3952     }
3953 
3954     if (hotplugged) {
3955         spapr_hotplug_req_add_by_index(drc);
3956     } else {
3957         spapr_drc_reset(drc);
3958     }
3959 }
3960 
3961 void spapr_phb_release(DeviceState *dev)
3962 {
3963     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3964 
3965     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3966     object_unparent(OBJECT(dev));
3967 }
3968 
3969 static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3970 {
3971     qdev_unrealize(dev);
3972 }
3973 
3974 static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev,
3975                                      DeviceState *dev, Error **errp)
3976 {
3977     SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev);
3978     SpaprDrc *drc;
3979 
3980     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index);
3981     assert(drc);
3982 
3983     if (!spapr_drc_unplug_requested(drc)) {
3984         spapr_drc_detach(drc);
3985         spapr_hotplug_req_remove_by_index(drc);
3986     }
3987 }
3988 
3989 static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3990                                  Error **errp)
3991 {
3992     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3993     SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev);
3994 
3995     if (spapr->tpm_proxy != NULL) {
3996         error_setg(errp, "Only one TPM proxy can be specified for this machine");
3997         return;
3998     }
3999 
4000     spapr->tpm_proxy = tpm_proxy;
4001 }
4002 
4003 static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
4004 {
4005     SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
4006 
4007     qdev_unrealize(dev);
4008     object_unparent(OBJECT(dev));
4009     spapr->tpm_proxy = NULL;
4010 }
4011 
4012 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
4013                                       DeviceState *dev, Error **errp)
4014 {
4015     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4016         spapr_memory_plug(hotplug_dev, dev, errp);
4017     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4018         spapr_core_plug(hotplug_dev, dev, errp);
4019     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4020         spapr_phb_plug(hotplug_dev, dev, errp);
4021     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4022         spapr_tpm_proxy_plug(hotplug_dev, dev, errp);
4023     }
4024 }
4025 
4026 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
4027                                         DeviceState *dev, Error **errp)
4028 {
4029     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4030         spapr_memory_unplug(hotplug_dev, dev);
4031     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4032         spapr_core_unplug(hotplug_dev, dev);
4033     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4034         spapr_phb_unplug(hotplug_dev, dev);
4035     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4036         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4037     }
4038 }
4039 
4040 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
4041                                                 DeviceState *dev, Error **errp)
4042 {
4043     SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
4044     MachineClass *mc = MACHINE_GET_CLASS(sms);
4045     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4046 
4047     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4048         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
4049             spapr_memory_unplug_request(hotplug_dev, dev, errp);
4050         } else {
4051             /* NOTE: this means there is a window after guest reset, prior to
4052              * CAS negotiation, where unplug requests will fail due to the
4053              * capability not being detected yet. This is a bit different than
4054              * the case with PCI unplug, where the events will be queued and
4055              * eventually handled by the guest after boot
4056              */
4057             error_setg(errp, "Memory hot unplug not supported for this guest");
4058         }
4059     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4060         if (!mc->has_hotpluggable_cpus) {
4061             error_setg(errp, "CPU hot unplug not supported on this machine");
4062             return;
4063         }
4064         spapr_core_unplug_request(hotplug_dev, dev, errp);
4065     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4066         if (!smc->dr_phb_enabled) {
4067             error_setg(errp, "PHB hot unplug not supported on this machine");
4068             return;
4069         }
4070         spapr_phb_unplug_request(hotplug_dev, dev, errp);
4071     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4072         spapr_tpm_proxy_unplug(hotplug_dev, dev);
4073     }
4074 }
4075 
4076 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
4077                                           DeviceState *dev, Error **errp)
4078 {
4079     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
4080         spapr_memory_pre_plug(hotplug_dev, dev, errp);
4081     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
4082         spapr_core_pre_plug(hotplug_dev, dev, errp);
4083     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) {
4084         spapr_phb_pre_plug(hotplug_dev, dev, errp);
4085     }
4086 }
4087 
4088 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
4089                                                  DeviceState *dev)
4090 {
4091     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
4092         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) ||
4093         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) ||
4094         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) {
4095         return HOTPLUG_HANDLER(machine);
4096     }
4097     if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) {
4098         PCIDevice *pcidev = PCI_DEVICE(dev);
4099         PCIBus *root = pci_device_root_bus(pcidev);
4100         SpaprPhbState *phb =
4101             (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent),
4102                                                  TYPE_SPAPR_PCI_HOST_BRIDGE);
4103 
4104         if (phb) {
4105             return HOTPLUG_HANDLER(phb);
4106         }
4107     }
4108     return NULL;
4109 }
4110 
4111 static CpuInstanceProperties
4112 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
4113 {
4114     CPUArchId *core_slot;
4115     MachineClass *mc = MACHINE_GET_CLASS(machine);
4116 
4117     /* make sure possible_cpu are intialized */
4118     mc->possible_cpu_arch_ids(machine);
4119     /* get CPU core slot containing thread that matches cpu_index */
4120     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
4121     assert(core_slot);
4122     return core_slot->props;
4123 }
4124 
4125 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
4126 {
4127     return idx / ms->smp.cores % ms->numa_state->num_nodes;
4128 }
4129 
4130 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
4131 {
4132     int i;
4133     unsigned int smp_threads = machine->smp.threads;
4134     unsigned int smp_cpus = machine->smp.cpus;
4135     const char *core_type;
4136     int spapr_max_cores = machine->smp.max_cpus / smp_threads;
4137     MachineClass *mc = MACHINE_GET_CLASS(machine);
4138 
4139     if (!mc->has_hotpluggable_cpus) {
4140         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
4141     }
4142     if (machine->possible_cpus) {
4143         assert(machine->possible_cpus->len == spapr_max_cores);
4144         return machine->possible_cpus;
4145     }
4146 
4147     core_type = spapr_get_cpu_core_type(machine->cpu_type);
4148     if (!core_type) {
4149         error_report("Unable to find sPAPR CPU Core definition");
4150         exit(1);
4151     }
4152 
4153     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
4154                              sizeof(CPUArchId) * spapr_max_cores);
4155     machine->possible_cpus->len = spapr_max_cores;
4156     for (i = 0; i < machine->possible_cpus->len; i++) {
4157         int core_id = i * smp_threads;
4158 
4159         machine->possible_cpus->cpus[i].type = core_type;
4160         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
4161         machine->possible_cpus->cpus[i].arch_id = core_id;
4162         machine->possible_cpus->cpus[i].props.has_core_id = true;
4163         machine->possible_cpus->cpus[i].props.core_id = core_id;
4164     }
4165     return machine->possible_cpus;
4166 }
4167 
4168 static void spapr_phb_placement(SpaprMachineState *spapr, uint32_t index,
4169                                 uint64_t *buid, hwaddr *pio,
4170                                 hwaddr *mmio32, hwaddr *mmio64,
4171                                 unsigned n_dma, uint32_t *liobns,
4172                                 hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4173 {
4174     /*
4175      * New-style PHB window placement.
4176      *
4177      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
4178      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
4179      * windows.
4180      *
4181      * Some guest kernels can't work with MMIO windows above 1<<46
4182      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
4183      *
4184      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
4185      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
4186      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
4187      * 1TiB 64-bit MMIO windows for each PHB.
4188      */
4189     const uint64_t base_buid = 0x800000020000000ULL;
4190     int i;
4191 
4192     /* Sanity check natural alignments */
4193     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4194     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
4195     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
4196     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
4197     /* Sanity check bounds */
4198     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
4199                       SPAPR_PCI_MEM32_WIN_SIZE);
4200     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
4201                       SPAPR_PCI_MEM64_WIN_SIZE);
4202 
4203     if (index >= SPAPR_MAX_PHBS) {
4204         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
4205                    SPAPR_MAX_PHBS - 1);
4206         return;
4207     }
4208 
4209     *buid = base_buid + index;
4210     for (i = 0; i < n_dma; ++i) {
4211         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4212     }
4213 
4214     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
4215     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
4216     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
4217 
4218     *nv2gpa = SPAPR_PCI_NV2RAM64_WIN_BASE + index * SPAPR_PCI_NV2RAM64_WIN_SIZE;
4219     *nv2atsd = SPAPR_PCI_NV2ATSD_WIN_BASE + index * SPAPR_PCI_NV2ATSD_WIN_SIZE;
4220 }
4221 
4222 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
4223 {
4224     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4225 
4226     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
4227 }
4228 
4229 static void spapr_ics_resend(XICSFabric *dev)
4230 {
4231     SpaprMachineState *spapr = SPAPR_MACHINE(dev);
4232 
4233     ics_resend(spapr->ics);
4234 }
4235 
4236 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
4237 {
4238     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4239 
4240     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4241 }
4242 
4243 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4244                                  Monitor *mon)
4245 {
4246     SpaprMachineState *spapr = SPAPR_MACHINE(obj);
4247 
4248     spapr_irq_print_info(spapr, mon);
4249     monitor_printf(mon, "irqchip: %s\n",
4250                    kvm_irqchip_in_kernel() ? "in-kernel" : "emulated");
4251 }
4252 
4253 /*
4254  * This is a XIVE only operation
4255  */
4256 static int spapr_match_nvt(XiveFabric *xfb, uint8_t format,
4257                            uint8_t nvt_blk, uint32_t nvt_idx,
4258                            bool cam_ignore, uint8_t priority,
4259                            uint32_t logic_serv, XiveTCTXMatch *match)
4260 {
4261     SpaprMachineState *spapr = SPAPR_MACHINE(xfb);
4262     XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc);
4263     XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
4264     int count;
4265 
4266     count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
4267                            priority, logic_serv, match);
4268     if (count < 0) {
4269         return count;
4270     }
4271 
4272     /*
4273      * When we implement the save and restore of the thread interrupt
4274      * contexts in the enter/exit CPU handlers of the machine and the
4275      * escalations in QEMU, we should be able to handle non dispatched
4276      * vCPUs.
4277      *
4278      * Until this is done, the sPAPR machine should find at least one
4279      * matching context always.
4280      */
4281     if (count == 0) {
4282         qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n",
4283                       nvt_blk, nvt_idx);
4284     }
4285 
4286     return count;
4287 }
4288 
4289 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4290 {
4291     return cpu->vcpu_id;
4292 }
4293 
4294 bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4295 {
4296     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4297     MachineState *ms = MACHINE(spapr);
4298     int vcpu_id;
4299 
4300     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4301 
4302     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4303         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4304         error_append_hint(errp, "Adjust the number of cpus to %d "
4305                           "or try to raise the number of threads per core\n",
4306                           vcpu_id * ms->smp.threads / spapr->vsmt);
4307         return false;
4308     }
4309 
4310     cpu->vcpu_id = vcpu_id;
4311     return true;
4312 }
4313 
4314 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4315 {
4316     CPUState *cs;
4317 
4318     CPU_FOREACH(cs) {
4319         PowerPCCPU *cpu = POWERPC_CPU(cs);
4320 
4321         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4322             return cpu;
4323         }
4324     }
4325 
4326     return NULL;
4327 }
4328 
4329 static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4330 {
4331     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4332 
4333     /* These are only called by TCG, KVM maintains dispatch state */
4334 
4335     spapr_cpu->prod = false;
4336     if (spapr_cpu->vpa_addr) {
4337         CPUState *cs = CPU(cpu);
4338         uint32_t dispatch;
4339 
4340         dispatch = ldl_be_phys(cs->as,
4341                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4342         dispatch++;
4343         if ((dispatch & 1) != 0) {
4344             qemu_log_mask(LOG_GUEST_ERROR,
4345                           "VPA: incorrect dispatch counter value for "
4346                           "dispatched partition %u, correcting.\n", dispatch);
4347             dispatch++;
4348         }
4349         stl_be_phys(cs->as,
4350                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4351     }
4352 }
4353 
4354 static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu)
4355 {
4356     SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu);
4357 
4358     if (spapr_cpu->vpa_addr) {
4359         CPUState *cs = CPU(cpu);
4360         uint32_t dispatch;
4361 
4362         dispatch = ldl_be_phys(cs->as,
4363                                spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER);
4364         dispatch++;
4365         if ((dispatch & 1) != 1) {
4366             qemu_log_mask(LOG_GUEST_ERROR,
4367                           "VPA: incorrect dispatch counter value for "
4368                           "preempted partition %u, correcting.\n", dispatch);
4369             dispatch++;
4370         }
4371         stl_be_phys(cs->as,
4372                     spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch);
4373     }
4374 }
4375 
4376 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4377 {
4378     MachineClass *mc = MACHINE_CLASS(oc);
4379     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4380     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4381     NMIClass *nc = NMI_CLASS(oc);
4382     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4383     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4384     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4385     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4386     XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
4387 
4388     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4389     mc->ignore_boot_device_suffixes = true;
4390 
4391     /*
4392      * We set up the default / latest behaviour here.  The class_init
4393      * functions for the specific versioned machine types can override
4394      * these details for backwards compatibility
4395      */
4396     mc->init = spapr_machine_init;
4397     mc->reset = spapr_machine_reset;
4398     mc->block_default_type = IF_SCSI;
4399     mc->max_cpus = 1024;
4400     mc->no_parallel = 1;
4401     mc->default_boot_order = "";
4402     mc->default_ram_size = 512 * MiB;
4403     mc->default_ram_id = "ppc_spapr.ram";
4404     mc->default_display = "std";
4405     mc->kvm_type = spapr_kvm_type;
4406     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4407     mc->pci_allow_0_address = true;
4408     assert(!mc->get_hotplug_handler);
4409     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4410     hc->pre_plug = spapr_machine_device_pre_plug;
4411     hc->plug = spapr_machine_device_plug;
4412     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4413     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4414     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4415     hc->unplug_request = spapr_machine_device_unplug_request;
4416     hc->unplug = spapr_machine_device_unplug;
4417 
4418     smc->dr_lmb_enabled = true;
4419     smc->update_dt_enabled = true;
4420     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4421     mc->has_hotpluggable_cpus = true;
4422     mc->nvdimm_supported = true;
4423     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4424     fwc->get_dev_path = spapr_get_fw_dev_path;
4425     nc->nmi_monitor_handler = spapr_nmi;
4426     smc->phb_placement = spapr_phb_placement;
4427     vhc->hypercall = emulate_spapr_hypercall;
4428     vhc->hpt_mask = spapr_hpt_mask;
4429     vhc->map_hptes = spapr_map_hptes;
4430     vhc->unmap_hptes = spapr_unmap_hptes;
4431     vhc->hpte_set_c = spapr_hpte_set_c;
4432     vhc->hpte_set_r = spapr_hpte_set_r;
4433     vhc->get_pate = spapr_get_pate;
4434     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4435     vhc->cpu_exec_enter = spapr_cpu_exec_enter;
4436     vhc->cpu_exec_exit = spapr_cpu_exec_exit;
4437     xic->ics_get = spapr_ics_get;
4438     xic->ics_resend = spapr_ics_resend;
4439     xic->icp_get = spapr_icp_get;
4440     ispc->print_info = spapr_pic_print_info;
4441     /* Force NUMA node memory size to be a multiple of
4442      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4443      * in which LMBs are represented and hot-added
4444      */
4445     mc->numa_mem_align_shift = 28;
4446     mc->auto_enable_numa = true;
4447 
4448     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4449     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4450     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4451     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4452     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4453     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND;
4454     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4455     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4456     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON;
4457     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON;
4458     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON;
4459     spapr_caps_add_properties(smc);
4460     smc->irq = &spapr_irq_dual;
4461     smc->dr_phb_enabled = true;
4462     smc->linux_pci_probe = true;
4463     smc->smp_threads_vsmt = true;
4464     smc->nr_xirqs = SPAPR_NR_XIRQS;
4465     xfc->match_nvt = spapr_match_nvt;
4466 }
4467 
4468 static const TypeInfo spapr_machine_info = {
4469     .name          = TYPE_SPAPR_MACHINE,
4470     .parent        = TYPE_MACHINE,
4471     .abstract      = true,
4472     .instance_size = sizeof(SpaprMachineState),
4473     .instance_init = spapr_instance_init,
4474     .instance_finalize = spapr_machine_finalizefn,
4475     .class_size    = sizeof(SpaprMachineClass),
4476     .class_init    = spapr_machine_class_init,
4477     .interfaces = (InterfaceInfo[]) {
4478         { TYPE_FW_PATH_PROVIDER },
4479         { TYPE_NMI },
4480         { TYPE_HOTPLUG_HANDLER },
4481         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4482         { TYPE_XICS_FABRIC },
4483         { TYPE_INTERRUPT_STATS_PROVIDER },
4484         { TYPE_XIVE_FABRIC },
4485         { }
4486     },
4487 };
4488 
4489 static void spapr_machine_latest_class_options(MachineClass *mc)
4490 {
4491     mc->alias = "pseries";
4492     mc->is_default = true;
4493 }
4494 
4495 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4496     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4497                                                     void *data)      \
4498     {                                                                \
4499         MachineClass *mc = MACHINE_CLASS(oc);                        \
4500         spapr_machine_##suffix##_class_options(mc);                  \
4501         if (latest) {                                                \
4502             spapr_machine_latest_class_options(mc);                  \
4503         }                                                            \
4504     }                                                                \
4505     static const TypeInfo spapr_machine_##suffix##_info = {          \
4506         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4507         .parent = TYPE_SPAPR_MACHINE,                                \
4508         .class_init = spapr_machine_##suffix##_class_init,           \
4509     };                                                               \
4510     static void spapr_machine_register_##suffix(void)                \
4511     {                                                                \
4512         type_register(&spapr_machine_##suffix##_info);               \
4513     }                                                                \
4514     type_init(spapr_machine_register_##suffix)
4515 
4516 /*
4517  * pseries-5.2
4518  */
4519 static void spapr_machine_5_2_class_options(MachineClass *mc)
4520 {
4521     /* Defaults for the latest behaviour inherited from the base class */
4522 }
4523 
4524 DEFINE_SPAPR_MACHINE(5_2, "5.2", true);
4525 
4526 /*
4527  * pseries-5.1
4528  */
4529 static void spapr_machine_5_1_class_options(MachineClass *mc)
4530 {
4531     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4532 
4533     spapr_machine_5_2_class_options(mc);
4534     compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len);
4535     smc->pre_5_2_numa_associativity = true;
4536 }
4537 
4538 DEFINE_SPAPR_MACHINE(5_1, "5.1", false);
4539 
4540 /*
4541  * pseries-5.0
4542  */
4543 static void spapr_machine_5_0_class_options(MachineClass *mc)
4544 {
4545     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4546     static GlobalProperty compat[] = {
4547         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" },
4548     };
4549 
4550     spapr_machine_5_1_class_options(mc);
4551     compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len);
4552     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4553     mc->numa_mem_supported = true;
4554     smc->pre_5_1_assoc_refpoints = true;
4555 }
4556 
4557 DEFINE_SPAPR_MACHINE(5_0, "5.0", false);
4558 
4559 /*
4560  * pseries-4.2
4561  */
4562 static void spapr_machine_4_2_class_options(MachineClass *mc)
4563 {
4564     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4565 
4566     spapr_machine_5_0_class_options(mc);
4567     compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len);
4568     smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF;
4569     smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF;
4570     smc->rma_limit = 16 * GiB;
4571     mc->nvdimm_supported = false;
4572 }
4573 
4574 DEFINE_SPAPR_MACHINE(4_2, "4.2", false);
4575 
4576 /*
4577  * pseries-4.1
4578  */
4579 static void spapr_machine_4_1_class_options(MachineClass *mc)
4580 {
4581     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4582     static GlobalProperty compat[] = {
4583         /* Only allow 4kiB and 64kiB IOMMU pagesizes */
4584         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" },
4585     };
4586 
4587     spapr_machine_4_2_class_options(mc);
4588     smc->linux_pci_probe = false;
4589     smc->smp_threads_vsmt = false;
4590     compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len);
4591     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4592 }
4593 
4594 DEFINE_SPAPR_MACHINE(4_1, "4.1", false);
4595 
4596 /*
4597  * pseries-4.0
4598  */
4599 static void phb_placement_4_0(SpaprMachineState *spapr, uint32_t index,
4600                               uint64_t *buid, hwaddr *pio,
4601                               hwaddr *mmio32, hwaddr *mmio64,
4602                               unsigned n_dma, uint32_t *liobns,
4603                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4604 {
4605     spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, liobns,
4606                         nv2gpa, nv2atsd, errp);
4607     *nv2gpa = 0;
4608     *nv2atsd = 0;
4609 }
4610 
4611 static void spapr_machine_4_0_class_options(MachineClass *mc)
4612 {
4613     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4614 
4615     spapr_machine_4_1_class_options(mc);
4616     compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len);
4617     smc->phb_placement = phb_placement_4_0;
4618     smc->irq = &spapr_irq_xics;
4619     smc->pre_4_1_migration = true;
4620 }
4621 
4622 DEFINE_SPAPR_MACHINE(4_0, "4.0", false);
4623 
4624 /*
4625  * pseries-3.1
4626  */
4627 static void spapr_machine_3_1_class_options(MachineClass *mc)
4628 {
4629     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4630 
4631     spapr_machine_4_0_class_options(mc);
4632     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4633 
4634     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4635     smc->update_dt_enabled = false;
4636     smc->dr_phb_enabled = false;
4637     smc->broken_host_serial_model = true;
4638     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4639     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4640     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4641     smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
4642 }
4643 
4644 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4645 
4646 /*
4647  * pseries-3.0
4648  */
4649 
4650 static void spapr_machine_3_0_class_options(MachineClass *mc)
4651 {
4652     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4653 
4654     spapr_machine_3_1_class_options(mc);
4655     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4656 
4657     smc->legacy_irq_allocation = true;
4658     smc->nr_xirqs = 0x400;
4659     smc->irq = &spapr_irq_xics_legacy;
4660 }
4661 
4662 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4663 
4664 /*
4665  * pseries-2.12
4666  */
4667 static void spapr_machine_2_12_class_options(MachineClass *mc)
4668 {
4669     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4670     static GlobalProperty compat[] = {
4671         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4672         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4673     };
4674 
4675     spapr_machine_3_0_class_options(mc);
4676     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4677     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4678 
4679     /* We depend on kvm_enabled() to choose a default value for the
4680      * hpt-max-page-size capability. Of course we can't do it here
4681      * because this is too early and the HW accelerator isn't initialzed
4682      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4683      */
4684     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4685 }
4686 
4687 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4688 
4689 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4690 {
4691     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4692 
4693     spapr_machine_2_12_class_options(mc);
4694     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4695     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4696     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4697 }
4698 
4699 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4700 
4701 /*
4702  * pseries-2.11
4703  */
4704 
4705 static void spapr_machine_2_11_class_options(MachineClass *mc)
4706 {
4707     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4708 
4709     spapr_machine_2_12_class_options(mc);
4710     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4711     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4712 }
4713 
4714 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4715 
4716 /*
4717  * pseries-2.10
4718  */
4719 
4720 static void spapr_machine_2_10_class_options(MachineClass *mc)
4721 {
4722     spapr_machine_2_11_class_options(mc);
4723     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4724 }
4725 
4726 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4727 
4728 /*
4729  * pseries-2.9
4730  */
4731 
4732 static void spapr_machine_2_9_class_options(MachineClass *mc)
4733 {
4734     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4735     static GlobalProperty compat[] = {
4736         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4737     };
4738 
4739     spapr_machine_2_10_class_options(mc);
4740     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4741     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4742     smc->pre_2_10_has_unused_icps = true;
4743     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4744 }
4745 
4746 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4747 
4748 /*
4749  * pseries-2.8
4750  */
4751 
4752 static void spapr_machine_2_8_class_options(MachineClass *mc)
4753 {
4754     static GlobalProperty compat[] = {
4755         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4756     };
4757 
4758     spapr_machine_2_9_class_options(mc);
4759     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4760     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4761     mc->numa_mem_align_shift = 23;
4762 }
4763 
4764 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4765 
4766 /*
4767  * pseries-2.7
4768  */
4769 
4770 static void phb_placement_2_7(SpaprMachineState *spapr, uint32_t index,
4771                               uint64_t *buid, hwaddr *pio,
4772                               hwaddr *mmio32, hwaddr *mmio64,
4773                               unsigned n_dma, uint32_t *liobns,
4774                               hwaddr *nv2gpa, hwaddr *nv2atsd, Error **errp)
4775 {
4776     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4777     const uint64_t base_buid = 0x800000020000000ULL;
4778     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4779     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4780     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4781     const uint32_t max_index = 255;
4782     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4783 
4784     uint64_t ram_top = MACHINE(spapr)->ram_size;
4785     hwaddr phb0_base, phb_base;
4786     int i;
4787 
4788     /* Do we have device memory? */
4789     if (MACHINE(spapr)->maxram_size > ram_top) {
4790         /* Can't just use maxram_size, because there may be an
4791          * alignment gap between normal and device memory regions
4792          */
4793         ram_top = MACHINE(spapr)->device_memory->base +
4794             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4795     }
4796 
4797     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4798 
4799     if (index > max_index) {
4800         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4801                    max_index);
4802         return;
4803     }
4804 
4805     *buid = base_buid + index;
4806     for (i = 0; i < n_dma; ++i) {
4807         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4808     }
4809 
4810     phb_base = phb0_base + index * phb_spacing;
4811     *pio = phb_base + pio_offset;
4812     *mmio32 = phb_base + mmio_offset;
4813     /*
4814      * We don't set the 64-bit MMIO window, relying on the PHB's
4815      * fallback behaviour of automatically splitting a large "32-bit"
4816      * window into contiguous 32-bit and 64-bit windows
4817      */
4818 
4819     *nv2gpa = 0;
4820     *nv2atsd = 0;
4821 }
4822 
4823 static void spapr_machine_2_7_class_options(MachineClass *mc)
4824 {
4825     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4826     static GlobalProperty compat[] = {
4827         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4828         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4829         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4830         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4831     };
4832 
4833     spapr_machine_2_8_class_options(mc);
4834     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4835     mc->default_machine_opts = "modern-hotplug-events=off";
4836     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4837     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4838     smc->phb_placement = phb_placement_2_7;
4839 }
4840 
4841 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4842 
4843 /*
4844  * pseries-2.6
4845  */
4846 
4847 static void spapr_machine_2_6_class_options(MachineClass *mc)
4848 {
4849     static GlobalProperty compat[] = {
4850         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4851     };
4852 
4853     spapr_machine_2_7_class_options(mc);
4854     mc->has_hotpluggable_cpus = false;
4855     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4856     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4857 }
4858 
4859 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4860 
4861 /*
4862  * pseries-2.5
4863  */
4864 
4865 static void spapr_machine_2_5_class_options(MachineClass *mc)
4866 {
4867     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4868     static GlobalProperty compat[] = {
4869         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4870     };
4871 
4872     spapr_machine_2_6_class_options(mc);
4873     smc->use_ohci_by_default = true;
4874     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4875     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4876 }
4877 
4878 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4879 
4880 /*
4881  * pseries-2.4
4882  */
4883 
4884 static void spapr_machine_2_4_class_options(MachineClass *mc)
4885 {
4886     SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4887 
4888     spapr_machine_2_5_class_options(mc);
4889     smc->dr_lmb_enabled = false;
4890     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4891 }
4892 
4893 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4894 
4895 /*
4896  * pseries-2.3
4897  */
4898 
4899 static void spapr_machine_2_3_class_options(MachineClass *mc)
4900 {
4901     static GlobalProperty compat[] = {
4902         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4903     };
4904     spapr_machine_2_4_class_options(mc);
4905     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4906     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4907 }
4908 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4909 
4910 /*
4911  * pseries-2.2
4912  */
4913 
4914 static void spapr_machine_2_2_class_options(MachineClass *mc)
4915 {
4916     static GlobalProperty compat[] = {
4917         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4918     };
4919 
4920     spapr_machine_2_3_class_options(mc);
4921     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4922     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4923     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4924 }
4925 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4926 
4927 /*
4928  * pseries-2.1
4929  */
4930 
4931 static void spapr_machine_2_1_class_options(MachineClass *mc)
4932 {
4933     spapr_machine_2_2_class_options(mc);
4934     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4935 }
4936 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4937 
4938 static void spapr_machine_register_types(void)
4939 {
4940     type_register_static(&spapr_machine_info);
4941 }
4942 
4943 type_init(spapr_machine_register_types)
4944