1 /* 2 * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator 3 * 4 * Copyright (c) 2004-2007 Fabrice Bellard 5 * Copyright (c) 2007 Jocelyn Mayer 6 * Copyright (c) 2010 David Gibson, IBM Corporation. 7 * 8 * Permission is hereby granted, free of charge, to any person obtaining a copy 9 * of this software and associated documentation files (the "Software"), to deal 10 * in the Software without restriction, including without limitation the rights 11 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 12 * copies of the Software, and to permit persons to whom the Software is 13 * furnished to do so, subject to the following conditions: 14 * 15 * The above copyright notice and this permission notice shall be included in 16 * all copies or substantial portions of the Software. 17 * 18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 20 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 21 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 22 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 23 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 24 * THE SOFTWARE. 25 * 26 */ 27 #include "qemu/osdep.h" 28 #include "qapi/error.h" 29 #include "qapi/visitor.h" 30 #include "sysemu/sysemu.h" 31 #include "sysemu/numa.h" 32 #include "hw/hw.h" 33 #include "qemu/log.h" 34 #include "hw/fw-path-provider.h" 35 #include "elf.h" 36 #include "net/net.h" 37 #include "sysemu/device_tree.h" 38 #include "sysemu/cpus.h" 39 #include "sysemu/hw_accel.h" 40 #include "kvm_ppc.h" 41 #include "migration/misc.h" 42 #include "migration/global_state.h" 43 #include "migration/register.h" 44 #include "mmu-hash64.h" 45 #include "mmu-book3s-v3.h" 46 #include "cpu-models.h" 47 #include "qom/cpu.h" 48 49 #include "hw/boards.h" 50 #include "hw/ppc/ppc.h" 51 #include "hw/loader.h" 52 53 #include "hw/ppc/fdt.h" 54 #include "hw/ppc/spapr.h" 55 #include "hw/ppc/spapr_vio.h" 56 #include "hw/pci-host/spapr.h" 57 #include "hw/pci/msi.h" 58 59 #include "hw/pci/pci.h" 60 #include "hw/scsi/scsi.h" 61 #include "hw/virtio/virtio-scsi.h" 62 #include "hw/virtio/vhost-scsi-common.h" 63 64 #include "exec/address-spaces.h" 65 #include "exec/ram_addr.h" 66 #include "hw/usb.h" 67 #include "qemu/config-file.h" 68 #include "qemu/error-report.h" 69 #include "trace.h" 70 #include "hw/nmi.h" 71 #include "hw/intc/intc.h" 72 73 #include "qemu/cutils.h" 74 #include "hw/ppc/spapr_cpu_core.h" 75 #include "hw/mem/memory-device.h" 76 77 #include <libfdt.h> 78 79 /* SLOF memory layout: 80 * 81 * SLOF raw image loaded at 0, copies its romfs right below the flat 82 * device-tree, then position SLOF itself 31M below that 83 * 84 * So we set FW_OVERHEAD to 40MB which should account for all of that 85 * and more 86 * 87 * We load our kernel at 4M, leaving space for SLOF initial image 88 */ 89 #define FDT_MAX_SIZE 0x100000 90 #define RTAS_MAX_SIZE 0x10000 91 #define RTAS_MAX_ADDR 0x80000000 /* RTAS must stay below that */ 92 #define FW_MAX_SIZE 0x400000 93 #define FW_FILE_NAME "slof.bin" 94 #define FW_OVERHEAD 0x2800000 95 #define KERNEL_LOAD_ADDR FW_MAX_SIZE 96 97 #define MIN_RMA_SLOF 128UL 98 99 #define PHANDLE_INTC 0x00001111 100 101 /* These two functions implement the VCPU id numbering: one to compute them 102 * all and one to identify thread 0 of a VCORE. Any change to the first one 103 * is likely to have an impact on the second one, so let's keep them close. 104 */ 105 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index) 106 { 107 assert(spapr->vsmt); 108 return 109 (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; 110 } 111 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr, 112 PowerPCCPU *cpu) 113 { 114 assert(spapr->vsmt); 115 return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; 116 } 117 118 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) 119 { 120 /* Dummy entries correspond to unused ICPState objects in older QEMUs, 121 * and newer QEMUs don't even have them. In both cases, we don't want 122 * to send anything on the wire. 123 */ 124 return false; 125 } 126 127 static const VMStateDescription pre_2_10_vmstate_dummy_icp = { 128 .name = "icp/server", 129 .version_id = 1, 130 .minimum_version_id = 1, 131 .needed = pre_2_10_vmstate_dummy_icp_needed, 132 .fields = (VMStateField[]) { 133 VMSTATE_UNUSED(4), /* uint32_t xirr */ 134 VMSTATE_UNUSED(1), /* uint8_t pending_priority */ 135 VMSTATE_UNUSED(1), /* uint8_t mfrr */ 136 VMSTATE_END_OF_LIST() 137 }, 138 }; 139 140 static void pre_2_10_vmstate_register_dummy_icp(int i) 141 { 142 vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, 143 (void *)(uintptr_t) i); 144 } 145 146 static void pre_2_10_vmstate_unregister_dummy_icp(int i) 147 { 148 vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, 149 (void *)(uintptr_t) i); 150 } 151 152 int spapr_max_server_number(sPAPRMachineState *spapr) 153 { 154 assert(spapr->vsmt); 155 return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads); 156 } 157 158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, 159 int smt_threads) 160 { 161 int i, ret = 0; 162 uint32_t servers_prop[smt_threads]; 163 uint32_t gservers_prop[smt_threads * 2]; 164 int index = spapr_get_vcpu_id(cpu); 165 166 if (cpu->compat_pvr) { 167 ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); 168 if (ret < 0) { 169 return ret; 170 } 171 } 172 173 /* Build interrupt servers and gservers properties */ 174 for (i = 0; i < smt_threads; i++) { 175 servers_prop[i] = cpu_to_be32(index + i); 176 /* Hack, direct the group queues back to cpu 0 */ 177 gservers_prop[i*2] = cpu_to_be32(index + i); 178 gservers_prop[i*2 + 1] = 0; 179 } 180 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", 181 servers_prop, sizeof(servers_prop)); 182 if (ret < 0) { 183 return ret; 184 } 185 ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", 186 gservers_prop, sizeof(gservers_prop)); 187 188 return ret; 189 } 190 191 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu) 192 { 193 int index = spapr_get_vcpu_id(cpu); 194 uint32_t associativity[] = {cpu_to_be32(0x5), 195 cpu_to_be32(0x0), 196 cpu_to_be32(0x0), 197 cpu_to_be32(0x0), 198 cpu_to_be32(cpu->node_id), 199 cpu_to_be32(index)}; 200 201 /* Advertise NUMA via ibm,associativity */ 202 return fdt_setprop(fdt, offset, "ibm,associativity", associativity, 203 sizeof(associativity)); 204 } 205 206 /* Populate the "ibm,pa-features" property */ 207 static void spapr_populate_pa_features(sPAPRMachineState *spapr, 208 PowerPCCPU *cpu, 209 void *fdt, int offset, 210 bool legacy_guest) 211 { 212 uint8_t pa_features_206[] = { 6, 0, 213 0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 }; 214 uint8_t pa_features_207[] = { 24, 0, 215 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, 216 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 217 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 218 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; 219 uint8_t pa_features_300[] = { 66, 0, 220 /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ 221 /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */ 222 0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */ 223 /* 6: DS207 */ 224 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ 225 /* 16: Vector */ 226 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ 227 /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */ 228 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ 229 /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ 230 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ 231 /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */ 232 0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ 233 /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */ 234 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */ 235 /* 42: PM, 44: PC RA, 46: SC vec'd */ 236 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ 237 /* 48: SIMD, 50: QP BFP, 52: String */ 238 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ 239 /* 54: DecFP, 56: DecI, 58: SHA */ 240 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ 241 /* 60: NM atomic, 62: RNG */ 242 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ 243 }; 244 uint8_t *pa_features = NULL; 245 size_t pa_size; 246 247 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { 248 pa_features = pa_features_206; 249 pa_size = sizeof(pa_features_206); 250 } 251 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { 252 pa_features = pa_features_207; 253 pa_size = sizeof(pa_features_207); 254 } 255 if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { 256 pa_features = pa_features_300; 257 pa_size = sizeof(pa_features_300); 258 } 259 if (!pa_features) { 260 return; 261 } 262 263 if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { 264 /* 265 * Note: we keep CI large pages off by default because a 64K capable 266 * guest provisioned with large pages might otherwise try to map a qemu 267 * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages 268 * even if that qemu runs on a 4k host. 269 * We dd this bit back here if we are confident this is not an issue 270 */ 271 pa_features[3] |= 0x20; 272 } 273 if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { 274 pa_features[24] |= 0x80; /* Transactional memory support */ 275 } 276 if (legacy_guest && pa_size > 40) { 277 /* Workaround for broken kernels that attempt (guest) radix 278 * mode when they can't handle it, if they see the radix bit set 279 * in pa-features. So hide it from them. */ 280 pa_features[40 + 2] &= ~0x80; /* Radix MMU */ 281 } 282 283 _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); 284 } 285 286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr) 287 { 288 int ret = 0, offset, cpus_offset; 289 CPUState *cs; 290 char cpu_model[32]; 291 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 292 293 CPU_FOREACH(cs) { 294 PowerPCCPU *cpu = POWERPC_CPU(cs); 295 DeviceClass *dc = DEVICE_GET_CLASS(cs); 296 int index = spapr_get_vcpu_id(cpu); 297 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 298 299 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 300 continue; 301 } 302 303 snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index); 304 305 cpus_offset = fdt_path_offset(fdt, "/cpus"); 306 if (cpus_offset < 0) { 307 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 308 if (cpus_offset < 0) { 309 return cpus_offset; 310 } 311 } 312 offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model); 313 if (offset < 0) { 314 offset = fdt_add_subnode(fdt, cpus_offset, cpu_model); 315 if (offset < 0) { 316 return offset; 317 } 318 } 319 320 ret = fdt_setprop(fdt, offset, "ibm,pft-size", 321 pft_size_prop, sizeof(pft_size_prop)); 322 if (ret < 0) { 323 return ret; 324 } 325 326 if (nb_numa_nodes > 1) { 327 ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu); 328 if (ret < 0) { 329 return ret; 330 } 331 } 332 333 ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt); 334 if (ret < 0) { 335 return ret; 336 } 337 338 spapr_populate_pa_features(spapr, cpu, fdt, offset, 339 spapr->cas_legacy_guest_workaround); 340 } 341 return ret; 342 } 343 344 static hwaddr spapr_node0_size(MachineState *machine) 345 { 346 if (nb_numa_nodes) { 347 int i; 348 for (i = 0; i < nb_numa_nodes; ++i) { 349 if (numa_info[i].node_mem) { 350 return MIN(pow2floor(numa_info[i].node_mem), 351 machine->ram_size); 352 } 353 } 354 } 355 return machine->ram_size; 356 } 357 358 static void add_str(GString *s, const gchar *s1) 359 { 360 g_string_append_len(s, s1, strlen(s1) + 1); 361 } 362 363 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start, 364 hwaddr size) 365 { 366 uint32_t associativity[] = { 367 cpu_to_be32(0x4), /* length */ 368 cpu_to_be32(0x0), cpu_to_be32(0x0), 369 cpu_to_be32(0x0), cpu_to_be32(nodeid) 370 }; 371 char mem_name[32]; 372 uint64_t mem_reg_property[2]; 373 int off; 374 375 mem_reg_property[0] = cpu_to_be64(start); 376 mem_reg_property[1] = cpu_to_be64(size); 377 378 sprintf(mem_name, "memory@" TARGET_FMT_lx, start); 379 off = fdt_add_subnode(fdt, 0, mem_name); 380 _FDT(off); 381 _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); 382 _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, 383 sizeof(mem_reg_property)))); 384 _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity, 385 sizeof(associativity)))); 386 return off; 387 } 388 389 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt) 390 { 391 MachineState *machine = MACHINE(spapr); 392 hwaddr mem_start, node_size; 393 int i, nb_nodes = nb_numa_nodes; 394 NodeInfo *nodes = numa_info; 395 NodeInfo ramnode; 396 397 /* No NUMA nodes, assume there is just one node with whole RAM */ 398 if (!nb_numa_nodes) { 399 nb_nodes = 1; 400 ramnode.node_mem = machine->ram_size; 401 nodes = &ramnode; 402 } 403 404 for (i = 0, mem_start = 0; i < nb_nodes; ++i) { 405 if (!nodes[i].node_mem) { 406 continue; 407 } 408 if (mem_start >= machine->ram_size) { 409 node_size = 0; 410 } else { 411 node_size = nodes[i].node_mem; 412 if (node_size > machine->ram_size - mem_start) { 413 node_size = machine->ram_size - mem_start; 414 } 415 } 416 if (!mem_start) { 417 /* spapr_machine_init() checks for rma_size <= node0_size 418 * already */ 419 spapr_populate_memory_node(fdt, i, 0, spapr->rma_size); 420 mem_start += spapr->rma_size; 421 node_size -= spapr->rma_size; 422 } 423 for ( ; node_size; ) { 424 hwaddr sizetmp = pow2floor(node_size); 425 426 /* mem_start != 0 here */ 427 if (ctzl(mem_start) < ctzl(sizetmp)) { 428 sizetmp = 1ULL << ctzl(mem_start); 429 } 430 431 spapr_populate_memory_node(fdt, i, mem_start, sizetmp); 432 node_size -= sizetmp; 433 mem_start += sizetmp; 434 } 435 } 436 437 return 0; 438 } 439 440 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset, 441 sPAPRMachineState *spapr) 442 { 443 PowerPCCPU *cpu = POWERPC_CPU(cs); 444 CPUPPCState *env = &cpu->env; 445 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); 446 int index = spapr_get_vcpu_id(cpu); 447 uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), 448 0xffffffff, 0xffffffff}; 449 uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() 450 : SPAPR_TIMEBASE_FREQ; 451 uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; 452 uint32_t page_sizes_prop[64]; 453 size_t page_sizes_prop_size; 454 uint32_t vcpus_per_socket = smp_threads * smp_cores; 455 uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; 456 int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); 457 sPAPRDRConnector *drc; 458 int drc_index; 459 uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; 460 int i; 461 462 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); 463 if (drc) { 464 drc_index = spapr_drc_index(drc); 465 _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); 466 } 467 468 _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); 469 _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); 470 471 _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); 472 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", 473 env->dcache_line_size))); 474 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", 475 env->dcache_line_size))); 476 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", 477 env->icache_line_size))); 478 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", 479 env->icache_line_size))); 480 481 if (pcc->l1_dcache_size) { 482 _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", 483 pcc->l1_dcache_size))); 484 } else { 485 warn_report("Unknown L1 dcache size for cpu"); 486 } 487 if (pcc->l1_icache_size) { 488 _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", 489 pcc->l1_icache_size))); 490 } else { 491 warn_report("Unknown L1 icache size for cpu"); 492 } 493 494 _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); 495 _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); 496 _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); 497 _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); 498 _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); 499 _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); 500 501 if (env->spr_cb[SPR_PURR].oea_read) { 502 _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0))); 503 } 504 505 if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { 506 _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", 507 segs, sizeof(segs)))); 508 } 509 510 /* Advertise VSX (vector extensions) if available 511 * 1 == VMX / Altivec available 512 * 2 == VSX available 513 * 514 * Only CPUs for which we create core types in spapr_cpu_core.c 515 * are possible, and all of those have VMX */ 516 if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { 517 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); 518 } else { 519 _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); 520 } 521 522 /* Advertise DFP (Decimal Floating Point) if available 523 * 0 / no property == no DFP 524 * 1 == DFP available */ 525 if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { 526 _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); 527 } 528 529 page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, 530 sizeof(page_sizes_prop)); 531 if (page_sizes_prop_size) { 532 _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", 533 page_sizes_prop, page_sizes_prop_size))); 534 } 535 536 spapr_populate_pa_features(spapr, cpu, fdt, offset, false); 537 538 _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", 539 cs->cpu_index / vcpus_per_socket))); 540 541 _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", 542 pft_size_prop, sizeof(pft_size_prop)))); 543 544 if (nb_numa_nodes > 1) { 545 _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu)); 546 } 547 548 _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); 549 550 if (pcc->radix_page_info) { 551 for (i = 0; i < pcc->radix_page_info->count; i++) { 552 radix_AP_encodings[i] = 553 cpu_to_be32(pcc->radix_page_info->entries[i]); 554 } 555 _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", 556 radix_AP_encodings, 557 pcc->radix_page_info->count * 558 sizeof(radix_AP_encodings[0])))); 559 } 560 } 561 562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr) 563 { 564 CPUState **rev; 565 CPUState *cs; 566 int n_cpus; 567 int cpus_offset; 568 char *nodename; 569 int i; 570 571 cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); 572 _FDT(cpus_offset); 573 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); 574 _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); 575 576 /* 577 * We walk the CPUs in reverse order to ensure that CPU DT nodes 578 * created by fdt_add_subnode() end up in the right order in FDT 579 * for the guest kernel the enumerate the CPUs correctly. 580 * 581 * The CPU list cannot be traversed in reverse order, so we need 582 * to do extra work. 583 */ 584 n_cpus = 0; 585 rev = NULL; 586 CPU_FOREACH(cs) { 587 rev = g_renew(CPUState *, rev, n_cpus + 1); 588 rev[n_cpus++] = cs; 589 } 590 591 for (i = n_cpus - 1; i >= 0; i--) { 592 CPUState *cs = rev[i]; 593 PowerPCCPU *cpu = POWERPC_CPU(cs); 594 int index = spapr_get_vcpu_id(cpu); 595 DeviceClass *dc = DEVICE_GET_CLASS(cs); 596 int offset; 597 598 if (!spapr_is_thread0_in_vcore(spapr, cpu)) { 599 continue; 600 } 601 602 nodename = g_strdup_printf("%s@%x", dc->fw_name, index); 603 offset = fdt_add_subnode(fdt, cpus_offset, nodename); 604 g_free(nodename); 605 _FDT(offset); 606 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 607 } 608 609 g_free(rev); 610 } 611 612 static int spapr_rng_populate_dt(void *fdt) 613 { 614 int node; 615 int ret; 616 617 node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); 618 if (node <= 0) { 619 return -1; 620 } 621 ret = fdt_setprop_string(fdt, node, "device_type", 622 "ibm,platform-facilities"); 623 ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); 624 ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); 625 626 node = fdt_add_subnode(fdt, node, "ibm,random-v1"); 627 if (node <= 0) { 628 return -1; 629 } 630 ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); 631 632 return ret ? -1 : 0; 633 } 634 635 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) 636 { 637 MemoryDeviceInfoList *info; 638 639 for (info = list; info; info = info->next) { 640 MemoryDeviceInfo *value = info->value; 641 642 if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { 643 PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; 644 645 if (addr >= pcdimm_info->addr && 646 addr < (pcdimm_info->addr + pcdimm_info->size)) { 647 return pcdimm_info->node; 648 } 649 } 650 } 651 652 return -1; 653 } 654 655 struct sPAPRDrconfCellV2 { 656 uint32_t seq_lmbs; 657 uint64_t base_addr; 658 uint32_t drc_index; 659 uint32_t aa_index; 660 uint32_t flags; 661 } QEMU_PACKED; 662 663 typedef struct DrconfCellQueue { 664 struct sPAPRDrconfCellV2 cell; 665 QSIMPLEQ_ENTRY(DrconfCellQueue) entry; 666 } DrconfCellQueue; 667 668 static DrconfCellQueue * 669 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, 670 uint32_t drc_index, uint32_t aa_index, 671 uint32_t flags) 672 { 673 DrconfCellQueue *elem; 674 675 elem = g_malloc0(sizeof(*elem)); 676 elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); 677 elem->cell.base_addr = cpu_to_be64(base_addr); 678 elem->cell.drc_index = cpu_to_be32(drc_index); 679 elem->cell.aa_index = cpu_to_be32(aa_index); 680 elem->cell.flags = cpu_to_be32(flags); 681 682 return elem; 683 } 684 685 /* ibm,dynamic-memory-v2 */ 686 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt, 687 int offset, MemoryDeviceInfoList *dimms) 688 { 689 MachineState *machine = MACHINE(spapr); 690 uint8_t *int_buf, *cur_index; 691 int ret; 692 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 693 uint64_t addr, cur_addr, size; 694 uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); 695 uint64_t mem_end = machine->device_memory->base + 696 memory_region_size(&machine->device_memory->mr); 697 uint32_t node, buf_len, nr_entries = 0; 698 sPAPRDRConnector *drc; 699 DrconfCellQueue *elem, *next; 700 MemoryDeviceInfoList *info; 701 QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue 702 = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); 703 704 /* Entry to cover RAM and the gap area */ 705 elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, 706 SPAPR_LMB_FLAGS_RESERVED | 707 SPAPR_LMB_FLAGS_DRC_INVALID); 708 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 709 nr_entries++; 710 711 cur_addr = machine->device_memory->base; 712 for (info = dimms; info; info = info->next) { 713 PCDIMMDeviceInfo *di = info->value->u.dimm.data; 714 715 addr = di->addr; 716 size = di->size; 717 node = di->node; 718 719 /* Entry for hot-pluggable area */ 720 if (cur_addr < addr) { 721 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 722 g_assert(drc); 723 elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, 724 cur_addr, spapr_drc_index(drc), -1, 0); 725 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 726 nr_entries++; 727 } 728 729 /* Entry for DIMM */ 730 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); 731 g_assert(drc); 732 elem = spapr_get_drconf_cell(size / lmb_size, addr, 733 spapr_drc_index(drc), node, 734 SPAPR_LMB_FLAGS_ASSIGNED); 735 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 736 nr_entries++; 737 cur_addr = addr + size; 738 } 739 740 /* Entry for remaining hotpluggable area */ 741 if (cur_addr < mem_end) { 742 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); 743 g_assert(drc); 744 elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, 745 cur_addr, spapr_drc_index(drc), -1, 0); 746 QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); 747 nr_entries++; 748 } 749 750 buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); 751 int_buf = cur_index = g_malloc0(buf_len); 752 *(uint32_t *)int_buf = cpu_to_be32(nr_entries); 753 cur_index += sizeof(nr_entries); 754 755 QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { 756 memcpy(cur_index, &elem->cell, sizeof(elem->cell)); 757 cur_index += sizeof(elem->cell); 758 QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); 759 g_free(elem); 760 } 761 762 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); 763 g_free(int_buf); 764 if (ret < 0) { 765 return -1; 766 } 767 return 0; 768 } 769 770 /* ibm,dynamic-memory */ 771 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt, 772 int offset, MemoryDeviceInfoList *dimms) 773 { 774 MachineState *machine = MACHINE(spapr); 775 int i, ret; 776 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 777 uint32_t device_lmb_start = machine->device_memory->base / lmb_size; 778 uint32_t nr_lmbs = (machine->device_memory->base + 779 memory_region_size(&machine->device_memory->mr)) / 780 lmb_size; 781 uint32_t *int_buf, *cur_index, buf_len; 782 783 /* 784 * Allocate enough buffer size to fit in ibm,dynamic-memory 785 */ 786 buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); 787 cur_index = int_buf = g_malloc0(buf_len); 788 int_buf[0] = cpu_to_be32(nr_lmbs); 789 cur_index++; 790 for (i = 0; i < nr_lmbs; i++) { 791 uint64_t addr = i * lmb_size; 792 uint32_t *dynamic_memory = cur_index; 793 794 if (i >= device_lmb_start) { 795 sPAPRDRConnector *drc; 796 797 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); 798 g_assert(drc); 799 800 dynamic_memory[0] = cpu_to_be32(addr >> 32); 801 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 802 dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); 803 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 804 dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); 805 if (memory_region_present(get_system_memory(), addr)) { 806 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); 807 } else { 808 dynamic_memory[5] = cpu_to_be32(0); 809 } 810 } else { 811 /* 812 * LMB information for RMA, boot time RAM and gap b/n RAM and 813 * device memory region -- all these are marked as reserved 814 * and as having no valid DRC. 815 */ 816 dynamic_memory[0] = cpu_to_be32(addr >> 32); 817 dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); 818 dynamic_memory[2] = cpu_to_be32(0); 819 dynamic_memory[3] = cpu_to_be32(0); /* reserved */ 820 dynamic_memory[4] = cpu_to_be32(-1); 821 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | 822 SPAPR_LMB_FLAGS_DRC_INVALID); 823 } 824 825 cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; 826 } 827 ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); 828 g_free(int_buf); 829 if (ret < 0) { 830 return -1; 831 } 832 return 0; 833 } 834 835 /* 836 * Adds ibm,dynamic-reconfiguration-memory node. 837 * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation 838 * of this device tree node. 839 */ 840 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt) 841 { 842 MachineState *machine = MACHINE(spapr); 843 int ret, i, offset; 844 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 845 uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)}; 846 uint32_t *int_buf, *cur_index, buf_len; 847 int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; 848 MemoryDeviceInfoList *dimms = NULL; 849 850 /* 851 * Don't create the node if there is no device memory 852 */ 853 if (machine->ram_size == machine->maxram_size) { 854 return 0; 855 } 856 857 offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); 858 859 ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, 860 sizeof(prop_lmb_size)); 861 if (ret < 0) { 862 return ret; 863 } 864 865 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); 866 if (ret < 0) { 867 return ret; 868 } 869 870 ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); 871 if (ret < 0) { 872 return ret; 873 } 874 875 /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ 876 dimms = qmp_memory_device_list(); 877 if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { 878 ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms); 879 } else { 880 ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms); 881 } 882 qapi_free_MemoryDeviceInfoList(dimms); 883 884 if (ret < 0) { 885 return ret; 886 } 887 888 /* ibm,associativity-lookup-arrays */ 889 buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t); 890 cur_index = int_buf = g_malloc0(buf_len); 891 int_buf[0] = cpu_to_be32(nr_nodes); 892 int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */ 893 cur_index += 2; 894 for (i = 0; i < nr_nodes; i++) { 895 uint32_t associativity[] = { 896 cpu_to_be32(0x0), 897 cpu_to_be32(0x0), 898 cpu_to_be32(0x0), 899 cpu_to_be32(i) 900 }; 901 memcpy(cur_index, associativity, sizeof(associativity)); 902 cur_index += 4; 903 } 904 ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf, 905 (cur_index - int_buf) * sizeof(uint32_t)); 906 g_free(int_buf); 907 908 return ret; 909 } 910 911 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt, 912 sPAPROptionVector *ov5_updates) 913 { 914 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 915 int ret = 0, offset; 916 917 /* Generate ibm,dynamic-reconfiguration-memory node if required */ 918 if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) { 919 g_assert(smc->dr_lmb_enabled); 920 ret = spapr_populate_drconf_memory(spapr, fdt); 921 if (ret) { 922 goto out; 923 } 924 } 925 926 offset = fdt_path_offset(fdt, "/chosen"); 927 if (offset < 0) { 928 offset = fdt_add_subnode(fdt, 0, "chosen"); 929 if (offset < 0) { 930 return offset; 931 } 932 } 933 ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas, 934 "ibm,architecture-vec-5"); 935 936 out: 937 return ret; 938 } 939 940 static bool spapr_hotplugged_dev_before_cas(void) 941 { 942 Object *drc_container, *obj; 943 ObjectProperty *prop; 944 ObjectPropertyIterator iter; 945 946 drc_container = container_get(object_get_root(), "/dr-connector"); 947 object_property_iter_init(&iter, drc_container); 948 while ((prop = object_property_iter_next(&iter))) { 949 if (!strstart(prop->type, "link<", NULL)) { 950 continue; 951 } 952 obj = object_property_get_link(drc_container, prop->name, NULL); 953 if (spapr_drc_needed(obj)) { 954 return true; 955 } 956 } 957 return false; 958 } 959 960 int spapr_h_cas_compose_response(sPAPRMachineState *spapr, 961 target_ulong addr, target_ulong size, 962 sPAPROptionVector *ov5_updates) 963 { 964 void *fdt, *fdt_skel; 965 sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 }; 966 967 if (spapr_hotplugged_dev_before_cas()) { 968 return 1; 969 } 970 971 if (size < sizeof(hdr) || size > FW_MAX_SIZE) { 972 error_report("SLOF provided an unexpected CAS buffer size " 973 TARGET_FMT_lu " (min: %zu, max: %u)", 974 size, sizeof(hdr), FW_MAX_SIZE); 975 exit(EXIT_FAILURE); 976 } 977 978 size -= sizeof(hdr); 979 980 /* Create skeleton */ 981 fdt_skel = g_malloc0(size); 982 _FDT((fdt_create(fdt_skel, size))); 983 _FDT((fdt_finish_reservemap(fdt_skel))); 984 _FDT((fdt_begin_node(fdt_skel, ""))); 985 _FDT((fdt_end_node(fdt_skel))); 986 _FDT((fdt_finish(fdt_skel))); 987 fdt = g_malloc0(size); 988 _FDT((fdt_open_into(fdt_skel, fdt, size))); 989 g_free(fdt_skel); 990 991 /* Fixup cpu nodes */ 992 _FDT((spapr_fixup_cpu_dt(fdt, spapr))); 993 994 if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) { 995 return -1; 996 } 997 998 /* Pack resulting tree */ 999 _FDT((fdt_pack(fdt))); 1000 1001 if (fdt_totalsize(fdt) + sizeof(hdr) > size) { 1002 trace_spapr_cas_failed(size); 1003 return -1; 1004 } 1005 1006 cpu_physical_memory_write(addr, &hdr, sizeof(hdr)); 1007 cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt)); 1008 trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr)); 1009 g_free(fdt); 1010 1011 return 0; 1012 } 1013 1014 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt) 1015 { 1016 int rtas; 1017 GString *hypertas = g_string_sized_new(256); 1018 GString *qemu_hypertas = g_string_sized_new(256); 1019 uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) }; 1020 uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + 1021 memory_region_size(&MACHINE(spapr)->device_memory->mr); 1022 uint32_t lrdr_capacity[] = { 1023 cpu_to_be32(max_device_addr >> 32), 1024 cpu_to_be32(max_device_addr & 0xffffffff), 1025 0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE), 1026 cpu_to_be32(max_cpus / smp_threads), 1027 }; 1028 uint32_t maxdomains[] = { 1029 cpu_to_be32(4), 1030 cpu_to_be32(0), 1031 cpu_to_be32(0), 1032 cpu_to_be32(0), 1033 cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1), 1034 }; 1035 1036 _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); 1037 1038 /* hypertas */ 1039 add_str(hypertas, "hcall-pft"); 1040 add_str(hypertas, "hcall-term"); 1041 add_str(hypertas, "hcall-dabr"); 1042 add_str(hypertas, "hcall-interrupt"); 1043 add_str(hypertas, "hcall-tce"); 1044 add_str(hypertas, "hcall-vio"); 1045 add_str(hypertas, "hcall-splpar"); 1046 add_str(hypertas, "hcall-bulk"); 1047 add_str(hypertas, "hcall-set-mode"); 1048 add_str(hypertas, "hcall-sprg0"); 1049 add_str(hypertas, "hcall-copy"); 1050 add_str(hypertas, "hcall-debug"); 1051 add_str(hypertas, "hcall-vphn"); 1052 add_str(qemu_hypertas, "hcall-memop1"); 1053 1054 if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { 1055 add_str(hypertas, "hcall-multi-tce"); 1056 } 1057 1058 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 1059 add_str(hypertas, "hcall-hpt-resize"); 1060 } 1061 1062 _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", 1063 hypertas->str, hypertas->len)); 1064 g_string_free(hypertas, TRUE); 1065 _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", 1066 qemu_hypertas->str, qemu_hypertas->len)); 1067 g_string_free(qemu_hypertas, TRUE); 1068 1069 _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", 1070 refpoints, sizeof(refpoints))); 1071 1072 _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", 1073 maxdomains, sizeof(maxdomains))); 1074 1075 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", 1076 RTAS_ERROR_LOG_MAX)); 1077 _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", 1078 RTAS_EVENT_SCAN_RATE)); 1079 1080 g_assert(msi_nonbroken); 1081 _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); 1082 1083 /* 1084 * According to PAPR, rtas ibm,os-term does not guarantee a return 1085 * back to the guest cpu. 1086 * 1087 * While an additional ibm,extended-os-term property indicates 1088 * that rtas call return will always occur. Set this property. 1089 */ 1090 _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); 1091 1092 _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", 1093 lrdr_capacity, sizeof(lrdr_capacity))); 1094 1095 spapr_dt_rtas_tokens(fdt, rtas); 1096 } 1097 1098 /* 1099 * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU 1100 * and the XIVE features that the guest may request and thus the valid 1101 * values for bytes 23..26 of option vector 5: 1102 */ 1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt, 1104 int chosen) 1105 { 1106 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); 1107 1108 char val[2 * 4] = { 1109 23, spapr->irq->ov5, /* Xive mode. */ 1110 24, 0x00, /* Hash/Radix, filled in below. */ 1111 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ 1112 26, 0x40, /* Radix options: GTSE == yes. */ 1113 }; 1114 1115 if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, 1116 first_ppc_cpu->compat_pvr)) { 1117 /* 1118 * If we're in a pre POWER9 compat mode then the guest should 1119 * do hash and use the legacy interrupt mode 1120 */ 1121 val[1] = 0x00; /* XICS */ 1122 val[3] = 0x00; /* Hash */ 1123 } else if (kvm_enabled()) { 1124 if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { 1125 val[3] = 0x80; /* OV5_MMU_BOTH */ 1126 } else if (kvmppc_has_cap_mmu_radix()) { 1127 val[3] = 0x40; /* OV5_MMU_RADIX_300 */ 1128 } else { 1129 val[3] = 0x00; /* Hash */ 1130 } 1131 } else { 1132 /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ 1133 val[3] = 0xC0; 1134 } 1135 _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", 1136 val, sizeof(val))); 1137 } 1138 1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt) 1140 { 1141 MachineState *machine = MACHINE(spapr); 1142 int chosen; 1143 const char *boot_device = machine->boot_order; 1144 char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); 1145 size_t cb = 0; 1146 char *bootlist = get_boot_devices_list(&cb); 1147 1148 _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); 1149 1150 _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline)); 1151 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", 1152 spapr->initrd_base)); 1153 _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", 1154 spapr->initrd_base + spapr->initrd_size)); 1155 1156 if (spapr->kernel_size) { 1157 uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR), 1158 cpu_to_be64(spapr->kernel_size) }; 1159 1160 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", 1161 &kprop, sizeof(kprop))); 1162 if (spapr->kernel_le) { 1163 _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); 1164 } 1165 } 1166 if (boot_menu) { 1167 _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu))); 1168 } 1169 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); 1170 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); 1171 _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); 1172 1173 if (cb && bootlist) { 1174 int i; 1175 1176 for (i = 0; i < cb; i++) { 1177 if (bootlist[i] == '\n') { 1178 bootlist[i] = ' '; 1179 } 1180 } 1181 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); 1182 } 1183 1184 if (boot_device && strlen(boot_device)) { 1185 _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); 1186 } 1187 1188 if (!spapr->has_graphics && stdout_path) { 1189 /* 1190 * "linux,stdout-path" and "stdout" properties are deprecated by linux 1191 * kernel. New platforms should only use the "stdout-path" property. Set 1192 * the new property and continue using older property to remain 1193 * compatible with the existing firmware. 1194 */ 1195 _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); 1196 _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); 1197 } 1198 1199 spapr_dt_ov5_platform_support(spapr, fdt, chosen); 1200 1201 g_free(stdout_path); 1202 g_free(bootlist); 1203 } 1204 1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt) 1206 { 1207 /* The /hypervisor node isn't in PAPR - this is a hack to allow PR 1208 * KVM to work under pHyp with some guest co-operation */ 1209 int hypervisor; 1210 uint8_t hypercall[16]; 1211 1212 _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); 1213 /* indicate KVM hypercall interface */ 1214 _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); 1215 if (kvmppc_has_cap_fixup_hcalls()) { 1216 /* 1217 * Older KVM versions with older guest kernels were broken 1218 * with the magic page, don't allow the guest to map it. 1219 */ 1220 if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall, 1221 sizeof(hypercall))) { 1222 _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", 1223 hypercall, sizeof(hypercall))); 1224 } 1225 } 1226 } 1227 1228 static void *spapr_build_fdt(sPAPRMachineState *spapr) 1229 { 1230 MachineState *machine = MACHINE(spapr); 1231 MachineClass *mc = MACHINE_GET_CLASS(machine); 1232 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 1233 int ret; 1234 void *fdt; 1235 sPAPRPHBState *phb; 1236 char *buf; 1237 1238 fdt = g_malloc0(FDT_MAX_SIZE); 1239 _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE))); 1240 1241 /* Root node */ 1242 _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); 1243 _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); 1244 _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); 1245 1246 /* 1247 * Add info to guest to indentify which host is it being run on 1248 * and what is the uuid of the guest 1249 */ 1250 if (spapr->host_model && !g_str_equal(spapr->host_model, "none")) { 1251 if (g_str_equal(spapr->host_model, "passthrough")) { 1252 /* -M host-model=passthrough */ 1253 if (kvmppc_get_host_model(&buf)) { 1254 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); 1255 g_free(buf); 1256 } 1257 } else { 1258 /* -M host-model=<user-string> */ 1259 _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); 1260 } 1261 } 1262 1263 if (spapr->host_serial && !g_str_equal(spapr->host_serial, "none")) { 1264 if (g_str_equal(spapr->host_serial, "passthrough")) { 1265 /* -M host-serial=passthrough */ 1266 if (kvmppc_get_host_serial(&buf)) { 1267 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); 1268 g_free(buf); 1269 } 1270 } else { 1271 /* -M host-serial=<user-string> */ 1272 _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); 1273 } 1274 } 1275 1276 buf = qemu_uuid_unparse_strdup(&qemu_uuid); 1277 1278 _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); 1279 if (qemu_uuid_set) { 1280 _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); 1281 } 1282 g_free(buf); 1283 1284 if (qemu_get_vm_name()) { 1285 _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", 1286 qemu_get_vm_name())); 1287 } 1288 1289 _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); 1290 _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); 1291 1292 /* /interrupt controller */ 1293 spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt, 1294 PHANDLE_INTC); 1295 1296 ret = spapr_populate_memory(spapr, fdt); 1297 if (ret < 0) { 1298 error_report("couldn't setup memory nodes in fdt"); 1299 exit(1); 1300 } 1301 1302 /* /vdevice */ 1303 spapr_dt_vdevice(spapr->vio_bus, fdt); 1304 1305 if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { 1306 ret = spapr_rng_populate_dt(fdt); 1307 if (ret < 0) { 1308 error_report("could not set up rng device in the fdt"); 1309 exit(1); 1310 } 1311 } 1312 1313 QLIST_FOREACH(phb, &spapr->phbs, list) { 1314 ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt, 1315 spapr->irq->nr_msis); 1316 if (ret < 0) { 1317 error_report("couldn't setup PCI devices in fdt"); 1318 exit(1); 1319 } 1320 } 1321 1322 /* cpus */ 1323 spapr_populate_cpus_dt_node(fdt, spapr); 1324 1325 if (smc->dr_lmb_enabled) { 1326 _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB)); 1327 } 1328 1329 if (mc->has_hotpluggable_cpus) { 1330 int offset = fdt_path_offset(fdt, "/cpus"); 1331 ret = spapr_drc_populate_dt(fdt, offset, NULL, 1332 SPAPR_DR_CONNECTOR_TYPE_CPU); 1333 if (ret < 0) { 1334 error_report("Couldn't set up CPU DR device tree properties"); 1335 exit(1); 1336 } 1337 } 1338 1339 /* /event-sources */ 1340 spapr_dt_events(spapr, fdt); 1341 1342 /* /rtas */ 1343 spapr_dt_rtas(spapr, fdt); 1344 1345 /* /chosen */ 1346 spapr_dt_chosen(spapr, fdt); 1347 1348 /* /hypervisor */ 1349 if (kvm_enabled()) { 1350 spapr_dt_hypervisor(spapr, fdt); 1351 } 1352 1353 /* Build memory reserve map */ 1354 if (spapr->kernel_size) { 1355 _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size))); 1356 } 1357 if (spapr->initrd_size) { 1358 _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size))); 1359 } 1360 1361 /* ibm,client-architecture-support updates */ 1362 ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas); 1363 if (ret < 0) { 1364 error_report("couldn't setup CAS properties fdt"); 1365 exit(1); 1366 } 1367 1368 return fdt; 1369 } 1370 1371 static uint64_t translate_kernel_address(void *opaque, uint64_t addr) 1372 { 1373 return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR; 1374 } 1375 1376 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, 1377 PowerPCCPU *cpu) 1378 { 1379 CPUPPCState *env = &cpu->env; 1380 1381 /* The TCG path should also be holding the BQL at this point */ 1382 g_assert(qemu_mutex_iothread_locked()); 1383 1384 if (msr_pr) { 1385 hcall_dprintf("Hypercall made with MSR[PR]=1\n"); 1386 env->gpr[3] = H_PRIVILEGE; 1387 } else { 1388 env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); 1389 } 1390 } 1391 1392 struct LPCRSyncState { 1393 target_ulong value; 1394 target_ulong mask; 1395 }; 1396 1397 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) 1398 { 1399 struct LPCRSyncState *s = arg.host_ptr; 1400 PowerPCCPU *cpu = POWERPC_CPU(cs); 1401 CPUPPCState *env = &cpu->env; 1402 target_ulong lpcr; 1403 1404 cpu_synchronize_state(cs); 1405 lpcr = env->spr[SPR_LPCR]; 1406 lpcr &= ~s->mask; 1407 lpcr |= s->value; 1408 ppc_store_lpcr(cpu, lpcr); 1409 } 1410 1411 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) 1412 { 1413 CPUState *cs; 1414 struct LPCRSyncState s = { 1415 .value = value, 1416 .mask = mask 1417 }; 1418 CPU_FOREACH(cs) { 1419 run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); 1420 } 1421 } 1422 1423 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp) 1424 { 1425 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1426 1427 return spapr->patb_entry; 1428 } 1429 1430 #define HPTE(_table, _i) (void *)(((uint64_t *)(_table)) + ((_i) * 2)) 1431 #define HPTE_VALID(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) 1432 #define HPTE_DIRTY(_hpte) (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) 1433 #define CLEAN_HPTE(_hpte) ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) 1434 #define DIRTY_HPTE(_hpte) ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) 1435 1436 /* 1437 * Get the fd to access the kernel htab, re-opening it if necessary 1438 */ 1439 static int get_htab_fd(sPAPRMachineState *spapr) 1440 { 1441 Error *local_err = NULL; 1442 1443 if (spapr->htab_fd >= 0) { 1444 return spapr->htab_fd; 1445 } 1446 1447 spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); 1448 if (spapr->htab_fd < 0) { 1449 error_report_err(local_err); 1450 } 1451 1452 return spapr->htab_fd; 1453 } 1454 1455 void close_htab_fd(sPAPRMachineState *spapr) 1456 { 1457 if (spapr->htab_fd >= 0) { 1458 close(spapr->htab_fd); 1459 } 1460 spapr->htab_fd = -1; 1461 } 1462 1463 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) 1464 { 1465 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1466 1467 return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; 1468 } 1469 1470 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) 1471 { 1472 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1473 1474 assert(kvm_enabled()); 1475 1476 if (!spapr->htab) { 1477 return 0; 1478 } 1479 1480 return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); 1481 } 1482 1483 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, 1484 hwaddr ptex, int n) 1485 { 1486 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1487 hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; 1488 1489 if (!spapr->htab) { 1490 /* 1491 * HTAB is controlled by KVM. Fetch into temporary buffer 1492 */ 1493 ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); 1494 kvmppc_read_hptes(hptes, ptex, n); 1495 return hptes; 1496 } 1497 1498 /* 1499 * HTAB is controlled by QEMU. Just point to the internally 1500 * accessible PTEG. 1501 */ 1502 return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); 1503 } 1504 1505 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, 1506 const ppc_hash_pte64_t *hptes, 1507 hwaddr ptex, int n) 1508 { 1509 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1510 1511 if (!spapr->htab) { 1512 g_free((void *)hptes); 1513 } 1514 1515 /* Nothing to do for qemu managed HPT */ 1516 } 1517 1518 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex, 1519 uint64_t pte0, uint64_t pte1) 1520 { 1521 sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp); 1522 hwaddr offset = ptex * HASH_PTE_SIZE_64; 1523 1524 if (!spapr->htab) { 1525 kvmppc_write_hpte(ptex, pte0, pte1); 1526 } else { 1527 stq_p(spapr->htab + offset, pte0); 1528 stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1); 1529 } 1530 } 1531 1532 int spapr_hpt_shift_for_ramsize(uint64_t ramsize) 1533 { 1534 int shift; 1535 1536 /* We aim for a hash table of size 1/128 the size of RAM (rounded 1537 * up). The PAPR recommendation is actually 1/64 of RAM size, but 1538 * that's much more than is needed for Linux guests */ 1539 shift = ctz64(pow2ceil(ramsize)) - 7; 1540 shift = MAX(shift, 18); /* Minimum architected size */ 1541 shift = MIN(shift, 46); /* Maximum architected size */ 1542 return shift; 1543 } 1544 1545 void spapr_free_hpt(sPAPRMachineState *spapr) 1546 { 1547 g_free(spapr->htab); 1548 spapr->htab = NULL; 1549 spapr->htab_shift = 0; 1550 close_htab_fd(spapr); 1551 } 1552 1553 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift, 1554 Error **errp) 1555 { 1556 long rc; 1557 1558 /* Clean up any HPT info from a previous boot */ 1559 spapr_free_hpt(spapr); 1560 1561 rc = kvmppc_reset_htab(shift); 1562 if (rc < 0) { 1563 /* kernel-side HPT needed, but couldn't allocate one */ 1564 error_setg_errno(errp, errno, 1565 "Failed to allocate KVM HPT of order %d (try smaller maxmem?)", 1566 shift); 1567 /* This is almost certainly fatal, but if the caller really 1568 * wants to carry on with shift == 0, it's welcome to try */ 1569 } else if (rc > 0) { 1570 /* kernel-side HPT allocated */ 1571 if (rc != shift) { 1572 error_setg(errp, 1573 "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)", 1574 shift, rc); 1575 } 1576 1577 spapr->htab_shift = shift; 1578 spapr->htab = NULL; 1579 } else { 1580 /* kernel-side HPT not needed, allocate in userspace instead */ 1581 size_t size = 1ULL << shift; 1582 int i; 1583 1584 spapr->htab = qemu_memalign(size, size); 1585 if (!spapr->htab) { 1586 error_setg_errno(errp, errno, 1587 "Could not allocate HPT of order %d", shift); 1588 return; 1589 } 1590 1591 memset(spapr->htab, 0, size); 1592 spapr->htab_shift = shift; 1593 1594 for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { 1595 DIRTY_HPTE(HPTE(spapr->htab, i)); 1596 } 1597 } 1598 /* We're setting up a hash table, so that means we're not radix */ 1599 spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT); 1600 } 1601 1602 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr) 1603 { 1604 int hpt_shift; 1605 1606 if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) 1607 || (spapr->cas_reboot 1608 && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) { 1609 hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); 1610 } else { 1611 uint64_t current_ram_size; 1612 1613 current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); 1614 hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); 1615 } 1616 spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); 1617 1618 if (spapr->vrma_adjust) { 1619 spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)), 1620 spapr->htab_shift); 1621 } 1622 } 1623 1624 static int spapr_reset_drcs(Object *child, void *opaque) 1625 { 1626 sPAPRDRConnector *drc = 1627 (sPAPRDRConnector *) object_dynamic_cast(child, 1628 TYPE_SPAPR_DR_CONNECTOR); 1629 1630 if (drc) { 1631 spapr_drc_reset(drc); 1632 } 1633 1634 return 0; 1635 } 1636 1637 static void spapr_machine_reset(void) 1638 { 1639 MachineState *machine = MACHINE(qdev_get_machine()); 1640 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 1641 PowerPCCPU *first_ppc_cpu; 1642 uint32_t rtas_limit; 1643 hwaddr rtas_addr, fdt_addr; 1644 void *fdt; 1645 int rc; 1646 1647 spapr_caps_apply(spapr); 1648 1649 first_ppc_cpu = POWERPC_CPU(first_cpu); 1650 if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && 1651 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 1652 spapr->max_compat_pvr)) { 1653 /* If using KVM with radix mode available, VCPUs can be started 1654 * without a HPT because KVM will start them in radix mode. 1655 * Set the GR bit in PATB so that we know there is no HPT. */ 1656 spapr->patb_entry = PATBE1_GR; 1657 spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); 1658 } else { 1659 spapr_setup_hpt_and_vrma(spapr); 1660 } 1661 1662 /* if this reset wasn't generated by CAS, we should reset our 1663 * negotiated options and start from scratch */ 1664 if (!spapr->cas_reboot) { 1665 spapr_ovec_cleanup(spapr->ov5_cas); 1666 spapr->ov5_cas = spapr_ovec_new(); 1667 1668 ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal); 1669 } 1670 1671 if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 1672 spapr_irq_msi_reset(spapr); 1673 } 1674 1675 qemu_devices_reset(); 1676 1677 /* 1678 * This is fixing some of the default configuration of the XIVE 1679 * devices. To be called after the reset of the machine devices. 1680 */ 1681 spapr_irq_reset(spapr, &error_fatal); 1682 1683 /* DRC reset may cause a device to be unplugged. This will cause troubles 1684 * if this device is used by another device (eg, a running vhost backend 1685 * will crash QEMU if the DIMM holding the vring goes away). To avoid such 1686 * situations, we reset DRCs after all devices have been reset. 1687 */ 1688 object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL); 1689 1690 spapr_clear_pending_events(spapr); 1691 1692 /* 1693 * We place the device tree and RTAS just below either the top of the RMA, 1694 * or just below 2GB, whichever is lower, so that it can be 1695 * processed with 32-bit real mode code if necessary 1696 */ 1697 rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR); 1698 rtas_addr = rtas_limit - RTAS_MAX_SIZE; 1699 fdt_addr = rtas_addr - FDT_MAX_SIZE; 1700 1701 fdt = spapr_build_fdt(spapr); 1702 1703 spapr_load_rtas(spapr, fdt, rtas_addr); 1704 1705 rc = fdt_pack(fdt); 1706 1707 /* Should only fail if we've built a corrupted tree */ 1708 assert(rc == 0); 1709 1710 if (fdt_totalsize(fdt) > FDT_MAX_SIZE) { 1711 error_report("FDT too big ! 0x%x bytes (max is 0x%x)", 1712 fdt_totalsize(fdt), FDT_MAX_SIZE); 1713 exit(1); 1714 } 1715 1716 /* Load the fdt */ 1717 qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); 1718 cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); 1719 g_free(spapr->fdt_blob); 1720 spapr->fdt_size = fdt_totalsize(fdt); 1721 spapr->fdt_initial_size = spapr->fdt_size; 1722 spapr->fdt_blob = fdt; 1723 1724 /* Set up the entry state */ 1725 spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr); 1726 first_ppc_cpu->env.gpr[5] = 0; 1727 1728 spapr->cas_reboot = false; 1729 } 1730 1731 static void spapr_create_nvram(sPAPRMachineState *spapr) 1732 { 1733 DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram"); 1734 DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); 1735 1736 if (dinfo) { 1737 qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo), 1738 &error_fatal); 1739 } 1740 1741 qdev_init_nofail(dev); 1742 1743 spapr->nvram = (struct sPAPRNVRAM *)dev; 1744 } 1745 1746 static void spapr_rtc_create(sPAPRMachineState *spapr) 1747 { 1748 object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC); 1749 object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc), 1750 &error_fatal); 1751 object_property_set_bool(OBJECT(&spapr->rtc), true, "realized", 1752 &error_fatal); 1753 object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), 1754 "date", &error_fatal); 1755 } 1756 1757 /* Returns whether we want to use VGA or not */ 1758 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) 1759 { 1760 switch (vga_interface_type) { 1761 case VGA_NONE: 1762 return false; 1763 case VGA_DEVICE: 1764 return true; 1765 case VGA_STD: 1766 case VGA_VIRTIO: 1767 case VGA_CIRRUS: 1768 return pci_vga_init(pci_bus) != NULL; 1769 default: 1770 error_setg(errp, 1771 "Unsupported VGA mode, only -vga std or -vga virtio is supported"); 1772 return false; 1773 } 1774 } 1775 1776 static int spapr_pre_load(void *opaque) 1777 { 1778 int rc; 1779 1780 rc = spapr_caps_pre_load(opaque); 1781 if (rc) { 1782 return rc; 1783 } 1784 1785 return 0; 1786 } 1787 1788 static int spapr_post_load(void *opaque, int version_id) 1789 { 1790 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1791 int err = 0; 1792 1793 err = spapr_caps_post_migration(spapr); 1794 if (err) { 1795 return err; 1796 } 1797 1798 /* 1799 * In earlier versions, there was no separate qdev for the PAPR 1800 * RTC, so the RTC offset was stored directly in sPAPREnvironment. 1801 * So when migrating from those versions, poke the incoming offset 1802 * value into the RTC device 1803 */ 1804 if (version_id < 3) { 1805 err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); 1806 if (err) { 1807 return err; 1808 } 1809 } 1810 1811 if (kvm_enabled() && spapr->patb_entry) { 1812 PowerPCCPU *cpu = POWERPC_CPU(first_cpu); 1813 bool radix = !!(spapr->patb_entry & PATBE1_GR); 1814 bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); 1815 1816 /* 1817 * Update LPCR:HR and UPRT as they may not be set properly in 1818 * the stream 1819 */ 1820 spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, 1821 LPCR_HR | LPCR_UPRT); 1822 1823 err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); 1824 if (err) { 1825 error_report("Process table config unsupported by the host"); 1826 return -EINVAL; 1827 } 1828 } 1829 1830 err = spapr_irq_post_load(spapr, version_id); 1831 if (err) { 1832 return err; 1833 } 1834 1835 return err; 1836 } 1837 1838 static int spapr_pre_save(void *opaque) 1839 { 1840 int rc; 1841 1842 rc = spapr_caps_pre_save(opaque); 1843 if (rc) { 1844 return rc; 1845 } 1846 1847 return 0; 1848 } 1849 1850 static bool version_before_3(void *opaque, int version_id) 1851 { 1852 return version_id < 3; 1853 } 1854 1855 static bool spapr_pending_events_needed(void *opaque) 1856 { 1857 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1858 return !QTAILQ_EMPTY(&spapr->pending_events); 1859 } 1860 1861 static const VMStateDescription vmstate_spapr_event_entry = { 1862 .name = "spapr_event_log_entry", 1863 .version_id = 1, 1864 .minimum_version_id = 1, 1865 .fields = (VMStateField[]) { 1866 VMSTATE_UINT32(summary, sPAPREventLogEntry), 1867 VMSTATE_UINT32(extended_length, sPAPREventLogEntry), 1868 VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0, 1869 NULL, extended_length), 1870 VMSTATE_END_OF_LIST() 1871 }, 1872 }; 1873 1874 static const VMStateDescription vmstate_spapr_pending_events = { 1875 .name = "spapr_pending_events", 1876 .version_id = 1, 1877 .minimum_version_id = 1, 1878 .needed = spapr_pending_events_needed, 1879 .fields = (VMStateField[]) { 1880 VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1, 1881 vmstate_spapr_event_entry, sPAPREventLogEntry, next), 1882 VMSTATE_END_OF_LIST() 1883 }, 1884 }; 1885 1886 static bool spapr_ov5_cas_needed(void *opaque) 1887 { 1888 sPAPRMachineState *spapr = opaque; 1889 sPAPROptionVector *ov5_mask = spapr_ovec_new(); 1890 sPAPROptionVector *ov5_legacy = spapr_ovec_new(); 1891 sPAPROptionVector *ov5_removed = spapr_ovec_new(); 1892 bool cas_needed; 1893 1894 /* Prior to the introduction of sPAPROptionVector, we had two option 1895 * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. 1896 * Both of these options encode machine topology into the device-tree 1897 * in such a way that the now-booted OS should still be able to interact 1898 * appropriately with QEMU regardless of what options were actually 1899 * negotiatied on the source side. 1900 * 1901 * As such, we can avoid migrating the CAS-negotiated options if these 1902 * are the only options available on the current machine/platform. 1903 * Since these are the only options available for pseries-2.7 and 1904 * earlier, this allows us to maintain old->new/new->old migration 1905 * compatibility. 1906 * 1907 * For QEMU 2.8+, there are additional CAS-negotiatable options available 1908 * via default pseries-2.8 machines and explicit command-line parameters. 1909 * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware 1910 * of the actual CAS-negotiated values to continue working properly. For 1911 * example, availability of memory unplug depends on knowing whether 1912 * OV5_HP_EVT was negotiated via CAS. 1913 * 1914 * Thus, for any cases where the set of available CAS-negotiatable 1915 * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we 1916 * include the CAS-negotiated options in the migration stream, unless 1917 * if they affect boot time behaviour only. 1918 */ 1919 spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); 1920 spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); 1921 spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); 1922 1923 /* spapr_ovec_diff returns true if bits were removed. we avoid using 1924 * the mask itself since in the future it's possible "legacy" bits may be 1925 * removed via machine options, which could generate a false positive 1926 * that breaks migration. 1927 */ 1928 spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask); 1929 cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy); 1930 1931 spapr_ovec_cleanup(ov5_mask); 1932 spapr_ovec_cleanup(ov5_legacy); 1933 spapr_ovec_cleanup(ov5_removed); 1934 1935 return cas_needed; 1936 } 1937 1938 static const VMStateDescription vmstate_spapr_ov5_cas = { 1939 .name = "spapr_option_vector_ov5_cas", 1940 .version_id = 1, 1941 .minimum_version_id = 1, 1942 .needed = spapr_ov5_cas_needed, 1943 .fields = (VMStateField[]) { 1944 VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1, 1945 vmstate_spapr_ovec, sPAPROptionVector), 1946 VMSTATE_END_OF_LIST() 1947 }, 1948 }; 1949 1950 static bool spapr_patb_entry_needed(void *opaque) 1951 { 1952 sPAPRMachineState *spapr = opaque; 1953 1954 return !!spapr->patb_entry; 1955 } 1956 1957 static const VMStateDescription vmstate_spapr_patb_entry = { 1958 .name = "spapr_patb_entry", 1959 .version_id = 1, 1960 .minimum_version_id = 1, 1961 .needed = spapr_patb_entry_needed, 1962 .fields = (VMStateField[]) { 1963 VMSTATE_UINT64(patb_entry, sPAPRMachineState), 1964 VMSTATE_END_OF_LIST() 1965 }, 1966 }; 1967 1968 static bool spapr_irq_map_needed(void *opaque) 1969 { 1970 sPAPRMachineState *spapr = opaque; 1971 1972 return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); 1973 } 1974 1975 static const VMStateDescription vmstate_spapr_irq_map = { 1976 .name = "spapr_irq_map", 1977 .version_id = 1, 1978 .minimum_version_id = 1, 1979 .needed = spapr_irq_map_needed, 1980 .fields = (VMStateField[]) { 1981 VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr), 1982 VMSTATE_END_OF_LIST() 1983 }, 1984 }; 1985 1986 static bool spapr_dtb_needed(void *opaque) 1987 { 1988 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); 1989 1990 return smc->update_dt_enabled; 1991 } 1992 1993 static int spapr_dtb_pre_load(void *opaque) 1994 { 1995 sPAPRMachineState *spapr = (sPAPRMachineState *)opaque; 1996 1997 g_free(spapr->fdt_blob); 1998 spapr->fdt_blob = NULL; 1999 spapr->fdt_size = 0; 2000 2001 return 0; 2002 } 2003 2004 static const VMStateDescription vmstate_spapr_dtb = { 2005 .name = "spapr_dtb", 2006 .version_id = 1, 2007 .minimum_version_id = 1, 2008 .needed = spapr_dtb_needed, 2009 .pre_load = spapr_dtb_pre_load, 2010 .fields = (VMStateField[]) { 2011 VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState), 2012 VMSTATE_UINT32(fdt_size, sPAPRMachineState), 2013 VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL, 2014 fdt_size), 2015 VMSTATE_END_OF_LIST() 2016 }, 2017 }; 2018 2019 static const VMStateDescription vmstate_spapr = { 2020 .name = "spapr", 2021 .version_id = 3, 2022 .minimum_version_id = 1, 2023 .pre_load = spapr_pre_load, 2024 .post_load = spapr_post_load, 2025 .pre_save = spapr_pre_save, 2026 .fields = (VMStateField[]) { 2027 /* used to be @next_irq */ 2028 VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), 2029 2030 /* RTC offset */ 2031 VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3), 2032 2033 VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2), 2034 VMSTATE_END_OF_LIST() 2035 }, 2036 .subsections = (const VMStateDescription*[]) { 2037 &vmstate_spapr_ov5_cas, 2038 &vmstate_spapr_patb_entry, 2039 &vmstate_spapr_pending_events, 2040 &vmstate_spapr_cap_htm, 2041 &vmstate_spapr_cap_vsx, 2042 &vmstate_spapr_cap_dfp, 2043 &vmstate_spapr_cap_cfpc, 2044 &vmstate_spapr_cap_sbbc, 2045 &vmstate_spapr_cap_ibs, 2046 &vmstate_spapr_irq_map, 2047 &vmstate_spapr_cap_nested_kvm_hv, 2048 &vmstate_spapr_dtb, 2049 NULL 2050 } 2051 }; 2052 2053 static int htab_save_setup(QEMUFile *f, void *opaque) 2054 { 2055 sPAPRMachineState *spapr = opaque; 2056 2057 /* "Iteration" header */ 2058 if (!spapr->htab_shift) { 2059 qemu_put_be32(f, -1); 2060 } else { 2061 qemu_put_be32(f, spapr->htab_shift); 2062 } 2063 2064 if (spapr->htab) { 2065 spapr->htab_save_index = 0; 2066 spapr->htab_first_pass = true; 2067 } else { 2068 if (spapr->htab_shift) { 2069 assert(kvm_enabled()); 2070 } 2071 } 2072 2073 2074 return 0; 2075 } 2076 2077 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr, 2078 int chunkstart, int n_valid, int n_invalid) 2079 { 2080 qemu_put_be32(f, chunkstart); 2081 qemu_put_be16(f, n_valid); 2082 qemu_put_be16(f, n_invalid); 2083 qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), 2084 HASH_PTE_SIZE_64 * n_valid); 2085 } 2086 2087 static void htab_save_end_marker(QEMUFile *f) 2088 { 2089 qemu_put_be32(f, 0); 2090 qemu_put_be16(f, 0); 2091 qemu_put_be16(f, 0); 2092 } 2093 2094 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr, 2095 int64_t max_ns) 2096 { 2097 bool has_timeout = max_ns != -1; 2098 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2099 int index = spapr->htab_save_index; 2100 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2101 2102 assert(spapr->htab_first_pass); 2103 2104 do { 2105 int chunkstart; 2106 2107 /* Consume invalid HPTEs */ 2108 while ((index < htabslots) 2109 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2110 CLEAN_HPTE(HPTE(spapr->htab, index)); 2111 index++; 2112 } 2113 2114 /* Consume valid HPTEs */ 2115 chunkstart = index; 2116 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2117 && HPTE_VALID(HPTE(spapr->htab, index))) { 2118 CLEAN_HPTE(HPTE(spapr->htab, index)); 2119 index++; 2120 } 2121 2122 if (index > chunkstart) { 2123 int n_valid = index - chunkstart; 2124 2125 htab_save_chunk(f, spapr, chunkstart, n_valid, 0); 2126 2127 if (has_timeout && 2128 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2129 break; 2130 } 2131 } 2132 } while ((index < htabslots) && !qemu_file_rate_limit(f)); 2133 2134 if (index >= htabslots) { 2135 assert(index == htabslots); 2136 index = 0; 2137 spapr->htab_first_pass = false; 2138 } 2139 spapr->htab_save_index = index; 2140 } 2141 2142 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr, 2143 int64_t max_ns) 2144 { 2145 bool final = max_ns < 0; 2146 int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; 2147 int examined = 0, sent = 0; 2148 int index = spapr->htab_save_index; 2149 int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); 2150 2151 assert(!spapr->htab_first_pass); 2152 2153 do { 2154 int chunkstart, invalidstart; 2155 2156 /* Consume non-dirty HPTEs */ 2157 while ((index < htabslots) 2158 && !HPTE_DIRTY(HPTE(spapr->htab, index))) { 2159 index++; 2160 examined++; 2161 } 2162 2163 chunkstart = index; 2164 /* Consume valid dirty HPTEs */ 2165 while ((index < htabslots) && (index - chunkstart < USHRT_MAX) 2166 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2167 && HPTE_VALID(HPTE(spapr->htab, index))) { 2168 CLEAN_HPTE(HPTE(spapr->htab, index)); 2169 index++; 2170 examined++; 2171 } 2172 2173 invalidstart = index; 2174 /* Consume invalid dirty HPTEs */ 2175 while ((index < htabslots) && (index - invalidstart < USHRT_MAX) 2176 && HPTE_DIRTY(HPTE(spapr->htab, index)) 2177 && !HPTE_VALID(HPTE(spapr->htab, index))) { 2178 CLEAN_HPTE(HPTE(spapr->htab, index)); 2179 index++; 2180 examined++; 2181 } 2182 2183 if (index > chunkstart) { 2184 int n_valid = invalidstart - chunkstart; 2185 int n_invalid = index - invalidstart; 2186 2187 htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); 2188 sent += index - chunkstart; 2189 2190 if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { 2191 break; 2192 } 2193 } 2194 2195 if (examined >= htabslots) { 2196 break; 2197 } 2198 2199 if (index >= htabslots) { 2200 assert(index == htabslots); 2201 index = 0; 2202 } 2203 } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final)); 2204 2205 if (index >= htabslots) { 2206 assert(index == htabslots); 2207 index = 0; 2208 } 2209 2210 spapr->htab_save_index = index; 2211 2212 return (examined >= htabslots) && (sent == 0) ? 1 : 0; 2213 } 2214 2215 #define MAX_ITERATION_NS 5000000 /* 5 ms */ 2216 #define MAX_KVM_BUF_SIZE 2048 2217 2218 static int htab_save_iterate(QEMUFile *f, void *opaque) 2219 { 2220 sPAPRMachineState *spapr = opaque; 2221 int fd; 2222 int rc = 0; 2223 2224 /* Iteration header */ 2225 if (!spapr->htab_shift) { 2226 qemu_put_be32(f, -1); 2227 return 1; 2228 } else { 2229 qemu_put_be32(f, 0); 2230 } 2231 2232 if (!spapr->htab) { 2233 assert(kvm_enabled()); 2234 2235 fd = get_htab_fd(spapr); 2236 if (fd < 0) { 2237 return fd; 2238 } 2239 2240 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); 2241 if (rc < 0) { 2242 return rc; 2243 } 2244 } else if (spapr->htab_first_pass) { 2245 htab_save_first_pass(f, spapr, MAX_ITERATION_NS); 2246 } else { 2247 rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); 2248 } 2249 2250 htab_save_end_marker(f); 2251 2252 return rc; 2253 } 2254 2255 static int htab_save_complete(QEMUFile *f, void *opaque) 2256 { 2257 sPAPRMachineState *spapr = opaque; 2258 int fd; 2259 2260 /* Iteration header */ 2261 if (!spapr->htab_shift) { 2262 qemu_put_be32(f, -1); 2263 return 0; 2264 } else { 2265 qemu_put_be32(f, 0); 2266 } 2267 2268 if (!spapr->htab) { 2269 int rc; 2270 2271 assert(kvm_enabled()); 2272 2273 fd = get_htab_fd(spapr); 2274 if (fd < 0) { 2275 return fd; 2276 } 2277 2278 rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); 2279 if (rc < 0) { 2280 return rc; 2281 } 2282 } else { 2283 if (spapr->htab_first_pass) { 2284 htab_save_first_pass(f, spapr, -1); 2285 } 2286 htab_save_later_pass(f, spapr, -1); 2287 } 2288 2289 /* End marker */ 2290 htab_save_end_marker(f); 2291 2292 return 0; 2293 } 2294 2295 static int htab_load(QEMUFile *f, void *opaque, int version_id) 2296 { 2297 sPAPRMachineState *spapr = opaque; 2298 uint32_t section_hdr; 2299 int fd = -1; 2300 Error *local_err = NULL; 2301 2302 if (version_id < 1 || version_id > 1) { 2303 error_report("htab_load() bad version"); 2304 return -EINVAL; 2305 } 2306 2307 section_hdr = qemu_get_be32(f); 2308 2309 if (section_hdr == -1) { 2310 spapr_free_hpt(spapr); 2311 return 0; 2312 } 2313 2314 if (section_hdr) { 2315 /* First section gives the htab size */ 2316 spapr_reallocate_hpt(spapr, section_hdr, &local_err); 2317 if (local_err) { 2318 error_report_err(local_err); 2319 return -EINVAL; 2320 } 2321 return 0; 2322 } 2323 2324 if (!spapr->htab) { 2325 assert(kvm_enabled()); 2326 2327 fd = kvmppc_get_htab_fd(true, 0, &local_err); 2328 if (fd < 0) { 2329 error_report_err(local_err); 2330 return fd; 2331 } 2332 } 2333 2334 while (true) { 2335 uint32_t index; 2336 uint16_t n_valid, n_invalid; 2337 2338 index = qemu_get_be32(f); 2339 n_valid = qemu_get_be16(f); 2340 n_invalid = qemu_get_be16(f); 2341 2342 if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { 2343 /* End of Stream */ 2344 break; 2345 } 2346 2347 if ((index + n_valid + n_invalid) > 2348 (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { 2349 /* Bad index in stream */ 2350 error_report( 2351 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", 2352 index, n_valid, n_invalid, spapr->htab_shift); 2353 return -EINVAL; 2354 } 2355 2356 if (spapr->htab) { 2357 if (n_valid) { 2358 qemu_get_buffer(f, HPTE(spapr->htab, index), 2359 HASH_PTE_SIZE_64 * n_valid); 2360 } 2361 if (n_invalid) { 2362 memset(HPTE(spapr->htab, index + n_valid), 0, 2363 HASH_PTE_SIZE_64 * n_invalid); 2364 } 2365 } else { 2366 int rc; 2367 2368 assert(fd >= 0); 2369 2370 rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid); 2371 if (rc < 0) { 2372 return rc; 2373 } 2374 } 2375 } 2376 2377 if (!spapr->htab) { 2378 assert(fd >= 0); 2379 close(fd); 2380 } 2381 2382 return 0; 2383 } 2384 2385 static void htab_save_cleanup(void *opaque) 2386 { 2387 sPAPRMachineState *spapr = opaque; 2388 2389 close_htab_fd(spapr); 2390 } 2391 2392 static SaveVMHandlers savevm_htab_handlers = { 2393 .save_setup = htab_save_setup, 2394 .save_live_iterate = htab_save_iterate, 2395 .save_live_complete_precopy = htab_save_complete, 2396 .save_cleanup = htab_save_cleanup, 2397 .load_state = htab_load, 2398 }; 2399 2400 static void spapr_boot_set(void *opaque, const char *boot_device, 2401 Error **errp) 2402 { 2403 MachineState *machine = MACHINE(opaque); 2404 machine->boot_order = g_strdup(boot_device); 2405 } 2406 2407 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr) 2408 { 2409 MachineState *machine = MACHINE(spapr); 2410 uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; 2411 uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; 2412 int i; 2413 2414 for (i = 0; i < nr_lmbs; i++) { 2415 uint64_t addr; 2416 2417 addr = i * lmb_size + machine->device_memory->base; 2418 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, 2419 addr / lmb_size); 2420 } 2421 } 2422 2423 /* 2424 * If RAM size, maxmem size and individual node mem sizes aren't aligned 2425 * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest 2426 * since we can't support such unaligned sizes with DRCONF_MEMORY. 2427 */ 2428 static void spapr_validate_node_memory(MachineState *machine, Error **errp) 2429 { 2430 int i; 2431 2432 if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2433 error_setg(errp, "Memory size 0x" RAM_ADDR_FMT 2434 " is not aligned to %" PRIu64 " MiB", 2435 machine->ram_size, 2436 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2437 return; 2438 } 2439 2440 if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { 2441 error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT 2442 " is not aligned to %" PRIu64 " MiB", 2443 machine->ram_size, 2444 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2445 return; 2446 } 2447 2448 for (i = 0; i < nb_numa_nodes; i++) { 2449 if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { 2450 error_setg(errp, 2451 "Node %d memory size 0x%" PRIx64 2452 " is not aligned to %" PRIu64 " MiB", 2453 i, numa_info[i].node_mem, 2454 SPAPR_MEMORY_BLOCK_SIZE / MiB); 2455 return; 2456 } 2457 } 2458 } 2459 2460 /* find cpu slot in machine->possible_cpus by core_id */ 2461 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 2462 { 2463 int index = id / smp_threads; 2464 2465 if (index >= ms->possible_cpus->len) { 2466 return NULL; 2467 } 2468 if (idx) { 2469 *idx = index; 2470 } 2471 return &ms->possible_cpus->cpus[index]; 2472 } 2473 2474 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp) 2475 { 2476 Error *local_err = NULL; 2477 bool vsmt_user = !!spapr->vsmt; 2478 int kvm_smt = kvmppc_smt_threads(); 2479 int ret; 2480 2481 if (!kvm_enabled() && (smp_threads > 1)) { 2482 error_setg(&local_err, "TCG cannot support more than 1 thread/core " 2483 "on a pseries machine"); 2484 goto out; 2485 } 2486 if (!is_power_of_2(smp_threads)) { 2487 error_setg(&local_err, "Cannot support %d threads/core on a pseries " 2488 "machine because it must be a power of 2", smp_threads); 2489 goto out; 2490 } 2491 2492 /* Detemine the VSMT mode to use: */ 2493 if (vsmt_user) { 2494 if (spapr->vsmt < smp_threads) { 2495 error_setg(&local_err, "Cannot support VSMT mode %d" 2496 " because it must be >= threads/core (%d)", 2497 spapr->vsmt, smp_threads); 2498 goto out; 2499 } 2500 /* In this case, spapr->vsmt has been set by the command line */ 2501 } else { 2502 /* 2503 * Default VSMT value is tricky, because we need it to be as 2504 * consistent as possible (for migration), but this requires 2505 * changing it for at least some existing cases. We pick 8 as 2506 * the value that we'd get with KVM on POWER8, the 2507 * overwhelmingly common case in production systems. 2508 */ 2509 spapr->vsmt = MAX(8, smp_threads); 2510 } 2511 2512 /* KVM: If necessary, set the SMT mode: */ 2513 if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { 2514 ret = kvmppc_set_smt_threads(spapr->vsmt); 2515 if (ret) { 2516 /* Looks like KVM isn't able to change VSMT mode */ 2517 error_setg(&local_err, 2518 "Failed to set KVM's VSMT mode to %d (errno %d)", 2519 spapr->vsmt, ret); 2520 /* We can live with that if the default one is big enough 2521 * for the number of threads, and a submultiple of the one 2522 * we want. In this case we'll waste some vcpu ids, but 2523 * behaviour will be correct */ 2524 if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { 2525 warn_report_err(local_err); 2526 local_err = NULL; 2527 goto out; 2528 } else { 2529 if (!vsmt_user) { 2530 error_append_hint(&local_err, 2531 "On PPC, a VM with %d threads/core" 2532 " on a host with %d threads/core" 2533 " requires the use of VSMT mode %d.\n", 2534 smp_threads, kvm_smt, spapr->vsmt); 2535 } 2536 kvmppc_hint_smt_possible(&local_err); 2537 goto out; 2538 } 2539 } 2540 } 2541 /* else TCG: nothing to do currently */ 2542 out: 2543 error_propagate(errp, local_err); 2544 } 2545 2546 static void spapr_init_cpus(sPAPRMachineState *spapr) 2547 { 2548 MachineState *machine = MACHINE(spapr); 2549 MachineClass *mc = MACHINE_GET_CLASS(machine); 2550 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2551 const char *type = spapr_get_cpu_core_type(machine->cpu_type); 2552 const CPUArchIdList *possible_cpus; 2553 int boot_cores_nr = smp_cpus / smp_threads; 2554 int i; 2555 2556 possible_cpus = mc->possible_cpu_arch_ids(machine); 2557 if (mc->has_hotpluggable_cpus) { 2558 if (smp_cpus % smp_threads) { 2559 error_report("smp_cpus (%u) must be multiple of threads (%u)", 2560 smp_cpus, smp_threads); 2561 exit(1); 2562 } 2563 if (max_cpus % smp_threads) { 2564 error_report("max_cpus (%u) must be multiple of threads (%u)", 2565 max_cpus, smp_threads); 2566 exit(1); 2567 } 2568 } else { 2569 if (max_cpus != smp_cpus) { 2570 error_report("This machine version does not support CPU hotplug"); 2571 exit(1); 2572 } 2573 boot_cores_nr = possible_cpus->len; 2574 } 2575 2576 if (smc->pre_2_10_has_unused_icps) { 2577 int i; 2578 2579 for (i = 0; i < spapr_max_server_number(spapr); i++) { 2580 /* Dummy entries get deregistered when real ICPState objects 2581 * are registered during CPU core hotplug. 2582 */ 2583 pre_2_10_vmstate_register_dummy_icp(i); 2584 } 2585 } 2586 2587 for (i = 0; i < possible_cpus->len; i++) { 2588 int core_id = i * smp_threads; 2589 2590 if (mc->has_hotpluggable_cpus) { 2591 spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, 2592 spapr_vcpu_id(spapr, core_id)); 2593 } 2594 2595 if (i < boot_cores_nr) { 2596 Object *core = object_new(type); 2597 int nr_threads = smp_threads; 2598 2599 /* Handle the partially filled core for older machine types */ 2600 if ((i + 1) * smp_threads >= smp_cpus) { 2601 nr_threads = smp_cpus - i * smp_threads; 2602 } 2603 2604 object_property_set_int(core, nr_threads, "nr-threads", 2605 &error_fatal); 2606 object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID, 2607 &error_fatal); 2608 object_property_set_bool(core, true, "realized", &error_fatal); 2609 2610 object_unref(core); 2611 } 2612 } 2613 } 2614 2615 static PCIHostState *spapr_create_default_phb(void) 2616 { 2617 DeviceState *dev; 2618 2619 dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE); 2620 qdev_prop_set_uint32(dev, "index", 0); 2621 qdev_init_nofail(dev); 2622 2623 return PCI_HOST_BRIDGE(dev); 2624 } 2625 2626 /* pSeries LPAR / sPAPR hardware init */ 2627 static void spapr_machine_init(MachineState *machine) 2628 { 2629 sPAPRMachineState *spapr = SPAPR_MACHINE(machine); 2630 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); 2631 const char *kernel_filename = machine->kernel_filename; 2632 const char *initrd_filename = machine->initrd_filename; 2633 PCIHostState *phb; 2634 int i; 2635 MemoryRegion *sysmem = get_system_memory(); 2636 MemoryRegion *ram = g_new(MemoryRegion, 1); 2637 hwaddr node0_size = spapr_node0_size(machine); 2638 long load_limit, fw_size; 2639 char *filename; 2640 Error *resize_hpt_err = NULL; 2641 2642 msi_nonbroken = true; 2643 2644 QLIST_INIT(&spapr->phbs); 2645 QTAILQ_INIT(&spapr->pending_dimm_unplugs); 2646 2647 /* Determine capabilities to run with */ 2648 spapr_caps_init(spapr); 2649 2650 kvmppc_check_papr_resize_hpt(&resize_hpt_err); 2651 if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { 2652 /* 2653 * If the user explicitly requested a mode we should either 2654 * supply it, or fail completely (which we do below). But if 2655 * it's not set explicitly, we reset our mode to something 2656 * that works 2657 */ 2658 if (resize_hpt_err) { 2659 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 2660 error_free(resize_hpt_err); 2661 resize_hpt_err = NULL; 2662 } else { 2663 spapr->resize_hpt = smc->resize_hpt_default; 2664 } 2665 } 2666 2667 assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); 2668 2669 if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { 2670 /* 2671 * User requested HPT resize, but this host can't supply it. Bail out 2672 */ 2673 error_report_err(resize_hpt_err); 2674 exit(1); 2675 } 2676 2677 spapr->rma_size = node0_size; 2678 2679 /* With KVM, we don't actually know whether KVM supports an 2680 * unbounded RMA (PR KVM) or is limited by the hash table size 2681 * (HV KVM using VRMA), so we always assume the latter 2682 * 2683 * In that case, we also limit the initial allocations for RTAS 2684 * etc... to 256M since we have no way to know what the VRMA size 2685 * is going to be as it depends on the size of the hash table 2686 * which isn't determined yet. 2687 */ 2688 if (kvm_enabled()) { 2689 spapr->vrma_adjust = 1; 2690 spapr->rma_size = MIN(spapr->rma_size, 0x10000000); 2691 } 2692 2693 /* Actually we don't support unbounded RMA anymore since we added 2694 * proper emulation of HV mode. The max we can get is 16G which 2695 * also happens to be what we configure for PAPR mode so make sure 2696 * we don't do anything bigger than that 2697 */ 2698 spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull); 2699 2700 if (spapr->rma_size > node0_size) { 2701 error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")", 2702 spapr->rma_size); 2703 exit(1); 2704 } 2705 2706 /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ 2707 load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD; 2708 2709 /* 2710 * VSMT must be set in order to be able to compute VCPU ids, ie to 2711 * call spapr_max_server_number() or spapr_vcpu_id(). 2712 */ 2713 spapr_set_vsmt_mode(spapr, &error_fatal); 2714 2715 /* Set up Interrupt Controller before we create the VCPUs */ 2716 spapr_irq_init(spapr, &error_fatal); 2717 2718 /* Set up containers for ibm,client-architecture-support negotiated options 2719 */ 2720 spapr->ov5 = spapr_ovec_new(); 2721 spapr->ov5_cas = spapr_ovec_new(); 2722 2723 if (smc->dr_lmb_enabled) { 2724 spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); 2725 spapr_validate_node_memory(machine, &error_fatal); 2726 } 2727 2728 spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); 2729 2730 /* advertise support for dedicated HP event source to guests */ 2731 if (spapr->use_hotplug_event_source) { 2732 spapr_ovec_set(spapr->ov5, OV5_HP_EVT); 2733 } 2734 2735 /* advertise support for HPT resizing */ 2736 if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { 2737 spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); 2738 } 2739 2740 /* advertise support for ibm,dyamic-memory-v2 */ 2741 spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); 2742 2743 /* advertise XIVE on POWER9 machines */ 2744 if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) { 2745 if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 2746 0, spapr->max_compat_pvr)) { 2747 spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); 2748 } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) { 2749 error_report("XIVE-only machines require a POWER9 CPU"); 2750 exit(1); 2751 } 2752 } 2753 2754 /* init CPUs */ 2755 spapr_init_cpus(spapr); 2756 2757 if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && 2758 ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, 2759 spapr->max_compat_pvr)) { 2760 /* KVM and TCG always allow GTSE with radix... */ 2761 spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); 2762 } 2763 /* ... but not with hash (currently). */ 2764 2765 if (kvm_enabled()) { 2766 /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ 2767 kvmppc_enable_logical_ci_hcalls(); 2768 kvmppc_enable_set_mode_hcall(); 2769 2770 /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ 2771 kvmppc_enable_clear_ref_mod_hcalls(); 2772 } 2773 2774 /* allocate RAM */ 2775 memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram", 2776 machine->ram_size); 2777 memory_region_add_subregion(sysmem, 0, ram); 2778 2779 /* always allocate the device memory information */ 2780 machine->device_memory = g_malloc0(sizeof(*machine->device_memory)); 2781 2782 /* initialize hotplug memory address space */ 2783 if (machine->ram_size < machine->maxram_size) { 2784 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; 2785 /* 2786 * Limit the number of hotpluggable memory slots to half the number 2787 * slots that KVM supports, leaving the other half for PCI and other 2788 * devices. However ensure that number of slots doesn't drop below 32. 2789 */ 2790 int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : 2791 SPAPR_MAX_RAM_SLOTS; 2792 2793 if (max_memslots < SPAPR_MAX_RAM_SLOTS) { 2794 max_memslots = SPAPR_MAX_RAM_SLOTS; 2795 } 2796 if (machine->ram_slots > max_memslots) { 2797 error_report("Specified number of memory slots %" 2798 PRIu64" exceeds max supported %d", 2799 machine->ram_slots, max_memslots); 2800 exit(1); 2801 } 2802 2803 machine->device_memory->base = ROUND_UP(machine->ram_size, 2804 SPAPR_DEVICE_MEM_ALIGN); 2805 memory_region_init(&machine->device_memory->mr, OBJECT(spapr), 2806 "device-memory", device_mem_size); 2807 memory_region_add_subregion(sysmem, machine->device_memory->base, 2808 &machine->device_memory->mr); 2809 } 2810 2811 if (smc->dr_lmb_enabled) { 2812 spapr_create_lmb_dr_connectors(spapr); 2813 } 2814 2815 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin"); 2816 if (!filename) { 2817 error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin"); 2818 exit(1); 2819 } 2820 spapr->rtas_size = get_image_size(filename); 2821 if (spapr->rtas_size < 0) { 2822 error_report("Could not get size of LPAR rtas '%s'", filename); 2823 exit(1); 2824 } 2825 spapr->rtas_blob = g_malloc(spapr->rtas_size); 2826 if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) { 2827 error_report("Could not load LPAR rtas '%s'", filename); 2828 exit(1); 2829 } 2830 if (spapr->rtas_size > RTAS_MAX_SIZE) { 2831 error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)", 2832 (size_t)spapr->rtas_size, RTAS_MAX_SIZE); 2833 exit(1); 2834 } 2835 g_free(filename); 2836 2837 /* Set up RTAS event infrastructure */ 2838 spapr_events_init(spapr); 2839 2840 /* Set up the RTC RTAS interfaces */ 2841 spapr_rtc_create(spapr); 2842 2843 /* Set up VIO bus */ 2844 spapr->vio_bus = spapr_vio_bus_init(); 2845 2846 for (i = 0; i < serial_max_hds(); i++) { 2847 if (serial_hd(i)) { 2848 spapr_vty_create(spapr->vio_bus, serial_hd(i)); 2849 } 2850 } 2851 2852 /* We always have at least the nvram device on VIO */ 2853 spapr_create_nvram(spapr); 2854 2855 /* Set up PCI */ 2856 spapr_pci_rtas_init(); 2857 2858 phb = spapr_create_default_phb(); 2859 2860 for (i = 0; i < nb_nics; i++) { 2861 NICInfo *nd = &nd_table[i]; 2862 2863 if (!nd->model) { 2864 nd->model = g_strdup("spapr-vlan"); 2865 } 2866 2867 if (g_str_equal(nd->model, "spapr-vlan") || 2868 g_str_equal(nd->model, "ibmveth")) { 2869 spapr_vlan_create(spapr->vio_bus, nd); 2870 } else { 2871 pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL); 2872 } 2873 } 2874 2875 for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { 2876 spapr_vscsi_create(spapr->vio_bus); 2877 } 2878 2879 /* Graphics */ 2880 if (spapr_vga_init(phb->bus, &error_fatal)) { 2881 spapr->has_graphics = true; 2882 machine->usb |= defaults_enabled() && !machine->usb_disabled; 2883 } 2884 2885 if (machine->usb) { 2886 if (smc->use_ohci_by_default) { 2887 pci_create_simple(phb->bus, -1, "pci-ohci"); 2888 } else { 2889 pci_create_simple(phb->bus, -1, "nec-usb-xhci"); 2890 } 2891 2892 if (spapr->has_graphics) { 2893 USBBus *usb_bus = usb_bus_find(-1); 2894 2895 usb_create_simple(usb_bus, "usb-kbd"); 2896 usb_create_simple(usb_bus, "usb-mouse"); 2897 } 2898 } 2899 2900 if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) { 2901 error_report( 2902 "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)", 2903 MIN_RMA_SLOF); 2904 exit(1); 2905 } 2906 2907 if (kernel_filename) { 2908 uint64_t lowaddr = 0; 2909 2910 spapr->kernel_size = load_elf(kernel_filename, NULL, 2911 translate_kernel_address, NULL, 2912 NULL, &lowaddr, NULL, 1, 2913 PPC_ELF_MACHINE, 0, 0); 2914 if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { 2915 spapr->kernel_size = load_elf(kernel_filename, NULL, 2916 translate_kernel_address, NULL, NULL, 2917 &lowaddr, NULL, 0, PPC_ELF_MACHINE, 2918 0, 0); 2919 spapr->kernel_le = spapr->kernel_size > 0; 2920 } 2921 if (spapr->kernel_size < 0) { 2922 error_report("error loading %s: %s", kernel_filename, 2923 load_elf_strerror(spapr->kernel_size)); 2924 exit(1); 2925 } 2926 2927 /* load initrd */ 2928 if (initrd_filename) { 2929 /* Try to locate the initrd in the gap between the kernel 2930 * and the firmware. Add a bit of space just in case 2931 */ 2932 spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size 2933 + 0x1ffff) & ~0xffff; 2934 spapr->initrd_size = load_image_targphys(initrd_filename, 2935 spapr->initrd_base, 2936 load_limit 2937 - spapr->initrd_base); 2938 if (spapr->initrd_size < 0) { 2939 error_report("could not load initial ram disk '%s'", 2940 initrd_filename); 2941 exit(1); 2942 } 2943 } 2944 } 2945 2946 if (bios_name == NULL) { 2947 bios_name = FW_FILE_NAME; 2948 } 2949 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 2950 if (!filename) { 2951 error_report("Could not find LPAR firmware '%s'", bios_name); 2952 exit(1); 2953 } 2954 fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); 2955 if (fw_size <= 0) { 2956 error_report("Could not load LPAR firmware '%s'", filename); 2957 exit(1); 2958 } 2959 g_free(filename); 2960 2961 /* FIXME: Should register things through the MachineState's qdev 2962 * interface, this is a legacy from the sPAPREnvironment structure 2963 * which predated MachineState but had a similar function */ 2964 vmstate_register(NULL, 0, &vmstate_spapr, spapr); 2965 register_savevm_live(NULL, "spapr/htab", -1, 1, 2966 &savevm_htab_handlers, spapr); 2967 2968 qemu_register_boot_set(spapr_boot_set, spapr); 2969 2970 if (kvm_enabled()) { 2971 /* to stop and start vmclock */ 2972 qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, 2973 &spapr->tb); 2974 2975 kvmppc_spapr_enable_inkernel_multitce(); 2976 } 2977 } 2978 2979 static int spapr_kvm_type(const char *vm_type) 2980 { 2981 if (!vm_type) { 2982 return 0; 2983 } 2984 2985 if (!strcmp(vm_type, "HV")) { 2986 return 1; 2987 } 2988 2989 if (!strcmp(vm_type, "PR")) { 2990 return 2; 2991 } 2992 2993 error_report("Unknown kvm-type specified '%s'", vm_type); 2994 exit(1); 2995 } 2996 2997 /* 2998 * Implementation of an interface to adjust firmware path 2999 * for the bootindex property handling. 3000 */ 3001 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, 3002 DeviceState *dev) 3003 { 3004 #define CAST(type, obj, name) \ 3005 ((type *)object_dynamic_cast(OBJECT(obj), (name))) 3006 SCSIDevice *d = CAST(SCSIDevice, dev, TYPE_SCSI_DEVICE); 3007 sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); 3008 VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); 3009 3010 if (d) { 3011 void *spapr = CAST(void, bus->parent, "spapr-vscsi"); 3012 VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); 3013 USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); 3014 3015 if (spapr) { 3016 /* 3017 * Replace "channel@0/disk@0,0" with "disk@8000000000000000": 3018 * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form 3019 * 0x8000 | (target << 8) | (bus << 5) | lun 3020 * (see the "Logical unit addressing format" table in SAM5) 3021 */ 3022 unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; 3023 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3024 (uint64_t)id << 48); 3025 } else if (virtio) { 3026 /* 3027 * We use SRP luns of the form 01000000 | (target << 8) | lun 3028 * in the top 32 bits of the 64-bit LUN 3029 * Note: the quote above is from SLOF and it is wrong, 3030 * the actual binding is: 3031 * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) 3032 */ 3033 unsigned id = 0x1000000 | (d->id << 16) | d->lun; 3034 if (d->lun >= 256) { 3035 /* Use the LUN "flat space addressing method" */ 3036 id |= 0x4000; 3037 } 3038 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3039 (uint64_t)id << 32); 3040 } else if (usb) { 3041 /* 3042 * We use SRP luns of the form 01000000 | (usb-port << 16) | lun 3043 * in the top 32 bits of the 64-bit LUN 3044 */ 3045 unsigned usb_port = atoi(usb->port->path); 3046 unsigned id = 0x1000000 | (usb_port << 16) | d->lun; 3047 return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), 3048 (uint64_t)id << 32); 3049 } 3050 } 3051 3052 /* 3053 * SLOF probes the USB devices, and if it recognizes that the device is a 3054 * storage device, it changes its name to "storage" instead of "usb-host", 3055 * and additionally adds a child node for the SCSI LUN, so the correct 3056 * boot path in SLOF is something like .../storage@1/disk@xxx" instead. 3057 */ 3058 if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { 3059 USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); 3060 if (usb_host_dev_is_scsi_storage(usbdev)) { 3061 return g_strdup_printf("storage@%s/disk", usbdev->port->path); 3062 } 3063 } 3064 3065 if (phb) { 3066 /* Replace "pci" with "pci@800000020000000" */ 3067 return g_strdup_printf("pci@%"PRIX64, phb->buid); 3068 } 3069 3070 if (vsc) { 3071 /* Same logic as virtio above */ 3072 unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; 3073 return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); 3074 } 3075 3076 if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { 3077 /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ 3078 PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); 3079 return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn)); 3080 } 3081 3082 return NULL; 3083 } 3084 3085 static char *spapr_get_kvm_type(Object *obj, Error **errp) 3086 { 3087 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3088 3089 return g_strdup(spapr->kvm_type); 3090 } 3091 3092 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) 3093 { 3094 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3095 3096 g_free(spapr->kvm_type); 3097 spapr->kvm_type = g_strdup(value); 3098 } 3099 3100 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) 3101 { 3102 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3103 3104 return spapr->use_hotplug_event_source; 3105 } 3106 3107 static void spapr_set_modern_hotplug_events(Object *obj, bool value, 3108 Error **errp) 3109 { 3110 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3111 3112 spapr->use_hotplug_event_source = value; 3113 } 3114 3115 static bool spapr_get_msix_emulation(Object *obj, Error **errp) 3116 { 3117 return true; 3118 } 3119 3120 static char *spapr_get_resize_hpt(Object *obj, Error **errp) 3121 { 3122 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3123 3124 switch (spapr->resize_hpt) { 3125 case SPAPR_RESIZE_HPT_DEFAULT: 3126 return g_strdup("default"); 3127 case SPAPR_RESIZE_HPT_DISABLED: 3128 return g_strdup("disabled"); 3129 case SPAPR_RESIZE_HPT_ENABLED: 3130 return g_strdup("enabled"); 3131 case SPAPR_RESIZE_HPT_REQUIRED: 3132 return g_strdup("required"); 3133 } 3134 g_assert_not_reached(); 3135 } 3136 3137 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) 3138 { 3139 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3140 3141 if (strcmp(value, "default") == 0) { 3142 spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; 3143 } else if (strcmp(value, "disabled") == 0) { 3144 spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; 3145 } else if (strcmp(value, "enabled") == 0) { 3146 spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; 3147 } else if (strcmp(value, "required") == 0) { 3148 spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; 3149 } else { 3150 error_setg(errp, "Bad value for \"resize-hpt\" property"); 3151 } 3152 } 3153 3154 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name, 3155 void *opaque, Error **errp) 3156 { 3157 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3158 } 3159 3160 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name, 3161 void *opaque, Error **errp) 3162 { 3163 visit_type_uint32(v, name, (uint32_t *)opaque, errp); 3164 } 3165 3166 static char *spapr_get_ic_mode(Object *obj, Error **errp) 3167 { 3168 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3169 3170 if (spapr->irq == &spapr_irq_xics_legacy) { 3171 return g_strdup("legacy"); 3172 } else if (spapr->irq == &spapr_irq_xics) { 3173 return g_strdup("xics"); 3174 } else if (spapr->irq == &spapr_irq_xive) { 3175 return g_strdup("xive"); 3176 } else if (spapr->irq == &spapr_irq_dual) { 3177 return g_strdup("dual"); 3178 } 3179 g_assert_not_reached(); 3180 } 3181 3182 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) 3183 { 3184 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3185 3186 if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { 3187 error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); 3188 return; 3189 } 3190 3191 /* The legacy IRQ backend can not be set */ 3192 if (strcmp(value, "xics") == 0) { 3193 spapr->irq = &spapr_irq_xics; 3194 } else if (strcmp(value, "xive") == 0) { 3195 spapr->irq = &spapr_irq_xive; 3196 } else if (strcmp(value, "dual") == 0) { 3197 spapr->irq = &spapr_irq_dual; 3198 } else { 3199 error_setg(errp, "Bad value for \"ic-mode\" property"); 3200 } 3201 } 3202 3203 static char *spapr_get_host_model(Object *obj, Error **errp) 3204 { 3205 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3206 3207 return g_strdup(spapr->host_model); 3208 } 3209 3210 static void spapr_set_host_model(Object *obj, const char *value, Error **errp) 3211 { 3212 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3213 3214 g_free(spapr->host_model); 3215 spapr->host_model = g_strdup(value); 3216 } 3217 3218 static char *spapr_get_host_serial(Object *obj, Error **errp) 3219 { 3220 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3221 3222 return g_strdup(spapr->host_serial); 3223 } 3224 3225 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) 3226 { 3227 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3228 3229 g_free(spapr->host_serial); 3230 spapr->host_serial = g_strdup(value); 3231 } 3232 3233 static void spapr_instance_init(Object *obj) 3234 { 3235 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3236 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); 3237 3238 spapr->htab_fd = -1; 3239 spapr->use_hotplug_event_source = true; 3240 object_property_add_str(obj, "kvm-type", 3241 spapr_get_kvm_type, spapr_set_kvm_type, NULL); 3242 object_property_set_description(obj, "kvm-type", 3243 "Specifies the KVM virtualization mode (HV, PR)", 3244 NULL); 3245 object_property_add_bool(obj, "modern-hotplug-events", 3246 spapr_get_modern_hotplug_events, 3247 spapr_set_modern_hotplug_events, 3248 NULL); 3249 object_property_set_description(obj, "modern-hotplug-events", 3250 "Use dedicated hotplug event mechanism in" 3251 " place of standard EPOW events when possible" 3252 " (required for memory hot-unplug support)", 3253 NULL); 3254 ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, 3255 "Maximum permitted CPU compatibility mode", 3256 &error_fatal); 3257 3258 object_property_add_str(obj, "resize-hpt", 3259 spapr_get_resize_hpt, spapr_set_resize_hpt, NULL); 3260 object_property_set_description(obj, "resize-hpt", 3261 "Resizing of the Hash Page Table (enabled, disabled, required)", 3262 NULL); 3263 object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt, 3264 spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort); 3265 object_property_set_description(obj, "vsmt", 3266 "Virtual SMT: KVM behaves as if this were" 3267 " the host's SMT mode", &error_abort); 3268 object_property_add_bool(obj, "vfio-no-msix-emulation", 3269 spapr_get_msix_emulation, NULL, NULL); 3270 3271 /* The machine class defines the default interrupt controller mode */ 3272 spapr->irq = smc->irq; 3273 object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, 3274 spapr_set_ic_mode, NULL); 3275 object_property_set_description(obj, "ic-mode", 3276 "Specifies the interrupt controller mode (xics, xive, dual)", 3277 NULL); 3278 3279 object_property_add_str(obj, "host-model", 3280 spapr_get_host_model, spapr_set_host_model, 3281 &error_abort); 3282 object_property_set_description(obj, "host-model", 3283 "Set host's model-id to use - none|passthrough|string", &error_abort); 3284 object_property_add_str(obj, "host-serial", 3285 spapr_get_host_serial, spapr_set_host_serial, 3286 &error_abort); 3287 object_property_set_description(obj, "host-serial", 3288 "Set host's system-id to use - none|passthrough|string", &error_abort); 3289 } 3290 3291 static void spapr_machine_finalizefn(Object *obj) 3292 { 3293 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 3294 3295 g_free(spapr->kvm_type); 3296 } 3297 3298 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) 3299 { 3300 cpu_synchronize_state(cs); 3301 ppc_cpu_do_system_reset(cs); 3302 } 3303 3304 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) 3305 { 3306 CPUState *cs; 3307 3308 CPU_FOREACH(cs) { 3309 async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); 3310 } 3311 } 3312 3313 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, 3314 uint32_t node, bool dedicated_hp_event_source, 3315 Error **errp) 3316 { 3317 sPAPRDRConnector *drc; 3318 uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; 3319 int i, fdt_offset, fdt_size; 3320 void *fdt; 3321 uint64_t addr = addr_start; 3322 bool hotplugged = spapr_drc_hotplugged(dev); 3323 Error *local_err = NULL; 3324 3325 for (i = 0; i < nr_lmbs; i++) { 3326 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3327 addr / SPAPR_MEMORY_BLOCK_SIZE); 3328 g_assert(drc); 3329 3330 fdt = create_device_tree(&fdt_size); 3331 fdt_offset = spapr_populate_memory_node(fdt, node, addr, 3332 SPAPR_MEMORY_BLOCK_SIZE); 3333 3334 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3335 if (local_err) { 3336 while (addr > addr_start) { 3337 addr -= SPAPR_MEMORY_BLOCK_SIZE; 3338 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3339 addr / SPAPR_MEMORY_BLOCK_SIZE); 3340 spapr_drc_detach(drc); 3341 } 3342 g_free(fdt); 3343 error_propagate(errp, local_err); 3344 return; 3345 } 3346 if (!hotplugged) { 3347 spapr_drc_reset(drc); 3348 } 3349 addr += SPAPR_MEMORY_BLOCK_SIZE; 3350 } 3351 /* send hotplug notification to the 3352 * guest only in case of hotplugged memory 3353 */ 3354 if (hotplugged) { 3355 if (dedicated_hp_event_source) { 3356 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3357 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3358 spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3359 nr_lmbs, 3360 spapr_drc_index(drc)); 3361 } else { 3362 spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, 3363 nr_lmbs); 3364 } 3365 } 3366 } 3367 3368 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3369 Error **errp) 3370 { 3371 Error *local_err = NULL; 3372 sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev); 3373 PCDIMMDevice *dimm = PC_DIMM(dev); 3374 uint64_t size, addr; 3375 uint32_t node; 3376 3377 size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); 3378 3379 pc_dimm_plug(dimm, MACHINE(ms), &local_err); 3380 if (local_err) { 3381 goto out; 3382 } 3383 3384 addr = object_property_get_uint(OBJECT(dimm), 3385 PC_DIMM_ADDR_PROP, &local_err); 3386 if (local_err) { 3387 goto out_unplug; 3388 } 3389 3390 node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, 3391 &error_abort); 3392 spapr_add_lmbs(dev, addr, size, node, 3393 spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT), 3394 &local_err); 3395 if (local_err) { 3396 goto out_unplug; 3397 } 3398 3399 return; 3400 3401 out_unplug: 3402 pc_dimm_unplug(dimm, MACHINE(ms)); 3403 out: 3404 error_propagate(errp, local_err); 3405 } 3406 3407 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3408 Error **errp) 3409 { 3410 const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); 3411 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3412 PCDIMMDevice *dimm = PC_DIMM(dev); 3413 Error *local_err = NULL; 3414 uint64_t size; 3415 Object *memdev; 3416 hwaddr pagesize; 3417 3418 if (!smc->dr_lmb_enabled) { 3419 error_setg(errp, "Memory hotplug not supported for this machine"); 3420 return; 3421 } 3422 3423 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); 3424 if (local_err) { 3425 error_propagate(errp, local_err); 3426 return; 3427 } 3428 3429 if (size % SPAPR_MEMORY_BLOCK_SIZE) { 3430 error_setg(errp, "Hotplugged memory size must be a multiple of " 3431 "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); 3432 return; 3433 } 3434 3435 memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, 3436 &error_abort); 3437 pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); 3438 spapr_check_pagesize(spapr, pagesize, &local_err); 3439 if (local_err) { 3440 error_propagate(errp, local_err); 3441 return; 3442 } 3443 3444 pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp); 3445 } 3446 3447 struct sPAPRDIMMState { 3448 PCDIMMDevice *dimm; 3449 uint32_t nr_lmbs; 3450 QTAILQ_ENTRY(sPAPRDIMMState) next; 3451 }; 3452 3453 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s, 3454 PCDIMMDevice *dimm) 3455 { 3456 sPAPRDIMMState *dimm_state = NULL; 3457 3458 QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { 3459 if (dimm_state->dimm == dimm) { 3460 break; 3461 } 3462 } 3463 return dimm_state; 3464 } 3465 3466 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr, 3467 uint32_t nr_lmbs, 3468 PCDIMMDevice *dimm) 3469 { 3470 sPAPRDIMMState *ds = NULL; 3471 3472 /* 3473 * If this request is for a DIMM whose removal had failed earlier 3474 * (due to guest's refusal to remove the LMBs), we would have this 3475 * dimm already in the pending_dimm_unplugs list. In that 3476 * case don't add again. 3477 */ 3478 ds = spapr_pending_dimm_unplugs_find(spapr, dimm); 3479 if (!ds) { 3480 ds = g_malloc0(sizeof(sPAPRDIMMState)); 3481 ds->nr_lmbs = nr_lmbs; 3482 ds->dimm = dimm; 3483 QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); 3484 } 3485 return ds; 3486 } 3487 3488 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr, 3489 sPAPRDIMMState *dimm_state) 3490 { 3491 QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); 3492 g_free(dimm_state); 3493 } 3494 3495 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms, 3496 PCDIMMDevice *dimm) 3497 { 3498 sPAPRDRConnector *drc; 3499 uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), 3500 &error_abort); 3501 uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3502 uint32_t avail_lmbs = 0; 3503 uint64_t addr_start, addr; 3504 int i; 3505 3506 addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3507 &error_abort); 3508 3509 addr = addr_start; 3510 for (i = 0; i < nr_lmbs; i++) { 3511 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3512 addr / SPAPR_MEMORY_BLOCK_SIZE); 3513 g_assert(drc); 3514 if (drc->dev) { 3515 avail_lmbs++; 3516 } 3517 addr += SPAPR_MEMORY_BLOCK_SIZE; 3518 } 3519 3520 return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); 3521 } 3522 3523 /* Callback to be called during DRC release. */ 3524 void spapr_lmb_release(DeviceState *dev) 3525 { 3526 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3527 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); 3528 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3529 3530 /* This information will get lost if a migration occurs 3531 * during the unplug process. In this case recover it. */ 3532 if (ds == NULL) { 3533 ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); 3534 g_assert(ds); 3535 /* The DRC being examined by the caller at least must be counted */ 3536 g_assert(ds->nr_lmbs); 3537 } 3538 3539 if (--ds->nr_lmbs) { 3540 return; 3541 } 3542 3543 /* 3544 * Now that all the LMBs have been removed by the guest, call the 3545 * unplug handler chain. This can never fail. 3546 */ 3547 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3548 } 3549 3550 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3551 { 3552 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3553 sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); 3554 3555 pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); 3556 object_unparent(OBJECT(dev)); 3557 spapr_pending_dimm_unplugs_remove(spapr, ds); 3558 } 3559 3560 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, 3561 DeviceState *dev, Error **errp) 3562 { 3563 sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev); 3564 Error *local_err = NULL; 3565 PCDIMMDevice *dimm = PC_DIMM(dev); 3566 uint32_t nr_lmbs; 3567 uint64_t size, addr_start, addr; 3568 int i; 3569 sPAPRDRConnector *drc; 3570 3571 size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); 3572 nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; 3573 3574 addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, 3575 &local_err); 3576 if (local_err) { 3577 goto out; 3578 } 3579 3580 /* 3581 * An existing pending dimm state for this DIMM means that there is an 3582 * unplug operation in progress, waiting for the spapr_lmb_release 3583 * callback to complete the job (BQL can't cover that far). In this case, 3584 * bail out to avoid detaching DRCs that were already released. 3585 */ 3586 if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { 3587 error_setg(&local_err, 3588 "Memory unplug already in progress for device %s", 3589 dev->id); 3590 goto out; 3591 } 3592 3593 spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); 3594 3595 addr = addr_start; 3596 for (i = 0; i < nr_lmbs; i++) { 3597 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3598 addr / SPAPR_MEMORY_BLOCK_SIZE); 3599 g_assert(drc); 3600 3601 spapr_drc_detach(drc); 3602 addr += SPAPR_MEMORY_BLOCK_SIZE; 3603 } 3604 3605 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, 3606 addr_start / SPAPR_MEMORY_BLOCK_SIZE); 3607 spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, 3608 nr_lmbs, spapr_drc_index(drc)); 3609 out: 3610 error_propagate(errp, local_err); 3611 } 3612 3613 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset, 3614 sPAPRMachineState *spapr) 3615 { 3616 PowerPCCPU *cpu = POWERPC_CPU(cs); 3617 DeviceClass *dc = DEVICE_GET_CLASS(cs); 3618 int id = spapr_get_vcpu_id(cpu); 3619 void *fdt; 3620 int offset, fdt_size; 3621 char *nodename; 3622 3623 fdt = create_device_tree(&fdt_size); 3624 nodename = g_strdup_printf("%s@%x", dc->fw_name, id); 3625 offset = fdt_add_subnode(fdt, 0, nodename); 3626 3627 spapr_populate_cpu_dt(cs, fdt, offset, spapr); 3628 g_free(nodename); 3629 3630 *fdt_offset = offset; 3631 return fdt; 3632 } 3633 3634 /* Callback to be called during DRC release. */ 3635 void spapr_core_release(DeviceState *dev) 3636 { 3637 HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); 3638 3639 /* Call the unplug handler chain. This can never fail. */ 3640 hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); 3641 } 3642 3643 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) 3644 { 3645 MachineState *ms = MACHINE(hotplug_dev); 3646 sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); 3647 CPUCore *cc = CPU_CORE(dev); 3648 CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); 3649 3650 if (smc->pre_2_10_has_unused_icps) { 3651 sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); 3652 int i; 3653 3654 for (i = 0; i < cc->nr_threads; i++) { 3655 CPUState *cs = CPU(sc->threads[i]); 3656 3657 pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); 3658 } 3659 } 3660 3661 assert(core_slot); 3662 core_slot->cpu = NULL; 3663 object_unparent(OBJECT(dev)); 3664 } 3665 3666 static 3667 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, 3668 Error **errp) 3669 { 3670 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3671 int index; 3672 sPAPRDRConnector *drc; 3673 CPUCore *cc = CPU_CORE(dev); 3674 3675 if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { 3676 error_setg(errp, "Unable to find CPU core with core-id: %d", 3677 cc->core_id); 3678 return; 3679 } 3680 if (index == 0) { 3681 error_setg(errp, "Boot CPU core may not be unplugged"); 3682 return; 3683 } 3684 3685 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3686 spapr_vcpu_id(spapr, cc->core_id)); 3687 g_assert(drc); 3688 3689 spapr_drc_detach(drc); 3690 3691 spapr_hotplug_req_remove_by_index(drc); 3692 } 3693 3694 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3695 Error **errp) 3696 { 3697 sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3698 MachineClass *mc = MACHINE_GET_CLASS(spapr); 3699 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 3700 sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev)); 3701 CPUCore *cc = CPU_CORE(dev); 3702 CPUState *cs = CPU(core->threads[0]); 3703 sPAPRDRConnector *drc; 3704 Error *local_err = NULL; 3705 CPUArchId *core_slot; 3706 int index; 3707 bool hotplugged = spapr_drc_hotplugged(dev); 3708 3709 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3710 if (!core_slot) { 3711 error_setg(errp, "Unable to find CPU core with core-id: %d", 3712 cc->core_id); 3713 return; 3714 } 3715 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, 3716 spapr_vcpu_id(spapr, cc->core_id)); 3717 3718 g_assert(drc || !mc->has_hotpluggable_cpus); 3719 3720 if (drc) { 3721 void *fdt; 3722 int fdt_offset; 3723 3724 fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr); 3725 3726 spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err); 3727 if (local_err) { 3728 g_free(fdt); 3729 error_propagate(errp, local_err); 3730 return; 3731 } 3732 3733 if (hotplugged) { 3734 /* 3735 * Send hotplug notification interrupt to the guest only 3736 * in case of hotplugged CPUs. 3737 */ 3738 spapr_hotplug_req_add_by_index(drc); 3739 } else { 3740 spapr_drc_reset(drc); 3741 } 3742 } 3743 3744 core_slot->cpu = OBJECT(dev); 3745 3746 if (smc->pre_2_10_has_unused_icps) { 3747 int i; 3748 3749 for (i = 0; i < cc->nr_threads; i++) { 3750 cs = CPU(core->threads[i]); 3751 pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); 3752 } 3753 } 3754 } 3755 3756 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, 3757 Error **errp) 3758 { 3759 MachineState *machine = MACHINE(OBJECT(hotplug_dev)); 3760 MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); 3761 Error *local_err = NULL; 3762 CPUCore *cc = CPU_CORE(dev); 3763 const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); 3764 const char *type = object_get_typename(OBJECT(dev)); 3765 CPUArchId *core_slot; 3766 int index; 3767 3768 if (dev->hotplugged && !mc->has_hotpluggable_cpus) { 3769 error_setg(&local_err, "CPU hotplug not supported for this machine"); 3770 goto out; 3771 } 3772 3773 if (strcmp(base_core_type, type)) { 3774 error_setg(&local_err, "CPU core type should be %s", base_core_type); 3775 goto out; 3776 } 3777 3778 if (cc->core_id % smp_threads) { 3779 error_setg(&local_err, "invalid core id %d", cc->core_id); 3780 goto out; 3781 } 3782 3783 /* 3784 * In general we should have homogeneous threads-per-core, but old 3785 * (pre hotplug support) machine types allow the last core to have 3786 * reduced threads as a compatibility hack for when we allowed 3787 * total vcpus not a multiple of threads-per-core. 3788 */ 3789 if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { 3790 error_setg(&local_err, "invalid nr-threads %d, must be %d", 3791 cc->nr_threads, smp_threads); 3792 goto out; 3793 } 3794 3795 core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); 3796 if (!core_slot) { 3797 error_setg(&local_err, "core id %d out of range", cc->core_id); 3798 goto out; 3799 } 3800 3801 if (core_slot->cpu) { 3802 error_setg(&local_err, "core %d already populated", cc->core_id); 3803 goto out; 3804 } 3805 3806 numa_cpu_pre_plug(core_slot, dev, &local_err); 3807 3808 out: 3809 error_propagate(errp, local_err); 3810 } 3811 3812 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, 3813 DeviceState *dev, Error **errp) 3814 { 3815 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3816 spapr_memory_plug(hotplug_dev, dev, errp); 3817 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3818 spapr_core_plug(hotplug_dev, dev, errp); 3819 } 3820 } 3821 3822 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, 3823 DeviceState *dev, Error **errp) 3824 { 3825 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3826 spapr_memory_unplug(hotplug_dev, dev); 3827 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3828 spapr_core_unplug(hotplug_dev, dev); 3829 } 3830 } 3831 3832 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, 3833 DeviceState *dev, Error **errp) 3834 { 3835 sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); 3836 MachineClass *mc = MACHINE_GET_CLASS(sms); 3837 3838 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3839 if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) { 3840 spapr_memory_unplug_request(hotplug_dev, dev, errp); 3841 } else { 3842 /* NOTE: this means there is a window after guest reset, prior to 3843 * CAS negotiation, where unplug requests will fail due to the 3844 * capability not being detected yet. This is a bit different than 3845 * the case with PCI unplug, where the events will be queued and 3846 * eventually handled by the guest after boot 3847 */ 3848 error_setg(errp, "Memory hot unplug not supported for this guest"); 3849 } 3850 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3851 if (!mc->has_hotpluggable_cpus) { 3852 error_setg(errp, "CPU hot unplug not supported on this machine"); 3853 return; 3854 } 3855 spapr_core_unplug_request(hotplug_dev, dev, errp); 3856 } 3857 } 3858 3859 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, 3860 DeviceState *dev, Error **errp) 3861 { 3862 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 3863 spapr_memory_pre_plug(hotplug_dev, dev, errp); 3864 } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3865 spapr_core_pre_plug(hotplug_dev, dev, errp); 3866 } 3867 } 3868 3869 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, 3870 DeviceState *dev) 3871 { 3872 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 3873 object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { 3874 return HOTPLUG_HANDLER(machine); 3875 } 3876 return NULL; 3877 } 3878 3879 static CpuInstanceProperties 3880 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) 3881 { 3882 CPUArchId *core_slot; 3883 MachineClass *mc = MACHINE_GET_CLASS(machine); 3884 3885 /* make sure possible_cpu are intialized */ 3886 mc->possible_cpu_arch_ids(machine); 3887 /* get CPU core slot containing thread that matches cpu_index */ 3888 core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); 3889 assert(core_slot); 3890 return core_slot->props; 3891 } 3892 3893 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) 3894 { 3895 return idx / smp_cores % nb_numa_nodes; 3896 } 3897 3898 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) 3899 { 3900 int i; 3901 const char *core_type; 3902 int spapr_max_cores = max_cpus / smp_threads; 3903 MachineClass *mc = MACHINE_GET_CLASS(machine); 3904 3905 if (!mc->has_hotpluggable_cpus) { 3906 spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; 3907 } 3908 if (machine->possible_cpus) { 3909 assert(machine->possible_cpus->len == spapr_max_cores); 3910 return machine->possible_cpus; 3911 } 3912 3913 core_type = spapr_get_cpu_core_type(machine->cpu_type); 3914 if (!core_type) { 3915 error_report("Unable to find sPAPR CPU Core definition"); 3916 exit(1); 3917 } 3918 3919 machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 3920 sizeof(CPUArchId) * spapr_max_cores); 3921 machine->possible_cpus->len = spapr_max_cores; 3922 for (i = 0; i < machine->possible_cpus->len; i++) { 3923 int core_id = i * smp_threads; 3924 3925 machine->possible_cpus->cpus[i].type = core_type; 3926 machine->possible_cpus->cpus[i].vcpus_count = smp_threads; 3927 machine->possible_cpus->cpus[i].arch_id = core_id; 3928 machine->possible_cpus->cpus[i].props.has_core_id = true; 3929 machine->possible_cpus->cpus[i].props.core_id = core_id; 3930 } 3931 return machine->possible_cpus; 3932 } 3933 3934 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index, 3935 uint64_t *buid, hwaddr *pio, 3936 hwaddr *mmio32, hwaddr *mmio64, 3937 unsigned n_dma, uint32_t *liobns, Error **errp) 3938 { 3939 /* 3940 * New-style PHB window placement. 3941 * 3942 * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window 3943 * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO 3944 * windows. 3945 * 3946 * Some guest kernels can't work with MMIO windows above 1<<46 3947 * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB 3948 * 3949 * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each 3950 * PHB stacked together. (32TiB+2GiB)..(32TiB+64GiB) contains the 3951 * 2GiB 32-bit MMIO windows for each PHB. Then 33..64TiB has the 3952 * 1TiB 64-bit MMIO windows for each PHB. 3953 */ 3954 const uint64_t base_buid = 0x800000020000000ULL; 3955 int i; 3956 3957 /* Sanity check natural alignments */ 3958 QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3959 QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); 3960 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); 3961 QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); 3962 /* Sanity check bounds */ 3963 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > 3964 SPAPR_PCI_MEM32_WIN_SIZE); 3965 QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > 3966 SPAPR_PCI_MEM64_WIN_SIZE); 3967 3968 if (index >= SPAPR_MAX_PHBS) { 3969 error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", 3970 SPAPR_MAX_PHBS - 1); 3971 return; 3972 } 3973 3974 *buid = base_buid + index; 3975 for (i = 0; i < n_dma; ++i) { 3976 liobns[i] = SPAPR_PCI_LIOBN(index, i); 3977 } 3978 3979 *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; 3980 *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; 3981 *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; 3982 } 3983 3984 static ICSState *spapr_ics_get(XICSFabric *dev, int irq) 3985 { 3986 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3987 3988 return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; 3989 } 3990 3991 static void spapr_ics_resend(XICSFabric *dev) 3992 { 3993 sPAPRMachineState *spapr = SPAPR_MACHINE(dev); 3994 3995 ics_resend(spapr->ics); 3996 } 3997 3998 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) 3999 { 4000 PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); 4001 4002 return cpu ? spapr_cpu_state(cpu)->icp : NULL; 4003 } 4004 4005 static void spapr_pic_print_info(InterruptStatsProvider *obj, 4006 Monitor *mon) 4007 { 4008 sPAPRMachineState *spapr = SPAPR_MACHINE(obj); 4009 4010 spapr->irq->print_info(spapr, mon); 4011 } 4012 4013 int spapr_get_vcpu_id(PowerPCCPU *cpu) 4014 { 4015 return cpu->vcpu_id; 4016 } 4017 4018 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) 4019 { 4020 sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); 4021 int vcpu_id; 4022 4023 vcpu_id = spapr_vcpu_id(spapr, cpu_index); 4024 4025 if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { 4026 error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); 4027 error_append_hint(errp, "Adjust the number of cpus to %d " 4028 "or try to raise the number of threads per core\n", 4029 vcpu_id * smp_threads / spapr->vsmt); 4030 return; 4031 } 4032 4033 cpu->vcpu_id = vcpu_id; 4034 } 4035 4036 PowerPCCPU *spapr_find_cpu(int vcpu_id) 4037 { 4038 CPUState *cs; 4039 4040 CPU_FOREACH(cs) { 4041 PowerPCCPU *cpu = POWERPC_CPU(cs); 4042 4043 if (spapr_get_vcpu_id(cpu) == vcpu_id) { 4044 return cpu; 4045 } 4046 } 4047 4048 return NULL; 4049 } 4050 4051 static void spapr_machine_class_init(ObjectClass *oc, void *data) 4052 { 4053 MachineClass *mc = MACHINE_CLASS(oc); 4054 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc); 4055 FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); 4056 NMIClass *nc = NMI_CLASS(oc); 4057 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 4058 PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); 4059 XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); 4060 InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); 4061 4062 mc->desc = "pSeries Logical Partition (PAPR compliant)"; 4063 mc->ignore_boot_device_suffixes = true; 4064 4065 /* 4066 * We set up the default / latest behaviour here. The class_init 4067 * functions for the specific versioned machine types can override 4068 * these details for backwards compatibility 4069 */ 4070 mc->init = spapr_machine_init; 4071 mc->reset = spapr_machine_reset; 4072 mc->block_default_type = IF_SCSI; 4073 mc->max_cpus = 1024; 4074 mc->no_parallel = 1; 4075 mc->default_boot_order = ""; 4076 mc->default_ram_size = 512 * MiB; 4077 mc->default_display = "std"; 4078 mc->kvm_type = spapr_kvm_type; 4079 machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); 4080 mc->pci_allow_0_address = true; 4081 assert(!mc->get_hotplug_handler); 4082 mc->get_hotplug_handler = spapr_get_hotplug_handler; 4083 hc->pre_plug = spapr_machine_device_pre_plug; 4084 hc->plug = spapr_machine_device_plug; 4085 mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; 4086 mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; 4087 mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; 4088 hc->unplug_request = spapr_machine_device_unplug_request; 4089 hc->unplug = spapr_machine_device_unplug; 4090 4091 smc->dr_lmb_enabled = true; 4092 smc->update_dt_enabled = true; 4093 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0"); 4094 mc->has_hotpluggable_cpus = true; 4095 smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; 4096 fwc->get_dev_path = spapr_get_fw_dev_path; 4097 nc->nmi_monitor_handler = spapr_nmi; 4098 smc->phb_placement = spapr_phb_placement; 4099 vhc->hypercall = emulate_spapr_hypercall; 4100 vhc->hpt_mask = spapr_hpt_mask; 4101 vhc->map_hptes = spapr_map_hptes; 4102 vhc->unmap_hptes = spapr_unmap_hptes; 4103 vhc->store_hpte = spapr_store_hpte; 4104 vhc->get_patbe = spapr_get_patbe; 4105 vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; 4106 xic->ics_get = spapr_ics_get; 4107 xic->ics_resend = spapr_ics_resend; 4108 xic->icp_get = spapr_icp_get; 4109 ispc->print_info = spapr_pic_print_info; 4110 /* Force NUMA node memory size to be a multiple of 4111 * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity 4112 * in which LMBs are represented and hot-added 4113 */ 4114 mc->numa_mem_align_shift = 28; 4115 4116 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; 4117 smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; 4118 smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; 4119 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; 4120 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; 4121 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; 4122 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ 4123 smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; 4124 spapr_caps_add_properties(smc, &error_abort); 4125 smc->irq = &spapr_irq_xics; 4126 } 4127 4128 static const TypeInfo spapr_machine_info = { 4129 .name = TYPE_SPAPR_MACHINE, 4130 .parent = TYPE_MACHINE, 4131 .abstract = true, 4132 .instance_size = sizeof(sPAPRMachineState), 4133 .instance_init = spapr_instance_init, 4134 .instance_finalize = spapr_machine_finalizefn, 4135 .class_size = sizeof(sPAPRMachineClass), 4136 .class_init = spapr_machine_class_init, 4137 .interfaces = (InterfaceInfo[]) { 4138 { TYPE_FW_PATH_PROVIDER }, 4139 { TYPE_NMI }, 4140 { TYPE_HOTPLUG_HANDLER }, 4141 { TYPE_PPC_VIRTUAL_HYPERVISOR }, 4142 { TYPE_XICS_FABRIC }, 4143 { TYPE_INTERRUPT_STATS_PROVIDER }, 4144 { } 4145 }, 4146 }; 4147 4148 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest) \ 4149 static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \ 4150 void *data) \ 4151 { \ 4152 MachineClass *mc = MACHINE_CLASS(oc); \ 4153 spapr_machine_##suffix##_class_options(mc); \ 4154 if (latest) { \ 4155 mc->alias = "pseries"; \ 4156 mc->is_default = 1; \ 4157 } \ 4158 } \ 4159 static const TypeInfo spapr_machine_##suffix##_info = { \ 4160 .name = MACHINE_TYPE_NAME("pseries-" verstr), \ 4161 .parent = TYPE_SPAPR_MACHINE, \ 4162 .class_init = spapr_machine_##suffix##_class_init, \ 4163 }; \ 4164 static void spapr_machine_register_##suffix(void) \ 4165 { \ 4166 type_register(&spapr_machine_##suffix##_info); \ 4167 } \ 4168 type_init(spapr_machine_register_##suffix) 4169 4170 /* 4171 * pseries-4.0 4172 */ 4173 static void spapr_machine_4_0_class_options(MachineClass *mc) 4174 { 4175 /* Defaults for the latest behaviour inherited from the base class */ 4176 } 4177 4178 DEFINE_SPAPR_MACHINE(4_0, "4.0", true); 4179 4180 /* 4181 * pseries-3.1 4182 */ 4183 static void spapr_machine_3_1_class_options(MachineClass *mc) 4184 { 4185 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4186 static GlobalProperty compat[] = { 4187 { TYPE_SPAPR_MACHINE, "host-model", "passthrough" }, 4188 { TYPE_SPAPR_MACHINE, "host-serial", "passthrough" }, 4189 }; 4190 4191 spapr_machine_4_0_class_options(mc); 4192 compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); 4193 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4194 4195 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); 4196 smc->update_dt_enabled = false; 4197 } 4198 4199 DEFINE_SPAPR_MACHINE(3_1, "3.1", false); 4200 4201 /* 4202 * pseries-3.0 4203 */ 4204 4205 static void spapr_machine_3_0_class_options(MachineClass *mc) 4206 { 4207 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4208 4209 spapr_machine_3_1_class_options(mc); 4210 compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); 4211 4212 smc->legacy_irq_allocation = true; 4213 smc->irq = &spapr_irq_xics_legacy; 4214 } 4215 4216 DEFINE_SPAPR_MACHINE(3_0, "3.0", false); 4217 4218 /* 4219 * pseries-2.12 4220 */ 4221 static void spapr_machine_2_12_class_options(MachineClass *mc) 4222 { 4223 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4224 static GlobalProperty compat[] = { 4225 { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, 4226 { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, 4227 }; 4228 4229 spapr_machine_3_0_class_options(mc); 4230 compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); 4231 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4232 4233 /* We depend on kvm_enabled() to choose a default value for the 4234 * hpt-max-page-size capability. Of course we can't do it here 4235 * because this is too early and the HW accelerator isn't initialzed 4236 * yet. Postpone this to machine init (see default_caps_with_cpu()). 4237 */ 4238 smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; 4239 } 4240 4241 DEFINE_SPAPR_MACHINE(2_12, "2.12", false); 4242 4243 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) 4244 { 4245 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4246 4247 spapr_machine_2_12_class_options(mc); 4248 smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; 4249 smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; 4250 smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; 4251 } 4252 4253 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false); 4254 4255 /* 4256 * pseries-2.11 4257 */ 4258 4259 static void spapr_machine_2_11_class_options(MachineClass *mc) 4260 { 4261 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4262 4263 spapr_machine_2_12_class_options(mc); 4264 smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; 4265 compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); 4266 } 4267 4268 DEFINE_SPAPR_MACHINE(2_11, "2.11", false); 4269 4270 /* 4271 * pseries-2.10 4272 */ 4273 4274 static void spapr_machine_2_10_class_options(MachineClass *mc) 4275 { 4276 spapr_machine_2_11_class_options(mc); 4277 compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); 4278 } 4279 4280 DEFINE_SPAPR_MACHINE(2_10, "2.10", false); 4281 4282 /* 4283 * pseries-2.9 4284 */ 4285 4286 static void spapr_machine_2_9_class_options(MachineClass *mc) 4287 { 4288 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4289 static GlobalProperty compat[] = { 4290 { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, 4291 }; 4292 4293 spapr_machine_2_10_class_options(mc); 4294 compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); 4295 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4296 mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram; 4297 smc->pre_2_10_has_unused_icps = true; 4298 smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; 4299 } 4300 4301 DEFINE_SPAPR_MACHINE(2_9, "2.9", false); 4302 4303 /* 4304 * pseries-2.8 4305 */ 4306 4307 static void spapr_machine_2_8_class_options(MachineClass *mc) 4308 { 4309 static GlobalProperty compat[] = { 4310 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, 4311 }; 4312 4313 spapr_machine_2_9_class_options(mc); 4314 compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); 4315 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4316 mc->numa_mem_align_shift = 23; 4317 } 4318 4319 DEFINE_SPAPR_MACHINE(2_8, "2.8", false); 4320 4321 /* 4322 * pseries-2.7 4323 */ 4324 4325 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index, 4326 uint64_t *buid, hwaddr *pio, 4327 hwaddr *mmio32, hwaddr *mmio64, 4328 unsigned n_dma, uint32_t *liobns, Error **errp) 4329 { 4330 /* Legacy PHB placement for pseries-2.7 and earlier machine types */ 4331 const uint64_t base_buid = 0x800000020000000ULL; 4332 const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ 4333 const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ 4334 const hwaddr pio_offset = 0x80000000; /* 2 GiB */ 4335 const uint32_t max_index = 255; 4336 const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ 4337 4338 uint64_t ram_top = MACHINE(spapr)->ram_size; 4339 hwaddr phb0_base, phb_base; 4340 int i; 4341 4342 /* Do we have device memory? */ 4343 if (MACHINE(spapr)->maxram_size > ram_top) { 4344 /* Can't just use maxram_size, because there may be an 4345 * alignment gap between normal and device memory regions 4346 */ 4347 ram_top = MACHINE(spapr)->device_memory->base + 4348 memory_region_size(&MACHINE(spapr)->device_memory->mr); 4349 } 4350 4351 phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); 4352 4353 if (index > max_index) { 4354 error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", 4355 max_index); 4356 return; 4357 } 4358 4359 *buid = base_buid + index; 4360 for (i = 0; i < n_dma; ++i) { 4361 liobns[i] = SPAPR_PCI_LIOBN(index, i); 4362 } 4363 4364 phb_base = phb0_base + index * phb_spacing; 4365 *pio = phb_base + pio_offset; 4366 *mmio32 = phb_base + mmio_offset; 4367 /* 4368 * We don't set the 64-bit MMIO window, relying on the PHB's 4369 * fallback behaviour of automatically splitting a large "32-bit" 4370 * window into contiguous 32-bit and 64-bit windows 4371 */ 4372 } 4373 4374 static void spapr_machine_2_7_class_options(MachineClass *mc) 4375 { 4376 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4377 static GlobalProperty compat[] = { 4378 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, 4379 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, 4380 { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, 4381 { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, 4382 }; 4383 4384 spapr_machine_2_8_class_options(mc); 4385 mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); 4386 mc->default_machine_opts = "modern-hotplug-events=off"; 4387 compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); 4388 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4389 smc->phb_placement = phb_placement_2_7; 4390 } 4391 4392 DEFINE_SPAPR_MACHINE(2_7, "2.7", false); 4393 4394 /* 4395 * pseries-2.6 4396 */ 4397 4398 static void spapr_machine_2_6_class_options(MachineClass *mc) 4399 { 4400 static GlobalProperty compat[] = { 4401 { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, 4402 }; 4403 4404 spapr_machine_2_7_class_options(mc); 4405 mc->has_hotpluggable_cpus = false; 4406 compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); 4407 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4408 } 4409 4410 DEFINE_SPAPR_MACHINE(2_6, "2.6", false); 4411 4412 /* 4413 * pseries-2.5 4414 */ 4415 4416 static void spapr_machine_2_5_class_options(MachineClass *mc) 4417 { 4418 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4419 static GlobalProperty compat[] = { 4420 { "spapr-vlan", "use-rx-buffer-pools", "off" }, 4421 }; 4422 4423 spapr_machine_2_6_class_options(mc); 4424 smc->use_ohci_by_default = true; 4425 compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); 4426 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4427 } 4428 4429 DEFINE_SPAPR_MACHINE(2_5, "2.5", false); 4430 4431 /* 4432 * pseries-2.4 4433 */ 4434 4435 static void spapr_machine_2_4_class_options(MachineClass *mc) 4436 { 4437 sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc); 4438 4439 spapr_machine_2_5_class_options(mc); 4440 smc->dr_lmb_enabled = false; 4441 compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); 4442 } 4443 4444 DEFINE_SPAPR_MACHINE(2_4, "2.4", false); 4445 4446 /* 4447 * pseries-2.3 4448 */ 4449 4450 static void spapr_machine_2_3_class_options(MachineClass *mc) 4451 { 4452 static GlobalProperty compat[] = { 4453 { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, 4454 }; 4455 spapr_machine_2_4_class_options(mc); 4456 compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); 4457 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4458 } 4459 DEFINE_SPAPR_MACHINE(2_3, "2.3", false); 4460 4461 /* 4462 * pseries-2.2 4463 */ 4464 4465 static void spapr_machine_2_2_class_options(MachineClass *mc) 4466 { 4467 static GlobalProperty compat[] = { 4468 { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, 4469 }; 4470 4471 spapr_machine_2_3_class_options(mc); 4472 compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); 4473 compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); 4474 mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; 4475 } 4476 DEFINE_SPAPR_MACHINE(2_2, "2.2", false); 4477 4478 /* 4479 * pseries-2.1 4480 */ 4481 4482 static void spapr_machine_2_1_class_options(MachineClass *mc) 4483 { 4484 spapr_machine_2_2_class_options(mc); 4485 compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); 4486 } 4487 DEFINE_SPAPR_MACHINE(2_1, "2.1", false); 4488 4489 static void spapr_machine_register_types(void) 4490 { 4491 type_register_static(&spapr_machine_info); 4492 } 4493 4494 type_init(spapr_machine_register_types) 4495