xref: /qemu/hw/ppc/spapr.c (revision 00fd075e1894fabff10dc7cd61af9130903a23c9)
1 /*
2  * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  * Copyright (c) 2010 David Gibson, IBM Corporation.
7  *
8  * Permission is hereby granted, free of charge, to any person obtaining a copy
9  * of this software and associated documentation files (the "Software"), to deal
10  * in the Software without restriction, including without limitation the rights
11  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
12  * copies of the Software, and to permit persons to whom the Software is
13  * furnished to do so, subject to the following conditions:
14  *
15  * The above copyright notice and this permission notice shall be included in
16  * all copies or substantial portions of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
21  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
22  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
23  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
24  * THE SOFTWARE.
25  *
26  */
27 #include "qemu/osdep.h"
28 #include "qapi/error.h"
29 #include "qapi/visitor.h"
30 #include "sysemu/sysemu.h"
31 #include "sysemu/numa.h"
32 #include "hw/hw.h"
33 #include "qemu/log.h"
34 #include "hw/fw-path-provider.h"
35 #include "elf.h"
36 #include "net/net.h"
37 #include "sysemu/device_tree.h"
38 #include "sysemu/cpus.h"
39 #include "sysemu/hw_accel.h"
40 #include "kvm_ppc.h"
41 #include "migration/misc.h"
42 #include "migration/global_state.h"
43 #include "migration/register.h"
44 #include "mmu-hash64.h"
45 #include "mmu-book3s-v3.h"
46 #include "cpu-models.h"
47 #include "qom/cpu.h"
48 
49 #include "hw/boards.h"
50 #include "hw/ppc/ppc.h"
51 #include "hw/loader.h"
52 
53 #include "hw/ppc/fdt.h"
54 #include "hw/ppc/spapr.h"
55 #include "hw/ppc/spapr_vio.h"
56 #include "hw/pci-host/spapr.h"
57 #include "hw/pci/msi.h"
58 
59 #include "hw/pci/pci.h"
60 #include "hw/scsi/scsi.h"
61 #include "hw/virtio/virtio-scsi.h"
62 #include "hw/virtio/vhost-scsi-common.h"
63 
64 #include "exec/address-spaces.h"
65 #include "exec/ram_addr.h"
66 #include "hw/usb.h"
67 #include "qemu/config-file.h"
68 #include "qemu/error-report.h"
69 #include "trace.h"
70 #include "hw/nmi.h"
71 #include "hw/intc/intc.h"
72 
73 #include "qemu/cutils.h"
74 #include "hw/ppc/spapr_cpu_core.h"
75 #include "hw/mem/memory-device.h"
76 
77 #include <libfdt.h>
78 
79 /* SLOF memory layout:
80  *
81  * SLOF raw image loaded at 0, copies its romfs right below the flat
82  * device-tree, then position SLOF itself 31M below that
83  *
84  * So we set FW_OVERHEAD to 40MB which should account for all of that
85  * and more
86  *
87  * We load our kernel at 4M, leaving space for SLOF initial image
88  */
89 #define FDT_MAX_SIZE            0x100000
90 #define RTAS_MAX_SIZE           0x10000
91 #define RTAS_MAX_ADDR           0x80000000 /* RTAS must stay below that */
92 #define FW_MAX_SIZE             0x400000
93 #define FW_FILE_NAME            "slof.bin"
94 #define FW_OVERHEAD             0x2800000
95 #define KERNEL_LOAD_ADDR        FW_MAX_SIZE
96 
97 #define MIN_RMA_SLOF            128UL
98 
99 #define PHANDLE_INTC            0x00001111
100 
101 /* These two functions implement the VCPU id numbering: one to compute them
102  * all and one to identify thread 0 of a VCORE. Any change to the first one
103  * is likely to have an impact on the second one, so let's keep them close.
104  */
105 static int spapr_vcpu_id(sPAPRMachineState *spapr, int cpu_index)
106 {
107     assert(spapr->vsmt);
108     return
109         (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads;
110 }
111 static bool spapr_is_thread0_in_vcore(sPAPRMachineState *spapr,
112                                       PowerPCCPU *cpu)
113 {
114     assert(spapr->vsmt);
115     return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0;
116 }
117 
118 static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque)
119 {
120     /* Dummy entries correspond to unused ICPState objects in older QEMUs,
121      * and newer QEMUs don't even have them. In both cases, we don't want
122      * to send anything on the wire.
123      */
124     return false;
125 }
126 
127 static const VMStateDescription pre_2_10_vmstate_dummy_icp = {
128     .name = "icp/server",
129     .version_id = 1,
130     .minimum_version_id = 1,
131     .needed = pre_2_10_vmstate_dummy_icp_needed,
132     .fields = (VMStateField[]) {
133         VMSTATE_UNUSED(4), /* uint32_t xirr */
134         VMSTATE_UNUSED(1), /* uint8_t pending_priority */
135         VMSTATE_UNUSED(1), /* uint8_t mfrr */
136         VMSTATE_END_OF_LIST()
137     },
138 };
139 
140 static void pre_2_10_vmstate_register_dummy_icp(int i)
141 {
142     vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp,
143                      (void *)(uintptr_t) i);
144 }
145 
146 static void pre_2_10_vmstate_unregister_dummy_icp(int i)
147 {
148     vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp,
149                        (void *)(uintptr_t) i);
150 }
151 
152 int spapr_max_server_number(sPAPRMachineState *spapr)
153 {
154     assert(spapr->vsmt);
155     return DIV_ROUND_UP(max_cpus * spapr->vsmt, smp_threads);
156 }
157 
158 static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu,
159                                   int smt_threads)
160 {
161     int i, ret = 0;
162     uint32_t servers_prop[smt_threads];
163     uint32_t gservers_prop[smt_threads * 2];
164     int index = spapr_get_vcpu_id(cpu);
165 
166     if (cpu->compat_pvr) {
167         ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr);
168         if (ret < 0) {
169             return ret;
170         }
171     }
172 
173     /* Build interrupt servers and gservers properties */
174     for (i = 0; i < smt_threads; i++) {
175         servers_prop[i] = cpu_to_be32(index + i);
176         /* Hack, direct the group queues back to cpu 0 */
177         gservers_prop[i*2] = cpu_to_be32(index + i);
178         gservers_prop[i*2 + 1] = 0;
179     }
180     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
181                       servers_prop, sizeof(servers_prop));
182     if (ret < 0) {
183         return ret;
184     }
185     ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s",
186                       gservers_prop, sizeof(gservers_prop));
187 
188     return ret;
189 }
190 
191 static int spapr_fixup_cpu_numa_dt(void *fdt, int offset, PowerPCCPU *cpu)
192 {
193     int index = spapr_get_vcpu_id(cpu);
194     uint32_t associativity[] = {cpu_to_be32(0x5),
195                                 cpu_to_be32(0x0),
196                                 cpu_to_be32(0x0),
197                                 cpu_to_be32(0x0),
198                                 cpu_to_be32(cpu->node_id),
199                                 cpu_to_be32(index)};
200 
201     /* Advertise NUMA via ibm,associativity */
202     return fdt_setprop(fdt, offset, "ibm,associativity", associativity,
203                           sizeof(associativity));
204 }
205 
206 /* Populate the "ibm,pa-features" property */
207 static void spapr_populate_pa_features(sPAPRMachineState *spapr,
208                                        PowerPCCPU *cpu,
209                                        void *fdt, int offset,
210                                        bool legacy_guest)
211 {
212     uint8_t pa_features_206[] = { 6, 0,
213         0xf6, 0x1f, 0xc7, 0x00, 0x80, 0xc0 };
214     uint8_t pa_features_207[] = { 24, 0,
215         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0,
216         0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
217         0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
218         0x80, 0x00, 0x80, 0x00, 0x00, 0x00 };
219     uint8_t pa_features_300[] = { 66, 0,
220         /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */
221         /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, SSO, 5: LE|CFAR|EB|LSQ */
222         0xf6, 0x1f, 0xc7, 0xc0, 0x80, 0xf0, /* 0 - 5 */
223         /* 6: DS207 */
224         0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */
225         /* 16: Vector */
226         0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */
227         /* 18: Vec. Scalar, 20: Vec. XOR, 22: HTM */
228         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */
229         /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */
230         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */
231         /* 30: MMR, 32: LE atomic, 34: EBB + ext EBB */
232         0x80, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */
233         /* 36: SPR SO, 38: Copy/Paste, 40: Radix MMU */
234         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 36 - 41 */
235         /* 42: PM, 44: PC RA, 46: SC vec'd */
236         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */
237         /* 48: SIMD, 50: QP BFP, 52: String */
238         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */
239         /* 54: DecFP, 56: DecI, 58: SHA */
240         0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */
241         /* 60: NM atomic, 62: RNG */
242         0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */
243     };
244     uint8_t *pa_features = NULL;
245     size_t pa_size;
246 
247     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) {
248         pa_features = pa_features_206;
249         pa_size = sizeof(pa_features_206);
250     }
251     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) {
252         pa_features = pa_features_207;
253         pa_size = sizeof(pa_features_207);
254     }
255     if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) {
256         pa_features = pa_features_300;
257         pa_size = sizeof(pa_features_300);
258     }
259     if (!pa_features) {
260         return;
261     }
262 
263     if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) {
264         /*
265          * Note: we keep CI large pages off by default because a 64K capable
266          * guest provisioned with large pages might otherwise try to map a qemu
267          * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages
268          * even if that qemu runs on a 4k host.
269          * We dd this bit back here if we are confident this is not an issue
270          */
271         pa_features[3] |= 0x20;
272     }
273     if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) {
274         pa_features[24] |= 0x80;    /* Transactional memory support */
275     }
276     if (legacy_guest && pa_size > 40) {
277         /* Workaround for broken kernels that attempt (guest) radix
278          * mode when they can't handle it, if they see the radix bit set
279          * in pa-features. So hide it from them. */
280         pa_features[40 + 2] &= ~0x80; /* Radix MMU */
281     }
282 
283     _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size)));
284 }
285 
286 static int spapr_fixup_cpu_dt(void *fdt, sPAPRMachineState *spapr)
287 {
288     int ret = 0, offset, cpus_offset;
289     CPUState *cs;
290     char cpu_model[32];
291     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
292 
293     CPU_FOREACH(cs) {
294         PowerPCCPU *cpu = POWERPC_CPU(cs);
295         DeviceClass *dc = DEVICE_GET_CLASS(cs);
296         int index = spapr_get_vcpu_id(cpu);
297         int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
298 
299         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
300             continue;
301         }
302 
303         snprintf(cpu_model, 32, "%s@%x", dc->fw_name, index);
304 
305         cpus_offset = fdt_path_offset(fdt, "/cpus");
306         if (cpus_offset < 0) {
307             cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
308             if (cpus_offset < 0) {
309                 return cpus_offset;
310             }
311         }
312         offset = fdt_subnode_offset(fdt, cpus_offset, cpu_model);
313         if (offset < 0) {
314             offset = fdt_add_subnode(fdt, cpus_offset, cpu_model);
315             if (offset < 0) {
316                 return offset;
317             }
318         }
319 
320         ret = fdt_setprop(fdt, offset, "ibm,pft-size",
321                           pft_size_prop, sizeof(pft_size_prop));
322         if (ret < 0) {
323             return ret;
324         }
325 
326         if (nb_numa_nodes > 1) {
327             ret = spapr_fixup_cpu_numa_dt(fdt, offset, cpu);
328             if (ret < 0) {
329                 return ret;
330             }
331         }
332 
333         ret = spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt);
334         if (ret < 0) {
335             return ret;
336         }
337 
338         spapr_populate_pa_features(spapr, cpu, fdt, offset,
339                                    spapr->cas_legacy_guest_workaround);
340     }
341     return ret;
342 }
343 
344 static hwaddr spapr_node0_size(MachineState *machine)
345 {
346     if (nb_numa_nodes) {
347         int i;
348         for (i = 0; i < nb_numa_nodes; ++i) {
349             if (numa_info[i].node_mem) {
350                 return MIN(pow2floor(numa_info[i].node_mem),
351                            machine->ram_size);
352             }
353         }
354     }
355     return machine->ram_size;
356 }
357 
358 static void add_str(GString *s, const gchar *s1)
359 {
360     g_string_append_len(s, s1, strlen(s1) + 1);
361 }
362 
363 static int spapr_populate_memory_node(void *fdt, int nodeid, hwaddr start,
364                                        hwaddr size)
365 {
366     uint32_t associativity[] = {
367         cpu_to_be32(0x4), /* length */
368         cpu_to_be32(0x0), cpu_to_be32(0x0),
369         cpu_to_be32(0x0), cpu_to_be32(nodeid)
370     };
371     char mem_name[32];
372     uint64_t mem_reg_property[2];
373     int off;
374 
375     mem_reg_property[0] = cpu_to_be64(start);
376     mem_reg_property[1] = cpu_to_be64(size);
377 
378     sprintf(mem_name, "memory@" TARGET_FMT_lx, start);
379     off = fdt_add_subnode(fdt, 0, mem_name);
380     _FDT(off);
381     _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
382     _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
383                       sizeof(mem_reg_property))));
384     _FDT((fdt_setprop(fdt, off, "ibm,associativity", associativity,
385                       sizeof(associativity))));
386     return off;
387 }
388 
389 static int spapr_populate_memory(sPAPRMachineState *spapr, void *fdt)
390 {
391     MachineState *machine = MACHINE(spapr);
392     hwaddr mem_start, node_size;
393     int i, nb_nodes = nb_numa_nodes;
394     NodeInfo *nodes = numa_info;
395     NodeInfo ramnode;
396 
397     /* No NUMA nodes, assume there is just one node with whole RAM */
398     if (!nb_numa_nodes) {
399         nb_nodes = 1;
400         ramnode.node_mem = machine->ram_size;
401         nodes = &ramnode;
402     }
403 
404     for (i = 0, mem_start = 0; i < nb_nodes; ++i) {
405         if (!nodes[i].node_mem) {
406             continue;
407         }
408         if (mem_start >= machine->ram_size) {
409             node_size = 0;
410         } else {
411             node_size = nodes[i].node_mem;
412             if (node_size > machine->ram_size - mem_start) {
413                 node_size = machine->ram_size - mem_start;
414             }
415         }
416         if (!mem_start) {
417             /* spapr_machine_init() checks for rma_size <= node0_size
418              * already */
419             spapr_populate_memory_node(fdt, i, 0, spapr->rma_size);
420             mem_start += spapr->rma_size;
421             node_size -= spapr->rma_size;
422         }
423         for ( ; node_size; ) {
424             hwaddr sizetmp = pow2floor(node_size);
425 
426             /* mem_start != 0 here */
427             if (ctzl(mem_start) < ctzl(sizetmp)) {
428                 sizetmp = 1ULL << ctzl(mem_start);
429             }
430 
431             spapr_populate_memory_node(fdt, i, mem_start, sizetmp);
432             node_size -= sizetmp;
433             mem_start += sizetmp;
434         }
435     }
436 
437     return 0;
438 }
439 
440 static void spapr_populate_cpu_dt(CPUState *cs, void *fdt, int offset,
441                                   sPAPRMachineState *spapr)
442 {
443     PowerPCCPU *cpu = POWERPC_CPU(cs);
444     CPUPPCState *env = &cpu->env;
445     PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
446     int index = spapr_get_vcpu_id(cpu);
447     uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
448                        0xffffffff, 0xffffffff};
449     uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq()
450         : SPAPR_TIMEBASE_FREQ;
451     uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000;
452     uint32_t page_sizes_prop[64];
453     size_t page_sizes_prop_size;
454     uint32_t vcpus_per_socket = smp_threads * smp_cores;
455     uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)};
456     int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu));
457     sPAPRDRConnector *drc;
458     int drc_index;
459     uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ];
460     int i;
461 
462     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index);
463     if (drc) {
464         drc_index = spapr_drc_index(drc);
465         _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index)));
466     }
467 
468     _FDT((fdt_setprop_cell(fdt, offset, "reg", index)));
469     _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
470 
471     _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
472     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
473                            env->dcache_line_size)));
474     _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
475                            env->dcache_line_size)));
476     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
477                            env->icache_line_size)));
478     _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
479                            env->icache_line_size)));
480 
481     if (pcc->l1_dcache_size) {
482         _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
483                                pcc->l1_dcache_size)));
484     } else {
485         warn_report("Unknown L1 dcache size for cpu");
486     }
487     if (pcc->l1_icache_size) {
488         _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
489                                pcc->l1_icache_size)));
490     } else {
491         warn_report("Unknown L1 icache size for cpu");
492     }
493 
494     _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
495     _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
496     _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size)));
497     _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size)));
498     _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
499     _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
500 
501     if (env->spr_cb[SPR_PURR].oea_read) {
502         _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
503     }
504 
505     if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
506         _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
507                           segs, sizeof(segs))));
508     }
509 
510     /* Advertise VSX (vector extensions) if available
511      *   1               == VMX / Altivec available
512      *   2               == VSX available
513      *
514      * Only CPUs for which we create core types in spapr_cpu_core.c
515      * are possible, and all of those have VMX */
516     if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) {
517         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2)));
518     } else {
519         _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1)));
520     }
521 
522     /* Advertise DFP (Decimal Floating Point) if available
523      *   0 / no property == no DFP
524      *   1               == DFP available */
525     if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) {
526         _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
527     }
528 
529     page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
530                                                       sizeof(page_sizes_prop));
531     if (page_sizes_prop_size) {
532         _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
533                           page_sizes_prop, page_sizes_prop_size)));
534     }
535 
536     spapr_populate_pa_features(spapr, cpu, fdt, offset, false);
537 
538     _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id",
539                            cs->cpu_index / vcpus_per_socket)));
540 
541     _FDT((fdt_setprop(fdt, offset, "ibm,pft-size",
542                       pft_size_prop, sizeof(pft_size_prop))));
543 
544     if (nb_numa_nodes > 1) {
545         _FDT(spapr_fixup_cpu_numa_dt(fdt, offset, cpu));
546     }
547 
548     _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt));
549 
550     if (pcc->radix_page_info) {
551         for (i = 0; i < pcc->radix_page_info->count; i++) {
552             radix_AP_encodings[i] =
553                 cpu_to_be32(pcc->radix_page_info->entries[i]);
554         }
555         _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings",
556                           radix_AP_encodings,
557                           pcc->radix_page_info->count *
558                           sizeof(radix_AP_encodings[0]))));
559     }
560 }
561 
562 static void spapr_populate_cpus_dt_node(void *fdt, sPAPRMachineState *spapr)
563 {
564     CPUState **rev;
565     CPUState *cs;
566     int n_cpus;
567     int cpus_offset;
568     char *nodename;
569     int i;
570 
571     cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
572     _FDT(cpus_offset);
573     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
574     _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
575 
576     /*
577      * We walk the CPUs in reverse order to ensure that CPU DT nodes
578      * created by fdt_add_subnode() end up in the right order in FDT
579      * for the guest kernel the enumerate the CPUs correctly.
580      *
581      * The CPU list cannot be traversed in reverse order, so we need
582      * to do extra work.
583      */
584     n_cpus = 0;
585     rev = NULL;
586     CPU_FOREACH(cs) {
587         rev = g_renew(CPUState *, rev, n_cpus + 1);
588         rev[n_cpus++] = cs;
589     }
590 
591     for (i = n_cpus - 1; i >= 0; i--) {
592         CPUState *cs = rev[i];
593         PowerPCCPU *cpu = POWERPC_CPU(cs);
594         int index = spapr_get_vcpu_id(cpu);
595         DeviceClass *dc = DEVICE_GET_CLASS(cs);
596         int offset;
597 
598         if (!spapr_is_thread0_in_vcore(spapr, cpu)) {
599             continue;
600         }
601 
602         nodename = g_strdup_printf("%s@%x", dc->fw_name, index);
603         offset = fdt_add_subnode(fdt, cpus_offset, nodename);
604         g_free(nodename);
605         _FDT(offset);
606         spapr_populate_cpu_dt(cs, fdt, offset, spapr);
607     }
608 
609     g_free(rev);
610 }
611 
612 static int spapr_rng_populate_dt(void *fdt)
613 {
614     int node;
615     int ret;
616 
617     node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities");
618     if (node <= 0) {
619         return -1;
620     }
621     ret = fdt_setprop_string(fdt, node, "device_type",
622                              "ibm,platform-facilities");
623     ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1);
624     ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0);
625 
626     node = fdt_add_subnode(fdt, node, "ibm,random-v1");
627     if (node <= 0) {
628         return -1;
629     }
630     ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random");
631 
632     return ret ? -1 : 0;
633 }
634 
635 static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr)
636 {
637     MemoryDeviceInfoList *info;
638 
639     for (info = list; info; info = info->next) {
640         MemoryDeviceInfo *value = info->value;
641 
642         if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) {
643             PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data;
644 
645             if (addr >= pcdimm_info->addr &&
646                 addr < (pcdimm_info->addr + pcdimm_info->size)) {
647                 return pcdimm_info->node;
648             }
649         }
650     }
651 
652     return -1;
653 }
654 
655 struct sPAPRDrconfCellV2 {
656      uint32_t seq_lmbs;
657      uint64_t base_addr;
658      uint32_t drc_index;
659      uint32_t aa_index;
660      uint32_t flags;
661 } QEMU_PACKED;
662 
663 typedef struct DrconfCellQueue {
664     struct sPAPRDrconfCellV2 cell;
665     QSIMPLEQ_ENTRY(DrconfCellQueue) entry;
666 } DrconfCellQueue;
667 
668 static DrconfCellQueue *
669 spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr,
670                       uint32_t drc_index, uint32_t aa_index,
671                       uint32_t flags)
672 {
673     DrconfCellQueue *elem;
674 
675     elem = g_malloc0(sizeof(*elem));
676     elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs);
677     elem->cell.base_addr = cpu_to_be64(base_addr);
678     elem->cell.drc_index = cpu_to_be32(drc_index);
679     elem->cell.aa_index = cpu_to_be32(aa_index);
680     elem->cell.flags = cpu_to_be32(flags);
681 
682     return elem;
683 }
684 
685 /* ibm,dynamic-memory-v2 */
686 static int spapr_populate_drmem_v2(sPAPRMachineState *spapr, void *fdt,
687                                    int offset, MemoryDeviceInfoList *dimms)
688 {
689     MachineState *machine = MACHINE(spapr);
690     uint8_t *int_buf, *cur_index;
691     int ret;
692     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
693     uint64_t addr, cur_addr, size;
694     uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size);
695     uint64_t mem_end = machine->device_memory->base +
696                        memory_region_size(&machine->device_memory->mr);
697     uint32_t node, buf_len, nr_entries = 0;
698     sPAPRDRConnector *drc;
699     DrconfCellQueue *elem, *next;
700     MemoryDeviceInfoList *info;
701     QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue
702         = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue);
703 
704     /* Entry to cover RAM and the gap area */
705     elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1,
706                                  SPAPR_LMB_FLAGS_RESERVED |
707                                  SPAPR_LMB_FLAGS_DRC_INVALID);
708     QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
709     nr_entries++;
710 
711     cur_addr = machine->device_memory->base;
712     for (info = dimms; info; info = info->next) {
713         PCDIMMDeviceInfo *di = info->value->u.dimm.data;
714 
715         addr = di->addr;
716         size = di->size;
717         node = di->node;
718 
719         /* Entry for hot-pluggable area */
720         if (cur_addr < addr) {
721             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
722             g_assert(drc);
723             elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size,
724                                          cur_addr, spapr_drc_index(drc), -1, 0);
725             QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
726             nr_entries++;
727         }
728 
729         /* Entry for DIMM */
730         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size);
731         g_assert(drc);
732         elem = spapr_get_drconf_cell(size / lmb_size, addr,
733                                      spapr_drc_index(drc), node,
734                                      SPAPR_LMB_FLAGS_ASSIGNED);
735         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
736         nr_entries++;
737         cur_addr = addr + size;
738     }
739 
740     /* Entry for remaining hotpluggable area */
741     if (cur_addr < mem_end) {
742         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size);
743         g_assert(drc);
744         elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size,
745                                      cur_addr, spapr_drc_index(drc), -1, 0);
746         QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry);
747         nr_entries++;
748     }
749 
750     buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t);
751     int_buf = cur_index = g_malloc0(buf_len);
752     *(uint32_t *)int_buf = cpu_to_be32(nr_entries);
753     cur_index += sizeof(nr_entries);
754 
755     QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) {
756         memcpy(cur_index, &elem->cell, sizeof(elem->cell));
757         cur_index += sizeof(elem->cell);
758         QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry);
759         g_free(elem);
760     }
761 
762     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len);
763     g_free(int_buf);
764     if (ret < 0) {
765         return -1;
766     }
767     return 0;
768 }
769 
770 /* ibm,dynamic-memory */
771 static int spapr_populate_drmem_v1(sPAPRMachineState *spapr, void *fdt,
772                                    int offset, MemoryDeviceInfoList *dimms)
773 {
774     MachineState *machine = MACHINE(spapr);
775     int i, ret;
776     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
777     uint32_t device_lmb_start = machine->device_memory->base / lmb_size;
778     uint32_t nr_lmbs = (machine->device_memory->base +
779                        memory_region_size(&machine->device_memory->mr)) /
780                        lmb_size;
781     uint32_t *int_buf, *cur_index, buf_len;
782 
783     /*
784      * Allocate enough buffer size to fit in ibm,dynamic-memory
785      */
786     buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t);
787     cur_index = int_buf = g_malloc0(buf_len);
788     int_buf[0] = cpu_to_be32(nr_lmbs);
789     cur_index++;
790     for (i = 0; i < nr_lmbs; i++) {
791         uint64_t addr = i * lmb_size;
792         uint32_t *dynamic_memory = cur_index;
793 
794         if (i >= device_lmb_start) {
795             sPAPRDRConnector *drc;
796 
797             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i);
798             g_assert(drc);
799 
800             dynamic_memory[0] = cpu_to_be32(addr >> 32);
801             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
802             dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc));
803             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
804             dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr));
805             if (memory_region_present(get_system_memory(), addr)) {
806                 dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED);
807             } else {
808                 dynamic_memory[5] = cpu_to_be32(0);
809             }
810         } else {
811             /*
812              * LMB information for RMA, boot time RAM and gap b/n RAM and
813              * device memory region -- all these are marked as reserved
814              * and as having no valid DRC.
815              */
816             dynamic_memory[0] = cpu_to_be32(addr >> 32);
817             dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff);
818             dynamic_memory[2] = cpu_to_be32(0);
819             dynamic_memory[3] = cpu_to_be32(0); /* reserved */
820             dynamic_memory[4] = cpu_to_be32(-1);
821             dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED |
822                                             SPAPR_LMB_FLAGS_DRC_INVALID);
823         }
824 
825         cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE;
826     }
827     ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len);
828     g_free(int_buf);
829     if (ret < 0) {
830         return -1;
831     }
832     return 0;
833 }
834 
835 /*
836  * Adds ibm,dynamic-reconfiguration-memory node.
837  * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation
838  * of this device tree node.
839  */
840 static int spapr_populate_drconf_memory(sPAPRMachineState *spapr, void *fdt)
841 {
842     MachineState *machine = MACHINE(spapr);
843     int ret, i, offset;
844     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
845     uint32_t prop_lmb_size[] = {0, cpu_to_be32(lmb_size)};
846     uint32_t *int_buf, *cur_index, buf_len;
847     int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1;
848     MemoryDeviceInfoList *dimms = NULL;
849 
850     /*
851      * Don't create the node if there is no device memory
852      */
853     if (machine->ram_size == machine->maxram_size) {
854         return 0;
855     }
856 
857     offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory");
858 
859     ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size,
860                     sizeof(prop_lmb_size));
861     if (ret < 0) {
862         return ret;
863     }
864 
865     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff);
866     if (ret < 0) {
867         return ret;
868     }
869 
870     ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0);
871     if (ret < 0) {
872         return ret;
873     }
874 
875     /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */
876     dimms = qmp_memory_device_list();
877     if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) {
878         ret = spapr_populate_drmem_v2(spapr, fdt, offset, dimms);
879     } else {
880         ret = spapr_populate_drmem_v1(spapr, fdt, offset, dimms);
881     }
882     qapi_free_MemoryDeviceInfoList(dimms);
883 
884     if (ret < 0) {
885         return ret;
886     }
887 
888     /* ibm,associativity-lookup-arrays */
889     buf_len = (nr_nodes * 4 + 2) * sizeof(uint32_t);
890     cur_index = int_buf = g_malloc0(buf_len);
891     int_buf[0] = cpu_to_be32(nr_nodes);
892     int_buf[1] = cpu_to_be32(4); /* Number of entries per associativity list */
893     cur_index += 2;
894     for (i = 0; i < nr_nodes; i++) {
895         uint32_t associativity[] = {
896             cpu_to_be32(0x0),
897             cpu_to_be32(0x0),
898             cpu_to_be32(0x0),
899             cpu_to_be32(i)
900         };
901         memcpy(cur_index, associativity, sizeof(associativity));
902         cur_index += 4;
903     }
904     ret = fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", int_buf,
905             (cur_index - int_buf) * sizeof(uint32_t));
906     g_free(int_buf);
907 
908     return ret;
909 }
910 
911 static int spapr_dt_cas_updates(sPAPRMachineState *spapr, void *fdt,
912                                 sPAPROptionVector *ov5_updates)
913 {
914     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
915     int ret = 0, offset;
916 
917     /* Generate ibm,dynamic-reconfiguration-memory node if required */
918     if (spapr_ovec_test(ov5_updates, OV5_DRCONF_MEMORY)) {
919         g_assert(smc->dr_lmb_enabled);
920         ret = spapr_populate_drconf_memory(spapr, fdt);
921         if (ret) {
922             goto out;
923         }
924     }
925 
926     offset = fdt_path_offset(fdt, "/chosen");
927     if (offset < 0) {
928         offset = fdt_add_subnode(fdt, 0, "chosen");
929         if (offset < 0) {
930             return offset;
931         }
932     }
933     ret = spapr_ovec_populate_dt(fdt, offset, spapr->ov5_cas,
934                                  "ibm,architecture-vec-5");
935 
936 out:
937     return ret;
938 }
939 
940 static bool spapr_hotplugged_dev_before_cas(void)
941 {
942     Object *drc_container, *obj;
943     ObjectProperty *prop;
944     ObjectPropertyIterator iter;
945 
946     drc_container = container_get(object_get_root(), "/dr-connector");
947     object_property_iter_init(&iter, drc_container);
948     while ((prop = object_property_iter_next(&iter))) {
949         if (!strstart(prop->type, "link<", NULL)) {
950             continue;
951         }
952         obj = object_property_get_link(drc_container, prop->name, NULL);
953         if (spapr_drc_needed(obj)) {
954             return true;
955         }
956     }
957     return false;
958 }
959 
960 int spapr_h_cas_compose_response(sPAPRMachineState *spapr,
961                                  target_ulong addr, target_ulong size,
962                                  sPAPROptionVector *ov5_updates)
963 {
964     void *fdt, *fdt_skel;
965     sPAPRDeviceTreeUpdateHeader hdr = { .version_id = 1 };
966 
967     if (spapr_hotplugged_dev_before_cas()) {
968         return 1;
969     }
970 
971     if (size < sizeof(hdr) || size > FW_MAX_SIZE) {
972         error_report("SLOF provided an unexpected CAS buffer size "
973                      TARGET_FMT_lu " (min: %zu, max: %u)",
974                      size, sizeof(hdr), FW_MAX_SIZE);
975         exit(EXIT_FAILURE);
976     }
977 
978     size -= sizeof(hdr);
979 
980     /* Create skeleton */
981     fdt_skel = g_malloc0(size);
982     _FDT((fdt_create(fdt_skel, size)));
983     _FDT((fdt_finish_reservemap(fdt_skel)));
984     _FDT((fdt_begin_node(fdt_skel, "")));
985     _FDT((fdt_end_node(fdt_skel)));
986     _FDT((fdt_finish(fdt_skel)));
987     fdt = g_malloc0(size);
988     _FDT((fdt_open_into(fdt_skel, fdt, size)));
989     g_free(fdt_skel);
990 
991     /* Fixup cpu nodes */
992     _FDT((spapr_fixup_cpu_dt(fdt, spapr)));
993 
994     if (spapr_dt_cas_updates(spapr, fdt, ov5_updates)) {
995         return -1;
996     }
997 
998     /* Pack resulting tree */
999     _FDT((fdt_pack(fdt)));
1000 
1001     if (fdt_totalsize(fdt) + sizeof(hdr) > size) {
1002         trace_spapr_cas_failed(size);
1003         return -1;
1004     }
1005 
1006     cpu_physical_memory_write(addr, &hdr, sizeof(hdr));
1007     cpu_physical_memory_write(addr + sizeof(hdr), fdt, fdt_totalsize(fdt));
1008     trace_spapr_cas_continue(fdt_totalsize(fdt) + sizeof(hdr));
1009     g_free(fdt);
1010 
1011     return 0;
1012 }
1013 
1014 static void spapr_dt_rtas(sPAPRMachineState *spapr, void *fdt)
1015 {
1016     int rtas;
1017     GString *hypertas = g_string_sized_new(256);
1018     GString *qemu_hypertas = g_string_sized_new(256);
1019     uint32_t refpoints[] = { cpu_to_be32(0x4), cpu_to_be32(0x4) };
1020     uint64_t max_device_addr = MACHINE(spapr)->device_memory->base +
1021         memory_region_size(&MACHINE(spapr)->device_memory->mr);
1022     uint32_t lrdr_capacity[] = {
1023         cpu_to_be32(max_device_addr >> 32),
1024         cpu_to_be32(max_device_addr & 0xffffffff),
1025         0, cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE),
1026         cpu_to_be32(max_cpus / smp_threads),
1027     };
1028     uint32_t maxdomains[] = {
1029         cpu_to_be32(4),
1030         cpu_to_be32(0),
1031         cpu_to_be32(0),
1032         cpu_to_be32(0),
1033         cpu_to_be32(nb_numa_nodes ? nb_numa_nodes : 1),
1034     };
1035 
1036     _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas"));
1037 
1038     /* hypertas */
1039     add_str(hypertas, "hcall-pft");
1040     add_str(hypertas, "hcall-term");
1041     add_str(hypertas, "hcall-dabr");
1042     add_str(hypertas, "hcall-interrupt");
1043     add_str(hypertas, "hcall-tce");
1044     add_str(hypertas, "hcall-vio");
1045     add_str(hypertas, "hcall-splpar");
1046     add_str(hypertas, "hcall-bulk");
1047     add_str(hypertas, "hcall-set-mode");
1048     add_str(hypertas, "hcall-sprg0");
1049     add_str(hypertas, "hcall-copy");
1050     add_str(hypertas, "hcall-debug");
1051     add_str(hypertas, "hcall-vphn");
1052     add_str(qemu_hypertas, "hcall-memop1");
1053 
1054     if (!kvm_enabled() || kvmppc_spapr_use_multitce()) {
1055         add_str(hypertas, "hcall-multi-tce");
1056     }
1057 
1058     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
1059         add_str(hypertas, "hcall-hpt-resize");
1060     }
1061 
1062     _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions",
1063                      hypertas->str, hypertas->len));
1064     g_string_free(hypertas, TRUE);
1065     _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions",
1066                      qemu_hypertas->str, qemu_hypertas->len));
1067     g_string_free(qemu_hypertas, TRUE);
1068 
1069     _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points",
1070                      refpoints, sizeof(refpoints)));
1071 
1072     _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains",
1073                      maxdomains, sizeof(maxdomains)));
1074 
1075     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max",
1076                           RTAS_ERROR_LOG_MAX));
1077     _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate",
1078                           RTAS_EVENT_SCAN_RATE));
1079 
1080     g_assert(msi_nonbroken);
1081     _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0));
1082 
1083     /*
1084      * According to PAPR, rtas ibm,os-term does not guarantee a return
1085      * back to the guest cpu.
1086      *
1087      * While an additional ibm,extended-os-term property indicates
1088      * that rtas call return will always occur. Set this property.
1089      */
1090     _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0));
1091 
1092     _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity",
1093                      lrdr_capacity, sizeof(lrdr_capacity)));
1094 
1095     spapr_dt_rtas_tokens(fdt, rtas);
1096 }
1097 
1098 /*
1099  * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU
1100  * and the XIVE features that the guest may request and thus the valid
1101  * values for bytes 23..26 of option vector 5:
1102  */
1103 static void spapr_dt_ov5_platform_support(sPAPRMachineState *spapr, void *fdt,
1104                                           int chosen)
1105 {
1106     PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1107 
1108     char val[2 * 4] = {
1109         23, spapr->irq->ov5, /* Xive mode. */
1110         24, 0x00, /* Hash/Radix, filled in below. */
1111         25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */
1112         26, 0x40, /* Radix options: GTSE == yes. */
1113     };
1114 
1115     if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0,
1116                           first_ppc_cpu->compat_pvr)) {
1117         /*
1118          * If we're in a pre POWER9 compat mode then the guest should
1119          * do hash and use the legacy interrupt mode
1120          */
1121         val[1] = 0x00; /* XICS */
1122         val[3] = 0x00; /* Hash */
1123     } else if (kvm_enabled()) {
1124         if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) {
1125             val[3] = 0x80; /* OV5_MMU_BOTH */
1126         } else if (kvmppc_has_cap_mmu_radix()) {
1127             val[3] = 0x40; /* OV5_MMU_RADIX_300 */
1128         } else {
1129             val[3] = 0x00; /* Hash */
1130         }
1131     } else {
1132         /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */
1133         val[3] = 0xC0;
1134     }
1135     _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support",
1136                      val, sizeof(val)));
1137 }
1138 
1139 static void spapr_dt_chosen(sPAPRMachineState *spapr, void *fdt)
1140 {
1141     MachineState *machine = MACHINE(spapr);
1142     int chosen;
1143     const char *boot_device = machine->boot_order;
1144     char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus);
1145     size_t cb = 0;
1146     char *bootlist = get_boot_devices_list(&cb);
1147 
1148     _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen"));
1149 
1150     _FDT(fdt_setprop_string(fdt, chosen, "bootargs", machine->kernel_cmdline));
1151     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start",
1152                           spapr->initrd_base));
1153     _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end",
1154                           spapr->initrd_base + spapr->initrd_size));
1155 
1156     if (spapr->kernel_size) {
1157         uint64_t kprop[2] = { cpu_to_be64(KERNEL_LOAD_ADDR),
1158                               cpu_to_be64(spapr->kernel_size) };
1159 
1160         _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel",
1161                          &kprop, sizeof(kprop)));
1162         if (spapr->kernel_le) {
1163             _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0));
1164         }
1165     }
1166     if (boot_menu) {
1167         _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", boot_menu)));
1168     }
1169     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width));
1170     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height));
1171     _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth));
1172 
1173     if (cb && bootlist) {
1174         int i;
1175 
1176         for (i = 0; i < cb; i++) {
1177             if (bootlist[i] == '\n') {
1178                 bootlist[i] = ' ';
1179             }
1180         }
1181         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist));
1182     }
1183 
1184     if (boot_device && strlen(boot_device)) {
1185         _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device));
1186     }
1187 
1188     if (!spapr->has_graphics && stdout_path) {
1189         /*
1190          * "linux,stdout-path" and "stdout" properties are deprecated by linux
1191          * kernel. New platforms should only use the "stdout-path" property. Set
1192          * the new property and continue using older property to remain
1193          * compatible with the existing firmware.
1194          */
1195         _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path));
1196         _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path));
1197     }
1198 
1199     spapr_dt_ov5_platform_support(spapr, fdt, chosen);
1200 
1201     g_free(stdout_path);
1202     g_free(bootlist);
1203 }
1204 
1205 static void spapr_dt_hypervisor(sPAPRMachineState *spapr, void *fdt)
1206 {
1207     /* The /hypervisor node isn't in PAPR - this is a hack to allow PR
1208      * KVM to work under pHyp with some guest co-operation */
1209     int hypervisor;
1210     uint8_t hypercall[16];
1211 
1212     _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor"));
1213     /* indicate KVM hypercall interface */
1214     _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm"));
1215     if (kvmppc_has_cap_fixup_hcalls()) {
1216         /*
1217          * Older KVM versions with older guest kernels were broken
1218          * with the magic page, don't allow the guest to map it.
1219          */
1220         if (!kvmppc_get_hypercall(first_cpu->env_ptr, hypercall,
1221                                   sizeof(hypercall))) {
1222             _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions",
1223                              hypercall, sizeof(hypercall)));
1224         }
1225     }
1226 }
1227 
1228 static void *spapr_build_fdt(sPAPRMachineState *spapr)
1229 {
1230     MachineState *machine = MACHINE(spapr);
1231     MachineClass *mc = MACHINE_GET_CLASS(machine);
1232     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
1233     int ret;
1234     void *fdt;
1235     sPAPRPHBState *phb;
1236     char *buf;
1237 
1238     fdt = g_malloc0(FDT_MAX_SIZE);
1239     _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
1240 
1241     /* Root node */
1242     _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp"));
1243     _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)"));
1244     _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries"));
1245 
1246     /*
1247      * Add info to guest to indentify which host is it being run on
1248      * and what is the uuid of the guest
1249      */
1250     if (spapr->host_model && !g_str_equal(spapr->host_model, "none")) {
1251         if (g_str_equal(spapr->host_model, "passthrough")) {
1252             /* -M host-model=passthrough */
1253             if (kvmppc_get_host_model(&buf)) {
1254                 _FDT(fdt_setprop_string(fdt, 0, "host-model", buf));
1255                 g_free(buf);
1256             }
1257         } else {
1258             /* -M host-model=<user-string> */
1259             _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model));
1260         }
1261     }
1262 
1263     if (spapr->host_serial && !g_str_equal(spapr->host_serial, "none")) {
1264         if (g_str_equal(spapr->host_serial, "passthrough")) {
1265             /* -M host-serial=passthrough */
1266             if (kvmppc_get_host_serial(&buf)) {
1267                 _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf));
1268                 g_free(buf);
1269             }
1270         } else {
1271             /* -M host-serial=<user-string> */
1272             _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial));
1273         }
1274     }
1275 
1276     buf = qemu_uuid_unparse_strdup(&qemu_uuid);
1277 
1278     _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf));
1279     if (qemu_uuid_set) {
1280         _FDT(fdt_setprop_string(fdt, 0, "system-id", buf));
1281     }
1282     g_free(buf);
1283 
1284     if (qemu_get_vm_name()) {
1285         _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name",
1286                                 qemu_get_vm_name()));
1287     }
1288 
1289     _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2));
1290     _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2));
1291 
1292     /* /interrupt controller */
1293     spapr->irq->dt_populate(spapr, spapr_max_server_number(spapr), fdt,
1294                           PHANDLE_INTC);
1295 
1296     ret = spapr_populate_memory(spapr, fdt);
1297     if (ret < 0) {
1298         error_report("couldn't setup memory nodes in fdt");
1299         exit(1);
1300     }
1301 
1302     /* /vdevice */
1303     spapr_dt_vdevice(spapr->vio_bus, fdt);
1304 
1305     if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) {
1306         ret = spapr_rng_populate_dt(fdt);
1307         if (ret < 0) {
1308             error_report("could not set up rng device in the fdt");
1309             exit(1);
1310         }
1311     }
1312 
1313     QLIST_FOREACH(phb, &spapr->phbs, list) {
1314         ret = spapr_populate_pci_dt(phb, PHANDLE_INTC, fdt,
1315                                     spapr->irq->nr_msis);
1316         if (ret < 0) {
1317             error_report("couldn't setup PCI devices in fdt");
1318             exit(1);
1319         }
1320     }
1321 
1322     /* cpus */
1323     spapr_populate_cpus_dt_node(fdt, spapr);
1324 
1325     if (smc->dr_lmb_enabled) {
1326         _FDT(spapr_drc_populate_dt(fdt, 0, NULL, SPAPR_DR_CONNECTOR_TYPE_LMB));
1327     }
1328 
1329     if (mc->has_hotpluggable_cpus) {
1330         int offset = fdt_path_offset(fdt, "/cpus");
1331         ret = spapr_drc_populate_dt(fdt, offset, NULL,
1332                                     SPAPR_DR_CONNECTOR_TYPE_CPU);
1333         if (ret < 0) {
1334             error_report("Couldn't set up CPU DR device tree properties");
1335             exit(1);
1336         }
1337     }
1338 
1339     /* /event-sources */
1340     spapr_dt_events(spapr, fdt);
1341 
1342     /* /rtas */
1343     spapr_dt_rtas(spapr, fdt);
1344 
1345     /* /chosen */
1346     spapr_dt_chosen(spapr, fdt);
1347 
1348     /* /hypervisor */
1349     if (kvm_enabled()) {
1350         spapr_dt_hypervisor(spapr, fdt);
1351     }
1352 
1353     /* Build memory reserve map */
1354     if (spapr->kernel_size) {
1355         _FDT((fdt_add_mem_rsv(fdt, KERNEL_LOAD_ADDR, spapr->kernel_size)));
1356     }
1357     if (spapr->initrd_size) {
1358         _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, spapr->initrd_size)));
1359     }
1360 
1361     /* ibm,client-architecture-support updates */
1362     ret = spapr_dt_cas_updates(spapr, fdt, spapr->ov5_cas);
1363     if (ret < 0) {
1364         error_report("couldn't setup CAS properties fdt");
1365         exit(1);
1366     }
1367 
1368     return fdt;
1369 }
1370 
1371 static uint64_t translate_kernel_address(void *opaque, uint64_t addr)
1372 {
1373     return (addr & 0x0fffffff) + KERNEL_LOAD_ADDR;
1374 }
1375 
1376 static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp,
1377                                     PowerPCCPU *cpu)
1378 {
1379     CPUPPCState *env = &cpu->env;
1380 
1381     /* The TCG path should also be holding the BQL at this point */
1382     g_assert(qemu_mutex_iothread_locked());
1383 
1384     if (msr_pr) {
1385         hcall_dprintf("Hypercall made with MSR[PR]=1\n");
1386         env->gpr[3] = H_PRIVILEGE;
1387     } else {
1388         env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]);
1389     }
1390 }
1391 
1392 struct LPCRSyncState {
1393     target_ulong value;
1394     target_ulong mask;
1395 };
1396 
1397 static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg)
1398 {
1399     struct LPCRSyncState *s = arg.host_ptr;
1400     PowerPCCPU *cpu = POWERPC_CPU(cs);
1401     CPUPPCState *env = &cpu->env;
1402     target_ulong lpcr;
1403 
1404     cpu_synchronize_state(cs);
1405     lpcr = env->spr[SPR_LPCR];
1406     lpcr &= ~s->mask;
1407     lpcr |= s->value;
1408     ppc_store_lpcr(cpu, lpcr);
1409 }
1410 
1411 void spapr_set_all_lpcrs(target_ulong value, target_ulong mask)
1412 {
1413     CPUState *cs;
1414     struct LPCRSyncState s = {
1415         .value = value,
1416         .mask = mask
1417     };
1418     CPU_FOREACH(cs) {
1419         run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s));
1420     }
1421 }
1422 
1423 static uint64_t spapr_get_patbe(PPCVirtualHypervisor *vhyp)
1424 {
1425     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1426 
1427     return spapr->patb_entry;
1428 }
1429 
1430 #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2))
1431 #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID)
1432 #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY)
1433 #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY))
1434 #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY))
1435 
1436 /*
1437  * Get the fd to access the kernel htab, re-opening it if necessary
1438  */
1439 static int get_htab_fd(sPAPRMachineState *spapr)
1440 {
1441     Error *local_err = NULL;
1442 
1443     if (spapr->htab_fd >= 0) {
1444         return spapr->htab_fd;
1445     }
1446 
1447     spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err);
1448     if (spapr->htab_fd < 0) {
1449         error_report_err(local_err);
1450     }
1451 
1452     return spapr->htab_fd;
1453 }
1454 
1455 void close_htab_fd(sPAPRMachineState *spapr)
1456 {
1457     if (spapr->htab_fd >= 0) {
1458         close(spapr->htab_fd);
1459     }
1460     spapr->htab_fd = -1;
1461 }
1462 
1463 static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp)
1464 {
1465     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1466 
1467     return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1;
1468 }
1469 
1470 static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp)
1471 {
1472     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1473 
1474     assert(kvm_enabled());
1475 
1476     if (!spapr->htab) {
1477         return 0;
1478     }
1479 
1480     return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18);
1481 }
1482 
1483 static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp,
1484                                                 hwaddr ptex, int n)
1485 {
1486     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1487     hwaddr pte_offset = ptex * HASH_PTE_SIZE_64;
1488 
1489     if (!spapr->htab) {
1490         /*
1491          * HTAB is controlled by KVM. Fetch into temporary buffer
1492          */
1493         ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64);
1494         kvmppc_read_hptes(hptes, ptex, n);
1495         return hptes;
1496     }
1497 
1498     /*
1499      * HTAB is controlled by QEMU. Just point to the internally
1500      * accessible PTEG.
1501      */
1502     return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset);
1503 }
1504 
1505 static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp,
1506                               const ppc_hash_pte64_t *hptes,
1507                               hwaddr ptex, int n)
1508 {
1509     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1510 
1511     if (!spapr->htab) {
1512         g_free((void *)hptes);
1513     }
1514 
1515     /* Nothing to do for qemu managed HPT */
1516 }
1517 
1518 static void spapr_store_hpte(PPCVirtualHypervisor *vhyp, hwaddr ptex,
1519                              uint64_t pte0, uint64_t pte1)
1520 {
1521     sPAPRMachineState *spapr = SPAPR_MACHINE(vhyp);
1522     hwaddr offset = ptex * HASH_PTE_SIZE_64;
1523 
1524     if (!spapr->htab) {
1525         kvmppc_write_hpte(ptex, pte0, pte1);
1526     } else {
1527         stq_p(spapr->htab + offset, pte0);
1528         stq_p(spapr->htab + offset + HASH_PTE_SIZE_64 / 2, pte1);
1529     }
1530 }
1531 
1532 int spapr_hpt_shift_for_ramsize(uint64_t ramsize)
1533 {
1534     int shift;
1535 
1536     /* We aim for a hash table of size 1/128 the size of RAM (rounded
1537      * up).  The PAPR recommendation is actually 1/64 of RAM size, but
1538      * that's much more than is needed for Linux guests */
1539     shift = ctz64(pow2ceil(ramsize)) - 7;
1540     shift = MAX(shift, 18); /* Minimum architected size */
1541     shift = MIN(shift, 46); /* Maximum architected size */
1542     return shift;
1543 }
1544 
1545 void spapr_free_hpt(sPAPRMachineState *spapr)
1546 {
1547     g_free(spapr->htab);
1548     spapr->htab = NULL;
1549     spapr->htab_shift = 0;
1550     close_htab_fd(spapr);
1551 }
1552 
1553 void spapr_reallocate_hpt(sPAPRMachineState *spapr, int shift,
1554                           Error **errp)
1555 {
1556     long rc;
1557 
1558     /* Clean up any HPT info from a previous boot */
1559     spapr_free_hpt(spapr);
1560 
1561     rc = kvmppc_reset_htab(shift);
1562     if (rc < 0) {
1563         /* kernel-side HPT needed, but couldn't allocate one */
1564         error_setg_errno(errp, errno,
1565                          "Failed to allocate KVM HPT of order %d (try smaller maxmem?)",
1566                          shift);
1567         /* This is almost certainly fatal, but if the caller really
1568          * wants to carry on with shift == 0, it's welcome to try */
1569     } else if (rc > 0) {
1570         /* kernel-side HPT allocated */
1571         if (rc != shift) {
1572             error_setg(errp,
1573                        "Requested order %d HPT, but kernel allocated order %ld (try smaller maxmem?)",
1574                        shift, rc);
1575         }
1576 
1577         spapr->htab_shift = shift;
1578         spapr->htab = NULL;
1579     } else {
1580         /* kernel-side HPT not needed, allocate in userspace instead */
1581         size_t size = 1ULL << shift;
1582         int i;
1583 
1584         spapr->htab = qemu_memalign(size, size);
1585         if (!spapr->htab) {
1586             error_setg_errno(errp, errno,
1587                              "Could not allocate HPT of order %d", shift);
1588             return;
1589         }
1590 
1591         memset(spapr->htab, 0, size);
1592         spapr->htab_shift = shift;
1593 
1594         for (i = 0; i < size / HASH_PTE_SIZE_64; i++) {
1595             DIRTY_HPTE(HPTE(spapr->htab, i));
1596         }
1597     }
1598     /* We're setting up a hash table, so that means we're not radix */
1599     spapr_set_all_lpcrs(0, LPCR_HR | LPCR_UPRT);
1600 }
1601 
1602 void spapr_setup_hpt_and_vrma(sPAPRMachineState *spapr)
1603 {
1604     int hpt_shift;
1605 
1606     if ((spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED)
1607         || (spapr->cas_reboot
1608             && !spapr_ovec_test(spapr->ov5_cas, OV5_HPT_RESIZE))) {
1609         hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size);
1610     } else {
1611         uint64_t current_ram_size;
1612 
1613         current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size();
1614         hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size);
1615     }
1616     spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal);
1617 
1618     if (spapr->vrma_adjust) {
1619         spapr->rma_size = kvmppc_rma_size(spapr_node0_size(MACHINE(spapr)),
1620                                           spapr->htab_shift);
1621     }
1622 }
1623 
1624 static int spapr_reset_drcs(Object *child, void *opaque)
1625 {
1626     sPAPRDRConnector *drc =
1627         (sPAPRDRConnector *) object_dynamic_cast(child,
1628                                                  TYPE_SPAPR_DR_CONNECTOR);
1629 
1630     if (drc) {
1631         spapr_drc_reset(drc);
1632     }
1633 
1634     return 0;
1635 }
1636 
1637 static void spapr_machine_reset(void)
1638 {
1639     MachineState *machine = MACHINE(qdev_get_machine());
1640     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
1641     PowerPCCPU *first_ppc_cpu;
1642     uint32_t rtas_limit;
1643     hwaddr rtas_addr, fdt_addr;
1644     void *fdt;
1645     int rc;
1646 
1647     spapr_caps_apply(spapr);
1648 
1649     first_ppc_cpu = POWERPC_CPU(first_cpu);
1650     if (kvm_enabled() && kvmppc_has_cap_mmu_radix() &&
1651         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
1652                               spapr->max_compat_pvr)) {
1653         /* If using KVM with radix mode available, VCPUs can be started
1654          * without a HPT because KVM will start them in radix mode.
1655          * Set the GR bit in PATB so that we know there is no HPT. */
1656         spapr->patb_entry = PATBE1_GR;
1657         spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT);
1658     } else {
1659         spapr_setup_hpt_and_vrma(spapr);
1660     }
1661 
1662     /* if this reset wasn't generated by CAS, we should reset our
1663      * negotiated options and start from scratch */
1664     if (!spapr->cas_reboot) {
1665         spapr_ovec_cleanup(spapr->ov5_cas);
1666         spapr->ov5_cas = spapr_ovec_new();
1667 
1668         ppc_set_compat(first_ppc_cpu, spapr->max_compat_pvr, &error_fatal);
1669     }
1670 
1671     if (!SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
1672         spapr_irq_msi_reset(spapr);
1673     }
1674 
1675     qemu_devices_reset();
1676 
1677     /*
1678      * This is fixing some of the default configuration of the XIVE
1679      * devices. To be called after the reset of the machine devices.
1680      */
1681     spapr_irq_reset(spapr, &error_fatal);
1682 
1683     /* DRC reset may cause a device to be unplugged. This will cause troubles
1684      * if this device is used by another device (eg, a running vhost backend
1685      * will crash QEMU if the DIMM holding the vring goes away). To avoid such
1686      * situations, we reset DRCs after all devices have been reset.
1687      */
1688     object_child_foreach_recursive(object_get_root(), spapr_reset_drcs, NULL);
1689 
1690     spapr_clear_pending_events(spapr);
1691 
1692     /*
1693      * We place the device tree and RTAS just below either the top of the RMA,
1694      * or just below 2GB, whichever is lower, so that it can be
1695      * processed with 32-bit real mode code if necessary
1696      */
1697     rtas_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR);
1698     rtas_addr = rtas_limit - RTAS_MAX_SIZE;
1699     fdt_addr = rtas_addr - FDT_MAX_SIZE;
1700 
1701     fdt = spapr_build_fdt(spapr);
1702 
1703     spapr_load_rtas(spapr, fdt, rtas_addr);
1704 
1705     rc = fdt_pack(fdt);
1706 
1707     /* Should only fail if we've built a corrupted tree */
1708     assert(rc == 0);
1709 
1710     if (fdt_totalsize(fdt) > FDT_MAX_SIZE) {
1711         error_report("FDT too big ! 0x%x bytes (max is 0x%x)",
1712                      fdt_totalsize(fdt), FDT_MAX_SIZE);
1713         exit(1);
1714     }
1715 
1716     /* Load the fdt */
1717     qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
1718     cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt));
1719     g_free(spapr->fdt_blob);
1720     spapr->fdt_size = fdt_totalsize(fdt);
1721     spapr->fdt_initial_size = spapr->fdt_size;
1722     spapr->fdt_blob = fdt;
1723 
1724     /* Set up the entry state */
1725     spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, fdt_addr);
1726     first_ppc_cpu->env.gpr[5] = 0;
1727 
1728     spapr->cas_reboot = false;
1729 }
1730 
1731 static void spapr_create_nvram(sPAPRMachineState *spapr)
1732 {
1733     DeviceState *dev = qdev_create(&spapr->vio_bus->bus, "spapr-nvram");
1734     DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0);
1735 
1736     if (dinfo) {
1737         qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(dinfo),
1738                             &error_fatal);
1739     }
1740 
1741     qdev_init_nofail(dev);
1742 
1743     spapr->nvram = (struct sPAPRNVRAM *)dev;
1744 }
1745 
1746 static void spapr_rtc_create(sPAPRMachineState *spapr)
1747 {
1748     object_initialize(&spapr->rtc, sizeof(spapr->rtc), TYPE_SPAPR_RTC);
1749     object_property_add_child(OBJECT(spapr), "rtc", OBJECT(&spapr->rtc),
1750                               &error_fatal);
1751     object_property_set_bool(OBJECT(&spapr->rtc), true, "realized",
1752                               &error_fatal);
1753     object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc),
1754                               "date", &error_fatal);
1755 }
1756 
1757 /* Returns whether we want to use VGA or not */
1758 static bool spapr_vga_init(PCIBus *pci_bus, Error **errp)
1759 {
1760     switch (vga_interface_type) {
1761     case VGA_NONE:
1762         return false;
1763     case VGA_DEVICE:
1764         return true;
1765     case VGA_STD:
1766     case VGA_VIRTIO:
1767     case VGA_CIRRUS:
1768         return pci_vga_init(pci_bus) != NULL;
1769     default:
1770         error_setg(errp,
1771                    "Unsupported VGA mode, only -vga std or -vga virtio is supported");
1772         return false;
1773     }
1774 }
1775 
1776 static int spapr_pre_load(void *opaque)
1777 {
1778     int rc;
1779 
1780     rc = spapr_caps_pre_load(opaque);
1781     if (rc) {
1782         return rc;
1783     }
1784 
1785     return 0;
1786 }
1787 
1788 static int spapr_post_load(void *opaque, int version_id)
1789 {
1790     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1791     int err = 0;
1792 
1793     err = spapr_caps_post_migration(spapr);
1794     if (err) {
1795         return err;
1796     }
1797 
1798     /*
1799      * In earlier versions, there was no separate qdev for the PAPR
1800      * RTC, so the RTC offset was stored directly in sPAPREnvironment.
1801      * So when migrating from those versions, poke the incoming offset
1802      * value into the RTC device
1803      */
1804     if (version_id < 3) {
1805         err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset);
1806         if (err) {
1807             return err;
1808         }
1809     }
1810 
1811     if (kvm_enabled() && spapr->patb_entry) {
1812         PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
1813         bool radix = !!(spapr->patb_entry & PATBE1_GR);
1814         bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE);
1815 
1816         /*
1817          * Update LPCR:HR and UPRT as they may not be set properly in
1818          * the stream
1819          */
1820         spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0,
1821                             LPCR_HR | LPCR_UPRT);
1822 
1823         err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry);
1824         if (err) {
1825             error_report("Process table config unsupported by the host");
1826             return -EINVAL;
1827         }
1828     }
1829 
1830     err = spapr_irq_post_load(spapr, version_id);
1831     if (err) {
1832         return err;
1833     }
1834 
1835     return err;
1836 }
1837 
1838 static int spapr_pre_save(void *opaque)
1839 {
1840     int rc;
1841 
1842     rc = spapr_caps_pre_save(opaque);
1843     if (rc) {
1844         return rc;
1845     }
1846 
1847     return 0;
1848 }
1849 
1850 static bool version_before_3(void *opaque, int version_id)
1851 {
1852     return version_id < 3;
1853 }
1854 
1855 static bool spapr_pending_events_needed(void *opaque)
1856 {
1857     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1858     return !QTAILQ_EMPTY(&spapr->pending_events);
1859 }
1860 
1861 static const VMStateDescription vmstate_spapr_event_entry = {
1862     .name = "spapr_event_log_entry",
1863     .version_id = 1,
1864     .minimum_version_id = 1,
1865     .fields = (VMStateField[]) {
1866         VMSTATE_UINT32(summary, sPAPREventLogEntry),
1867         VMSTATE_UINT32(extended_length, sPAPREventLogEntry),
1868         VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, sPAPREventLogEntry, 0,
1869                                      NULL, extended_length),
1870         VMSTATE_END_OF_LIST()
1871     },
1872 };
1873 
1874 static const VMStateDescription vmstate_spapr_pending_events = {
1875     .name = "spapr_pending_events",
1876     .version_id = 1,
1877     .minimum_version_id = 1,
1878     .needed = spapr_pending_events_needed,
1879     .fields = (VMStateField[]) {
1880         VMSTATE_QTAILQ_V(pending_events, sPAPRMachineState, 1,
1881                          vmstate_spapr_event_entry, sPAPREventLogEntry, next),
1882         VMSTATE_END_OF_LIST()
1883     },
1884 };
1885 
1886 static bool spapr_ov5_cas_needed(void *opaque)
1887 {
1888     sPAPRMachineState *spapr = opaque;
1889     sPAPROptionVector *ov5_mask = spapr_ovec_new();
1890     sPAPROptionVector *ov5_legacy = spapr_ovec_new();
1891     sPAPROptionVector *ov5_removed = spapr_ovec_new();
1892     bool cas_needed;
1893 
1894     /* Prior to the introduction of sPAPROptionVector, we had two option
1895      * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY.
1896      * Both of these options encode machine topology into the device-tree
1897      * in such a way that the now-booted OS should still be able to interact
1898      * appropriately with QEMU regardless of what options were actually
1899      * negotiatied on the source side.
1900      *
1901      * As such, we can avoid migrating the CAS-negotiated options if these
1902      * are the only options available on the current machine/platform.
1903      * Since these are the only options available for pseries-2.7 and
1904      * earlier, this allows us to maintain old->new/new->old migration
1905      * compatibility.
1906      *
1907      * For QEMU 2.8+, there are additional CAS-negotiatable options available
1908      * via default pseries-2.8 machines and explicit command-line parameters.
1909      * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware
1910      * of the actual CAS-negotiated values to continue working properly. For
1911      * example, availability of memory unplug depends on knowing whether
1912      * OV5_HP_EVT was negotiated via CAS.
1913      *
1914      * Thus, for any cases where the set of available CAS-negotiatable
1915      * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we
1916      * include the CAS-negotiated options in the migration stream, unless
1917      * if they affect boot time behaviour only.
1918      */
1919     spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY);
1920     spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY);
1921     spapr_ovec_set(ov5_mask, OV5_DRMEM_V2);
1922 
1923     /* spapr_ovec_diff returns true if bits were removed. we avoid using
1924      * the mask itself since in the future it's possible "legacy" bits may be
1925      * removed via machine options, which could generate a false positive
1926      * that breaks migration.
1927      */
1928     spapr_ovec_intersect(ov5_legacy, spapr->ov5, ov5_mask);
1929     cas_needed = spapr_ovec_diff(ov5_removed, spapr->ov5, ov5_legacy);
1930 
1931     spapr_ovec_cleanup(ov5_mask);
1932     spapr_ovec_cleanup(ov5_legacy);
1933     spapr_ovec_cleanup(ov5_removed);
1934 
1935     return cas_needed;
1936 }
1937 
1938 static const VMStateDescription vmstate_spapr_ov5_cas = {
1939     .name = "spapr_option_vector_ov5_cas",
1940     .version_id = 1,
1941     .minimum_version_id = 1,
1942     .needed = spapr_ov5_cas_needed,
1943     .fields = (VMStateField[]) {
1944         VMSTATE_STRUCT_POINTER_V(ov5_cas, sPAPRMachineState, 1,
1945                                  vmstate_spapr_ovec, sPAPROptionVector),
1946         VMSTATE_END_OF_LIST()
1947     },
1948 };
1949 
1950 static bool spapr_patb_entry_needed(void *opaque)
1951 {
1952     sPAPRMachineState *spapr = opaque;
1953 
1954     return !!spapr->patb_entry;
1955 }
1956 
1957 static const VMStateDescription vmstate_spapr_patb_entry = {
1958     .name = "spapr_patb_entry",
1959     .version_id = 1,
1960     .minimum_version_id = 1,
1961     .needed = spapr_patb_entry_needed,
1962     .fields = (VMStateField[]) {
1963         VMSTATE_UINT64(patb_entry, sPAPRMachineState),
1964         VMSTATE_END_OF_LIST()
1965     },
1966 };
1967 
1968 static bool spapr_irq_map_needed(void *opaque)
1969 {
1970     sPAPRMachineState *spapr = opaque;
1971 
1972     return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr);
1973 }
1974 
1975 static const VMStateDescription vmstate_spapr_irq_map = {
1976     .name = "spapr_irq_map",
1977     .version_id = 1,
1978     .minimum_version_id = 1,
1979     .needed = spapr_irq_map_needed,
1980     .fields = (VMStateField[]) {
1981         VMSTATE_BITMAP(irq_map, sPAPRMachineState, 0, irq_map_nr),
1982         VMSTATE_END_OF_LIST()
1983     },
1984 };
1985 
1986 static bool spapr_dtb_needed(void *opaque)
1987 {
1988     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque);
1989 
1990     return smc->update_dt_enabled;
1991 }
1992 
1993 static int spapr_dtb_pre_load(void *opaque)
1994 {
1995     sPAPRMachineState *spapr = (sPAPRMachineState *)opaque;
1996 
1997     g_free(spapr->fdt_blob);
1998     spapr->fdt_blob = NULL;
1999     spapr->fdt_size = 0;
2000 
2001     return 0;
2002 }
2003 
2004 static const VMStateDescription vmstate_spapr_dtb = {
2005     .name = "spapr_dtb",
2006     .version_id = 1,
2007     .minimum_version_id = 1,
2008     .needed = spapr_dtb_needed,
2009     .pre_load = spapr_dtb_pre_load,
2010     .fields = (VMStateField[]) {
2011         VMSTATE_UINT32(fdt_initial_size, sPAPRMachineState),
2012         VMSTATE_UINT32(fdt_size, sPAPRMachineState),
2013         VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, sPAPRMachineState, 0, NULL,
2014                                      fdt_size),
2015         VMSTATE_END_OF_LIST()
2016     },
2017 };
2018 
2019 static const VMStateDescription vmstate_spapr = {
2020     .name = "spapr",
2021     .version_id = 3,
2022     .minimum_version_id = 1,
2023     .pre_load = spapr_pre_load,
2024     .post_load = spapr_post_load,
2025     .pre_save = spapr_pre_save,
2026     .fields = (VMStateField[]) {
2027         /* used to be @next_irq */
2028         VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4),
2029 
2030         /* RTC offset */
2031         VMSTATE_UINT64_TEST(rtc_offset, sPAPRMachineState, version_before_3),
2032 
2033         VMSTATE_PPC_TIMEBASE_V(tb, sPAPRMachineState, 2),
2034         VMSTATE_END_OF_LIST()
2035     },
2036     .subsections = (const VMStateDescription*[]) {
2037         &vmstate_spapr_ov5_cas,
2038         &vmstate_spapr_patb_entry,
2039         &vmstate_spapr_pending_events,
2040         &vmstate_spapr_cap_htm,
2041         &vmstate_spapr_cap_vsx,
2042         &vmstate_spapr_cap_dfp,
2043         &vmstate_spapr_cap_cfpc,
2044         &vmstate_spapr_cap_sbbc,
2045         &vmstate_spapr_cap_ibs,
2046         &vmstate_spapr_irq_map,
2047         &vmstate_spapr_cap_nested_kvm_hv,
2048         &vmstate_spapr_dtb,
2049         NULL
2050     }
2051 };
2052 
2053 static int htab_save_setup(QEMUFile *f, void *opaque)
2054 {
2055     sPAPRMachineState *spapr = opaque;
2056 
2057     /* "Iteration" header */
2058     if (!spapr->htab_shift) {
2059         qemu_put_be32(f, -1);
2060     } else {
2061         qemu_put_be32(f, spapr->htab_shift);
2062     }
2063 
2064     if (spapr->htab) {
2065         spapr->htab_save_index = 0;
2066         spapr->htab_first_pass = true;
2067     } else {
2068         if (spapr->htab_shift) {
2069             assert(kvm_enabled());
2070         }
2071     }
2072 
2073 
2074     return 0;
2075 }
2076 
2077 static void htab_save_chunk(QEMUFile *f, sPAPRMachineState *spapr,
2078                             int chunkstart, int n_valid, int n_invalid)
2079 {
2080     qemu_put_be32(f, chunkstart);
2081     qemu_put_be16(f, n_valid);
2082     qemu_put_be16(f, n_invalid);
2083     qemu_put_buffer(f, HPTE(spapr->htab, chunkstart),
2084                     HASH_PTE_SIZE_64 * n_valid);
2085 }
2086 
2087 static void htab_save_end_marker(QEMUFile *f)
2088 {
2089     qemu_put_be32(f, 0);
2090     qemu_put_be16(f, 0);
2091     qemu_put_be16(f, 0);
2092 }
2093 
2094 static void htab_save_first_pass(QEMUFile *f, sPAPRMachineState *spapr,
2095                                  int64_t max_ns)
2096 {
2097     bool has_timeout = max_ns != -1;
2098     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2099     int index = spapr->htab_save_index;
2100     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2101 
2102     assert(spapr->htab_first_pass);
2103 
2104     do {
2105         int chunkstart;
2106 
2107         /* Consume invalid HPTEs */
2108         while ((index < htabslots)
2109                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2110             CLEAN_HPTE(HPTE(spapr->htab, index));
2111             index++;
2112         }
2113 
2114         /* Consume valid HPTEs */
2115         chunkstart = index;
2116         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2117                && HPTE_VALID(HPTE(spapr->htab, index))) {
2118             CLEAN_HPTE(HPTE(spapr->htab, index));
2119             index++;
2120         }
2121 
2122         if (index > chunkstart) {
2123             int n_valid = index - chunkstart;
2124 
2125             htab_save_chunk(f, spapr, chunkstart, n_valid, 0);
2126 
2127             if (has_timeout &&
2128                 (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2129                 break;
2130             }
2131         }
2132     } while ((index < htabslots) && !qemu_file_rate_limit(f));
2133 
2134     if (index >= htabslots) {
2135         assert(index == htabslots);
2136         index = 0;
2137         spapr->htab_first_pass = false;
2138     }
2139     spapr->htab_save_index = index;
2140 }
2141 
2142 static int htab_save_later_pass(QEMUFile *f, sPAPRMachineState *spapr,
2143                                 int64_t max_ns)
2144 {
2145     bool final = max_ns < 0;
2146     int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64;
2147     int examined = 0, sent = 0;
2148     int index = spapr->htab_save_index;
2149     int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
2150 
2151     assert(!spapr->htab_first_pass);
2152 
2153     do {
2154         int chunkstart, invalidstart;
2155 
2156         /* Consume non-dirty HPTEs */
2157         while ((index < htabslots)
2158                && !HPTE_DIRTY(HPTE(spapr->htab, index))) {
2159             index++;
2160             examined++;
2161         }
2162 
2163         chunkstart = index;
2164         /* Consume valid dirty HPTEs */
2165         while ((index < htabslots) && (index - chunkstart < USHRT_MAX)
2166                && HPTE_DIRTY(HPTE(spapr->htab, index))
2167                && HPTE_VALID(HPTE(spapr->htab, index))) {
2168             CLEAN_HPTE(HPTE(spapr->htab, index));
2169             index++;
2170             examined++;
2171         }
2172 
2173         invalidstart = index;
2174         /* Consume invalid dirty HPTEs */
2175         while ((index < htabslots) && (index - invalidstart < USHRT_MAX)
2176                && HPTE_DIRTY(HPTE(spapr->htab, index))
2177                && !HPTE_VALID(HPTE(spapr->htab, index))) {
2178             CLEAN_HPTE(HPTE(spapr->htab, index));
2179             index++;
2180             examined++;
2181         }
2182 
2183         if (index > chunkstart) {
2184             int n_valid = invalidstart - chunkstart;
2185             int n_invalid = index - invalidstart;
2186 
2187             htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid);
2188             sent += index - chunkstart;
2189 
2190             if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) {
2191                 break;
2192             }
2193         }
2194 
2195         if (examined >= htabslots) {
2196             break;
2197         }
2198 
2199         if (index >= htabslots) {
2200             assert(index == htabslots);
2201             index = 0;
2202         }
2203     } while ((examined < htabslots) && (!qemu_file_rate_limit(f) || final));
2204 
2205     if (index >= htabslots) {
2206         assert(index == htabslots);
2207         index = 0;
2208     }
2209 
2210     spapr->htab_save_index = index;
2211 
2212     return (examined >= htabslots) && (sent == 0) ? 1 : 0;
2213 }
2214 
2215 #define MAX_ITERATION_NS    5000000 /* 5 ms */
2216 #define MAX_KVM_BUF_SIZE    2048
2217 
2218 static int htab_save_iterate(QEMUFile *f, void *opaque)
2219 {
2220     sPAPRMachineState *spapr = opaque;
2221     int fd;
2222     int rc = 0;
2223 
2224     /* Iteration header */
2225     if (!spapr->htab_shift) {
2226         qemu_put_be32(f, -1);
2227         return 1;
2228     } else {
2229         qemu_put_be32(f, 0);
2230     }
2231 
2232     if (!spapr->htab) {
2233         assert(kvm_enabled());
2234 
2235         fd = get_htab_fd(spapr);
2236         if (fd < 0) {
2237             return fd;
2238         }
2239 
2240         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS);
2241         if (rc < 0) {
2242             return rc;
2243         }
2244     } else  if (spapr->htab_first_pass) {
2245         htab_save_first_pass(f, spapr, MAX_ITERATION_NS);
2246     } else {
2247         rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS);
2248     }
2249 
2250     htab_save_end_marker(f);
2251 
2252     return rc;
2253 }
2254 
2255 static int htab_save_complete(QEMUFile *f, void *opaque)
2256 {
2257     sPAPRMachineState *spapr = opaque;
2258     int fd;
2259 
2260     /* Iteration header */
2261     if (!spapr->htab_shift) {
2262         qemu_put_be32(f, -1);
2263         return 0;
2264     } else {
2265         qemu_put_be32(f, 0);
2266     }
2267 
2268     if (!spapr->htab) {
2269         int rc;
2270 
2271         assert(kvm_enabled());
2272 
2273         fd = get_htab_fd(spapr);
2274         if (fd < 0) {
2275             return fd;
2276         }
2277 
2278         rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1);
2279         if (rc < 0) {
2280             return rc;
2281         }
2282     } else {
2283         if (spapr->htab_first_pass) {
2284             htab_save_first_pass(f, spapr, -1);
2285         }
2286         htab_save_later_pass(f, spapr, -1);
2287     }
2288 
2289     /* End marker */
2290     htab_save_end_marker(f);
2291 
2292     return 0;
2293 }
2294 
2295 static int htab_load(QEMUFile *f, void *opaque, int version_id)
2296 {
2297     sPAPRMachineState *spapr = opaque;
2298     uint32_t section_hdr;
2299     int fd = -1;
2300     Error *local_err = NULL;
2301 
2302     if (version_id < 1 || version_id > 1) {
2303         error_report("htab_load() bad version");
2304         return -EINVAL;
2305     }
2306 
2307     section_hdr = qemu_get_be32(f);
2308 
2309     if (section_hdr == -1) {
2310         spapr_free_hpt(spapr);
2311         return 0;
2312     }
2313 
2314     if (section_hdr) {
2315         /* First section gives the htab size */
2316         spapr_reallocate_hpt(spapr, section_hdr, &local_err);
2317         if (local_err) {
2318             error_report_err(local_err);
2319             return -EINVAL;
2320         }
2321         return 0;
2322     }
2323 
2324     if (!spapr->htab) {
2325         assert(kvm_enabled());
2326 
2327         fd = kvmppc_get_htab_fd(true, 0, &local_err);
2328         if (fd < 0) {
2329             error_report_err(local_err);
2330             return fd;
2331         }
2332     }
2333 
2334     while (true) {
2335         uint32_t index;
2336         uint16_t n_valid, n_invalid;
2337 
2338         index = qemu_get_be32(f);
2339         n_valid = qemu_get_be16(f);
2340         n_invalid = qemu_get_be16(f);
2341 
2342         if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) {
2343             /* End of Stream */
2344             break;
2345         }
2346 
2347         if ((index + n_valid + n_invalid) >
2348             (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) {
2349             /* Bad index in stream */
2350             error_report(
2351                 "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)",
2352                 index, n_valid, n_invalid, spapr->htab_shift);
2353             return -EINVAL;
2354         }
2355 
2356         if (spapr->htab) {
2357             if (n_valid) {
2358                 qemu_get_buffer(f, HPTE(spapr->htab, index),
2359                                 HASH_PTE_SIZE_64 * n_valid);
2360             }
2361             if (n_invalid) {
2362                 memset(HPTE(spapr->htab, index + n_valid), 0,
2363                        HASH_PTE_SIZE_64 * n_invalid);
2364             }
2365         } else {
2366             int rc;
2367 
2368             assert(fd >= 0);
2369 
2370             rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid);
2371             if (rc < 0) {
2372                 return rc;
2373             }
2374         }
2375     }
2376 
2377     if (!spapr->htab) {
2378         assert(fd >= 0);
2379         close(fd);
2380     }
2381 
2382     return 0;
2383 }
2384 
2385 static void htab_save_cleanup(void *opaque)
2386 {
2387     sPAPRMachineState *spapr = opaque;
2388 
2389     close_htab_fd(spapr);
2390 }
2391 
2392 static SaveVMHandlers savevm_htab_handlers = {
2393     .save_setup = htab_save_setup,
2394     .save_live_iterate = htab_save_iterate,
2395     .save_live_complete_precopy = htab_save_complete,
2396     .save_cleanup = htab_save_cleanup,
2397     .load_state = htab_load,
2398 };
2399 
2400 static void spapr_boot_set(void *opaque, const char *boot_device,
2401                            Error **errp)
2402 {
2403     MachineState *machine = MACHINE(opaque);
2404     machine->boot_order = g_strdup(boot_device);
2405 }
2406 
2407 static void spapr_create_lmb_dr_connectors(sPAPRMachineState *spapr)
2408 {
2409     MachineState *machine = MACHINE(spapr);
2410     uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE;
2411     uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size;
2412     int i;
2413 
2414     for (i = 0; i < nr_lmbs; i++) {
2415         uint64_t addr;
2416 
2417         addr = i * lmb_size + machine->device_memory->base;
2418         spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB,
2419                                addr / lmb_size);
2420     }
2421 }
2422 
2423 /*
2424  * If RAM size, maxmem size and individual node mem sizes aren't aligned
2425  * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest
2426  * since we can't support such unaligned sizes with DRCONF_MEMORY.
2427  */
2428 static void spapr_validate_node_memory(MachineState *machine, Error **errp)
2429 {
2430     int i;
2431 
2432     if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2433         error_setg(errp, "Memory size 0x" RAM_ADDR_FMT
2434                    " is not aligned to %" PRIu64 " MiB",
2435                    machine->ram_size,
2436                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2437         return;
2438     }
2439 
2440     if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) {
2441         error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT
2442                    " is not aligned to %" PRIu64 " MiB",
2443                    machine->ram_size,
2444                    SPAPR_MEMORY_BLOCK_SIZE / MiB);
2445         return;
2446     }
2447 
2448     for (i = 0; i < nb_numa_nodes; i++) {
2449         if (numa_info[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) {
2450             error_setg(errp,
2451                        "Node %d memory size 0x%" PRIx64
2452                        " is not aligned to %" PRIu64 " MiB",
2453                        i, numa_info[i].node_mem,
2454                        SPAPR_MEMORY_BLOCK_SIZE / MiB);
2455             return;
2456         }
2457     }
2458 }
2459 
2460 /* find cpu slot in machine->possible_cpus by core_id */
2461 static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2462 {
2463     int index = id / smp_threads;
2464 
2465     if (index >= ms->possible_cpus->len) {
2466         return NULL;
2467     }
2468     if (idx) {
2469         *idx = index;
2470     }
2471     return &ms->possible_cpus->cpus[index];
2472 }
2473 
2474 static void spapr_set_vsmt_mode(sPAPRMachineState *spapr, Error **errp)
2475 {
2476     Error *local_err = NULL;
2477     bool vsmt_user = !!spapr->vsmt;
2478     int kvm_smt = kvmppc_smt_threads();
2479     int ret;
2480 
2481     if (!kvm_enabled() && (smp_threads > 1)) {
2482         error_setg(&local_err, "TCG cannot support more than 1 thread/core "
2483                      "on a pseries machine");
2484         goto out;
2485     }
2486     if (!is_power_of_2(smp_threads)) {
2487         error_setg(&local_err, "Cannot support %d threads/core on a pseries "
2488                      "machine because it must be a power of 2", smp_threads);
2489         goto out;
2490     }
2491 
2492     /* Detemine the VSMT mode to use: */
2493     if (vsmt_user) {
2494         if (spapr->vsmt < smp_threads) {
2495             error_setg(&local_err, "Cannot support VSMT mode %d"
2496                          " because it must be >= threads/core (%d)",
2497                          spapr->vsmt, smp_threads);
2498             goto out;
2499         }
2500         /* In this case, spapr->vsmt has been set by the command line */
2501     } else {
2502         /*
2503          * Default VSMT value is tricky, because we need it to be as
2504          * consistent as possible (for migration), but this requires
2505          * changing it for at least some existing cases.  We pick 8 as
2506          * the value that we'd get with KVM on POWER8, the
2507          * overwhelmingly common case in production systems.
2508          */
2509         spapr->vsmt = MAX(8, smp_threads);
2510     }
2511 
2512     /* KVM: If necessary, set the SMT mode: */
2513     if (kvm_enabled() && (spapr->vsmt != kvm_smt)) {
2514         ret = kvmppc_set_smt_threads(spapr->vsmt);
2515         if (ret) {
2516             /* Looks like KVM isn't able to change VSMT mode */
2517             error_setg(&local_err,
2518                        "Failed to set KVM's VSMT mode to %d (errno %d)",
2519                        spapr->vsmt, ret);
2520             /* We can live with that if the default one is big enough
2521              * for the number of threads, and a submultiple of the one
2522              * we want.  In this case we'll waste some vcpu ids, but
2523              * behaviour will be correct */
2524             if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) {
2525                 warn_report_err(local_err);
2526                 local_err = NULL;
2527                 goto out;
2528             } else {
2529                 if (!vsmt_user) {
2530                     error_append_hint(&local_err,
2531                                       "On PPC, a VM with %d threads/core"
2532                                       " on a host with %d threads/core"
2533                                       " requires the use of VSMT mode %d.\n",
2534                                       smp_threads, kvm_smt, spapr->vsmt);
2535                 }
2536                 kvmppc_hint_smt_possible(&local_err);
2537                 goto out;
2538             }
2539         }
2540     }
2541     /* else TCG: nothing to do currently */
2542 out:
2543     error_propagate(errp, local_err);
2544 }
2545 
2546 static void spapr_init_cpus(sPAPRMachineState *spapr)
2547 {
2548     MachineState *machine = MACHINE(spapr);
2549     MachineClass *mc = MACHINE_GET_CLASS(machine);
2550     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2551     const char *type = spapr_get_cpu_core_type(machine->cpu_type);
2552     const CPUArchIdList *possible_cpus;
2553     int boot_cores_nr = smp_cpus / smp_threads;
2554     int i;
2555 
2556     possible_cpus = mc->possible_cpu_arch_ids(machine);
2557     if (mc->has_hotpluggable_cpus) {
2558         if (smp_cpus % smp_threads) {
2559             error_report("smp_cpus (%u) must be multiple of threads (%u)",
2560                          smp_cpus, smp_threads);
2561             exit(1);
2562         }
2563         if (max_cpus % smp_threads) {
2564             error_report("max_cpus (%u) must be multiple of threads (%u)",
2565                          max_cpus, smp_threads);
2566             exit(1);
2567         }
2568     } else {
2569         if (max_cpus != smp_cpus) {
2570             error_report("This machine version does not support CPU hotplug");
2571             exit(1);
2572         }
2573         boot_cores_nr = possible_cpus->len;
2574     }
2575 
2576     if (smc->pre_2_10_has_unused_icps) {
2577         int i;
2578 
2579         for (i = 0; i < spapr_max_server_number(spapr); i++) {
2580             /* Dummy entries get deregistered when real ICPState objects
2581              * are registered during CPU core hotplug.
2582              */
2583             pre_2_10_vmstate_register_dummy_icp(i);
2584         }
2585     }
2586 
2587     for (i = 0; i < possible_cpus->len; i++) {
2588         int core_id = i * smp_threads;
2589 
2590         if (mc->has_hotpluggable_cpus) {
2591             spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU,
2592                                    spapr_vcpu_id(spapr, core_id));
2593         }
2594 
2595         if (i < boot_cores_nr) {
2596             Object *core  = object_new(type);
2597             int nr_threads = smp_threads;
2598 
2599             /* Handle the partially filled core for older machine types */
2600             if ((i + 1) * smp_threads >= smp_cpus) {
2601                 nr_threads = smp_cpus - i * smp_threads;
2602             }
2603 
2604             object_property_set_int(core, nr_threads, "nr-threads",
2605                                     &error_fatal);
2606             object_property_set_int(core, core_id, CPU_CORE_PROP_CORE_ID,
2607                                     &error_fatal);
2608             object_property_set_bool(core, true, "realized", &error_fatal);
2609 
2610             object_unref(core);
2611         }
2612     }
2613 }
2614 
2615 static PCIHostState *spapr_create_default_phb(void)
2616 {
2617     DeviceState *dev;
2618 
2619     dev = qdev_create(NULL, TYPE_SPAPR_PCI_HOST_BRIDGE);
2620     qdev_prop_set_uint32(dev, "index", 0);
2621     qdev_init_nofail(dev);
2622 
2623     return PCI_HOST_BRIDGE(dev);
2624 }
2625 
2626 /* pSeries LPAR / sPAPR hardware init */
2627 static void spapr_machine_init(MachineState *machine)
2628 {
2629     sPAPRMachineState *spapr = SPAPR_MACHINE(machine);
2630     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine);
2631     const char *kernel_filename = machine->kernel_filename;
2632     const char *initrd_filename = machine->initrd_filename;
2633     PCIHostState *phb;
2634     int i;
2635     MemoryRegion *sysmem = get_system_memory();
2636     MemoryRegion *ram = g_new(MemoryRegion, 1);
2637     hwaddr node0_size = spapr_node0_size(machine);
2638     long load_limit, fw_size;
2639     char *filename;
2640     Error *resize_hpt_err = NULL;
2641 
2642     msi_nonbroken = true;
2643 
2644     QLIST_INIT(&spapr->phbs);
2645     QTAILQ_INIT(&spapr->pending_dimm_unplugs);
2646 
2647     /* Determine capabilities to run with */
2648     spapr_caps_init(spapr);
2649 
2650     kvmppc_check_papr_resize_hpt(&resize_hpt_err);
2651     if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) {
2652         /*
2653          * If the user explicitly requested a mode we should either
2654          * supply it, or fail completely (which we do below).  But if
2655          * it's not set explicitly, we reset our mode to something
2656          * that works
2657          */
2658         if (resize_hpt_err) {
2659             spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
2660             error_free(resize_hpt_err);
2661             resize_hpt_err = NULL;
2662         } else {
2663             spapr->resize_hpt = smc->resize_hpt_default;
2664         }
2665     }
2666 
2667     assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT);
2668 
2669     if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) {
2670         /*
2671          * User requested HPT resize, but this host can't supply it.  Bail out
2672          */
2673         error_report_err(resize_hpt_err);
2674         exit(1);
2675     }
2676 
2677     spapr->rma_size = node0_size;
2678 
2679     /* With KVM, we don't actually know whether KVM supports an
2680      * unbounded RMA (PR KVM) or is limited by the hash table size
2681      * (HV KVM using VRMA), so we always assume the latter
2682      *
2683      * In that case, we also limit the initial allocations for RTAS
2684      * etc... to 256M since we have no way to know what the VRMA size
2685      * is going to be as it depends on the size of the hash table
2686      * which isn't determined yet.
2687      */
2688     if (kvm_enabled()) {
2689         spapr->vrma_adjust = 1;
2690         spapr->rma_size = MIN(spapr->rma_size, 0x10000000);
2691     }
2692 
2693     /* Actually we don't support unbounded RMA anymore since we added
2694      * proper emulation of HV mode. The max we can get is 16G which
2695      * also happens to be what we configure for PAPR mode so make sure
2696      * we don't do anything bigger than that
2697      */
2698     spapr->rma_size = MIN(spapr->rma_size, 0x400000000ull);
2699 
2700     if (spapr->rma_size > node0_size) {
2701         error_report("Numa node 0 has to span the RMA (%#08"HWADDR_PRIx")",
2702                      spapr->rma_size);
2703         exit(1);
2704     }
2705 
2706     /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */
2707     load_limit = MIN(spapr->rma_size, RTAS_MAX_ADDR) - FW_OVERHEAD;
2708 
2709     /*
2710      * VSMT must be set in order to be able to compute VCPU ids, ie to
2711      * call spapr_max_server_number() or spapr_vcpu_id().
2712      */
2713     spapr_set_vsmt_mode(spapr, &error_fatal);
2714 
2715     /* Set up Interrupt Controller before we create the VCPUs */
2716     spapr_irq_init(spapr, &error_fatal);
2717 
2718     /* Set up containers for ibm,client-architecture-support negotiated options
2719      */
2720     spapr->ov5 = spapr_ovec_new();
2721     spapr->ov5_cas = spapr_ovec_new();
2722 
2723     if (smc->dr_lmb_enabled) {
2724         spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY);
2725         spapr_validate_node_memory(machine, &error_fatal);
2726     }
2727 
2728     spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY);
2729 
2730     /* advertise support for dedicated HP event source to guests */
2731     if (spapr->use_hotplug_event_source) {
2732         spapr_ovec_set(spapr->ov5, OV5_HP_EVT);
2733     }
2734 
2735     /* advertise support for HPT resizing */
2736     if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) {
2737         spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE);
2738     }
2739 
2740     /* advertise support for ibm,dyamic-memory-v2 */
2741     spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2);
2742 
2743     /* advertise XIVE on POWER9 machines */
2744     if (spapr->irq->ov5 & (SPAPR_OV5_XIVE_EXPLOIT | SPAPR_OV5_XIVE_BOTH)) {
2745         if (ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00,
2746                                   0, spapr->max_compat_pvr)) {
2747             spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT);
2748         } else if (spapr->irq->ov5 & SPAPR_OV5_XIVE_EXPLOIT) {
2749             error_report("XIVE-only machines require a POWER9 CPU");
2750             exit(1);
2751         }
2752     }
2753 
2754     /* init CPUs */
2755     spapr_init_cpus(spapr);
2756 
2757     if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) &&
2758         ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0,
2759                               spapr->max_compat_pvr)) {
2760         /* KVM and TCG always allow GTSE with radix... */
2761         spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE);
2762     }
2763     /* ... but not with hash (currently). */
2764 
2765     if (kvm_enabled()) {
2766         /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */
2767         kvmppc_enable_logical_ci_hcalls();
2768         kvmppc_enable_set_mode_hcall();
2769 
2770         /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */
2771         kvmppc_enable_clear_ref_mod_hcalls();
2772     }
2773 
2774     /* allocate RAM */
2775     memory_region_allocate_system_memory(ram, NULL, "ppc_spapr.ram",
2776                                          machine->ram_size);
2777     memory_region_add_subregion(sysmem, 0, ram);
2778 
2779     /* always allocate the device memory information */
2780     machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
2781 
2782     /* initialize hotplug memory address space */
2783     if (machine->ram_size < machine->maxram_size) {
2784         ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
2785         /*
2786          * Limit the number of hotpluggable memory slots to half the number
2787          * slots that KVM supports, leaving the other half for PCI and other
2788          * devices. However ensure that number of slots doesn't drop below 32.
2789          */
2790         int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 :
2791                            SPAPR_MAX_RAM_SLOTS;
2792 
2793         if (max_memslots < SPAPR_MAX_RAM_SLOTS) {
2794             max_memslots = SPAPR_MAX_RAM_SLOTS;
2795         }
2796         if (machine->ram_slots > max_memslots) {
2797             error_report("Specified number of memory slots %"
2798                          PRIu64" exceeds max supported %d",
2799                          machine->ram_slots, max_memslots);
2800             exit(1);
2801         }
2802 
2803         machine->device_memory->base = ROUND_UP(machine->ram_size,
2804                                                 SPAPR_DEVICE_MEM_ALIGN);
2805         memory_region_init(&machine->device_memory->mr, OBJECT(spapr),
2806                            "device-memory", device_mem_size);
2807         memory_region_add_subregion(sysmem, machine->device_memory->base,
2808                                     &machine->device_memory->mr);
2809     }
2810 
2811     if (smc->dr_lmb_enabled) {
2812         spapr_create_lmb_dr_connectors(spapr);
2813     }
2814 
2815     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, "spapr-rtas.bin");
2816     if (!filename) {
2817         error_report("Could not find LPAR rtas '%s'", "spapr-rtas.bin");
2818         exit(1);
2819     }
2820     spapr->rtas_size = get_image_size(filename);
2821     if (spapr->rtas_size < 0) {
2822         error_report("Could not get size of LPAR rtas '%s'", filename);
2823         exit(1);
2824     }
2825     spapr->rtas_blob = g_malloc(spapr->rtas_size);
2826     if (load_image_size(filename, spapr->rtas_blob, spapr->rtas_size) < 0) {
2827         error_report("Could not load LPAR rtas '%s'", filename);
2828         exit(1);
2829     }
2830     if (spapr->rtas_size > RTAS_MAX_SIZE) {
2831         error_report("RTAS too big ! 0x%zx bytes (max is 0x%x)",
2832                      (size_t)spapr->rtas_size, RTAS_MAX_SIZE);
2833         exit(1);
2834     }
2835     g_free(filename);
2836 
2837     /* Set up RTAS event infrastructure */
2838     spapr_events_init(spapr);
2839 
2840     /* Set up the RTC RTAS interfaces */
2841     spapr_rtc_create(spapr);
2842 
2843     /* Set up VIO bus */
2844     spapr->vio_bus = spapr_vio_bus_init();
2845 
2846     for (i = 0; i < serial_max_hds(); i++) {
2847         if (serial_hd(i)) {
2848             spapr_vty_create(spapr->vio_bus, serial_hd(i));
2849         }
2850     }
2851 
2852     /* We always have at least the nvram device on VIO */
2853     spapr_create_nvram(spapr);
2854 
2855     /* Set up PCI */
2856     spapr_pci_rtas_init();
2857 
2858     phb = spapr_create_default_phb();
2859 
2860     for (i = 0; i < nb_nics; i++) {
2861         NICInfo *nd = &nd_table[i];
2862 
2863         if (!nd->model) {
2864             nd->model = g_strdup("spapr-vlan");
2865         }
2866 
2867         if (g_str_equal(nd->model, "spapr-vlan") ||
2868             g_str_equal(nd->model, "ibmveth")) {
2869             spapr_vlan_create(spapr->vio_bus, nd);
2870         } else {
2871             pci_nic_init_nofail(&nd_table[i], phb->bus, nd->model, NULL);
2872         }
2873     }
2874 
2875     for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) {
2876         spapr_vscsi_create(spapr->vio_bus);
2877     }
2878 
2879     /* Graphics */
2880     if (spapr_vga_init(phb->bus, &error_fatal)) {
2881         spapr->has_graphics = true;
2882         machine->usb |= defaults_enabled() && !machine->usb_disabled;
2883     }
2884 
2885     if (machine->usb) {
2886         if (smc->use_ohci_by_default) {
2887             pci_create_simple(phb->bus, -1, "pci-ohci");
2888         } else {
2889             pci_create_simple(phb->bus, -1, "nec-usb-xhci");
2890         }
2891 
2892         if (spapr->has_graphics) {
2893             USBBus *usb_bus = usb_bus_find(-1);
2894 
2895             usb_create_simple(usb_bus, "usb-kbd");
2896             usb_create_simple(usb_bus, "usb-mouse");
2897         }
2898     }
2899 
2900     if (spapr->rma_size < (MIN_RMA_SLOF * MiB)) {
2901         error_report(
2902             "pSeries SLOF firmware requires >= %ldM guest RMA (Real Mode Area memory)",
2903             MIN_RMA_SLOF);
2904         exit(1);
2905     }
2906 
2907     if (kernel_filename) {
2908         uint64_t lowaddr = 0;
2909 
2910         spapr->kernel_size = load_elf(kernel_filename, NULL,
2911                                       translate_kernel_address, NULL,
2912                                       NULL, &lowaddr, NULL, 1,
2913                                       PPC_ELF_MACHINE, 0, 0);
2914         if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) {
2915             spapr->kernel_size = load_elf(kernel_filename, NULL,
2916                                           translate_kernel_address, NULL, NULL,
2917                                           &lowaddr, NULL, 0, PPC_ELF_MACHINE,
2918                                           0, 0);
2919             spapr->kernel_le = spapr->kernel_size > 0;
2920         }
2921         if (spapr->kernel_size < 0) {
2922             error_report("error loading %s: %s", kernel_filename,
2923                          load_elf_strerror(spapr->kernel_size));
2924             exit(1);
2925         }
2926 
2927         /* load initrd */
2928         if (initrd_filename) {
2929             /* Try to locate the initrd in the gap between the kernel
2930              * and the firmware. Add a bit of space just in case
2931              */
2932             spapr->initrd_base = (KERNEL_LOAD_ADDR + spapr->kernel_size
2933                                   + 0x1ffff) & ~0xffff;
2934             spapr->initrd_size = load_image_targphys(initrd_filename,
2935                                                      spapr->initrd_base,
2936                                                      load_limit
2937                                                      - spapr->initrd_base);
2938             if (spapr->initrd_size < 0) {
2939                 error_report("could not load initial ram disk '%s'",
2940                              initrd_filename);
2941                 exit(1);
2942             }
2943         }
2944     }
2945 
2946     if (bios_name == NULL) {
2947         bios_name = FW_FILE_NAME;
2948     }
2949     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
2950     if (!filename) {
2951         error_report("Could not find LPAR firmware '%s'", bios_name);
2952         exit(1);
2953     }
2954     fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE);
2955     if (fw_size <= 0) {
2956         error_report("Could not load LPAR firmware '%s'", filename);
2957         exit(1);
2958     }
2959     g_free(filename);
2960 
2961     /* FIXME: Should register things through the MachineState's qdev
2962      * interface, this is a legacy from the sPAPREnvironment structure
2963      * which predated MachineState but had a similar function */
2964     vmstate_register(NULL, 0, &vmstate_spapr, spapr);
2965     register_savevm_live(NULL, "spapr/htab", -1, 1,
2966                          &savevm_htab_handlers, spapr);
2967 
2968     qemu_register_boot_set(spapr_boot_set, spapr);
2969 
2970     if (kvm_enabled()) {
2971         /* to stop and start vmclock */
2972         qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change,
2973                                          &spapr->tb);
2974 
2975         kvmppc_spapr_enable_inkernel_multitce();
2976     }
2977 }
2978 
2979 static int spapr_kvm_type(const char *vm_type)
2980 {
2981     if (!vm_type) {
2982         return 0;
2983     }
2984 
2985     if (!strcmp(vm_type, "HV")) {
2986         return 1;
2987     }
2988 
2989     if (!strcmp(vm_type, "PR")) {
2990         return 2;
2991     }
2992 
2993     error_report("Unknown kvm-type specified '%s'", vm_type);
2994     exit(1);
2995 }
2996 
2997 /*
2998  * Implementation of an interface to adjust firmware path
2999  * for the bootindex property handling.
3000  */
3001 static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus,
3002                                    DeviceState *dev)
3003 {
3004 #define CAST(type, obj, name) \
3005     ((type *)object_dynamic_cast(OBJECT(obj), (name)))
3006     SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE);
3007     sPAPRPHBState *phb = CAST(sPAPRPHBState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE);
3008     VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON);
3009 
3010     if (d) {
3011         void *spapr = CAST(void, bus->parent, "spapr-vscsi");
3012         VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI);
3013         USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE);
3014 
3015         if (spapr) {
3016             /*
3017              * Replace "channel@0/disk@0,0" with "disk@8000000000000000":
3018              * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form
3019              * 0x8000 | (target << 8) | (bus << 5) | lun
3020              * (see the "Logical unit addressing format" table in SAM5)
3021              */
3022             unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun;
3023             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3024                                    (uint64_t)id << 48);
3025         } else if (virtio) {
3026             /*
3027              * We use SRP luns of the form 01000000 | (target << 8) | lun
3028              * in the top 32 bits of the 64-bit LUN
3029              * Note: the quote above is from SLOF and it is wrong,
3030              * the actual binding is:
3031              * swap 0100 or 10 << or 20 << ( target lun-id -- srplun )
3032              */
3033             unsigned id = 0x1000000 | (d->id << 16) | d->lun;
3034             if (d->lun >= 256) {
3035                 /* Use the LUN "flat space addressing method" */
3036                 id |= 0x4000;
3037             }
3038             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3039                                    (uint64_t)id << 32);
3040         } else if (usb) {
3041             /*
3042              * We use SRP luns of the form 01000000 | (usb-port << 16) | lun
3043              * in the top 32 bits of the 64-bit LUN
3044              */
3045             unsigned usb_port = atoi(usb->port->path);
3046             unsigned id = 0x1000000 | (usb_port << 16) | d->lun;
3047             return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev),
3048                                    (uint64_t)id << 32);
3049         }
3050     }
3051 
3052     /*
3053      * SLOF probes the USB devices, and if it recognizes that the device is a
3054      * storage device, it changes its name to "storage" instead of "usb-host",
3055      * and additionally adds a child node for the SCSI LUN, so the correct
3056      * boot path in SLOF is something like .../storage@1/disk@xxx" instead.
3057      */
3058     if (strcmp("usb-host", qdev_fw_name(dev)) == 0) {
3059         USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE);
3060         if (usb_host_dev_is_scsi_storage(usbdev)) {
3061             return g_strdup_printf("storage@%s/disk", usbdev->port->path);
3062         }
3063     }
3064 
3065     if (phb) {
3066         /* Replace "pci" with "pci@800000020000000" */
3067         return g_strdup_printf("pci@%"PRIX64, phb->buid);
3068     }
3069 
3070     if (vsc) {
3071         /* Same logic as virtio above */
3072         unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun;
3073         return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32);
3074     }
3075 
3076     if (g_str_equal("pci-bridge", qdev_fw_name(dev))) {
3077         /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */
3078         PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE);
3079         return g_strdup_printf("pci@%x", PCI_SLOT(pcidev->devfn));
3080     }
3081 
3082     return NULL;
3083 }
3084 
3085 static char *spapr_get_kvm_type(Object *obj, Error **errp)
3086 {
3087     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3088 
3089     return g_strdup(spapr->kvm_type);
3090 }
3091 
3092 static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp)
3093 {
3094     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3095 
3096     g_free(spapr->kvm_type);
3097     spapr->kvm_type = g_strdup(value);
3098 }
3099 
3100 static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp)
3101 {
3102     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3103 
3104     return spapr->use_hotplug_event_source;
3105 }
3106 
3107 static void spapr_set_modern_hotplug_events(Object *obj, bool value,
3108                                             Error **errp)
3109 {
3110     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3111 
3112     spapr->use_hotplug_event_source = value;
3113 }
3114 
3115 static bool spapr_get_msix_emulation(Object *obj, Error **errp)
3116 {
3117     return true;
3118 }
3119 
3120 static char *spapr_get_resize_hpt(Object *obj, Error **errp)
3121 {
3122     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3123 
3124     switch (spapr->resize_hpt) {
3125     case SPAPR_RESIZE_HPT_DEFAULT:
3126         return g_strdup("default");
3127     case SPAPR_RESIZE_HPT_DISABLED:
3128         return g_strdup("disabled");
3129     case SPAPR_RESIZE_HPT_ENABLED:
3130         return g_strdup("enabled");
3131     case SPAPR_RESIZE_HPT_REQUIRED:
3132         return g_strdup("required");
3133     }
3134     g_assert_not_reached();
3135 }
3136 
3137 static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp)
3138 {
3139     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3140 
3141     if (strcmp(value, "default") == 0) {
3142         spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT;
3143     } else if (strcmp(value, "disabled") == 0) {
3144         spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED;
3145     } else if (strcmp(value, "enabled") == 0) {
3146         spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED;
3147     } else if (strcmp(value, "required") == 0) {
3148         spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED;
3149     } else {
3150         error_setg(errp, "Bad value for \"resize-hpt\" property");
3151     }
3152 }
3153 
3154 static void spapr_get_vsmt(Object *obj, Visitor *v, const char *name,
3155                                    void *opaque, Error **errp)
3156 {
3157     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3158 }
3159 
3160 static void spapr_set_vsmt(Object *obj, Visitor *v, const char *name,
3161                                    void *opaque, Error **errp)
3162 {
3163     visit_type_uint32(v, name, (uint32_t *)opaque, errp);
3164 }
3165 
3166 static char *spapr_get_ic_mode(Object *obj, Error **errp)
3167 {
3168     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3169 
3170     if (spapr->irq == &spapr_irq_xics_legacy) {
3171         return g_strdup("legacy");
3172     } else if (spapr->irq == &spapr_irq_xics) {
3173         return g_strdup("xics");
3174     } else if (spapr->irq == &spapr_irq_xive) {
3175         return g_strdup("xive");
3176     } else if (spapr->irq == &spapr_irq_dual) {
3177         return g_strdup("dual");
3178     }
3179     g_assert_not_reached();
3180 }
3181 
3182 static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp)
3183 {
3184     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3185 
3186     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
3187         error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode");
3188         return;
3189     }
3190 
3191     /* The legacy IRQ backend can not be set */
3192     if (strcmp(value, "xics") == 0) {
3193         spapr->irq = &spapr_irq_xics;
3194     } else if (strcmp(value, "xive") == 0) {
3195         spapr->irq = &spapr_irq_xive;
3196     } else if (strcmp(value, "dual") == 0) {
3197         spapr->irq = &spapr_irq_dual;
3198     } else {
3199         error_setg(errp, "Bad value for \"ic-mode\" property");
3200     }
3201 }
3202 
3203 static char *spapr_get_host_model(Object *obj, Error **errp)
3204 {
3205     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3206 
3207     return g_strdup(spapr->host_model);
3208 }
3209 
3210 static void spapr_set_host_model(Object *obj, const char *value, Error **errp)
3211 {
3212     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3213 
3214     g_free(spapr->host_model);
3215     spapr->host_model = g_strdup(value);
3216 }
3217 
3218 static char *spapr_get_host_serial(Object *obj, Error **errp)
3219 {
3220     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3221 
3222     return g_strdup(spapr->host_serial);
3223 }
3224 
3225 static void spapr_set_host_serial(Object *obj, const char *value, Error **errp)
3226 {
3227     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3228 
3229     g_free(spapr->host_serial);
3230     spapr->host_serial = g_strdup(value);
3231 }
3232 
3233 static void spapr_instance_init(Object *obj)
3234 {
3235     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3236     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
3237 
3238     spapr->htab_fd = -1;
3239     spapr->use_hotplug_event_source = true;
3240     object_property_add_str(obj, "kvm-type",
3241                             spapr_get_kvm_type, spapr_set_kvm_type, NULL);
3242     object_property_set_description(obj, "kvm-type",
3243                                     "Specifies the KVM virtualization mode (HV, PR)",
3244                                     NULL);
3245     object_property_add_bool(obj, "modern-hotplug-events",
3246                             spapr_get_modern_hotplug_events,
3247                             spapr_set_modern_hotplug_events,
3248                             NULL);
3249     object_property_set_description(obj, "modern-hotplug-events",
3250                                     "Use dedicated hotplug event mechanism in"
3251                                     " place of standard EPOW events when possible"
3252                                     " (required for memory hot-unplug support)",
3253                                     NULL);
3254     ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr,
3255                             "Maximum permitted CPU compatibility mode",
3256                             &error_fatal);
3257 
3258     object_property_add_str(obj, "resize-hpt",
3259                             spapr_get_resize_hpt, spapr_set_resize_hpt, NULL);
3260     object_property_set_description(obj, "resize-hpt",
3261                                     "Resizing of the Hash Page Table (enabled, disabled, required)",
3262                                     NULL);
3263     object_property_add(obj, "vsmt", "uint32", spapr_get_vsmt,
3264                         spapr_set_vsmt, NULL, &spapr->vsmt, &error_abort);
3265     object_property_set_description(obj, "vsmt",
3266                                     "Virtual SMT: KVM behaves as if this were"
3267                                     " the host's SMT mode", &error_abort);
3268     object_property_add_bool(obj, "vfio-no-msix-emulation",
3269                              spapr_get_msix_emulation, NULL, NULL);
3270 
3271     /* The machine class defines the default interrupt controller mode */
3272     spapr->irq = smc->irq;
3273     object_property_add_str(obj, "ic-mode", spapr_get_ic_mode,
3274                             spapr_set_ic_mode, NULL);
3275     object_property_set_description(obj, "ic-mode",
3276                  "Specifies the interrupt controller mode (xics, xive, dual)",
3277                  NULL);
3278 
3279     object_property_add_str(obj, "host-model",
3280         spapr_get_host_model, spapr_set_host_model,
3281         &error_abort);
3282     object_property_set_description(obj, "host-model",
3283         "Set host's model-id to use - none|passthrough|string", &error_abort);
3284     object_property_add_str(obj, "host-serial",
3285         spapr_get_host_serial, spapr_set_host_serial,
3286         &error_abort);
3287     object_property_set_description(obj, "host-serial",
3288         "Set host's system-id to use - none|passthrough|string", &error_abort);
3289 }
3290 
3291 static void spapr_machine_finalizefn(Object *obj)
3292 {
3293     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
3294 
3295     g_free(spapr->kvm_type);
3296 }
3297 
3298 void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg)
3299 {
3300     cpu_synchronize_state(cs);
3301     ppc_cpu_do_system_reset(cs);
3302 }
3303 
3304 static void spapr_nmi(NMIState *n, int cpu_index, Error **errp)
3305 {
3306     CPUState *cs;
3307 
3308     CPU_FOREACH(cs) {
3309         async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL);
3310     }
3311 }
3312 
3313 static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size,
3314                            uint32_t node, bool dedicated_hp_event_source,
3315                            Error **errp)
3316 {
3317     sPAPRDRConnector *drc;
3318     uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE;
3319     int i, fdt_offset, fdt_size;
3320     void *fdt;
3321     uint64_t addr = addr_start;
3322     bool hotplugged = spapr_drc_hotplugged(dev);
3323     Error *local_err = NULL;
3324 
3325     for (i = 0; i < nr_lmbs; i++) {
3326         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3327                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3328         g_assert(drc);
3329 
3330         fdt = create_device_tree(&fdt_size);
3331         fdt_offset = spapr_populate_memory_node(fdt, node, addr,
3332                                                 SPAPR_MEMORY_BLOCK_SIZE);
3333 
3334         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3335         if (local_err) {
3336             while (addr > addr_start) {
3337                 addr -= SPAPR_MEMORY_BLOCK_SIZE;
3338                 drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3339                                       addr / SPAPR_MEMORY_BLOCK_SIZE);
3340                 spapr_drc_detach(drc);
3341             }
3342             g_free(fdt);
3343             error_propagate(errp, local_err);
3344             return;
3345         }
3346         if (!hotplugged) {
3347             spapr_drc_reset(drc);
3348         }
3349         addr += SPAPR_MEMORY_BLOCK_SIZE;
3350     }
3351     /* send hotplug notification to the
3352      * guest only in case of hotplugged memory
3353      */
3354     if (hotplugged) {
3355         if (dedicated_hp_event_source) {
3356             drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3357                                   addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3358             spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3359                                                    nr_lmbs,
3360                                                    spapr_drc_index(drc));
3361         } else {
3362             spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB,
3363                                            nr_lmbs);
3364         }
3365     }
3366 }
3367 
3368 static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3369                               Error **errp)
3370 {
3371     Error *local_err = NULL;
3372     sPAPRMachineState *ms = SPAPR_MACHINE(hotplug_dev);
3373     PCDIMMDevice *dimm = PC_DIMM(dev);
3374     uint64_t size, addr;
3375     uint32_t node;
3376 
3377     size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort);
3378 
3379     pc_dimm_plug(dimm, MACHINE(ms), &local_err);
3380     if (local_err) {
3381         goto out;
3382     }
3383 
3384     addr = object_property_get_uint(OBJECT(dimm),
3385                                     PC_DIMM_ADDR_PROP, &local_err);
3386     if (local_err) {
3387         goto out_unplug;
3388     }
3389 
3390     node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP,
3391                                     &error_abort);
3392     spapr_add_lmbs(dev, addr, size, node,
3393                    spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT),
3394                    &local_err);
3395     if (local_err) {
3396         goto out_unplug;
3397     }
3398 
3399     return;
3400 
3401 out_unplug:
3402     pc_dimm_unplug(dimm, MACHINE(ms));
3403 out:
3404     error_propagate(errp, local_err);
3405 }
3406 
3407 static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3408                                   Error **errp)
3409 {
3410     const sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev);
3411     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3412     PCDIMMDevice *dimm = PC_DIMM(dev);
3413     Error *local_err = NULL;
3414     uint64_t size;
3415     Object *memdev;
3416     hwaddr pagesize;
3417 
3418     if (!smc->dr_lmb_enabled) {
3419         error_setg(errp, "Memory hotplug not supported for this machine");
3420         return;
3421     }
3422 
3423     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err);
3424     if (local_err) {
3425         error_propagate(errp, local_err);
3426         return;
3427     }
3428 
3429     if (size % SPAPR_MEMORY_BLOCK_SIZE) {
3430         error_setg(errp, "Hotplugged memory size must be a multiple of "
3431                       "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB);
3432         return;
3433     }
3434 
3435     memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP,
3436                                       &error_abort);
3437     pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev));
3438     spapr_check_pagesize(spapr, pagesize, &local_err);
3439     if (local_err) {
3440         error_propagate(errp, local_err);
3441         return;
3442     }
3443 
3444     pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), NULL, errp);
3445 }
3446 
3447 struct sPAPRDIMMState {
3448     PCDIMMDevice *dimm;
3449     uint32_t nr_lmbs;
3450     QTAILQ_ENTRY(sPAPRDIMMState) next;
3451 };
3452 
3453 static sPAPRDIMMState *spapr_pending_dimm_unplugs_find(sPAPRMachineState *s,
3454                                                        PCDIMMDevice *dimm)
3455 {
3456     sPAPRDIMMState *dimm_state = NULL;
3457 
3458     QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) {
3459         if (dimm_state->dimm == dimm) {
3460             break;
3461         }
3462     }
3463     return dimm_state;
3464 }
3465 
3466 static sPAPRDIMMState *spapr_pending_dimm_unplugs_add(sPAPRMachineState *spapr,
3467                                                       uint32_t nr_lmbs,
3468                                                       PCDIMMDevice *dimm)
3469 {
3470     sPAPRDIMMState *ds = NULL;
3471 
3472     /*
3473      * If this request is for a DIMM whose removal had failed earlier
3474      * (due to guest's refusal to remove the LMBs), we would have this
3475      * dimm already in the pending_dimm_unplugs list. In that
3476      * case don't add again.
3477      */
3478     ds = spapr_pending_dimm_unplugs_find(spapr, dimm);
3479     if (!ds) {
3480         ds = g_malloc0(sizeof(sPAPRDIMMState));
3481         ds->nr_lmbs = nr_lmbs;
3482         ds->dimm = dimm;
3483         QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next);
3484     }
3485     return ds;
3486 }
3487 
3488 static void spapr_pending_dimm_unplugs_remove(sPAPRMachineState *spapr,
3489                                               sPAPRDIMMState *dimm_state)
3490 {
3491     QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next);
3492     g_free(dimm_state);
3493 }
3494 
3495 static sPAPRDIMMState *spapr_recover_pending_dimm_state(sPAPRMachineState *ms,
3496                                                         PCDIMMDevice *dimm)
3497 {
3498     sPAPRDRConnector *drc;
3499     uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm),
3500                                                   &error_abort);
3501     uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3502     uint32_t avail_lmbs = 0;
3503     uint64_t addr_start, addr;
3504     int i;
3505 
3506     addr_start = object_property_get_int(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3507                                          &error_abort);
3508 
3509     addr = addr_start;
3510     for (i = 0; i < nr_lmbs; i++) {
3511         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3512                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3513         g_assert(drc);
3514         if (drc->dev) {
3515             avail_lmbs++;
3516         }
3517         addr += SPAPR_MEMORY_BLOCK_SIZE;
3518     }
3519 
3520     return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm);
3521 }
3522 
3523 /* Callback to be called during DRC release. */
3524 void spapr_lmb_release(DeviceState *dev)
3525 {
3526     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3527     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl);
3528     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3529 
3530     /* This information will get lost if a migration occurs
3531      * during the unplug process. In this case recover it. */
3532     if (ds == NULL) {
3533         ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev));
3534         g_assert(ds);
3535         /* The DRC being examined by the caller at least must be counted */
3536         g_assert(ds->nr_lmbs);
3537     }
3538 
3539     if (--ds->nr_lmbs) {
3540         return;
3541     }
3542 
3543     /*
3544      * Now that all the LMBs have been removed by the guest, call the
3545      * unplug handler chain. This can never fail.
3546      */
3547     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3548 }
3549 
3550 static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3551 {
3552     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3553     sPAPRDIMMState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev));
3554 
3555     pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev));
3556     object_unparent(OBJECT(dev));
3557     spapr_pending_dimm_unplugs_remove(spapr, ds);
3558 }
3559 
3560 static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev,
3561                                         DeviceState *dev, Error **errp)
3562 {
3563     sPAPRMachineState *spapr = SPAPR_MACHINE(hotplug_dev);
3564     Error *local_err = NULL;
3565     PCDIMMDevice *dimm = PC_DIMM(dev);
3566     uint32_t nr_lmbs;
3567     uint64_t size, addr_start, addr;
3568     int i;
3569     sPAPRDRConnector *drc;
3570 
3571     size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort);
3572     nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE;
3573 
3574     addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP,
3575                                          &local_err);
3576     if (local_err) {
3577         goto out;
3578     }
3579 
3580     /*
3581      * An existing pending dimm state for this DIMM means that there is an
3582      * unplug operation in progress, waiting for the spapr_lmb_release
3583      * callback to complete the job (BQL can't cover that far). In this case,
3584      * bail out to avoid detaching DRCs that were already released.
3585      */
3586     if (spapr_pending_dimm_unplugs_find(spapr, dimm)) {
3587         error_setg(&local_err,
3588                    "Memory unplug already in progress for device %s",
3589                    dev->id);
3590         goto out;
3591     }
3592 
3593     spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm);
3594 
3595     addr = addr_start;
3596     for (i = 0; i < nr_lmbs; i++) {
3597         drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3598                               addr / SPAPR_MEMORY_BLOCK_SIZE);
3599         g_assert(drc);
3600 
3601         spapr_drc_detach(drc);
3602         addr += SPAPR_MEMORY_BLOCK_SIZE;
3603     }
3604 
3605     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB,
3606                           addr_start / SPAPR_MEMORY_BLOCK_SIZE);
3607     spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB,
3608                                               nr_lmbs, spapr_drc_index(drc));
3609 out:
3610     error_propagate(errp, local_err);
3611 }
3612 
3613 static void *spapr_populate_hotplug_cpu_dt(CPUState *cs, int *fdt_offset,
3614                                            sPAPRMachineState *spapr)
3615 {
3616     PowerPCCPU *cpu = POWERPC_CPU(cs);
3617     DeviceClass *dc = DEVICE_GET_CLASS(cs);
3618     int id = spapr_get_vcpu_id(cpu);
3619     void *fdt;
3620     int offset, fdt_size;
3621     char *nodename;
3622 
3623     fdt = create_device_tree(&fdt_size);
3624     nodename = g_strdup_printf("%s@%x", dc->fw_name, id);
3625     offset = fdt_add_subnode(fdt, 0, nodename);
3626 
3627     spapr_populate_cpu_dt(cs, fdt, offset, spapr);
3628     g_free(nodename);
3629 
3630     *fdt_offset = offset;
3631     return fdt;
3632 }
3633 
3634 /* Callback to be called during DRC release. */
3635 void spapr_core_release(DeviceState *dev)
3636 {
3637     HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev);
3638 
3639     /* Call the unplug handler chain. This can never fail. */
3640     hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort);
3641 }
3642 
3643 static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev)
3644 {
3645     MachineState *ms = MACHINE(hotplug_dev);
3646     sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms);
3647     CPUCore *cc = CPU_CORE(dev);
3648     CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL);
3649 
3650     if (smc->pre_2_10_has_unused_icps) {
3651         sPAPRCPUCore *sc = SPAPR_CPU_CORE(OBJECT(dev));
3652         int i;
3653 
3654         for (i = 0; i < cc->nr_threads; i++) {
3655             CPUState *cs = CPU(sc->threads[i]);
3656 
3657             pre_2_10_vmstate_register_dummy_icp(cs->cpu_index);
3658         }
3659     }
3660 
3661     assert(core_slot);
3662     core_slot->cpu = NULL;
3663     object_unparent(OBJECT(dev));
3664 }
3665 
3666 static
3667 void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev,
3668                                Error **errp)
3669 {
3670     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3671     int index;
3672     sPAPRDRConnector *drc;
3673     CPUCore *cc = CPU_CORE(dev);
3674 
3675     if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) {
3676         error_setg(errp, "Unable to find CPU core with core-id: %d",
3677                    cc->core_id);
3678         return;
3679     }
3680     if (index == 0) {
3681         error_setg(errp, "Boot CPU core may not be unplugged");
3682         return;
3683     }
3684 
3685     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3686                           spapr_vcpu_id(spapr, cc->core_id));
3687     g_assert(drc);
3688 
3689     spapr_drc_detach(drc);
3690 
3691     spapr_hotplug_req_remove_by_index(drc);
3692 }
3693 
3694 static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3695                             Error **errp)
3696 {
3697     sPAPRMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev));
3698     MachineClass *mc = MACHINE_GET_CLASS(spapr);
3699     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
3700     sPAPRCPUCore *core = SPAPR_CPU_CORE(OBJECT(dev));
3701     CPUCore *cc = CPU_CORE(dev);
3702     CPUState *cs = CPU(core->threads[0]);
3703     sPAPRDRConnector *drc;
3704     Error *local_err = NULL;
3705     CPUArchId *core_slot;
3706     int index;
3707     bool hotplugged = spapr_drc_hotplugged(dev);
3708 
3709     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3710     if (!core_slot) {
3711         error_setg(errp, "Unable to find CPU core with core-id: %d",
3712                    cc->core_id);
3713         return;
3714     }
3715     drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU,
3716                           spapr_vcpu_id(spapr, cc->core_id));
3717 
3718     g_assert(drc || !mc->has_hotpluggable_cpus);
3719 
3720     if (drc) {
3721         void *fdt;
3722         int fdt_offset;
3723 
3724         fdt = spapr_populate_hotplug_cpu_dt(cs, &fdt_offset, spapr);
3725 
3726         spapr_drc_attach(drc, dev, fdt, fdt_offset, &local_err);
3727         if (local_err) {
3728             g_free(fdt);
3729             error_propagate(errp, local_err);
3730             return;
3731         }
3732 
3733         if (hotplugged) {
3734             /*
3735              * Send hotplug notification interrupt to the guest only
3736              * in case of hotplugged CPUs.
3737              */
3738             spapr_hotplug_req_add_by_index(drc);
3739         } else {
3740             spapr_drc_reset(drc);
3741         }
3742     }
3743 
3744     core_slot->cpu = OBJECT(dev);
3745 
3746     if (smc->pre_2_10_has_unused_icps) {
3747         int i;
3748 
3749         for (i = 0; i < cc->nr_threads; i++) {
3750             cs = CPU(core->threads[i]);
3751             pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index);
3752         }
3753     }
3754 }
3755 
3756 static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
3757                                 Error **errp)
3758 {
3759     MachineState *machine = MACHINE(OBJECT(hotplug_dev));
3760     MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev);
3761     Error *local_err = NULL;
3762     CPUCore *cc = CPU_CORE(dev);
3763     const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type);
3764     const char *type = object_get_typename(OBJECT(dev));
3765     CPUArchId *core_slot;
3766     int index;
3767 
3768     if (dev->hotplugged && !mc->has_hotpluggable_cpus) {
3769         error_setg(&local_err, "CPU hotplug not supported for this machine");
3770         goto out;
3771     }
3772 
3773     if (strcmp(base_core_type, type)) {
3774         error_setg(&local_err, "CPU core type should be %s", base_core_type);
3775         goto out;
3776     }
3777 
3778     if (cc->core_id % smp_threads) {
3779         error_setg(&local_err, "invalid core id %d", cc->core_id);
3780         goto out;
3781     }
3782 
3783     /*
3784      * In general we should have homogeneous threads-per-core, but old
3785      * (pre hotplug support) machine types allow the last core to have
3786      * reduced threads as a compatibility hack for when we allowed
3787      * total vcpus not a multiple of threads-per-core.
3788      */
3789     if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) {
3790         error_setg(&local_err, "invalid nr-threads %d, must be %d",
3791                    cc->nr_threads, smp_threads);
3792         goto out;
3793     }
3794 
3795     core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index);
3796     if (!core_slot) {
3797         error_setg(&local_err, "core id %d out of range", cc->core_id);
3798         goto out;
3799     }
3800 
3801     if (core_slot->cpu) {
3802         error_setg(&local_err, "core %d already populated", cc->core_id);
3803         goto out;
3804     }
3805 
3806     numa_cpu_pre_plug(core_slot, dev, &local_err);
3807 
3808 out:
3809     error_propagate(errp, local_err);
3810 }
3811 
3812 static void spapr_machine_device_plug(HotplugHandler *hotplug_dev,
3813                                       DeviceState *dev, Error **errp)
3814 {
3815     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3816         spapr_memory_plug(hotplug_dev, dev, errp);
3817     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3818         spapr_core_plug(hotplug_dev, dev, errp);
3819     }
3820 }
3821 
3822 static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev,
3823                                         DeviceState *dev, Error **errp)
3824 {
3825     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3826         spapr_memory_unplug(hotplug_dev, dev);
3827     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3828         spapr_core_unplug(hotplug_dev, dev);
3829     }
3830 }
3831 
3832 static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev,
3833                                                 DeviceState *dev, Error **errp)
3834 {
3835     sPAPRMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev));
3836     MachineClass *mc = MACHINE_GET_CLASS(sms);
3837 
3838     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3839         if (spapr_ovec_test(sms->ov5_cas, OV5_HP_EVT)) {
3840             spapr_memory_unplug_request(hotplug_dev, dev, errp);
3841         } else {
3842             /* NOTE: this means there is a window after guest reset, prior to
3843              * CAS negotiation, where unplug requests will fail due to the
3844              * capability not being detected yet. This is a bit different than
3845              * the case with PCI unplug, where the events will be queued and
3846              * eventually handled by the guest after boot
3847              */
3848             error_setg(errp, "Memory hot unplug not supported for this guest");
3849         }
3850     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3851         if (!mc->has_hotpluggable_cpus) {
3852             error_setg(errp, "CPU hot unplug not supported on this machine");
3853             return;
3854         }
3855         spapr_core_unplug_request(hotplug_dev, dev, errp);
3856     }
3857 }
3858 
3859 static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev,
3860                                           DeviceState *dev, Error **errp)
3861 {
3862     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
3863         spapr_memory_pre_plug(hotplug_dev, dev, errp);
3864     } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3865         spapr_core_pre_plug(hotplug_dev, dev, errp);
3866     }
3867 }
3868 
3869 static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine,
3870                                                  DeviceState *dev)
3871 {
3872     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
3873         object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) {
3874         return HOTPLUG_HANDLER(machine);
3875     }
3876     return NULL;
3877 }
3878 
3879 static CpuInstanceProperties
3880 spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index)
3881 {
3882     CPUArchId *core_slot;
3883     MachineClass *mc = MACHINE_GET_CLASS(machine);
3884 
3885     /* make sure possible_cpu are intialized */
3886     mc->possible_cpu_arch_ids(machine);
3887     /* get CPU core slot containing thread that matches cpu_index */
3888     core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL);
3889     assert(core_slot);
3890     return core_slot->props;
3891 }
3892 
3893 static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx)
3894 {
3895     return idx / smp_cores % nb_numa_nodes;
3896 }
3897 
3898 static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine)
3899 {
3900     int i;
3901     const char *core_type;
3902     int spapr_max_cores = max_cpus / smp_threads;
3903     MachineClass *mc = MACHINE_GET_CLASS(machine);
3904 
3905     if (!mc->has_hotpluggable_cpus) {
3906         spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads;
3907     }
3908     if (machine->possible_cpus) {
3909         assert(machine->possible_cpus->len == spapr_max_cores);
3910         return machine->possible_cpus;
3911     }
3912 
3913     core_type = spapr_get_cpu_core_type(machine->cpu_type);
3914     if (!core_type) {
3915         error_report("Unable to find sPAPR CPU Core definition");
3916         exit(1);
3917     }
3918 
3919     machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
3920                              sizeof(CPUArchId) * spapr_max_cores);
3921     machine->possible_cpus->len = spapr_max_cores;
3922     for (i = 0; i < machine->possible_cpus->len; i++) {
3923         int core_id = i * smp_threads;
3924 
3925         machine->possible_cpus->cpus[i].type = core_type;
3926         machine->possible_cpus->cpus[i].vcpus_count = smp_threads;
3927         machine->possible_cpus->cpus[i].arch_id = core_id;
3928         machine->possible_cpus->cpus[i].props.has_core_id = true;
3929         machine->possible_cpus->cpus[i].props.core_id = core_id;
3930     }
3931     return machine->possible_cpus;
3932 }
3933 
3934 static void spapr_phb_placement(sPAPRMachineState *spapr, uint32_t index,
3935                                 uint64_t *buid, hwaddr *pio,
3936                                 hwaddr *mmio32, hwaddr *mmio64,
3937                                 unsigned n_dma, uint32_t *liobns, Error **errp)
3938 {
3939     /*
3940      * New-style PHB window placement.
3941      *
3942      * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window
3943      * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO
3944      * windows.
3945      *
3946      * Some guest kernels can't work with MMIO windows above 1<<46
3947      * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB
3948      *
3949      * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each
3950      * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the
3951      * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the
3952      * 1TiB 64-bit MMIO windows for each PHB.
3953      */
3954     const uint64_t base_buid = 0x800000020000000ULL;
3955     int i;
3956 
3957     /* Sanity check natural alignments */
3958     QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3959     QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0);
3960     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0);
3961     QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0);
3962     /* Sanity check bounds */
3963     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) >
3964                       SPAPR_PCI_MEM32_WIN_SIZE);
3965     QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) >
3966                       SPAPR_PCI_MEM64_WIN_SIZE);
3967 
3968     if (index >= SPAPR_MAX_PHBS) {
3969         error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)",
3970                    SPAPR_MAX_PHBS - 1);
3971         return;
3972     }
3973 
3974     *buid = base_buid + index;
3975     for (i = 0; i < n_dma; ++i) {
3976         liobns[i] = SPAPR_PCI_LIOBN(index, i);
3977     }
3978 
3979     *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE;
3980     *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE;
3981     *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE;
3982 }
3983 
3984 static ICSState *spapr_ics_get(XICSFabric *dev, int irq)
3985 {
3986     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3987 
3988     return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL;
3989 }
3990 
3991 static void spapr_ics_resend(XICSFabric *dev)
3992 {
3993     sPAPRMachineState *spapr = SPAPR_MACHINE(dev);
3994 
3995     ics_resend(spapr->ics);
3996 }
3997 
3998 static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id)
3999 {
4000     PowerPCCPU *cpu = spapr_find_cpu(vcpu_id);
4001 
4002     return cpu ? spapr_cpu_state(cpu)->icp : NULL;
4003 }
4004 
4005 static void spapr_pic_print_info(InterruptStatsProvider *obj,
4006                                  Monitor *mon)
4007 {
4008     sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
4009 
4010     spapr->irq->print_info(spapr, mon);
4011 }
4012 
4013 int spapr_get_vcpu_id(PowerPCCPU *cpu)
4014 {
4015     return cpu->vcpu_id;
4016 }
4017 
4018 void spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp)
4019 {
4020     sPAPRMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
4021     int vcpu_id;
4022 
4023     vcpu_id = spapr_vcpu_id(spapr, cpu_index);
4024 
4025     if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) {
4026         error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id);
4027         error_append_hint(errp, "Adjust the number of cpus to %d "
4028                           "or try to raise the number of threads per core\n",
4029                           vcpu_id * smp_threads / spapr->vsmt);
4030         return;
4031     }
4032 
4033     cpu->vcpu_id = vcpu_id;
4034 }
4035 
4036 PowerPCCPU *spapr_find_cpu(int vcpu_id)
4037 {
4038     CPUState *cs;
4039 
4040     CPU_FOREACH(cs) {
4041         PowerPCCPU *cpu = POWERPC_CPU(cs);
4042 
4043         if (spapr_get_vcpu_id(cpu) == vcpu_id) {
4044             return cpu;
4045         }
4046     }
4047 
4048     return NULL;
4049 }
4050 
4051 static void spapr_machine_class_init(ObjectClass *oc, void *data)
4052 {
4053     MachineClass *mc = MACHINE_CLASS(oc);
4054     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(oc);
4055     FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc);
4056     NMIClass *nc = NMI_CLASS(oc);
4057     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
4058     PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc);
4059     XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
4060     InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
4061 
4062     mc->desc = "pSeries Logical Partition (PAPR compliant)";
4063     mc->ignore_boot_device_suffixes = true;
4064 
4065     /*
4066      * We set up the default / latest behaviour here.  The class_init
4067      * functions for the specific versioned machine types can override
4068      * these details for backwards compatibility
4069      */
4070     mc->init = spapr_machine_init;
4071     mc->reset = spapr_machine_reset;
4072     mc->block_default_type = IF_SCSI;
4073     mc->max_cpus = 1024;
4074     mc->no_parallel = 1;
4075     mc->default_boot_order = "";
4076     mc->default_ram_size = 512 * MiB;
4077     mc->default_display = "std";
4078     mc->kvm_type = spapr_kvm_type;
4079     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE);
4080     mc->pci_allow_0_address = true;
4081     assert(!mc->get_hotplug_handler);
4082     mc->get_hotplug_handler = spapr_get_hotplug_handler;
4083     hc->pre_plug = spapr_machine_device_pre_plug;
4084     hc->plug = spapr_machine_device_plug;
4085     mc->cpu_index_to_instance_props = spapr_cpu_index_to_props;
4086     mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id;
4087     mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids;
4088     hc->unplug_request = spapr_machine_device_unplug_request;
4089     hc->unplug = spapr_machine_device_unplug;
4090 
4091     smc->dr_lmb_enabled = true;
4092     smc->update_dt_enabled = true;
4093     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
4094     mc->has_hotpluggable_cpus = true;
4095     smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED;
4096     fwc->get_dev_path = spapr_get_fw_dev_path;
4097     nc->nmi_monitor_handler = spapr_nmi;
4098     smc->phb_placement = spapr_phb_placement;
4099     vhc->hypercall = emulate_spapr_hypercall;
4100     vhc->hpt_mask = spapr_hpt_mask;
4101     vhc->map_hptes = spapr_map_hptes;
4102     vhc->unmap_hptes = spapr_unmap_hptes;
4103     vhc->store_hpte = spapr_store_hpte;
4104     vhc->get_patbe = spapr_get_patbe;
4105     vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr;
4106     xic->ics_get = spapr_ics_get;
4107     xic->ics_resend = spapr_ics_resend;
4108     xic->icp_get = spapr_icp_get;
4109     ispc->print_info = spapr_pic_print_info;
4110     /* Force NUMA node memory size to be a multiple of
4111      * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity
4112      * in which LMBs are represented and hot-added
4113      */
4114     mc->numa_mem_align_shift = 28;
4115 
4116     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
4117     smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON;
4118     smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON;
4119     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
4120     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
4121     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
4122     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */
4123     smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF;
4124     spapr_caps_add_properties(smc, &error_abort);
4125     smc->irq = &spapr_irq_xics;
4126 }
4127 
4128 static const TypeInfo spapr_machine_info = {
4129     .name          = TYPE_SPAPR_MACHINE,
4130     .parent        = TYPE_MACHINE,
4131     .abstract      = true,
4132     .instance_size = sizeof(sPAPRMachineState),
4133     .instance_init = spapr_instance_init,
4134     .instance_finalize = spapr_machine_finalizefn,
4135     .class_size    = sizeof(sPAPRMachineClass),
4136     .class_init    = spapr_machine_class_init,
4137     .interfaces = (InterfaceInfo[]) {
4138         { TYPE_FW_PATH_PROVIDER },
4139         { TYPE_NMI },
4140         { TYPE_HOTPLUG_HANDLER },
4141         { TYPE_PPC_VIRTUAL_HYPERVISOR },
4142         { TYPE_XICS_FABRIC },
4143         { TYPE_INTERRUPT_STATS_PROVIDER },
4144         { }
4145     },
4146 };
4147 
4148 #define DEFINE_SPAPR_MACHINE(suffix, verstr, latest)                 \
4149     static void spapr_machine_##suffix##_class_init(ObjectClass *oc, \
4150                                                     void *data)      \
4151     {                                                                \
4152         MachineClass *mc = MACHINE_CLASS(oc);                        \
4153         spapr_machine_##suffix##_class_options(mc);                  \
4154         if (latest) {                                                \
4155             mc->alias = "pseries";                                   \
4156             mc->is_default = 1;                                      \
4157         }                                                            \
4158     }                                                                \
4159     static const TypeInfo spapr_machine_##suffix##_info = {          \
4160         .name = MACHINE_TYPE_NAME("pseries-" verstr),                \
4161         .parent = TYPE_SPAPR_MACHINE,                                \
4162         .class_init = spapr_machine_##suffix##_class_init,           \
4163     };                                                               \
4164     static void spapr_machine_register_##suffix(void)                \
4165     {                                                                \
4166         type_register(&spapr_machine_##suffix##_info);               \
4167     }                                                                \
4168     type_init(spapr_machine_register_##suffix)
4169 
4170 /*
4171  * pseries-4.0
4172  */
4173 static void spapr_machine_4_0_class_options(MachineClass *mc)
4174 {
4175     /* Defaults for the latest behaviour inherited from the base class */
4176 }
4177 
4178 DEFINE_SPAPR_MACHINE(4_0, "4.0", true);
4179 
4180 /*
4181  * pseries-3.1
4182  */
4183 static void spapr_machine_3_1_class_options(MachineClass *mc)
4184 {
4185     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4186     static GlobalProperty compat[] = {
4187         { TYPE_SPAPR_MACHINE, "host-model", "passthrough" },
4188         { TYPE_SPAPR_MACHINE, "host-serial", "passthrough" },
4189     };
4190 
4191     spapr_machine_4_0_class_options(mc);
4192     compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len);
4193     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4194 
4195     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
4196     smc->update_dt_enabled = false;
4197 }
4198 
4199 DEFINE_SPAPR_MACHINE(3_1, "3.1", false);
4200 
4201 /*
4202  * pseries-3.0
4203  */
4204 
4205 static void spapr_machine_3_0_class_options(MachineClass *mc)
4206 {
4207     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4208 
4209     spapr_machine_3_1_class_options(mc);
4210     compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len);
4211 
4212     smc->legacy_irq_allocation = true;
4213     smc->irq = &spapr_irq_xics_legacy;
4214 }
4215 
4216 DEFINE_SPAPR_MACHINE(3_0, "3.0", false);
4217 
4218 /*
4219  * pseries-2.12
4220  */
4221 static void spapr_machine_2_12_class_options(MachineClass *mc)
4222 {
4223     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4224     static GlobalProperty compat[] = {
4225         { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" },
4226         { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" },
4227     };
4228 
4229     spapr_machine_3_0_class_options(mc);
4230     compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len);
4231     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4232 
4233     /* We depend on kvm_enabled() to choose a default value for the
4234      * hpt-max-page-size capability. Of course we can't do it here
4235      * because this is too early and the HW accelerator isn't initialzed
4236      * yet. Postpone this to machine init (see default_caps_with_cpu()).
4237      */
4238     smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0;
4239 }
4240 
4241 DEFINE_SPAPR_MACHINE(2_12, "2.12", false);
4242 
4243 static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc)
4244 {
4245     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4246 
4247     spapr_machine_2_12_class_options(mc);
4248     smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND;
4249     smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND;
4250     smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD;
4251 }
4252 
4253 DEFINE_SPAPR_MACHINE(2_12_sxxm, "2.12-sxxm", false);
4254 
4255 /*
4256  * pseries-2.11
4257  */
4258 
4259 static void spapr_machine_2_11_class_options(MachineClass *mc)
4260 {
4261     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4262 
4263     spapr_machine_2_12_class_options(mc);
4264     smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON;
4265     compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len);
4266 }
4267 
4268 DEFINE_SPAPR_MACHINE(2_11, "2.11", false);
4269 
4270 /*
4271  * pseries-2.10
4272  */
4273 
4274 static void spapr_machine_2_10_class_options(MachineClass *mc)
4275 {
4276     spapr_machine_2_11_class_options(mc);
4277     compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len);
4278 }
4279 
4280 DEFINE_SPAPR_MACHINE(2_10, "2.10", false);
4281 
4282 /*
4283  * pseries-2.9
4284  */
4285 
4286 static void spapr_machine_2_9_class_options(MachineClass *mc)
4287 {
4288     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4289     static GlobalProperty compat[] = {
4290         { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" },
4291     };
4292 
4293     spapr_machine_2_10_class_options(mc);
4294     compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len);
4295     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4296     mc->numa_auto_assign_ram = numa_legacy_auto_assign_ram;
4297     smc->pre_2_10_has_unused_icps = true;
4298     smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED;
4299 }
4300 
4301 DEFINE_SPAPR_MACHINE(2_9, "2.9", false);
4302 
4303 /*
4304  * pseries-2.8
4305  */
4306 
4307 static void spapr_machine_2_8_class_options(MachineClass *mc)
4308 {
4309     static GlobalProperty compat[] = {
4310         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" },
4311     };
4312 
4313     spapr_machine_2_9_class_options(mc);
4314     compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len);
4315     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4316     mc->numa_mem_align_shift = 23;
4317 }
4318 
4319 DEFINE_SPAPR_MACHINE(2_8, "2.8", false);
4320 
4321 /*
4322  * pseries-2.7
4323  */
4324 
4325 static void phb_placement_2_7(sPAPRMachineState *spapr, uint32_t index,
4326                               uint64_t *buid, hwaddr *pio,
4327                               hwaddr *mmio32, hwaddr *mmio64,
4328                               unsigned n_dma, uint32_t *liobns, Error **errp)
4329 {
4330     /* Legacy PHB placement for pseries-2.7 and earlier machine types */
4331     const uint64_t base_buid = 0x800000020000000ULL;
4332     const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */
4333     const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */
4334     const hwaddr pio_offset = 0x80000000; /* 2 GiB */
4335     const uint32_t max_index = 255;
4336     const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */
4337 
4338     uint64_t ram_top = MACHINE(spapr)->ram_size;
4339     hwaddr phb0_base, phb_base;
4340     int i;
4341 
4342     /* Do we have device memory? */
4343     if (MACHINE(spapr)->maxram_size > ram_top) {
4344         /* Can't just use maxram_size, because there may be an
4345          * alignment gap between normal and device memory regions
4346          */
4347         ram_top = MACHINE(spapr)->device_memory->base +
4348             memory_region_size(&MACHINE(spapr)->device_memory->mr);
4349     }
4350 
4351     phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment);
4352 
4353     if (index > max_index) {
4354         error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)",
4355                    max_index);
4356         return;
4357     }
4358 
4359     *buid = base_buid + index;
4360     for (i = 0; i < n_dma; ++i) {
4361         liobns[i] = SPAPR_PCI_LIOBN(index, i);
4362     }
4363 
4364     phb_base = phb0_base + index * phb_spacing;
4365     *pio = phb_base + pio_offset;
4366     *mmio32 = phb_base + mmio_offset;
4367     /*
4368      * We don't set the 64-bit MMIO window, relying on the PHB's
4369      * fallback behaviour of automatically splitting a large "32-bit"
4370      * window into contiguous 32-bit and 64-bit windows
4371      */
4372 }
4373 
4374 static void spapr_machine_2_7_class_options(MachineClass *mc)
4375 {
4376     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4377     static GlobalProperty compat[] = {
4378         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", },
4379         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", },
4380         { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", },
4381         { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", },
4382     };
4383 
4384     spapr_machine_2_8_class_options(mc);
4385     mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3");
4386     mc->default_machine_opts = "modern-hotplug-events=off";
4387     compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len);
4388     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4389     smc->phb_placement = phb_placement_2_7;
4390 }
4391 
4392 DEFINE_SPAPR_MACHINE(2_7, "2.7", false);
4393 
4394 /*
4395  * pseries-2.6
4396  */
4397 
4398 static void spapr_machine_2_6_class_options(MachineClass *mc)
4399 {
4400     static GlobalProperty compat[] = {
4401         { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" },
4402     };
4403 
4404     spapr_machine_2_7_class_options(mc);
4405     mc->has_hotpluggable_cpus = false;
4406     compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len);
4407     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4408 }
4409 
4410 DEFINE_SPAPR_MACHINE(2_6, "2.6", false);
4411 
4412 /*
4413  * pseries-2.5
4414  */
4415 
4416 static void spapr_machine_2_5_class_options(MachineClass *mc)
4417 {
4418     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4419     static GlobalProperty compat[] = {
4420         { "spapr-vlan", "use-rx-buffer-pools", "off" },
4421     };
4422 
4423     spapr_machine_2_6_class_options(mc);
4424     smc->use_ohci_by_default = true;
4425     compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len);
4426     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4427 }
4428 
4429 DEFINE_SPAPR_MACHINE(2_5, "2.5", false);
4430 
4431 /*
4432  * pseries-2.4
4433  */
4434 
4435 static void spapr_machine_2_4_class_options(MachineClass *mc)
4436 {
4437     sPAPRMachineClass *smc = SPAPR_MACHINE_CLASS(mc);
4438 
4439     spapr_machine_2_5_class_options(mc);
4440     smc->dr_lmb_enabled = false;
4441     compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len);
4442 }
4443 
4444 DEFINE_SPAPR_MACHINE(2_4, "2.4", false);
4445 
4446 /*
4447  * pseries-2.3
4448  */
4449 
4450 static void spapr_machine_2_3_class_options(MachineClass *mc)
4451 {
4452     static GlobalProperty compat[] = {
4453         { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" },
4454     };
4455     spapr_machine_2_4_class_options(mc);
4456     compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len);
4457     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4458 }
4459 DEFINE_SPAPR_MACHINE(2_3, "2.3", false);
4460 
4461 /*
4462  * pseries-2.2
4463  */
4464 
4465 static void spapr_machine_2_2_class_options(MachineClass *mc)
4466 {
4467     static GlobalProperty compat[] = {
4468         { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" },
4469     };
4470 
4471     spapr_machine_2_3_class_options(mc);
4472     compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len);
4473     compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat));
4474     mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on";
4475 }
4476 DEFINE_SPAPR_MACHINE(2_2, "2.2", false);
4477 
4478 /*
4479  * pseries-2.1
4480  */
4481 
4482 static void spapr_machine_2_1_class_options(MachineClass *mc)
4483 {
4484     spapr_machine_2_2_class_options(mc);
4485     compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len);
4486 }
4487 DEFINE_SPAPR_MACHINE(2_1, "2.1", false);
4488 
4489 static void spapr_machine_register_types(void)
4490 {
4491     type_register_static(&spapr_machine_info);
4492 }
4493 
4494 type_init(spapr_machine_register_types)
4495