xref: /qemu/hw/ppc/ppc.c (revision b4682a63f86ed81abcaa543ea6135e17f9e99d01)
1  /*
2   * QEMU generic PowerPC hardware System Emulator
3   *
4   * Copyright (c) 2003-2007 Jocelyn Mayer
5   *
6   * Permission is hereby granted, free of charge, to any person obtaining a copy
7   * of this software and associated documentation files (the "Software"), to deal
8   * in the Software without restriction, including without limitation the rights
9   * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10   * copies of the Software, and to permit persons to whom the Software is
11   * furnished to do so, subject to the following conditions:
12   *
13   * The above copyright notice and this permission notice shall be included in
14   * all copies or substantial portions of the Software.
15   *
16   * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17   * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18   * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19   * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20   * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21   * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22   * THE SOFTWARE.
23   */
24  #include "qemu/osdep.h"
25  #include "qemu-common.h"
26  #include "cpu.h"
27  #include "hw/hw.h"
28  #include "hw/ppc/ppc.h"
29  #include "hw/ppc/ppc_e500.h"
30  #include "qemu/timer.h"
31  #include "sysemu/sysemu.h"
32  #include "sysemu/cpus.h"
33  #include "qemu/log.h"
34  #include "qemu/error-report.h"
35  #include "sysemu/kvm.h"
36  #include "kvm_ppc.h"
37  #include "trace.h"
38  
39  //#define PPC_DEBUG_IRQ
40  //#define PPC_DEBUG_TB
41  
42  #ifdef PPC_DEBUG_IRQ
43  #  define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
44  #else
45  #  define LOG_IRQ(...) do { } while (0)
46  #endif
47  
48  
49  #ifdef PPC_DEBUG_TB
50  #  define LOG_TB(...) qemu_log(__VA_ARGS__)
51  #else
52  #  define LOG_TB(...) do { } while (0)
53  #endif
54  
55  static void cpu_ppc_tb_stop (CPUPPCState *env);
56  static void cpu_ppc_tb_start (CPUPPCState *env);
57  
58  void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
59  {
60      CPUState *cs = CPU(cpu);
61      CPUPPCState *env = &cpu->env;
62      unsigned int old_pending;
63      bool locked = false;
64  
65      /* We may already have the BQL if coming from the reset path */
66      if (!qemu_mutex_iothread_locked()) {
67          locked = true;
68          qemu_mutex_lock_iothread();
69      }
70  
71      old_pending = env->pending_interrupts;
72  
73      if (level) {
74          env->pending_interrupts |= 1 << n_IRQ;
75          cpu_interrupt(cs, CPU_INTERRUPT_HARD);
76      } else {
77          env->pending_interrupts &= ~(1 << n_IRQ);
78          if (env->pending_interrupts == 0) {
79              cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
80          }
81      }
82  
83      if (old_pending != env->pending_interrupts) {
84  #ifdef CONFIG_KVM
85          kvmppc_set_interrupt(cpu, n_IRQ, level);
86  #endif
87      }
88  
89  
90      LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
91                  "req %08x\n", __func__, env, n_IRQ, level,
92                  env->pending_interrupts, CPU(cpu)->interrupt_request);
93  
94      if (locked) {
95          qemu_mutex_unlock_iothread();
96      }
97  }
98  
99  /* PowerPC 6xx / 7xx internal IRQ controller */
100  static void ppc6xx_set_irq(void *opaque, int pin, int level)
101  {
102      PowerPCCPU *cpu = opaque;
103      CPUPPCState *env = &cpu->env;
104      int cur_level;
105  
106      LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
107                  env, pin, level);
108      cur_level = (env->irq_input_state >> pin) & 1;
109      /* Don't generate spurious events */
110      if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
111          CPUState *cs = CPU(cpu);
112  
113          switch (pin) {
114          case PPC6xx_INPUT_TBEN:
115              /* Level sensitive - active high */
116              LOG_IRQ("%s: %s the time base\n",
117                          __func__, level ? "start" : "stop");
118              if (level) {
119                  cpu_ppc_tb_start(env);
120              } else {
121                  cpu_ppc_tb_stop(env);
122              }
123          case PPC6xx_INPUT_INT:
124              /* Level sensitive - active high */
125              LOG_IRQ("%s: set the external IRQ state to %d\n",
126                          __func__, level);
127              ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
128              break;
129          case PPC6xx_INPUT_SMI:
130              /* Level sensitive - active high */
131              LOG_IRQ("%s: set the SMI IRQ state to %d\n",
132                          __func__, level);
133              ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
134              break;
135          case PPC6xx_INPUT_MCP:
136              /* Negative edge sensitive */
137              /* XXX: TODO: actual reaction may depends on HID0 status
138               *            603/604/740/750: check HID0[EMCP]
139               */
140              if (cur_level == 1 && level == 0) {
141                  LOG_IRQ("%s: raise machine check state\n",
142                              __func__);
143                  ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
144              }
145              break;
146          case PPC6xx_INPUT_CKSTP_IN:
147              /* Level sensitive - active low */
148              /* XXX: TODO: relay the signal to CKSTP_OUT pin */
149              /* XXX: Note that the only way to restart the CPU is to reset it */
150              if (level) {
151                  LOG_IRQ("%s: stop the CPU\n", __func__);
152                  cs->halted = 1;
153              }
154              break;
155          case PPC6xx_INPUT_HRESET:
156              /* Level sensitive - active low */
157              if (level) {
158                  LOG_IRQ("%s: reset the CPU\n", __func__);
159                  cpu_interrupt(cs, CPU_INTERRUPT_RESET);
160              }
161              break;
162          case PPC6xx_INPUT_SRESET:
163              LOG_IRQ("%s: set the RESET IRQ state to %d\n",
164                          __func__, level);
165              ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
166              break;
167          default:
168              /* Unknown pin - do nothing */
169              LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
170              return;
171          }
172          if (level)
173              env->irq_input_state |= 1 << pin;
174          else
175              env->irq_input_state &= ~(1 << pin);
176      }
177  }
178  
179  void ppc6xx_irq_init(PowerPCCPU *cpu)
180  {
181      CPUPPCState *env = &cpu->env;
182  
183      env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
184                                                    PPC6xx_INPUT_NB);
185  }
186  
187  #if defined(TARGET_PPC64)
188  /* PowerPC 970 internal IRQ controller */
189  static void ppc970_set_irq(void *opaque, int pin, int level)
190  {
191      PowerPCCPU *cpu = opaque;
192      CPUPPCState *env = &cpu->env;
193      int cur_level;
194  
195      LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
196                  env, pin, level);
197      cur_level = (env->irq_input_state >> pin) & 1;
198      /* Don't generate spurious events */
199      if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
200          CPUState *cs = CPU(cpu);
201  
202          switch (pin) {
203          case PPC970_INPUT_INT:
204              /* Level sensitive - active high */
205              LOG_IRQ("%s: set the external IRQ state to %d\n",
206                          __func__, level);
207              ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
208              break;
209          case PPC970_INPUT_THINT:
210              /* Level sensitive - active high */
211              LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
212                          level);
213              ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
214              break;
215          case PPC970_INPUT_MCP:
216              /* Negative edge sensitive */
217              /* XXX: TODO: actual reaction may depends on HID0 status
218               *            603/604/740/750: check HID0[EMCP]
219               */
220              if (cur_level == 1 && level == 0) {
221                  LOG_IRQ("%s: raise machine check state\n",
222                              __func__);
223                  ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
224              }
225              break;
226          case PPC970_INPUT_CKSTP:
227              /* Level sensitive - active low */
228              /* XXX: TODO: relay the signal to CKSTP_OUT pin */
229              if (level) {
230                  LOG_IRQ("%s: stop the CPU\n", __func__);
231                  cs->halted = 1;
232              } else {
233                  LOG_IRQ("%s: restart the CPU\n", __func__);
234                  cs->halted = 0;
235                  qemu_cpu_kick(cs);
236              }
237              break;
238          case PPC970_INPUT_HRESET:
239              /* Level sensitive - active low */
240              if (level) {
241                  cpu_interrupt(cs, CPU_INTERRUPT_RESET);
242              }
243              break;
244          case PPC970_INPUT_SRESET:
245              LOG_IRQ("%s: set the RESET IRQ state to %d\n",
246                          __func__, level);
247              ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
248              break;
249          case PPC970_INPUT_TBEN:
250              LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
251                          level);
252              /* XXX: TODO */
253              break;
254          default:
255              /* Unknown pin - do nothing */
256              LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
257              return;
258          }
259          if (level)
260              env->irq_input_state |= 1 << pin;
261          else
262              env->irq_input_state &= ~(1 << pin);
263      }
264  }
265  
266  void ppc970_irq_init(PowerPCCPU *cpu)
267  {
268      CPUPPCState *env = &cpu->env;
269  
270      env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
271                                                    PPC970_INPUT_NB);
272  }
273  
274  /* POWER7 internal IRQ controller */
275  static void power7_set_irq(void *opaque, int pin, int level)
276  {
277      PowerPCCPU *cpu = opaque;
278      CPUPPCState *env = &cpu->env;
279  
280      LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
281                  env, pin, level);
282  
283      switch (pin) {
284      case POWER7_INPUT_INT:
285          /* Level sensitive - active high */
286          LOG_IRQ("%s: set the external IRQ state to %d\n",
287                  __func__, level);
288          ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
289          break;
290      default:
291          /* Unknown pin - do nothing */
292          LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
293          return;
294      }
295      if (level) {
296          env->irq_input_state |= 1 << pin;
297      } else {
298          env->irq_input_state &= ~(1 << pin);
299      }
300  }
301  
302  void ppcPOWER7_irq_init(PowerPCCPU *cpu)
303  {
304      CPUPPCState *env = &cpu->env;
305  
306      env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
307                                                    POWER7_INPUT_NB);
308  }
309  
310  /* POWER9 internal IRQ controller */
311  static void power9_set_irq(void *opaque, int pin, int level)
312  {
313      PowerPCCPU *cpu = opaque;
314      CPUPPCState *env = &cpu->env;
315  
316      LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
317                  env, pin, level);
318  
319      switch (pin) {
320      case POWER9_INPUT_INT:
321          /* Level sensitive - active high */
322          LOG_IRQ("%s: set the external IRQ state to %d\n",
323                  __func__, level);
324          ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
325          break;
326      case POWER9_INPUT_HINT:
327          /* Level sensitive - active high */
328          LOG_IRQ("%s: set the external IRQ state to %d\n",
329                  __func__, level);
330          ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
331          break;
332      default:
333          /* Unknown pin - do nothing */
334          LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
335          return;
336      }
337      if (level) {
338          env->irq_input_state |= 1 << pin;
339      } else {
340          env->irq_input_state &= ~(1 << pin);
341      }
342  }
343  
344  void ppcPOWER9_irq_init(PowerPCCPU *cpu)
345  {
346      CPUPPCState *env = &cpu->env;
347  
348      env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
349                                                    POWER9_INPUT_NB);
350  }
351  #endif /* defined(TARGET_PPC64) */
352  
353  void ppc40x_core_reset(PowerPCCPU *cpu)
354  {
355      CPUPPCState *env = &cpu->env;
356      target_ulong dbsr;
357  
358      qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
359      cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
360      dbsr = env->spr[SPR_40x_DBSR];
361      dbsr &= ~0x00000300;
362      dbsr |= 0x00000100;
363      env->spr[SPR_40x_DBSR] = dbsr;
364  }
365  
366  void ppc40x_chip_reset(PowerPCCPU *cpu)
367  {
368      CPUPPCState *env = &cpu->env;
369      target_ulong dbsr;
370  
371      qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
372      cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
373      /* XXX: TODO reset all internal peripherals */
374      dbsr = env->spr[SPR_40x_DBSR];
375      dbsr &= ~0x00000300;
376      dbsr |= 0x00000200;
377      env->spr[SPR_40x_DBSR] = dbsr;
378  }
379  
380  void ppc40x_system_reset(PowerPCCPU *cpu)
381  {
382      qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
383      qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
384  }
385  
386  void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
387  {
388      PowerPCCPU *cpu = ppc_env_get_cpu(env);
389  
390      switch ((val >> 28) & 0x3) {
391      case 0x0:
392          /* No action */
393          break;
394      case 0x1:
395          /* Core reset */
396          ppc40x_core_reset(cpu);
397          break;
398      case 0x2:
399          /* Chip reset */
400          ppc40x_chip_reset(cpu);
401          break;
402      case 0x3:
403          /* System reset */
404          ppc40x_system_reset(cpu);
405          break;
406      }
407  }
408  
409  /* PowerPC 40x internal IRQ controller */
410  static void ppc40x_set_irq(void *opaque, int pin, int level)
411  {
412      PowerPCCPU *cpu = opaque;
413      CPUPPCState *env = &cpu->env;
414      int cur_level;
415  
416      LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
417                  env, pin, level);
418      cur_level = (env->irq_input_state >> pin) & 1;
419      /* Don't generate spurious events */
420      if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
421          CPUState *cs = CPU(cpu);
422  
423          switch (pin) {
424          case PPC40x_INPUT_RESET_SYS:
425              if (level) {
426                  LOG_IRQ("%s: reset the PowerPC system\n",
427                              __func__);
428                  ppc40x_system_reset(cpu);
429              }
430              break;
431          case PPC40x_INPUT_RESET_CHIP:
432              if (level) {
433                  LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
434                  ppc40x_chip_reset(cpu);
435              }
436              break;
437          case PPC40x_INPUT_RESET_CORE:
438              /* XXX: TODO: update DBSR[MRR] */
439              if (level) {
440                  LOG_IRQ("%s: reset the PowerPC core\n", __func__);
441                  ppc40x_core_reset(cpu);
442              }
443              break;
444          case PPC40x_INPUT_CINT:
445              /* Level sensitive - active high */
446              LOG_IRQ("%s: set the critical IRQ state to %d\n",
447                          __func__, level);
448              ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
449              break;
450          case PPC40x_INPUT_INT:
451              /* Level sensitive - active high */
452              LOG_IRQ("%s: set the external IRQ state to %d\n",
453                          __func__, level);
454              ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
455              break;
456          case PPC40x_INPUT_HALT:
457              /* Level sensitive - active low */
458              if (level) {
459                  LOG_IRQ("%s: stop the CPU\n", __func__);
460                  cs->halted = 1;
461              } else {
462                  LOG_IRQ("%s: restart the CPU\n", __func__);
463                  cs->halted = 0;
464                  qemu_cpu_kick(cs);
465              }
466              break;
467          case PPC40x_INPUT_DEBUG:
468              /* Level sensitive - active high */
469              LOG_IRQ("%s: set the debug pin state to %d\n",
470                          __func__, level);
471              ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
472              break;
473          default:
474              /* Unknown pin - do nothing */
475              LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
476              return;
477          }
478          if (level)
479              env->irq_input_state |= 1 << pin;
480          else
481              env->irq_input_state &= ~(1 << pin);
482      }
483  }
484  
485  void ppc40x_irq_init(PowerPCCPU *cpu)
486  {
487      CPUPPCState *env = &cpu->env;
488  
489      env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
490                                                    cpu, PPC40x_INPUT_NB);
491  }
492  
493  /* PowerPC E500 internal IRQ controller */
494  static void ppce500_set_irq(void *opaque, int pin, int level)
495  {
496      PowerPCCPU *cpu = opaque;
497      CPUPPCState *env = &cpu->env;
498      int cur_level;
499  
500      LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
501                  env, pin, level);
502      cur_level = (env->irq_input_state >> pin) & 1;
503      /* Don't generate spurious events */
504      if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
505          switch (pin) {
506          case PPCE500_INPUT_MCK:
507              if (level) {
508                  LOG_IRQ("%s: reset the PowerPC system\n",
509                              __func__);
510                  qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
511              }
512              break;
513          case PPCE500_INPUT_RESET_CORE:
514              if (level) {
515                  LOG_IRQ("%s: reset the PowerPC core\n", __func__);
516                  ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
517              }
518              break;
519          case PPCE500_INPUT_CINT:
520              /* Level sensitive - active high */
521              LOG_IRQ("%s: set the critical IRQ state to %d\n",
522                          __func__, level);
523              ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
524              break;
525          case PPCE500_INPUT_INT:
526              /* Level sensitive - active high */
527              LOG_IRQ("%s: set the core IRQ state to %d\n",
528                          __func__, level);
529              ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
530              break;
531          case PPCE500_INPUT_DEBUG:
532              /* Level sensitive - active high */
533              LOG_IRQ("%s: set the debug pin state to %d\n",
534                          __func__, level);
535              ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
536              break;
537          default:
538              /* Unknown pin - do nothing */
539              LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
540              return;
541          }
542          if (level)
543              env->irq_input_state |= 1 << pin;
544          else
545              env->irq_input_state &= ~(1 << pin);
546      }
547  }
548  
549  void ppce500_irq_init(PowerPCCPU *cpu)
550  {
551      CPUPPCState *env = &cpu->env;
552  
553      env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
554                                                    cpu, PPCE500_INPUT_NB);
555  }
556  
557  /* Enable or Disable the E500 EPR capability */
558  void ppce500_set_mpic_proxy(bool enabled)
559  {
560      CPUState *cs;
561  
562      CPU_FOREACH(cs) {
563          PowerPCCPU *cpu = POWERPC_CPU(cs);
564  
565          cpu->env.mpic_proxy = enabled;
566          if (kvm_enabled()) {
567              kvmppc_set_mpic_proxy(cpu, enabled);
568          }
569      }
570  }
571  
572  /*****************************************************************************/
573  /* PowerPC time base and decrementer emulation */
574  
575  uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
576  {
577      /* TB time in tb periods */
578      return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
579  }
580  
581  uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
582  {
583      ppc_tb_t *tb_env = env->tb_env;
584      uint64_t tb;
585  
586      if (kvm_enabled()) {
587          return env->spr[SPR_TBL];
588      }
589  
590      tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
591      LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
592  
593      return tb;
594  }
595  
596  static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
597  {
598      ppc_tb_t *tb_env = env->tb_env;
599      uint64_t tb;
600  
601      tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
602      LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
603  
604      return tb >> 32;
605  }
606  
607  uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
608  {
609      if (kvm_enabled()) {
610          return env->spr[SPR_TBU];
611      }
612  
613      return _cpu_ppc_load_tbu(env);
614  }
615  
616  static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
617                                      int64_t *tb_offsetp, uint64_t value)
618  {
619      *tb_offsetp = value -
620          muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
621  
622      LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
623                  __func__, value, *tb_offsetp);
624  }
625  
626  void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
627  {
628      ppc_tb_t *tb_env = env->tb_env;
629      uint64_t tb;
630  
631      tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
632      tb &= 0xFFFFFFFF00000000ULL;
633      cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
634                       &tb_env->tb_offset, tb | (uint64_t)value);
635  }
636  
637  static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
638  {
639      ppc_tb_t *tb_env = env->tb_env;
640      uint64_t tb;
641  
642      tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
643      tb &= 0x00000000FFFFFFFFULL;
644      cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
645                       &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
646  }
647  
648  void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
649  {
650      _cpu_ppc_store_tbu(env, value);
651  }
652  
653  uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
654  {
655      ppc_tb_t *tb_env = env->tb_env;
656      uint64_t tb;
657  
658      tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
659      LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
660  
661      return tb;
662  }
663  
664  uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
665  {
666      ppc_tb_t *tb_env = env->tb_env;
667      uint64_t tb;
668  
669      tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
670      LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
671  
672      return tb >> 32;
673  }
674  
675  void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
676  {
677      ppc_tb_t *tb_env = env->tb_env;
678      uint64_t tb;
679  
680      tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
681      tb &= 0xFFFFFFFF00000000ULL;
682      cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
683                       &tb_env->atb_offset, tb | (uint64_t)value);
684  }
685  
686  void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
687  {
688      ppc_tb_t *tb_env = env->tb_env;
689      uint64_t tb;
690  
691      tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
692      tb &= 0x00000000FFFFFFFFULL;
693      cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
694                       &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
695  }
696  
697  static void cpu_ppc_tb_stop (CPUPPCState *env)
698  {
699      ppc_tb_t *tb_env = env->tb_env;
700      uint64_t tb, atb, vmclk;
701  
702      /* If the time base is already frozen, do nothing */
703      if (tb_env->tb_freq != 0) {
704          vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
705          /* Get the time base */
706          tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
707          /* Get the alternate time base */
708          atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
709          /* Store the time base value (ie compute the current offset) */
710          cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
711          /* Store the alternate time base value (compute the current offset) */
712          cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
713          /* Set the time base frequency to zero */
714          tb_env->tb_freq = 0;
715          /* Now, the time bases are frozen to tb_offset / atb_offset value */
716      }
717  }
718  
719  static void cpu_ppc_tb_start (CPUPPCState *env)
720  {
721      ppc_tb_t *tb_env = env->tb_env;
722      uint64_t tb, atb, vmclk;
723  
724      /* If the time base is not frozen, do nothing */
725      if (tb_env->tb_freq == 0) {
726          vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
727          /* Get the time base from tb_offset */
728          tb = tb_env->tb_offset;
729          /* Get the alternate time base from atb_offset */
730          atb = tb_env->atb_offset;
731          /* Restore the tb frequency from the decrementer frequency */
732          tb_env->tb_freq = tb_env->decr_freq;
733          /* Store the time base value */
734          cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
735          /* Store the alternate time base value */
736          cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
737      }
738  }
739  
740  bool ppc_decr_clear_on_delivery(CPUPPCState *env)
741  {
742      ppc_tb_t *tb_env = env->tb_env;
743      int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
744      return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
745  }
746  
747  static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
748  {
749      ppc_tb_t *tb_env = env->tb_env;
750      int64_t decr, diff;
751  
752      diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
753      if (diff >= 0) {
754          decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
755      } else if (tb_env->flags & PPC_TIMER_BOOKE) {
756          decr = 0;
757      }  else {
758          decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
759      }
760      LOG_TB("%s: %016" PRIx64 "\n", __func__, decr);
761  
762      return decr;
763  }
764  
765  target_ulong cpu_ppc_load_decr(CPUPPCState *env)
766  {
767      ppc_tb_t *tb_env = env->tb_env;
768      uint64_t decr;
769  
770      if (kvm_enabled()) {
771          return env->spr[SPR_DECR];
772      }
773  
774      decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
775  
776      /*
777       * If large decrementer is enabled then the decrementer is signed extened
778       * to 64 bits, otherwise it is a 32 bit value.
779       */
780      if (env->spr[SPR_LPCR] & LPCR_LD) {
781          return decr;
782      }
783      return (uint32_t) decr;
784  }
785  
786  target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
787  {
788      PowerPCCPU *cpu = ppc_env_get_cpu(env);
789      PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
790      ppc_tb_t *tb_env = env->tb_env;
791      uint64_t hdecr;
792  
793      hdecr =  _cpu_ppc_load_decr(env, tb_env->hdecr_next);
794  
795      /*
796       * If we have a large decrementer (POWER9 or later) then hdecr is sign
797       * extended to 64 bits, otherwise it is 32 bits.
798       */
799      if (pcc->lrg_decr_bits > 32) {
800          return hdecr;
801      }
802      return (uint32_t) hdecr;
803  }
804  
805  uint64_t cpu_ppc_load_purr (CPUPPCState *env)
806  {
807      ppc_tb_t *tb_env = env->tb_env;
808      uint64_t diff;
809  
810      diff = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - tb_env->purr_start;
811  
812      return tb_env->purr_load +
813          muldiv64(diff, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
814  }
815  
816  /* When decrementer expires,
817   * all we need to do is generate or queue a CPU exception
818   */
819  static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
820  {
821      /* Raise it */
822      LOG_TB("raise decrementer exception\n");
823      ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
824  }
825  
826  static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
827  {
828      ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
829  }
830  
831  static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
832  {
833      CPUPPCState *env = &cpu->env;
834  
835      /* Raise it */
836      LOG_TB("raise hv decrementer exception\n");
837  
838      /* The architecture specifies that we don't deliver HDEC
839       * interrupts in a PM state. Not only they don't cause a
840       * wakeup but they also get effectively discarded.
841       */
842      if (!env->resume_as_sreset) {
843          ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
844      }
845  }
846  
847  static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
848  {
849      ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
850  }
851  
852  static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
853                                   QEMUTimer *timer,
854                                   void (*raise_excp)(void *),
855                                   void (*lower_excp)(PowerPCCPU *),
856                                   target_ulong decr, target_ulong value,
857                                   int nr_bits)
858  {
859      CPUPPCState *env = &cpu->env;
860      ppc_tb_t *tb_env = env->tb_env;
861      uint64_t now, next;
862      bool negative;
863  
864      /* Truncate value to decr_width and sign extend for simplicity */
865      value &= ((1ULL << nr_bits) - 1);
866      negative = !!(value & (1ULL << (nr_bits - 1)));
867      if (negative) {
868          value |= (0xFFFFFFFFULL << nr_bits);
869      }
870  
871      LOG_TB("%s: " TARGET_FMT_lx " => " TARGET_FMT_lx "\n", __func__,
872                  decr, value);
873  
874      if (kvm_enabled()) {
875          /* KVM handles decrementer exceptions, we don't need our own timer */
876          return;
877      }
878  
879      /*
880       * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
881       * interrupt.
882       *
883       * If we get a really small DEC value, we can assume that by the time we
884       * handled it we should inject an interrupt already.
885       *
886       * On MSB level based DEC implementations the MSB always means the interrupt
887       * is pending, so raise it on those.
888       *
889       * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
890       * an edge interrupt, so raise it here too.
891       */
892      if ((value < 3) ||
893          ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && negative) ||
894          ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && negative
895            && !(decr & (1ULL << (nr_bits - 1))))) {
896          (*raise_excp)(cpu);
897          return;
898      }
899  
900      /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
901      if (!negative && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
902          (*lower_excp)(cpu);
903      }
904  
905      /* Calculate the next timer event */
906      now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
907      next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
908      *nextp = next;
909  
910      /* Adjust timer */
911      timer_mod(timer, next);
912  }
913  
914  static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
915                                         target_ulong value, int nr_bits)
916  {
917      ppc_tb_t *tb_env = cpu->env.tb_env;
918  
919      __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
920                           tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
921                           value, nr_bits);
922  }
923  
924  void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
925  {
926      PowerPCCPU *cpu = ppc_env_get_cpu(env);
927      PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
928      int nr_bits = 32;
929  
930      if (env->spr[SPR_LPCR] & LPCR_LD) {
931          nr_bits = pcc->lrg_decr_bits;
932      }
933  
934      _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
935  }
936  
937  static void cpu_ppc_decr_cb(void *opaque)
938  {
939      PowerPCCPU *cpu = opaque;
940  
941      cpu_ppc_decr_excp(cpu);
942  }
943  
944  static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
945                                          target_ulong value, int nr_bits)
946  {
947      ppc_tb_t *tb_env = cpu->env.tb_env;
948  
949      if (tb_env->hdecr_timer != NULL) {
950          __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
951                               tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
952                               hdecr, value, nr_bits);
953      }
954  }
955  
956  void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
957  {
958      PowerPCCPU *cpu = ppc_env_get_cpu(env);
959      PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
960  
961      _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
962                           pcc->lrg_decr_bits);
963  }
964  
965  static void cpu_ppc_hdecr_cb(void *opaque)
966  {
967      PowerPCCPU *cpu = opaque;
968  
969      cpu_ppc_hdecr_excp(cpu);
970  }
971  
972  static void cpu_ppc_store_purr(PowerPCCPU *cpu, uint64_t value)
973  {
974      ppc_tb_t *tb_env = cpu->env.tb_env;
975  
976      tb_env->purr_load = value;
977      tb_env->purr_start = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
978  }
979  
980  static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
981  {
982      CPUPPCState *env = opaque;
983      PowerPCCPU *cpu = ppc_env_get_cpu(env);
984      ppc_tb_t *tb_env = env->tb_env;
985  
986      tb_env->tb_freq = freq;
987      tb_env->decr_freq = freq;
988      /* There is a bug in Linux 2.4 kernels:
989       * if a decrementer exception is pending when it enables msr_ee at startup,
990       * it's not ready to handle it...
991       */
992      _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
993      _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
994      cpu_ppc_store_purr(cpu, 0x0000000000000000ULL);
995  }
996  
997  static void timebase_save(PPCTimebase *tb)
998  {
999      uint64_t ticks = cpu_get_host_ticks();
1000      PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1001  
1002      if (!first_ppc_cpu->env.tb_env) {
1003          error_report("No timebase object");
1004          return;
1005      }
1006  
1007      /* not used anymore, we keep it for compatibility */
1008      tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
1009      /*
1010       * tb_offset is only expected to be changed by QEMU so
1011       * there is no need to update it from KVM here
1012       */
1013      tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
1014  }
1015  
1016  static void timebase_load(PPCTimebase *tb)
1017  {
1018      CPUState *cpu;
1019      PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
1020      int64_t tb_off_adj, tb_off;
1021      unsigned long freq;
1022  
1023      if (!first_ppc_cpu->env.tb_env) {
1024          error_report("No timebase object");
1025          return;
1026      }
1027  
1028      freq = first_ppc_cpu->env.tb_env->tb_freq;
1029  
1030      tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
1031  
1032      tb_off = first_ppc_cpu->env.tb_env->tb_offset;
1033      trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
1034                          (tb_off_adj - tb_off) / freq);
1035  
1036      /* Set new offset to all CPUs */
1037      CPU_FOREACH(cpu) {
1038          PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1039          pcpu->env.tb_env->tb_offset = tb_off_adj;
1040  #if defined(CONFIG_KVM)
1041          kvm_set_one_reg(cpu, KVM_REG_PPC_TB_OFFSET,
1042                          &pcpu->env.tb_env->tb_offset);
1043  #endif
1044      }
1045  }
1046  
1047  void cpu_ppc_clock_vm_state_change(void *opaque, int running,
1048                                     RunState state)
1049  {
1050      PPCTimebase *tb = opaque;
1051  
1052      if (running) {
1053          timebase_load(tb);
1054      } else {
1055          timebase_save(tb);
1056      }
1057  }
1058  
1059  /*
1060   * When migrating, read the clock just before migration,
1061   * so that the guest clock counts during the events
1062   * between:
1063   *
1064   *  * vm_stop()
1065   *  *
1066   *  * pre_save()
1067   *
1068   *  This reduces clock difference on migration from 5s
1069   *  to 0.1s (when max_downtime == 5s), because sending the
1070   *  final pages of memory (which happens between vm_stop()
1071   *  and pre_save()) takes max_downtime.
1072   */
1073  static int timebase_pre_save(void *opaque)
1074  {
1075      PPCTimebase *tb = opaque;
1076  
1077      timebase_save(tb);
1078  
1079      return 0;
1080  }
1081  
1082  const VMStateDescription vmstate_ppc_timebase = {
1083      .name = "timebase",
1084      .version_id = 1,
1085      .minimum_version_id = 1,
1086      .minimum_version_id_old = 1,
1087      .pre_save = timebase_pre_save,
1088      .fields      = (VMStateField []) {
1089          VMSTATE_UINT64(guest_timebase, PPCTimebase),
1090          VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1091          VMSTATE_END_OF_LIST()
1092      },
1093  };
1094  
1095  /* Set up (once) timebase frequency (in Hz) */
1096  clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1097  {
1098      PowerPCCPU *cpu = ppc_env_get_cpu(env);
1099      ppc_tb_t *tb_env;
1100  
1101      tb_env = g_malloc0(sizeof(ppc_tb_t));
1102      env->tb_env = tb_env;
1103      tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1104      if (is_book3s_arch2x(env)) {
1105          /* All Book3S 64bit CPUs implement level based DEC logic */
1106          tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1107      }
1108      /* Create new timer */
1109      tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1110      if (env->has_hv_mode) {
1111          tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1112                                                  cpu);
1113      } else {
1114          tb_env->hdecr_timer = NULL;
1115      }
1116      cpu_ppc_set_tb_clk(env, freq);
1117  
1118      return &cpu_ppc_set_tb_clk;
1119  }
1120  
1121  /* Specific helpers for POWER & PowerPC 601 RTC */
1122  void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1123  {
1124      _cpu_ppc_store_tbu(env, value);
1125  }
1126  
1127  uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1128  {
1129      return _cpu_ppc_load_tbu(env);
1130  }
1131  
1132  void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1133  {
1134      cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1135  }
1136  
1137  uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1138  {
1139      return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1140  }
1141  
1142  /*****************************************************************************/
1143  /* PowerPC 40x timers */
1144  
1145  /* PIT, FIT & WDT */
1146  typedef struct ppc40x_timer_t ppc40x_timer_t;
1147  struct ppc40x_timer_t {
1148      uint64_t pit_reload;  /* PIT auto-reload value        */
1149      uint64_t fit_next;    /* Tick for next FIT interrupt  */
1150      QEMUTimer *fit_timer;
1151      uint64_t wdt_next;    /* Tick for next WDT interrupt  */
1152      QEMUTimer *wdt_timer;
1153  
1154      /* 405 have the PIT, 440 have a DECR.  */
1155      unsigned int decr_excp;
1156  };
1157  
1158  /* Fixed interval timer */
1159  static void cpu_4xx_fit_cb (void *opaque)
1160  {
1161      PowerPCCPU *cpu;
1162      CPUPPCState *env;
1163      ppc_tb_t *tb_env;
1164      ppc40x_timer_t *ppc40x_timer;
1165      uint64_t now, next;
1166  
1167      env = opaque;
1168      cpu = ppc_env_get_cpu(env);
1169      tb_env = env->tb_env;
1170      ppc40x_timer = tb_env->opaque;
1171      now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1172      switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1173      case 0:
1174          next = 1 << 9;
1175          break;
1176      case 1:
1177          next = 1 << 13;
1178          break;
1179      case 2:
1180          next = 1 << 17;
1181          break;
1182      case 3:
1183          next = 1 << 21;
1184          break;
1185      default:
1186          /* Cannot occur, but makes gcc happy */
1187          return;
1188      }
1189      next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1190      if (next == now)
1191          next++;
1192      timer_mod(ppc40x_timer->fit_timer, next);
1193      env->spr[SPR_40x_TSR] |= 1 << 26;
1194      if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1195          ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1196      }
1197      LOG_TB("%s: ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1198             (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1199             env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1200  }
1201  
1202  /* Programmable interval timer */
1203  static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1204  {
1205      ppc40x_timer_t *ppc40x_timer;
1206      uint64_t now, next;
1207  
1208      ppc40x_timer = tb_env->opaque;
1209      if (ppc40x_timer->pit_reload <= 1 ||
1210          !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1211          (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1212          /* Stop PIT */
1213          LOG_TB("%s: stop PIT\n", __func__);
1214          timer_del(tb_env->decr_timer);
1215      } else {
1216          LOG_TB("%s: start PIT %016" PRIx64 "\n",
1217                      __func__, ppc40x_timer->pit_reload);
1218          now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1219          next = now + muldiv64(ppc40x_timer->pit_reload,
1220                                NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1221          if (is_excp)
1222              next += tb_env->decr_next - now;
1223          if (next == now)
1224              next++;
1225          timer_mod(tb_env->decr_timer, next);
1226          tb_env->decr_next = next;
1227      }
1228  }
1229  
1230  static void cpu_4xx_pit_cb (void *opaque)
1231  {
1232      PowerPCCPU *cpu;
1233      CPUPPCState *env;
1234      ppc_tb_t *tb_env;
1235      ppc40x_timer_t *ppc40x_timer;
1236  
1237      env = opaque;
1238      cpu = ppc_env_get_cpu(env);
1239      tb_env = env->tb_env;
1240      ppc40x_timer = tb_env->opaque;
1241      env->spr[SPR_40x_TSR] |= 1 << 27;
1242      if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1243          ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1244      }
1245      start_stop_pit(env, tb_env, 1);
1246      LOG_TB("%s: ar %d ir %d TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx " "
1247             "%016" PRIx64 "\n", __func__,
1248             (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1249             (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1250             env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1251             ppc40x_timer->pit_reload);
1252  }
1253  
1254  /* Watchdog timer */
1255  static void cpu_4xx_wdt_cb (void *opaque)
1256  {
1257      PowerPCCPU *cpu;
1258      CPUPPCState *env;
1259      ppc_tb_t *tb_env;
1260      ppc40x_timer_t *ppc40x_timer;
1261      uint64_t now, next;
1262  
1263      env = opaque;
1264      cpu = ppc_env_get_cpu(env);
1265      tb_env = env->tb_env;
1266      ppc40x_timer = tb_env->opaque;
1267      now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1268      switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1269      case 0:
1270          next = 1 << 17;
1271          break;
1272      case 1:
1273          next = 1 << 21;
1274          break;
1275      case 2:
1276          next = 1 << 25;
1277          break;
1278      case 3:
1279          next = 1 << 29;
1280          break;
1281      default:
1282          /* Cannot occur, but makes gcc happy */
1283          return;
1284      }
1285      next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1286      if (next == now)
1287          next++;
1288      LOG_TB("%s: TCR " TARGET_FMT_lx " TSR " TARGET_FMT_lx "\n", __func__,
1289             env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1290      switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1291      case 0x0:
1292      case 0x1:
1293          timer_mod(ppc40x_timer->wdt_timer, next);
1294          ppc40x_timer->wdt_next = next;
1295          env->spr[SPR_40x_TSR] |= 1U << 31;
1296          break;
1297      case 0x2:
1298          timer_mod(ppc40x_timer->wdt_timer, next);
1299          ppc40x_timer->wdt_next = next;
1300          env->spr[SPR_40x_TSR] |= 1 << 30;
1301          if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1302              ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1303          }
1304          break;
1305      case 0x3:
1306          env->spr[SPR_40x_TSR] &= ~0x30000000;
1307          env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1308          switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1309          case 0x0:
1310              /* No reset */
1311              break;
1312          case 0x1: /* Core reset */
1313              ppc40x_core_reset(cpu);
1314              break;
1315          case 0x2: /* Chip reset */
1316              ppc40x_chip_reset(cpu);
1317              break;
1318          case 0x3: /* System reset */
1319              ppc40x_system_reset(cpu);
1320              break;
1321          }
1322      }
1323  }
1324  
1325  void store_40x_pit (CPUPPCState *env, target_ulong val)
1326  {
1327      ppc_tb_t *tb_env;
1328      ppc40x_timer_t *ppc40x_timer;
1329  
1330      tb_env = env->tb_env;
1331      ppc40x_timer = tb_env->opaque;
1332      LOG_TB("%s val" TARGET_FMT_lx "\n", __func__, val);
1333      ppc40x_timer->pit_reload = val;
1334      start_stop_pit(env, tb_env, 0);
1335  }
1336  
1337  target_ulong load_40x_pit (CPUPPCState *env)
1338  {
1339      return cpu_ppc_load_decr(env);
1340  }
1341  
1342  static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1343  {
1344      CPUPPCState *env = opaque;
1345      ppc_tb_t *tb_env = env->tb_env;
1346  
1347      LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
1348                  freq);
1349      tb_env->tb_freq = freq;
1350      tb_env->decr_freq = freq;
1351      /* XXX: we should also update all timers */
1352  }
1353  
1354  clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1355                                    unsigned int decr_excp)
1356  {
1357      ppc_tb_t *tb_env;
1358      ppc40x_timer_t *ppc40x_timer;
1359  
1360      tb_env = g_malloc0(sizeof(ppc_tb_t));
1361      env->tb_env = tb_env;
1362      tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1363      ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1364      tb_env->tb_freq = freq;
1365      tb_env->decr_freq = freq;
1366      tb_env->opaque = ppc40x_timer;
1367      LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
1368      if (ppc40x_timer != NULL) {
1369          /* We use decr timer for PIT */
1370          tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1371          ppc40x_timer->fit_timer =
1372              timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1373          ppc40x_timer->wdt_timer =
1374              timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1375          ppc40x_timer->decr_excp = decr_excp;
1376      }
1377  
1378      return &ppc_40x_set_tb_clk;
1379  }
1380  
1381  /*****************************************************************************/
1382  /* Embedded PowerPC Device Control Registers */
1383  typedef struct ppc_dcrn_t ppc_dcrn_t;
1384  struct ppc_dcrn_t {
1385      dcr_read_cb dcr_read;
1386      dcr_write_cb dcr_write;
1387      void *opaque;
1388  };
1389  
1390  /* XXX: on 460, DCR addresses are 32 bits wide,
1391   *      using DCRIPR to get the 22 upper bits of the DCR address
1392   */
1393  #define DCRN_NB 1024
1394  struct ppc_dcr_t {
1395      ppc_dcrn_t dcrn[DCRN_NB];
1396      int (*read_error)(int dcrn);
1397      int (*write_error)(int dcrn);
1398  };
1399  
1400  int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1401  {
1402      ppc_dcrn_t *dcr;
1403  
1404      if (dcrn < 0 || dcrn >= DCRN_NB)
1405          goto error;
1406      dcr = &dcr_env->dcrn[dcrn];
1407      if (dcr->dcr_read == NULL)
1408          goto error;
1409      *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1410  
1411      return 0;
1412  
1413   error:
1414      if (dcr_env->read_error != NULL)
1415          return (*dcr_env->read_error)(dcrn);
1416  
1417      return -1;
1418  }
1419  
1420  int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1421  {
1422      ppc_dcrn_t *dcr;
1423  
1424      if (dcrn < 0 || dcrn >= DCRN_NB)
1425          goto error;
1426      dcr = &dcr_env->dcrn[dcrn];
1427      if (dcr->dcr_write == NULL)
1428          goto error;
1429      (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1430  
1431      return 0;
1432  
1433   error:
1434      if (dcr_env->write_error != NULL)
1435          return (*dcr_env->write_error)(dcrn);
1436  
1437      return -1;
1438  }
1439  
1440  int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1441                        dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1442  {
1443      ppc_dcr_t *dcr_env;
1444      ppc_dcrn_t *dcr;
1445  
1446      dcr_env = env->dcr_env;
1447      if (dcr_env == NULL)
1448          return -1;
1449      if (dcrn < 0 || dcrn >= DCRN_NB)
1450          return -1;
1451      dcr = &dcr_env->dcrn[dcrn];
1452      if (dcr->opaque != NULL ||
1453          dcr->dcr_read != NULL ||
1454          dcr->dcr_write != NULL)
1455          return -1;
1456      dcr->opaque = opaque;
1457      dcr->dcr_read = dcr_read;
1458      dcr->dcr_write = dcr_write;
1459  
1460      return 0;
1461  }
1462  
1463  int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1464                    int (*write_error)(int dcrn))
1465  {
1466      ppc_dcr_t *dcr_env;
1467  
1468      dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1469      dcr_env->read_error = read_error;
1470      dcr_env->write_error = write_error;
1471      env->dcr_env = dcr_env;
1472  
1473      return 0;
1474  }
1475  
1476  /*****************************************************************************/
1477  /* Debug port */
1478  void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1479  {
1480      addr &= 0xF;
1481      switch (addr) {
1482      case 0:
1483          printf("%c", val);
1484          break;
1485      case 1:
1486          printf("\n");
1487          fflush(stdout);
1488          break;
1489      case 2:
1490          printf("Set loglevel to %04" PRIx32 "\n", val);
1491          qemu_set_log(val | 0x100);
1492          break;
1493      }
1494  }
1495  
1496  PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1497  {
1498      CPUState *cs;
1499  
1500      CPU_FOREACH(cs) {
1501          PowerPCCPU *cpu = POWERPC_CPU(cs);
1502          CPUPPCState *env = &cpu->env;
1503  
1504          if (env->spr_cb[SPR_PIR].default_value == pir) {
1505              return cpu;
1506          }
1507      }
1508  
1509      return NULL;
1510  }
1511