xref: /qemu/hw/ppc/pnv.c (revision b962a1d507bdb7e157f5e0ef3376f3e8e40edfe7)
1  /*
2   * QEMU PowerPC PowerNV machine model
3   *
4   * Copyright (c) 2016, IBM Corporation.
5   *
6   * This library is free software; you can redistribute it and/or
7   * modify it under the terms of the GNU Lesser General Public
8   * License as published by the Free Software Foundation; either
9   * version 2.1 of the License, or (at your option) any later version.
10   *
11   * This library is distributed in the hope that it will be useful,
12   * but WITHOUT ANY WARRANTY; without even the implied warranty of
13   * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14   * Lesser General Public License for more details.
15   *
16   * You should have received a copy of the GNU Lesser General Public
17   * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18   */
19  
20  #include "qemu/osdep.h"
21  #include "qemu-common.h"
22  #include "qemu/datadir.h"
23  #include "qemu/units.h"
24  #include "qemu/cutils.h"
25  #include "qapi/error.h"
26  #include "sysemu/qtest.h"
27  #include "sysemu/sysemu.h"
28  #include "sysemu/numa.h"
29  #include "sysemu/reset.h"
30  #include "sysemu/runstate.h"
31  #include "sysemu/cpus.h"
32  #include "sysemu/device_tree.h"
33  #include "sysemu/hw_accel.h"
34  #include "target/ppc/cpu.h"
35  #include "hw/ppc/fdt.h"
36  #include "hw/ppc/ppc.h"
37  #include "hw/ppc/pnv.h"
38  #include "hw/ppc/pnv_core.h"
39  #include "hw/loader.h"
40  #include "hw/nmi.h"
41  #include "qapi/visitor.h"
42  #include "monitor/monitor.h"
43  #include "hw/intc/intc.h"
44  #include "hw/ipmi/ipmi.h"
45  #include "target/ppc/mmu-hash64.h"
46  #include "hw/pci/msi.h"
47  
48  #include "hw/ppc/xics.h"
49  #include "hw/qdev-properties.h"
50  #include "hw/ppc/pnv_xscom.h"
51  #include "hw/ppc/pnv_pnor.h"
52  
53  #include "hw/isa/isa.h"
54  #include "hw/char/serial.h"
55  #include "hw/rtc/mc146818rtc.h"
56  
57  #include <libfdt.h>
58  
59  #define FDT_MAX_SIZE            (1 * MiB)
60  
61  #define FW_FILE_NAME            "skiboot.lid"
62  #define FW_LOAD_ADDR            0x0
63  #define FW_MAX_SIZE             (16 * MiB)
64  
65  #define KERNEL_LOAD_ADDR        0x20000000
66  #define KERNEL_MAX_SIZE         (128 * MiB)
67  #define INITRD_LOAD_ADDR        0x28000000
68  #define INITRD_MAX_SIZE         (128 * MiB)
69  
70  static const char *pnv_chip_core_typename(const PnvChip *o)
71  {
72      const char *chip_type = object_class_get_name(object_get_class(OBJECT(o)));
73      int len = strlen(chip_type) - strlen(PNV_CHIP_TYPE_SUFFIX);
74      char *s = g_strdup_printf(PNV_CORE_TYPE_NAME("%.*s"), len, chip_type);
75      const char *core_type = object_class_get_name(object_class_by_name(s));
76      g_free(s);
77      return core_type;
78  }
79  
80  /*
81   * On Power Systems E880 (POWER8), the max cpus (threads) should be :
82   *     4 * 4 sockets * 12 cores * 8 threads = 1536
83   * Let's make it 2^11
84   */
85  #define MAX_CPUS                2048
86  
87  /*
88   * Memory nodes are created by hostboot, one for each range of memory
89   * that has a different "affinity". In practice, it means one range
90   * per chip.
91   */
92  static void pnv_dt_memory(void *fdt, int chip_id, hwaddr start, hwaddr size)
93  {
94      char *mem_name;
95      uint64_t mem_reg_property[2];
96      int off;
97  
98      mem_reg_property[0] = cpu_to_be64(start);
99      mem_reg_property[1] = cpu_to_be64(size);
100  
101      mem_name = g_strdup_printf("memory@%"HWADDR_PRIx, start);
102      off = fdt_add_subnode(fdt, 0, mem_name);
103      g_free(mem_name);
104  
105      _FDT((fdt_setprop_string(fdt, off, "device_type", "memory")));
106      _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property,
107                         sizeof(mem_reg_property))));
108      _FDT((fdt_setprop_cell(fdt, off, "ibm,chip-id", chip_id)));
109  }
110  
111  static int get_cpus_node(void *fdt)
112  {
113      int cpus_offset = fdt_path_offset(fdt, "/cpus");
114  
115      if (cpus_offset < 0) {
116          cpus_offset = fdt_add_subnode(fdt, 0, "cpus");
117          if (cpus_offset) {
118              _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1)));
119              _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0)));
120          }
121      }
122      _FDT(cpus_offset);
123      return cpus_offset;
124  }
125  
126  /*
127   * The PowerNV cores (and threads) need to use real HW ids and not an
128   * incremental index like it has been done on other platforms. This HW
129   * id is stored in the CPU PIR, it is used to create cpu nodes in the
130   * device tree, used in XSCOM to address cores and in interrupt
131   * servers.
132   */
133  static void pnv_dt_core(PnvChip *chip, PnvCore *pc, void *fdt)
134  {
135      PowerPCCPU *cpu = pc->threads[0];
136      CPUState *cs = CPU(cpu);
137      DeviceClass *dc = DEVICE_GET_CLASS(cs);
138      int smt_threads = CPU_CORE(pc)->nr_threads;
139      CPUPPCState *env = &cpu->env;
140      PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs);
141      uint32_t servers_prop[smt_threads];
142      int i;
143      uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40),
144                         0xffffffff, 0xffffffff};
145      uint32_t tbfreq = PNV_TIMEBASE_FREQ;
146      uint32_t cpufreq = 1000000000;
147      uint32_t page_sizes_prop[64];
148      size_t page_sizes_prop_size;
149      const uint8_t pa_features[] = { 24, 0,
150                                      0xf6, 0x3f, 0xc7, 0xc0, 0x80, 0xf0,
151                                      0x80, 0x00, 0x00, 0x00, 0x00, 0x00,
152                                      0x00, 0x00, 0x00, 0x00, 0x80, 0x00,
153                                      0x80, 0x00, 0x80, 0x00, 0x80, 0x00 };
154      int offset;
155      char *nodename;
156      int cpus_offset = get_cpus_node(fdt);
157  
158      nodename = g_strdup_printf("%s@%x", dc->fw_name, pc->pir);
159      offset = fdt_add_subnode(fdt, cpus_offset, nodename);
160      _FDT(offset);
161      g_free(nodename);
162  
163      _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", chip->chip_id)));
164  
165      _FDT((fdt_setprop_cell(fdt, offset, "reg", pc->pir)));
166      _FDT((fdt_setprop_cell(fdt, offset, "ibm,pir", pc->pir)));
167      _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu")));
168  
169      _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR])));
170      _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size",
171                              env->dcache_line_size)));
172      _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size",
173                              env->dcache_line_size)));
174      _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size",
175                              env->icache_line_size)));
176      _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size",
177                              env->icache_line_size)));
178  
179      if (pcc->l1_dcache_size) {
180          _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size",
181                                 pcc->l1_dcache_size)));
182      } else {
183          warn_report("Unknown L1 dcache size for cpu");
184      }
185      if (pcc->l1_icache_size) {
186          _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size",
187                                 pcc->l1_icache_size)));
188      } else {
189          warn_report("Unknown L1 icache size for cpu");
190      }
191  
192      _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq)));
193      _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq)));
194      _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size",
195                             cpu->hash64_opts->slb_size)));
196      _FDT((fdt_setprop_string(fdt, offset, "status", "okay")));
197      _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0)));
198  
199      if (ppc_has_spr(cpu, SPR_PURR)) {
200          _FDT((fdt_setprop(fdt, offset, "ibm,purr", NULL, 0)));
201      }
202  
203      if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) {
204          _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes",
205                             segs, sizeof(segs))));
206      }
207  
208      /*
209       * Advertise VMX/VSX (vector extensions) if available
210       *   0 / no property == no vector extensions
211       *   1               == VMX / Altivec available
212       *   2               == VSX available
213       */
214      if (env->insns_flags & PPC_ALTIVEC) {
215          uint32_t vmx = (env->insns_flags2 & PPC2_VSX) ? 2 : 1;
216  
217          _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", vmx)));
218      }
219  
220      /*
221       * Advertise DFP (Decimal Floating Point) if available
222       *   0 / no property == no DFP
223       *   1               == DFP available
224       */
225      if (env->insns_flags2 & PPC2_DFP) {
226          _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1)));
227      }
228  
229      page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop,
230                                                        sizeof(page_sizes_prop));
231      if (page_sizes_prop_size) {
232          _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes",
233                             page_sizes_prop, page_sizes_prop_size)));
234      }
235  
236      _FDT((fdt_setprop(fdt, offset, "ibm,pa-features",
237                         pa_features, sizeof(pa_features))));
238  
239      /* Build interrupt servers properties */
240      for (i = 0; i < smt_threads; i++) {
241          servers_prop[i] = cpu_to_be32(pc->pir + i);
242      }
243      _FDT((fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s",
244                         servers_prop, sizeof(servers_prop))));
245  }
246  
247  static void pnv_dt_icp(PnvChip *chip, void *fdt, uint32_t pir,
248                         uint32_t nr_threads)
249  {
250      uint64_t addr = PNV_ICP_BASE(chip) | (pir << 12);
251      char *name;
252      const char compat[] = "IBM,power8-icp\0IBM,ppc-xicp";
253      uint32_t irange[2], i, rsize;
254      uint64_t *reg;
255      int offset;
256  
257      irange[0] = cpu_to_be32(pir);
258      irange[1] = cpu_to_be32(nr_threads);
259  
260      rsize = sizeof(uint64_t) * 2 * nr_threads;
261      reg = g_malloc(rsize);
262      for (i = 0; i < nr_threads; i++) {
263          reg[i * 2] = cpu_to_be64(addr | ((pir + i) * 0x1000));
264          reg[i * 2 + 1] = cpu_to_be64(0x1000);
265      }
266  
267      name = g_strdup_printf("interrupt-controller@%"PRIX64, addr);
268      offset = fdt_add_subnode(fdt, 0, name);
269      _FDT(offset);
270      g_free(name);
271  
272      _FDT((fdt_setprop(fdt, offset, "compatible", compat, sizeof(compat))));
273      _FDT((fdt_setprop(fdt, offset, "reg", reg, rsize)));
274      _FDT((fdt_setprop_string(fdt, offset, "device_type",
275                                "PowerPC-External-Interrupt-Presentation")));
276      _FDT((fdt_setprop(fdt, offset, "interrupt-controller", NULL, 0)));
277      _FDT((fdt_setprop(fdt, offset, "ibm,interrupt-server-ranges",
278                         irange, sizeof(irange))));
279      _FDT((fdt_setprop_cell(fdt, offset, "#interrupt-cells", 1)));
280      _FDT((fdt_setprop_cell(fdt, offset, "#address-cells", 0)));
281      g_free(reg);
282  }
283  
284  static void pnv_chip_power8_dt_populate(PnvChip *chip, void *fdt)
285  {
286      static const char compat[] = "ibm,power8-xscom\0ibm,xscom";
287      int i;
288  
289      pnv_dt_xscom(chip, fdt, 0,
290                   cpu_to_be64(PNV_XSCOM_BASE(chip)),
291                   cpu_to_be64(PNV_XSCOM_SIZE),
292                   compat, sizeof(compat));
293  
294      for (i = 0; i < chip->nr_cores; i++) {
295          PnvCore *pnv_core = chip->cores[i];
296  
297          pnv_dt_core(chip, pnv_core, fdt);
298  
299          /* Interrupt Control Presenters (ICP). One per core. */
300          pnv_dt_icp(chip, fdt, pnv_core->pir, CPU_CORE(pnv_core)->nr_threads);
301      }
302  
303      if (chip->ram_size) {
304          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
305      }
306  }
307  
308  static void pnv_chip_power9_dt_populate(PnvChip *chip, void *fdt)
309  {
310      static const char compat[] = "ibm,power9-xscom\0ibm,xscom";
311      int i;
312  
313      pnv_dt_xscom(chip, fdt, 0,
314                   cpu_to_be64(PNV9_XSCOM_BASE(chip)),
315                   cpu_to_be64(PNV9_XSCOM_SIZE),
316                   compat, sizeof(compat));
317  
318      for (i = 0; i < chip->nr_cores; i++) {
319          PnvCore *pnv_core = chip->cores[i];
320  
321          pnv_dt_core(chip, pnv_core, fdt);
322      }
323  
324      if (chip->ram_size) {
325          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
326      }
327  
328      pnv_dt_lpc(chip, fdt, 0, PNV9_LPCM_BASE(chip), PNV9_LPCM_SIZE);
329  }
330  
331  static void pnv_chip_power10_dt_populate(PnvChip *chip, void *fdt)
332  {
333      static const char compat[] = "ibm,power10-xscom\0ibm,xscom";
334      int i;
335  
336      pnv_dt_xscom(chip, fdt, 0,
337                   cpu_to_be64(PNV10_XSCOM_BASE(chip)),
338                   cpu_to_be64(PNV10_XSCOM_SIZE),
339                   compat, sizeof(compat));
340  
341      for (i = 0; i < chip->nr_cores; i++) {
342          PnvCore *pnv_core = chip->cores[i];
343  
344          pnv_dt_core(chip, pnv_core, fdt);
345      }
346  
347      if (chip->ram_size) {
348          pnv_dt_memory(fdt, chip->chip_id, chip->ram_start, chip->ram_size);
349      }
350  
351      pnv_dt_lpc(chip, fdt, 0, PNV10_LPCM_BASE(chip), PNV10_LPCM_SIZE);
352  }
353  
354  static void pnv_dt_rtc(ISADevice *d, void *fdt, int lpc_off)
355  {
356      uint32_t io_base = d->ioport_id;
357      uint32_t io_regs[] = {
358          cpu_to_be32(1),
359          cpu_to_be32(io_base),
360          cpu_to_be32(2)
361      };
362      char *name;
363      int node;
364  
365      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
366      node = fdt_add_subnode(fdt, lpc_off, name);
367      _FDT(node);
368      g_free(name);
369  
370      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
371      _FDT((fdt_setprop_string(fdt, node, "compatible", "pnpPNP,b00")));
372  }
373  
374  static void pnv_dt_serial(ISADevice *d, void *fdt, int lpc_off)
375  {
376      const char compatible[] = "ns16550\0pnpPNP,501";
377      uint32_t io_base = d->ioport_id;
378      uint32_t io_regs[] = {
379          cpu_to_be32(1),
380          cpu_to_be32(io_base),
381          cpu_to_be32(8)
382      };
383      char *name;
384      int node;
385  
386      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
387      node = fdt_add_subnode(fdt, lpc_off, name);
388      _FDT(node);
389      g_free(name);
390  
391      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
392      _FDT((fdt_setprop(fdt, node, "compatible", compatible,
393                        sizeof(compatible))));
394  
395      _FDT((fdt_setprop_cell(fdt, node, "clock-frequency", 1843200)));
396      _FDT((fdt_setprop_cell(fdt, node, "current-speed", 115200)));
397      _FDT((fdt_setprop_cell(fdt, node, "interrupts", d->isairq[0])));
398      _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
399                             fdt_get_phandle(fdt, lpc_off))));
400  
401      /* This is needed by Linux */
402      _FDT((fdt_setprop_string(fdt, node, "device_type", "serial")));
403  }
404  
405  static void pnv_dt_ipmi_bt(ISADevice *d, void *fdt, int lpc_off)
406  {
407      const char compatible[] = "bt\0ipmi-bt";
408      uint32_t io_base;
409      uint32_t io_regs[] = {
410          cpu_to_be32(1),
411          0, /* 'io_base' retrieved from the 'ioport' property of 'isa-ipmi-bt' */
412          cpu_to_be32(3)
413      };
414      uint32_t irq;
415      char *name;
416      int node;
417  
418      io_base = object_property_get_int(OBJECT(d), "ioport", &error_fatal);
419      io_regs[1] = cpu_to_be32(io_base);
420  
421      irq = object_property_get_int(OBJECT(d), "irq", &error_fatal);
422  
423      name = g_strdup_printf("%s@i%x", qdev_fw_name(DEVICE(d)), io_base);
424      node = fdt_add_subnode(fdt, lpc_off, name);
425      _FDT(node);
426      g_free(name);
427  
428      _FDT((fdt_setprop(fdt, node, "reg", io_regs, sizeof(io_regs))));
429      _FDT((fdt_setprop(fdt, node, "compatible", compatible,
430                        sizeof(compatible))));
431  
432      /* Mark it as reserved to avoid Linux trying to claim it */
433      _FDT((fdt_setprop_string(fdt, node, "status", "reserved")));
434      _FDT((fdt_setprop_cell(fdt, node, "interrupts", irq)));
435      _FDT((fdt_setprop_cell(fdt, node, "interrupt-parent",
436                             fdt_get_phandle(fdt, lpc_off))));
437  }
438  
439  typedef struct ForeachPopulateArgs {
440      void *fdt;
441      int offset;
442  } ForeachPopulateArgs;
443  
444  static int pnv_dt_isa_device(DeviceState *dev, void *opaque)
445  {
446      ForeachPopulateArgs *args = opaque;
447      ISADevice *d = ISA_DEVICE(dev);
448  
449      if (object_dynamic_cast(OBJECT(dev), TYPE_MC146818_RTC)) {
450          pnv_dt_rtc(d, args->fdt, args->offset);
451      } else if (object_dynamic_cast(OBJECT(dev), TYPE_ISA_SERIAL)) {
452          pnv_dt_serial(d, args->fdt, args->offset);
453      } else if (object_dynamic_cast(OBJECT(dev), "isa-ipmi-bt")) {
454          pnv_dt_ipmi_bt(d, args->fdt, args->offset);
455      } else {
456          error_report("unknown isa device %s@i%x", qdev_fw_name(dev),
457                       d->ioport_id);
458      }
459  
460      return 0;
461  }
462  
463  /*
464   * The default LPC bus of a multichip system is on chip 0. It's
465   * recognized by the firmware (skiboot) using a "primary" property.
466   */
467  static void pnv_dt_isa(PnvMachineState *pnv, void *fdt)
468  {
469      int isa_offset = fdt_path_offset(fdt, pnv->chips[0]->dt_isa_nodename);
470      ForeachPopulateArgs args = {
471          .fdt = fdt,
472          .offset = isa_offset,
473      };
474      uint32_t phandle;
475  
476      _FDT((fdt_setprop(fdt, isa_offset, "primary", NULL, 0)));
477  
478      phandle = qemu_fdt_alloc_phandle(fdt);
479      assert(phandle > 0);
480      _FDT((fdt_setprop_cell(fdt, isa_offset, "phandle", phandle)));
481  
482      /*
483       * ISA devices are not necessarily parented to the ISA bus so we
484       * can not use object_child_foreach()
485       */
486      qbus_walk_children(BUS(pnv->isa_bus), pnv_dt_isa_device, NULL, NULL, NULL,
487                         &args);
488  }
489  
490  static void pnv_dt_power_mgt(PnvMachineState *pnv, void *fdt)
491  {
492      int off;
493  
494      off = fdt_add_subnode(fdt, 0, "ibm,opal");
495      off = fdt_add_subnode(fdt, off, "power-mgt");
496  
497      _FDT(fdt_setprop_cell(fdt, off, "ibm,enabled-stop-levels", 0xc0000000));
498  }
499  
500  static void *pnv_dt_create(MachineState *machine)
501  {
502      PnvMachineClass *pmc = PNV_MACHINE_GET_CLASS(machine);
503      PnvMachineState *pnv = PNV_MACHINE(machine);
504      void *fdt;
505      char *buf;
506      int off;
507      int i;
508  
509      fdt = g_malloc0(FDT_MAX_SIZE);
510      _FDT((fdt_create_empty_tree(fdt, FDT_MAX_SIZE)));
511  
512      /* /qemu node */
513      _FDT((fdt_add_subnode(fdt, 0, "qemu")));
514  
515      /* Root node */
516      _FDT((fdt_setprop_cell(fdt, 0, "#address-cells", 0x2)));
517      _FDT((fdt_setprop_cell(fdt, 0, "#size-cells", 0x2)));
518      _FDT((fdt_setprop_string(fdt, 0, "model",
519                               "IBM PowerNV (emulated by qemu)")));
520      _FDT((fdt_setprop(fdt, 0, "compatible", pmc->compat, pmc->compat_size)));
521  
522      buf =  qemu_uuid_unparse_strdup(&qemu_uuid);
523      _FDT((fdt_setprop_string(fdt, 0, "vm,uuid", buf)));
524      if (qemu_uuid_set) {
525          _FDT((fdt_setprop_string(fdt, 0, "system-id", buf)));
526      }
527      g_free(buf);
528  
529      off = fdt_add_subnode(fdt, 0, "chosen");
530      if (machine->kernel_cmdline) {
531          _FDT((fdt_setprop_string(fdt, off, "bootargs",
532                                   machine->kernel_cmdline)));
533      }
534  
535      if (pnv->initrd_size) {
536          uint32_t start_prop = cpu_to_be32(pnv->initrd_base);
537          uint32_t end_prop = cpu_to_be32(pnv->initrd_base + pnv->initrd_size);
538  
539          _FDT((fdt_setprop(fdt, off, "linux,initrd-start",
540                                 &start_prop, sizeof(start_prop))));
541          _FDT((fdt_setprop(fdt, off, "linux,initrd-end",
542                                 &end_prop, sizeof(end_prop))));
543      }
544  
545      /* Populate device tree for each chip */
546      for (i = 0; i < pnv->num_chips; i++) {
547          PNV_CHIP_GET_CLASS(pnv->chips[i])->dt_populate(pnv->chips[i], fdt);
548      }
549  
550      /* Populate ISA devices on chip 0 */
551      pnv_dt_isa(pnv, fdt);
552  
553      if (pnv->bmc) {
554          pnv_dt_bmc_sensors(pnv->bmc, fdt);
555      }
556  
557      /* Create an extra node for power management on machines that support it */
558      if (pmc->dt_power_mgt) {
559          pmc->dt_power_mgt(pnv, fdt);
560      }
561  
562      return fdt;
563  }
564  
565  static void pnv_powerdown_notify(Notifier *n, void *opaque)
566  {
567      PnvMachineState *pnv = container_of(n, PnvMachineState, powerdown_notifier);
568  
569      if (pnv->bmc) {
570          pnv_bmc_powerdown(pnv->bmc);
571      }
572  }
573  
574  static void pnv_reset(MachineState *machine)
575  {
576      PnvMachineState *pnv = PNV_MACHINE(machine);
577      IPMIBmc *bmc;
578      void *fdt;
579  
580      qemu_devices_reset();
581  
582      /*
583       * The machine should provide by default an internal BMC simulator.
584       * If not, try to use the BMC device that was provided on the command
585       * line.
586       */
587      bmc = pnv_bmc_find(&error_fatal);
588      if (!pnv->bmc) {
589          if (!bmc) {
590              if (!qtest_enabled()) {
591                  warn_report("machine has no BMC device. Use '-device "
592                              "ipmi-bmc-sim,id=bmc0 -device isa-ipmi-bt,bmc=bmc0,irq=10' "
593                              "to define one");
594              }
595          } else {
596              pnv_bmc_set_pnor(bmc, pnv->pnor);
597              pnv->bmc = bmc;
598          }
599      }
600  
601      fdt = pnv_dt_create(machine);
602  
603      /* Pack resulting tree */
604      _FDT((fdt_pack(fdt)));
605  
606      qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt));
607      cpu_physical_memory_write(PNV_FDT_ADDR, fdt, fdt_totalsize(fdt));
608  
609      g_free(fdt);
610  }
611  
612  static ISABus *pnv_chip_power8_isa_create(PnvChip *chip, Error **errp)
613  {
614      Pnv8Chip *chip8 = PNV8_CHIP(chip);
615      return pnv_lpc_isa_create(&chip8->lpc, true, errp);
616  }
617  
618  static ISABus *pnv_chip_power8nvl_isa_create(PnvChip *chip, Error **errp)
619  {
620      Pnv8Chip *chip8 = PNV8_CHIP(chip);
621      return pnv_lpc_isa_create(&chip8->lpc, false, errp);
622  }
623  
624  static ISABus *pnv_chip_power9_isa_create(PnvChip *chip, Error **errp)
625  {
626      Pnv9Chip *chip9 = PNV9_CHIP(chip);
627      return pnv_lpc_isa_create(&chip9->lpc, false, errp);
628  }
629  
630  static ISABus *pnv_chip_power10_isa_create(PnvChip *chip, Error **errp)
631  {
632      Pnv10Chip *chip10 = PNV10_CHIP(chip);
633      return pnv_lpc_isa_create(&chip10->lpc, false, errp);
634  }
635  
636  static ISABus *pnv_isa_create(PnvChip *chip, Error **errp)
637  {
638      return PNV_CHIP_GET_CLASS(chip)->isa_create(chip, errp);
639  }
640  
641  static int pnv_chip_power8_pic_print_info_child(Object *child, void *opaque)
642  {
643      Monitor *mon = opaque;
644      PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
645  
646      if (phb3) {
647          pnv_phb3_msi_pic_print_info(&phb3->msis, mon);
648          ics_pic_print_info(&phb3->lsis, mon);
649      }
650      return 0;
651  }
652  
653  static void pnv_chip_power8_pic_print_info(PnvChip *chip, Monitor *mon)
654  {
655      Pnv8Chip *chip8 = PNV8_CHIP(chip);
656  
657      ics_pic_print_info(&chip8->psi.ics, mon);
658      object_child_foreach(OBJECT(chip),
659                           pnv_chip_power8_pic_print_info_child, mon);
660  }
661  
662  static int pnv_chip_power9_pic_print_info_child(Object *child, void *opaque)
663  {
664      Monitor *mon = opaque;
665      PnvPHB4 *phb4 = (PnvPHB4 *) object_dynamic_cast(child, TYPE_PNV_PHB4);
666  
667      if (phb4) {
668          pnv_phb4_pic_print_info(phb4, mon);
669      }
670      return 0;
671  }
672  
673  static void pnv_chip_power9_pic_print_info(PnvChip *chip, Monitor *mon)
674  {
675      Pnv9Chip *chip9 = PNV9_CHIP(chip);
676  
677      pnv_xive_pic_print_info(&chip9->xive, mon);
678      pnv_psi_pic_print_info(&chip9->psi, mon);
679  
680      object_child_foreach_recursive(OBJECT(chip),
681                           pnv_chip_power9_pic_print_info_child, mon);
682  }
683  
684  static uint64_t pnv_chip_power8_xscom_core_base(PnvChip *chip,
685                                                  uint32_t core_id)
686  {
687      return PNV_XSCOM_EX_BASE(core_id);
688  }
689  
690  static uint64_t pnv_chip_power9_xscom_core_base(PnvChip *chip,
691                                                  uint32_t core_id)
692  {
693      return PNV9_XSCOM_EC_BASE(core_id);
694  }
695  
696  static uint64_t pnv_chip_power10_xscom_core_base(PnvChip *chip,
697                                                   uint32_t core_id)
698  {
699      return PNV10_XSCOM_EC_BASE(core_id);
700  }
701  
702  static bool pnv_match_cpu(const char *default_type, const char *cpu_type)
703  {
704      PowerPCCPUClass *ppc_default =
705          POWERPC_CPU_CLASS(object_class_by_name(default_type));
706      PowerPCCPUClass *ppc =
707          POWERPC_CPU_CLASS(object_class_by_name(cpu_type));
708  
709      return ppc_default->pvr_match(ppc_default, ppc->pvr);
710  }
711  
712  static void pnv_ipmi_bt_init(ISABus *bus, IPMIBmc *bmc, uint32_t irq)
713  {
714      ISADevice *dev = isa_new("isa-ipmi-bt");
715  
716      object_property_set_link(OBJECT(dev), "bmc", OBJECT(bmc), &error_fatal);
717      object_property_set_int(OBJECT(dev), "irq", irq, &error_fatal);
718      isa_realize_and_unref(dev, bus, &error_fatal);
719  }
720  
721  static void pnv_chip_power10_pic_print_info(PnvChip *chip, Monitor *mon)
722  {
723      Pnv10Chip *chip10 = PNV10_CHIP(chip);
724  
725      pnv_psi_pic_print_info(&chip10->psi, mon);
726  }
727  
728  /* Always give the first 1GB to chip 0 else we won't boot */
729  static uint64_t pnv_chip_get_ram_size(PnvMachineState *pnv, int chip_id)
730  {
731      MachineState *machine = MACHINE(pnv);
732      uint64_t ram_per_chip;
733  
734      assert(machine->ram_size >= 1 * GiB);
735  
736      ram_per_chip = machine->ram_size / pnv->num_chips;
737      if (ram_per_chip >= 1 * GiB) {
738          return QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
739      }
740  
741      assert(pnv->num_chips > 1);
742  
743      ram_per_chip = (machine->ram_size - 1 * GiB) / (pnv->num_chips - 1);
744      return chip_id == 0 ? 1 * GiB : QEMU_ALIGN_DOWN(ram_per_chip, 1 * MiB);
745  }
746  
747  static void pnv_init(MachineState *machine)
748  {
749      const char *bios_name = machine->firmware ?: FW_FILE_NAME;
750      PnvMachineState *pnv = PNV_MACHINE(machine);
751      MachineClass *mc = MACHINE_GET_CLASS(machine);
752      char *fw_filename;
753      long fw_size;
754      uint64_t chip_ram_start = 0;
755      int i;
756      char *chip_typename;
757      DriveInfo *pnor = drive_get(IF_MTD, 0, 0);
758      DeviceState *dev;
759  
760      if (kvm_enabled()) {
761          error_report("The powernv machine does not work with KVM acceleration");
762          exit(EXIT_FAILURE);
763      }
764  
765      /* allocate RAM */
766      if (machine->ram_size < mc->default_ram_size) {
767          char *sz = size_to_str(mc->default_ram_size);
768          error_report("Invalid RAM size, should be bigger than %s", sz);
769          g_free(sz);
770          exit(EXIT_FAILURE);
771      }
772      memory_region_add_subregion(get_system_memory(), 0, machine->ram);
773  
774      /*
775       * Create our simple PNOR device
776       */
777      dev = qdev_new(TYPE_PNV_PNOR);
778      if (pnor) {
779          qdev_prop_set_drive(dev, "drive", blk_by_legacy_dinfo(pnor));
780      }
781      sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
782      pnv->pnor = PNV_PNOR(dev);
783  
784      /* load skiboot firmware  */
785      fw_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
786      if (!fw_filename) {
787          error_report("Could not find OPAL firmware '%s'", bios_name);
788          exit(1);
789      }
790  
791      fw_size = load_image_targphys(fw_filename, pnv->fw_load_addr, FW_MAX_SIZE);
792      if (fw_size < 0) {
793          error_report("Could not load OPAL firmware '%s'", fw_filename);
794          exit(1);
795      }
796      g_free(fw_filename);
797  
798      /* load kernel */
799      if (machine->kernel_filename) {
800          long kernel_size;
801  
802          kernel_size = load_image_targphys(machine->kernel_filename,
803                                            KERNEL_LOAD_ADDR, KERNEL_MAX_SIZE);
804          if (kernel_size < 0) {
805              error_report("Could not load kernel '%s'",
806                           machine->kernel_filename);
807              exit(1);
808          }
809      }
810  
811      /* load initrd */
812      if (machine->initrd_filename) {
813          pnv->initrd_base = INITRD_LOAD_ADDR;
814          pnv->initrd_size = load_image_targphys(machine->initrd_filename,
815                                    pnv->initrd_base, INITRD_MAX_SIZE);
816          if (pnv->initrd_size < 0) {
817              error_report("Could not load initial ram disk '%s'",
818                           machine->initrd_filename);
819              exit(1);
820          }
821      }
822  
823      /* MSIs are supported on this platform */
824      msi_nonbroken = true;
825  
826      /*
827       * Check compatibility of the specified CPU with the machine
828       * default.
829       */
830      if (!pnv_match_cpu(mc->default_cpu_type, machine->cpu_type)) {
831          error_report("invalid CPU model '%s' for %s machine",
832                       machine->cpu_type, mc->name);
833          exit(1);
834      }
835  
836      /* Create the processor chips */
837      i = strlen(machine->cpu_type) - strlen(POWERPC_CPU_TYPE_SUFFIX);
838      chip_typename = g_strdup_printf(PNV_CHIP_TYPE_NAME("%.*s"),
839                                      i, machine->cpu_type);
840      if (!object_class_by_name(chip_typename)) {
841          error_report("invalid chip model '%.*s' for %s machine",
842                       i, machine->cpu_type, mc->name);
843          exit(1);
844      }
845  
846      pnv->num_chips =
847          machine->smp.max_cpus / (machine->smp.cores * machine->smp.threads);
848      /*
849       * TODO: should we decide on how many chips we can create based
850       * on #cores and Venice vs. Murano vs. Naples chip type etc...,
851       */
852      if (!is_power_of_2(pnv->num_chips) || pnv->num_chips > 16) {
853          error_report("invalid number of chips: '%d'", pnv->num_chips);
854          error_printf(
855              "Try '-smp sockets=N'. Valid values are : 1, 2, 4, 8 and 16.\n");
856          exit(1);
857      }
858  
859      pnv->chips = g_new0(PnvChip *, pnv->num_chips);
860      for (i = 0; i < pnv->num_chips; i++) {
861          char chip_name[32];
862          Object *chip = OBJECT(qdev_new(chip_typename));
863          uint64_t chip_ram_size =  pnv_chip_get_ram_size(pnv, i);
864  
865          pnv->chips[i] = PNV_CHIP(chip);
866  
867          /* Distribute RAM among the chips  */
868          object_property_set_int(chip, "ram-start", chip_ram_start,
869                                  &error_fatal);
870          object_property_set_int(chip, "ram-size", chip_ram_size,
871                                  &error_fatal);
872          chip_ram_start += chip_ram_size;
873  
874          snprintf(chip_name, sizeof(chip_name), "chip[%d]", i);
875          object_property_add_child(OBJECT(pnv), chip_name, chip);
876          object_property_set_int(chip, "chip-id", i, &error_fatal);
877          object_property_set_int(chip, "nr-cores", machine->smp.cores,
878                                  &error_fatal);
879          object_property_set_int(chip, "nr-threads", machine->smp.threads,
880                                  &error_fatal);
881          /*
882           * The POWER8 machine use the XICS interrupt interface.
883           * Propagate the XICS fabric to the chip and its controllers.
884           */
885          if (object_dynamic_cast(OBJECT(pnv), TYPE_XICS_FABRIC)) {
886              object_property_set_link(chip, "xics", OBJECT(pnv), &error_abort);
887          }
888          if (object_dynamic_cast(OBJECT(pnv), TYPE_XIVE_FABRIC)) {
889              object_property_set_link(chip, "xive-fabric", OBJECT(pnv),
890                                       &error_abort);
891          }
892          sysbus_realize_and_unref(SYS_BUS_DEVICE(chip), &error_fatal);
893      }
894      g_free(chip_typename);
895  
896      /* Instantiate ISA bus on chip 0 */
897      pnv->isa_bus = pnv_isa_create(pnv->chips[0], &error_fatal);
898  
899      /* Create serial port */
900      serial_hds_isa_init(pnv->isa_bus, 0, MAX_ISA_SERIAL_PORTS);
901  
902      /* Create an RTC ISA device too */
903      mc146818_rtc_init(pnv->isa_bus, 2000, NULL);
904  
905      /*
906       * Create the machine BMC simulator and the IPMI BT device for
907       * communication with the BMC
908       */
909      if (defaults_enabled()) {
910          pnv->bmc = pnv_bmc_create(pnv->pnor);
911          pnv_ipmi_bt_init(pnv->isa_bus, pnv->bmc, 10);
912      }
913  
914      /*
915       * The PNOR is mapped on the LPC FW address space by the BMC.
916       * Since we can not reach the remote BMC machine with LPC memops,
917       * map it always for now.
918       */
919      memory_region_add_subregion(pnv->chips[0]->fw_mr, PNOR_SPI_OFFSET,
920                                  &pnv->pnor->mmio);
921  
922      /*
923       * OpenPOWER systems use a IPMI SEL Event message to notify the
924       * host to powerdown
925       */
926      pnv->powerdown_notifier.notify = pnv_powerdown_notify;
927      qemu_register_powerdown_notifier(&pnv->powerdown_notifier);
928  }
929  
930  /*
931   *    0:21  Reserved - Read as zeros
932   *   22:24  Chip ID
933   *   25:28  Core number
934   *   29:31  Thread ID
935   */
936  static uint32_t pnv_chip_core_pir_p8(PnvChip *chip, uint32_t core_id)
937  {
938      return (chip->chip_id << 7) | (core_id << 3);
939  }
940  
941  static void pnv_chip_power8_intc_create(PnvChip *chip, PowerPCCPU *cpu,
942                                          Error **errp)
943  {
944      Pnv8Chip *chip8 = PNV8_CHIP(chip);
945      Error *local_err = NULL;
946      Object *obj;
947      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
948  
949      obj = icp_create(OBJECT(cpu), TYPE_PNV_ICP, chip8->xics, &local_err);
950      if (local_err) {
951          error_propagate(errp, local_err);
952          return;
953      }
954  
955      pnv_cpu->intc = obj;
956  }
957  
958  
959  static void pnv_chip_power8_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
960  {
961      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
962  
963      icp_reset(ICP(pnv_cpu->intc));
964  }
965  
966  static void pnv_chip_power8_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
967  {
968      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
969  
970      icp_destroy(ICP(pnv_cpu->intc));
971      pnv_cpu->intc = NULL;
972  }
973  
974  static void pnv_chip_power8_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
975                                              Monitor *mon)
976  {
977      icp_pic_print_info(ICP(pnv_cpu_state(cpu)->intc), mon);
978  }
979  
980  /*
981   *    0:48  Reserved - Read as zeroes
982   *   49:52  Node ID
983   *   53:55  Chip ID
984   *   56     Reserved - Read as zero
985   *   57:61  Core number
986   *   62:63  Thread ID
987   *
988   * We only care about the lower bits. uint32_t is fine for the moment.
989   */
990  static uint32_t pnv_chip_core_pir_p9(PnvChip *chip, uint32_t core_id)
991  {
992      return (chip->chip_id << 8) | (core_id << 2);
993  }
994  
995  static uint32_t pnv_chip_core_pir_p10(PnvChip *chip, uint32_t core_id)
996  {
997      return (chip->chip_id << 8) | (core_id << 2);
998  }
999  
1000  static void pnv_chip_power9_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1001                                          Error **errp)
1002  {
1003      Pnv9Chip *chip9 = PNV9_CHIP(chip);
1004      Error *local_err = NULL;
1005      Object *obj;
1006      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1007  
1008      /*
1009       * The core creates its interrupt presenter but the XIVE interrupt
1010       * controller object is initialized afterwards. Hopefully, it's
1011       * only used at runtime.
1012       */
1013      obj = xive_tctx_create(OBJECT(cpu), XIVE_PRESENTER(&chip9->xive),
1014                             &local_err);
1015      if (local_err) {
1016          error_propagate(errp, local_err);
1017          return;
1018      }
1019  
1020      pnv_cpu->intc = obj;
1021  }
1022  
1023  static void pnv_chip_power9_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1024  {
1025      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1026  
1027      xive_tctx_reset(XIVE_TCTX(pnv_cpu->intc));
1028  }
1029  
1030  static void pnv_chip_power9_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1031  {
1032      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1033  
1034      xive_tctx_destroy(XIVE_TCTX(pnv_cpu->intc));
1035      pnv_cpu->intc = NULL;
1036  }
1037  
1038  static void pnv_chip_power9_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1039                                              Monitor *mon)
1040  {
1041      xive_tctx_pic_print_info(XIVE_TCTX(pnv_cpu_state(cpu)->intc), mon);
1042  }
1043  
1044  static void pnv_chip_power10_intc_create(PnvChip *chip, PowerPCCPU *cpu,
1045                                          Error **errp)
1046  {
1047      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1048  
1049      /* Will be defined when the interrupt controller is */
1050      pnv_cpu->intc = NULL;
1051  }
1052  
1053  static void pnv_chip_power10_intc_reset(PnvChip *chip, PowerPCCPU *cpu)
1054  {
1055      ;
1056  }
1057  
1058  static void pnv_chip_power10_intc_destroy(PnvChip *chip, PowerPCCPU *cpu)
1059  {
1060      PnvCPUState *pnv_cpu = pnv_cpu_state(cpu);
1061  
1062      pnv_cpu->intc = NULL;
1063  }
1064  
1065  static void pnv_chip_power10_intc_print_info(PnvChip *chip, PowerPCCPU *cpu,
1066                                               Monitor *mon)
1067  {
1068  }
1069  
1070  /*
1071   * Allowed core identifiers on a POWER8 Processor Chip :
1072   *
1073   * <EX0 reserved>
1074   *  EX1  - Venice only
1075   *  EX2  - Venice only
1076   *  EX3  - Venice only
1077   *  EX4
1078   *  EX5
1079   *  EX6
1080   * <EX7,8 reserved> <reserved>
1081   *  EX9  - Venice only
1082   *  EX10 - Venice only
1083   *  EX11 - Venice only
1084   *  EX12
1085   *  EX13
1086   *  EX14
1087   * <EX15 reserved>
1088   */
1089  #define POWER8E_CORE_MASK  (0x7070ull)
1090  #define POWER8_CORE_MASK   (0x7e7eull)
1091  
1092  /*
1093   * POWER9 has 24 cores, ids starting at 0x0
1094   */
1095  #define POWER9_CORE_MASK   (0xffffffffffffffull)
1096  
1097  
1098  #define POWER10_CORE_MASK  (0xffffffffffffffull)
1099  
1100  static void pnv_chip_power8_instance_init(Object *obj)
1101  {
1102      PnvChip *chip = PNV_CHIP(obj);
1103      Pnv8Chip *chip8 = PNV8_CHIP(obj);
1104      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1105      int i;
1106  
1107      object_property_add_link(obj, "xics", TYPE_XICS_FABRIC,
1108                               (Object **)&chip8->xics,
1109                               object_property_allow_set_link,
1110                               OBJ_PROP_LINK_STRONG);
1111  
1112      object_initialize_child(obj, "psi", &chip8->psi, TYPE_PNV8_PSI);
1113  
1114      object_initialize_child(obj, "lpc", &chip8->lpc, TYPE_PNV8_LPC);
1115  
1116      object_initialize_child(obj, "occ", &chip8->occ, TYPE_PNV8_OCC);
1117  
1118      object_initialize_child(obj, "homer", &chip8->homer, TYPE_PNV8_HOMER);
1119  
1120      for (i = 0; i < pcc->num_phbs; i++) {
1121          object_initialize_child(obj, "phb[*]", &chip8->phbs[i], TYPE_PNV_PHB3);
1122      }
1123  
1124      /*
1125       * Number of PHBs is the chip default
1126       */
1127      chip->num_phbs = pcc->num_phbs;
1128  }
1129  
1130  static void pnv_chip_icp_realize(Pnv8Chip *chip8, Error **errp)
1131   {
1132      PnvChip *chip = PNV_CHIP(chip8);
1133      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1134      int i, j;
1135      char *name;
1136  
1137      name = g_strdup_printf("icp-%x", chip->chip_id);
1138      memory_region_init(&chip8->icp_mmio, OBJECT(chip), name, PNV_ICP_SIZE);
1139      sysbus_init_mmio(SYS_BUS_DEVICE(chip), &chip8->icp_mmio);
1140      g_free(name);
1141  
1142      sysbus_mmio_map(SYS_BUS_DEVICE(chip), 1, PNV_ICP_BASE(chip));
1143  
1144      /* Map the ICP registers for each thread */
1145      for (i = 0; i < chip->nr_cores; i++) {
1146          PnvCore *pnv_core = chip->cores[i];
1147          int core_hwid = CPU_CORE(pnv_core)->core_id;
1148  
1149          for (j = 0; j < CPU_CORE(pnv_core)->nr_threads; j++) {
1150              uint32_t pir = pcc->core_pir(chip, core_hwid) + j;
1151              PnvICPState *icp = PNV_ICP(xics_icp_get(chip8->xics, pir));
1152  
1153              memory_region_add_subregion(&chip8->icp_mmio, pir << 12,
1154                                          &icp->mmio);
1155          }
1156      }
1157  }
1158  
1159  static void pnv_chip_power8_realize(DeviceState *dev, Error **errp)
1160  {
1161      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1162      PnvChip *chip = PNV_CHIP(dev);
1163      Pnv8Chip *chip8 = PNV8_CHIP(dev);
1164      Pnv8Psi *psi8 = &chip8->psi;
1165      Error *local_err = NULL;
1166      int i;
1167  
1168      assert(chip8->xics);
1169  
1170      /* XSCOM bridge is first */
1171      pnv_xscom_realize(chip, PNV_XSCOM_SIZE, &local_err);
1172      if (local_err) {
1173          error_propagate(errp, local_err);
1174          return;
1175      }
1176      sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV_XSCOM_BASE(chip));
1177  
1178      pcc->parent_realize(dev, &local_err);
1179      if (local_err) {
1180          error_propagate(errp, local_err);
1181          return;
1182      }
1183  
1184      /* Processor Service Interface (PSI) Host Bridge */
1185      object_property_set_int(OBJECT(&chip8->psi), "bar", PNV_PSIHB_BASE(chip),
1186                              &error_fatal);
1187      object_property_set_link(OBJECT(&chip8->psi), ICS_PROP_XICS,
1188                               OBJECT(chip8->xics), &error_abort);
1189      if (!qdev_realize(DEVICE(&chip8->psi), NULL, errp)) {
1190          return;
1191      }
1192      pnv_xscom_add_subregion(chip, PNV_XSCOM_PSIHB_BASE,
1193                              &PNV_PSI(psi8)->xscom_regs);
1194  
1195      /* Create LPC controller */
1196      object_property_set_link(OBJECT(&chip8->lpc), "psi", OBJECT(&chip8->psi),
1197                               &error_abort);
1198      qdev_realize(DEVICE(&chip8->lpc), NULL, &error_fatal);
1199      pnv_xscom_add_subregion(chip, PNV_XSCOM_LPC_BASE, &chip8->lpc.xscom_regs);
1200  
1201      chip->fw_mr = &chip8->lpc.isa_fw;
1202      chip->dt_isa_nodename = g_strdup_printf("/xscom@%" PRIx64 "/isa@%x",
1203                                              (uint64_t) PNV_XSCOM_BASE(chip),
1204                                              PNV_XSCOM_LPC_BASE);
1205  
1206      /*
1207       * Interrupt Management Area. This is the memory region holding
1208       * all the Interrupt Control Presenter (ICP) registers
1209       */
1210      pnv_chip_icp_realize(chip8, &local_err);
1211      if (local_err) {
1212          error_propagate(errp, local_err);
1213          return;
1214      }
1215  
1216      /* Create the simplified OCC model */
1217      object_property_set_link(OBJECT(&chip8->occ), "psi", OBJECT(&chip8->psi),
1218                               &error_abort);
1219      if (!qdev_realize(DEVICE(&chip8->occ), NULL, errp)) {
1220          return;
1221      }
1222      pnv_xscom_add_subregion(chip, PNV_XSCOM_OCC_BASE, &chip8->occ.xscom_regs);
1223  
1224      /* OCC SRAM model */
1225      memory_region_add_subregion(get_system_memory(), PNV_OCC_SENSOR_BASE(chip),
1226                                  &chip8->occ.sram_regs);
1227  
1228      /* HOMER */
1229      object_property_set_link(OBJECT(&chip8->homer), "chip", OBJECT(chip),
1230                               &error_abort);
1231      if (!qdev_realize(DEVICE(&chip8->homer), NULL, errp)) {
1232          return;
1233      }
1234      /* Homer Xscom region */
1235      pnv_xscom_add_subregion(chip, PNV_XSCOM_PBA_BASE, &chip8->homer.pba_regs);
1236  
1237      /* Homer mmio region */
1238      memory_region_add_subregion(get_system_memory(), PNV_HOMER_BASE(chip),
1239                                  &chip8->homer.regs);
1240  
1241      /* PHB3 controllers */
1242      for (i = 0; i < chip->num_phbs; i++) {
1243          PnvPHB3 *phb = &chip8->phbs[i];
1244  
1245          object_property_set_int(OBJECT(phb), "index", i, &error_fatal);
1246          object_property_set_int(OBJECT(phb), "chip-id", chip->chip_id,
1247                                  &error_fatal);
1248          object_property_set_link(OBJECT(phb), "chip", OBJECT(chip),
1249                                   &error_fatal);
1250          if (!sysbus_realize(SYS_BUS_DEVICE(phb), errp)) {
1251              return;
1252          }
1253      }
1254  }
1255  
1256  static uint32_t pnv_chip_power8_xscom_pcba(PnvChip *chip, uint64_t addr)
1257  {
1258      addr &= (PNV_XSCOM_SIZE - 1);
1259      return ((addr >> 4) & ~0xfull) | ((addr >> 3) & 0xf);
1260  }
1261  
1262  static void pnv_chip_power8e_class_init(ObjectClass *klass, void *data)
1263  {
1264      DeviceClass *dc = DEVICE_CLASS(klass);
1265      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1266  
1267      k->chip_cfam_id = 0x221ef04980000000ull;  /* P8 Murano DD2.1 */
1268      k->cores_mask = POWER8E_CORE_MASK;
1269      k->num_phbs = 3;
1270      k->core_pir = pnv_chip_core_pir_p8;
1271      k->intc_create = pnv_chip_power8_intc_create;
1272      k->intc_reset = pnv_chip_power8_intc_reset;
1273      k->intc_destroy = pnv_chip_power8_intc_destroy;
1274      k->intc_print_info = pnv_chip_power8_intc_print_info;
1275      k->isa_create = pnv_chip_power8_isa_create;
1276      k->dt_populate = pnv_chip_power8_dt_populate;
1277      k->pic_print_info = pnv_chip_power8_pic_print_info;
1278      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1279      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1280      dc->desc = "PowerNV Chip POWER8E";
1281  
1282      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1283                                      &k->parent_realize);
1284  }
1285  
1286  static void pnv_chip_power8_class_init(ObjectClass *klass, void *data)
1287  {
1288      DeviceClass *dc = DEVICE_CLASS(klass);
1289      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1290  
1291      k->chip_cfam_id = 0x220ea04980000000ull; /* P8 Venice DD2.0 */
1292      k->cores_mask = POWER8_CORE_MASK;
1293      k->num_phbs = 3;
1294      k->core_pir = pnv_chip_core_pir_p8;
1295      k->intc_create = pnv_chip_power8_intc_create;
1296      k->intc_reset = pnv_chip_power8_intc_reset;
1297      k->intc_destroy = pnv_chip_power8_intc_destroy;
1298      k->intc_print_info = pnv_chip_power8_intc_print_info;
1299      k->isa_create = pnv_chip_power8_isa_create;
1300      k->dt_populate = pnv_chip_power8_dt_populate;
1301      k->pic_print_info = pnv_chip_power8_pic_print_info;
1302      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1303      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1304      dc->desc = "PowerNV Chip POWER8";
1305  
1306      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1307                                      &k->parent_realize);
1308  }
1309  
1310  static void pnv_chip_power8nvl_class_init(ObjectClass *klass, void *data)
1311  {
1312      DeviceClass *dc = DEVICE_CLASS(klass);
1313      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1314  
1315      k->chip_cfam_id = 0x120d304980000000ull;  /* P8 Naples DD1.0 */
1316      k->cores_mask = POWER8_CORE_MASK;
1317      k->num_phbs = 4;
1318      k->core_pir = pnv_chip_core_pir_p8;
1319      k->intc_create = pnv_chip_power8_intc_create;
1320      k->intc_reset = pnv_chip_power8_intc_reset;
1321      k->intc_destroy = pnv_chip_power8_intc_destroy;
1322      k->intc_print_info = pnv_chip_power8_intc_print_info;
1323      k->isa_create = pnv_chip_power8nvl_isa_create;
1324      k->dt_populate = pnv_chip_power8_dt_populate;
1325      k->pic_print_info = pnv_chip_power8_pic_print_info;
1326      k->xscom_core_base = pnv_chip_power8_xscom_core_base;
1327      k->xscom_pcba = pnv_chip_power8_xscom_pcba;
1328      dc->desc = "PowerNV Chip POWER8NVL";
1329  
1330      device_class_set_parent_realize(dc, pnv_chip_power8_realize,
1331                                      &k->parent_realize);
1332  }
1333  
1334  static void pnv_chip_power9_instance_init(Object *obj)
1335  {
1336      PnvChip *chip = PNV_CHIP(obj);
1337      Pnv9Chip *chip9 = PNV9_CHIP(obj);
1338      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(obj);
1339      int i;
1340  
1341      object_initialize_child(obj, "xive", &chip9->xive, TYPE_PNV_XIVE);
1342      object_property_add_alias(obj, "xive-fabric", OBJECT(&chip9->xive),
1343                                "xive-fabric");
1344  
1345      object_initialize_child(obj, "psi", &chip9->psi, TYPE_PNV9_PSI);
1346  
1347      object_initialize_child(obj, "lpc", &chip9->lpc, TYPE_PNV9_LPC);
1348  
1349      object_initialize_child(obj, "occ", &chip9->occ, TYPE_PNV9_OCC);
1350  
1351      object_initialize_child(obj, "homer", &chip9->homer, TYPE_PNV9_HOMER);
1352  
1353      /* Number of PECs is the chip default */
1354      chip->num_pecs = pcc->num_pecs;
1355  
1356      for (i = 0; i < chip->num_pecs; i++) {
1357          object_initialize_child(obj, "pec[*]", &chip9->pecs[i],
1358                                  TYPE_PNV_PHB4_PEC);
1359      }
1360  }
1361  
1362  static void pnv_chip_quad_realize(Pnv9Chip *chip9, Error **errp)
1363  {
1364      PnvChip *chip = PNV_CHIP(chip9);
1365      int i;
1366  
1367      chip9->nr_quads = DIV_ROUND_UP(chip->nr_cores, 4);
1368      chip9->quads = g_new0(PnvQuad, chip9->nr_quads);
1369  
1370      for (i = 0; i < chip9->nr_quads; i++) {
1371          char eq_name[32];
1372          PnvQuad *eq = &chip9->quads[i];
1373          PnvCore *pnv_core = chip->cores[i * 4];
1374          int core_id = CPU_CORE(pnv_core)->core_id;
1375  
1376          snprintf(eq_name, sizeof(eq_name), "eq[%d]", core_id);
1377          object_initialize_child_with_props(OBJECT(chip), eq_name, eq,
1378                                             sizeof(*eq), TYPE_PNV_QUAD,
1379                                             &error_fatal, NULL);
1380  
1381          object_property_set_int(OBJECT(eq), "quad-id", core_id, &error_fatal);
1382          qdev_realize(DEVICE(eq), NULL, &error_fatal);
1383  
1384          pnv_xscom_add_subregion(chip, PNV9_XSCOM_EQ_BASE(eq->quad_id),
1385                                  &eq->xscom_regs);
1386      }
1387  }
1388  
1389  static void pnv_chip_power9_pec_realize(PnvChip *chip, Error **errp)
1390  {
1391      Pnv9Chip *chip9 = PNV9_CHIP(chip);
1392      int i;
1393  
1394      for (i = 0; i < chip->num_pecs; i++) {
1395          PnvPhb4PecState *pec = &chip9->pecs[i];
1396          PnvPhb4PecClass *pecc = PNV_PHB4_PEC_GET_CLASS(pec);
1397          uint32_t pec_nest_base;
1398          uint32_t pec_pci_base;
1399  
1400          object_property_set_int(OBJECT(pec), "index", i, &error_fatal);
1401          object_property_set_int(OBJECT(pec), "chip-id", chip->chip_id,
1402                                  &error_fatal);
1403          object_property_set_link(OBJECT(pec), "chip", OBJECT(chip),
1404                                   &error_fatal);
1405          if (!qdev_realize(DEVICE(pec), NULL, errp)) {
1406              return;
1407          }
1408  
1409          pec_nest_base = pecc->xscom_nest_base(pec);
1410          pec_pci_base = pecc->xscom_pci_base(pec);
1411  
1412          pnv_xscom_add_subregion(chip, pec_nest_base, &pec->nest_regs_mr);
1413          pnv_xscom_add_subregion(chip, pec_pci_base, &pec->pci_regs_mr);
1414      }
1415  }
1416  
1417  static void pnv_chip_power9_realize(DeviceState *dev, Error **errp)
1418  {
1419      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1420      Pnv9Chip *chip9 = PNV9_CHIP(dev);
1421      PnvChip *chip = PNV_CHIP(dev);
1422      Pnv9Psi *psi9 = &chip9->psi;
1423      Error *local_err = NULL;
1424  
1425      /* XSCOM bridge is first */
1426      pnv_xscom_realize(chip, PNV9_XSCOM_SIZE, &local_err);
1427      if (local_err) {
1428          error_propagate(errp, local_err);
1429          return;
1430      }
1431      sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV9_XSCOM_BASE(chip));
1432  
1433      pcc->parent_realize(dev, &local_err);
1434      if (local_err) {
1435          error_propagate(errp, local_err);
1436          return;
1437      }
1438  
1439      pnv_chip_quad_realize(chip9, &local_err);
1440      if (local_err) {
1441          error_propagate(errp, local_err);
1442          return;
1443      }
1444  
1445      /* XIVE interrupt controller (POWER9) */
1446      object_property_set_int(OBJECT(&chip9->xive), "ic-bar",
1447                              PNV9_XIVE_IC_BASE(chip), &error_fatal);
1448      object_property_set_int(OBJECT(&chip9->xive), "vc-bar",
1449                              PNV9_XIVE_VC_BASE(chip), &error_fatal);
1450      object_property_set_int(OBJECT(&chip9->xive), "pc-bar",
1451                              PNV9_XIVE_PC_BASE(chip), &error_fatal);
1452      object_property_set_int(OBJECT(&chip9->xive), "tm-bar",
1453                              PNV9_XIVE_TM_BASE(chip), &error_fatal);
1454      object_property_set_link(OBJECT(&chip9->xive), "chip", OBJECT(chip),
1455                               &error_abort);
1456      if (!sysbus_realize(SYS_BUS_DEVICE(&chip9->xive), errp)) {
1457          return;
1458      }
1459      pnv_xscom_add_subregion(chip, PNV9_XSCOM_XIVE_BASE,
1460                              &chip9->xive.xscom_regs);
1461  
1462      /* Processor Service Interface (PSI) Host Bridge */
1463      object_property_set_int(OBJECT(&chip9->psi), "bar", PNV9_PSIHB_BASE(chip),
1464                              &error_fatal);
1465      if (!qdev_realize(DEVICE(&chip9->psi), NULL, errp)) {
1466          return;
1467      }
1468      pnv_xscom_add_subregion(chip, PNV9_XSCOM_PSIHB_BASE,
1469                              &PNV_PSI(psi9)->xscom_regs);
1470  
1471      /* LPC */
1472      object_property_set_link(OBJECT(&chip9->lpc), "psi", OBJECT(&chip9->psi),
1473                               &error_abort);
1474      if (!qdev_realize(DEVICE(&chip9->lpc), NULL, errp)) {
1475          return;
1476      }
1477      memory_region_add_subregion(get_system_memory(), PNV9_LPCM_BASE(chip),
1478                                  &chip9->lpc.xscom_regs);
1479  
1480      chip->fw_mr = &chip9->lpc.isa_fw;
1481      chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1482                                              (uint64_t) PNV9_LPCM_BASE(chip));
1483  
1484      /* Create the simplified OCC model */
1485      object_property_set_link(OBJECT(&chip9->occ), "psi", OBJECT(&chip9->psi),
1486                               &error_abort);
1487      if (!qdev_realize(DEVICE(&chip9->occ), NULL, errp)) {
1488          return;
1489      }
1490      pnv_xscom_add_subregion(chip, PNV9_XSCOM_OCC_BASE, &chip9->occ.xscom_regs);
1491  
1492      /* OCC SRAM model */
1493      memory_region_add_subregion(get_system_memory(), PNV9_OCC_SENSOR_BASE(chip),
1494                                  &chip9->occ.sram_regs);
1495  
1496      /* HOMER */
1497      object_property_set_link(OBJECT(&chip9->homer), "chip", OBJECT(chip),
1498                               &error_abort);
1499      if (!qdev_realize(DEVICE(&chip9->homer), NULL, errp)) {
1500          return;
1501      }
1502      /* Homer Xscom region */
1503      pnv_xscom_add_subregion(chip, PNV9_XSCOM_PBA_BASE, &chip9->homer.pba_regs);
1504  
1505      /* Homer mmio region */
1506      memory_region_add_subregion(get_system_memory(), PNV9_HOMER_BASE(chip),
1507                                  &chip9->homer.regs);
1508  
1509      /* PEC PHBs */
1510      pnv_chip_power9_pec_realize(chip, &local_err);
1511      if (local_err) {
1512          error_propagate(errp, local_err);
1513          return;
1514      }
1515  }
1516  
1517  static uint32_t pnv_chip_power9_xscom_pcba(PnvChip *chip, uint64_t addr)
1518  {
1519      addr &= (PNV9_XSCOM_SIZE - 1);
1520      return addr >> 3;
1521  }
1522  
1523  static void pnv_chip_power9_class_init(ObjectClass *klass, void *data)
1524  {
1525      DeviceClass *dc = DEVICE_CLASS(klass);
1526      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1527  
1528      k->chip_cfam_id = 0x220d104900008000ull; /* P9 Nimbus DD2.0 */
1529      k->cores_mask = POWER9_CORE_MASK;
1530      k->core_pir = pnv_chip_core_pir_p9;
1531      k->intc_create = pnv_chip_power9_intc_create;
1532      k->intc_reset = pnv_chip_power9_intc_reset;
1533      k->intc_destroy = pnv_chip_power9_intc_destroy;
1534      k->intc_print_info = pnv_chip_power9_intc_print_info;
1535      k->isa_create = pnv_chip_power9_isa_create;
1536      k->dt_populate = pnv_chip_power9_dt_populate;
1537      k->pic_print_info = pnv_chip_power9_pic_print_info;
1538      k->xscom_core_base = pnv_chip_power9_xscom_core_base;
1539      k->xscom_pcba = pnv_chip_power9_xscom_pcba;
1540      dc->desc = "PowerNV Chip POWER9";
1541      k->num_pecs = PNV9_CHIP_MAX_PEC;
1542  
1543      device_class_set_parent_realize(dc, pnv_chip_power9_realize,
1544                                      &k->parent_realize);
1545  }
1546  
1547  static void pnv_chip_power10_instance_init(Object *obj)
1548  {
1549      Pnv10Chip *chip10 = PNV10_CHIP(obj);
1550  
1551      object_initialize_child(obj, "psi", &chip10->psi, TYPE_PNV10_PSI);
1552      object_initialize_child(obj, "lpc", &chip10->lpc, TYPE_PNV10_LPC);
1553  }
1554  
1555  static void pnv_chip_power10_realize(DeviceState *dev, Error **errp)
1556  {
1557      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(dev);
1558      PnvChip *chip = PNV_CHIP(dev);
1559      Pnv10Chip *chip10 = PNV10_CHIP(dev);
1560      Error *local_err = NULL;
1561  
1562      /* XSCOM bridge is first */
1563      pnv_xscom_realize(chip, PNV10_XSCOM_SIZE, &local_err);
1564      if (local_err) {
1565          error_propagate(errp, local_err);
1566          return;
1567      }
1568      sysbus_mmio_map(SYS_BUS_DEVICE(chip), 0, PNV10_XSCOM_BASE(chip));
1569  
1570      pcc->parent_realize(dev, &local_err);
1571      if (local_err) {
1572          error_propagate(errp, local_err);
1573          return;
1574      }
1575  
1576      /* Processor Service Interface (PSI) Host Bridge */
1577      object_property_set_int(OBJECT(&chip10->psi), "bar",
1578                              PNV10_PSIHB_BASE(chip), &error_fatal);
1579      if (!qdev_realize(DEVICE(&chip10->psi), NULL, errp)) {
1580          return;
1581      }
1582      pnv_xscom_add_subregion(chip, PNV10_XSCOM_PSIHB_BASE,
1583                              &PNV_PSI(&chip10->psi)->xscom_regs);
1584  
1585      /* LPC */
1586      object_property_set_link(OBJECT(&chip10->lpc), "psi",
1587                               OBJECT(&chip10->psi), &error_abort);
1588      if (!qdev_realize(DEVICE(&chip10->lpc), NULL, errp)) {
1589          return;
1590      }
1591      memory_region_add_subregion(get_system_memory(), PNV10_LPCM_BASE(chip),
1592                                  &chip10->lpc.xscom_regs);
1593  
1594      chip->fw_mr = &chip10->lpc.isa_fw;
1595      chip->dt_isa_nodename = g_strdup_printf("/lpcm-opb@%" PRIx64 "/lpc@0",
1596                                              (uint64_t) PNV10_LPCM_BASE(chip));
1597  }
1598  
1599  static uint32_t pnv_chip_power10_xscom_pcba(PnvChip *chip, uint64_t addr)
1600  {
1601      addr &= (PNV10_XSCOM_SIZE - 1);
1602      return addr >> 3;
1603  }
1604  
1605  static void pnv_chip_power10_class_init(ObjectClass *klass, void *data)
1606  {
1607      DeviceClass *dc = DEVICE_CLASS(klass);
1608      PnvChipClass *k = PNV_CHIP_CLASS(klass);
1609  
1610      k->chip_cfam_id = 0x120da04900008000ull; /* P10 DD1.0 (with NX) */
1611      k->cores_mask = POWER10_CORE_MASK;
1612      k->core_pir = pnv_chip_core_pir_p10;
1613      k->intc_create = pnv_chip_power10_intc_create;
1614      k->intc_reset = pnv_chip_power10_intc_reset;
1615      k->intc_destroy = pnv_chip_power10_intc_destroy;
1616      k->intc_print_info = pnv_chip_power10_intc_print_info;
1617      k->isa_create = pnv_chip_power10_isa_create;
1618      k->dt_populate = pnv_chip_power10_dt_populate;
1619      k->pic_print_info = pnv_chip_power10_pic_print_info;
1620      k->xscom_core_base = pnv_chip_power10_xscom_core_base;
1621      k->xscom_pcba = pnv_chip_power10_xscom_pcba;
1622      dc->desc = "PowerNV Chip POWER10";
1623  
1624      device_class_set_parent_realize(dc, pnv_chip_power10_realize,
1625                                      &k->parent_realize);
1626  }
1627  
1628  static void pnv_chip_core_sanitize(PnvChip *chip, Error **errp)
1629  {
1630      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1631      int cores_max;
1632  
1633      /*
1634       * No custom mask for this chip, let's use the default one from *
1635       * the chip class
1636       */
1637      if (!chip->cores_mask) {
1638          chip->cores_mask = pcc->cores_mask;
1639      }
1640  
1641      /* filter alien core ids ! some are reserved */
1642      if ((chip->cores_mask & pcc->cores_mask) != chip->cores_mask) {
1643          error_setg(errp, "warning: invalid core mask for chip Ox%"PRIx64" !",
1644                     chip->cores_mask);
1645          return;
1646      }
1647      chip->cores_mask &= pcc->cores_mask;
1648  
1649      /* now that we have a sane layout, let check the number of cores */
1650      cores_max = ctpop64(chip->cores_mask);
1651      if (chip->nr_cores > cores_max) {
1652          error_setg(errp, "warning: too many cores for chip ! Limit is %d",
1653                     cores_max);
1654          return;
1655      }
1656  }
1657  
1658  static void pnv_chip_core_realize(PnvChip *chip, Error **errp)
1659  {
1660      Error *error = NULL;
1661      PnvChipClass *pcc = PNV_CHIP_GET_CLASS(chip);
1662      const char *typename = pnv_chip_core_typename(chip);
1663      int i, core_hwid;
1664      PnvMachineState *pnv = PNV_MACHINE(qdev_get_machine());
1665  
1666      if (!object_class_by_name(typename)) {
1667          error_setg(errp, "Unable to find PowerNV CPU Core '%s'", typename);
1668          return;
1669      }
1670  
1671      /* Cores */
1672      pnv_chip_core_sanitize(chip, &error);
1673      if (error) {
1674          error_propagate(errp, error);
1675          return;
1676      }
1677  
1678      chip->cores = g_new0(PnvCore *, chip->nr_cores);
1679  
1680      for (i = 0, core_hwid = 0; (core_hwid < sizeof(chip->cores_mask) * 8)
1681               && (i < chip->nr_cores); core_hwid++) {
1682          char core_name[32];
1683          PnvCore *pnv_core;
1684          uint64_t xscom_core_base;
1685  
1686          if (!(chip->cores_mask & (1ull << core_hwid))) {
1687              continue;
1688          }
1689  
1690          pnv_core = PNV_CORE(object_new(typename));
1691  
1692          snprintf(core_name, sizeof(core_name), "core[%d]", core_hwid);
1693          object_property_add_child(OBJECT(chip), core_name, OBJECT(pnv_core));
1694          chip->cores[i] = pnv_core;
1695          object_property_set_int(OBJECT(pnv_core), "nr-threads",
1696                                  chip->nr_threads, &error_fatal);
1697          object_property_set_int(OBJECT(pnv_core), CPU_CORE_PROP_CORE_ID,
1698                                  core_hwid, &error_fatal);
1699          object_property_set_int(OBJECT(pnv_core), "pir",
1700                                  pcc->core_pir(chip, core_hwid), &error_fatal);
1701          object_property_set_int(OBJECT(pnv_core), "hrmor", pnv->fw_load_addr,
1702                                  &error_fatal);
1703          object_property_set_link(OBJECT(pnv_core), "chip", OBJECT(chip),
1704                                   &error_abort);
1705          qdev_realize(DEVICE(pnv_core), NULL, &error_fatal);
1706  
1707          /* Each core has an XSCOM MMIO region */
1708          xscom_core_base = pcc->xscom_core_base(chip, core_hwid);
1709  
1710          pnv_xscom_add_subregion(chip, xscom_core_base,
1711                                  &pnv_core->xscom_regs);
1712          i++;
1713      }
1714  }
1715  
1716  static void pnv_chip_realize(DeviceState *dev, Error **errp)
1717  {
1718      PnvChip *chip = PNV_CHIP(dev);
1719      Error *error = NULL;
1720  
1721      /* Cores */
1722      pnv_chip_core_realize(chip, &error);
1723      if (error) {
1724          error_propagate(errp, error);
1725          return;
1726      }
1727  }
1728  
1729  static Property pnv_chip_properties[] = {
1730      DEFINE_PROP_UINT32("chip-id", PnvChip, chip_id, 0),
1731      DEFINE_PROP_UINT64("ram-start", PnvChip, ram_start, 0),
1732      DEFINE_PROP_UINT64("ram-size", PnvChip, ram_size, 0),
1733      DEFINE_PROP_UINT32("nr-cores", PnvChip, nr_cores, 1),
1734      DEFINE_PROP_UINT64("cores-mask", PnvChip, cores_mask, 0x0),
1735      DEFINE_PROP_UINT32("nr-threads", PnvChip, nr_threads, 1),
1736      DEFINE_PROP_END_OF_LIST(),
1737  };
1738  
1739  static void pnv_chip_class_init(ObjectClass *klass, void *data)
1740  {
1741      DeviceClass *dc = DEVICE_CLASS(klass);
1742  
1743      set_bit(DEVICE_CATEGORY_CPU, dc->categories);
1744      dc->realize = pnv_chip_realize;
1745      device_class_set_props(dc, pnv_chip_properties);
1746      dc->desc = "PowerNV Chip";
1747  }
1748  
1749  PowerPCCPU *pnv_chip_find_cpu(PnvChip *chip, uint32_t pir)
1750  {
1751      int i, j;
1752  
1753      for (i = 0; i < chip->nr_cores; i++) {
1754          PnvCore *pc = chip->cores[i];
1755          CPUCore *cc = CPU_CORE(pc);
1756  
1757          for (j = 0; j < cc->nr_threads; j++) {
1758              if (ppc_cpu_pir(pc->threads[j]) == pir) {
1759                  return pc->threads[j];
1760              }
1761          }
1762      }
1763      return NULL;
1764  }
1765  
1766  typedef struct ForeachPhb3Args {
1767      int irq;
1768      ICSState *ics;
1769  } ForeachPhb3Args;
1770  
1771  static int pnv_ics_get_child(Object *child, void *opaque)
1772  {
1773      ForeachPhb3Args *args = opaque;
1774      PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1775  
1776      if (phb3) {
1777          if (ics_valid_irq(&phb3->lsis, args->irq)) {
1778              args->ics = &phb3->lsis;
1779          }
1780          if (ics_valid_irq(ICS(&phb3->msis), args->irq)) {
1781              args->ics = ICS(&phb3->msis);
1782          }
1783      }
1784      return args->ics ? 1 : 0;
1785  }
1786  
1787  static ICSState *pnv_ics_get(XICSFabric *xi, int irq)
1788  {
1789      PnvMachineState *pnv = PNV_MACHINE(xi);
1790      ForeachPhb3Args args = { irq, NULL };
1791      int i;
1792  
1793      for (i = 0; i < pnv->num_chips; i++) {
1794          PnvChip *chip = pnv->chips[i];
1795          Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1796  
1797          if (ics_valid_irq(&chip8->psi.ics, irq)) {
1798              return &chip8->psi.ics;
1799          }
1800  
1801          object_child_foreach(OBJECT(chip), pnv_ics_get_child, &args);
1802          if (args.ics) {
1803              return args.ics;
1804          }
1805      }
1806      return NULL;
1807  }
1808  
1809  static int pnv_ics_resend_child(Object *child, void *opaque)
1810  {
1811      PnvPHB3 *phb3 = (PnvPHB3 *) object_dynamic_cast(child, TYPE_PNV_PHB3);
1812  
1813      if (phb3) {
1814          ics_resend(&phb3->lsis);
1815          ics_resend(ICS(&phb3->msis));
1816      }
1817      return 0;
1818  }
1819  
1820  static void pnv_ics_resend(XICSFabric *xi)
1821  {
1822      PnvMachineState *pnv = PNV_MACHINE(xi);
1823      int i;
1824  
1825      for (i = 0; i < pnv->num_chips; i++) {
1826          PnvChip *chip = pnv->chips[i];
1827          Pnv8Chip *chip8 = PNV8_CHIP(pnv->chips[i]);
1828  
1829          ics_resend(&chip8->psi.ics);
1830          object_child_foreach(OBJECT(chip), pnv_ics_resend_child, NULL);
1831      }
1832  }
1833  
1834  static ICPState *pnv_icp_get(XICSFabric *xi, int pir)
1835  {
1836      PowerPCCPU *cpu = ppc_get_vcpu_by_pir(pir);
1837  
1838      return cpu ? ICP(pnv_cpu_state(cpu)->intc) : NULL;
1839  }
1840  
1841  static void pnv_pic_print_info(InterruptStatsProvider *obj,
1842                                 Monitor *mon)
1843  {
1844      PnvMachineState *pnv = PNV_MACHINE(obj);
1845      int i;
1846      CPUState *cs;
1847  
1848      CPU_FOREACH(cs) {
1849          PowerPCCPU *cpu = POWERPC_CPU(cs);
1850  
1851          /* XXX: loop on each chip/core/thread instead of CPU_FOREACH() */
1852          PNV_CHIP_GET_CLASS(pnv->chips[0])->intc_print_info(pnv->chips[0], cpu,
1853                                                             mon);
1854      }
1855  
1856      for (i = 0; i < pnv->num_chips; i++) {
1857          PNV_CHIP_GET_CLASS(pnv->chips[i])->pic_print_info(pnv->chips[i], mon);
1858      }
1859  }
1860  
1861  static int pnv_match_nvt(XiveFabric *xfb, uint8_t format,
1862                           uint8_t nvt_blk, uint32_t nvt_idx,
1863                           bool cam_ignore, uint8_t priority,
1864                           uint32_t logic_serv,
1865                           XiveTCTXMatch *match)
1866  {
1867      PnvMachineState *pnv = PNV_MACHINE(xfb);
1868      int total_count = 0;
1869      int i;
1870  
1871      for (i = 0; i < pnv->num_chips; i++) {
1872          Pnv9Chip *chip9 = PNV9_CHIP(pnv->chips[i]);
1873          XivePresenter *xptr = XIVE_PRESENTER(&chip9->xive);
1874          XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr);
1875          int count;
1876  
1877          count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore,
1878                                 priority, logic_serv, match);
1879  
1880          if (count < 0) {
1881              return count;
1882          }
1883  
1884          total_count += count;
1885      }
1886  
1887      return total_count;
1888  }
1889  
1890  static void pnv_machine_power8_class_init(ObjectClass *oc, void *data)
1891  {
1892      MachineClass *mc = MACHINE_CLASS(oc);
1893      XICSFabricClass *xic = XICS_FABRIC_CLASS(oc);
1894      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1895      static const char compat[] = "qemu,powernv8\0qemu,powernv\0ibm,powernv";
1896  
1897      mc->desc = "IBM PowerNV (Non-Virtualized) POWER8";
1898      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0");
1899  
1900      xic->icp_get = pnv_icp_get;
1901      xic->ics_get = pnv_ics_get;
1902      xic->ics_resend = pnv_ics_resend;
1903  
1904      pmc->compat = compat;
1905      pmc->compat_size = sizeof(compat);
1906  }
1907  
1908  static void pnv_machine_power9_class_init(ObjectClass *oc, void *data)
1909  {
1910      MachineClass *mc = MACHINE_CLASS(oc);
1911      XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc);
1912      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1913      static const char compat[] = "qemu,powernv9\0ibm,powernv";
1914  
1915      mc->desc = "IBM PowerNV (Non-Virtualized) POWER9";
1916      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power9_v2.0");
1917      xfc->match_nvt = pnv_match_nvt;
1918  
1919      mc->alias = "powernv";
1920  
1921      pmc->compat = compat;
1922      pmc->compat_size = sizeof(compat);
1923      pmc->dt_power_mgt = pnv_dt_power_mgt;
1924  }
1925  
1926  static void pnv_machine_power10_class_init(ObjectClass *oc, void *data)
1927  {
1928      MachineClass *mc = MACHINE_CLASS(oc);
1929      PnvMachineClass *pmc = PNV_MACHINE_CLASS(oc);
1930      static const char compat[] = "qemu,powernv10\0ibm,powernv";
1931  
1932      mc->desc = "IBM PowerNV (Non-Virtualized) POWER10";
1933      mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0");
1934  
1935      pmc->compat = compat;
1936      pmc->compat_size = sizeof(compat);
1937      pmc->dt_power_mgt = pnv_dt_power_mgt;
1938  }
1939  
1940  static bool pnv_machine_get_hb(Object *obj, Error **errp)
1941  {
1942      PnvMachineState *pnv = PNV_MACHINE(obj);
1943  
1944      return !!pnv->fw_load_addr;
1945  }
1946  
1947  static void pnv_machine_set_hb(Object *obj, bool value, Error **errp)
1948  {
1949      PnvMachineState *pnv = PNV_MACHINE(obj);
1950  
1951      if (value) {
1952          pnv->fw_load_addr = 0x8000000;
1953      }
1954  }
1955  
1956  static void pnv_cpu_do_nmi_on_cpu(CPUState *cs, run_on_cpu_data arg)
1957  {
1958      PowerPCCPU *cpu = POWERPC_CPU(cs);
1959      CPUPPCState *env = &cpu->env;
1960  
1961      cpu_synchronize_state(cs);
1962      ppc_cpu_do_system_reset(cs);
1963      if (env->spr[SPR_SRR1] & SRR1_WAKESTATE) {
1964          /*
1965           * Power-save wakeups, as indicated by non-zero SRR1[46:47] put the
1966           * wakeup reason in SRR1[42:45], system reset is indicated with 0b0100
1967           * (PPC_BIT(43)).
1968           */
1969          if (!(env->spr[SPR_SRR1] & SRR1_WAKERESET)) {
1970              warn_report("ppc_cpu_do_system_reset does not set system reset wakeup reason");
1971              env->spr[SPR_SRR1] |= SRR1_WAKERESET;
1972          }
1973      } else {
1974          /*
1975           * For non-powersave system resets, SRR1[42:45] are defined to be
1976           * implementation-dependent. The POWER9 User Manual specifies that
1977           * an external (SCOM driven, which may come from a BMC nmi command or
1978           * another CPU requesting a NMI IPI) system reset exception should be
1979           * 0b0010 (PPC_BIT(44)).
1980           */
1981          env->spr[SPR_SRR1] |= SRR1_WAKESCOM;
1982      }
1983  }
1984  
1985  static void pnv_nmi(NMIState *n, int cpu_index, Error **errp)
1986  {
1987      CPUState *cs;
1988  
1989      CPU_FOREACH(cs) {
1990          async_run_on_cpu(cs, pnv_cpu_do_nmi_on_cpu, RUN_ON_CPU_NULL);
1991      }
1992  }
1993  
1994  static void pnv_machine_class_init(ObjectClass *oc, void *data)
1995  {
1996      MachineClass *mc = MACHINE_CLASS(oc);
1997      InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc);
1998      NMIClass *nc = NMI_CLASS(oc);
1999  
2000      mc->desc = "IBM PowerNV (Non-Virtualized)";
2001      mc->init = pnv_init;
2002      mc->reset = pnv_reset;
2003      mc->max_cpus = MAX_CPUS;
2004      /* Pnv provides a AHCI device for storage */
2005      mc->block_default_type = IF_IDE;
2006      mc->no_parallel = 1;
2007      mc->default_boot_order = NULL;
2008      /*
2009       * RAM defaults to less than 2048 for 32-bit hosts, and large
2010       * enough to fit the maximum initrd size at it's load address
2011       */
2012      mc->default_ram_size = 1 * GiB;
2013      mc->default_ram_id = "pnv.ram";
2014      ispc->print_info = pnv_pic_print_info;
2015      nc->nmi_monitor_handler = pnv_nmi;
2016  
2017      object_class_property_add_bool(oc, "hb-mode",
2018                                     pnv_machine_get_hb, pnv_machine_set_hb);
2019      object_class_property_set_description(oc, "hb-mode",
2020                                "Use a hostboot like boot loader");
2021  }
2022  
2023  #define DEFINE_PNV8_CHIP_TYPE(type, class_initfn) \
2024      {                                             \
2025          .name          = type,                    \
2026          .class_init    = class_initfn,            \
2027          .parent        = TYPE_PNV8_CHIP,          \
2028      }
2029  
2030  #define DEFINE_PNV9_CHIP_TYPE(type, class_initfn) \
2031      {                                             \
2032          .name          = type,                    \
2033          .class_init    = class_initfn,            \
2034          .parent        = TYPE_PNV9_CHIP,          \
2035      }
2036  
2037  #define DEFINE_PNV10_CHIP_TYPE(type, class_initfn) \
2038      {                                              \
2039          .name          = type,                     \
2040          .class_init    = class_initfn,             \
2041          .parent        = TYPE_PNV10_CHIP,          \
2042      }
2043  
2044  static const TypeInfo types[] = {
2045      {
2046          .name          = MACHINE_TYPE_NAME("powernv10"),
2047          .parent        = TYPE_PNV_MACHINE,
2048          .class_init    = pnv_machine_power10_class_init,
2049      },
2050      {
2051          .name          = MACHINE_TYPE_NAME("powernv9"),
2052          .parent        = TYPE_PNV_MACHINE,
2053          .class_init    = pnv_machine_power9_class_init,
2054          .interfaces = (InterfaceInfo[]) {
2055              { TYPE_XIVE_FABRIC },
2056              { },
2057          },
2058      },
2059      {
2060          .name          = MACHINE_TYPE_NAME("powernv8"),
2061          .parent        = TYPE_PNV_MACHINE,
2062          .class_init    = pnv_machine_power8_class_init,
2063          .interfaces = (InterfaceInfo[]) {
2064              { TYPE_XICS_FABRIC },
2065              { },
2066          },
2067      },
2068      {
2069          .name          = TYPE_PNV_MACHINE,
2070          .parent        = TYPE_MACHINE,
2071          .abstract       = true,
2072          .instance_size = sizeof(PnvMachineState),
2073          .class_init    = pnv_machine_class_init,
2074          .class_size    = sizeof(PnvMachineClass),
2075          .interfaces = (InterfaceInfo[]) {
2076              { TYPE_INTERRUPT_STATS_PROVIDER },
2077              { TYPE_NMI },
2078              { },
2079          },
2080      },
2081      {
2082          .name          = TYPE_PNV_CHIP,
2083          .parent        = TYPE_SYS_BUS_DEVICE,
2084          .class_init    = pnv_chip_class_init,
2085          .instance_size = sizeof(PnvChip),
2086          .class_size    = sizeof(PnvChipClass),
2087          .abstract      = true,
2088      },
2089  
2090      /*
2091       * P10 chip and variants
2092       */
2093      {
2094          .name          = TYPE_PNV10_CHIP,
2095          .parent        = TYPE_PNV_CHIP,
2096          .instance_init = pnv_chip_power10_instance_init,
2097          .instance_size = sizeof(Pnv10Chip),
2098      },
2099      DEFINE_PNV10_CHIP_TYPE(TYPE_PNV_CHIP_POWER10, pnv_chip_power10_class_init),
2100  
2101      /*
2102       * P9 chip and variants
2103       */
2104      {
2105          .name          = TYPE_PNV9_CHIP,
2106          .parent        = TYPE_PNV_CHIP,
2107          .instance_init = pnv_chip_power9_instance_init,
2108          .instance_size = sizeof(Pnv9Chip),
2109      },
2110      DEFINE_PNV9_CHIP_TYPE(TYPE_PNV_CHIP_POWER9, pnv_chip_power9_class_init),
2111  
2112      /*
2113       * P8 chip and variants
2114       */
2115      {
2116          .name          = TYPE_PNV8_CHIP,
2117          .parent        = TYPE_PNV_CHIP,
2118          .instance_init = pnv_chip_power8_instance_init,
2119          .instance_size = sizeof(Pnv8Chip),
2120      },
2121      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8, pnv_chip_power8_class_init),
2122      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8E, pnv_chip_power8e_class_init),
2123      DEFINE_PNV8_CHIP_TYPE(TYPE_PNV_CHIP_POWER8NVL,
2124                            pnv_chip_power8nvl_class_init),
2125  };
2126  
2127  DEFINE_TYPES(types)
2128