1 /* 2 * QEMU PCI bus manager 3 * 4 * Copyright (c) 2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/datadir.h" 27 #include "qemu/units.h" 28 #include "hw/irq.h" 29 #include "hw/pci/pci.h" 30 #include "hw/pci/pci_bridge.h" 31 #include "hw/pci/pci_bus.h" 32 #include "hw/pci/pci_host.h" 33 #include "hw/qdev-properties.h" 34 #include "hw/qdev-properties-system.h" 35 #include "migration/cpr.h" 36 #include "migration/qemu-file-types.h" 37 #include "migration/vmstate.h" 38 #include "net/net.h" 39 #include "system/numa.h" 40 #include "system/runstate.h" 41 #include "system/system.h" 42 #include "hw/loader.h" 43 #include "qemu/error-report.h" 44 #include "qemu/range.h" 45 #include "trace.h" 46 #include "hw/pci/msi.h" 47 #include "hw/pci/msix.h" 48 #include "hw/hotplug.h" 49 #include "hw/boards.h" 50 #include "hw/nvram/fw_cfg.h" 51 #include "qapi/error.h" 52 #include "qemu/cutils.h" 53 #include "pci-internal.h" 54 55 #include "hw/xen/xen.h" 56 #include "hw/i386/kvm/xen_evtchn.h" 57 58 bool pci_available = true; 59 60 static char *pcibus_get_dev_path(DeviceState *dev); 61 static char *pcibus_get_fw_dev_path(DeviceState *dev); 62 static void pcibus_reset_hold(Object *obj, ResetType type); 63 static bool pcie_has_upstream_port(PCIDevice *dev); 64 65 static void prop_pci_busnr_get(Object *obj, Visitor *v, const char *name, 66 void *opaque, Error **errp) 67 { 68 uint8_t busnr = pci_dev_bus_num(PCI_DEVICE(obj)); 69 70 visit_type_uint8(v, name, &busnr, errp); 71 } 72 73 static const PropertyInfo prop_pci_busnr = { 74 .type = "busnr", 75 .get = prop_pci_busnr_get, 76 }; 77 78 static const Property pci_props[] = { 79 DEFINE_PROP_PCI_DEVFN("addr", PCIDevice, devfn, -1), 80 DEFINE_PROP_STRING("romfile", PCIDevice, romfile), 81 DEFINE_PROP_UINT32("romsize", PCIDevice, romsize, UINT32_MAX), 82 DEFINE_PROP_INT32("rombar", PCIDevice, rom_bar, -1), 83 DEFINE_PROP_BIT("multifunction", PCIDevice, cap_present, 84 QEMU_PCI_CAP_MULTIFUNCTION_BITNR, false), 85 DEFINE_PROP_BIT("x-pcie-lnksta-dllla", PCIDevice, cap_present, 86 QEMU_PCIE_LNKSTA_DLLLA_BITNR, true), 87 DEFINE_PROP_BIT("x-pcie-extcap-init", PCIDevice, cap_present, 88 QEMU_PCIE_EXTCAP_INIT_BITNR, true), 89 DEFINE_PROP_STRING("failover_pair_id", PCIDevice, 90 failover_pair_id), 91 DEFINE_PROP_UINT32("acpi-index", PCIDevice, acpi_index, 0), 92 DEFINE_PROP_BIT("x-pcie-err-unc-mask", PCIDevice, cap_present, 93 QEMU_PCIE_ERR_UNC_MASK_BITNR, true), 94 DEFINE_PROP_BIT("x-pcie-ari-nextfn-1", PCIDevice, cap_present, 95 QEMU_PCIE_ARI_NEXTFN_1_BITNR, false), 96 DEFINE_PROP_SIZE32("x-max-bounce-buffer-size", PCIDevice, 97 max_bounce_buffer_size, DEFAULT_MAX_BOUNCE_BUFFER_SIZE), 98 DEFINE_PROP_STRING("sriov-pf", PCIDevice, sriov_pf), 99 DEFINE_PROP_BIT("x-pcie-ext-tag", PCIDevice, cap_present, 100 QEMU_PCIE_EXT_TAG_BITNR, true), 101 { .name = "busnr", .info = &prop_pci_busnr }, 102 }; 103 104 static const VMStateDescription vmstate_pcibus = { 105 .name = "PCIBUS", 106 .version_id = 1, 107 .minimum_version_id = 1, 108 .fields = (const VMStateField[]) { 109 VMSTATE_INT32_EQUAL(nirq, PCIBus, NULL), 110 VMSTATE_VARRAY_INT32(irq_count, PCIBus, 111 nirq, 0, vmstate_info_int32, 112 int32_t), 113 VMSTATE_END_OF_LIST() 114 } 115 }; 116 117 static gint g_cmp_uint32(gconstpointer a, gconstpointer b, gpointer user_data) 118 { 119 return a - b; 120 } 121 122 static GSequence *pci_acpi_index_list(void) 123 { 124 static GSequence *used_acpi_index_list; 125 126 if (!used_acpi_index_list) { 127 used_acpi_index_list = g_sequence_new(NULL); 128 } 129 return used_acpi_index_list; 130 } 131 132 static void pci_set_master(PCIDevice *d, bool enable) 133 { 134 memory_region_set_enabled(&d->bus_master_enable_region, enable); 135 d->is_master = enable; /* cache the status */ 136 } 137 138 static void pci_init_bus_master(PCIDevice *pci_dev) 139 { 140 AddressSpace *dma_as = pci_device_iommu_address_space(pci_dev); 141 142 memory_region_init_alias(&pci_dev->bus_master_enable_region, 143 OBJECT(pci_dev), "bus master", 144 dma_as->root, 0, memory_region_size(dma_as->root)); 145 pci_set_master(pci_dev, false); 146 memory_region_add_subregion(&pci_dev->bus_master_container_region, 0, 147 &pci_dev->bus_master_enable_region); 148 } 149 150 static void pcibus_machine_done(Notifier *notifier, void *data) 151 { 152 PCIBus *bus = container_of(notifier, PCIBus, machine_done); 153 int i; 154 155 for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { 156 if (bus->devices[i]) { 157 pci_init_bus_master(bus->devices[i]); 158 } 159 } 160 } 161 162 static void pci_bus_realize(BusState *qbus, Error **errp) 163 { 164 PCIBus *bus = PCI_BUS(qbus); 165 166 bus->machine_done.notify = pcibus_machine_done; 167 qemu_add_machine_init_done_notifier(&bus->machine_done); 168 169 vmstate_register_any(NULL, &vmstate_pcibus, bus); 170 } 171 172 static void pcie_bus_realize(BusState *qbus, Error **errp) 173 { 174 PCIBus *bus = PCI_BUS(qbus); 175 Error *local_err = NULL; 176 177 pci_bus_realize(qbus, &local_err); 178 if (local_err) { 179 error_propagate(errp, local_err); 180 return; 181 } 182 183 /* 184 * A PCI-E bus can support extended config space if it's the root 185 * bus, or if the bus/bridge above it does as well 186 */ 187 if (pci_bus_is_root(bus)) { 188 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; 189 } else { 190 PCIBus *parent_bus = pci_get_bus(bus->parent_dev); 191 192 if (pci_bus_allows_extended_config_space(parent_bus)) { 193 bus->flags |= PCI_BUS_EXTENDED_CONFIG_SPACE; 194 } 195 } 196 } 197 198 static void pci_bus_unrealize(BusState *qbus) 199 { 200 PCIBus *bus = PCI_BUS(qbus); 201 202 qemu_remove_machine_init_done_notifier(&bus->machine_done); 203 204 vmstate_unregister(NULL, &vmstate_pcibus, bus); 205 } 206 207 static int pcibus_num(PCIBus *bus) 208 { 209 if (pci_bus_is_root(bus)) { 210 return 0; /* pci host bridge */ 211 } 212 return bus->parent_dev->config[PCI_SECONDARY_BUS]; 213 } 214 215 static uint16_t pcibus_numa_node(PCIBus *bus) 216 { 217 return NUMA_NODE_UNASSIGNED; 218 } 219 220 bool pci_bus_add_fw_cfg_extra_pci_roots(FWCfgState *fw_cfg, 221 PCIBus *bus, 222 Error **errp) 223 { 224 Object *obj; 225 226 if (!bus) { 227 return true; 228 } 229 obj = OBJECT(bus); 230 231 return fw_cfg_add_file_from_generator(fw_cfg, obj->parent, 232 object_get_canonical_path_component(obj), 233 "etc/extra-pci-roots", errp); 234 } 235 236 static GByteArray *pci_bus_fw_cfg_gen_data(Object *obj, Error **errp) 237 { 238 PCIBus *bus = PCI_BUS(obj); 239 GByteArray *byte_array; 240 uint64_t extra_hosts = 0; 241 242 if (!bus) { 243 return NULL; 244 } 245 246 QLIST_FOREACH(bus, &bus->child, sibling) { 247 /* look for expander root buses */ 248 if (pci_bus_is_root(bus)) { 249 extra_hosts++; 250 } 251 } 252 253 if (!extra_hosts) { 254 return NULL; 255 } 256 extra_hosts = cpu_to_le64(extra_hosts); 257 258 byte_array = g_byte_array_new(); 259 g_byte_array_append(byte_array, 260 (const void *)&extra_hosts, sizeof(extra_hosts)); 261 262 return byte_array; 263 } 264 265 static void pci_bus_class_init(ObjectClass *klass, const void *data) 266 { 267 BusClass *k = BUS_CLASS(klass); 268 PCIBusClass *pbc = PCI_BUS_CLASS(klass); 269 ResettableClass *rc = RESETTABLE_CLASS(klass); 270 FWCfgDataGeneratorClass *fwgc = FW_CFG_DATA_GENERATOR_CLASS(klass); 271 272 k->print_dev = pcibus_dev_print; 273 k->get_dev_path = pcibus_get_dev_path; 274 k->get_fw_dev_path = pcibus_get_fw_dev_path; 275 k->realize = pci_bus_realize; 276 k->unrealize = pci_bus_unrealize; 277 278 rc->phases.hold = pcibus_reset_hold; 279 280 pbc->bus_num = pcibus_num; 281 pbc->numa_node = pcibus_numa_node; 282 283 fwgc->get_data = pci_bus_fw_cfg_gen_data; 284 } 285 286 static const TypeInfo pci_bus_info = { 287 .name = TYPE_PCI_BUS, 288 .parent = TYPE_BUS, 289 .instance_size = sizeof(PCIBus), 290 .class_size = sizeof(PCIBusClass), 291 .class_init = pci_bus_class_init, 292 .interfaces = (const InterfaceInfo[]) { 293 { TYPE_FW_CFG_DATA_GENERATOR_INTERFACE }, 294 { } 295 } 296 }; 297 298 static const TypeInfo cxl_interface_info = { 299 .name = INTERFACE_CXL_DEVICE, 300 .parent = TYPE_INTERFACE, 301 }; 302 303 static const TypeInfo pcie_interface_info = { 304 .name = INTERFACE_PCIE_DEVICE, 305 .parent = TYPE_INTERFACE, 306 }; 307 308 static const TypeInfo conventional_pci_interface_info = { 309 .name = INTERFACE_CONVENTIONAL_PCI_DEVICE, 310 .parent = TYPE_INTERFACE, 311 }; 312 313 static void pcie_bus_class_init(ObjectClass *klass, const void *data) 314 { 315 BusClass *k = BUS_CLASS(klass); 316 317 k->realize = pcie_bus_realize; 318 } 319 320 static const TypeInfo pcie_bus_info = { 321 .name = TYPE_PCIE_BUS, 322 .parent = TYPE_PCI_BUS, 323 .class_init = pcie_bus_class_init, 324 }; 325 326 static const TypeInfo cxl_bus_info = { 327 .name = TYPE_CXL_BUS, 328 .parent = TYPE_PCIE_BUS, 329 .class_init = pcie_bus_class_init, 330 }; 331 332 static void pci_update_mappings(PCIDevice *d); 333 static void pci_irq_handler(void *opaque, int irq_num, int level); 334 static void pci_add_option_rom(PCIDevice *pdev, bool is_default_rom, Error **); 335 static void pci_del_option_rom(PCIDevice *pdev); 336 337 static uint16_t pci_default_sub_vendor_id = PCI_SUBVENDOR_ID_REDHAT_QUMRANET; 338 static uint16_t pci_default_sub_device_id = PCI_SUBDEVICE_ID_QEMU; 339 340 PCIHostStateList pci_host_bridges; 341 342 int pci_bar(PCIDevice *d, int reg) 343 { 344 uint8_t type; 345 346 /* PCIe virtual functions do not have their own BARs */ 347 assert(!pci_is_vf(d)); 348 349 if (reg != PCI_ROM_SLOT) 350 return PCI_BASE_ADDRESS_0 + reg * 4; 351 352 type = d->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION; 353 return type == PCI_HEADER_TYPE_BRIDGE ? PCI_ROM_ADDRESS1 : PCI_ROM_ADDRESS; 354 } 355 356 static inline int pci_irq_state(PCIDevice *d, int irq_num) 357 { 358 return (d->irq_state >> irq_num) & 0x1; 359 } 360 361 static inline void pci_set_irq_state(PCIDevice *d, int irq_num, int level) 362 { 363 d->irq_state &= ~(0x1 << irq_num); 364 d->irq_state |= level << irq_num; 365 } 366 367 static void pci_bus_change_irq_level(PCIBus *bus, int irq_num, int change) 368 { 369 assert(irq_num >= 0); 370 assert(irq_num < bus->nirq); 371 bus->irq_count[irq_num] += change; 372 bus->set_irq(bus->irq_opaque, irq_num, bus->irq_count[irq_num] != 0); 373 } 374 375 static void pci_change_irq_level(PCIDevice *pci_dev, int irq_num, int change) 376 { 377 PCIBus *bus; 378 for (;;) { 379 int dev_irq = irq_num; 380 bus = pci_get_bus(pci_dev); 381 assert(bus->map_irq); 382 irq_num = bus->map_irq(pci_dev, irq_num); 383 trace_pci_route_irq(dev_irq, DEVICE(pci_dev)->canonical_path, irq_num, 384 pci_bus_is_root(bus) ? "root-complex" 385 : DEVICE(bus->parent_dev)->canonical_path); 386 if (bus->set_irq) 387 break; 388 pci_dev = bus->parent_dev; 389 } 390 pci_bus_change_irq_level(bus, irq_num, change); 391 } 392 393 int pci_bus_get_irq_level(PCIBus *bus, int irq_num) 394 { 395 assert(irq_num >= 0); 396 assert(irq_num < bus->nirq); 397 return !!bus->irq_count[irq_num]; 398 } 399 400 /* Update interrupt status bit in config space on interrupt 401 * state change. */ 402 static void pci_update_irq_status(PCIDevice *dev) 403 { 404 if (dev->irq_state) { 405 dev->config[PCI_STATUS] |= PCI_STATUS_INTERRUPT; 406 } else { 407 dev->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT; 408 } 409 } 410 411 void pci_device_deassert_intx(PCIDevice *dev) 412 { 413 int i; 414 for (i = 0; i < PCI_NUM_PINS; ++i) { 415 pci_irq_handler(dev, i, 0); 416 } 417 } 418 419 static void pci_msi_trigger(PCIDevice *dev, MSIMessage msg) 420 { 421 MemTxAttrs attrs = {}; 422 423 /* 424 * Xen uses the high bits of the address to contain some of the bits 425 * of the PIRQ#. Therefore we can't just send the write cycle and 426 * trust that it's caught by the APIC at 0xfee00000 because the 427 * target of the write might be e.g. 0x0x1000fee46000 for PIRQ#4166. 428 * So we intercept the delivery here instead of in kvm_send_msi(). 429 */ 430 if (xen_mode == XEN_EMULATE && 431 xen_evtchn_deliver_pirq_msi(msg.address, msg.data)) { 432 return; 433 } 434 attrs.requester_id = pci_requester_id(dev); 435 address_space_stl_le(&dev->bus_master_as, msg.address, msg.data, 436 attrs, NULL); 437 } 438 439 /* 440 * Register and track a PM capability. If wmask is also enabled for the power 441 * state field of the pmcsr register, guest writes may change the device PM 442 * state. BAR access is only enabled while the device is in the D0 state. 443 * Return the capability offset or negative error code. 444 */ 445 int pci_pm_init(PCIDevice *d, uint8_t offset, Error **errp) 446 { 447 int cap = pci_add_capability(d, PCI_CAP_ID_PM, offset, PCI_PM_SIZEOF, errp); 448 449 if (cap < 0) { 450 return cap; 451 } 452 453 d->pm_cap = cap; 454 d->cap_present |= QEMU_PCI_CAP_PM; 455 456 return cap; 457 } 458 459 static uint8_t pci_pm_state(PCIDevice *d) 460 { 461 uint16_t pmcsr; 462 463 if (!(d->cap_present & QEMU_PCI_CAP_PM)) { 464 return 0; 465 } 466 467 pmcsr = pci_get_word(d->config + d->pm_cap + PCI_PM_CTRL); 468 469 return pmcsr & PCI_PM_CTRL_STATE_MASK; 470 } 471 472 /* 473 * Update the PM capability state based on the new value stored in config 474 * space respective to the old, pre-write state provided. If the new value 475 * is rejected (unsupported or invalid transition) restore the old value. 476 * Return the resulting PM state. 477 */ 478 static uint8_t pci_pm_update(PCIDevice *d, uint32_t addr, int l, uint8_t old) 479 { 480 uint16_t pmc; 481 uint8_t new; 482 483 if (!(d->cap_present & QEMU_PCI_CAP_PM) || 484 !range_covers_byte(addr, l, d->pm_cap + PCI_PM_CTRL)) { 485 return old; 486 } 487 488 new = pci_pm_state(d); 489 if (new == old) { 490 return old; 491 } 492 493 pmc = pci_get_word(d->config + d->pm_cap + PCI_PM_PMC); 494 495 /* 496 * Transitions to D1 & D2 are only allowed if supported. Devices may 497 * only transition to higher D-states or to D0. 498 */ 499 if ((!(pmc & PCI_PM_CAP_D1) && new == 1) || 500 (!(pmc & PCI_PM_CAP_D2) && new == 2) || 501 (old && new && new < old)) { 502 pci_word_test_and_clear_mask(d->config + d->pm_cap + PCI_PM_CTRL, 503 PCI_PM_CTRL_STATE_MASK); 504 pci_word_test_and_set_mask(d->config + d->pm_cap + PCI_PM_CTRL, 505 old); 506 trace_pci_pm_bad_transition(d->name, pci_dev_bus_num(d), 507 PCI_SLOT(d->devfn), PCI_FUNC(d->devfn), 508 old, new); 509 return old; 510 } 511 512 trace_pci_pm_transition(d->name, pci_dev_bus_num(d), PCI_SLOT(d->devfn), 513 PCI_FUNC(d->devfn), old, new); 514 return new; 515 } 516 517 static void pci_reset_regions(PCIDevice *dev) 518 { 519 int r; 520 if (pci_is_vf(dev)) { 521 return; 522 } 523 524 for (r = 0; r < PCI_NUM_REGIONS; ++r) { 525 PCIIORegion *region = &dev->io_regions[r]; 526 if (!region->size) { 527 continue; 528 } 529 530 if (!(region->type & PCI_BASE_ADDRESS_SPACE_IO) && 531 region->type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 532 pci_set_quad(dev->config + pci_bar(dev, r), region->type); 533 } else { 534 pci_set_long(dev->config + pci_bar(dev, r), region->type); 535 } 536 } 537 } 538 539 static void pci_do_device_reset(PCIDevice *dev) 540 { 541 if ((dev->cap_present & QEMU_PCI_SKIP_RESET_ON_CPR) && cpr_is_incoming()) { 542 return; 543 } 544 545 pci_device_deassert_intx(dev); 546 assert(dev->irq_state == 0); 547 548 /* Clear all writable bits */ 549 pci_word_test_and_clear_mask(dev->config + PCI_COMMAND, 550 pci_get_word(dev->wmask + PCI_COMMAND) | 551 pci_get_word(dev->w1cmask + PCI_COMMAND)); 552 pci_word_test_and_clear_mask(dev->config + PCI_STATUS, 553 pci_get_word(dev->wmask + PCI_STATUS) | 554 pci_get_word(dev->w1cmask + PCI_STATUS)); 555 /* Some devices make bits of PCI_INTERRUPT_LINE read only */ 556 pci_byte_test_and_clear_mask(dev->config + PCI_INTERRUPT_LINE, 557 pci_get_word(dev->wmask + PCI_INTERRUPT_LINE) | 558 pci_get_word(dev->w1cmask + PCI_INTERRUPT_LINE)); 559 dev->config[PCI_CACHE_LINE_SIZE] = 0x0; 560 /* Default PM state is D0 */ 561 if (dev->cap_present & QEMU_PCI_CAP_PM) { 562 pci_word_test_and_clear_mask(dev->config + dev->pm_cap + PCI_PM_CTRL, 563 PCI_PM_CTRL_STATE_MASK); 564 } 565 pci_reset_regions(dev); 566 pci_update_mappings(dev); 567 568 msi_reset(dev); 569 msix_reset(dev); 570 pcie_sriov_pf_reset(dev); 571 } 572 573 /* 574 * This function is called on #RST and FLR. 575 * FLR if PCI_EXP_DEVCTL_BCR_FLR is set 576 */ 577 void pci_device_reset(PCIDevice *dev) 578 { 579 device_cold_reset(&dev->qdev); 580 pci_do_device_reset(dev); 581 } 582 583 /* 584 * Trigger pci bus reset under a given bus. 585 * Called via bus_cold_reset on RST# assert, after the devices 586 * have been reset device_cold_reset-ed already. 587 */ 588 static void pcibus_reset_hold(Object *obj, ResetType type) 589 { 590 PCIBus *bus = PCI_BUS(obj); 591 int i; 592 593 for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { 594 if (bus->devices[i]) { 595 pci_do_device_reset(bus->devices[i]); 596 } 597 } 598 599 for (i = 0; i < bus->nirq; i++) { 600 assert(bus->irq_count[i] == 0); 601 } 602 } 603 604 static void pci_host_bus_register(DeviceState *host) 605 { 606 PCIHostState *host_bridge = PCI_HOST_BRIDGE(host); 607 608 QLIST_INSERT_HEAD(&pci_host_bridges, host_bridge, next); 609 } 610 611 static void pci_host_bus_unregister(DeviceState *host) 612 { 613 PCIHostState *host_bridge = PCI_HOST_BRIDGE(host); 614 615 QLIST_REMOVE(host_bridge, next); 616 } 617 618 PCIBus *pci_device_root_bus(const PCIDevice *d) 619 { 620 PCIBus *bus = pci_get_bus(d); 621 622 while (!pci_bus_is_root(bus)) { 623 d = bus->parent_dev; 624 assert(d != NULL); 625 626 bus = pci_get_bus(d); 627 } 628 629 return bus; 630 } 631 632 const char *pci_root_bus_path(PCIDevice *dev) 633 { 634 PCIBus *rootbus = pci_device_root_bus(dev); 635 PCIHostState *host_bridge = PCI_HOST_BRIDGE(rootbus->qbus.parent); 636 PCIHostBridgeClass *hc = PCI_HOST_BRIDGE_GET_CLASS(host_bridge); 637 638 assert(host_bridge->bus == rootbus); 639 640 if (hc->root_bus_path) { 641 return (*hc->root_bus_path)(host_bridge, rootbus); 642 } 643 644 return rootbus->qbus.name; 645 } 646 647 bool pci_bus_bypass_iommu(PCIBus *bus) 648 { 649 PCIBus *rootbus = bus; 650 PCIHostState *host_bridge; 651 652 if (!pci_bus_is_root(bus)) { 653 rootbus = pci_device_root_bus(bus->parent_dev); 654 } 655 656 host_bridge = PCI_HOST_BRIDGE(rootbus->qbus.parent); 657 658 assert(host_bridge->bus == rootbus); 659 660 return host_bridge->bypass_iommu; 661 } 662 663 static void pci_root_bus_internal_init(PCIBus *bus, DeviceState *parent, 664 MemoryRegion *mem, MemoryRegion *io, 665 uint8_t devfn_min) 666 { 667 assert(PCI_FUNC(devfn_min) == 0); 668 bus->devfn_min = devfn_min; 669 bus->slot_reserved_mask = 0x0; 670 bus->address_space_mem = mem; 671 bus->address_space_io = io; 672 bus->flags |= PCI_BUS_IS_ROOT; 673 674 /* host bridge */ 675 QLIST_INIT(&bus->child); 676 677 pci_host_bus_register(parent); 678 } 679 680 static void pci_bus_uninit(PCIBus *bus) 681 { 682 pci_host_bus_unregister(BUS(bus)->parent); 683 } 684 685 bool pci_bus_is_express(const PCIBus *bus) 686 { 687 return object_dynamic_cast(OBJECT(bus), TYPE_PCIE_BUS); 688 } 689 690 void pci_root_bus_init(PCIBus *bus, size_t bus_size, DeviceState *parent, 691 const char *name, 692 MemoryRegion *mem, MemoryRegion *io, 693 uint8_t devfn_min, const char *typename) 694 { 695 qbus_init(bus, bus_size, typename, parent, name); 696 pci_root_bus_internal_init(bus, parent, mem, io, devfn_min); 697 } 698 699 PCIBus *pci_root_bus_new(DeviceState *parent, const char *name, 700 MemoryRegion *mem, MemoryRegion *io, 701 uint8_t devfn_min, const char *typename) 702 { 703 PCIBus *bus; 704 705 bus = PCI_BUS(qbus_new(typename, parent, name)); 706 pci_root_bus_internal_init(bus, parent, mem, io, devfn_min); 707 return bus; 708 } 709 710 void pci_root_bus_cleanup(PCIBus *bus) 711 { 712 pci_bus_uninit(bus); 713 /* the caller of the unplug hotplug handler will delete this device */ 714 qbus_unrealize(BUS(bus)); 715 } 716 717 void pci_bus_irqs(PCIBus *bus, pci_set_irq_fn set_irq, 718 void *irq_opaque, int nirq) 719 { 720 bus->set_irq = set_irq; 721 bus->irq_opaque = irq_opaque; 722 bus->nirq = nirq; 723 g_free(bus->irq_count); 724 bus->irq_count = g_malloc0(nirq * sizeof(bus->irq_count[0])); 725 } 726 727 void pci_bus_map_irqs(PCIBus *bus, pci_map_irq_fn map_irq) 728 { 729 bus->map_irq = map_irq; 730 } 731 732 void pci_bus_irqs_cleanup(PCIBus *bus) 733 { 734 bus->set_irq = NULL; 735 bus->map_irq = NULL; 736 bus->irq_opaque = NULL; 737 bus->nirq = 0; 738 g_free(bus->irq_count); 739 bus->irq_count = NULL; 740 } 741 742 PCIBus *pci_register_root_bus(DeviceState *parent, const char *name, 743 pci_set_irq_fn set_irq, pci_map_irq_fn map_irq, 744 void *irq_opaque, 745 MemoryRegion *mem, MemoryRegion *io, 746 uint8_t devfn_min, int nirq, 747 const char *typename) 748 { 749 PCIBus *bus; 750 751 bus = pci_root_bus_new(parent, name, mem, io, devfn_min, typename); 752 pci_bus_irqs(bus, set_irq, irq_opaque, nirq); 753 pci_bus_map_irqs(bus, map_irq); 754 return bus; 755 } 756 757 void pci_unregister_root_bus(PCIBus *bus) 758 { 759 pci_bus_irqs_cleanup(bus); 760 pci_root_bus_cleanup(bus); 761 } 762 763 int pci_bus_num(PCIBus *s) 764 { 765 return PCI_BUS_GET_CLASS(s)->bus_num(s); 766 } 767 768 /* Returns the min and max bus numbers of a PCI bus hierarchy */ 769 void pci_bus_range(PCIBus *bus, int *min_bus, int *max_bus) 770 { 771 int i; 772 *min_bus = *max_bus = pci_bus_num(bus); 773 774 for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { 775 PCIDevice *dev = bus->devices[i]; 776 777 if (dev && IS_PCI_BRIDGE(dev)) { 778 *min_bus = MIN(*min_bus, dev->config[PCI_SECONDARY_BUS]); 779 *max_bus = MAX(*max_bus, dev->config[PCI_SUBORDINATE_BUS]); 780 } 781 } 782 } 783 784 int pci_bus_numa_node(PCIBus *bus) 785 { 786 return PCI_BUS_GET_CLASS(bus)->numa_node(bus); 787 } 788 789 static int get_pci_config_device(QEMUFile *f, void *pv, size_t size, 790 const VMStateField *field) 791 { 792 PCIDevice *s = container_of(pv, PCIDevice, config); 793 uint8_t *config; 794 int i; 795 796 assert(size == pci_config_size(s)); 797 config = g_malloc(size); 798 799 qemu_get_buffer(f, config, size); 800 for (i = 0; i < size; ++i) { 801 if ((config[i] ^ s->config[i]) & 802 s->cmask[i] & ~s->wmask[i] & ~s->w1cmask[i]) { 803 error_report("%s: Bad config data: i=0x%x read: %x device: %x " 804 "cmask: %x wmask: %x w1cmask:%x", __func__, 805 i, config[i], s->config[i], 806 s->cmask[i], s->wmask[i], s->w1cmask[i]); 807 g_free(config); 808 return -EINVAL; 809 } 810 } 811 memcpy(s->config, config, size); 812 813 pci_update_mappings(s); 814 if (IS_PCI_BRIDGE(s)) { 815 pci_bridge_update_mappings(PCI_BRIDGE(s)); 816 } 817 818 pci_set_master(s, pci_get_word(s->config + PCI_COMMAND) 819 & PCI_COMMAND_MASTER); 820 821 g_free(config); 822 return 0; 823 } 824 825 /* just put buffer */ 826 static int put_pci_config_device(QEMUFile *f, void *pv, size_t size, 827 const VMStateField *field, JSONWriter *vmdesc) 828 { 829 const uint8_t **v = pv; 830 assert(size == pci_config_size(container_of(pv, PCIDevice, config))); 831 qemu_put_buffer(f, *v, size); 832 833 return 0; 834 } 835 836 static const VMStateInfo vmstate_info_pci_config = { 837 .name = "pci config", 838 .get = get_pci_config_device, 839 .put = put_pci_config_device, 840 }; 841 842 static int get_pci_irq_state(QEMUFile *f, void *pv, size_t size, 843 const VMStateField *field) 844 { 845 PCIDevice *s = container_of(pv, PCIDevice, irq_state); 846 uint32_t irq_state[PCI_NUM_PINS]; 847 int i; 848 for (i = 0; i < PCI_NUM_PINS; ++i) { 849 irq_state[i] = qemu_get_be32(f); 850 if (irq_state[i] != 0x1 && irq_state[i] != 0) { 851 fprintf(stderr, "irq state %d: must be 0 or 1.\n", 852 irq_state[i]); 853 return -EINVAL; 854 } 855 } 856 857 for (i = 0; i < PCI_NUM_PINS; ++i) { 858 pci_set_irq_state(s, i, irq_state[i]); 859 } 860 861 return 0; 862 } 863 864 static int put_pci_irq_state(QEMUFile *f, void *pv, size_t size, 865 const VMStateField *field, JSONWriter *vmdesc) 866 { 867 int i; 868 PCIDevice *s = container_of(pv, PCIDevice, irq_state); 869 870 for (i = 0; i < PCI_NUM_PINS; ++i) { 871 qemu_put_be32(f, pci_irq_state(s, i)); 872 } 873 874 return 0; 875 } 876 877 static const VMStateInfo vmstate_info_pci_irq_state = { 878 .name = "pci irq state", 879 .get = get_pci_irq_state, 880 .put = put_pci_irq_state, 881 }; 882 883 static bool migrate_is_pcie(void *opaque, int version_id) 884 { 885 return pci_is_express((PCIDevice *)opaque); 886 } 887 888 static bool migrate_is_not_pcie(void *opaque, int version_id) 889 { 890 return !pci_is_express((PCIDevice *)opaque); 891 } 892 893 static int pci_post_load(void *opaque, int version_id) 894 { 895 pcie_sriov_pf_post_load(opaque); 896 return 0; 897 } 898 899 const VMStateDescription vmstate_pci_device = { 900 .name = "PCIDevice", 901 .version_id = 2, 902 .minimum_version_id = 1, 903 .post_load = pci_post_load, 904 .fields = (const VMStateField[]) { 905 VMSTATE_INT32_POSITIVE_LE(version_id, PCIDevice), 906 VMSTATE_BUFFER_UNSAFE_INFO_TEST(config, PCIDevice, 907 migrate_is_not_pcie, 908 0, vmstate_info_pci_config, 909 PCI_CONFIG_SPACE_SIZE), 910 VMSTATE_BUFFER_UNSAFE_INFO_TEST(config, PCIDevice, 911 migrate_is_pcie, 912 0, vmstate_info_pci_config, 913 PCIE_CONFIG_SPACE_SIZE), 914 VMSTATE_BUFFER_UNSAFE_INFO(irq_state, PCIDevice, 2, 915 vmstate_info_pci_irq_state, 916 PCI_NUM_PINS * sizeof(int32_t)), 917 VMSTATE_END_OF_LIST() 918 } 919 }; 920 921 922 void pci_device_save(PCIDevice *s, QEMUFile *f) 923 { 924 /* Clear interrupt status bit: it is implicit 925 * in irq_state which we are saving. 926 * This makes us compatible with old devices 927 * which never set or clear this bit. */ 928 s->config[PCI_STATUS] &= ~PCI_STATUS_INTERRUPT; 929 vmstate_save_state(f, &vmstate_pci_device, s, NULL); 930 /* Restore the interrupt status bit. */ 931 pci_update_irq_status(s); 932 } 933 934 int pci_device_load(PCIDevice *s, QEMUFile *f) 935 { 936 int ret; 937 ret = vmstate_load_state(f, &vmstate_pci_device, s, s->version_id); 938 /* Restore the interrupt status bit. */ 939 pci_update_irq_status(s); 940 return ret; 941 } 942 943 static void pci_set_default_subsystem_id(PCIDevice *pci_dev) 944 { 945 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, 946 pci_default_sub_vendor_id); 947 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, 948 pci_default_sub_device_id); 949 } 950 951 /* 952 * Parse [[<domain>:]<bus>:]<slot>, return -1 on error if funcp == NULL 953 * [[<domain>:]<bus>:]<slot>.<func>, return -1 on error 954 */ 955 static int pci_parse_devaddr(const char *addr, int *domp, int *busp, 956 unsigned int *slotp, unsigned int *funcp) 957 { 958 const char *p; 959 char *e; 960 unsigned long val; 961 unsigned long dom = 0, bus = 0; 962 unsigned int slot = 0; 963 unsigned int func = 0; 964 965 p = addr; 966 val = strtoul(p, &e, 16); 967 if (e == p) 968 return -1; 969 if (*e == ':') { 970 bus = val; 971 p = e + 1; 972 val = strtoul(p, &e, 16); 973 if (e == p) 974 return -1; 975 if (*e == ':') { 976 dom = bus; 977 bus = val; 978 p = e + 1; 979 val = strtoul(p, &e, 16); 980 if (e == p) 981 return -1; 982 } 983 } 984 985 slot = val; 986 987 if (funcp != NULL) { 988 if (*e != '.') 989 return -1; 990 991 p = e + 1; 992 val = strtoul(p, &e, 16); 993 if (e == p) 994 return -1; 995 996 func = val; 997 } 998 999 /* if funcp == NULL func is 0 */ 1000 if (dom > 0xffff || bus > 0xff || slot > 0x1f || func > 7) 1001 return -1; 1002 1003 if (*e) 1004 return -1; 1005 1006 *domp = dom; 1007 *busp = bus; 1008 *slotp = slot; 1009 if (funcp != NULL) 1010 *funcp = func; 1011 return 0; 1012 } 1013 1014 static void pci_init_cmask(PCIDevice *dev) 1015 { 1016 pci_set_word(dev->cmask + PCI_VENDOR_ID, 0xffff); 1017 pci_set_word(dev->cmask + PCI_DEVICE_ID, 0xffff); 1018 dev->cmask[PCI_STATUS] = PCI_STATUS_CAP_LIST; 1019 dev->cmask[PCI_REVISION_ID] = 0xff; 1020 dev->cmask[PCI_CLASS_PROG] = 0xff; 1021 pci_set_word(dev->cmask + PCI_CLASS_DEVICE, 0xffff); 1022 dev->cmask[PCI_HEADER_TYPE] = 0xff; 1023 dev->cmask[PCI_CAPABILITY_LIST] = 0xff; 1024 } 1025 1026 static void pci_init_wmask(PCIDevice *dev) 1027 { 1028 int config_size = pci_config_size(dev); 1029 1030 dev->wmask[PCI_CACHE_LINE_SIZE] = 0xff; 1031 dev->wmask[PCI_INTERRUPT_LINE] = 0xff; 1032 pci_set_word(dev->wmask + PCI_COMMAND, 1033 PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | 1034 PCI_COMMAND_INTX_DISABLE); 1035 pci_word_test_and_set_mask(dev->wmask + PCI_COMMAND, PCI_COMMAND_SERR); 1036 1037 memset(dev->wmask + PCI_CONFIG_HEADER_SIZE, 0xff, 1038 config_size - PCI_CONFIG_HEADER_SIZE); 1039 } 1040 1041 static void pci_init_w1cmask(PCIDevice *dev) 1042 { 1043 /* 1044 * Note: It's okay to set w1cmask even for readonly bits as 1045 * long as their value is hardwired to 0. 1046 */ 1047 pci_set_word(dev->w1cmask + PCI_STATUS, 1048 PCI_STATUS_PARITY | PCI_STATUS_SIG_TARGET_ABORT | 1049 PCI_STATUS_REC_TARGET_ABORT | PCI_STATUS_REC_MASTER_ABORT | 1050 PCI_STATUS_SIG_SYSTEM_ERROR | PCI_STATUS_DETECTED_PARITY); 1051 } 1052 1053 static void pci_init_mask_bridge(PCIDevice *d) 1054 { 1055 /* PCI_PRIMARY_BUS, PCI_SECONDARY_BUS, PCI_SUBORDINATE_BUS and 1056 PCI_SEC_LATENCY_TIMER */ 1057 memset(d->wmask + PCI_PRIMARY_BUS, 0xff, 4); 1058 1059 /* base and limit */ 1060 d->wmask[PCI_IO_BASE] = PCI_IO_RANGE_MASK & 0xff; 1061 d->wmask[PCI_IO_LIMIT] = PCI_IO_RANGE_MASK & 0xff; 1062 pci_set_word(d->wmask + PCI_MEMORY_BASE, 1063 PCI_MEMORY_RANGE_MASK & 0xffff); 1064 pci_set_word(d->wmask + PCI_MEMORY_LIMIT, 1065 PCI_MEMORY_RANGE_MASK & 0xffff); 1066 pci_set_word(d->wmask + PCI_PREF_MEMORY_BASE, 1067 PCI_PREF_RANGE_MASK & 0xffff); 1068 pci_set_word(d->wmask + PCI_PREF_MEMORY_LIMIT, 1069 PCI_PREF_RANGE_MASK & 0xffff); 1070 1071 /* PCI_PREF_BASE_UPPER32 and PCI_PREF_LIMIT_UPPER32 */ 1072 memset(d->wmask + PCI_PREF_BASE_UPPER32, 0xff, 8); 1073 1074 /* Supported memory and i/o types */ 1075 d->config[PCI_IO_BASE] |= PCI_IO_RANGE_TYPE_16; 1076 d->config[PCI_IO_LIMIT] |= PCI_IO_RANGE_TYPE_16; 1077 pci_word_test_and_set_mask(d->config + PCI_PREF_MEMORY_BASE, 1078 PCI_PREF_RANGE_TYPE_64); 1079 pci_word_test_and_set_mask(d->config + PCI_PREF_MEMORY_LIMIT, 1080 PCI_PREF_RANGE_TYPE_64); 1081 1082 /* 1083 * TODO: Bridges default to 10-bit VGA decoding but we currently only 1084 * implement 16-bit decoding (no alias support). 1085 */ 1086 pci_set_word(d->wmask + PCI_BRIDGE_CONTROL, 1087 PCI_BRIDGE_CTL_PARITY | 1088 PCI_BRIDGE_CTL_SERR | 1089 PCI_BRIDGE_CTL_ISA | 1090 PCI_BRIDGE_CTL_VGA | 1091 PCI_BRIDGE_CTL_VGA_16BIT | 1092 PCI_BRIDGE_CTL_MASTER_ABORT | 1093 PCI_BRIDGE_CTL_BUS_RESET | 1094 PCI_BRIDGE_CTL_FAST_BACK | 1095 PCI_BRIDGE_CTL_DISCARD | 1096 PCI_BRIDGE_CTL_SEC_DISCARD | 1097 PCI_BRIDGE_CTL_DISCARD_SERR); 1098 /* Below does not do anything as we never set this bit, put here for 1099 * completeness. */ 1100 pci_set_word(d->w1cmask + PCI_BRIDGE_CONTROL, 1101 PCI_BRIDGE_CTL_DISCARD_STATUS); 1102 d->cmask[PCI_IO_BASE] |= PCI_IO_RANGE_TYPE_MASK; 1103 d->cmask[PCI_IO_LIMIT] |= PCI_IO_RANGE_TYPE_MASK; 1104 pci_word_test_and_set_mask(d->cmask + PCI_PREF_MEMORY_BASE, 1105 PCI_PREF_RANGE_TYPE_MASK); 1106 pci_word_test_and_set_mask(d->cmask + PCI_PREF_MEMORY_LIMIT, 1107 PCI_PREF_RANGE_TYPE_MASK); 1108 } 1109 1110 static void pci_init_multifunction(PCIBus *bus, PCIDevice *dev, Error **errp) 1111 { 1112 uint8_t slot = PCI_SLOT(dev->devfn); 1113 uint8_t func; 1114 1115 if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { 1116 dev->config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION; 1117 } 1118 1119 /* SR/IOV is not handled here. */ 1120 if (pci_is_vf(dev)) { 1121 return; 1122 } 1123 1124 /* 1125 * multifunction bit is interpreted in two ways as follows. 1126 * - all functions must set the bit to 1. 1127 * Example: Intel X53 1128 * - function 0 must set the bit, but the rest function (> 0) 1129 * is allowed to leave the bit to 0. 1130 * Example: PIIX3(also in qemu), PIIX4(also in qemu), ICH10, 1131 * 1132 * So OS (at least Linux) checks the bit of only function 0, 1133 * and doesn't see the bit of function > 0. 1134 * 1135 * The below check allows both interpretation. 1136 */ 1137 if (PCI_FUNC(dev->devfn)) { 1138 PCIDevice *f0 = bus->devices[PCI_DEVFN(slot, 0)]; 1139 if (f0 && !(f0->cap_present & QEMU_PCI_CAP_MULTIFUNCTION)) { 1140 /* function 0 should set multifunction bit */ 1141 error_setg(errp, "PCI: single function device can't be populated " 1142 "in function %x.%x", slot, PCI_FUNC(dev->devfn)); 1143 return; 1144 } 1145 return; 1146 } 1147 1148 if (dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) { 1149 return; 1150 } 1151 /* function 0 indicates single function, so function > 0 must be NULL */ 1152 for (func = 1; func < PCI_FUNC_MAX; ++func) { 1153 PCIDevice *device = bus->devices[PCI_DEVFN(slot, func)]; 1154 if (device && !pci_is_vf(device)) { 1155 error_setg(errp, "PCI: %x.0 indicates single function, " 1156 "but %x.%x is already populated.", 1157 slot, slot, func); 1158 return; 1159 } 1160 } 1161 } 1162 1163 static void pci_config_alloc(PCIDevice *pci_dev) 1164 { 1165 int config_size = pci_config_size(pci_dev); 1166 1167 pci_dev->config = g_malloc0(config_size); 1168 pci_dev->cmask = g_malloc0(config_size); 1169 pci_dev->wmask = g_malloc0(config_size); 1170 pci_dev->w1cmask = g_malloc0(config_size); 1171 pci_dev->used = g_malloc0(config_size); 1172 } 1173 1174 static void pci_config_free(PCIDevice *pci_dev) 1175 { 1176 g_free(pci_dev->config); 1177 g_free(pci_dev->cmask); 1178 g_free(pci_dev->wmask); 1179 g_free(pci_dev->w1cmask); 1180 g_free(pci_dev->used); 1181 } 1182 1183 static void do_pci_unregister_device(PCIDevice *pci_dev) 1184 { 1185 pci_get_bus(pci_dev)->devices[pci_dev->devfn] = NULL; 1186 pci_config_free(pci_dev); 1187 1188 if (xen_mode == XEN_EMULATE) { 1189 xen_evtchn_remove_pci_device(pci_dev); 1190 } 1191 if (memory_region_is_mapped(&pci_dev->bus_master_enable_region)) { 1192 memory_region_del_subregion(&pci_dev->bus_master_container_region, 1193 &pci_dev->bus_master_enable_region); 1194 } 1195 address_space_destroy(&pci_dev->bus_master_as); 1196 } 1197 1198 /* Extract PCIReqIDCache into BDF format */ 1199 static uint16_t pci_req_id_cache_extract(PCIReqIDCache *cache) 1200 { 1201 uint8_t bus_n; 1202 uint16_t result; 1203 1204 switch (cache->type) { 1205 case PCI_REQ_ID_BDF: 1206 result = pci_get_bdf(cache->dev); 1207 break; 1208 case PCI_REQ_ID_SECONDARY_BUS: 1209 bus_n = pci_dev_bus_num(cache->dev); 1210 result = PCI_BUILD_BDF(bus_n, 0); 1211 break; 1212 default: 1213 error_report("Invalid PCI requester ID cache type: %d", 1214 cache->type); 1215 exit(1); 1216 break; 1217 } 1218 1219 return result; 1220 } 1221 1222 /* Parse bridges up to the root complex and return requester ID 1223 * cache for specific device. For full PCIe topology, the cache 1224 * result would be exactly the same as getting BDF of the device. 1225 * However, several tricks are required when system mixed up with 1226 * legacy PCI devices and PCIe-to-PCI bridges. 1227 * 1228 * Here we cache the proxy device (and type) not requester ID since 1229 * bus number might change from time to time. 1230 */ 1231 static PCIReqIDCache pci_req_id_cache_get(PCIDevice *dev) 1232 { 1233 PCIDevice *parent; 1234 PCIReqIDCache cache = { 1235 .dev = dev, 1236 .type = PCI_REQ_ID_BDF, 1237 }; 1238 1239 while (!pci_bus_is_root(pci_get_bus(dev))) { 1240 /* We are under PCI/PCIe bridges */ 1241 parent = pci_get_bus(dev)->parent_dev; 1242 if (pci_is_express(parent)) { 1243 if (pcie_cap_get_type(parent) == PCI_EXP_TYPE_PCI_BRIDGE) { 1244 /* When we pass through PCIe-to-PCI/PCIX bridges, we 1245 * override the requester ID using secondary bus 1246 * number of parent bridge with zeroed devfn 1247 * (pcie-to-pci bridge spec chap 2.3). */ 1248 cache.type = PCI_REQ_ID_SECONDARY_BUS; 1249 cache.dev = dev; 1250 } 1251 } else { 1252 /* Legacy PCI, override requester ID with the bridge's 1253 * BDF upstream. When the root complex connects to 1254 * legacy PCI devices (including buses), it can only 1255 * obtain requester ID info from directly attached 1256 * devices. If devices are attached under bridges, only 1257 * the requester ID of the bridge that is directly 1258 * attached to the root complex can be recognized. */ 1259 cache.type = PCI_REQ_ID_BDF; 1260 cache.dev = parent; 1261 } 1262 dev = parent; 1263 } 1264 1265 return cache; 1266 } 1267 1268 uint16_t pci_requester_id(PCIDevice *dev) 1269 { 1270 return pci_req_id_cache_extract(&dev->requester_id_cache); 1271 } 1272 1273 static bool pci_bus_devfn_available(PCIBus *bus, int devfn) 1274 { 1275 return !(bus->devices[devfn]); 1276 } 1277 1278 static bool pci_bus_devfn_reserved(PCIBus *bus, int devfn) 1279 { 1280 return bus->slot_reserved_mask & (1UL << PCI_SLOT(devfn)); 1281 } 1282 1283 uint32_t pci_bus_get_slot_reserved_mask(PCIBus *bus) 1284 { 1285 return bus->slot_reserved_mask; 1286 } 1287 1288 void pci_bus_set_slot_reserved_mask(PCIBus *bus, uint32_t mask) 1289 { 1290 bus->slot_reserved_mask |= mask; 1291 } 1292 1293 void pci_bus_clear_slot_reserved_mask(PCIBus *bus, uint32_t mask) 1294 { 1295 bus->slot_reserved_mask &= ~mask; 1296 } 1297 1298 /* -1 for devfn means auto assign */ 1299 static PCIDevice *do_pci_register_device(PCIDevice *pci_dev, 1300 const char *name, int devfn, 1301 Error **errp) 1302 { 1303 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev); 1304 PCIConfigReadFunc *config_read = pc->config_read; 1305 PCIConfigWriteFunc *config_write = pc->config_write; 1306 Error *local_err = NULL; 1307 DeviceState *dev = DEVICE(pci_dev); 1308 PCIBus *bus = pci_get_bus(pci_dev); 1309 bool is_bridge = IS_PCI_BRIDGE(pci_dev); 1310 1311 /* Only pci bridges can be attached to extra PCI root buses */ 1312 if (pci_bus_is_root(bus) && bus->parent_dev && !is_bridge) { 1313 error_setg(errp, 1314 "PCI: Only PCI/PCIe bridges can be plugged into %s", 1315 bus->parent_dev->name); 1316 return NULL; 1317 } 1318 1319 if (devfn < 0) { 1320 for(devfn = bus->devfn_min ; devfn < ARRAY_SIZE(bus->devices); 1321 devfn += PCI_FUNC_MAX) { 1322 if (pci_bus_devfn_available(bus, devfn) && 1323 !pci_bus_devfn_reserved(bus, devfn)) { 1324 goto found; 1325 } 1326 } 1327 error_setg(errp, "PCI: no slot/function available for %s, all in use " 1328 "or reserved", name); 1329 return NULL; 1330 found: ; 1331 } else if (pci_bus_devfn_reserved(bus, devfn)) { 1332 error_setg(errp, "PCI: slot %d function %d not available for %s," 1333 " reserved", 1334 PCI_SLOT(devfn), PCI_FUNC(devfn), name); 1335 return NULL; 1336 } else if (!pci_bus_devfn_available(bus, devfn)) { 1337 error_setg(errp, "PCI: slot %d function %d not available for %s," 1338 " in use by %s,id=%s", 1339 PCI_SLOT(devfn), PCI_FUNC(devfn), name, 1340 bus->devices[devfn]->name, bus->devices[devfn]->qdev.id); 1341 return NULL; 1342 } 1343 1344 /* 1345 * Populating function 0 triggers a scan from the guest that 1346 * exposes other non-zero functions. Hence we need to ensure that 1347 * function 0 wasn't added yet. 1348 */ 1349 if (dev->hotplugged && !pci_is_vf(pci_dev) && 1350 pci_get_function_0(pci_dev)) { 1351 error_setg(errp, "PCI: slot %d function 0 already occupied by %s," 1352 " new func %s cannot be exposed to guest.", 1353 PCI_SLOT(pci_get_function_0(pci_dev)->devfn), 1354 pci_get_function_0(pci_dev)->name, 1355 name); 1356 1357 return NULL; 1358 } 1359 1360 pci_dev->devfn = devfn; 1361 pci_dev->requester_id_cache = pci_req_id_cache_get(pci_dev); 1362 pstrcpy(pci_dev->name, sizeof(pci_dev->name), name); 1363 1364 memory_region_init(&pci_dev->bus_master_container_region, OBJECT(pci_dev), 1365 "bus master container", UINT64_MAX); 1366 address_space_init(&pci_dev->bus_master_as, 1367 &pci_dev->bus_master_container_region, pci_dev->name); 1368 pci_dev->bus_master_as.max_bounce_buffer_size = 1369 pci_dev->max_bounce_buffer_size; 1370 1371 if (phase_check(PHASE_MACHINE_READY)) { 1372 pci_init_bus_master(pci_dev); 1373 } 1374 pci_dev->irq_state = 0; 1375 pci_config_alloc(pci_dev); 1376 1377 pci_config_set_vendor_id(pci_dev->config, pc->vendor_id); 1378 pci_config_set_device_id(pci_dev->config, pc->device_id); 1379 pci_config_set_revision(pci_dev->config, pc->revision); 1380 pci_config_set_class(pci_dev->config, pc->class_id); 1381 1382 if (!is_bridge) { 1383 if (pc->subsystem_vendor_id || pc->subsystem_id) { 1384 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_VENDOR_ID, 1385 pc->subsystem_vendor_id); 1386 pci_set_word(pci_dev->config + PCI_SUBSYSTEM_ID, 1387 pc->subsystem_id); 1388 } else { 1389 pci_set_default_subsystem_id(pci_dev); 1390 } 1391 } else { 1392 /* subsystem_vendor_id/subsystem_id are only for header type 0 */ 1393 assert(!pc->subsystem_vendor_id); 1394 assert(!pc->subsystem_id); 1395 } 1396 pci_init_cmask(pci_dev); 1397 pci_init_wmask(pci_dev); 1398 pci_init_w1cmask(pci_dev); 1399 if (is_bridge) { 1400 pci_init_mask_bridge(pci_dev); 1401 } 1402 pci_init_multifunction(bus, pci_dev, &local_err); 1403 if (local_err) { 1404 error_propagate(errp, local_err); 1405 do_pci_unregister_device(pci_dev); 1406 return NULL; 1407 } 1408 1409 if (!config_read) 1410 config_read = pci_default_read_config; 1411 if (!config_write) 1412 config_write = pci_default_write_config; 1413 pci_dev->config_read = config_read; 1414 pci_dev->config_write = config_write; 1415 bus->devices[devfn] = pci_dev; 1416 pci_dev->version_id = 2; /* Current pci device vmstate version */ 1417 return pci_dev; 1418 } 1419 1420 static void pci_unregister_io_regions(PCIDevice *pci_dev) 1421 { 1422 PCIIORegion *r; 1423 int i; 1424 1425 for(i = 0; i < PCI_NUM_REGIONS; i++) { 1426 r = &pci_dev->io_regions[i]; 1427 if (!r->size || r->addr == PCI_BAR_UNMAPPED) 1428 continue; 1429 memory_region_del_subregion(r->address_space, r->memory); 1430 } 1431 1432 pci_unregister_vga(pci_dev); 1433 } 1434 1435 static void pci_qdev_unrealize(DeviceState *dev) 1436 { 1437 PCIDevice *pci_dev = PCI_DEVICE(dev); 1438 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev); 1439 1440 pci_unregister_io_regions(pci_dev); 1441 pci_del_option_rom(pci_dev); 1442 pcie_sriov_unregister_device(pci_dev); 1443 1444 if (pc->exit) { 1445 pc->exit(pci_dev); 1446 } 1447 1448 pci_device_deassert_intx(pci_dev); 1449 do_pci_unregister_device(pci_dev); 1450 1451 pci_dev->msi_trigger = NULL; 1452 1453 /* 1454 * clean up acpi-index so it could reused by another device 1455 */ 1456 if (pci_dev->acpi_index) { 1457 GSequence *used_indexes = pci_acpi_index_list(); 1458 1459 g_sequence_remove(g_sequence_lookup(used_indexes, 1460 GINT_TO_POINTER(pci_dev->acpi_index), 1461 g_cmp_uint32, NULL)); 1462 } 1463 } 1464 1465 void pci_register_bar(PCIDevice *pci_dev, int region_num, 1466 uint8_t type, MemoryRegion *memory) 1467 { 1468 PCIIORegion *r; 1469 uint32_t addr; /* offset in pci config space */ 1470 uint64_t wmask; 1471 pcibus_t size = memory_region_size(memory); 1472 uint8_t hdr_type; 1473 1474 assert(region_num >= 0); 1475 assert(region_num < PCI_NUM_REGIONS); 1476 assert(is_power_of_2(size)); 1477 1478 /* A PCI bridge device (with Type 1 header) may only have at most 2 BARs */ 1479 hdr_type = 1480 pci_dev->config[PCI_HEADER_TYPE] & ~PCI_HEADER_TYPE_MULTI_FUNCTION; 1481 assert(hdr_type != PCI_HEADER_TYPE_BRIDGE || region_num < 2); 1482 1483 r = &pci_dev->io_regions[region_num]; 1484 assert(!r->size); 1485 r->size = size; 1486 r->type = type; 1487 r->memory = memory; 1488 r->address_space = type & PCI_BASE_ADDRESS_SPACE_IO 1489 ? pci_get_bus(pci_dev)->address_space_io 1490 : pci_get_bus(pci_dev)->address_space_mem; 1491 1492 if (pci_is_vf(pci_dev)) { 1493 PCIDevice *pf = pci_dev->exp.sriov_vf.pf; 1494 assert(!pf || type == pf->exp.sriov_pf.vf_bar_type[region_num]); 1495 1496 r->addr = pci_bar_address(pci_dev, region_num, r->type, r->size); 1497 if (r->addr != PCI_BAR_UNMAPPED) { 1498 memory_region_add_subregion_overlap(r->address_space, 1499 r->addr, r->memory, 1); 1500 } 1501 } else { 1502 r->addr = PCI_BAR_UNMAPPED; 1503 1504 wmask = ~(size - 1); 1505 if (region_num == PCI_ROM_SLOT) { 1506 /* ROM enable bit is writable */ 1507 wmask |= PCI_ROM_ADDRESS_ENABLE; 1508 } 1509 1510 addr = pci_bar(pci_dev, region_num); 1511 pci_set_long(pci_dev->config + addr, type); 1512 1513 if (!(r->type & PCI_BASE_ADDRESS_SPACE_IO) && 1514 r->type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 1515 pci_set_quad(pci_dev->wmask + addr, wmask); 1516 pci_set_quad(pci_dev->cmask + addr, ~0ULL); 1517 } else { 1518 pci_set_long(pci_dev->wmask + addr, wmask & 0xffffffff); 1519 pci_set_long(pci_dev->cmask + addr, 0xffffffff); 1520 } 1521 } 1522 } 1523 1524 static void pci_update_vga(PCIDevice *pci_dev) 1525 { 1526 uint16_t cmd; 1527 1528 if (!pci_dev->has_vga) { 1529 return; 1530 } 1531 1532 cmd = pci_get_word(pci_dev->config + PCI_COMMAND); 1533 1534 memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_MEM], 1535 cmd & PCI_COMMAND_MEMORY); 1536 memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO], 1537 cmd & PCI_COMMAND_IO); 1538 memory_region_set_enabled(pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI], 1539 cmd & PCI_COMMAND_IO); 1540 } 1541 1542 void pci_register_vga(PCIDevice *pci_dev, MemoryRegion *mem, 1543 MemoryRegion *io_lo, MemoryRegion *io_hi) 1544 { 1545 PCIBus *bus = pci_get_bus(pci_dev); 1546 1547 assert(!pci_dev->has_vga); 1548 1549 assert(memory_region_size(mem) == QEMU_PCI_VGA_MEM_SIZE); 1550 pci_dev->vga_regions[QEMU_PCI_VGA_MEM] = mem; 1551 memory_region_add_subregion_overlap(bus->address_space_mem, 1552 QEMU_PCI_VGA_MEM_BASE, mem, 1); 1553 1554 assert(memory_region_size(io_lo) == QEMU_PCI_VGA_IO_LO_SIZE); 1555 pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO] = io_lo; 1556 memory_region_add_subregion_overlap(bus->address_space_io, 1557 QEMU_PCI_VGA_IO_LO_BASE, io_lo, 1); 1558 1559 assert(memory_region_size(io_hi) == QEMU_PCI_VGA_IO_HI_SIZE); 1560 pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI] = io_hi; 1561 memory_region_add_subregion_overlap(bus->address_space_io, 1562 QEMU_PCI_VGA_IO_HI_BASE, io_hi, 1); 1563 pci_dev->has_vga = true; 1564 1565 pci_update_vga(pci_dev); 1566 } 1567 1568 void pci_unregister_vga(PCIDevice *pci_dev) 1569 { 1570 PCIBus *bus = pci_get_bus(pci_dev); 1571 1572 if (!pci_dev->has_vga) { 1573 return; 1574 } 1575 1576 memory_region_del_subregion(bus->address_space_mem, 1577 pci_dev->vga_regions[QEMU_PCI_VGA_MEM]); 1578 memory_region_del_subregion(bus->address_space_io, 1579 pci_dev->vga_regions[QEMU_PCI_VGA_IO_LO]); 1580 memory_region_del_subregion(bus->address_space_io, 1581 pci_dev->vga_regions[QEMU_PCI_VGA_IO_HI]); 1582 pci_dev->has_vga = false; 1583 } 1584 1585 pcibus_t pci_get_bar_addr(PCIDevice *pci_dev, int region_num) 1586 { 1587 return pci_dev->io_regions[region_num].addr; 1588 } 1589 1590 static pcibus_t pci_config_get_bar_addr(PCIDevice *d, int reg, 1591 uint8_t type, pcibus_t size) 1592 { 1593 pcibus_t new_addr; 1594 if (!pci_is_vf(d)) { 1595 int bar = pci_bar(d, reg); 1596 if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 1597 new_addr = pci_get_quad(d->config + bar); 1598 } else { 1599 new_addr = pci_get_long(d->config + bar); 1600 } 1601 } else { 1602 PCIDevice *pf = d->exp.sriov_vf.pf; 1603 uint16_t sriov_cap = pf->exp.sriov_cap; 1604 int bar = sriov_cap + PCI_SRIOV_BAR + reg * 4; 1605 uint16_t vf_offset = 1606 pci_get_word(pf->config + sriov_cap + PCI_SRIOV_VF_OFFSET); 1607 uint16_t vf_stride = 1608 pci_get_word(pf->config + sriov_cap + PCI_SRIOV_VF_STRIDE); 1609 uint32_t vf_num = d->devfn - (pf->devfn + vf_offset); 1610 1611 if (vf_num) { 1612 vf_num /= vf_stride; 1613 } 1614 1615 if (type & PCI_BASE_ADDRESS_MEM_TYPE_64) { 1616 new_addr = pci_get_quad(pf->config + bar); 1617 } else { 1618 new_addr = pci_get_long(pf->config + bar); 1619 } 1620 new_addr += vf_num * size; 1621 } 1622 /* The ROM slot has a specific enable bit, keep it intact */ 1623 if (reg != PCI_ROM_SLOT) { 1624 new_addr &= ~(size - 1); 1625 } 1626 return new_addr; 1627 } 1628 1629 pcibus_t pci_bar_address(PCIDevice *d, 1630 int reg, uint8_t type, pcibus_t size) 1631 { 1632 pcibus_t new_addr, last_addr; 1633 uint16_t cmd = pci_get_word(d->config + PCI_COMMAND); 1634 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1635 bool allow_0_address = mc->pci_allow_0_address; 1636 1637 if (type & PCI_BASE_ADDRESS_SPACE_IO) { 1638 if (!(cmd & PCI_COMMAND_IO)) { 1639 return PCI_BAR_UNMAPPED; 1640 } 1641 new_addr = pci_config_get_bar_addr(d, reg, type, size); 1642 last_addr = new_addr + size - 1; 1643 /* Check if 32 bit BAR wraps around explicitly. 1644 * TODO: make priorities correct and remove this work around. 1645 */ 1646 if (last_addr <= new_addr || last_addr >= UINT32_MAX || 1647 (!allow_0_address && new_addr == 0)) { 1648 return PCI_BAR_UNMAPPED; 1649 } 1650 return new_addr; 1651 } 1652 1653 if (!(cmd & PCI_COMMAND_MEMORY)) { 1654 return PCI_BAR_UNMAPPED; 1655 } 1656 new_addr = pci_config_get_bar_addr(d, reg, type, size); 1657 /* the ROM slot has a specific enable bit */ 1658 if (reg == PCI_ROM_SLOT && !(new_addr & PCI_ROM_ADDRESS_ENABLE)) { 1659 return PCI_BAR_UNMAPPED; 1660 } 1661 new_addr &= ~(size - 1); 1662 last_addr = new_addr + size - 1; 1663 /* NOTE: we do not support wrapping */ 1664 /* XXX: as we cannot support really dynamic 1665 mappings, we handle specific values as invalid 1666 mappings. */ 1667 if (last_addr <= new_addr || last_addr == PCI_BAR_UNMAPPED || 1668 (!allow_0_address && new_addr == 0)) { 1669 return PCI_BAR_UNMAPPED; 1670 } 1671 1672 /* Now pcibus_t is 64bit. 1673 * Check if 32 bit BAR wraps around explicitly. 1674 * Without this, PC ide doesn't work well. 1675 * TODO: remove this work around. 1676 */ 1677 if (!(type & PCI_BASE_ADDRESS_MEM_TYPE_64) && last_addr >= UINT32_MAX) { 1678 return PCI_BAR_UNMAPPED; 1679 } 1680 1681 /* 1682 * OS is allowed to set BAR beyond its addressable 1683 * bits. For example, 32 bit OS can set 64bit bar 1684 * to >4G. Check it. TODO: we might need to support 1685 * it in the future for e.g. PAE. 1686 */ 1687 if (last_addr >= HWADDR_MAX) { 1688 return PCI_BAR_UNMAPPED; 1689 } 1690 1691 return new_addr; 1692 } 1693 1694 static void pci_update_mappings(PCIDevice *d) 1695 { 1696 PCIIORegion *r; 1697 int i; 1698 pcibus_t new_addr; 1699 1700 for(i = 0; i < PCI_NUM_REGIONS; i++) { 1701 r = &d->io_regions[i]; 1702 1703 /* this region isn't registered */ 1704 if (!r->size) 1705 continue; 1706 1707 new_addr = pci_bar_address(d, i, r->type, r->size); 1708 if (!d->enabled || pci_pm_state(d)) { 1709 new_addr = PCI_BAR_UNMAPPED; 1710 } 1711 1712 /* This bar isn't changed */ 1713 if (new_addr == r->addr) 1714 continue; 1715 1716 /* now do the real mapping */ 1717 if (r->addr != PCI_BAR_UNMAPPED) { 1718 trace_pci_update_mappings_del(d->name, pci_dev_bus_num(d), 1719 PCI_SLOT(d->devfn), 1720 PCI_FUNC(d->devfn), 1721 i, r->addr, r->size); 1722 memory_region_del_subregion(r->address_space, r->memory); 1723 } 1724 r->addr = new_addr; 1725 if (r->addr != PCI_BAR_UNMAPPED) { 1726 trace_pci_update_mappings_add(d->name, pci_dev_bus_num(d), 1727 PCI_SLOT(d->devfn), 1728 PCI_FUNC(d->devfn), 1729 i, r->addr, r->size); 1730 memory_region_add_subregion_overlap(r->address_space, 1731 r->addr, r->memory, 1); 1732 } 1733 } 1734 1735 pci_update_vga(d); 1736 } 1737 1738 int pci_irq_disabled(PCIDevice *d) 1739 { 1740 return pci_get_word(d->config + PCI_COMMAND) & PCI_COMMAND_INTX_DISABLE; 1741 } 1742 1743 /* Called after interrupt disabled field update in config space, 1744 * assert/deassert interrupts if necessary. 1745 * Gets original interrupt disable bit value (before update). */ 1746 static void pci_update_irq_disabled(PCIDevice *d, int was_irq_disabled) 1747 { 1748 int i, disabled = pci_irq_disabled(d); 1749 if (disabled == was_irq_disabled) 1750 return; 1751 for (i = 0; i < PCI_NUM_PINS; ++i) { 1752 int state = pci_irq_state(d, i); 1753 pci_change_irq_level(d, i, disabled ? -state : state); 1754 } 1755 } 1756 1757 uint32_t pci_default_read_config(PCIDevice *d, 1758 uint32_t address, int len) 1759 { 1760 uint32_t val = 0; 1761 1762 assert(address + len <= pci_config_size(d)); 1763 1764 if (pci_is_express_downstream_port(d) && 1765 ranges_overlap(address, len, d->exp.exp_cap + PCI_EXP_LNKSTA, 2)) { 1766 pcie_sync_bridge_lnk(d); 1767 } 1768 memcpy(&val, d->config + address, len); 1769 return le32_to_cpu(val); 1770 } 1771 1772 void pci_default_write_config(PCIDevice *d, uint32_t addr, uint32_t val_in, int l) 1773 { 1774 uint8_t new_pm_state, old_pm_state = pci_pm_state(d); 1775 int i, was_irq_disabled = pci_irq_disabled(d); 1776 uint32_t val = val_in; 1777 1778 assert(addr + l <= pci_config_size(d)); 1779 1780 for (i = 0; i < l; val >>= 8, ++i) { 1781 uint8_t wmask = d->wmask[addr + i]; 1782 uint8_t w1cmask = d->w1cmask[addr + i]; 1783 assert(!(wmask & w1cmask)); 1784 d->config[addr + i] = (d->config[addr + i] & ~wmask) | (val & wmask); 1785 d->config[addr + i] &= ~(val & w1cmask); /* W1C: Write 1 to Clear */ 1786 } 1787 1788 new_pm_state = pci_pm_update(d, addr, l, old_pm_state); 1789 1790 if (ranges_overlap(addr, l, PCI_BASE_ADDRESS_0, 24) || 1791 ranges_overlap(addr, l, PCI_ROM_ADDRESS, 4) || 1792 ranges_overlap(addr, l, PCI_ROM_ADDRESS1, 4) || 1793 range_covers_byte(addr, l, PCI_COMMAND) || 1794 !!new_pm_state != !!old_pm_state) { 1795 pci_update_mappings(d); 1796 } 1797 1798 if (ranges_overlap(addr, l, PCI_COMMAND, 2)) { 1799 pci_update_irq_disabled(d, was_irq_disabled); 1800 pci_set_master(d, (pci_get_word(d->config + PCI_COMMAND) & 1801 PCI_COMMAND_MASTER) && d->enabled); 1802 } 1803 1804 msi_write_config(d, addr, val_in, l); 1805 msix_write_config(d, addr, val_in, l); 1806 pcie_sriov_config_write(d, addr, val_in, l); 1807 } 1808 1809 /***********************************************************/ 1810 /* generic PCI irq support */ 1811 1812 /* 0 <= irq_num <= 3. level must be 0 or 1 */ 1813 static void pci_irq_handler(void *opaque, int irq_num, int level) 1814 { 1815 PCIDevice *pci_dev = opaque; 1816 int change; 1817 1818 assert(0 <= irq_num && irq_num < PCI_NUM_PINS); 1819 assert(level == 0 || level == 1); 1820 change = level - pci_irq_state(pci_dev, irq_num); 1821 if (!change) 1822 return; 1823 1824 pci_set_irq_state(pci_dev, irq_num, level); 1825 pci_update_irq_status(pci_dev); 1826 if (pci_irq_disabled(pci_dev)) 1827 return; 1828 pci_change_irq_level(pci_dev, irq_num, change); 1829 } 1830 1831 qemu_irq pci_allocate_irq(PCIDevice *pci_dev) 1832 { 1833 int intx = pci_intx(pci_dev); 1834 assert(0 <= intx && intx < PCI_NUM_PINS); 1835 1836 return qemu_allocate_irq(pci_irq_handler, pci_dev, intx); 1837 } 1838 1839 void pci_set_irq(PCIDevice *pci_dev, int level) 1840 { 1841 int intx = pci_intx(pci_dev); 1842 pci_irq_handler(pci_dev, intx, level); 1843 } 1844 1845 /* Special hooks used by device assignment */ 1846 void pci_bus_set_route_irq_fn(PCIBus *bus, pci_route_irq_fn route_intx_to_irq) 1847 { 1848 assert(pci_bus_is_root(bus)); 1849 bus->route_intx_to_irq = route_intx_to_irq; 1850 } 1851 1852 PCIINTxRoute pci_device_route_intx_to_irq(PCIDevice *dev, int pin) 1853 { 1854 PCIBus *bus; 1855 1856 do { 1857 int dev_irq = pin; 1858 bus = pci_get_bus(dev); 1859 pin = bus->map_irq(dev, pin); 1860 trace_pci_route_irq(dev_irq, DEVICE(dev)->canonical_path, pin, 1861 pci_bus_is_root(bus) ? "root-complex" 1862 : DEVICE(bus->parent_dev)->canonical_path); 1863 dev = bus->parent_dev; 1864 } while (dev); 1865 1866 if (!bus->route_intx_to_irq) { 1867 error_report("PCI: Bug - unimplemented PCI INTx routing (%s)", 1868 object_get_typename(OBJECT(bus->qbus.parent))); 1869 return (PCIINTxRoute) { PCI_INTX_DISABLED, -1 }; 1870 } 1871 1872 return bus->route_intx_to_irq(bus->irq_opaque, pin); 1873 } 1874 1875 bool pci_intx_route_changed(PCIINTxRoute *old, PCIINTxRoute *new) 1876 { 1877 return old->mode != new->mode || old->irq != new->irq; 1878 } 1879 1880 void pci_bus_fire_intx_routing_notifier(PCIBus *bus) 1881 { 1882 PCIDevice *dev; 1883 PCIBus *sec; 1884 int i; 1885 1886 for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { 1887 dev = bus->devices[i]; 1888 if (dev && dev->intx_routing_notifier) { 1889 dev->intx_routing_notifier(dev); 1890 } 1891 } 1892 1893 QLIST_FOREACH(sec, &bus->child, sibling) { 1894 pci_bus_fire_intx_routing_notifier(sec); 1895 } 1896 } 1897 1898 void pci_device_set_intx_routing_notifier(PCIDevice *dev, 1899 PCIINTxRoutingNotifier notifier) 1900 { 1901 dev->intx_routing_notifier = notifier; 1902 } 1903 1904 /* 1905 * PCI-to-PCI bridge specification 1906 * 9.1: Interrupt routing. Table 9-1 1907 * 1908 * the PCI Express Base Specification, Revision 2.1 1909 * 2.2.8.1: INTx interrupt signaling - Rules 1910 * the Implementation Note 1911 * Table 2-20 1912 */ 1913 /* 1914 * 0 <= pin <= 3 0 = INTA, 1 = INTB, 2 = INTC, 3 = INTD 1915 * 0-origin unlike PCI interrupt pin register. 1916 */ 1917 int pci_swizzle_map_irq_fn(PCIDevice *pci_dev, int pin) 1918 { 1919 return pci_swizzle(PCI_SLOT(pci_dev->devfn), pin); 1920 } 1921 1922 /***********************************************************/ 1923 /* monitor info on PCI */ 1924 1925 static const pci_class_desc pci_class_descriptions[] = 1926 { 1927 { 0x0001, "VGA controller", "display"}, 1928 { 0x0100, "SCSI controller", "scsi"}, 1929 { 0x0101, "IDE controller", "ide"}, 1930 { 0x0102, "Floppy controller", "fdc"}, 1931 { 0x0103, "IPI controller", "ipi"}, 1932 { 0x0104, "RAID controller", "raid"}, 1933 { 0x0106, "SATA controller"}, 1934 { 0x0107, "SAS controller"}, 1935 { 0x0180, "Storage controller"}, 1936 { 0x0200, "Ethernet controller", "ethernet"}, 1937 { 0x0201, "Token Ring controller", "token-ring"}, 1938 { 0x0202, "FDDI controller", "fddi"}, 1939 { 0x0203, "ATM controller", "atm"}, 1940 { 0x0280, "Network controller"}, 1941 { 0x0300, "VGA controller", "display", 0x00ff}, 1942 { 0x0301, "XGA controller"}, 1943 { 0x0302, "3D controller"}, 1944 { 0x0380, "Display controller"}, 1945 { 0x0400, "Video controller", "video"}, 1946 { 0x0401, "Audio controller", "sound"}, 1947 { 0x0402, "Phone"}, 1948 { 0x0403, "Audio controller", "sound"}, 1949 { 0x0480, "Multimedia controller"}, 1950 { 0x0500, "RAM controller", "memory"}, 1951 { 0x0501, "Flash controller", "flash"}, 1952 { 0x0580, "Memory controller"}, 1953 { 0x0600, "Host bridge", "host"}, 1954 { 0x0601, "ISA bridge", "isa"}, 1955 { 0x0602, "EISA bridge", "eisa"}, 1956 { 0x0603, "MC bridge", "mca"}, 1957 { 0x0604, "PCI bridge", "pci-bridge"}, 1958 { 0x0605, "PCMCIA bridge", "pcmcia"}, 1959 { 0x0606, "NUBUS bridge", "nubus"}, 1960 { 0x0607, "CARDBUS bridge", "cardbus"}, 1961 { 0x0608, "RACEWAY bridge"}, 1962 { 0x0680, "Bridge"}, 1963 { 0x0700, "Serial port", "serial"}, 1964 { 0x0701, "Parallel port", "parallel"}, 1965 { 0x0800, "Interrupt controller", "interrupt-controller"}, 1966 { 0x0801, "DMA controller", "dma-controller"}, 1967 { 0x0802, "Timer", "timer"}, 1968 { 0x0803, "RTC", "rtc"}, 1969 { 0x0900, "Keyboard", "keyboard"}, 1970 { 0x0901, "Pen", "pen"}, 1971 { 0x0902, "Mouse", "mouse"}, 1972 { 0x0A00, "Dock station", "dock", 0x00ff}, 1973 { 0x0B00, "i386 cpu", "cpu", 0x00ff}, 1974 { 0x0c00, "Firewire controller", "firewire"}, 1975 { 0x0c01, "Access bus controller", "access-bus"}, 1976 { 0x0c02, "SSA controller", "ssa"}, 1977 { 0x0c03, "USB controller", "usb"}, 1978 { 0x0c04, "Fibre channel controller", "fibre-channel"}, 1979 { 0x0c05, "SMBus"}, 1980 { 0, NULL} 1981 }; 1982 1983 void pci_for_each_device_under_bus_reverse(PCIBus *bus, 1984 pci_bus_dev_fn fn, 1985 void *opaque) 1986 { 1987 PCIDevice *d; 1988 int devfn; 1989 1990 for (devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) { 1991 d = bus->devices[ARRAY_SIZE(bus->devices) - 1 - devfn]; 1992 if (d) { 1993 fn(bus, d, opaque); 1994 } 1995 } 1996 } 1997 1998 void pci_for_each_device_reverse(PCIBus *bus, int bus_num, 1999 pci_bus_dev_fn fn, void *opaque) 2000 { 2001 bus = pci_find_bus_nr(bus, bus_num); 2002 2003 if (bus) { 2004 pci_for_each_device_under_bus_reverse(bus, fn, opaque); 2005 } 2006 } 2007 2008 void pci_for_each_device_under_bus(PCIBus *bus, 2009 pci_bus_dev_fn fn, void *opaque) 2010 { 2011 PCIDevice *d; 2012 int devfn; 2013 2014 for(devfn = 0; devfn < ARRAY_SIZE(bus->devices); devfn++) { 2015 d = bus->devices[devfn]; 2016 if (d) { 2017 fn(bus, d, opaque); 2018 } 2019 } 2020 } 2021 2022 void pci_for_each_device(PCIBus *bus, int bus_num, 2023 pci_bus_dev_fn fn, void *opaque) 2024 { 2025 bus = pci_find_bus_nr(bus, bus_num); 2026 2027 if (bus) { 2028 pci_for_each_device_under_bus(bus, fn, opaque); 2029 } 2030 } 2031 2032 const pci_class_desc *get_class_desc(int class) 2033 { 2034 const pci_class_desc *desc; 2035 2036 desc = pci_class_descriptions; 2037 while (desc->desc && class != desc->class) { 2038 desc++; 2039 } 2040 2041 return desc; 2042 } 2043 2044 void pci_init_nic_devices(PCIBus *bus, const char *default_model) 2045 { 2046 qemu_create_nic_bus_devices(&bus->qbus, TYPE_PCI_DEVICE, default_model, 2047 "virtio", "virtio-net-pci"); 2048 } 2049 2050 bool pci_init_nic_in_slot(PCIBus *rootbus, const char *model, 2051 const char *alias, const char *devaddr) 2052 { 2053 NICInfo *nd = qemu_find_nic_info(model, true, alias); 2054 int dom, busnr, devfn; 2055 PCIDevice *pci_dev; 2056 unsigned slot; 2057 PCIBus *bus; 2058 2059 if (!nd) { 2060 return false; 2061 } 2062 2063 if (!devaddr || pci_parse_devaddr(devaddr, &dom, &busnr, &slot, NULL) < 0) { 2064 error_report("Invalid PCI device address %s for device %s", 2065 devaddr, model); 2066 exit(1); 2067 } 2068 2069 if (dom != 0) { 2070 error_report("No support for non-zero PCI domains"); 2071 exit(1); 2072 } 2073 2074 devfn = PCI_DEVFN(slot, 0); 2075 2076 bus = pci_find_bus_nr(rootbus, busnr); 2077 if (!bus) { 2078 error_report("Invalid PCI device address %s for device %s", 2079 devaddr, model); 2080 exit(1); 2081 } 2082 2083 pci_dev = pci_new(devfn, model); 2084 qdev_set_nic_properties(&pci_dev->qdev, nd); 2085 pci_realize_and_unref(pci_dev, bus, &error_fatal); 2086 return true; 2087 } 2088 2089 PCIDevice *pci_vga_init(PCIBus *bus) 2090 { 2091 vga_interface_created = true; 2092 switch (vga_interface_type) { 2093 case VGA_CIRRUS: 2094 return pci_create_simple(bus, -1, "cirrus-vga"); 2095 case VGA_QXL: 2096 return pci_create_simple(bus, -1, "qxl-vga"); 2097 case VGA_STD: 2098 return pci_create_simple(bus, -1, "VGA"); 2099 case VGA_VMWARE: 2100 return pci_create_simple(bus, -1, "vmware-svga"); 2101 case VGA_VIRTIO: 2102 return pci_create_simple(bus, -1, "virtio-vga"); 2103 case VGA_NONE: 2104 default: /* Other non-PCI types. Checking for unsupported types is already 2105 done in vl.c. */ 2106 return NULL; 2107 } 2108 } 2109 2110 /* Whether a given bus number is in range of the secondary 2111 * bus of the given bridge device. */ 2112 static bool pci_secondary_bus_in_range(PCIDevice *dev, int bus_num) 2113 { 2114 return !(pci_get_word(dev->config + PCI_BRIDGE_CONTROL) & 2115 PCI_BRIDGE_CTL_BUS_RESET) /* Don't walk the bus if it's reset. */ && 2116 dev->config[PCI_SECONDARY_BUS] <= bus_num && 2117 bus_num <= dev->config[PCI_SUBORDINATE_BUS]; 2118 } 2119 2120 /* Whether a given bus number is in a range of a root bus */ 2121 static bool pci_root_bus_in_range(PCIBus *bus, int bus_num) 2122 { 2123 int i; 2124 2125 for (i = 0; i < ARRAY_SIZE(bus->devices); ++i) { 2126 PCIDevice *dev = bus->devices[i]; 2127 2128 if (dev && IS_PCI_BRIDGE(dev)) { 2129 if (pci_secondary_bus_in_range(dev, bus_num)) { 2130 return true; 2131 } 2132 } 2133 } 2134 2135 return false; 2136 } 2137 2138 PCIBus *pci_find_bus_nr(PCIBus *bus, int bus_num) 2139 { 2140 PCIBus *sec; 2141 2142 if (!bus) { 2143 return NULL; 2144 } 2145 2146 if (pci_bus_num(bus) == bus_num) { 2147 return bus; 2148 } 2149 2150 /* Consider all bus numbers in range for the host pci bridge. */ 2151 if (!pci_bus_is_root(bus) && 2152 !pci_secondary_bus_in_range(bus->parent_dev, bus_num)) { 2153 return NULL; 2154 } 2155 2156 /* try child bus */ 2157 for (; bus; bus = sec) { 2158 QLIST_FOREACH(sec, &bus->child, sibling) { 2159 if (pci_bus_num(sec) == bus_num) { 2160 return sec; 2161 } 2162 /* PXB buses assumed to be children of bus 0 */ 2163 if (pci_bus_is_root(sec)) { 2164 if (pci_root_bus_in_range(sec, bus_num)) { 2165 break; 2166 } 2167 } else { 2168 if (pci_secondary_bus_in_range(sec->parent_dev, bus_num)) { 2169 break; 2170 } 2171 } 2172 } 2173 } 2174 2175 return NULL; 2176 } 2177 2178 void pci_for_each_bus_depth_first(PCIBus *bus, pci_bus_ret_fn begin, 2179 pci_bus_fn end, void *parent_state) 2180 { 2181 PCIBus *sec; 2182 void *state; 2183 2184 if (!bus) { 2185 return; 2186 } 2187 2188 if (begin) { 2189 state = begin(bus, parent_state); 2190 } else { 2191 state = parent_state; 2192 } 2193 2194 QLIST_FOREACH(sec, &bus->child, sibling) { 2195 pci_for_each_bus_depth_first(sec, begin, end, state); 2196 } 2197 2198 if (end) { 2199 end(bus, state); 2200 } 2201 } 2202 2203 2204 PCIDevice *pci_find_device(PCIBus *bus, int bus_num, uint8_t devfn) 2205 { 2206 bus = pci_find_bus_nr(bus, bus_num); 2207 2208 if (!bus) 2209 return NULL; 2210 2211 return bus->devices[devfn]; 2212 } 2213 2214 #define ONBOARD_INDEX_MAX (16 * 1024 - 1) 2215 2216 static void pci_qdev_realize(DeviceState *qdev, Error **errp) 2217 { 2218 PCIDevice *pci_dev = (PCIDevice *)qdev; 2219 PCIDeviceClass *pc = PCI_DEVICE_GET_CLASS(pci_dev); 2220 ObjectClass *klass = OBJECT_CLASS(pc); 2221 Error *local_err = NULL; 2222 bool is_default_rom; 2223 uint16_t class_id; 2224 2225 /* 2226 * capped by systemd (see: udev-builtin-net_id.c) 2227 * as it's the only known user honor it to avoid users 2228 * misconfigure QEMU and then wonder why acpi-index doesn't work 2229 */ 2230 if (pci_dev->acpi_index > ONBOARD_INDEX_MAX) { 2231 error_setg(errp, "acpi-index should be less or equal to %u", 2232 ONBOARD_INDEX_MAX); 2233 return; 2234 } 2235 2236 /* 2237 * make sure that acpi-index is unique across all present PCI devices 2238 */ 2239 if (pci_dev->acpi_index) { 2240 GSequence *used_indexes = pci_acpi_index_list(); 2241 2242 if (g_sequence_lookup(used_indexes, 2243 GINT_TO_POINTER(pci_dev->acpi_index), 2244 g_cmp_uint32, NULL)) { 2245 error_setg(errp, "a PCI device with acpi-index = %" PRIu32 2246 " already exist", pci_dev->acpi_index); 2247 return; 2248 } 2249 g_sequence_insert_sorted(used_indexes, 2250 GINT_TO_POINTER(pci_dev->acpi_index), 2251 g_cmp_uint32, NULL); 2252 } 2253 2254 if (pci_dev->romsize != UINT32_MAX && !is_power_of_2(pci_dev->romsize)) { 2255 error_setg(errp, "ROM size %u is not a power of two", pci_dev->romsize); 2256 return; 2257 } 2258 2259 /* initialize cap_present for pci_is_express() and pci_config_size(), 2260 * Note that hybrid PCIs are not set automatically and need to manage 2261 * QEMU_PCI_CAP_EXPRESS manually */ 2262 if (object_class_dynamic_cast(klass, INTERFACE_PCIE_DEVICE) && 2263 !object_class_dynamic_cast(klass, INTERFACE_CONVENTIONAL_PCI_DEVICE)) { 2264 pci_dev->cap_present |= QEMU_PCI_CAP_EXPRESS; 2265 } 2266 2267 if (object_class_dynamic_cast(klass, INTERFACE_CXL_DEVICE)) { 2268 pci_dev->cap_present |= QEMU_PCIE_CAP_CXL; 2269 } 2270 2271 pci_dev = do_pci_register_device(pci_dev, 2272 object_get_typename(OBJECT(qdev)), 2273 pci_dev->devfn, errp); 2274 if (pci_dev == NULL) 2275 return; 2276 2277 if (pc->realize) { 2278 pc->realize(pci_dev, &local_err); 2279 if (local_err) { 2280 error_propagate(errp, local_err); 2281 do_pci_unregister_device(pci_dev); 2282 return; 2283 } 2284 } 2285 2286 if (!pcie_sriov_register_device(pci_dev, errp)) { 2287 pci_qdev_unrealize(DEVICE(pci_dev)); 2288 return; 2289 } 2290 2291 /* 2292 * A PCIe Downstream Port that do not have ARI Forwarding enabled must 2293 * associate only Device 0 with the device attached to the bus 2294 * representing the Link from the Port (PCIe base spec rev 4.0 ver 0.3, 2295 * sec 7.3.1). 2296 * With ARI, PCI_SLOT() can return non-zero value as the traditional 2297 * 5-bit Device Number and 3-bit Function Number fields in its associated 2298 * Routing IDs, Requester IDs and Completer IDs are interpreted as a 2299 * single 8-bit Function Number. Hence, ignore ARI capable devices. 2300 */ 2301 if (pci_is_express(pci_dev) && 2302 !pcie_find_capability(pci_dev, PCI_EXT_CAP_ID_ARI) && 2303 pcie_has_upstream_port(pci_dev) && 2304 PCI_SLOT(pci_dev->devfn)) { 2305 warn_report("PCI: slot %d is not valid for %s," 2306 " parent device only allows plugging into slot 0.", 2307 PCI_SLOT(pci_dev->devfn), pci_dev->name); 2308 } 2309 2310 if (pci_dev->failover_pair_id) { 2311 if (!pci_bus_is_express(pci_get_bus(pci_dev))) { 2312 error_setg(errp, "failover primary device must be on " 2313 "PCIExpress bus"); 2314 pci_qdev_unrealize(DEVICE(pci_dev)); 2315 return; 2316 } 2317 class_id = pci_get_word(pci_dev->config + PCI_CLASS_DEVICE); 2318 if (class_id != PCI_CLASS_NETWORK_ETHERNET) { 2319 error_setg(errp, "failover primary device is not an " 2320 "Ethernet device"); 2321 pci_qdev_unrealize(DEVICE(pci_dev)); 2322 return; 2323 } 2324 if ((pci_dev->cap_present & QEMU_PCI_CAP_MULTIFUNCTION) 2325 || (PCI_FUNC(pci_dev->devfn) != 0)) { 2326 error_setg(errp, "failover: primary device must be in its own " 2327 "PCI slot"); 2328 pci_qdev_unrealize(DEVICE(pci_dev)); 2329 return; 2330 } 2331 qdev->allow_unplug_during_migration = true; 2332 } 2333 2334 /* rom loading */ 2335 is_default_rom = false; 2336 if (pci_dev->romfile == NULL && pc->romfile != NULL) { 2337 pci_dev->romfile = g_strdup(pc->romfile); 2338 is_default_rom = true; 2339 } 2340 2341 pci_add_option_rom(pci_dev, is_default_rom, &local_err); 2342 if (local_err) { 2343 error_propagate(errp, local_err); 2344 pci_qdev_unrealize(DEVICE(pci_dev)); 2345 return; 2346 } 2347 2348 pci_set_power(pci_dev, true); 2349 2350 pci_dev->msi_trigger = pci_msi_trigger; 2351 } 2352 2353 static PCIDevice *pci_new_internal(int devfn, bool multifunction, 2354 const char *name) 2355 { 2356 DeviceState *dev; 2357 2358 dev = qdev_new(name); 2359 qdev_prop_set_int32(dev, "addr", devfn); 2360 qdev_prop_set_bit(dev, "multifunction", multifunction); 2361 return PCI_DEVICE(dev); 2362 } 2363 2364 PCIDevice *pci_new_multifunction(int devfn, const char *name) 2365 { 2366 return pci_new_internal(devfn, true, name); 2367 } 2368 2369 PCIDevice *pci_new(int devfn, const char *name) 2370 { 2371 return pci_new_internal(devfn, false, name); 2372 } 2373 2374 bool pci_realize_and_unref(PCIDevice *dev, PCIBus *bus, Error **errp) 2375 { 2376 return qdev_realize_and_unref(&dev->qdev, &bus->qbus, errp); 2377 } 2378 2379 PCIDevice *pci_create_simple_multifunction(PCIBus *bus, int devfn, 2380 const char *name) 2381 { 2382 PCIDevice *dev = pci_new_multifunction(devfn, name); 2383 pci_realize_and_unref(dev, bus, &error_fatal); 2384 return dev; 2385 } 2386 2387 PCIDevice *pci_create_simple(PCIBus *bus, int devfn, const char *name) 2388 { 2389 PCIDevice *dev = pci_new(devfn, name); 2390 pci_realize_and_unref(dev, bus, &error_fatal); 2391 return dev; 2392 } 2393 2394 static uint8_t pci_find_space(PCIDevice *pdev, uint8_t size) 2395 { 2396 int offset = PCI_CONFIG_HEADER_SIZE; 2397 int i; 2398 for (i = PCI_CONFIG_HEADER_SIZE; i < PCI_CONFIG_SPACE_SIZE; ++i) { 2399 if (pdev->used[i]) 2400 offset = i + 1; 2401 else if (i - offset + 1 == size) 2402 return offset; 2403 } 2404 return 0; 2405 } 2406 2407 static uint8_t pci_find_capability_list(PCIDevice *pdev, uint8_t cap_id, 2408 uint8_t *prev_p) 2409 { 2410 uint8_t next, prev; 2411 2412 if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST)) 2413 return 0; 2414 2415 for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]); 2416 prev = next + PCI_CAP_LIST_NEXT) 2417 if (pdev->config[next + PCI_CAP_LIST_ID] == cap_id) 2418 break; 2419 2420 if (prev_p) 2421 *prev_p = prev; 2422 return next; 2423 } 2424 2425 static uint8_t pci_find_capability_at_offset(PCIDevice *pdev, uint8_t offset) 2426 { 2427 uint8_t next, prev, found = 0; 2428 2429 if (!(pdev->used[offset])) { 2430 return 0; 2431 } 2432 2433 assert(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST); 2434 2435 for (prev = PCI_CAPABILITY_LIST; (next = pdev->config[prev]); 2436 prev = next + PCI_CAP_LIST_NEXT) { 2437 if (next <= offset && next > found) { 2438 found = next; 2439 } 2440 } 2441 return found; 2442 } 2443 2444 /* Patch the PCI vendor and device ids in a PCI rom image if necessary. 2445 This is needed for an option rom which is used for more than one device. */ 2446 static void pci_patch_ids(PCIDevice *pdev, uint8_t *ptr, uint32_t size) 2447 { 2448 uint16_t vendor_id; 2449 uint16_t device_id; 2450 uint16_t rom_vendor_id; 2451 uint16_t rom_device_id; 2452 uint16_t rom_magic; 2453 uint16_t pcir_offset; 2454 uint8_t checksum; 2455 2456 /* Words in rom data are little endian (like in PCI configuration), 2457 so they can be read / written with pci_get_word / pci_set_word. */ 2458 2459 /* Only a valid rom will be patched. */ 2460 rom_magic = pci_get_word(ptr); 2461 if (rom_magic != 0xaa55) { 2462 trace_pci_bad_rom_magic(rom_magic, 0xaa55); 2463 return; 2464 } 2465 pcir_offset = pci_get_word(ptr + 0x18); 2466 if (pcir_offset + 8 >= size || memcmp(ptr + pcir_offset, "PCIR", 4)) { 2467 trace_pci_bad_pcir_offset(pcir_offset); 2468 return; 2469 } 2470 2471 vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID); 2472 device_id = pci_get_word(pdev->config + PCI_DEVICE_ID); 2473 rom_vendor_id = pci_get_word(ptr + pcir_offset + 4); 2474 rom_device_id = pci_get_word(ptr + pcir_offset + 6); 2475 2476 trace_pci_rom_and_pci_ids(pdev->romfile, vendor_id, device_id, 2477 rom_vendor_id, rom_device_id); 2478 2479 checksum = ptr[6]; 2480 2481 if (vendor_id != rom_vendor_id) { 2482 /* Patch vendor id and checksum (at offset 6 for etherboot roms). */ 2483 checksum += (uint8_t)rom_vendor_id + (uint8_t)(rom_vendor_id >> 8); 2484 checksum -= (uint8_t)vendor_id + (uint8_t)(vendor_id >> 8); 2485 trace_pci_rom_checksum_change(ptr[6], checksum); 2486 ptr[6] = checksum; 2487 pci_set_word(ptr + pcir_offset + 4, vendor_id); 2488 } 2489 2490 if (device_id != rom_device_id) { 2491 /* Patch device id and checksum (at offset 6 for etherboot roms). */ 2492 checksum += (uint8_t)rom_device_id + (uint8_t)(rom_device_id >> 8); 2493 checksum -= (uint8_t)device_id + (uint8_t)(device_id >> 8); 2494 trace_pci_rom_checksum_change(ptr[6], checksum); 2495 ptr[6] = checksum; 2496 pci_set_word(ptr + pcir_offset + 6, device_id); 2497 } 2498 } 2499 2500 /* Add an option rom for the device */ 2501 static void pci_add_option_rom(PCIDevice *pdev, bool is_default_rom, 2502 Error **errp) 2503 { 2504 int64_t size = 0; 2505 g_autofree char *path = NULL; 2506 char name[32]; 2507 const VMStateDescription *vmsd; 2508 2509 /* 2510 * In case of incoming migration ROM will come with migration stream, no 2511 * reason to load the file. Neither we want to fail if local ROM file 2512 * mismatches with specified romsize. 2513 */ 2514 bool load_file = !runstate_check(RUN_STATE_INMIGRATE); 2515 2516 if (!pdev->romfile || !strlen(pdev->romfile)) { 2517 return; 2518 } 2519 2520 if (!pdev->rom_bar) { 2521 /* 2522 * Load rom via fw_cfg instead of creating a rom bar, 2523 * for 0.11 compatibility. 2524 */ 2525 int class = pci_get_word(pdev->config + PCI_CLASS_DEVICE); 2526 2527 /* 2528 * Hot-plugged devices can't use the option ROM 2529 * if the rom bar is disabled. 2530 */ 2531 if (DEVICE(pdev)->hotplugged) { 2532 error_setg(errp, "Hot-plugged device without ROM bar" 2533 " can't have an option ROM"); 2534 return; 2535 } 2536 2537 if (class == 0x0300) { 2538 rom_add_vga(pdev->romfile); 2539 } else { 2540 rom_add_option(pdev->romfile, -1); 2541 } 2542 return; 2543 } 2544 2545 if (pci_is_vf(pdev)) { 2546 if (pdev->rom_bar > 0) { 2547 error_setg(errp, "ROM BAR cannot be enabled for SR-IOV VF"); 2548 } 2549 2550 return; 2551 } 2552 2553 if (load_file || pdev->romsize == UINT32_MAX) { 2554 path = qemu_find_file(QEMU_FILE_TYPE_BIOS, pdev->romfile); 2555 if (path == NULL) { 2556 path = g_strdup(pdev->romfile); 2557 } 2558 2559 size = get_image_size(path); 2560 if (size < 0) { 2561 error_setg(errp, "failed to find romfile \"%s\"", pdev->romfile); 2562 return; 2563 } else if (size == 0) { 2564 error_setg(errp, "romfile \"%s\" is empty", pdev->romfile); 2565 return; 2566 } else if (size > 2 * GiB) { 2567 error_setg(errp, 2568 "romfile \"%s\" too large (size cannot exceed 2 GiB)", 2569 pdev->romfile); 2570 return; 2571 } 2572 if (pdev->romsize != UINT_MAX) { 2573 if (size > pdev->romsize) { 2574 error_setg(errp, "romfile \"%s\" (%u bytes) " 2575 "is too large for ROM size %u", 2576 pdev->romfile, (uint32_t)size, pdev->romsize); 2577 return; 2578 } 2579 } else { 2580 pdev->romsize = pow2ceil(size); 2581 } 2582 } 2583 2584 vmsd = qdev_get_vmsd(DEVICE(pdev)); 2585 snprintf(name, sizeof(name), "%s.rom", 2586 vmsd ? vmsd->name : object_get_typename(OBJECT(pdev))); 2587 2588 pdev->has_rom = true; 2589 memory_region_init_rom(&pdev->rom, OBJECT(pdev), name, pdev->romsize, 2590 &error_fatal); 2591 2592 if (load_file) { 2593 void *ptr = memory_region_get_ram_ptr(&pdev->rom); 2594 2595 if (load_image_size(path, ptr, size) < 0) { 2596 error_setg(errp, "failed to load romfile \"%s\"", pdev->romfile); 2597 return; 2598 } 2599 2600 if (is_default_rom) { 2601 /* Only the default rom images will be patched (if needed). */ 2602 pci_patch_ids(pdev, ptr, size); 2603 } 2604 } 2605 2606 pci_register_bar(pdev, PCI_ROM_SLOT, 0, &pdev->rom); 2607 } 2608 2609 static void pci_del_option_rom(PCIDevice *pdev) 2610 { 2611 if (!pdev->has_rom) 2612 return; 2613 2614 vmstate_unregister_ram(&pdev->rom, &pdev->qdev); 2615 pdev->has_rom = false; 2616 } 2617 2618 /* 2619 * On success, pci_add_capability() returns a positive value 2620 * that the offset of the pci capability. 2621 * On failure, it sets an error and returns a negative error 2622 * code. 2623 */ 2624 int pci_add_capability(PCIDevice *pdev, uint8_t cap_id, 2625 uint8_t offset, uint8_t size, 2626 Error **errp) 2627 { 2628 uint8_t *config; 2629 int i, overlapping_cap; 2630 2631 if (!offset) { 2632 offset = pci_find_space(pdev, size); 2633 /* out of PCI config space is programming error */ 2634 assert(offset); 2635 } else { 2636 /* Verify that capabilities don't overlap. Note: device assignment 2637 * depends on this check to verify that the device is not broken. 2638 * Should never trigger for emulated devices, but it's helpful 2639 * for debugging these. */ 2640 for (i = offset; i < offset + size; i++) { 2641 overlapping_cap = pci_find_capability_at_offset(pdev, i); 2642 if (overlapping_cap) { 2643 error_setg(errp, "%s:%02x:%02x.%x " 2644 "Attempt to add PCI capability %x at offset " 2645 "%x overlaps existing capability %x at offset %x", 2646 pci_root_bus_path(pdev), pci_dev_bus_num(pdev), 2647 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn), 2648 cap_id, offset, overlapping_cap, i); 2649 return -EINVAL; 2650 } 2651 } 2652 } 2653 2654 config = pdev->config + offset; 2655 config[PCI_CAP_LIST_ID] = cap_id; 2656 config[PCI_CAP_LIST_NEXT] = pdev->config[PCI_CAPABILITY_LIST]; 2657 pdev->config[PCI_CAPABILITY_LIST] = offset; 2658 pdev->config[PCI_STATUS] |= PCI_STATUS_CAP_LIST; 2659 memset(pdev->used + offset, 0xFF, QEMU_ALIGN_UP(size, 4)); 2660 /* Make capability read-only by default */ 2661 memset(pdev->wmask + offset, 0, size); 2662 /* Check capability by default */ 2663 memset(pdev->cmask + offset, 0xFF, size); 2664 return offset; 2665 } 2666 2667 /* Unlink capability from the pci config space. */ 2668 void pci_del_capability(PCIDevice *pdev, uint8_t cap_id, uint8_t size) 2669 { 2670 uint8_t prev, offset = pci_find_capability_list(pdev, cap_id, &prev); 2671 if (!offset) 2672 return; 2673 pdev->config[prev] = pdev->config[offset + PCI_CAP_LIST_NEXT]; 2674 /* Make capability writable again */ 2675 memset(pdev->wmask + offset, 0xff, size); 2676 memset(pdev->w1cmask + offset, 0, size); 2677 /* Clear cmask as device-specific registers can't be checked */ 2678 memset(pdev->cmask + offset, 0, size); 2679 memset(pdev->used + offset, 0, QEMU_ALIGN_UP(size, 4)); 2680 2681 if (!pdev->config[PCI_CAPABILITY_LIST]) 2682 pdev->config[PCI_STATUS] &= ~PCI_STATUS_CAP_LIST; 2683 } 2684 2685 uint8_t pci_find_capability(PCIDevice *pdev, uint8_t cap_id) 2686 { 2687 return pci_find_capability_list(pdev, cap_id, NULL); 2688 } 2689 2690 static char *pci_dev_fw_name(DeviceState *dev, char *buf, int len) 2691 { 2692 PCIDevice *d = (PCIDevice *)dev; 2693 const char *name = NULL; 2694 const pci_class_desc *desc = pci_class_descriptions; 2695 int class = pci_get_word(d->config + PCI_CLASS_DEVICE); 2696 2697 while (desc->desc && 2698 (class & ~desc->fw_ign_bits) != 2699 (desc->class & ~desc->fw_ign_bits)) { 2700 desc++; 2701 } 2702 2703 if (desc->desc) { 2704 name = desc->fw_name; 2705 } 2706 2707 if (name) { 2708 pstrcpy(buf, len, name); 2709 } else { 2710 snprintf(buf, len, "pci%04x,%04x", 2711 pci_get_word(d->config + PCI_VENDOR_ID), 2712 pci_get_word(d->config + PCI_DEVICE_ID)); 2713 } 2714 2715 return buf; 2716 } 2717 2718 static char *pcibus_get_fw_dev_path(DeviceState *dev) 2719 { 2720 PCIDevice *d = (PCIDevice *)dev; 2721 char name[33]; 2722 int has_func = !!PCI_FUNC(d->devfn); 2723 2724 return g_strdup_printf("%s@%x%s%.*x", 2725 pci_dev_fw_name(dev, name, sizeof(name)), 2726 PCI_SLOT(d->devfn), 2727 has_func ? "," : "", 2728 has_func, 2729 PCI_FUNC(d->devfn)); 2730 } 2731 2732 static char *pcibus_get_dev_path(DeviceState *dev) 2733 { 2734 PCIDevice *d = container_of(dev, PCIDevice, qdev); 2735 PCIDevice *t; 2736 int slot_depth; 2737 /* Path format: Domain:00:Slot.Function:Slot.Function....:Slot.Function. 2738 * 00 is added here to make this format compatible with 2739 * domain:Bus:Slot.Func for systems without nested PCI bridges. 2740 * Slot.Function list specifies the slot and function numbers for all 2741 * devices on the path from root to the specific device. */ 2742 const char *root_bus_path; 2743 int root_bus_len; 2744 char slot[] = ":SS.F"; 2745 int slot_len = sizeof slot - 1 /* For '\0' */; 2746 int path_len; 2747 char *path, *p; 2748 int s; 2749 2750 root_bus_path = pci_root_bus_path(d); 2751 root_bus_len = strlen(root_bus_path); 2752 2753 /* Calculate # of slots on path between device and root. */; 2754 slot_depth = 0; 2755 for (t = d; t; t = pci_get_bus(t)->parent_dev) { 2756 ++slot_depth; 2757 } 2758 2759 path_len = root_bus_len + slot_len * slot_depth; 2760 2761 /* Allocate memory, fill in the terminating null byte. */ 2762 path = g_malloc(path_len + 1 /* For '\0' */); 2763 path[path_len] = '\0'; 2764 2765 memcpy(path, root_bus_path, root_bus_len); 2766 2767 /* Fill in slot numbers. We walk up from device to root, so need to print 2768 * them in the reverse order, last to first. */ 2769 p = path + path_len; 2770 for (t = d; t; t = pci_get_bus(t)->parent_dev) { 2771 p -= slot_len; 2772 s = snprintf(slot, sizeof slot, ":%02x.%x", 2773 PCI_SLOT(t->devfn), PCI_FUNC(t->devfn)); 2774 assert(s == slot_len); 2775 memcpy(p, slot, slot_len); 2776 } 2777 2778 return path; 2779 } 2780 2781 static int pci_qdev_find_recursive(PCIBus *bus, 2782 const char *id, PCIDevice **pdev) 2783 { 2784 DeviceState *qdev = qdev_find_recursive(&bus->qbus, id); 2785 if (!qdev) { 2786 return -ENODEV; 2787 } 2788 2789 /* roughly check if given qdev is pci device */ 2790 if (object_dynamic_cast(OBJECT(qdev), TYPE_PCI_DEVICE)) { 2791 *pdev = PCI_DEVICE(qdev); 2792 return 0; 2793 } 2794 return -EINVAL; 2795 } 2796 2797 int pci_qdev_find_device(const char *id, PCIDevice **pdev) 2798 { 2799 PCIHostState *host_bridge; 2800 int rc = -ENODEV; 2801 2802 QLIST_FOREACH(host_bridge, &pci_host_bridges, next) { 2803 int tmp = pci_qdev_find_recursive(host_bridge->bus, id, pdev); 2804 if (!tmp) { 2805 rc = 0; 2806 break; 2807 } 2808 if (tmp != -ENODEV) { 2809 rc = tmp; 2810 } 2811 } 2812 2813 return rc; 2814 } 2815 2816 MemoryRegion *pci_address_space(PCIDevice *dev) 2817 { 2818 return pci_get_bus(dev)->address_space_mem; 2819 } 2820 2821 MemoryRegion *pci_address_space_io(PCIDevice *dev) 2822 { 2823 return pci_get_bus(dev)->address_space_io; 2824 } 2825 2826 static void pci_device_class_init(ObjectClass *klass, const void *data) 2827 { 2828 DeviceClass *k = DEVICE_CLASS(klass); 2829 2830 k->realize = pci_qdev_realize; 2831 k->unrealize = pci_qdev_unrealize; 2832 k->bus_type = TYPE_PCI_BUS; 2833 device_class_set_props(k, pci_props); 2834 object_class_property_set_description( 2835 klass, "x-max-bounce-buffer-size", 2836 "Maximum buffer size allocated for bounce buffers used for mapped " 2837 "access to indirect DMA memory"); 2838 } 2839 2840 static void pci_device_class_base_init(ObjectClass *klass, const void *data) 2841 { 2842 if (!object_class_is_abstract(klass)) { 2843 ObjectClass *conventional = 2844 object_class_dynamic_cast(klass, INTERFACE_CONVENTIONAL_PCI_DEVICE); 2845 ObjectClass *pcie = 2846 object_class_dynamic_cast(klass, INTERFACE_PCIE_DEVICE); 2847 ObjectClass *cxl = 2848 object_class_dynamic_cast(klass, INTERFACE_CXL_DEVICE); 2849 assert(conventional || pcie || cxl); 2850 } 2851 } 2852 2853 /* 2854 * Get IOMMU root bus, aliased bus and devfn of a PCI device 2855 * 2856 * IOMMU root bus is needed by all call sites to call into iommu_ops. 2857 * For call sites which don't need aliased BDF, passing NULL to 2858 * aliased_[bus|devfn] is allowed. 2859 * 2860 * @piommu_bus: return root #PCIBus backed by an IOMMU for the PCI device. 2861 * 2862 * @aliased_bus: return aliased #PCIBus of the PCI device, optional. 2863 * 2864 * @aliased_devfn: return aliased devfn of the PCI device, optional. 2865 */ 2866 static void pci_device_get_iommu_bus_devfn(PCIDevice *dev, 2867 PCIBus **piommu_bus, 2868 PCIBus **aliased_bus, 2869 int *aliased_devfn) 2870 { 2871 PCIBus *bus = pci_get_bus(dev); 2872 PCIBus *iommu_bus = bus; 2873 int devfn = dev->devfn; 2874 2875 while (iommu_bus && !iommu_bus->iommu_ops && iommu_bus->parent_dev) { 2876 PCIBus *parent_bus = pci_get_bus(iommu_bus->parent_dev); 2877 2878 /* 2879 * The requester ID of the provided device may be aliased, as seen from 2880 * the IOMMU, due to topology limitations. The IOMMU relies on a 2881 * requester ID to provide a unique AddressSpace for devices, but 2882 * conventional PCI buses pre-date such concepts. Instead, the PCIe- 2883 * to-PCI bridge creates and accepts transactions on behalf of down- 2884 * stream devices. When doing so, all downstream devices are masked 2885 * (aliased) behind a single requester ID. The requester ID used 2886 * depends on the format of the bridge devices. Proper PCIe-to-PCI 2887 * bridges, with a PCIe capability indicating such, follow the 2888 * guidelines of chapter 2.3 of the PCIe-to-PCI/X bridge specification, 2889 * where the bridge uses the seconary bus as the bridge portion of the 2890 * requester ID and devfn of 00.0. For other bridges, typically those 2891 * found on the root complex such as the dmi-to-pci-bridge, we follow 2892 * the convention of typical bare-metal hardware, which uses the 2893 * requester ID of the bridge itself. There are device specific 2894 * exceptions to these rules, but these are the defaults that the 2895 * Linux kernel uses when determining DMA aliases itself and believed 2896 * to be true for the bare metal equivalents of the devices emulated 2897 * in QEMU. 2898 */ 2899 if (!pci_bus_is_express(iommu_bus)) { 2900 PCIDevice *parent = iommu_bus->parent_dev; 2901 2902 if (pci_is_express(parent) && 2903 pcie_cap_get_type(parent) == PCI_EXP_TYPE_PCI_BRIDGE) { 2904 devfn = PCI_DEVFN(0, 0); 2905 bus = iommu_bus; 2906 } else { 2907 devfn = parent->devfn; 2908 bus = parent_bus; 2909 } 2910 } 2911 2912 iommu_bus = parent_bus; 2913 } 2914 2915 assert(0 <= devfn && devfn < PCI_DEVFN_MAX); 2916 assert(iommu_bus); 2917 2918 if (pci_bus_bypass_iommu(bus) || !iommu_bus->iommu_ops) { 2919 iommu_bus = NULL; 2920 } 2921 2922 *piommu_bus = iommu_bus; 2923 2924 if (aliased_bus) { 2925 *aliased_bus = bus; 2926 } 2927 2928 if (aliased_devfn) { 2929 *aliased_devfn = devfn; 2930 } 2931 } 2932 2933 AddressSpace *pci_device_iommu_address_space(PCIDevice *dev) 2934 { 2935 PCIBus *bus; 2936 PCIBus *iommu_bus; 2937 int devfn; 2938 2939 pci_device_get_iommu_bus_devfn(dev, &iommu_bus, &bus, &devfn); 2940 if (iommu_bus) { 2941 return iommu_bus->iommu_ops->get_address_space(bus, 2942 iommu_bus->iommu_opaque, devfn); 2943 } 2944 return &address_space_memory; 2945 } 2946 2947 int pci_iommu_init_iotlb_notifier(PCIDevice *dev, IOMMUNotifier *n, 2948 IOMMUNotify fn, void *opaque) 2949 { 2950 PCIBus *bus; 2951 PCIBus *iommu_bus; 2952 int devfn; 2953 2954 pci_device_get_iommu_bus_devfn(dev, &bus, &iommu_bus, &devfn); 2955 if (iommu_bus && iommu_bus->iommu_ops->init_iotlb_notifier) { 2956 iommu_bus->iommu_ops->init_iotlb_notifier(bus, iommu_bus->iommu_opaque, 2957 devfn, n, fn, opaque); 2958 return 0; 2959 } 2960 2961 return -ENODEV; 2962 } 2963 2964 bool pci_device_set_iommu_device(PCIDevice *dev, HostIOMMUDevice *hiod, 2965 Error **errp) 2966 { 2967 PCIBus *iommu_bus, *aliased_bus; 2968 int aliased_devfn; 2969 2970 /* set_iommu_device requires device's direct BDF instead of aliased BDF */ 2971 pci_device_get_iommu_bus_devfn(dev, &iommu_bus, 2972 &aliased_bus, &aliased_devfn); 2973 if (iommu_bus && iommu_bus->iommu_ops->set_iommu_device) { 2974 hiod->aliased_bus = aliased_bus; 2975 hiod->aliased_devfn = aliased_devfn; 2976 return iommu_bus->iommu_ops->set_iommu_device(pci_get_bus(dev), 2977 iommu_bus->iommu_opaque, 2978 dev->devfn, hiod, errp); 2979 } 2980 return true; 2981 } 2982 2983 void pci_device_unset_iommu_device(PCIDevice *dev) 2984 { 2985 PCIBus *iommu_bus; 2986 2987 pci_device_get_iommu_bus_devfn(dev, &iommu_bus, NULL, NULL); 2988 if (iommu_bus && iommu_bus->iommu_ops->unset_iommu_device) { 2989 return iommu_bus->iommu_ops->unset_iommu_device(pci_get_bus(dev), 2990 iommu_bus->iommu_opaque, 2991 dev->devfn); 2992 } 2993 } 2994 2995 int pci_pri_request_page(PCIDevice *dev, uint32_t pasid, bool priv_req, 2996 bool exec_req, hwaddr addr, bool lpig, 2997 uint16_t prgi, bool is_read, bool is_write) 2998 { 2999 PCIBus *bus; 3000 PCIBus *iommu_bus; 3001 int devfn; 3002 3003 if (!dev->is_master || 3004 ((pasid != PCI_NO_PASID) && !pcie_pasid_enabled(dev))) { 3005 return -EPERM; 3006 } 3007 3008 if (!pcie_pri_enabled(dev)) { 3009 return -EPERM; 3010 } 3011 3012 pci_device_get_iommu_bus_devfn(dev, &bus, &iommu_bus, &devfn); 3013 if (iommu_bus && iommu_bus->iommu_ops->pri_request_page) { 3014 return iommu_bus->iommu_ops->pri_request_page(bus, 3015 iommu_bus->iommu_opaque, 3016 devfn, pasid, priv_req, 3017 exec_req, addr, lpig, prgi, 3018 is_read, is_write); 3019 } 3020 3021 return -ENODEV; 3022 } 3023 3024 int pci_pri_register_notifier(PCIDevice *dev, uint32_t pasid, 3025 IOMMUPRINotifier *notifier) 3026 { 3027 PCIBus *bus; 3028 PCIBus *iommu_bus; 3029 int devfn; 3030 3031 if (!dev->is_master || 3032 ((pasid != PCI_NO_PASID) && !pcie_pasid_enabled(dev))) { 3033 return -EPERM; 3034 } 3035 3036 pci_device_get_iommu_bus_devfn(dev, &bus, &iommu_bus, &devfn); 3037 if (iommu_bus && iommu_bus->iommu_ops->pri_register_notifier) { 3038 iommu_bus->iommu_ops->pri_register_notifier(bus, 3039 iommu_bus->iommu_opaque, 3040 devfn, pasid, notifier); 3041 return 0; 3042 } 3043 3044 return -ENODEV; 3045 } 3046 3047 void pci_pri_unregister_notifier(PCIDevice *dev, uint32_t pasid) 3048 { 3049 PCIBus *bus; 3050 PCIBus *iommu_bus; 3051 int devfn; 3052 3053 pci_device_get_iommu_bus_devfn(dev, &bus, &iommu_bus, &devfn); 3054 if (iommu_bus && iommu_bus->iommu_ops->pri_unregister_notifier) { 3055 iommu_bus->iommu_ops->pri_unregister_notifier(bus, 3056 iommu_bus->iommu_opaque, 3057 devfn, pasid); 3058 } 3059 } 3060 3061 ssize_t pci_ats_request_translation(PCIDevice *dev, uint32_t pasid, 3062 bool priv_req, bool exec_req, 3063 hwaddr addr, size_t length, 3064 bool no_write, IOMMUTLBEntry *result, 3065 size_t result_length, 3066 uint32_t *err_count) 3067 { 3068 PCIBus *bus; 3069 PCIBus *iommu_bus; 3070 int devfn; 3071 3072 if (!dev->is_master || 3073 ((pasid != PCI_NO_PASID) && !pcie_pasid_enabled(dev))) { 3074 return -EPERM; 3075 } 3076 3077 if (result_length == 0) { 3078 return -ENOSPC; 3079 } 3080 3081 if (!pcie_ats_enabled(dev)) { 3082 return -EPERM; 3083 } 3084 3085 pci_device_get_iommu_bus_devfn(dev, &bus, &iommu_bus, &devfn); 3086 if (iommu_bus && iommu_bus->iommu_ops->ats_request_translation) { 3087 return iommu_bus->iommu_ops->ats_request_translation(bus, 3088 iommu_bus->iommu_opaque, 3089 devfn, pasid, priv_req, 3090 exec_req, addr, length, 3091 no_write, result, 3092 result_length, err_count); 3093 } 3094 3095 return -ENODEV; 3096 } 3097 3098 int pci_iommu_register_iotlb_notifier(PCIDevice *dev, uint32_t pasid, 3099 IOMMUNotifier *n) 3100 { 3101 PCIBus *bus; 3102 PCIBus *iommu_bus; 3103 int devfn; 3104 3105 if ((pasid != PCI_NO_PASID) && !pcie_pasid_enabled(dev)) { 3106 return -EPERM; 3107 } 3108 3109 pci_device_get_iommu_bus_devfn(dev, &bus, &iommu_bus, &devfn); 3110 if (iommu_bus && iommu_bus->iommu_ops->register_iotlb_notifier) { 3111 iommu_bus->iommu_ops->register_iotlb_notifier(bus, 3112 iommu_bus->iommu_opaque, devfn, 3113 pasid, n); 3114 return 0; 3115 } 3116 3117 return -ENODEV; 3118 } 3119 3120 int pci_iommu_unregister_iotlb_notifier(PCIDevice *dev, uint32_t pasid, 3121 IOMMUNotifier *n) 3122 { 3123 PCIBus *bus; 3124 PCIBus *iommu_bus; 3125 int devfn; 3126 3127 if ((pasid != PCI_NO_PASID) && !pcie_pasid_enabled(dev)) { 3128 return -EPERM; 3129 } 3130 3131 pci_device_get_iommu_bus_devfn(dev, &bus, &iommu_bus, &devfn); 3132 if (iommu_bus && iommu_bus->iommu_ops->unregister_iotlb_notifier) { 3133 iommu_bus->iommu_ops->unregister_iotlb_notifier(bus, 3134 iommu_bus->iommu_opaque, 3135 devfn, pasid, n); 3136 return 0; 3137 } 3138 3139 return -ENODEV; 3140 } 3141 3142 int pci_iommu_get_iotlb_info(PCIDevice *dev, uint8_t *addr_width, 3143 uint32_t *min_page_size) 3144 { 3145 PCIBus *bus; 3146 PCIBus *iommu_bus; 3147 int devfn; 3148 3149 pci_device_get_iommu_bus_devfn(dev, &bus, &iommu_bus, &devfn); 3150 if (iommu_bus && iommu_bus->iommu_ops->get_iotlb_info) { 3151 iommu_bus->iommu_ops->get_iotlb_info(iommu_bus->iommu_opaque, 3152 addr_width, min_page_size); 3153 return 0; 3154 } 3155 3156 return -ENODEV; 3157 } 3158 3159 void pci_setup_iommu(PCIBus *bus, const PCIIOMMUOps *ops, void *opaque) 3160 { 3161 /* 3162 * If called, pci_setup_iommu() should provide a minimum set of 3163 * useful callbacks for the bus. 3164 */ 3165 assert(ops); 3166 assert(ops->get_address_space); 3167 3168 bus->iommu_ops = ops; 3169 bus->iommu_opaque = opaque; 3170 } 3171 3172 static void pci_dev_get_w64(PCIBus *b, PCIDevice *dev, void *opaque) 3173 { 3174 Range *range = opaque; 3175 uint16_t cmd = pci_get_word(dev->config + PCI_COMMAND); 3176 int i; 3177 3178 if (!(cmd & PCI_COMMAND_MEMORY)) { 3179 return; 3180 } 3181 3182 if (IS_PCI_BRIDGE(dev)) { 3183 pcibus_t base = pci_bridge_get_base(dev, PCI_BASE_ADDRESS_MEM_PREFETCH); 3184 pcibus_t limit = pci_bridge_get_limit(dev, PCI_BASE_ADDRESS_MEM_PREFETCH); 3185 3186 base = MAX(base, 0x1ULL << 32); 3187 3188 if (limit >= base) { 3189 Range pref_range; 3190 range_set_bounds(&pref_range, base, limit); 3191 range_extend(range, &pref_range); 3192 } 3193 } 3194 for (i = 0; i < PCI_NUM_REGIONS; ++i) { 3195 PCIIORegion *r = &dev->io_regions[i]; 3196 pcibus_t lob, upb; 3197 Range region_range; 3198 3199 if (!r->size || 3200 (r->type & PCI_BASE_ADDRESS_SPACE_IO) || 3201 !(r->type & PCI_BASE_ADDRESS_MEM_TYPE_64)) { 3202 continue; 3203 } 3204 3205 lob = pci_bar_address(dev, i, r->type, r->size); 3206 upb = lob + r->size - 1; 3207 if (lob == PCI_BAR_UNMAPPED) { 3208 continue; 3209 } 3210 3211 lob = MAX(lob, 0x1ULL << 32); 3212 3213 if (upb >= lob) { 3214 range_set_bounds(®ion_range, lob, upb); 3215 range_extend(range, ®ion_range); 3216 } 3217 } 3218 } 3219 3220 void pci_bus_get_w64_range(PCIBus *bus, Range *range) 3221 { 3222 range_make_empty(range); 3223 pci_for_each_device_under_bus(bus, pci_dev_get_w64, range); 3224 } 3225 3226 static bool pcie_has_upstream_port(PCIDevice *dev) 3227 { 3228 PCIDevice *parent_dev = pci_bridge_get_device(pci_get_bus(dev)); 3229 3230 /* Device associated with an upstream port. 3231 * As there are several types of these, it's easier to check the 3232 * parent device: upstream ports are always connected to 3233 * root or downstream ports. 3234 */ 3235 return parent_dev && 3236 pci_is_express(parent_dev) && 3237 parent_dev->exp.exp_cap && 3238 (pcie_cap_get_type(parent_dev) == PCI_EXP_TYPE_ROOT_PORT || 3239 pcie_cap_get_type(parent_dev) == PCI_EXP_TYPE_DOWNSTREAM); 3240 } 3241 3242 PCIDevice *pci_get_function_0(PCIDevice *pci_dev) 3243 { 3244 PCIBus *bus = pci_get_bus(pci_dev); 3245 3246 if(pcie_has_upstream_port(pci_dev)) { 3247 /* With an upstream PCIe port, we only support 1 device at slot 0 */ 3248 return bus->devices[0]; 3249 } else { 3250 /* Other bus types might support multiple devices at slots 0-31 */ 3251 return bus->devices[PCI_DEVFN(PCI_SLOT(pci_dev->devfn), 0)]; 3252 } 3253 } 3254 3255 MSIMessage pci_get_msi_message(PCIDevice *dev, int vector) 3256 { 3257 MSIMessage msg; 3258 if (msix_enabled(dev)) { 3259 msg = msix_get_message(dev, vector); 3260 } else if (msi_enabled(dev)) { 3261 msg = msi_get_message(dev, vector); 3262 } else { 3263 /* Should never happen */ 3264 error_report("%s: unknown interrupt type", __func__); 3265 abort(); 3266 } 3267 return msg; 3268 } 3269 3270 void pci_set_power(PCIDevice *d, bool state) 3271 { 3272 /* 3273 * Don't change the enabled state of VFs when powering on/off the device. 3274 * 3275 * When powering on, VFs must not be enabled immediately but they must 3276 * wait until the guest configures SR-IOV. 3277 * When powering off, their corresponding PFs will be reset and disable 3278 * VFs. 3279 */ 3280 if (!pci_is_vf(d)) { 3281 pci_set_enabled(d, state); 3282 } 3283 } 3284 3285 void pci_set_enabled(PCIDevice *d, bool state) 3286 { 3287 if (d->enabled == state) { 3288 return; 3289 } 3290 3291 d->enabled = state; 3292 pci_update_mappings(d); 3293 pci_set_master(d, (pci_get_word(d->config + PCI_COMMAND) 3294 & PCI_COMMAND_MASTER) && d->enabled); 3295 if (qdev_is_realized(&d->qdev)) { 3296 pci_device_reset(d); 3297 } 3298 } 3299 3300 static const TypeInfo pci_device_type_info = { 3301 .name = TYPE_PCI_DEVICE, 3302 .parent = TYPE_DEVICE, 3303 .instance_size = sizeof(PCIDevice), 3304 .abstract = true, 3305 .class_size = sizeof(PCIDeviceClass), 3306 .class_init = pci_device_class_init, 3307 .class_base_init = pci_device_class_base_init, 3308 }; 3309 3310 static void pci_register_types(void) 3311 { 3312 type_register_static(&pci_bus_info); 3313 type_register_static(&pcie_bus_info); 3314 type_register_static(&cxl_bus_info); 3315 type_register_static(&conventional_pci_interface_info); 3316 type_register_static(&cxl_interface_info); 3317 type_register_static(&pcie_interface_info); 3318 type_register_static(&pci_device_type_info); 3319 } 3320 3321 type_init(pci_register_types) 3322