1 /* 2 * QEMU Firmware configuration device emulation 3 * 4 * Copyright (c) 2008 Gleb Natapov 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 25 #include "qemu/osdep.h" 26 #include "qemu/datadir.h" 27 #include "system/system.h" 28 #include "system/dma.h" 29 #include "system/reset.h" 30 #include "exec/address-spaces.h" 31 #include "hw/boards.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/qdev-properties.h" 34 #include "hw/sysbus.h" 35 #include "migration/qemu-file-types.h" 36 #include "migration/vmstate.h" 37 #include "trace.h" 38 #include "qemu/error-report.h" 39 #include "qemu/option.h" 40 #include "qemu/config-file.h" 41 #include "qemu/cutils.h" 42 #include "qapi/error.h" 43 #include "hw/acpi/aml-build.h" 44 #include "hw/loader.h" 45 46 #define FW_CFG_FILE_SLOTS_DFLT 0x20 47 48 /* FW_CFG_VERSION bits */ 49 #define FW_CFG_VERSION 0x01 50 #define FW_CFG_VERSION_DMA 0x02 51 52 /* FW_CFG_DMA_CONTROL bits */ 53 #define FW_CFG_DMA_CTL_ERROR 0x01 54 #define FW_CFG_DMA_CTL_READ 0x02 55 #define FW_CFG_DMA_CTL_SKIP 0x04 56 #define FW_CFG_DMA_CTL_SELECT 0x08 57 #define FW_CFG_DMA_CTL_WRITE 0x10 58 59 #define FW_CFG_DMA_SIGNATURE 0x51454d5520434647ULL /* "QEMU CFG" */ 60 61 struct FWCfgEntry { 62 uint32_t len; 63 bool allow_write; 64 uint8_t *data; 65 void *callback_opaque; 66 FWCfgCallback select_cb; 67 FWCfgWriteCallback write_cb; 68 }; 69 70 /** 71 * key_name: 72 * 73 * @key: The uint16 selector key. 74 * 75 * Returns: The stringified name if the selector refers to a well-known 76 * numerically defined item, or NULL on key lookup failure. 77 */ 78 static const char *key_name(uint16_t key) 79 { 80 static const char *fw_cfg_wellknown_keys[FW_CFG_FILE_FIRST] = { 81 [FW_CFG_SIGNATURE] = "signature", 82 [FW_CFG_ID] = "id", 83 [FW_CFG_UUID] = "uuid", 84 [FW_CFG_RAM_SIZE] = "ram_size", 85 [FW_CFG_NOGRAPHIC] = "nographic", 86 [FW_CFG_NB_CPUS] = "nb_cpus", 87 [FW_CFG_MACHINE_ID] = "machine_id", 88 [FW_CFG_KERNEL_ADDR] = "kernel_addr", 89 [FW_CFG_KERNEL_SIZE] = "kernel_size", 90 [FW_CFG_KERNEL_CMDLINE] = "kernel_cmdline", 91 [FW_CFG_INITRD_ADDR] = "initrd_addr", 92 [FW_CFG_INITRD_SIZE] = "initdr_size", 93 [FW_CFG_BOOT_DEVICE] = "boot_device", 94 [FW_CFG_NUMA] = "numa", 95 [FW_CFG_BOOT_MENU] = "boot_menu", 96 [FW_CFG_MAX_CPUS] = "max_cpus", 97 [FW_CFG_KERNEL_ENTRY] = "kernel_entry", 98 [FW_CFG_KERNEL_DATA] = "kernel_data", 99 [FW_CFG_INITRD_DATA] = "initrd_data", 100 [FW_CFG_CMDLINE_ADDR] = "cmdline_addr", 101 [FW_CFG_CMDLINE_SIZE] = "cmdline_size", 102 [FW_CFG_CMDLINE_DATA] = "cmdline_data", 103 [FW_CFG_SETUP_ADDR] = "setup_addr", 104 [FW_CFG_SETUP_SIZE] = "setup_size", 105 [FW_CFG_SETUP_DATA] = "setup_data", 106 [FW_CFG_FILE_DIR] = "file_dir", 107 }; 108 109 if (key & FW_CFG_ARCH_LOCAL) { 110 return fw_cfg_arch_key_name(key); 111 } 112 if (key < FW_CFG_FILE_FIRST) { 113 return fw_cfg_wellknown_keys[key]; 114 } 115 116 return NULL; 117 } 118 119 static inline const char *trace_key_name(uint16_t key) 120 { 121 const char *name = key_name(key); 122 123 return name ? name : "unknown"; 124 } 125 126 #define JPG_FILE 0 127 #define BMP_FILE 1 128 129 static char *read_splashfile(char *filename, gsize *file_sizep, 130 int *file_typep) 131 { 132 GError *err = NULL; 133 gchar *content; 134 int file_type; 135 unsigned int filehead; 136 int bmp_bpp; 137 138 if (!g_file_get_contents(filename, &content, file_sizep, &err)) { 139 error_report("failed to read splash file '%s': %s", 140 filename, err->message); 141 g_error_free(err); 142 return NULL; 143 } 144 145 /* check file size */ 146 if (*file_sizep < 30) { 147 goto error; 148 } 149 150 /* check magic ID */ 151 filehead = lduw_le_p(content); 152 if (filehead == 0xd8ff) { 153 file_type = JPG_FILE; 154 } else if (filehead == 0x4d42) { 155 file_type = BMP_FILE; 156 } else { 157 goto error; 158 } 159 160 /* check BMP bpp */ 161 if (file_type == BMP_FILE) { 162 bmp_bpp = lduw_le_p(&content[28]); 163 if (bmp_bpp != 24) { 164 goto error; 165 } 166 } 167 168 /* return values */ 169 *file_typep = file_type; 170 171 return content; 172 173 error: 174 error_report("splash file '%s' format not recognized; must be JPEG " 175 "or 24 bit BMP", filename); 176 g_free(content); 177 return NULL; 178 } 179 180 static void fw_cfg_bootsplash(FWCfgState *s) 181 { 182 char *filename, *file_data; 183 gsize file_size; 184 int file_type; 185 186 /* insert splash time if user configurated */ 187 if (current_machine->boot_config.has_splash_time) { 188 int64_t bst_val = current_machine->boot_config.splash_time; 189 uint16_t bst_le16; 190 191 /* validate the input */ 192 if (bst_val < 0 || bst_val > 0xffff) { 193 error_report("splash-time is invalid," 194 "it should be a value between 0 and 65535"); 195 exit(1); 196 } 197 /* use little endian format */ 198 bst_le16 = cpu_to_le16(bst_val); 199 fw_cfg_add_file(s, "etc/boot-menu-wait", 200 g_memdup(&bst_le16, sizeof bst_le16), sizeof bst_le16); 201 } 202 203 /* insert splash file if user configurated */ 204 if (current_machine->boot_config.splash) { 205 const char *boot_splash_filename = current_machine->boot_config.splash; 206 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, boot_splash_filename); 207 if (filename == NULL) { 208 error_report("failed to find file '%s'", boot_splash_filename); 209 return; 210 } 211 212 /* loading file data */ 213 file_data = read_splashfile(filename, &file_size, &file_type); 214 if (file_data == NULL) { 215 g_free(filename); 216 return; 217 } 218 g_free(boot_splash_filedata); 219 boot_splash_filedata = (uint8_t *)file_data; 220 221 /* insert data */ 222 if (file_type == JPG_FILE) { 223 fw_cfg_add_file(s, "bootsplash.jpg", 224 boot_splash_filedata, file_size); 225 } else { 226 fw_cfg_add_file(s, "bootsplash.bmp", 227 boot_splash_filedata, file_size); 228 } 229 g_free(filename); 230 } 231 } 232 233 static void fw_cfg_reboot(FWCfgState *s) 234 { 235 uint64_t rt_val = -1; 236 uint32_t rt_le32; 237 238 if (current_machine->boot_config.has_reboot_timeout) { 239 rt_val = current_machine->boot_config.reboot_timeout; 240 241 /* validate the input */ 242 if (rt_val > 0xffff && rt_val != (uint64_t)-1) { 243 error_report("reboot timeout is invalid," 244 "it should be a value between -1 and 65535"); 245 exit(1); 246 } 247 } 248 249 rt_le32 = cpu_to_le32(rt_val); 250 fw_cfg_add_file(s, "etc/boot-fail-wait", g_memdup(&rt_le32, 4), 4); 251 } 252 253 static void fw_cfg_write(FWCfgState *s, uint8_t value) 254 { 255 /* nothing, write support removed in QEMU v2.4+ */ 256 } 257 258 static inline uint16_t fw_cfg_file_slots(const FWCfgState *s) 259 { 260 return s->file_slots; 261 } 262 263 /* Note: this function returns an exclusive limit. */ 264 static inline uint32_t fw_cfg_max_entry(const FWCfgState *s) 265 { 266 return FW_CFG_FILE_FIRST + fw_cfg_file_slots(s); 267 } 268 269 static int fw_cfg_select(FWCfgState *s, uint16_t key) 270 { 271 int arch, ret; 272 FWCfgEntry *e; 273 274 s->cur_offset = 0; 275 if ((key & FW_CFG_ENTRY_MASK) >= fw_cfg_max_entry(s)) { 276 s->cur_entry = FW_CFG_INVALID; 277 ret = 0; 278 } else { 279 s->cur_entry = key; 280 ret = 1; 281 /* entry successfully selected, now run callback if present */ 282 arch = !!(key & FW_CFG_ARCH_LOCAL); 283 e = &s->entries[arch][key & FW_CFG_ENTRY_MASK]; 284 if (e->select_cb) { 285 e->select_cb(e->callback_opaque); 286 } 287 } 288 289 trace_fw_cfg_select(s, key, trace_key_name(key), ret); 290 return ret; 291 } 292 293 static uint64_t fw_cfg_data_read(void *opaque, hwaddr addr, unsigned size) 294 { 295 FWCfgState *s = opaque; 296 int arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 297 FWCfgEntry *e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 298 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 299 uint64_t value = 0; 300 301 assert(size > 0 && size <= sizeof(value)); 302 if (s->cur_entry != FW_CFG_INVALID && e->data && s->cur_offset < e->len) { 303 /* The least significant 'size' bytes of the return value are 304 * expected to contain a string preserving portion of the item 305 * data, padded with zeros on the right in case we run out early. 306 * In technical terms, we're composing the host-endian representation 307 * of the big endian interpretation of the fw_cfg string. 308 */ 309 do { 310 value = (value << 8) | e->data[s->cur_offset++]; 311 } while (--size && s->cur_offset < e->len); 312 /* If size is still not zero, we *did* run out early, so continue 313 * left-shifting, to add the appropriate number of padding zeros 314 * on the right. 315 */ 316 value <<= 8 * size; 317 } 318 319 trace_fw_cfg_read(s, value); 320 return value; 321 } 322 323 static void fw_cfg_data_mem_write(void *opaque, hwaddr addr, 324 uint64_t value, unsigned size) 325 { 326 FWCfgState *s = opaque; 327 unsigned i = size; 328 329 do { 330 fw_cfg_write(s, value >> (8 * --i)); 331 } while (i); 332 } 333 334 static void fw_cfg_dma_transfer(FWCfgState *s) 335 { 336 dma_addr_t len; 337 FWCfgDmaAccess dma; 338 int arch; 339 FWCfgEntry *e; 340 int read = 0, write = 0; 341 dma_addr_t dma_addr; 342 343 /* Reset the address before the next access */ 344 dma_addr = s->dma_addr; 345 s->dma_addr = 0; 346 347 if (dma_memory_read(s->dma_as, dma_addr, 348 &dma, sizeof(dma), MEMTXATTRS_UNSPECIFIED)) { 349 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 350 FW_CFG_DMA_CTL_ERROR, MEMTXATTRS_UNSPECIFIED); 351 return; 352 } 353 354 dma.address = be64_to_cpu(dma.address); 355 dma.length = be32_to_cpu(dma.length); 356 dma.control = be32_to_cpu(dma.control); 357 358 if (dma.control & FW_CFG_DMA_CTL_SELECT) { 359 fw_cfg_select(s, dma.control >> 16); 360 } 361 362 arch = !!(s->cur_entry & FW_CFG_ARCH_LOCAL); 363 e = (s->cur_entry == FW_CFG_INVALID) ? NULL : 364 &s->entries[arch][s->cur_entry & FW_CFG_ENTRY_MASK]; 365 366 if (dma.control & FW_CFG_DMA_CTL_READ) { 367 read = 1; 368 write = 0; 369 } else if (dma.control & FW_CFG_DMA_CTL_WRITE) { 370 read = 0; 371 write = 1; 372 } else if (dma.control & FW_CFG_DMA_CTL_SKIP) { 373 read = 0; 374 write = 0; 375 } else { 376 dma.length = 0; 377 } 378 379 dma.control = 0; 380 381 while (dma.length > 0 && !(dma.control & FW_CFG_DMA_CTL_ERROR)) { 382 if (s->cur_entry == FW_CFG_INVALID || !e->data || 383 s->cur_offset >= e->len) { 384 len = dma.length; 385 386 /* If the access is not a read access, it will be a skip access, 387 * tested before. 388 */ 389 if (read) { 390 if (dma_memory_set(s->dma_as, dma.address, 0, len, 391 MEMTXATTRS_UNSPECIFIED)) { 392 dma.control |= FW_CFG_DMA_CTL_ERROR; 393 } 394 } 395 if (write) { 396 dma.control |= FW_CFG_DMA_CTL_ERROR; 397 } 398 } else { 399 if (dma.length <= (e->len - s->cur_offset)) { 400 len = dma.length; 401 } else { 402 len = (e->len - s->cur_offset); 403 } 404 405 /* If the access is not a read access, it will be a skip access, 406 * tested before. 407 */ 408 if (read) { 409 if (dma_memory_write(s->dma_as, dma.address, 410 &e->data[s->cur_offset], len, 411 MEMTXATTRS_UNSPECIFIED)) { 412 dma.control |= FW_CFG_DMA_CTL_ERROR; 413 } 414 } 415 if (write) { 416 if (!e->allow_write || 417 len != dma.length || 418 dma_memory_read(s->dma_as, dma.address, 419 &e->data[s->cur_offset], len, 420 MEMTXATTRS_UNSPECIFIED)) { 421 dma.control |= FW_CFG_DMA_CTL_ERROR; 422 } else if (e->write_cb) { 423 e->write_cb(e->callback_opaque, s->cur_offset, len); 424 } 425 } 426 427 s->cur_offset += len; 428 } 429 430 dma.address += len; 431 dma.length -= len; 432 433 } 434 435 stl_be_dma(s->dma_as, dma_addr + offsetof(FWCfgDmaAccess, control), 436 dma.control, MEMTXATTRS_UNSPECIFIED); 437 438 trace_fw_cfg_read(s, 0); 439 } 440 441 static uint64_t fw_cfg_dma_mem_read(void *opaque, hwaddr addr, 442 unsigned size) 443 { 444 /* Return a signature value (and handle various read sizes) */ 445 return extract64(FW_CFG_DMA_SIGNATURE, (8 - addr - size) * 8, size * 8); 446 } 447 448 static void fw_cfg_dma_mem_write(void *opaque, hwaddr addr, 449 uint64_t value, unsigned size) 450 { 451 FWCfgState *s = opaque; 452 453 if (size == 4) { 454 if (addr == 0) { 455 /* FWCfgDmaAccess high address */ 456 s->dma_addr = value << 32; 457 } else if (addr == 4) { 458 /* FWCfgDmaAccess low address */ 459 s->dma_addr |= value; 460 fw_cfg_dma_transfer(s); 461 } 462 } else if (size == 8 && addr == 0) { 463 s->dma_addr = value; 464 fw_cfg_dma_transfer(s); 465 } 466 } 467 468 static bool fw_cfg_dma_mem_valid(void *opaque, hwaddr addr, 469 unsigned size, bool is_write, 470 MemTxAttrs attrs) 471 { 472 return !is_write || ((size == 4 && (addr == 0 || addr == 4)) || 473 (size == 8 && addr == 0)); 474 } 475 476 static bool fw_cfg_data_mem_valid(void *opaque, hwaddr addr, 477 unsigned size, bool is_write, 478 MemTxAttrs attrs) 479 { 480 return addr == 0; 481 } 482 483 static uint64_t fw_cfg_ctl_mem_read(void *opaque, hwaddr addr, unsigned size) 484 { 485 return 0; 486 } 487 488 static void fw_cfg_ctl_mem_write(void *opaque, hwaddr addr, 489 uint64_t value, unsigned size) 490 { 491 fw_cfg_select(opaque, (uint16_t)value); 492 } 493 494 static bool fw_cfg_ctl_mem_valid(void *opaque, hwaddr addr, 495 unsigned size, bool is_write, 496 MemTxAttrs attrs) 497 { 498 return is_write && size == 2; 499 } 500 501 static void fw_cfg_comb_write(void *opaque, hwaddr addr, 502 uint64_t value, unsigned size) 503 { 504 switch (size) { 505 case 1: 506 fw_cfg_write(opaque, (uint8_t)value); 507 break; 508 case 2: 509 fw_cfg_select(opaque, (uint16_t)value); 510 break; 511 } 512 } 513 514 static bool fw_cfg_comb_valid(void *opaque, hwaddr addr, 515 unsigned size, bool is_write, 516 MemTxAttrs attrs) 517 { 518 return (size == 1) || (is_write && size == 2); 519 } 520 521 static const MemoryRegionOps fw_cfg_ctl_mem_ops = { 522 .read = fw_cfg_ctl_mem_read, 523 .write = fw_cfg_ctl_mem_write, 524 .endianness = DEVICE_BIG_ENDIAN, 525 .valid.accepts = fw_cfg_ctl_mem_valid, 526 }; 527 528 static const MemoryRegionOps fw_cfg_data_mem_ops = { 529 .read = fw_cfg_data_read, 530 .write = fw_cfg_data_mem_write, 531 .endianness = DEVICE_BIG_ENDIAN, 532 .valid = { 533 .min_access_size = 1, 534 .max_access_size = 1, 535 .accepts = fw_cfg_data_mem_valid, 536 }, 537 }; 538 539 static const MemoryRegionOps fw_cfg_comb_mem_ops = { 540 .read = fw_cfg_data_read, 541 .write = fw_cfg_comb_write, 542 .endianness = DEVICE_LITTLE_ENDIAN, 543 .valid.accepts = fw_cfg_comb_valid, 544 }; 545 546 static const MemoryRegionOps fw_cfg_dma_mem_ops = { 547 .read = fw_cfg_dma_mem_read, 548 .write = fw_cfg_dma_mem_write, 549 .endianness = DEVICE_BIG_ENDIAN, 550 .valid.accepts = fw_cfg_dma_mem_valid, 551 .valid.max_access_size = 8, 552 .impl.max_access_size = 8, 553 }; 554 555 static void fw_cfg_reset(DeviceState *d) 556 { 557 FWCfgState *s = FW_CFG(d); 558 559 /* we never register a read callback for FW_CFG_SIGNATURE */ 560 fw_cfg_select(s, FW_CFG_SIGNATURE); 561 } 562 563 /* Save restore 32 bit int as uint16_t 564 This is a Big hack, but it is how the old state did it. 565 Or we broke compatibility in the state, or we can't use struct tm 566 */ 567 568 static int get_uint32_as_uint16(QEMUFile *f, void *pv, size_t size, 569 const VMStateField *field) 570 { 571 uint32_t *v = pv; 572 *v = qemu_get_be16(f); 573 return 0; 574 } 575 576 static int put_unused(QEMUFile *f, void *pv, size_t size, 577 const VMStateField *field, JSONWriter *vmdesc) 578 { 579 fprintf(stderr, "uint32_as_uint16 is only used for backward compatibility.\n"); 580 fprintf(stderr, "This functions shouldn't be called.\n"); 581 582 return 0; 583 } 584 585 static const VMStateInfo vmstate_hack_uint32_as_uint16 = { 586 .name = "int32_as_uint16", 587 .get = get_uint32_as_uint16, 588 .put = put_unused, 589 }; 590 591 #define VMSTATE_UINT16_HACK(_f, _s, _t) \ 592 VMSTATE_SINGLE_TEST(_f, _s, _t, 0, vmstate_hack_uint32_as_uint16, uint32_t) 593 594 595 static bool is_version_1(void *opaque, int version_id) 596 { 597 return version_id == 1; 598 } 599 600 bool fw_cfg_dma_enabled(void *opaque) 601 { 602 FWCfgState *s = opaque; 603 604 return s->dma_enabled; 605 } 606 607 static bool fw_cfg_acpi_mr_restore(void *opaque) 608 { 609 FWCfgState *s = opaque; 610 bool mr_aligned; 611 612 mr_aligned = QEMU_IS_ALIGNED(s->table_mr_size, qemu_real_host_page_size()) && 613 QEMU_IS_ALIGNED(s->linker_mr_size, qemu_real_host_page_size()) && 614 QEMU_IS_ALIGNED(s->rsdp_mr_size, qemu_real_host_page_size()); 615 return s->acpi_mr_restore && !mr_aligned; 616 } 617 618 static void fw_cfg_update_mr(FWCfgState *s, uint16_t key, size_t size) 619 { 620 MemoryRegion *mr; 621 ram_addr_t offset; 622 int arch = !!(key & FW_CFG_ARCH_LOCAL); 623 void *ptr; 624 625 key &= FW_CFG_ENTRY_MASK; 626 assert(key < fw_cfg_max_entry(s)); 627 628 ptr = s->entries[arch][key].data; 629 mr = memory_region_from_host(ptr, &offset); 630 631 memory_region_ram_resize(mr, size, &error_abort); 632 } 633 634 static int fw_cfg_acpi_mr_restore_post_load(void *opaque, int version_id) 635 { 636 FWCfgState *s = opaque; 637 int i, index; 638 639 assert(s->files); 640 641 index = be32_to_cpu(s->files->count); 642 643 for (i = 0; i < index; i++) { 644 if (!strcmp(s->files->f[i].name, ACPI_BUILD_TABLE_FILE)) { 645 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->table_mr_size); 646 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_LOADER_FILE)) { 647 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->linker_mr_size); 648 } else if (!strcmp(s->files->f[i].name, ACPI_BUILD_RSDP_FILE)) { 649 fw_cfg_update_mr(s, FW_CFG_FILE_FIRST + i, s->rsdp_mr_size); 650 } 651 } 652 653 return 0; 654 } 655 656 static const VMStateDescription vmstate_fw_cfg_dma = { 657 .name = "fw_cfg/dma", 658 .needed = fw_cfg_dma_enabled, 659 .fields = (const VMStateField[]) { 660 VMSTATE_UINT64(dma_addr, FWCfgState), 661 VMSTATE_END_OF_LIST() 662 }, 663 }; 664 665 static const VMStateDescription vmstate_fw_cfg_acpi_mr = { 666 .name = "fw_cfg/acpi_mr", 667 .version_id = 1, 668 .minimum_version_id = 1, 669 .needed = fw_cfg_acpi_mr_restore, 670 .post_load = fw_cfg_acpi_mr_restore_post_load, 671 .fields = (const VMStateField[]) { 672 VMSTATE_UINT64(table_mr_size, FWCfgState), 673 VMSTATE_UINT64(linker_mr_size, FWCfgState), 674 VMSTATE_UINT64(rsdp_mr_size, FWCfgState), 675 VMSTATE_END_OF_LIST() 676 }, 677 }; 678 679 static const VMStateDescription vmstate_fw_cfg = { 680 .name = "fw_cfg", 681 .version_id = 2, 682 .minimum_version_id = 1, 683 .fields = (const VMStateField[]) { 684 VMSTATE_UINT16(cur_entry, FWCfgState), 685 VMSTATE_UINT16_HACK(cur_offset, FWCfgState, is_version_1), 686 VMSTATE_UINT32_V(cur_offset, FWCfgState, 2), 687 VMSTATE_END_OF_LIST() 688 }, 689 .subsections = (const VMStateDescription * const []) { 690 &vmstate_fw_cfg_dma, 691 &vmstate_fw_cfg_acpi_mr, 692 NULL, 693 } 694 }; 695 696 static void fw_cfg_add_bytes_callback(FWCfgState *s, uint16_t key, 697 FWCfgCallback select_cb, 698 FWCfgWriteCallback write_cb, 699 void *callback_opaque, 700 void *data, size_t len, 701 bool read_only) 702 { 703 int arch = !!(key & FW_CFG_ARCH_LOCAL); 704 705 key &= FW_CFG_ENTRY_MASK; 706 707 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 708 assert(s->entries[arch][key].data == NULL); /* avoid key conflict */ 709 710 s->entries[arch][key].data = data; 711 s->entries[arch][key].len = (uint32_t)len; 712 s->entries[arch][key].select_cb = select_cb; 713 s->entries[arch][key].write_cb = write_cb; 714 s->entries[arch][key].callback_opaque = callback_opaque; 715 s->entries[arch][key].allow_write = !read_only; 716 } 717 718 static void *fw_cfg_modify_bytes_read(FWCfgState *s, uint16_t key, 719 void *data, size_t len) 720 { 721 void *ptr; 722 int arch = !!(key & FW_CFG_ARCH_LOCAL); 723 724 key &= FW_CFG_ENTRY_MASK; 725 726 assert(key < fw_cfg_max_entry(s) && len < UINT32_MAX); 727 728 /* return the old data to the function caller, avoid memory leak */ 729 ptr = s->entries[arch][key].data; 730 s->entries[arch][key].data = data; 731 s->entries[arch][key].len = len; 732 s->entries[arch][key].allow_write = false; 733 734 return ptr; 735 } 736 737 void fw_cfg_add_bytes(FWCfgState *s, uint16_t key, void *data, size_t len) 738 { 739 trace_fw_cfg_add_bytes(key, trace_key_name(key), len); 740 fw_cfg_add_bytes_callback(s, key, NULL, NULL, NULL, data, len, true); 741 } 742 743 void fw_cfg_add_string(FWCfgState *s, uint16_t key, const char *value) 744 { 745 size_t sz = strlen(value) + 1; 746 747 trace_fw_cfg_add_string(key, trace_key_name(key), value); 748 fw_cfg_add_bytes(s, key, g_memdup(value, sz), sz); 749 } 750 751 void fw_cfg_modify_string(FWCfgState *s, uint16_t key, const char *value) 752 { 753 size_t sz = strlen(value) + 1; 754 char *old; 755 756 old = fw_cfg_modify_bytes_read(s, key, g_memdup(value, sz), sz); 757 g_free(old); 758 } 759 760 void fw_cfg_add_i16(FWCfgState *s, uint16_t key, uint16_t value) 761 { 762 uint16_t *copy; 763 764 copy = g_malloc(sizeof(value)); 765 *copy = cpu_to_le16(value); 766 trace_fw_cfg_add_i16(key, trace_key_name(key), value); 767 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 768 } 769 770 void fw_cfg_modify_i16(FWCfgState *s, uint16_t key, uint16_t value) 771 { 772 uint16_t *copy, *old; 773 774 copy = g_malloc(sizeof(value)); 775 *copy = cpu_to_le16(value); 776 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 777 g_free(old); 778 } 779 780 void fw_cfg_add_i32(FWCfgState *s, uint16_t key, uint32_t value) 781 { 782 uint32_t *copy; 783 784 copy = g_malloc(sizeof(value)); 785 *copy = cpu_to_le32(value); 786 trace_fw_cfg_add_i32(key, trace_key_name(key), value); 787 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 788 } 789 790 void fw_cfg_modify_i32(FWCfgState *s, uint16_t key, uint32_t value) 791 { 792 uint32_t *copy, *old; 793 794 copy = g_malloc(sizeof(value)); 795 *copy = cpu_to_le32(value); 796 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 797 g_free(old); 798 } 799 800 void fw_cfg_add_i64(FWCfgState *s, uint16_t key, uint64_t value) 801 { 802 uint64_t *copy; 803 804 copy = g_malloc(sizeof(value)); 805 *copy = cpu_to_le64(value); 806 trace_fw_cfg_add_i64(key, trace_key_name(key), value); 807 fw_cfg_add_bytes(s, key, copy, sizeof(value)); 808 } 809 810 void fw_cfg_modify_i64(FWCfgState *s, uint16_t key, uint64_t value) 811 { 812 uint64_t *copy, *old; 813 814 copy = g_malloc(sizeof(value)); 815 *copy = cpu_to_le64(value); 816 old = fw_cfg_modify_bytes_read(s, key, copy, sizeof(value)); 817 g_free(old); 818 } 819 820 void fw_cfg_set_order_override(FWCfgState *s, int order) 821 { 822 assert(s->fw_cfg_order_override == 0); 823 s->fw_cfg_order_override = order; 824 } 825 826 void fw_cfg_reset_order_override(FWCfgState *s) 827 { 828 assert(s->fw_cfg_order_override != 0); 829 s->fw_cfg_order_override = 0; 830 } 831 832 /* 833 * This is the legacy order list. For legacy systems, files are in 834 * the fw_cfg in the order defined below, by the "order" value. Note 835 * that some entries (VGA ROMs, NIC option ROMS, etc.) go into a 836 * specific area, but there may be more than one and they occur in the 837 * order that the user specifies them on the command line. Those are 838 * handled in a special manner, using the order override above. 839 * 840 * For non-legacy, the files are sorted by filename to avoid this kind 841 * of complexity in the future. 842 * 843 * This is only for x86, other arches don't implement versioning so 844 * they won't set legacy mode. 845 */ 846 static struct { 847 const char *name; 848 int order; 849 } fw_cfg_order[] = { 850 { "etc/boot-menu-wait", 10 }, 851 { "bootsplash.jpg", 11 }, 852 { "bootsplash.bmp", 12 }, 853 { "etc/boot-fail-wait", 15 }, 854 { "etc/smbios/smbios-tables", 20 }, 855 { "etc/smbios/smbios-anchor", 30 }, 856 { "etc/e820", 40 }, 857 { "etc/reserved-memory-end", 50 }, 858 { "genroms/kvmvapic.bin", 55 }, 859 { "genroms/linuxboot.bin", 60 }, 860 { }, /* VGA ROMs from pc_vga_init come here, 70. */ 861 { }, /* NIC option ROMs from pc_nic_init come here, 80. */ 862 { "etc/system-states", 90 }, 863 { }, /* User ROMs come here, 100. */ 864 { }, /* Device FW comes here, 110. */ 865 { "etc/extra-pci-roots", 120 }, 866 { "etc/acpi/tables", 130 }, 867 { "etc/table-loader", 140 }, 868 { "etc/tpm/log", 150 }, 869 { "etc/acpi/rsdp", 160 }, 870 { "bootorder", 170 }, 871 { "etc/msr_feature_control", 180 }, 872 873 #define FW_CFG_ORDER_OVERRIDE_LAST 200 874 }; 875 876 /* 877 * Any sub-page size update to these table MRs will be lost during migration, 878 * as we use aligned size in ram_load_precopy() -> qemu_ram_resize() path. 879 * In order to avoid the inconsistency in sizes save them separately and 880 * migrate over in vmstate post_load(). 881 */ 882 static void fw_cfg_acpi_mr_save(FWCfgState *s, const char *filename, size_t len) 883 { 884 if (!strcmp(filename, ACPI_BUILD_TABLE_FILE)) { 885 s->table_mr_size = len; 886 } else if (!strcmp(filename, ACPI_BUILD_LOADER_FILE)) { 887 s->linker_mr_size = len; 888 } else if (!strcmp(filename, ACPI_BUILD_RSDP_FILE)) { 889 s->rsdp_mr_size = len; 890 } 891 } 892 893 static int get_fw_cfg_order(FWCfgState *s, const char *name) 894 { 895 int i; 896 897 if (s->fw_cfg_order_override > 0) { 898 return s->fw_cfg_order_override; 899 } 900 901 for (i = 0; i < ARRAY_SIZE(fw_cfg_order); i++) { 902 if (fw_cfg_order[i].name == NULL) { 903 continue; 904 } 905 906 if (strcmp(name, fw_cfg_order[i].name) == 0) { 907 return fw_cfg_order[i].order; 908 } 909 } 910 911 /* Stick unknown stuff at the end. */ 912 warn_report("Unknown firmware file in legacy mode: %s", name); 913 return FW_CFG_ORDER_OVERRIDE_LAST; 914 } 915 916 void fw_cfg_add_file_callback(FWCfgState *s, const char *filename, 917 FWCfgCallback select_cb, 918 FWCfgWriteCallback write_cb, 919 void *callback_opaque, 920 void *data, size_t len, bool read_only) 921 { 922 int i, index, count; 923 size_t dsize; 924 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 925 int order = 0; 926 927 if (!s->files) { 928 dsize = sizeof(uint32_t) + sizeof(FWCfgFile) * fw_cfg_file_slots(s); 929 s->files = g_malloc0(dsize); 930 fw_cfg_add_bytes(s, FW_CFG_FILE_DIR, s->files, dsize); 931 } 932 933 count = be32_to_cpu(s->files->count); 934 assert(count < fw_cfg_file_slots(s)); 935 936 /* Find the insertion point. */ 937 if (mc->legacy_fw_cfg_order) { 938 /* 939 * Sort by order. For files with the same order, we keep them 940 * in the sequence in which they were added. 941 */ 942 order = get_fw_cfg_order(s, filename); 943 for (index = count; 944 index > 0 && order < s->entry_order[index - 1]; 945 index--); 946 } else { 947 /* Sort by file name. */ 948 for (index = count; 949 index > 0 && strcmp(filename, s->files->f[index - 1].name) < 0; 950 index--); 951 } 952 953 /* 954 * Move all the entries from the index point and after down one 955 * to create a slot for the new entry. Because calculations are 956 * being done with the index, make it so that "i" is the current 957 * index and "i - 1" is the one being copied from, thus the 958 * unusual start and end in the for statement. 959 */ 960 for (i = count; i > index; i--) { 961 s->files->f[i] = s->files->f[i - 1]; 962 s->files->f[i].select = cpu_to_be16(FW_CFG_FILE_FIRST + i); 963 s->entries[0][FW_CFG_FILE_FIRST + i] = 964 s->entries[0][FW_CFG_FILE_FIRST + i - 1]; 965 s->entry_order[i] = s->entry_order[i - 1]; 966 } 967 968 memset(&s->files->f[index], 0, sizeof(FWCfgFile)); 969 memset(&s->entries[0][FW_CFG_FILE_FIRST + index], 0, sizeof(FWCfgEntry)); 970 971 pstrcpy(s->files->f[index].name, sizeof(s->files->f[index].name), filename); 972 for (i = 0; i <= count; i++) { 973 if (i != index && 974 strcmp(s->files->f[index].name, s->files->f[i].name) == 0) { 975 error_report("duplicate fw_cfg file name: %s", 976 s->files->f[index].name); 977 exit(1); 978 } 979 } 980 981 fw_cfg_add_bytes_callback(s, FW_CFG_FILE_FIRST + index, 982 select_cb, write_cb, 983 callback_opaque, data, len, 984 read_only); 985 986 s->files->f[index].size = cpu_to_be32(len); 987 s->files->f[index].select = cpu_to_be16(FW_CFG_FILE_FIRST + index); 988 s->entry_order[index] = order; 989 trace_fw_cfg_add_file(s, index, s->files->f[index].name, len); 990 991 s->files->count = cpu_to_be32(count+1); 992 fw_cfg_acpi_mr_save(s, filename, len); 993 } 994 995 void fw_cfg_add_file(FWCfgState *s, const char *filename, 996 void *data, size_t len) 997 { 998 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 999 } 1000 1001 void *fw_cfg_modify_file(FWCfgState *s, const char *filename, 1002 void *data, size_t len) 1003 { 1004 int i, index; 1005 void *ptr = NULL; 1006 1007 assert(s->files); 1008 1009 index = be32_to_cpu(s->files->count); 1010 1011 for (i = 0; i < index; i++) { 1012 if (strcmp(filename, s->files->f[i].name) == 0) { 1013 ptr = fw_cfg_modify_bytes_read(s, FW_CFG_FILE_FIRST + i, 1014 data, len); 1015 s->files->f[i].size = cpu_to_be32(len); 1016 fw_cfg_acpi_mr_save(s, filename, len); 1017 return ptr; 1018 } 1019 } 1020 1021 assert(index < fw_cfg_file_slots(s)); 1022 1023 /* add new one */ 1024 fw_cfg_add_file_callback(s, filename, NULL, NULL, NULL, data, len, true); 1025 return NULL; 1026 } 1027 1028 bool fw_cfg_add_file_from_generator(FWCfgState *s, 1029 Object *parent, const char *part, 1030 const char *filename, Error **errp) 1031 { 1032 ERRP_GUARD(); 1033 FWCfgDataGeneratorClass *klass; 1034 GByteArray *array; 1035 Object *obj; 1036 gsize size; 1037 1038 obj = object_resolve_path_component(parent, part); 1039 if (!obj) { 1040 error_setg(errp, "Cannot find object ID '%s'", part); 1041 return false; 1042 } 1043 if (!object_dynamic_cast(obj, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE)) { 1044 error_setg(errp, "Object ID '%s' is not a '%s' subclass", 1045 part, TYPE_FW_CFG_DATA_GENERATOR_INTERFACE); 1046 return false; 1047 } 1048 klass = FW_CFG_DATA_GENERATOR_GET_CLASS(obj); 1049 array = klass->get_data(obj, errp); 1050 if (*errp || !array) { 1051 return false; 1052 } 1053 size = array->len; 1054 fw_cfg_add_file(s, filename, g_byte_array_free(array, FALSE), size); 1055 1056 return true; 1057 } 1058 1059 static void fw_cfg_machine_reset(void *opaque) 1060 { 1061 MachineClass *mc = MACHINE_GET_CLASS(qdev_get_machine()); 1062 FWCfgState *s = opaque; 1063 void *ptr; 1064 size_t len; 1065 char *buf; 1066 1067 buf = get_boot_devices_list(&len); 1068 ptr = fw_cfg_modify_file(s, "bootorder", (uint8_t *)buf, len); 1069 g_free(ptr); 1070 1071 if (!mc->legacy_fw_cfg_order) { 1072 buf = get_boot_devices_lchs_list(&len); 1073 ptr = fw_cfg_modify_file(s, "bios-geometry", (uint8_t *)buf, len); 1074 g_free(ptr); 1075 } 1076 } 1077 1078 static void fw_cfg_machine_ready(struct Notifier *n, void *data) 1079 { 1080 FWCfgState *s = container_of(n, FWCfgState, machine_ready); 1081 qemu_register_reset(fw_cfg_machine_reset, s); 1082 } 1083 1084 static const Property fw_cfg_properties[] = { 1085 DEFINE_PROP_BOOL("acpi-mr-restore", FWCfgState, acpi_mr_restore, true), 1086 }; 1087 1088 static void fw_cfg_common_realize(DeviceState *dev, Error **errp) 1089 { 1090 FWCfgState *s = FW_CFG(dev); 1091 MachineState *machine = MACHINE(qdev_get_machine()); 1092 uint32_t version = FW_CFG_VERSION; 1093 1094 if (!fw_cfg_find()) { 1095 error_setg(errp, "at most one %s device is permitted", TYPE_FW_CFG); 1096 return; 1097 } 1098 1099 fw_cfg_add_bytes(s, FW_CFG_SIGNATURE, (char *)"QEMU", 4); 1100 fw_cfg_add_bytes(s, FW_CFG_UUID, &qemu_uuid, 16); 1101 fw_cfg_add_i16(s, FW_CFG_NOGRAPHIC, (uint16_t)!machine->enable_graphics); 1102 fw_cfg_add_i16(s, FW_CFG_BOOT_MENU, (uint16_t)(machine->boot_config.has_menu && machine->boot_config.menu)); 1103 fw_cfg_bootsplash(s); 1104 fw_cfg_reboot(s); 1105 1106 if (s->dma_enabled) { 1107 version |= FW_CFG_VERSION_DMA; 1108 } 1109 1110 fw_cfg_add_i32(s, FW_CFG_ID, version); 1111 1112 s->machine_ready.notify = fw_cfg_machine_ready; 1113 qemu_add_machine_init_done_notifier(&s->machine_ready); 1114 } 1115 1116 FWCfgState *fw_cfg_init_io_dma(uint32_t iobase, uint32_t dma_iobase, 1117 AddressSpace *dma_as) 1118 { 1119 DeviceState *dev; 1120 SysBusDevice *sbd; 1121 FWCfgIoState *ios; 1122 FWCfgState *s; 1123 MemoryRegion *iomem = get_system_io(); 1124 bool dma_requested = dma_iobase && dma_as; 1125 1126 dev = qdev_new(TYPE_FW_CFG_IO); 1127 if (!dma_requested) { 1128 qdev_prop_set_bit(dev, "dma_enabled", false); 1129 } 1130 1131 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1132 OBJECT(dev)); 1133 1134 sbd = SYS_BUS_DEVICE(dev); 1135 sysbus_realize_and_unref(sbd, &error_fatal); 1136 ios = FW_CFG_IO(dev); 1137 memory_region_add_subregion(iomem, iobase, &ios->comb_iomem); 1138 1139 s = FW_CFG(dev); 1140 1141 if (s->dma_enabled) { 1142 /* 64 bits for the address field */ 1143 s->dma_as = dma_as; 1144 s->dma_addr = 0; 1145 memory_region_add_subregion(iomem, dma_iobase, &s->dma_iomem); 1146 } 1147 1148 return s; 1149 } 1150 1151 FWCfgState *fw_cfg_init_mem_wide(hwaddr ctl_addr, 1152 hwaddr data_addr, uint32_t data_width, 1153 hwaddr dma_addr, AddressSpace *dma_as) 1154 { 1155 DeviceState *dev; 1156 SysBusDevice *sbd; 1157 FWCfgState *s; 1158 bool dma_requested = dma_addr && dma_as; 1159 1160 dev = qdev_new(TYPE_FW_CFG_MEM); 1161 qdev_prop_set_uint32(dev, "data_width", data_width); 1162 if (!dma_requested) { 1163 qdev_prop_set_bit(dev, "dma_enabled", false); 1164 } 1165 1166 object_property_add_child(OBJECT(qdev_get_machine()), TYPE_FW_CFG, 1167 OBJECT(dev)); 1168 1169 sbd = SYS_BUS_DEVICE(dev); 1170 sysbus_realize_and_unref(sbd, &error_fatal); 1171 sysbus_mmio_map(sbd, 0, ctl_addr); 1172 sysbus_mmio_map(sbd, 1, data_addr); 1173 1174 s = FW_CFG(dev); 1175 1176 if (s->dma_enabled) { 1177 s->dma_as = dma_as; 1178 s->dma_addr = 0; 1179 sysbus_mmio_map(sbd, 2, dma_addr); 1180 } 1181 1182 return s; 1183 } 1184 1185 FWCfgState *fw_cfg_init_mem(hwaddr ctl_addr, hwaddr data_addr) 1186 { 1187 return fw_cfg_init_mem_wide(ctl_addr, data_addr, 1188 fw_cfg_data_mem_ops.valid.max_access_size, 1189 0, NULL); 1190 } 1191 1192 1193 FWCfgState *fw_cfg_find(void) 1194 { 1195 /* Returns NULL unless there is exactly one fw_cfg device */ 1196 return FW_CFG(object_resolve_path_type("", TYPE_FW_CFG, NULL)); 1197 } 1198 1199 void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key, 1200 uint16_t data_key, const char *image_name, 1201 bool try_decompress) 1202 { 1203 size_t size = -1; 1204 uint8_t *data; 1205 1206 if (image_name == NULL) { 1207 return; 1208 } 1209 1210 if (try_decompress) { 1211 size = load_image_gzipped_buffer(image_name, 1212 LOAD_IMAGE_MAX_GUNZIP_BYTES, &data); 1213 } 1214 1215 if (size == (size_t)-1) { 1216 gchar *contents; 1217 gsize length; 1218 1219 if (!g_file_get_contents(image_name, &contents, &length, NULL)) { 1220 error_report("failed to load \"%s\"", image_name); 1221 exit(1); 1222 } 1223 size = length; 1224 data = (uint8_t *)contents; 1225 } 1226 1227 fw_cfg_add_i32(fw_cfg, size_key, size); 1228 fw_cfg_add_bytes(fw_cfg, data_key, data, size); 1229 } 1230 1231 static void fw_cfg_class_init(ObjectClass *klass, void *data) 1232 { 1233 DeviceClass *dc = DEVICE_CLASS(klass); 1234 1235 device_class_set_legacy_reset(dc, fw_cfg_reset); 1236 dc->vmsd = &vmstate_fw_cfg; 1237 1238 device_class_set_props(dc, fw_cfg_properties); 1239 } 1240 1241 static const TypeInfo fw_cfg_info = { 1242 .name = TYPE_FW_CFG, 1243 .parent = TYPE_SYS_BUS_DEVICE, 1244 .abstract = true, 1245 .instance_size = sizeof(FWCfgState), 1246 .class_init = fw_cfg_class_init, 1247 }; 1248 1249 static void fw_cfg_file_slots_allocate(FWCfgState *s, Error **errp) 1250 { 1251 uint16_t file_slots_max; 1252 1253 if (fw_cfg_file_slots(s) < FW_CFG_FILE_SLOTS_MIN) { 1254 error_setg(errp, "\"file_slots\" must be at least 0x%x", 1255 FW_CFG_FILE_SLOTS_MIN); 1256 return; 1257 } 1258 1259 /* (UINT16_MAX & FW_CFG_ENTRY_MASK) is the highest inclusive selector value 1260 * that we permit. The actual (exclusive) value coming from the 1261 * configuration is (FW_CFG_FILE_FIRST + fw_cfg_file_slots(s)). */ 1262 file_slots_max = (UINT16_MAX & FW_CFG_ENTRY_MASK) - FW_CFG_FILE_FIRST + 1; 1263 if (fw_cfg_file_slots(s) > file_slots_max) { 1264 error_setg(errp, "\"file_slots\" must not exceed 0x%" PRIx16, 1265 file_slots_max); 1266 return; 1267 } 1268 1269 s->entries[0] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1270 s->entries[1] = g_new0(FWCfgEntry, fw_cfg_max_entry(s)); 1271 s->entry_order = g_new0(int, fw_cfg_max_entry(s)); 1272 } 1273 1274 static const Property fw_cfg_io_properties[] = { 1275 DEFINE_PROP_BOOL("dma_enabled", FWCfgIoState, parent_obj.dma_enabled, 1276 true), 1277 DEFINE_PROP_UINT16("x-file-slots", FWCfgIoState, parent_obj.file_slots, 1278 FW_CFG_FILE_SLOTS_DFLT), 1279 }; 1280 1281 static void fw_cfg_io_realize(DeviceState *dev, Error **errp) 1282 { 1283 ERRP_GUARD(); 1284 FWCfgIoState *s = FW_CFG_IO(dev); 1285 1286 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1287 if (*errp) { 1288 return; 1289 } 1290 1291 /* when using port i/o, the 8-bit data register ALWAYS overlaps 1292 * with half of the 16-bit control register. Hence, the total size 1293 * of the i/o region used is FW_CFG_CTL_SIZE */ 1294 memory_region_init_io(&s->comb_iomem, OBJECT(s), &fw_cfg_comb_mem_ops, 1295 FW_CFG(s), "fwcfg", FW_CFG_CTL_SIZE); 1296 1297 if (FW_CFG(s)->dma_enabled) { 1298 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1299 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1300 sizeof(dma_addr_t)); 1301 } 1302 1303 fw_cfg_common_realize(dev, errp); 1304 } 1305 1306 static void fw_cfg_io_class_init(ObjectClass *klass, void *data) 1307 { 1308 DeviceClass *dc = DEVICE_CLASS(klass); 1309 1310 dc->realize = fw_cfg_io_realize; 1311 device_class_set_props(dc, fw_cfg_io_properties); 1312 } 1313 1314 static const TypeInfo fw_cfg_io_info = { 1315 .name = TYPE_FW_CFG_IO, 1316 .parent = TYPE_FW_CFG, 1317 .instance_size = sizeof(FWCfgIoState), 1318 .class_init = fw_cfg_io_class_init, 1319 }; 1320 1321 1322 static const Property fw_cfg_mem_properties[] = { 1323 DEFINE_PROP_UINT32("data_width", FWCfgMemState, data_width, -1), 1324 DEFINE_PROP_BOOL("dma_enabled", FWCfgMemState, parent_obj.dma_enabled, 1325 true), 1326 DEFINE_PROP_UINT16("x-file-slots", FWCfgMemState, parent_obj.file_slots, 1327 FW_CFG_FILE_SLOTS_DFLT), 1328 }; 1329 1330 static void fw_cfg_mem_realize(DeviceState *dev, Error **errp) 1331 { 1332 ERRP_GUARD(); 1333 FWCfgMemState *s = FW_CFG_MEM(dev); 1334 SysBusDevice *sbd = SYS_BUS_DEVICE(dev); 1335 const MemoryRegionOps *data_ops = &fw_cfg_data_mem_ops; 1336 1337 fw_cfg_file_slots_allocate(FW_CFG(s), errp); 1338 if (*errp) { 1339 return; 1340 } 1341 1342 memory_region_init_io(&s->ctl_iomem, OBJECT(s), &fw_cfg_ctl_mem_ops, 1343 FW_CFG(s), "fwcfg.ctl", FW_CFG_CTL_SIZE); 1344 sysbus_init_mmio(sbd, &s->ctl_iomem); 1345 1346 if (s->data_width > data_ops->valid.max_access_size) { 1347 s->wide_data_ops = *data_ops; 1348 1349 s->wide_data_ops.valid.max_access_size = s->data_width; 1350 s->wide_data_ops.impl.max_access_size = s->data_width; 1351 data_ops = &s->wide_data_ops; 1352 } 1353 memory_region_init_io(&s->data_iomem, OBJECT(s), data_ops, FW_CFG(s), 1354 "fwcfg.data", data_ops->valid.max_access_size); 1355 sysbus_init_mmio(sbd, &s->data_iomem); 1356 1357 if (FW_CFG(s)->dma_enabled) { 1358 memory_region_init_io(&FW_CFG(s)->dma_iomem, OBJECT(s), 1359 &fw_cfg_dma_mem_ops, FW_CFG(s), "fwcfg.dma", 1360 sizeof(dma_addr_t)); 1361 sysbus_init_mmio(sbd, &FW_CFG(s)->dma_iomem); 1362 } 1363 1364 fw_cfg_common_realize(dev, errp); 1365 } 1366 1367 static void fw_cfg_mem_class_init(ObjectClass *klass, void *data) 1368 { 1369 DeviceClass *dc = DEVICE_CLASS(klass); 1370 1371 dc->realize = fw_cfg_mem_realize; 1372 device_class_set_props(dc, fw_cfg_mem_properties); 1373 } 1374 1375 static const TypeInfo fw_cfg_mem_info = { 1376 .name = TYPE_FW_CFG_MEM, 1377 .parent = TYPE_FW_CFG, 1378 .instance_size = sizeof(FWCfgMemState), 1379 .class_init = fw_cfg_mem_class_init, 1380 }; 1381 1382 static void fw_cfg_register_types(void) 1383 { 1384 type_register_static(&fw_cfg_info); 1385 type_register_static(&fw_cfg_io_info); 1386 type_register_static(&fw_cfg_mem_info); 1387 } 1388 1389 type_init(fw_cfg_register_types) 1390