xref: /qemu/hw/nvme/ctrl.c (revision 146b5fa505fc21baa129c7538936fbdd9875b6ed)
1 /*
2  * QEMU NVM Express Controller
3  *
4  * Copyright (c) 2012, Intel Corporation
5  *
6  * Written by Keith Busch <keith.busch@intel.com>
7  *
8  * This code is licensed under the GNU GPL v2 or later.
9  */
10 
11 /**
12  * Reference Specs: http://www.nvmexpress.org, 1.4, 1.3, 1.2, 1.1, 1.0e
13  *
14  *  https://nvmexpress.org/developers/nvme-specification/
15  *
16  *
17  * Notes on coding style
18  * ---------------------
19  * While QEMU coding style prefers lowercase hexadecimals in constants, the
20  * NVMe subsystem use thes format from the NVMe specifications in the comments
21  * (i.e. 'h' suffix instead of '0x' prefix).
22  *
23  * Usage
24  * -----
25  * See docs/system/nvme.rst for extensive documentation.
26  *
27  * Add options:
28  *      -drive file=<file>,if=none,id=<drive_id>
29  *      -device nvme-subsys,id=<subsys_id>,nqn=<nqn_id>
30  *      -device nvme,serial=<serial>,id=<bus_name>, \
31  *              cmb_size_mb=<cmb_size_mb[optional]>, \
32  *              [pmrdev=<mem_backend_file_id>,] \
33  *              max_ioqpairs=<N[optional]>, \
34  *              aerl=<N[optional]>,aer_max_queued=<N[optional]>, \
35  *              mdts=<N[optional]>,vsl=<N[optional]>, \
36  *              zoned.zasl=<N[optional]>, \
37  *              zoned.auto_transition=<on|off[optional]>, \
38  *              sriov_max_vfs=<N[optional]> \
39  *              sriov_vq_flexible=<N[optional]> \
40  *              sriov_vi_flexible=<N[optional]> \
41  *              sriov_max_vi_per_vf=<N[optional]> \
42  *              sriov_max_vq_per_vf=<N[optional]> \
43  *              subsys=<subsys_id>
44  *      -device nvme-ns,drive=<drive_id>,bus=<bus_name>,nsid=<nsid>,\
45  *              zoned=<true|false[optional]>, \
46  *              subsys=<subsys_id>,detached=<true|false[optional]>
47  *
48  * Note cmb_size_mb denotes size of CMB in MB. CMB is assumed to be at
49  * offset 0 in BAR2 and supports only WDS, RDS and SQS for now. By default, the
50  * device will use the "v1.4 CMB scheme" - use the `legacy-cmb` parameter to
51  * always enable the CMBLOC and CMBSZ registers (v1.3 behavior).
52  *
53  * Enabling pmr emulation can be achieved by pointing to memory-backend-file.
54  * For example:
55  * -object memory-backend-file,id=<mem_id>,share=on,mem-path=<file_path>, \
56  *  size=<size> .... -device nvme,...,pmrdev=<mem_id>
57  *
58  * The PMR will use BAR 4/5 exclusively.
59  *
60  * To place controller(s) and namespace(s) to a subsystem, then provide
61  * nvme-subsys device as above.
62  *
63  * nvme subsystem device parameters
64  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
65  * - `nqn`
66  *   This parameter provides the `<nqn_id>` part of the string
67  *   `nqn.2019-08.org.qemu:<nqn_id>` which will be reported in the SUBNQN field
68  *   of subsystem controllers. Note that `<nqn_id>` should be unique per
69  *   subsystem, but this is not enforced by QEMU. If not specified, it will
70  *   default to the value of the `id` parameter (`<subsys_id>`).
71  *
72  * nvme device parameters
73  * ~~~~~~~~~~~~~~~~~~~~~~
74  * - `subsys`
75  *   Specifying this parameter attaches the controller to the subsystem and
76  *   the SUBNQN field in the controller will report the NQN of the subsystem
77  *   device. This also enables multi controller capability represented in
78  *   Identify Controller data structure in CMIC (Controller Multi-path I/O and
79  *   Namespace Sharing Capabilities).
80  *
81  * - `aerl`
82  *   The Asynchronous Event Request Limit (AERL). Indicates the maximum number
83  *   of concurrently outstanding Asynchronous Event Request commands support
84  *   by the controller. This is a 0's based value.
85  *
86  * - `aer_max_queued`
87  *   This is the maximum number of events that the device will enqueue for
88  *   completion when there are no outstanding AERs. When the maximum number of
89  *   enqueued events are reached, subsequent events will be dropped.
90  *
91  * - `mdts`
92  *   Indicates the maximum data transfer size for a command that transfers data
93  *   between host-accessible memory and the controller. The value is specified
94  *   as a power of two (2^n) and is in units of the minimum memory page size
95  *   (CAP.MPSMIN). The default value is 7 (i.e. 512 KiB).
96  *
97  * - `vsl`
98  *   Indicates the maximum data size limit for the Verify command. Like `mdts`,
99  *   this value is specified as a power of two (2^n) and is in units of the
100  *   minimum memory page size (CAP.MPSMIN). The default value is 7 (i.e. 512
101  *   KiB).
102  *
103  * - `zoned.zasl`
104  *   Indicates the maximum data transfer size for the Zone Append command. Like
105  *   `mdts`, the value is specified as a power of two (2^n) and is in units of
106  *   the minimum memory page size (CAP.MPSMIN). The default value is 0 (i.e.
107  *   defaulting to the value of `mdts`).
108  *
109  * - `zoned.auto_transition`
110  *   Indicates if zones in zone state implicitly opened can be automatically
111  *   transitioned to zone state closed for resource management purposes.
112  *   Defaults to 'on'.
113  *
114  * - `sriov_max_vfs`
115  *   Indicates the maximum number of PCIe virtual functions supported
116  *   by the controller. The default value is 0. Specifying a non-zero value
117  *   enables reporting of both SR-IOV and ARI capabilities by the NVMe device.
118  *   Virtual function controllers will not report SR-IOV capability.
119  *
120  *   NOTE: Single Root I/O Virtualization support is experimental.
121  *   All the related parameters may be subject to change.
122  *
123  * - `sriov_vq_flexible`
124  *   Indicates the total number of flexible queue resources assignable to all
125  *   the secondary controllers. Implicitly sets the number of primary
126  *   controller's private resources to `(max_ioqpairs - sriov_vq_flexible)`.
127  *
128  * - `sriov_vi_flexible`
129  *   Indicates the total number of flexible interrupt resources assignable to
130  *   all the secondary controllers. Implicitly sets the number of primary
131  *   controller's private resources to `(msix_qsize - sriov_vi_flexible)`.
132  *
133  * - `sriov_max_vi_per_vf`
134  *   Indicates the maximum number of virtual interrupt resources assignable
135  *   to a secondary controller. The default 0 resolves to
136  *   `(sriov_vi_flexible / sriov_max_vfs)`.
137  *
138  * - `sriov_max_vq_per_vf`
139  *   Indicates the maximum number of virtual queue resources assignable to
140  *   a secondary controller. The default 0 resolves to
141  *   `(sriov_vq_flexible / sriov_max_vfs)`.
142  *
143  * nvme namespace device parameters
144  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
145  * - `shared`
146  *   When the parent nvme device (as defined explicitly by the 'bus' parameter
147  *   or implicitly by the most recently defined NvmeBus) is linked to an
148  *   nvme-subsys device, the namespace will be attached to all controllers in
149  *   the subsystem. If set to 'off' (the default), the namespace will remain a
150  *   private namespace and may only be attached to a single controller at a
151  *   time.
152  *
153  * - `detached`
154  *   This parameter is only valid together with the `subsys` parameter. If left
155  *   at the default value (`false/off`), the namespace will be attached to all
156  *   controllers in the NVMe subsystem at boot-up. If set to `true/on`, the
157  *   namespace will be available in the subsystem but not attached to any
158  *   controllers.
159  *
160  * Setting `zoned` to true selects Zoned Command Set at the namespace.
161  * In this case, the following namespace properties are available to configure
162  * zoned operation:
163  *     zoned.zone_size=<zone size in bytes, default: 128MiB>
164  *         The number may be followed by K, M, G as in kilo-, mega- or giga-.
165  *
166  *     zoned.zone_capacity=<zone capacity in bytes, default: zone size>
167  *         The value 0 (default) forces zone capacity to be the same as zone
168  *         size. The value of this property may not exceed zone size.
169  *
170  *     zoned.descr_ext_size=<zone descriptor extension size, default 0>
171  *         This value needs to be specified in 64B units. If it is zero,
172  *         namespace(s) will not support zone descriptor extensions.
173  *
174  *     zoned.max_active=<Maximum Active Resources (zones), default: 0>
175  *         The default value means there is no limit to the number of
176  *         concurrently active zones.
177  *
178  *     zoned.max_open=<Maximum Open Resources (zones), default: 0>
179  *         The default value means there is no limit to the number of
180  *         concurrently open zones.
181  *
182  *     zoned.cross_read=<enable RAZB, default: false>
183  *         Setting this property to true enables Read Across Zone Boundaries.
184  */
185 
186 #include "qemu/osdep.h"
187 #include "qemu/cutils.h"
188 #include "qemu/error-report.h"
189 #include "qemu/log.h"
190 #include "qemu/units.h"
191 #include "qemu/range.h"
192 #include "qapi/error.h"
193 #include "qapi/visitor.h"
194 #include "sysemu/sysemu.h"
195 #include "sysemu/block-backend.h"
196 #include "sysemu/hostmem.h"
197 #include "hw/pci/msix.h"
198 #include "hw/pci/pcie_sriov.h"
199 #include "migration/vmstate.h"
200 
201 #include "nvme.h"
202 #include "dif.h"
203 #include "trace.h"
204 
205 #define NVME_MAX_IOQPAIRS 0xffff
206 #define NVME_DB_SIZE  4
207 #define NVME_SPEC_VER 0x00010400
208 #define NVME_CMB_BIR 2
209 #define NVME_PMR_BIR 4
210 #define NVME_TEMPERATURE 0x143
211 #define NVME_TEMPERATURE_WARNING 0x157
212 #define NVME_TEMPERATURE_CRITICAL 0x175
213 #define NVME_NUM_FW_SLOTS 1
214 #define NVME_DEFAULT_MAX_ZA_SIZE (128 * KiB)
215 #define NVME_MAX_VFS 127
216 #define NVME_VF_RES_GRANULARITY 1
217 #define NVME_VF_OFFSET 0x1
218 #define NVME_VF_STRIDE 1
219 
220 #define NVME_GUEST_ERR(trace, fmt, ...) \
221     do { \
222         (trace_##trace)(__VA_ARGS__); \
223         qemu_log_mask(LOG_GUEST_ERROR, #trace \
224             " in %s: " fmt "\n", __func__, ## __VA_ARGS__); \
225     } while (0)
226 
227 static const bool nvme_feature_support[NVME_FID_MAX] = {
228     [NVME_ARBITRATION]              = true,
229     [NVME_POWER_MANAGEMENT]         = true,
230     [NVME_TEMPERATURE_THRESHOLD]    = true,
231     [NVME_ERROR_RECOVERY]           = true,
232     [NVME_VOLATILE_WRITE_CACHE]     = true,
233     [NVME_NUMBER_OF_QUEUES]         = true,
234     [NVME_INTERRUPT_COALESCING]     = true,
235     [NVME_INTERRUPT_VECTOR_CONF]    = true,
236     [NVME_WRITE_ATOMICITY]          = true,
237     [NVME_ASYNCHRONOUS_EVENT_CONF]  = true,
238     [NVME_TIMESTAMP]                = true,
239     [NVME_HOST_BEHAVIOR_SUPPORT]    = true,
240     [NVME_COMMAND_SET_PROFILE]      = true,
241 };
242 
243 static const uint32_t nvme_feature_cap[NVME_FID_MAX] = {
244     [NVME_TEMPERATURE_THRESHOLD]    = NVME_FEAT_CAP_CHANGE,
245     [NVME_ERROR_RECOVERY]           = NVME_FEAT_CAP_CHANGE | NVME_FEAT_CAP_NS,
246     [NVME_VOLATILE_WRITE_CACHE]     = NVME_FEAT_CAP_CHANGE,
247     [NVME_NUMBER_OF_QUEUES]         = NVME_FEAT_CAP_CHANGE,
248     [NVME_ASYNCHRONOUS_EVENT_CONF]  = NVME_FEAT_CAP_CHANGE,
249     [NVME_TIMESTAMP]                = NVME_FEAT_CAP_CHANGE,
250     [NVME_HOST_BEHAVIOR_SUPPORT]    = NVME_FEAT_CAP_CHANGE,
251     [NVME_COMMAND_SET_PROFILE]      = NVME_FEAT_CAP_CHANGE,
252 };
253 
254 static const uint32_t nvme_cse_acs[256] = {
255     [NVME_ADM_CMD_DELETE_SQ]        = NVME_CMD_EFF_CSUPP,
256     [NVME_ADM_CMD_CREATE_SQ]        = NVME_CMD_EFF_CSUPP,
257     [NVME_ADM_CMD_GET_LOG_PAGE]     = NVME_CMD_EFF_CSUPP,
258     [NVME_ADM_CMD_DELETE_CQ]        = NVME_CMD_EFF_CSUPP,
259     [NVME_ADM_CMD_CREATE_CQ]        = NVME_CMD_EFF_CSUPP,
260     [NVME_ADM_CMD_IDENTIFY]         = NVME_CMD_EFF_CSUPP,
261     [NVME_ADM_CMD_ABORT]            = NVME_CMD_EFF_CSUPP,
262     [NVME_ADM_CMD_SET_FEATURES]     = NVME_CMD_EFF_CSUPP,
263     [NVME_ADM_CMD_GET_FEATURES]     = NVME_CMD_EFF_CSUPP,
264     [NVME_ADM_CMD_ASYNC_EV_REQ]     = NVME_CMD_EFF_CSUPP,
265     [NVME_ADM_CMD_NS_ATTACHMENT]    = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_NIC,
266     [NVME_ADM_CMD_VIRT_MNGMT]       = NVME_CMD_EFF_CSUPP,
267     [NVME_ADM_CMD_DBBUF_CONFIG]     = NVME_CMD_EFF_CSUPP,
268     [NVME_ADM_CMD_FORMAT_NVM]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
269 };
270 
271 static const uint32_t nvme_cse_iocs_none[256];
272 
273 static const uint32_t nvme_cse_iocs_nvm[256] = {
274     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
275     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
276     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
277     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
278     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
279     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
280     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
281     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
282 };
283 
284 static const uint32_t nvme_cse_iocs_zoned[256] = {
285     [NVME_CMD_FLUSH]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
286     [NVME_CMD_WRITE_ZEROES]         = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
287     [NVME_CMD_WRITE]                = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
288     [NVME_CMD_READ]                 = NVME_CMD_EFF_CSUPP,
289     [NVME_CMD_DSM]                  = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
290     [NVME_CMD_VERIFY]               = NVME_CMD_EFF_CSUPP,
291     [NVME_CMD_COPY]                 = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
292     [NVME_CMD_COMPARE]              = NVME_CMD_EFF_CSUPP,
293     [NVME_CMD_ZONE_APPEND]          = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
294     [NVME_CMD_ZONE_MGMT_SEND]       = NVME_CMD_EFF_CSUPP | NVME_CMD_EFF_LBCC,
295     [NVME_CMD_ZONE_MGMT_RECV]       = NVME_CMD_EFF_CSUPP,
296 };
297 
298 static void nvme_process_sq(void *opaque);
299 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst);
300 
301 static uint16_t nvme_sqid(NvmeRequest *req)
302 {
303     return le16_to_cpu(req->sq->sqid);
304 }
305 
306 static void nvme_assign_zone_state(NvmeNamespace *ns, NvmeZone *zone,
307                                    NvmeZoneState state)
308 {
309     if (QTAILQ_IN_USE(zone, entry)) {
310         switch (nvme_get_zone_state(zone)) {
311         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
312             QTAILQ_REMOVE(&ns->exp_open_zones, zone, entry);
313             break;
314         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
315             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
316             break;
317         case NVME_ZONE_STATE_CLOSED:
318             QTAILQ_REMOVE(&ns->closed_zones, zone, entry);
319             break;
320         case NVME_ZONE_STATE_FULL:
321             QTAILQ_REMOVE(&ns->full_zones, zone, entry);
322         default:
323             ;
324         }
325     }
326 
327     nvme_set_zone_state(zone, state);
328 
329     switch (state) {
330     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
331         QTAILQ_INSERT_TAIL(&ns->exp_open_zones, zone, entry);
332         break;
333     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
334         QTAILQ_INSERT_TAIL(&ns->imp_open_zones, zone, entry);
335         break;
336     case NVME_ZONE_STATE_CLOSED:
337         QTAILQ_INSERT_TAIL(&ns->closed_zones, zone, entry);
338         break;
339     case NVME_ZONE_STATE_FULL:
340         QTAILQ_INSERT_TAIL(&ns->full_zones, zone, entry);
341     case NVME_ZONE_STATE_READ_ONLY:
342         break;
343     default:
344         zone->d.za = 0;
345     }
346 }
347 
348 static uint16_t nvme_zns_check_resources(NvmeNamespace *ns, uint32_t act,
349                                          uint32_t opn, uint32_t zrwa)
350 {
351     if (ns->params.max_active_zones != 0 &&
352         ns->nr_active_zones + act > ns->params.max_active_zones) {
353         trace_pci_nvme_err_insuff_active_res(ns->params.max_active_zones);
354         return NVME_ZONE_TOO_MANY_ACTIVE | NVME_DNR;
355     }
356 
357     if (ns->params.max_open_zones != 0 &&
358         ns->nr_open_zones + opn > ns->params.max_open_zones) {
359         trace_pci_nvme_err_insuff_open_res(ns->params.max_open_zones);
360         return NVME_ZONE_TOO_MANY_OPEN | NVME_DNR;
361     }
362 
363     if (zrwa > ns->zns.numzrwa) {
364         return NVME_NOZRWA | NVME_DNR;
365     }
366 
367     return NVME_SUCCESS;
368 }
369 
370 /*
371  * Check if we can open a zone without exceeding open/active limits.
372  * AOR stands for "Active and Open Resources" (see TP 4053 section 2.5).
373  */
374 static uint16_t nvme_aor_check(NvmeNamespace *ns, uint32_t act, uint32_t opn)
375 {
376     return nvme_zns_check_resources(ns, act, opn, 0);
377 }
378 
379 static bool nvme_addr_is_cmb(NvmeCtrl *n, hwaddr addr)
380 {
381     hwaddr hi, lo;
382 
383     if (!n->cmb.cmse) {
384         return false;
385     }
386 
387     lo = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
388     hi = lo + int128_get64(n->cmb.mem.size);
389 
390     return addr >= lo && addr < hi;
391 }
392 
393 static inline void *nvme_addr_to_cmb(NvmeCtrl *n, hwaddr addr)
394 {
395     hwaddr base = n->params.legacy_cmb ? n->cmb.mem.addr : n->cmb.cba;
396     return &n->cmb.buf[addr - base];
397 }
398 
399 static bool nvme_addr_is_pmr(NvmeCtrl *n, hwaddr addr)
400 {
401     hwaddr hi;
402 
403     if (!n->pmr.cmse) {
404         return false;
405     }
406 
407     hi = n->pmr.cba + int128_get64(n->pmr.dev->mr.size);
408 
409     return addr >= n->pmr.cba && addr < hi;
410 }
411 
412 static inline void *nvme_addr_to_pmr(NvmeCtrl *n, hwaddr addr)
413 {
414     return memory_region_get_ram_ptr(&n->pmr.dev->mr) + (addr - n->pmr.cba);
415 }
416 
417 static inline bool nvme_addr_is_iomem(NvmeCtrl *n, hwaddr addr)
418 {
419     hwaddr hi, lo;
420 
421     /*
422      * The purpose of this check is to guard against invalid "local" access to
423      * the iomem (i.e. controller registers). Thus, we check against the range
424      * covered by the 'bar0' MemoryRegion since that is currently composed of
425      * two subregions (the NVMe "MBAR" and the MSI-X table/pba). Note, however,
426      * that if the device model is ever changed to allow the CMB to be located
427      * in BAR0 as well, then this must be changed.
428      */
429     lo = n->bar0.addr;
430     hi = lo + int128_get64(n->bar0.size);
431 
432     return addr >= lo && addr < hi;
433 }
434 
435 static int nvme_addr_read(NvmeCtrl *n, hwaddr addr, void *buf, int size)
436 {
437     hwaddr hi = addr + size - 1;
438     if (hi < addr) {
439         return 1;
440     }
441 
442     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
443         memcpy(buf, nvme_addr_to_cmb(n, addr), size);
444         return 0;
445     }
446 
447     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
448         memcpy(buf, nvme_addr_to_pmr(n, addr), size);
449         return 0;
450     }
451 
452     return pci_dma_read(&n->parent_obj, addr, buf, size);
453 }
454 
455 static int nvme_addr_write(NvmeCtrl *n, hwaddr addr, const void *buf, int size)
456 {
457     hwaddr hi = addr + size - 1;
458     if (hi < addr) {
459         return 1;
460     }
461 
462     if (n->bar.cmbsz && nvme_addr_is_cmb(n, addr) && nvme_addr_is_cmb(n, hi)) {
463         memcpy(nvme_addr_to_cmb(n, addr), buf, size);
464         return 0;
465     }
466 
467     if (nvme_addr_is_pmr(n, addr) && nvme_addr_is_pmr(n, hi)) {
468         memcpy(nvme_addr_to_pmr(n, addr), buf, size);
469         return 0;
470     }
471 
472     return pci_dma_write(&n->parent_obj, addr, buf, size);
473 }
474 
475 static bool nvme_nsid_valid(NvmeCtrl *n, uint32_t nsid)
476 {
477     return nsid &&
478         (nsid == NVME_NSID_BROADCAST || nsid <= NVME_MAX_NAMESPACES);
479 }
480 
481 static int nvme_check_sqid(NvmeCtrl *n, uint16_t sqid)
482 {
483     return sqid < n->conf_ioqpairs + 1 && n->sq[sqid] != NULL ? 0 : -1;
484 }
485 
486 static int nvme_check_cqid(NvmeCtrl *n, uint16_t cqid)
487 {
488     return cqid < n->conf_ioqpairs + 1 && n->cq[cqid] != NULL ? 0 : -1;
489 }
490 
491 static void nvme_inc_cq_tail(NvmeCQueue *cq)
492 {
493     cq->tail++;
494     if (cq->tail >= cq->size) {
495         cq->tail = 0;
496         cq->phase = !cq->phase;
497     }
498 }
499 
500 static void nvme_inc_sq_head(NvmeSQueue *sq)
501 {
502     sq->head = (sq->head + 1) % sq->size;
503 }
504 
505 static uint8_t nvme_cq_full(NvmeCQueue *cq)
506 {
507     return (cq->tail + 1) % cq->size == cq->head;
508 }
509 
510 static uint8_t nvme_sq_empty(NvmeSQueue *sq)
511 {
512     return sq->head == sq->tail;
513 }
514 
515 static void nvme_irq_check(NvmeCtrl *n)
516 {
517     uint32_t intms = ldl_le_p(&n->bar.intms);
518 
519     if (msix_enabled(&(n->parent_obj))) {
520         return;
521     }
522     if (~intms & n->irq_status) {
523         pci_irq_assert(&n->parent_obj);
524     } else {
525         pci_irq_deassert(&n->parent_obj);
526     }
527 }
528 
529 static void nvme_irq_assert(NvmeCtrl *n, NvmeCQueue *cq)
530 {
531     if (cq->irq_enabled) {
532         if (msix_enabled(&(n->parent_obj))) {
533             trace_pci_nvme_irq_msix(cq->vector);
534             msix_notify(&(n->parent_obj), cq->vector);
535         } else {
536             trace_pci_nvme_irq_pin();
537             assert(cq->vector < 32);
538             n->irq_status |= 1 << cq->vector;
539             nvme_irq_check(n);
540         }
541     } else {
542         trace_pci_nvme_irq_masked();
543     }
544 }
545 
546 static void nvme_irq_deassert(NvmeCtrl *n, NvmeCQueue *cq)
547 {
548     if (cq->irq_enabled) {
549         if (msix_enabled(&(n->parent_obj))) {
550             return;
551         } else {
552             assert(cq->vector < 32);
553             if (!n->cq_pending) {
554                 n->irq_status &= ~(1 << cq->vector);
555             }
556             nvme_irq_check(n);
557         }
558     }
559 }
560 
561 static void nvme_req_clear(NvmeRequest *req)
562 {
563     req->ns = NULL;
564     req->opaque = NULL;
565     req->aiocb = NULL;
566     memset(&req->cqe, 0x0, sizeof(req->cqe));
567     req->status = NVME_SUCCESS;
568 }
569 
570 static inline void nvme_sg_init(NvmeCtrl *n, NvmeSg *sg, bool dma)
571 {
572     if (dma) {
573         pci_dma_sglist_init(&sg->qsg, &n->parent_obj, 0);
574         sg->flags = NVME_SG_DMA;
575     } else {
576         qemu_iovec_init(&sg->iov, 0);
577     }
578 
579     sg->flags |= NVME_SG_ALLOC;
580 }
581 
582 static inline void nvme_sg_unmap(NvmeSg *sg)
583 {
584     if (!(sg->flags & NVME_SG_ALLOC)) {
585         return;
586     }
587 
588     if (sg->flags & NVME_SG_DMA) {
589         qemu_sglist_destroy(&sg->qsg);
590     } else {
591         qemu_iovec_destroy(&sg->iov);
592     }
593 
594     memset(sg, 0x0, sizeof(*sg));
595 }
596 
597 /*
598  * When metadata is transfered as extended LBAs, the DPTR mapped into `sg`
599  * holds both data and metadata. This function splits the data and metadata
600  * into two separate QSG/IOVs.
601  */
602 static void nvme_sg_split(NvmeSg *sg, NvmeNamespace *ns, NvmeSg *data,
603                           NvmeSg *mdata)
604 {
605     NvmeSg *dst = data;
606     uint32_t trans_len, count = ns->lbasz;
607     uint64_t offset = 0;
608     bool dma = sg->flags & NVME_SG_DMA;
609     size_t sge_len;
610     size_t sg_len = dma ? sg->qsg.size : sg->iov.size;
611     int sg_idx = 0;
612 
613     assert(sg->flags & NVME_SG_ALLOC);
614 
615     while (sg_len) {
616         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
617 
618         trans_len = MIN(sg_len, count);
619         trans_len = MIN(trans_len, sge_len - offset);
620 
621         if (dst) {
622             if (dma) {
623                 qemu_sglist_add(&dst->qsg, sg->qsg.sg[sg_idx].base + offset,
624                                 trans_len);
625             } else {
626                 qemu_iovec_add(&dst->iov,
627                                sg->iov.iov[sg_idx].iov_base + offset,
628                                trans_len);
629             }
630         }
631 
632         sg_len -= trans_len;
633         count -= trans_len;
634         offset += trans_len;
635 
636         if (count == 0) {
637             dst = (dst == data) ? mdata : data;
638             count = (dst == data) ? ns->lbasz : ns->lbaf.ms;
639         }
640 
641         if (sge_len == offset) {
642             offset = 0;
643             sg_idx++;
644         }
645     }
646 }
647 
648 static uint16_t nvme_map_addr_cmb(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
649                                   size_t len)
650 {
651     if (!len) {
652         return NVME_SUCCESS;
653     }
654 
655     trace_pci_nvme_map_addr_cmb(addr, len);
656 
657     if (!nvme_addr_is_cmb(n, addr) || !nvme_addr_is_cmb(n, addr + len - 1)) {
658         return NVME_DATA_TRAS_ERROR;
659     }
660 
661     qemu_iovec_add(iov, nvme_addr_to_cmb(n, addr), len);
662 
663     return NVME_SUCCESS;
664 }
665 
666 static uint16_t nvme_map_addr_pmr(NvmeCtrl *n, QEMUIOVector *iov, hwaddr addr,
667                                   size_t len)
668 {
669     if (!len) {
670         return NVME_SUCCESS;
671     }
672 
673     if (!nvme_addr_is_pmr(n, addr) || !nvme_addr_is_pmr(n, addr + len - 1)) {
674         return NVME_DATA_TRAS_ERROR;
675     }
676 
677     qemu_iovec_add(iov, nvme_addr_to_pmr(n, addr), len);
678 
679     return NVME_SUCCESS;
680 }
681 
682 static uint16_t nvme_map_addr(NvmeCtrl *n, NvmeSg *sg, hwaddr addr, size_t len)
683 {
684     bool cmb = false, pmr = false;
685 
686     if (!len) {
687         return NVME_SUCCESS;
688     }
689 
690     trace_pci_nvme_map_addr(addr, len);
691 
692     if (nvme_addr_is_iomem(n, addr)) {
693         return NVME_DATA_TRAS_ERROR;
694     }
695 
696     if (nvme_addr_is_cmb(n, addr)) {
697         cmb = true;
698     } else if (nvme_addr_is_pmr(n, addr)) {
699         pmr = true;
700     }
701 
702     if (cmb || pmr) {
703         if (sg->flags & NVME_SG_DMA) {
704             return NVME_INVALID_USE_OF_CMB | NVME_DNR;
705         }
706 
707         if (sg->iov.niov + 1 > IOV_MAX) {
708             goto max_mappings_exceeded;
709         }
710 
711         if (cmb) {
712             return nvme_map_addr_cmb(n, &sg->iov, addr, len);
713         } else {
714             return nvme_map_addr_pmr(n, &sg->iov, addr, len);
715         }
716     }
717 
718     if (!(sg->flags & NVME_SG_DMA)) {
719         return NVME_INVALID_USE_OF_CMB | NVME_DNR;
720     }
721 
722     if (sg->qsg.nsg + 1 > IOV_MAX) {
723         goto max_mappings_exceeded;
724     }
725 
726     qemu_sglist_add(&sg->qsg, addr, len);
727 
728     return NVME_SUCCESS;
729 
730 max_mappings_exceeded:
731     NVME_GUEST_ERR(pci_nvme_ub_too_many_mappings,
732                    "number of mappings exceed 1024");
733     return NVME_INTERNAL_DEV_ERROR | NVME_DNR;
734 }
735 
736 static inline bool nvme_addr_is_dma(NvmeCtrl *n, hwaddr addr)
737 {
738     return !(nvme_addr_is_cmb(n, addr) || nvme_addr_is_pmr(n, addr));
739 }
740 
741 static uint16_t nvme_map_prp(NvmeCtrl *n, NvmeSg *sg, uint64_t prp1,
742                              uint64_t prp2, uint32_t len)
743 {
744     hwaddr trans_len = n->page_size - (prp1 % n->page_size);
745     trans_len = MIN(len, trans_len);
746     int num_prps = (len >> n->page_bits) + 1;
747     uint16_t status;
748     int ret;
749 
750     trace_pci_nvme_map_prp(trans_len, len, prp1, prp2, num_prps);
751 
752     nvme_sg_init(n, sg, nvme_addr_is_dma(n, prp1));
753 
754     status = nvme_map_addr(n, sg, prp1, trans_len);
755     if (status) {
756         goto unmap;
757     }
758 
759     len -= trans_len;
760     if (len) {
761         if (len > n->page_size) {
762             uint64_t prp_list[n->max_prp_ents];
763             uint32_t nents, prp_trans;
764             int i = 0;
765 
766             /*
767              * The first PRP list entry, pointed to by PRP2 may contain offset.
768              * Hence, we need to calculate the number of entries in based on
769              * that offset.
770              */
771             nents = (n->page_size - (prp2 & (n->page_size - 1))) >> 3;
772             prp_trans = MIN(n->max_prp_ents, nents) * sizeof(uint64_t);
773             ret = nvme_addr_read(n, prp2, (void *)prp_list, prp_trans);
774             if (ret) {
775                 trace_pci_nvme_err_addr_read(prp2);
776                 status = NVME_DATA_TRAS_ERROR;
777                 goto unmap;
778             }
779             while (len != 0) {
780                 uint64_t prp_ent = le64_to_cpu(prp_list[i]);
781 
782                 if (i == nents - 1 && len > n->page_size) {
783                     if (unlikely(prp_ent & (n->page_size - 1))) {
784                         trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
785                         status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
786                         goto unmap;
787                     }
788 
789                     i = 0;
790                     nents = (len + n->page_size - 1) >> n->page_bits;
791                     nents = MIN(nents, n->max_prp_ents);
792                     prp_trans = nents * sizeof(uint64_t);
793                     ret = nvme_addr_read(n, prp_ent, (void *)prp_list,
794                                          prp_trans);
795                     if (ret) {
796                         trace_pci_nvme_err_addr_read(prp_ent);
797                         status = NVME_DATA_TRAS_ERROR;
798                         goto unmap;
799                     }
800                     prp_ent = le64_to_cpu(prp_list[i]);
801                 }
802 
803                 if (unlikely(prp_ent & (n->page_size - 1))) {
804                     trace_pci_nvme_err_invalid_prplist_ent(prp_ent);
805                     status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
806                     goto unmap;
807                 }
808 
809                 trans_len = MIN(len, n->page_size);
810                 status = nvme_map_addr(n, sg, prp_ent, trans_len);
811                 if (status) {
812                     goto unmap;
813                 }
814 
815                 len -= trans_len;
816                 i++;
817             }
818         } else {
819             if (unlikely(prp2 & (n->page_size - 1))) {
820                 trace_pci_nvme_err_invalid_prp2_align(prp2);
821                 status = NVME_INVALID_PRP_OFFSET | NVME_DNR;
822                 goto unmap;
823             }
824             status = nvme_map_addr(n, sg, prp2, len);
825             if (status) {
826                 goto unmap;
827             }
828         }
829     }
830 
831     return NVME_SUCCESS;
832 
833 unmap:
834     nvme_sg_unmap(sg);
835     return status;
836 }
837 
838 /*
839  * Map 'nsgld' data descriptors from 'segment'. The function will subtract the
840  * number of bytes mapped in len.
841  */
842 static uint16_t nvme_map_sgl_data(NvmeCtrl *n, NvmeSg *sg,
843                                   NvmeSglDescriptor *segment, uint64_t nsgld,
844                                   size_t *len, NvmeCmd *cmd)
845 {
846     dma_addr_t addr, trans_len;
847     uint32_t dlen;
848     uint16_t status;
849 
850     for (int i = 0; i < nsgld; i++) {
851         uint8_t type = NVME_SGL_TYPE(segment[i].type);
852 
853         switch (type) {
854         case NVME_SGL_DESCR_TYPE_DATA_BLOCK:
855             break;
856         case NVME_SGL_DESCR_TYPE_SEGMENT:
857         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
858             return NVME_INVALID_NUM_SGL_DESCRS | NVME_DNR;
859         default:
860             return NVME_SGL_DESCR_TYPE_INVALID | NVME_DNR;
861         }
862 
863         dlen = le32_to_cpu(segment[i].len);
864 
865         if (!dlen) {
866             continue;
867         }
868 
869         if (*len == 0) {
870             /*
871              * All data has been mapped, but the SGL contains additional
872              * segments and/or descriptors. The controller might accept
873              * ignoring the rest of the SGL.
874              */
875             uint32_t sgls = le32_to_cpu(n->id_ctrl.sgls);
876             if (sgls & NVME_CTRL_SGLS_EXCESS_LENGTH) {
877                 break;
878             }
879 
880             trace_pci_nvme_err_invalid_sgl_excess_length(dlen);
881             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
882         }
883 
884         trans_len = MIN(*len, dlen);
885 
886         addr = le64_to_cpu(segment[i].addr);
887 
888         if (UINT64_MAX - addr < dlen) {
889             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
890         }
891 
892         status = nvme_map_addr(n, sg, addr, trans_len);
893         if (status) {
894             return status;
895         }
896 
897         *len -= trans_len;
898     }
899 
900     return NVME_SUCCESS;
901 }
902 
903 static uint16_t nvme_map_sgl(NvmeCtrl *n, NvmeSg *sg, NvmeSglDescriptor sgl,
904                              size_t len, NvmeCmd *cmd)
905 {
906     /*
907      * Read the segment in chunks of 256 descriptors (one 4k page) to avoid
908      * dynamically allocating a potentially huge SGL. The spec allows the SGL
909      * to be larger (as in number of bytes required to describe the SGL
910      * descriptors and segment chain) than the command transfer size, so it is
911      * not bounded by MDTS.
912      */
913     const int SEG_CHUNK_SIZE = 256;
914 
915     NvmeSglDescriptor segment[SEG_CHUNK_SIZE], *sgld, *last_sgld;
916     uint64_t nsgld;
917     uint32_t seg_len;
918     uint16_t status;
919     hwaddr addr;
920     int ret;
921 
922     sgld = &sgl;
923     addr = le64_to_cpu(sgl.addr);
924 
925     trace_pci_nvme_map_sgl(NVME_SGL_TYPE(sgl.type), len);
926 
927     nvme_sg_init(n, sg, nvme_addr_is_dma(n, addr));
928 
929     /*
930      * If the entire transfer can be described with a single data block it can
931      * be mapped directly.
932      */
933     if (NVME_SGL_TYPE(sgl.type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
934         status = nvme_map_sgl_data(n, sg, sgld, 1, &len, cmd);
935         if (status) {
936             goto unmap;
937         }
938 
939         goto out;
940     }
941 
942     for (;;) {
943         switch (NVME_SGL_TYPE(sgld->type)) {
944         case NVME_SGL_DESCR_TYPE_SEGMENT:
945         case NVME_SGL_DESCR_TYPE_LAST_SEGMENT:
946             break;
947         default:
948             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
949         }
950 
951         seg_len = le32_to_cpu(sgld->len);
952 
953         /* check the length of the (Last) Segment descriptor */
954         if (!seg_len || seg_len & 0xf) {
955             return NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
956         }
957 
958         if (UINT64_MAX - addr < seg_len) {
959             return NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
960         }
961 
962         nsgld = seg_len / sizeof(NvmeSglDescriptor);
963 
964         while (nsgld > SEG_CHUNK_SIZE) {
965             if (nvme_addr_read(n, addr, segment, sizeof(segment))) {
966                 trace_pci_nvme_err_addr_read(addr);
967                 status = NVME_DATA_TRAS_ERROR;
968                 goto unmap;
969             }
970 
971             status = nvme_map_sgl_data(n, sg, segment, SEG_CHUNK_SIZE,
972                                        &len, cmd);
973             if (status) {
974                 goto unmap;
975             }
976 
977             nsgld -= SEG_CHUNK_SIZE;
978             addr += SEG_CHUNK_SIZE * sizeof(NvmeSglDescriptor);
979         }
980 
981         ret = nvme_addr_read(n, addr, segment, nsgld *
982                              sizeof(NvmeSglDescriptor));
983         if (ret) {
984             trace_pci_nvme_err_addr_read(addr);
985             status = NVME_DATA_TRAS_ERROR;
986             goto unmap;
987         }
988 
989         last_sgld = &segment[nsgld - 1];
990 
991         /*
992          * If the segment ends with a Data Block, then we are done.
993          */
994         if (NVME_SGL_TYPE(last_sgld->type) == NVME_SGL_DESCR_TYPE_DATA_BLOCK) {
995             status = nvme_map_sgl_data(n, sg, segment, nsgld, &len, cmd);
996             if (status) {
997                 goto unmap;
998             }
999 
1000             goto out;
1001         }
1002 
1003         /*
1004          * If the last descriptor was not a Data Block, then the current
1005          * segment must not be a Last Segment.
1006          */
1007         if (NVME_SGL_TYPE(sgld->type) == NVME_SGL_DESCR_TYPE_LAST_SEGMENT) {
1008             status = NVME_INVALID_SGL_SEG_DESCR | NVME_DNR;
1009             goto unmap;
1010         }
1011 
1012         sgld = last_sgld;
1013         addr = le64_to_cpu(sgld->addr);
1014 
1015         /*
1016          * Do not map the last descriptor; it will be a Segment or Last Segment
1017          * descriptor and is handled by the next iteration.
1018          */
1019         status = nvme_map_sgl_data(n, sg, segment, nsgld - 1, &len, cmd);
1020         if (status) {
1021             goto unmap;
1022         }
1023     }
1024 
1025 out:
1026     /* if there is any residual left in len, the SGL was too short */
1027     if (len) {
1028         status = NVME_DATA_SGL_LEN_INVALID | NVME_DNR;
1029         goto unmap;
1030     }
1031 
1032     return NVME_SUCCESS;
1033 
1034 unmap:
1035     nvme_sg_unmap(sg);
1036     return status;
1037 }
1038 
1039 uint16_t nvme_map_dptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1040                        NvmeCmd *cmd)
1041 {
1042     uint64_t prp1, prp2;
1043 
1044     switch (NVME_CMD_FLAGS_PSDT(cmd->flags)) {
1045     case NVME_PSDT_PRP:
1046         prp1 = le64_to_cpu(cmd->dptr.prp1);
1047         prp2 = le64_to_cpu(cmd->dptr.prp2);
1048 
1049         return nvme_map_prp(n, sg, prp1, prp2, len);
1050     case NVME_PSDT_SGL_MPTR_CONTIGUOUS:
1051     case NVME_PSDT_SGL_MPTR_SGL:
1052         return nvme_map_sgl(n, sg, cmd->dptr.sgl, len, cmd);
1053     default:
1054         return NVME_INVALID_FIELD;
1055     }
1056 }
1057 
1058 static uint16_t nvme_map_mptr(NvmeCtrl *n, NvmeSg *sg, size_t len,
1059                               NvmeCmd *cmd)
1060 {
1061     int psdt = NVME_CMD_FLAGS_PSDT(cmd->flags);
1062     hwaddr mptr = le64_to_cpu(cmd->mptr);
1063     uint16_t status;
1064 
1065     if (psdt == NVME_PSDT_SGL_MPTR_SGL) {
1066         NvmeSglDescriptor sgl;
1067 
1068         if (nvme_addr_read(n, mptr, &sgl, sizeof(sgl))) {
1069             return NVME_DATA_TRAS_ERROR;
1070         }
1071 
1072         status = nvme_map_sgl(n, sg, sgl, len, cmd);
1073         if (status && (status & 0x7ff) == NVME_DATA_SGL_LEN_INVALID) {
1074             status = NVME_MD_SGL_LEN_INVALID | NVME_DNR;
1075         }
1076 
1077         return status;
1078     }
1079 
1080     nvme_sg_init(n, sg, nvme_addr_is_dma(n, mptr));
1081     status = nvme_map_addr(n, sg, mptr, len);
1082     if (status) {
1083         nvme_sg_unmap(sg);
1084     }
1085 
1086     return status;
1087 }
1088 
1089 static uint16_t nvme_map_data(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1090 {
1091     NvmeNamespace *ns = req->ns;
1092     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1093     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1094     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1095     size_t len = nvme_l2b(ns, nlb);
1096     uint16_t status;
1097 
1098     if (nvme_ns_ext(ns) &&
1099         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1100         NvmeSg sg;
1101 
1102         len += nvme_m2b(ns, nlb);
1103 
1104         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1105         if (status) {
1106             return status;
1107         }
1108 
1109         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1110         nvme_sg_split(&sg, ns, &req->sg, NULL);
1111         nvme_sg_unmap(&sg);
1112 
1113         return NVME_SUCCESS;
1114     }
1115 
1116     return nvme_map_dptr(n, &req->sg, len, &req->cmd);
1117 }
1118 
1119 static uint16_t nvme_map_mdata(NvmeCtrl *n, uint32_t nlb, NvmeRequest *req)
1120 {
1121     NvmeNamespace *ns = req->ns;
1122     size_t len = nvme_m2b(ns, nlb);
1123     uint16_t status;
1124 
1125     if (nvme_ns_ext(ns)) {
1126         NvmeSg sg;
1127 
1128         len += nvme_l2b(ns, nlb);
1129 
1130         status = nvme_map_dptr(n, &sg, len, &req->cmd);
1131         if (status) {
1132             return status;
1133         }
1134 
1135         nvme_sg_init(n, &req->sg, sg.flags & NVME_SG_DMA);
1136         nvme_sg_split(&sg, ns, NULL, &req->sg);
1137         nvme_sg_unmap(&sg);
1138 
1139         return NVME_SUCCESS;
1140     }
1141 
1142     return nvme_map_mptr(n, &req->sg, len, &req->cmd);
1143 }
1144 
1145 static uint16_t nvme_tx_interleaved(NvmeCtrl *n, NvmeSg *sg, uint8_t *ptr,
1146                                     uint32_t len, uint32_t bytes,
1147                                     int32_t skip_bytes, int64_t offset,
1148                                     NvmeTxDirection dir)
1149 {
1150     hwaddr addr;
1151     uint32_t trans_len, count = bytes;
1152     bool dma = sg->flags & NVME_SG_DMA;
1153     int64_t sge_len;
1154     int sg_idx = 0;
1155     int ret;
1156 
1157     assert(sg->flags & NVME_SG_ALLOC);
1158 
1159     while (len) {
1160         sge_len = dma ? sg->qsg.sg[sg_idx].len : sg->iov.iov[sg_idx].iov_len;
1161 
1162         if (sge_len - offset < 0) {
1163             offset -= sge_len;
1164             sg_idx++;
1165             continue;
1166         }
1167 
1168         if (sge_len == offset) {
1169             offset = 0;
1170             sg_idx++;
1171             continue;
1172         }
1173 
1174         trans_len = MIN(len, count);
1175         trans_len = MIN(trans_len, sge_len - offset);
1176 
1177         if (dma) {
1178             addr = sg->qsg.sg[sg_idx].base + offset;
1179         } else {
1180             addr = (hwaddr)(uintptr_t)sg->iov.iov[sg_idx].iov_base + offset;
1181         }
1182 
1183         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1184             ret = nvme_addr_read(n, addr, ptr, trans_len);
1185         } else {
1186             ret = nvme_addr_write(n, addr, ptr, trans_len);
1187         }
1188 
1189         if (ret) {
1190             return NVME_DATA_TRAS_ERROR;
1191         }
1192 
1193         ptr += trans_len;
1194         len -= trans_len;
1195         count -= trans_len;
1196         offset += trans_len;
1197 
1198         if (count == 0) {
1199             count = bytes;
1200             offset += skip_bytes;
1201         }
1202     }
1203 
1204     return NVME_SUCCESS;
1205 }
1206 
1207 static uint16_t nvme_tx(NvmeCtrl *n, NvmeSg *sg, void *ptr, uint32_t len,
1208                         NvmeTxDirection dir)
1209 {
1210     assert(sg->flags & NVME_SG_ALLOC);
1211 
1212     if (sg->flags & NVME_SG_DMA) {
1213         const MemTxAttrs attrs = MEMTXATTRS_UNSPECIFIED;
1214         dma_addr_t residual;
1215 
1216         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1217             dma_buf_write(ptr, len, &residual, &sg->qsg, attrs);
1218         } else {
1219             dma_buf_read(ptr, len, &residual, &sg->qsg, attrs);
1220         }
1221 
1222         if (unlikely(residual)) {
1223             trace_pci_nvme_err_invalid_dma();
1224             return NVME_INVALID_FIELD | NVME_DNR;
1225         }
1226     } else {
1227         size_t bytes;
1228 
1229         if (dir == NVME_TX_DIRECTION_TO_DEVICE) {
1230             bytes = qemu_iovec_to_buf(&sg->iov, 0, ptr, len);
1231         } else {
1232             bytes = qemu_iovec_from_buf(&sg->iov, 0, ptr, len);
1233         }
1234 
1235         if (unlikely(bytes != len)) {
1236             trace_pci_nvme_err_invalid_dma();
1237             return NVME_INVALID_FIELD | NVME_DNR;
1238         }
1239     }
1240 
1241     return NVME_SUCCESS;
1242 }
1243 
1244 static inline uint16_t nvme_c2h(NvmeCtrl *n, void *ptr, uint32_t len,
1245                                 NvmeRequest *req)
1246 {
1247     uint16_t status;
1248 
1249     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1250     if (status) {
1251         return status;
1252     }
1253 
1254     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_FROM_DEVICE);
1255 }
1256 
1257 static inline uint16_t nvme_h2c(NvmeCtrl *n, void *ptr, uint32_t len,
1258                                 NvmeRequest *req)
1259 {
1260     uint16_t status;
1261 
1262     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
1263     if (status) {
1264         return status;
1265     }
1266 
1267     return nvme_tx(n, &req->sg, ptr, len, NVME_TX_DIRECTION_TO_DEVICE);
1268 }
1269 
1270 uint16_t nvme_bounce_data(NvmeCtrl *n, void *ptr, uint32_t len,
1271                           NvmeTxDirection dir, NvmeRequest *req)
1272 {
1273     NvmeNamespace *ns = req->ns;
1274     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1275     bool pi = !!NVME_ID_NS_DPS_TYPE(ns->id_ns.dps);
1276     bool pract = !!(le16_to_cpu(rw->control) & NVME_RW_PRINFO_PRACT);
1277 
1278     if (nvme_ns_ext(ns) &&
1279         !(pi && pract && ns->lbaf.ms == nvme_pi_tuple_size(ns))) {
1280         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbasz,
1281                                    ns->lbaf.ms, 0, dir);
1282     }
1283 
1284     return nvme_tx(n, &req->sg, ptr, len, dir);
1285 }
1286 
1287 uint16_t nvme_bounce_mdata(NvmeCtrl *n, void *ptr, uint32_t len,
1288                            NvmeTxDirection dir, NvmeRequest *req)
1289 {
1290     NvmeNamespace *ns = req->ns;
1291     uint16_t status;
1292 
1293     if (nvme_ns_ext(ns)) {
1294         return nvme_tx_interleaved(n, &req->sg, ptr, len, ns->lbaf.ms,
1295                                    ns->lbasz, ns->lbasz, dir);
1296     }
1297 
1298     nvme_sg_unmap(&req->sg);
1299 
1300     status = nvme_map_mptr(n, &req->sg, len, &req->cmd);
1301     if (status) {
1302         return status;
1303     }
1304 
1305     return nvme_tx(n, &req->sg, ptr, len, dir);
1306 }
1307 
1308 static inline void nvme_blk_read(BlockBackend *blk, int64_t offset,
1309                                  BlockCompletionFunc *cb, NvmeRequest *req)
1310 {
1311     assert(req->sg.flags & NVME_SG_ALLOC);
1312 
1313     if (req->sg.flags & NVME_SG_DMA) {
1314         req->aiocb = dma_blk_read(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1315                                   cb, req);
1316     } else {
1317         req->aiocb = blk_aio_preadv(blk, offset, &req->sg.iov, 0, cb, req);
1318     }
1319 }
1320 
1321 static inline void nvme_blk_write(BlockBackend *blk, int64_t offset,
1322                                   BlockCompletionFunc *cb, NvmeRequest *req)
1323 {
1324     assert(req->sg.flags & NVME_SG_ALLOC);
1325 
1326     if (req->sg.flags & NVME_SG_DMA) {
1327         req->aiocb = dma_blk_write(blk, &req->sg.qsg, offset, BDRV_SECTOR_SIZE,
1328                                    cb, req);
1329     } else {
1330         req->aiocb = blk_aio_pwritev(blk, offset, &req->sg.iov, 0, cb, req);
1331     }
1332 }
1333 
1334 static void nvme_update_cq_head(NvmeCQueue *cq)
1335 {
1336     pci_dma_read(&cq->ctrl->parent_obj, cq->db_addr, &cq->head,
1337             sizeof(cq->head));
1338     trace_pci_nvme_shadow_doorbell_cq(cq->cqid, cq->head);
1339 }
1340 
1341 static void nvme_post_cqes(void *opaque)
1342 {
1343     NvmeCQueue *cq = opaque;
1344     NvmeCtrl *n = cq->ctrl;
1345     NvmeRequest *req, *next;
1346     bool pending = cq->head != cq->tail;
1347     int ret;
1348 
1349     QTAILQ_FOREACH_SAFE(req, &cq->req_list, entry, next) {
1350         NvmeSQueue *sq;
1351         hwaddr addr;
1352 
1353         if (n->dbbuf_enabled) {
1354             nvme_update_cq_head(cq);
1355         }
1356 
1357         if (nvme_cq_full(cq)) {
1358             break;
1359         }
1360 
1361         sq = req->sq;
1362         req->cqe.status = cpu_to_le16((req->status << 1) | cq->phase);
1363         req->cqe.sq_id = cpu_to_le16(sq->sqid);
1364         req->cqe.sq_head = cpu_to_le16(sq->head);
1365         addr = cq->dma_addr + cq->tail * n->cqe_size;
1366         ret = pci_dma_write(&n->parent_obj, addr, (void *)&req->cqe,
1367                             sizeof(req->cqe));
1368         if (ret) {
1369             trace_pci_nvme_err_addr_write(addr);
1370             trace_pci_nvme_err_cfs();
1371             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
1372             break;
1373         }
1374         QTAILQ_REMOVE(&cq->req_list, req, entry);
1375         nvme_inc_cq_tail(cq);
1376         nvme_sg_unmap(&req->sg);
1377         QTAILQ_INSERT_TAIL(&sq->req_list, req, entry);
1378     }
1379     if (cq->tail != cq->head) {
1380         if (cq->irq_enabled && !pending) {
1381             n->cq_pending++;
1382         }
1383 
1384         nvme_irq_assert(n, cq);
1385     }
1386 }
1387 
1388 static void nvme_enqueue_req_completion(NvmeCQueue *cq, NvmeRequest *req)
1389 {
1390     assert(cq->cqid == req->sq->cqid);
1391     trace_pci_nvme_enqueue_req_completion(nvme_cid(req), cq->cqid,
1392                                           le32_to_cpu(req->cqe.result),
1393                                           le32_to_cpu(req->cqe.dw1),
1394                                           req->status);
1395 
1396     if (req->status) {
1397         trace_pci_nvme_err_req_status(nvme_cid(req), nvme_nsid(req->ns),
1398                                       req->status, req->cmd.opcode);
1399     }
1400 
1401     QTAILQ_REMOVE(&req->sq->out_req_list, req, entry);
1402     QTAILQ_INSERT_TAIL(&cq->req_list, req, entry);
1403     timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
1404 }
1405 
1406 static void nvme_process_aers(void *opaque)
1407 {
1408     NvmeCtrl *n = opaque;
1409     NvmeAsyncEvent *event, *next;
1410 
1411     trace_pci_nvme_process_aers(n->aer_queued);
1412 
1413     QTAILQ_FOREACH_SAFE(event, &n->aer_queue, entry, next) {
1414         NvmeRequest *req;
1415         NvmeAerResult *result;
1416 
1417         /* can't post cqe if there is nothing to complete */
1418         if (!n->outstanding_aers) {
1419             trace_pci_nvme_no_outstanding_aers();
1420             break;
1421         }
1422 
1423         /* ignore if masked (cqe posted, but event not cleared) */
1424         if (n->aer_mask & (1 << event->result.event_type)) {
1425             trace_pci_nvme_aer_masked(event->result.event_type, n->aer_mask);
1426             continue;
1427         }
1428 
1429         QTAILQ_REMOVE(&n->aer_queue, event, entry);
1430         n->aer_queued--;
1431 
1432         n->aer_mask |= 1 << event->result.event_type;
1433         n->outstanding_aers--;
1434 
1435         req = n->aer_reqs[n->outstanding_aers];
1436 
1437         result = (NvmeAerResult *) &req->cqe.result;
1438         result->event_type = event->result.event_type;
1439         result->event_info = event->result.event_info;
1440         result->log_page = event->result.log_page;
1441         g_free(event);
1442 
1443         trace_pci_nvme_aer_post_cqe(result->event_type, result->event_info,
1444                                     result->log_page);
1445 
1446         nvme_enqueue_req_completion(&n->admin_cq, req);
1447     }
1448 }
1449 
1450 static void nvme_enqueue_event(NvmeCtrl *n, uint8_t event_type,
1451                                uint8_t event_info, uint8_t log_page)
1452 {
1453     NvmeAsyncEvent *event;
1454 
1455     trace_pci_nvme_enqueue_event(event_type, event_info, log_page);
1456 
1457     if (n->aer_queued == n->params.aer_max_queued) {
1458         trace_pci_nvme_enqueue_event_noqueue(n->aer_queued);
1459         return;
1460     }
1461 
1462     event = g_new(NvmeAsyncEvent, 1);
1463     event->result = (NvmeAerResult) {
1464         .event_type = event_type,
1465         .event_info = event_info,
1466         .log_page   = log_page,
1467     };
1468 
1469     QTAILQ_INSERT_TAIL(&n->aer_queue, event, entry);
1470     n->aer_queued++;
1471 
1472     nvme_process_aers(n);
1473 }
1474 
1475 static void nvme_smart_event(NvmeCtrl *n, uint8_t event)
1476 {
1477     uint8_t aer_info;
1478 
1479     /* Ref SPEC <Asynchronous Event Information 0x2013 SMART / Health Status> */
1480     if (!(NVME_AEC_SMART(n->features.async_config) & event)) {
1481         return;
1482     }
1483 
1484     switch (event) {
1485     case NVME_SMART_SPARE:
1486         aer_info = NVME_AER_INFO_SMART_SPARE_THRESH;
1487         break;
1488     case NVME_SMART_TEMPERATURE:
1489         aer_info = NVME_AER_INFO_SMART_TEMP_THRESH;
1490         break;
1491     case NVME_SMART_RELIABILITY:
1492     case NVME_SMART_MEDIA_READ_ONLY:
1493     case NVME_SMART_FAILED_VOLATILE_MEDIA:
1494     case NVME_SMART_PMR_UNRELIABLE:
1495         aer_info = NVME_AER_INFO_SMART_RELIABILITY;
1496         break;
1497     default:
1498         return;
1499     }
1500 
1501     nvme_enqueue_event(n, NVME_AER_TYPE_SMART, aer_info, NVME_LOG_SMART_INFO);
1502 }
1503 
1504 static void nvme_clear_events(NvmeCtrl *n, uint8_t event_type)
1505 {
1506     n->aer_mask &= ~(1 << event_type);
1507     if (!QTAILQ_EMPTY(&n->aer_queue)) {
1508         nvme_process_aers(n);
1509     }
1510 }
1511 
1512 static inline uint16_t nvme_check_mdts(NvmeCtrl *n, size_t len)
1513 {
1514     uint8_t mdts = n->params.mdts;
1515 
1516     if (mdts && len > n->page_size << mdts) {
1517         trace_pci_nvme_err_mdts(len);
1518         return NVME_INVALID_FIELD | NVME_DNR;
1519     }
1520 
1521     return NVME_SUCCESS;
1522 }
1523 
1524 static inline uint16_t nvme_check_bounds(NvmeNamespace *ns, uint64_t slba,
1525                                          uint32_t nlb)
1526 {
1527     uint64_t nsze = le64_to_cpu(ns->id_ns.nsze);
1528 
1529     if (unlikely(UINT64_MAX - slba < nlb || slba + nlb > nsze)) {
1530         trace_pci_nvme_err_invalid_lba_range(slba, nlb, nsze);
1531         return NVME_LBA_RANGE | NVME_DNR;
1532     }
1533 
1534     return NVME_SUCCESS;
1535 }
1536 
1537 static int nvme_block_status_all(NvmeNamespace *ns, uint64_t slba,
1538                                  uint32_t nlb, int flags)
1539 {
1540     BlockDriverState *bs = blk_bs(ns->blkconf.blk);
1541 
1542     int64_t pnum = 0, bytes = nvme_l2b(ns, nlb);
1543     int64_t offset = nvme_l2b(ns, slba);
1544     int ret;
1545 
1546     /*
1547      * `pnum` holds the number of bytes after offset that shares the same
1548      * allocation status as the byte at offset. If `pnum` is different from
1549      * `bytes`, we should check the allocation status of the next range and
1550      * continue this until all bytes have been checked.
1551      */
1552     do {
1553         bytes -= pnum;
1554 
1555         ret = bdrv_block_status(bs, offset, bytes, &pnum, NULL, NULL);
1556         if (ret < 0) {
1557             return ret;
1558         }
1559 
1560 
1561         trace_pci_nvme_block_status(offset, bytes, pnum, ret,
1562                                     !!(ret & BDRV_BLOCK_ZERO));
1563 
1564         if (!(ret & flags)) {
1565             return 1;
1566         }
1567 
1568         offset += pnum;
1569     } while (pnum != bytes);
1570 
1571     return 0;
1572 }
1573 
1574 static uint16_t nvme_check_dulbe(NvmeNamespace *ns, uint64_t slba,
1575                                  uint32_t nlb)
1576 {
1577     int ret;
1578     Error *err = NULL;
1579 
1580     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_DATA);
1581     if (ret) {
1582         if (ret < 0) {
1583             error_setg_errno(&err, -ret, "unable to get block status");
1584             error_report_err(err);
1585 
1586             return NVME_INTERNAL_DEV_ERROR;
1587         }
1588 
1589         return NVME_DULB;
1590     }
1591 
1592     return NVME_SUCCESS;
1593 }
1594 
1595 static void nvme_aio_err(NvmeRequest *req, int ret)
1596 {
1597     uint16_t status = NVME_SUCCESS;
1598     Error *local_err = NULL;
1599 
1600     switch (req->cmd.opcode) {
1601     case NVME_CMD_READ:
1602         status = NVME_UNRECOVERED_READ;
1603         break;
1604     case NVME_CMD_FLUSH:
1605     case NVME_CMD_WRITE:
1606     case NVME_CMD_WRITE_ZEROES:
1607     case NVME_CMD_ZONE_APPEND:
1608         status = NVME_WRITE_FAULT;
1609         break;
1610     default:
1611         status = NVME_INTERNAL_DEV_ERROR;
1612         break;
1613     }
1614 
1615     trace_pci_nvme_err_aio(nvme_cid(req), strerror(-ret), status);
1616 
1617     error_setg_errno(&local_err, -ret, "aio failed");
1618     error_report_err(local_err);
1619 
1620     /*
1621      * Set the command status code to the first encountered error but allow a
1622      * subsequent Internal Device Error to trump it.
1623      */
1624     if (req->status && status != NVME_INTERNAL_DEV_ERROR) {
1625         return;
1626     }
1627 
1628     req->status = status;
1629 }
1630 
1631 static inline uint32_t nvme_zone_idx(NvmeNamespace *ns, uint64_t slba)
1632 {
1633     return ns->zone_size_log2 > 0 ? slba >> ns->zone_size_log2 :
1634                                     slba / ns->zone_size;
1635 }
1636 
1637 static inline NvmeZone *nvme_get_zone_by_slba(NvmeNamespace *ns, uint64_t slba)
1638 {
1639     uint32_t zone_idx = nvme_zone_idx(ns, slba);
1640 
1641     if (zone_idx >= ns->num_zones) {
1642         return NULL;
1643     }
1644 
1645     return &ns->zone_array[zone_idx];
1646 }
1647 
1648 static uint16_t nvme_check_zone_state_for_write(NvmeZone *zone)
1649 {
1650     uint64_t zslba = zone->d.zslba;
1651 
1652     switch (nvme_get_zone_state(zone)) {
1653     case NVME_ZONE_STATE_EMPTY:
1654     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1655     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1656     case NVME_ZONE_STATE_CLOSED:
1657         return NVME_SUCCESS;
1658     case NVME_ZONE_STATE_FULL:
1659         trace_pci_nvme_err_zone_is_full(zslba);
1660         return NVME_ZONE_FULL;
1661     case NVME_ZONE_STATE_OFFLINE:
1662         trace_pci_nvme_err_zone_is_offline(zslba);
1663         return NVME_ZONE_OFFLINE;
1664     case NVME_ZONE_STATE_READ_ONLY:
1665         trace_pci_nvme_err_zone_is_read_only(zslba);
1666         return NVME_ZONE_READ_ONLY;
1667     default:
1668         assert(false);
1669     }
1670 
1671     return NVME_INTERNAL_DEV_ERROR;
1672 }
1673 
1674 static uint16_t nvme_check_zone_write(NvmeNamespace *ns, NvmeZone *zone,
1675                                       uint64_t slba, uint32_t nlb)
1676 {
1677     uint64_t zcap = nvme_zone_wr_boundary(zone);
1678     uint16_t status;
1679 
1680     status = nvme_check_zone_state_for_write(zone);
1681     if (status) {
1682         return status;
1683     }
1684 
1685     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1686         uint64_t ezrwa = zone->w_ptr + 2 * ns->zns.zrwas;
1687 
1688         if (slba < zone->w_ptr || slba + nlb > ezrwa) {
1689             trace_pci_nvme_err_zone_invalid_write(slba, zone->w_ptr);
1690             return NVME_ZONE_INVALID_WRITE;
1691         }
1692     } else {
1693         if (unlikely(slba != zone->w_ptr)) {
1694             trace_pci_nvme_err_write_not_at_wp(slba, zone->d.zslba,
1695                                                zone->w_ptr);
1696             return NVME_ZONE_INVALID_WRITE;
1697         }
1698     }
1699 
1700     if (unlikely((slba + nlb) > zcap)) {
1701         trace_pci_nvme_err_zone_boundary(slba, nlb, zcap);
1702         return NVME_ZONE_BOUNDARY_ERROR;
1703     }
1704 
1705     return NVME_SUCCESS;
1706 }
1707 
1708 static uint16_t nvme_check_zone_state_for_read(NvmeZone *zone)
1709 {
1710     switch (nvme_get_zone_state(zone)) {
1711     case NVME_ZONE_STATE_EMPTY:
1712     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1713     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1714     case NVME_ZONE_STATE_FULL:
1715     case NVME_ZONE_STATE_CLOSED:
1716     case NVME_ZONE_STATE_READ_ONLY:
1717         return NVME_SUCCESS;
1718     case NVME_ZONE_STATE_OFFLINE:
1719         trace_pci_nvme_err_zone_is_offline(zone->d.zslba);
1720         return NVME_ZONE_OFFLINE;
1721     default:
1722         assert(false);
1723     }
1724 
1725     return NVME_INTERNAL_DEV_ERROR;
1726 }
1727 
1728 static uint16_t nvme_check_zone_read(NvmeNamespace *ns, uint64_t slba,
1729                                      uint32_t nlb)
1730 {
1731     NvmeZone *zone;
1732     uint64_t bndry, end;
1733     uint16_t status;
1734 
1735     zone = nvme_get_zone_by_slba(ns, slba);
1736     assert(zone);
1737 
1738     bndry = nvme_zone_rd_boundary(ns, zone);
1739     end = slba + nlb;
1740 
1741     status = nvme_check_zone_state_for_read(zone);
1742     if (status) {
1743         ;
1744     } else if (unlikely(end > bndry)) {
1745         if (!ns->params.cross_zone_read) {
1746             status = NVME_ZONE_BOUNDARY_ERROR;
1747         } else {
1748             /*
1749              * Read across zone boundary - check that all subsequent
1750              * zones that are being read have an appropriate state.
1751              */
1752             do {
1753                 zone++;
1754                 status = nvme_check_zone_state_for_read(zone);
1755                 if (status) {
1756                     break;
1757                 }
1758             } while (end > nvme_zone_rd_boundary(ns, zone));
1759         }
1760     }
1761 
1762     return status;
1763 }
1764 
1765 static uint16_t nvme_zrm_finish(NvmeNamespace *ns, NvmeZone *zone)
1766 {
1767     switch (nvme_get_zone_state(zone)) {
1768     case NVME_ZONE_STATE_FULL:
1769         return NVME_SUCCESS;
1770 
1771     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1772     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1773         nvme_aor_dec_open(ns);
1774         /* fallthrough */
1775     case NVME_ZONE_STATE_CLOSED:
1776         nvme_aor_dec_active(ns);
1777 
1778         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1779             zone->d.za &= ~NVME_ZA_ZRWA_VALID;
1780             if (ns->params.numzrwa) {
1781                 ns->zns.numzrwa++;
1782             }
1783         }
1784 
1785         /* fallthrough */
1786     case NVME_ZONE_STATE_EMPTY:
1787         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_FULL);
1788         return NVME_SUCCESS;
1789 
1790     default:
1791         return NVME_ZONE_INVAL_TRANSITION;
1792     }
1793 }
1794 
1795 static uint16_t nvme_zrm_close(NvmeNamespace *ns, NvmeZone *zone)
1796 {
1797     switch (nvme_get_zone_state(zone)) {
1798     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1799     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1800         nvme_aor_dec_open(ns);
1801         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
1802         /* fall through */
1803     case NVME_ZONE_STATE_CLOSED:
1804         return NVME_SUCCESS;
1805 
1806     default:
1807         return NVME_ZONE_INVAL_TRANSITION;
1808     }
1809 }
1810 
1811 static uint16_t nvme_zrm_reset(NvmeNamespace *ns, NvmeZone *zone)
1812 {
1813     switch (nvme_get_zone_state(zone)) {
1814     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1815     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1816         nvme_aor_dec_open(ns);
1817         /* fallthrough */
1818     case NVME_ZONE_STATE_CLOSED:
1819         nvme_aor_dec_active(ns);
1820 
1821         if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1822             if (ns->params.numzrwa) {
1823                 ns->zns.numzrwa++;
1824             }
1825         }
1826 
1827         /* fallthrough */
1828     case NVME_ZONE_STATE_FULL:
1829         zone->w_ptr = zone->d.zslba;
1830         zone->d.wp = zone->w_ptr;
1831         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EMPTY);
1832         /* fallthrough */
1833     case NVME_ZONE_STATE_EMPTY:
1834         return NVME_SUCCESS;
1835 
1836     default:
1837         return NVME_ZONE_INVAL_TRANSITION;
1838     }
1839 }
1840 
1841 static void nvme_zrm_auto_transition_zone(NvmeNamespace *ns)
1842 {
1843     NvmeZone *zone;
1844 
1845     if (ns->params.max_open_zones &&
1846         ns->nr_open_zones == ns->params.max_open_zones) {
1847         zone = QTAILQ_FIRST(&ns->imp_open_zones);
1848         if (zone) {
1849             /*
1850              * Automatically close this implicitly open zone.
1851              */
1852             QTAILQ_REMOVE(&ns->imp_open_zones, zone, entry);
1853             nvme_zrm_close(ns, zone);
1854         }
1855     }
1856 }
1857 
1858 enum {
1859     NVME_ZRM_AUTO = 1 << 0,
1860     NVME_ZRM_ZRWA = 1 << 1,
1861 };
1862 
1863 static uint16_t nvme_zrm_open_flags(NvmeCtrl *n, NvmeNamespace *ns,
1864                                     NvmeZone *zone, int flags)
1865 {
1866     int act = 0;
1867     uint16_t status;
1868 
1869     switch (nvme_get_zone_state(zone)) {
1870     case NVME_ZONE_STATE_EMPTY:
1871         act = 1;
1872 
1873         /* fallthrough */
1874 
1875     case NVME_ZONE_STATE_CLOSED:
1876         if (n->params.auto_transition_zones) {
1877             nvme_zrm_auto_transition_zone(ns);
1878         }
1879         status = nvme_zns_check_resources(ns, act, 1,
1880                                           (flags & NVME_ZRM_ZRWA) ? 1 : 0);
1881         if (status) {
1882             return status;
1883         }
1884 
1885         if (act) {
1886             nvme_aor_inc_active(ns);
1887         }
1888 
1889         nvme_aor_inc_open(ns);
1890 
1891         if (flags & NVME_ZRM_AUTO) {
1892             nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_IMPLICITLY_OPEN);
1893             return NVME_SUCCESS;
1894         }
1895 
1896         /* fallthrough */
1897 
1898     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
1899         if (flags & NVME_ZRM_AUTO) {
1900             return NVME_SUCCESS;
1901         }
1902 
1903         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_EXPLICITLY_OPEN);
1904 
1905         /* fallthrough */
1906 
1907     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
1908         if (flags & NVME_ZRM_ZRWA) {
1909             ns->zns.numzrwa--;
1910 
1911             zone->d.za |= NVME_ZA_ZRWA_VALID;
1912         }
1913 
1914         return NVME_SUCCESS;
1915 
1916     default:
1917         return NVME_ZONE_INVAL_TRANSITION;
1918     }
1919 }
1920 
1921 static inline uint16_t nvme_zrm_auto(NvmeCtrl *n, NvmeNamespace *ns,
1922                                      NvmeZone *zone)
1923 {
1924     return nvme_zrm_open_flags(n, ns, zone, NVME_ZRM_AUTO);
1925 }
1926 
1927 static void nvme_advance_zone_wp(NvmeNamespace *ns, NvmeZone *zone,
1928                                  uint32_t nlb)
1929 {
1930     zone->d.wp += nlb;
1931 
1932     if (zone->d.wp == nvme_zone_wr_boundary(zone)) {
1933         nvme_zrm_finish(ns, zone);
1934     }
1935 }
1936 
1937 static void nvme_zoned_zrwa_implicit_flush(NvmeNamespace *ns, NvmeZone *zone,
1938                                            uint32_t nlbc)
1939 {
1940     uint16_t nzrwafgs = DIV_ROUND_UP(nlbc, ns->zns.zrwafg);
1941 
1942     nlbc = nzrwafgs * ns->zns.zrwafg;
1943 
1944     trace_pci_nvme_zoned_zrwa_implicit_flush(zone->d.zslba, nlbc);
1945 
1946     zone->w_ptr += nlbc;
1947 
1948     nvme_advance_zone_wp(ns, zone, nlbc);
1949 }
1950 
1951 static void nvme_finalize_zoned_write(NvmeNamespace *ns, NvmeRequest *req)
1952 {
1953     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1954     NvmeZone *zone;
1955     uint64_t slba;
1956     uint32_t nlb;
1957 
1958     slba = le64_to_cpu(rw->slba);
1959     nlb = le16_to_cpu(rw->nlb) + 1;
1960     zone = nvme_get_zone_by_slba(ns, slba);
1961     assert(zone);
1962 
1963     if (zone->d.za & NVME_ZA_ZRWA_VALID) {
1964         uint64_t ezrwa = zone->w_ptr + ns->zns.zrwas - 1;
1965         uint64_t elba = slba + nlb - 1;
1966 
1967         if (elba > ezrwa) {
1968             nvme_zoned_zrwa_implicit_flush(ns, zone, elba - ezrwa);
1969         }
1970 
1971         return;
1972     }
1973 
1974     nvme_advance_zone_wp(ns, zone, nlb);
1975 }
1976 
1977 static inline bool nvme_is_write(NvmeRequest *req)
1978 {
1979     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
1980 
1981     return rw->opcode == NVME_CMD_WRITE ||
1982            rw->opcode == NVME_CMD_ZONE_APPEND ||
1983            rw->opcode == NVME_CMD_WRITE_ZEROES;
1984 }
1985 
1986 static AioContext *nvme_get_aio_context(BlockAIOCB *acb)
1987 {
1988     return qemu_get_aio_context();
1989 }
1990 
1991 static void nvme_misc_cb(void *opaque, int ret)
1992 {
1993     NvmeRequest *req = opaque;
1994 
1995     trace_pci_nvme_misc_cb(nvme_cid(req));
1996 
1997     if (ret) {
1998         nvme_aio_err(req, ret);
1999     }
2000 
2001     nvme_enqueue_req_completion(nvme_cq(req), req);
2002 }
2003 
2004 void nvme_rw_complete_cb(void *opaque, int ret)
2005 {
2006     NvmeRequest *req = opaque;
2007     NvmeNamespace *ns = req->ns;
2008     BlockBackend *blk = ns->blkconf.blk;
2009     BlockAcctCookie *acct = &req->acct;
2010     BlockAcctStats *stats = blk_get_stats(blk);
2011 
2012     trace_pci_nvme_rw_complete_cb(nvme_cid(req), blk_name(blk));
2013 
2014     if (ret) {
2015         block_acct_failed(stats, acct);
2016         nvme_aio_err(req, ret);
2017     } else {
2018         block_acct_done(stats, acct);
2019     }
2020 
2021     if (ns->params.zoned && nvme_is_write(req)) {
2022         nvme_finalize_zoned_write(ns, req);
2023     }
2024 
2025     nvme_enqueue_req_completion(nvme_cq(req), req);
2026 }
2027 
2028 static void nvme_rw_cb(void *opaque, int ret)
2029 {
2030     NvmeRequest *req = opaque;
2031     NvmeNamespace *ns = req->ns;
2032 
2033     BlockBackend *blk = ns->blkconf.blk;
2034 
2035     trace_pci_nvme_rw_cb(nvme_cid(req), blk_name(blk));
2036 
2037     if (ret) {
2038         goto out;
2039     }
2040 
2041     if (ns->lbaf.ms) {
2042         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2043         uint64_t slba = le64_to_cpu(rw->slba);
2044         uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
2045         uint64_t offset = nvme_moff(ns, slba);
2046 
2047         if (req->cmd.opcode == NVME_CMD_WRITE_ZEROES) {
2048             size_t mlen = nvme_m2b(ns, nlb);
2049 
2050             req->aiocb = blk_aio_pwrite_zeroes(blk, offset, mlen,
2051                                                BDRV_REQ_MAY_UNMAP,
2052                                                nvme_rw_complete_cb, req);
2053             return;
2054         }
2055 
2056         if (nvme_ns_ext(ns) || req->cmd.mptr) {
2057             uint16_t status;
2058 
2059             nvme_sg_unmap(&req->sg);
2060             status = nvme_map_mdata(nvme_ctrl(req), nlb, req);
2061             if (status) {
2062                 ret = -EFAULT;
2063                 goto out;
2064             }
2065 
2066             if (req->cmd.opcode == NVME_CMD_READ) {
2067                 return nvme_blk_read(blk, offset, nvme_rw_complete_cb, req);
2068             }
2069 
2070             return nvme_blk_write(blk, offset, nvme_rw_complete_cb, req);
2071         }
2072     }
2073 
2074 out:
2075     nvme_rw_complete_cb(req, ret);
2076 }
2077 
2078 static void nvme_verify_cb(void *opaque, int ret)
2079 {
2080     NvmeBounceContext *ctx = opaque;
2081     NvmeRequest *req = ctx->req;
2082     NvmeNamespace *ns = req->ns;
2083     BlockBackend *blk = ns->blkconf.blk;
2084     BlockAcctCookie *acct = &req->acct;
2085     BlockAcctStats *stats = blk_get_stats(blk);
2086     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2087     uint64_t slba = le64_to_cpu(rw->slba);
2088     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2089     uint16_t apptag = le16_to_cpu(rw->apptag);
2090     uint16_t appmask = le16_to_cpu(rw->appmask);
2091     uint64_t reftag = le32_to_cpu(rw->reftag);
2092     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2093     uint16_t status;
2094 
2095     reftag |= cdw3 << 32;
2096 
2097     trace_pci_nvme_verify_cb(nvme_cid(req), prinfo, apptag, appmask, reftag);
2098 
2099     if (ret) {
2100         block_acct_failed(stats, acct);
2101         nvme_aio_err(req, ret);
2102         goto out;
2103     }
2104 
2105     block_acct_done(stats, acct);
2106 
2107     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2108         status = nvme_dif_mangle_mdata(ns, ctx->mdata.bounce,
2109                                        ctx->mdata.iov.size, slba);
2110         if (status) {
2111             req->status = status;
2112             goto out;
2113         }
2114 
2115         req->status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2116                                      ctx->mdata.bounce, ctx->mdata.iov.size,
2117                                      prinfo, slba, apptag, appmask, &reftag);
2118     }
2119 
2120 out:
2121     qemu_iovec_destroy(&ctx->data.iov);
2122     g_free(ctx->data.bounce);
2123 
2124     qemu_iovec_destroy(&ctx->mdata.iov);
2125     g_free(ctx->mdata.bounce);
2126 
2127     g_free(ctx);
2128 
2129     nvme_enqueue_req_completion(nvme_cq(req), req);
2130 }
2131 
2132 
2133 static void nvme_verify_mdata_in_cb(void *opaque, int ret)
2134 {
2135     NvmeBounceContext *ctx = opaque;
2136     NvmeRequest *req = ctx->req;
2137     NvmeNamespace *ns = req->ns;
2138     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2139     uint64_t slba = le64_to_cpu(rw->slba);
2140     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2141     size_t mlen = nvme_m2b(ns, nlb);
2142     uint64_t offset = nvme_moff(ns, slba);
2143     BlockBackend *blk = ns->blkconf.blk;
2144 
2145     trace_pci_nvme_verify_mdata_in_cb(nvme_cid(req), blk_name(blk));
2146 
2147     if (ret) {
2148         goto out;
2149     }
2150 
2151     ctx->mdata.bounce = g_malloc(mlen);
2152 
2153     qemu_iovec_reset(&ctx->mdata.iov);
2154     qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2155 
2156     req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2157                                 nvme_verify_cb, ctx);
2158     return;
2159 
2160 out:
2161     nvme_verify_cb(ctx, ret);
2162 }
2163 
2164 struct nvme_compare_ctx {
2165     struct {
2166         QEMUIOVector iov;
2167         uint8_t *bounce;
2168     } data;
2169 
2170     struct {
2171         QEMUIOVector iov;
2172         uint8_t *bounce;
2173     } mdata;
2174 };
2175 
2176 static void nvme_compare_mdata_cb(void *opaque, int ret)
2177 {
2178     NvmeRequest *req = opaque;
2179     NvmeNamespace *ns = req->ns;
2180     NvmeCtrl *n = nvme_ctrl(req);
2181     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2182     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2183     uint16_t apptag = le16_to_cpu(rw->apptag);
2184     uint16_t appmask = le16_to_cpu(rw->appmask);
2185     uint64_t reftag = le32_to_cpu(rw->reftag);
2186     uint64_t cdw3 = le32_to_cpu(rw->cdw3);
2187     struct nvme_compare_ctx *ctx = req->opaque;
2188     g_autofree uint8_t *buf = NULL;
2189     BlockBackend *blk = ns->blkconf.blk;
2190     BlockAcctCookie *acct = &req->acct;
2191     BlockAcctStats *stats = blk_get_stats(blk);
2192     uint16_t status = NVME_SUCCESS;
2193 
2194     reftag |= cdw3 << 32;
2195 
2196     trace_pci_nvme_compare_mdata_cb(nvme_cid(req));
2197 
2198     if (ret) {
2199         block_acct_failed(stats, acct);
2200         nvme_aio_err(req, ret);
2201         goto out;
2202     }
2203 
2204     buf = g_malloc(ctx->mdata.iov.size);
2205 
2206     status = nvme_bounce_mdata(n, buf, ctx->mdata.iov.size,
2207                                NVME_TX_DIRECTION_TO_DEVICE, req);
2208     if (status) {
2209         req->status = status;
2210         goto out;
2211     }
2212 
2213     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2214         uint64_t slba = le64_to_cpu(rw->slba);
2215         uint8_t *bufp;
2216         uint8_t *mbufp = ctx->mdata.bounce;
2217         uint8_t *end = mbufp + ctx->mdata.iov.size;
2218         int16_t pil = 0;
2219 
2220         status = nvme_dif_check(ns, ctx->data.bounce, ctx->data.iov.size,
2221                                 ctx->mdata.bounce, ctx->mdata.iov.size, prinfo,
2222                                 slba, apptag, appmask, &reftag);
2223         if (status) {
2224             req->status = status;
2225             goto out;
2226         }
2227 
2228         /*
2229          * When formatted with protection information, do not compare the DIF
2230          * tuple.
2231          */
2232         if (!(ns->id_ns.dps & NVME_ID_NS_DPS_FIRST_EIGHT)) {
2233             pil = ns->lbaf.ms - nvme_pi_tuple_size(ns);
2234         }
2235 
2236         for (bufp = buf; mbufp < end; bufp += ns->lbaf.ms, mbufp += ns->lbaf.ms) {
2237             if (memcmp(bufp + pil, mbufp + pil, ns->lbaf.ms - pil)) {
2238                 req->status = NVME_CMP_FAILURE;
2239                 goto out;
2240             }
2241         }
2242 
2243         goto out;
2244     }
2245 
2246     if (memcmp(buf, ctx->mdata.bounce, ctx->mdata.iov.size)) {
2247         req->status = NVME_CMP_FAILURE;
2248         goto out;
2249     }
2250 
2251     block_acct_done(stats, acct);
2252 
2253 out:
2254     qemu_iovec_destroy(&ctx->data.iov);
2255     g_free(ctx->data.bounce);
2256 
2257     qemu_iovec_destroy(&ctx->mdata.iov);
2258     g_free(ctx->mdata.bounce);
2259 
2260     g_free(ctx);
2261 
2262     nvme_enqueue_req_completion(nvme_cq(req), req);
2263 }
2264 
2265 static void nvme_compare_data_cb(void *opaque, int ret)
2266 {
2267     NvmeRequest *req = opaque;
2268     NvmeCtrl *n = nvme_ctrl(req);
2269     NvmeNamespace *ns = req->ns;
2270     BlockBackend *blk = ns->blkconf.blk;
2271     BlockAcctCookie *acct = &req->acct;
2272     BlockAcctStats *stats = blk_get_stats(blk);
2273 
2274     struct nvme_compare_ctx *ctx = req->opaque;
2275     g_autofree uint8_t *buf = NULL;
2276     uint16_t status;
2277 
2278     trace_pci_nvme_compare_data_cb(nvme_cid(req));
2279 
2280     if (ret) {
2281         block_acct_failed(stats, acct);
2282         nvme_aio_err(req, ret);
2283         goto out;
2284     }
2285 
2286     buf = g_malloc(ctx->data.iov.size);
2287 
2288     status = nvme_bounce_data(n, buf, ctx->data.iov.size,
2289                               NVME_TX_DIRECTION_TO_DEVICE, req);
2290     if (status) {
2291         req->status = status;
2292         goto out;
2293     }
2294 
2295     if (memcmp(buf, ctx->data.bounce, ctx->data.iov.size)) {
2296         req->status = NVME_CMP_FAILURE;
2297         goto out;
2298     }
2299 
2300     if (ns->lbaf.ms) {
2301         NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2302         uint64_t slba = le64_to_cpu(rw->slba);
2303         uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2304         size_t mlen = nvme_m2b(ns, nlb);
2305         uint64_t offset = nvme_moff(ns, slba);
2306 
2307         ctx->mdata.bounce = g_malloc(mlen);
2308 
2309         qemu_iovec_init(&ctx->mdata.iov, 1);
2310         qemu_iovec_add(&ctx->mdata.iov, ctx->mdata.bounce, mlen);
2311 
2312         req->aiocb = blk_aio_preadv(blk, offset, &ctx->mdata.iov, 0,
2313                                     nvme_compare_mdata_cb, req);
2314         return;
2315     }
2316 
2317     block_acct_done(stats, acct);
2318 
2319 out:
2320     qemu_iovec_destroy(&ctx->data.iov);
2321     g_free(ctx->data.bounce);
2322     g_free(ctx);
2323 
2324     nvme_enqueue_req_completion(nvme_cq(req), req);
2325 }
2326 
2327 typedef struct NvmeDSMAIOCB {
2328     BlockAIOCB common;
2329     BlockAIOCB *aiocb;
2330     NvmeRequest *req;
2331     QEMUBH *bh;
2332     int ret;
2333 
2334     NvmeDsmRange *range;
2335     unsigned int nr;
2336     unsigned int idx;
2337 } NvmeDSMAIOCB;
2338 
2339 static void nvme_dsm_cancel(BlockAIOCB *aiocb)
2340 {
2341     NvmeDSMAIOCB *iocb = container_of(aiocb, NvmeDSMAIOCB, common);
2342 
2343     /* break nvme_dsm_cb loop */
2344     iocb->idx = iocb->nr;
2345     iocb->ret = -ECANCELED;
2346 
2347     if (iocb->aiocb) {
2348         blk_aio_cancel_async(iocb->aiocb);
2349         iocb->aiocb = NULL;
2350     } else {
2351         /*
2352          * We only reach this if nvme_dsm_cancel() has already been called or
2353          * the command ran to completion and nvme_dsm_bh is scheduled to run.
2354          */
2355         assert(iocb->idx == iocb->nr);
2356     }
2357 }
2358 
2359 static const AIOCBInfo nvme_dsm_aiocb_info = {
2360     .aiocb_size   = sizeof(NvmeDSMAIOCB),
2361     .cancel_async = nvme_dsm_cancel,
2362 };
2363 
2364 static void nvme_dsm_bh(void *opaque)
2365 {
2366     NvmeDSMAIOCB *iocb = opaque;
2367 
2368     iocb->common.cb(iocb->common.opaque, iocb->ret);
2369 
2370     qemu_bh_delete(iocb->bh);
2371     iocb->bh = NULL;
2372     qemu_aio_unref(iocb);
2373 }
2374 
2375 static void nvme_dsm_cb(void *opaque, int ret);
2376 
2377 static void nvme_dsm_md_cb(void *opaque, int ret)
2378 {
2379     NvmeDSMAIOCB *iocb = opaque;
2380     NvmeRequest *req = iocb->req;
2381     NvmeNamespace *ns = req->ns;
2382     NvmeDsmRange *range;
2383     uint64_t slba;
2384     uint32_t nlb;
2385 
2386     if (ret < 0) {
2387         iocb->ret = ret;
2388         goto done;
2389     }
2390 
2391     if (!ns->lbaf.ms) {
2392         nvme_dsm_cb(iocb, 0);
2393         return;
2394     }
2395 
2396     range = &iocb->range[iocb->idx - 1];
2397     slba = le64_to_cpu(range->slba);
2398     nlb = le32_to_cpu(range->nlb);
2399 
2400     /*
2401      * Check that all block were discarded (zeroed); otherwise we do not zero
2402      * the metadata.
2403      */
2404 
2405     ret = nvme_block_status_all(ns, slba, nlb, BDRV_BLOCK_ZERO);
2406     if (ret) {
2407         if (ret < 0) {
2408             iocb->ret = ret;
2409             goto done;
2410         }
2411 
2412         nvme_dsm_cb(iocb, 0);
2413         return;
2414     }
2415 
2416     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, nvme_moff(ns, slba),
2417                                         nvme_m2b(ns, nlb), BDRV_REQ_MAY_UNMAP,
2418                                         nvme_dsm_cb, iocb);
2419     return;
2420 
2421 done:
2422     iocb->aiocb = NULL;
2423     qemu_bh_schedule(iocb->bh);
2424 }
2425 
2426 static void nvme_dsm_cb(void *opaque, int ret)
2427 {
2428     NvmeDSMAIOCB *iocb = opaque;
2429     NvmeRequest *req = iocb->req;
2430     NvmeCtrl *n = nvme_ctrl(req);
2431     NvmeNamespace *ns = req->ns;
2432     NvmeDsmRange *range;
2433     uint64_t slba;
2434     uint32_t nlb;
2435 
2436     if (ret < 0) {
2437         iocb->ret = ret;
2438         goto done;
2439     }
2440 
2441 next:
2442     if (iocb->idx == iocb->nr) {
2443         goto done;
2444     }
2445 
2446     range = &iocb->range[iocb->idx++];
2447     slba = le64_to_cpu(range->slba);
2448     nlb = le32_to_cpu(range->nlb);
2449 
2450     trace_pci_nvme_dsm_deallocate(slba, nlb);
2451 
2452     if (nlb > n->dmrsl) {
2453         trace_pci_nvme_dsm_single_range_limit_exceeded(nlb, n->dmrsl);
2454         goto next;
2455     }
2456 
2457     if (nvme_check_bounds(ns, slba, nlb)) {
2458         trace_pci_nvme_err_invalid_lba_range(slba, nlb,
2459                                              ns->id_ns.nsze);
2460         goto next;
2461     }
2462 
2463     iocb->aiocb = blk_aio_pdiscard(ns->blkconf.blk, nvme_l2b(ns, slba),
2464                                    nvme_l2b(ns, nlb),
2465                                    nvme_dsm_md_cb, iocb);
2466     return;
2467 
2468 done:
2469     iocb->aiocb = NULL;
2470     qemu_bh_schedule(iocb->bh);
2471 }
2472 
2473 static uint16_t nvme_dsm(NvmeCtrl *n, NvmeRequest *req)
2474 {
2475     NvmeNamespace *ns = req->ns;
2476     NvmeDsmCmd *dsm = (NvmeDsmCmd *) &req->cmd;
2477     uint32_t attr = le32_to_cpu(dsm->attributes);
2478     uint32_t nr = (le32_to_cpu(dsm->nr) & 0xff) + 1;
2479     uint16_t status = NVME_SUCCESS;
2480 
2481     trace_pci_nvme_dsm(nr, attr);
2482 
2483     if (attr & NVME_DSMGMT_AD) {
2484         NvmeDSMAIOCB *iocb = blk_aio_get(&nvme_dsm_aiocb_info, ns->blkconf.blk,
2485                                          nvme_misc_cb, req);
2486 
2487         iocb->req = req;
2488         iocb->bh = qemu_bh_new(nvme_dsm_bh, iocb);
2489         iocb->ret = 0;
2490         iocb->range = g_new(NvmeDsmRange, nr);
2491         iocb->nr = nr;
2492         iocb->idx = 0;
2493 
2494         status = nvme_h2c(n, (uint8_t *)iocb->range, sizeof(NvmeDsmRange) * nr,
2495                           req);
2496         if (status) {
2497             return status;
2498         }
2499 
2500         req->aiocb = &iocb->common;
2501         nvme_dsm_cb(iocb, 0);
2502 
2503         return NVME_NO_COMPLETE;
2504     }
2505 
2506     return status;
2507 }
2508 
2509 static uint16_t nvme_verify(NvmeCtrl *n, NvmeRequest *req)
2510 {
2511     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
2512     NvmeNamespace *ns = req->ns;
2513     BlockBackend *blk = ns->blkconf.blk;
2514     uint64_t slba = le64_to_cpu(rw->slba);
2515     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
2516     size_t len = nvme_l2b(ns, nlb);
2517     int64_t offset = nvme_l2b(ns, slba);
2518     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
2519     uint32_t reftag = le32_to_cpu(rw->reftag);
2520     NvmeBounceContext *ctx = NULL;
2521     uint16_t status;
2522 
2523     trace_pci_nvme_verify(nvme_cid(req), nvme_nsid(ns), slba, nlb);
2524 
2525     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2526         status = nvme_check_prinfo(ns, prinfo, slba, reftag);
2527         if (status) {
2528             return status;
2529         }
2530 
2531         if (prinfo & NVME_PRINFO_PRACT) {
2532             return NVME_INVALID_PROT_INFO | NVME_DNR;
2533         }
2534     }
2535 
2536     if (len > n->page_size << n->params.vsl) {
2537         return NVME_INVALID_FIELD | NVME_DNR;
2538     }
2539 
2540     status = nvme_check_bounds(ns, slba, nlb);
2541     if (status) {
2542         return status;
2543     }
2544 
2545     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2546         status = nvme_check_dulbe(ns, slba, nlb);
2547         if (status) {
2548             return status;
2549         }
2550     }
2551 
2552     ctx = g_new0(NvmeBounceContext, 1);
2553     ctx->req = req;
2554 
2555     ctx->data.bounce = g_malloc(len);
2556 
2557     qemu_iovec_init(&ctx->data.iov, 1);
2558     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, len);
2559 
2560     block_acct_start(blk_get_stats(blk), &req->acct, ctx->data.iov.size,
2561                      BLOCK_ACCT_READ);
2562 
2563     req->aiocb = blk_aio_preadv(ns->blkconf.blk, offset, &ctx->data.iov, 0,
2564                                 nvme_verify_mdata_in_cb, ctx);
2565     return NVME_NO_COMPLETE;
2566 }
2567 
2568 typedef struct NvmeCopyAIOCB {
2569     BlockAIOCB common;
2570     BlockAIOCB *aiocb;
2571     NvmeRequest *req;
2572     QEMUBH *bh;
2573     int ret;
2574 
2575     void *ranges;
2576     unsigned int format;
2577     int nr;
2578     int idx;
2579 
2580     uint8_t *bounce;
2581     QEMUIOVector iov;
2582     struct {
2583         BlockAcctCookie read;
2584         BlockAcctCookie write;
2585     } acct;
2586 
2587     uint64_t reftag;
2588     uint64_t slba;
2589 
2590     NvmeZone *zone;
2591 } NvmeCopyAIOCB;
2592 
2593 static void nvme_copy_cancel(BlockAIOCB *aiocb)
2594 {
2595     NvmeCopyAIOCB *iocb = container_of(aiocb, NvmeCopyAIOCB, common);
2596 
2597     iocb->ret = -ECANCELED;
2598 
2599     if (iocb->aiocb) {
2600         blk_aio_cancel_async(iocb->aiocb);
2601         iocb->aiocb = NULL;
2602     }
2603 }
2604 
2605 static const AIOCBInfo nvme_copy_aiocb_info = {
2606     .aiocb_size   = sizeof(NvmeCopyAIOCB),
2607     .cancel_async = nvme_copy_cancel,
2608 };
2609 
2610 static void nvme_copy_bh(void *opaque)
2611 {
2612     NvmeCopyAIOCB *iocb = opaque;
2613     NvmeRequest *req = iocb->req;
2614     NvmeNamespace *ns = req->ns;
2615     BlockAcctStats *stats = blk_get_stats(ns->blkconf.blk);
2616 
2617     if (iocb->idx != iocb->nr) {
2618         req->cqe.result = cpu_to_le32(iocb->idx);
2619     }
2620 
2621     qemu_iovec_destroy(&iocb->iov);
2622     g_free(iocb->bounce);
2623 
2624     qemu_bh_delete(iocb->bh);
2625     iocb->bh = NULL;
2626 
2627     if (iocb->ret < 0) {
2628         block_acct_failed(stats, &iocb->acct.read);
2629         block_acct_failed(stats, &iocb->acct.write);
2630     } else {
2631         block_acct_done(stats, &iocb->acct.read);
2632         block_acct_done(stats, &iocb->acct.write);
2633     }
2634 
2635     iocb->common.cb(iocb->common.opaque, iocb->ret);
2636     qemu_aio_unref(iocb);
2637 }
2638 
2639 static void nvme_copy_cb(void *opaque, int ret);
2640 
2641 static void nvme_copy_source_range_parse_format0(void *ranges, int idx,
2642                                                  uint64_t *slba, uint32_t *nlb,
2643                                                  uint16_t *apptag,
2644                                                  uint16_t *appmask,
2645                                                  uint64_t *reftag)
2646 {
2647     NvmeCopySourceRangeFormat0 *_ranges = ranges;
2648 
2649     if (slba) {
2650         *slba = le64_to_cpu(_ranges[idx].slba);
2651     }
2652 
2653     if (nlb) {
2654         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2655     }
2656 
2657     if (apptag) {
2658         *apptag = le16_to_cpu(_ranges[idx].apptag);
2659     }
2660 
2661     if (appmask) {
2662         *appmask = le16_to_cpu(_ranges[idx].appmask);
2663     }
2664 
2665     if (reftag) {
2666         *reftag = le32_to_cpu(_ranges[idx].reftag);
2667     }
2668 }
2669 
2670 static void nvme_copy_source_range_parse_format1(void *ranges, int idx,
2671                                                  uint64_t *slba, uint32_t *nlb,
2672                                                  uint16_t *apptag,
2673                                                  uint16_t *appmask,
2674                                                  uint64_t *reftag)
2675 {
2676     NvmeCopySourceRangeFormat1 *_ranges = ranges;
2677 
2678     if (slba) {
2679         *slba = le64_to_cpu(_ranges[idx].slba);
2680     }
2681 
2682     if (nlb) {
2683         *nlb = le16_to_cpu(_ranges[idx].nlb) + 1;
2684     }
2685 
2686     if (apptag) {
2687         *apptag = le16_to_cpu(_ranges[idx].apptag);
2688     }
2689 
2690     if (appmask) {
2691         *appmask = le16_to_cpu(_ranges[idx].appmask);
2692     }
2693 
2694     if (reftag) {
2695         *reftag = 0;
2696 
2697         *reftag |= (uint64_t)_ranges[idx].sr[4] << 40;
2698         *reftag |= (uint64_t)_ranges[idx].sr[5] << 32;
2699         *reftag |= (uint64_t)_ranges[idx].sr[6] << 24;
2700         *reftag |= (uint64_t)_ranges[idx].sr[7] << 16;
2701         *reftag |= (uint64_t)_ranges[idx].sr[8] << 8;
2702         *reftag |= (uint64_t)_ranges[idx].sr[9];
2703     }
2704 }
2705 
2706 static void nvme_copy_source_range_parse(void *ranges, int idx, uint8_t format,
2707                                          uint64_t *slba, uint32_t *nlb,
2708                                          uint16_t *apptag, uint16_t *appmask,
2709                                          uint64_t *reftag)
2710 {
2711     switch (format) {
2712     case NVME_COPY_FORMAT_0:
2713         nvme_copy_source_range_parse_format0(ranges, idx, slba, nlb, apptag,
2714                                              appmask, reftag);
2715         break;
2716 
2717     case NVME_COPY_FORMAT_1:
2718         nvme_copy_source_range_parse_format1(ranges, idx, slba, nlb, apptag,
2719                                              appmask, reftag);
2720         break;
2721 
2722     default:
2723         abort();
2724     }
2725 }
2726 
2727 static void nvme_copy_out_completed_cb(void *opaque, int ret)
2728 {
2729     NvmeCopyAIOCB *iocb = opaque;
2730     NvmeRequest *req = iocb->req;
2731     NvmeNamespace *ns = req->ns;
2732     uint32_t nlb;
2733 
2734     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2735                                  &nlb, NULL, NULL, NULL);
2736 
2737     if (ret < 0) {
2738         iocb->ret = ret;
2739         goto out;
2740     } else if (iocb->ret < 0) {
2741         goto out;
2742     }
2743 
2744     if (ns->params.zoned) {
2745         nvme_advance_zone_wp(ns, iocb->zone, nlb);
2746     }
2747 
2748     iocb->idx++;
2749     iocb->slba += nlb;
2750 out:
2751     nvme_copy_cb(iocb, iocb->ret);
2752 }
2753 
2754 static void nvme_copy_out_cb(void *opaque, int ret)
2755 {
2756     NvmeCopyAIOCB *iocb = opaque;
2757     NvmeRequest *req = iocb->req;
2758     NvmeNamespace *ns = req->ns;
2759     uint32_t nlb;
2760     size_t mlen;
2761     uint8_t *mbounce;
2762 
2763     if (ret < 0) {
2764         iocb->ret = ret;
2765         goto out;
2766     } else if (iocb->ret < 0) {
2767         goto out;
2768     }
2769 
2770     if (!ns->lbaf.ms) {
2771         nvme_copy_out_completed_cb(iocb, 0);
2772         return;
2773     }
2774 
2775     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, NULL,
2776                                  &nlb, NULL, NULL, NULL);
2777 
2778     mlen = nvme_m2b(ns, nlb);
2779     mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2780 
2781     qemu_iovec_reset(&iocb->iov);
2782     qemu_iovec_add(&iocb->iov, mbounce, mlen);
2783 
2784     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_moff(ns, iocb->slba),
2785                                   &iocb->iov, 0, nvme_copy_out_completed_cb,
2786                                   iocb);
2787 
2788     return;
2789 
2790 out:
2791     nvme_copy_cb(iocb, ret);
2792 }
2793 
2794 static void nvme_copy_in_completed_cb(void *opaque, int ret)
2795 {
2796     NvmeCopyAIOCB *iocb = opaque;
2797     NvmeRequest *req = iocb->req;
2798     NvmeNamespace *ns = req->ns;
2799     uint32_t nlb;
2800     uint64_t slba;
2801     uint16_t apptag, appmask;
2802     uint64_t reftag;
2803     size_t len;
2804     uint16_t status;
2805 
2806     if (ret < 0) {
2807         iocb->ret = ret;
2808         goto out;
2809     } else if (iocb->ret < 0) {
2810         goto out;
2811     }
2812 
2813     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2814                                  &nlb, &apptag, &appmask, &reftag);
2815     len = nvme_l2b(ns, nlb);
2816 
2817     trace_pci_nvme_copy_out(iocb->slba, nlb);
2818 
2819     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
2820         NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
2821 
2822         uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
2823         uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
2824 
2825         size_t mlen = nvme_m2b(ns, nlb);
2826         uint8_t *mbounce = iocb->bounce + nvme_l2b(ns, nlb);
2827 
2828         status = nvme_dif_mangle_mdata(ns, mbounce, mlen, slba);
2829         if (status) {
2830             goto invalid;
2831         }
2832         status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen, prinfor,
2833                                 slba, apptag, appmask, &reftag);
2834         if (status) {
2835             goto invalid;
2836         }
2837 
2838         apptag = le16_to_cpu(copy->apptag);
2839         appmask = le16_to_cpu(copy->appmask);
2840 
2841         if (prinfow & NVME_PRINFO_PRACT) {
2842             status = nvme_check_prinfo(ns, prinfow, iocb->slba, iocb->reftag);
2843             if (status) {
2844                 goto invalid;
2845             }
2846 
2847             nvme_dif_pract_generate_dif(ns, iocb->bounce, len, mbounce, mlen,
2848                                         apptag, &iocb->reftag);
2849         } else {
2850             status = nvme_dif_check(ns, iocb->bounce, len, mbounce, mlen,
2851                                     prinfow, iocb->slba, apptag, appmask,
2852                                     &iocb->reftag);
2853             if (status) {
2854                 goto invalid;
2855             }
2856         }
2857     }
2858 
2859     status = nvme_check_bounds(ns, iocb->slba, nlb);
2860     if (status) {
2861         goto invalid;
2862     }
2863 
2864     if (ns->params.zoned) {
2865         status = nvme_check_zone_write(ns, iocb->zone, iocb->slba, nlb);
2866         if (status) {
2867             goto invalid;
2868         }
2869 
2870         if (!(iocb->zone->d.za & NVME_ZA_ZRWA_VALID)) {
2871             iocb->zone->w_ptr += nlb;
2872         }
2873     }
2874 
2875     qemu_iovec_reset(&iocb->iov);
2876     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2877 
2878     iocb->aiocb = blk_aio_pwritev(ns->blkconf.blk, nvme_l2b(ns, iocb->slba),
2879                                   &iocb->iov, 0, nvme_copy_out_cb, iocb);
2880 
2881     return;
2882 
2883 invalid:
2884     req->status = status;
2885     iocb->aiocb = NULL;
2886     if (iocb->bh) {
2887         qemu_bh_schedule(iocb->bh);
2888     }
2889 
2890     return;
2891 
2892 out:
2893     nvme_copy_cb(iocb, ret);
2894 }
2895 
2896 static void nvme_copy_in_cb(void *opaque, int ret)
2897 {
2898     NvmeCopyAIOCB *iocb = opaque;
2899     NvmeRequest *req = iocb->req;
2900     NvmeNamespace *ns = req->ns;
2901     uint64_t slba;
2902     uint32_t nlb;
2903 
2904     if (ret < 0) {
2905         iocb->ret = ret;
2906         goto out;
2907     } else if (iocb->ret < 0) {
2908         goto out;
2909     }
2910 
2911     if (!ns->lbaf.ms) {
2912         nvme_copy_in_completed_cb(iocb, 0);
2913         return;
2914     }
2915 
2916     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2917                                  &nlb, NULL, NULL, NULL);
2918 
2919     qemu_iovec_reset(&iocb->iov);
2920     qemu_iovec_add(&iocb->iov, iocb->bounce + nvme_l2b(ns, nlb),
2921                    nvme_m2b(ns, nlb));
2922 
2923     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_moff(ns, slba),
2924                                  &iocb->iov, 0, nvme_copy_in_completed_cb,
2925                                  iocb);
2926     return;
2927 
2928 out:
2929     nvme_copy_cb(iocb, iocb->ret);
2930 }
2931 
2932 static void nvme_copy_cb(void *opaque, int ret)
2933 {
2934     NvmeCopyAIOCB *iocb = opaque;
2935     NvmeRequest *req = iocb->req;
2936     NvmeNamespace *ns = req->ns;
2937     uint64_t slba;
2938     uint32_t nlb;
2939     size_t len;
2940     uint16_t status;
2941 
2942     if (ret < 0) {
2943         iocb->ret = ret;
2944         goto done;
2945     } else if (iocb->ret < 0) {
2946         goto done;
2947     }
2948 
2949     if (iocb->idx == iocb->nr) {
2950         goto done;
2951     }
2952 
2953     nvme_copy_source_range_parse(iocb->ranges, iocb->idx, iocb->format, &slba,
2954                                  &nlb, NULL, NULL, NULL);
2955     len = nvme_l2b(ns, nlb);
2956 
2957     trace_pci_nvme_copy_source_range(slba, nlb);
2958 
2959     if (nlb > le16_to_cpu(ns->id_ns.mssrl)) {
2960         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
2961         goto invalid;
2962     }
2963 
2964     status = nvme_check_bounds(ns, slba, nlb);
2965     if (status) {
2966         goto invalid;
2967     }
2968 
2969     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
2970         status = nvme_check_dulbe(ns, slba, nlb);
2971         if (status) {
2972             goto invalid;
2973         }
2974     }
2975 
2976     if (ns->params.zoned) {
2977         status = nvme_check_zone_read(ns, slba, nlb);
2978         if (status) {
2979             goto invalid;
2980         }
2981     }
2982 
2983     qemu_iovec_reset(&iocb->iov);
2984     qemu_iovec_add(&iocb->iov, iocb->bounce, len);
2985 
2986     iocb->aiocb = blk_aio_preadv(ns->blkconf.blk, nvme_l2b(ns, slba),
2987                                  &iocb->iov, 0, nvme_copy_in_cb, iocb);
2988     return;
2989 
2990 invalid:
2991     req->status = status;
2992 done:
2993     iocb->aiocb = NULL;
2994     if (iocb->bh) {
2995         qemu_bh_schedule(iocb->bh);
2996     }
2997 }
2998 
2999 
3000 static uint16_t nvme_copy(NvmeCtrl *n, NvmeRequest *req)
3001 {
3002     NvmeNamespace *ns = req->ns;
3003     NvmeCopyCmd *copy = (NvmeCopyCmd *)&req->cmd;
3004     NvmeCopyAIOCB *iocb = blk_aio_get(&nvme_copy_aiocb_info, ns->blkconf.blk,
3005                                       nvme_misc_cb, req);
3006     uint16_t nr = copy->nr + 1;
3007     uint8_t format = copy->control[0] & 0xf;
3008     uint16_t prinfor = ((copy->control[0] >> 4) & 0xf);
3009     uint16_t prinfow = ((copy->control[2] >> 2) & 0xf);
3010     size_t len = sizeof(NvmeCopySourceRangeFormat0);
3011 
3012     uint16_t status;
3013 
3014     trace_pci_nvme_copy(nvme_cid(req), nvme_nsid(ns), nr, format);
3015 
3016     iocb->ranges = NULL;
3017     iocb->zone = NULL;
3018 
3019     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) &&
3020         ((prinfor & NVME_PRINFO_PRACT) != (prinfow & NVME_PRINFO_PRACT))) {
3021         status = NVME_INVALID_FIELD | NVME_DNR;
3022         goto invalid;
3023     }
3024 
3025     if (!(n->id_ctrl.ocfs & (1 << format))) {
3026         trace_pci_nvme_err_copy_invalid_format(format);
3027         status = NVME_INVALID_FIELD | NVME_DNR;
3028         goto invalid;
3029     }
3030 
3031     if (nr > ns->id_ns.msrc + 1) {
3032         status = NVME_CMD_SIZE_LIMIT | NVME_DNR;
3033         goto invalid;
3034     }
3035 
3036     if (ns->pif && format != 0x1) {
3037         status = NVME_INVALID_FORMAT | NVME_DNR;
3038         goto invalid;
3039     }
3040 
3041     if (ns->pif) {
3042         len = sizeof(NvmeCopySourceRangeFormat1);
3043     }
3044 
3045     iocb->format = format;
3046     iocb->ranges = g_malloc_n(nr, len);
3047     status = nvme_h2c(n, (uint8_t *)iocb->ranges, len * nr, req);
3048     if (status) {
3049         goto invalid;
3050     }
3051 
3052     iocb->slba = le64_to_cpu(copy->sdlba);
3053 
3054     if (ns->params.zoned) {
3055         iocb->zone = nvme_get_zone_by_slba(ns, iocb->slba);
3056         if (!iocb->zone) {
3057             status = NVME_LBA_RANGE | NVME_DNR;
3058             goto invalid;
3059         }
3060 
3061         status = nvme_zrm_auto(n, ns, iocb->zone);
3062         if (status) {
3063             goto invalid;
3064         }
3065     }
3066 
3067     iocb->req = req;
3068     iocb->bh = qemu_bh_new(nvme_copy_bh, iocb);
3069     iocb->ret = 0;
3070     iocb->nr = nr;
3071     iocb->idx = 0;
3072     iocb->reftag = le32_to_cpu(copy->reftag);
3073     iocb->reftag |= (uint64_t)le32_to_cpu(copy->cdw3) << 32;
3074     iocb->bounce = g_malloc_n(le16_to_cpu(ns->id_ns.mssrl),
3075                               ns->lbasz + ns->lbaf.ms);
3076 
3077     qemu_iovec_init(&iocb->iov, 1);
3078 
3079     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.read, 0,
3080                      BLOCK_ACCT_READ);
3081     block_acct_start(blk_get_stats(ns->blkconf.blk), &iocb->acct.write, 0,
3082                      BLOCK_ACCT_WRITE);
3083 
3084     req->aiocb = &iocb->common;
3085     nvme_copy_cb(iocb, 0);
3086 
3087     return NVME_NO_COMPLETE;
3088 
3089 invalid:
3090     g_free(iocb->ranges);
3091     qemu_aio_unref(iocb);
3092     return status;
3093 }
3094 
3095 static uint16_t nvme_compare(NvmeCtrl *n, NvmeRequest *req)
3096 {
3097     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3098     NvmeNamespace *ns = req->ns;
3099     BlockBackend *blk = ns->blkconf.blk;
3100     uint64_t slba = le64_to_cpu(rw->slba);
3101     uint32_t nlb = le16_to_cpu(rw->nlb) + 1;
3102     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3103     size_t data_len = nvme_l2b(ns, nlb);
3104     size_t len = data_len;
3105     int64_t offset = nvme_l2b(ns, slba);
3106     struct nvme_compare_ctx *ctx = NULL;
3107     uint16_t status;
3108 
3109     trace_pci_nvme_compare(nvme_cid(req), nvme_nsid(ns), slba, nlb);
3110 
3111     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps) && (prinfo & NVME_PRINFO_PRACT)) {
3112         return NVME_INVALID_PROT_INFO | NVME_DNR;
3113     }
3114 
3115     if (nvme_ns_ext(ns)) {
3116         len += nvme_m2b(ns, nlb);
3117     }
3118 
3119     status = nvme_check_mdts(n, len);
3120     if (status) {
3121         return status;
3122     }
3123 
3124     status = nvme_check_bounds(ns, slba, nlb);
3125     if (status) {
3126         return status;
3127     }
3128 
3129     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3130         status = nvme_check_dulbe(ns, slba, nlb);
3131         if (status) {
3132             return status;
3133         }
3134     }
3135 
3136     status = nvme_map_dptr(n, &req->sg, len, &req->cmd);
3137     if (status) {
3138         return status;
3139     }
3140 
3141     ctx = g_new(struct nvme_compare_ctx, 1);
3142     ctx->data.bounce = g_malloc(data_len);
3143 
3144     req->opaque = ctx;
3145 
3146     qemu_iovec_init(&ctx->data.iov, 1);
3147     qemu_iovec_add(&ctx->data.iov, ctx->data.bounce, data_len);
3148 
3149     block_acct_start(blk_get_stats(blk), &req->acct, data_len,
3150                      BLOCK_ACCT_READ);
3151     req->aiocb = blk_aio_preadv(blk, offset, &ctx->data.iov, 0,
3152                                 nvme_compare_data_cb, req);
3153 
3154     return NVME_NO_COMPLETE;
3155 }
3156 
3157 typedef struct NvmeFlushAIOCB {
3158     BlockAIOCB common;
3159     BlockAIOCB *aiocb;
3160     NvmeRequest *req;
3161     QEMUBH *bh;
3162     int ret;
3163 
3164     NvmeNamespace *ns;
3165     uint32_t nsid;
3166     bool broadcast;
3167 } NvmeFlushAIOCB;
3168 
3169 static void nvme_flush_cancel(BlockAIOCB *acb)
3170 {
3171     NvmeFlushAIOCB *iocb = container_of(acb, NvmeFlushAIOCB, common);
3172 
3173     iocb->ret = -ECANCELED;
3174 
3175     if (iocb->aiocb) {
3176         blk_aio_cancel_async(iocb->aiocb);
3177     }
3178 }
3179 
3180 static const AIOCBInfo nvme_flush_aiocb_info = {
3181     .aiocb_size = sizeof(NvmeFlushAIOCB),
3182     .cancel_async = nvme_flush_cancel,
3183     .get_aio_context = nvme_get_aio_context,
3184 };
3185 
3186 static void nvme_flush_ns_cb(void *opaque, int ret)
3187 {
3188     NvmeFlushAIOCB *iocb = opaque;
3189     NvmeNamespace *ns = iocb->ns;
3190 
3191     if (ret < 0) {
3192         iocb->ret = ret;
3193         goto out;
3194     } else if (iocb->ret < 0) {
3195         goto out;
3196     }
3197 
3198     if (ns) {
3199         trace_pci_nvme_flush_ns(iocb->nsid);
3200 
3201         iocb->ns = NULL;
3202         iocb->aiocb = blk_aio_flush(ns->blkconf.blk, nvme_flush_ns_cb, iocb);
3203         return;
3204     }
3205 
3206 out:
3207     iocb->aiocb = NULL;
3208     qemu_bh_schedule(iocb->bh);
3209 }
3210 
3211 static void nvme_flush_bh(void *opaque)
3212 {
3213     NvmeFlushAIOCB *iocb = opaque;
3214     NvmeRequest *req = iocb->req;
3215     NvmeCtrl *n = nvme_ctrl(req);
3216     int i;
3217 
3218     if (iocb->ret < 0) {
3219         goto done;
3220     }
3221 
3222     if (iocb->broadcast) {
3223         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
3224             iocb->ns = nvme_ns(n, i);
3225             if (iocb->ns) {
3226                 iocb->nsid = i;
3227                 break;
3228             }
3229         }
3230     }
3231 
3232     if (!iocb->ns) {
3233         goto done;
3234     }
3235 
3236     nvme_flush_ns_cb(iocb, 0);
3237     return;
3238 
3239 done:
3240     qemu_bh_delete(iocb->bh);
3241     iocb->bh = NULL;
3242 
3243     iocb->common.cb(iocb->common.opaque, iocb->ret);
3244 
3245     qemu_aio_unref(iocb);
3246 
3247     return;
3248 }
3249 
3250 static uint16_t nvme_flush(NvmeCtrl *n, NvmeRequest *req)
3251 {
3252     NvmeFlushAIOCB *iocb;
3253     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
3254     uint16_t status;
3255 
3256     iocb = qemu_aio_get(&nvme_flush_aiocb_info, NULL, nvme_misc_cb, req);
3257 
3258     iocb->req = req;
3259     iocb->bh = qemu_bh_new(nvme_flush_bh, iocb);
3260     iocb->ret = 0;
3261     iocb->ns = NULL;
3262     iocb->nsid = 0;
3263     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
3264 
3265     if (!iocb->broadcast) {
3266         if (!nvme_nsid_valid(n, nsid)) {
3267             status = NVME_INVALID_NSID | NVME_DNR;
3268             goto out;
3269         }
3270 
3271         iocb->ns = nvme_ns(n, nsid);
3272         if (!iocb->ns) {
3273             status = NVME_INVALID_FIELD | NVME_DNR;
3274             goto out;
3275         }
3276 
3277         iocb->nsid = nsid;
3278     }
3279 
3280     req->aiocb = &iocb->common;
3281     qemu_bh_schedule(iocb->bh);
3282 
3283     return NVME_NO_COMPLETE;
3284 
3285 out:
3286     qemu_bh_delete(iocb->bh);
3287     iocb->bh = NULL;
3288     qemu_aio_unref(iocb);
3289 
3290     return status;
3291 }
3292 
3293 static uint16_t nvme_read(NvmeCtrl *n, NvmeRequest *req)
3294 {
3295     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3296     NvmeNamespace *ns = req->ns;
3297     uint64_t slba = le64_to_cpu(rw->slba);
3298     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3299     uint8_t prinfo = NVME_RW_PRINFO(le16_to_cpu(rw->control));
3300     uint64_t data_size = nvme_l2b(ns, nlb);
3301     uint64_t mapped_size = data_size;
3302     uint64_t data_offset;
3303     BlockBackend *blk = ns->blkconf.blk;
3304     uint16_t status;
3305 
3306     if (nvme_ns_ext(ns)) {
3307         mapped_size += nvme_m2b(ns, nlb);
3308 
3309         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3310             bool pract = prinfo & NVME_PRINFO_PRACT;
3311 
3312             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3313                 mapped_size = data_size;
3314             }
3315         }
3316     }
3317 
3318     trace_pci_nvme_read(nvme_cid(req), nvme_nsid(ns), nlb, mapped_size, slba);
3319 
3320     status = nvme_check_mdts(n, mapped_size);
3321     if (status) {
3322         goto invalid;
3323     }
3324 
3325     status = nvme_check_bounds(ns, slba, nlb);
3326     if (status) {
3327         goto invalid;
3328     }
3329 
3330     if (ns->params.zoned) {
3331         status = nvme_check_zone_read(ns, slba, nlb);
3332         if (status) {
3333             trace_pci_nvme_err_zone_read_not_ok(slba, nlb, status);
3334             goto invalid;
3335         }
3336     }
3337 
3338     if (NVME_ERR_REC_DULBE(ns->features.err_rec)) {
3339         status = nvme_check_dulbe(ns, slba, nlb);
3340         if (status) {
3341             goto invalid;
3342         }
3343     }
3344 
3345     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3346         return nvme_dif_rw(n, req);
3347     }
3348 
3349     status = nvme_map_data(n, nlb, req);
3350     if (status) {
3351         goto invalid;
3352     }
3353 
3354     data_offset = nvme_l2b(ns, slba);
3355 
3356     block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3357                      BLOCK_ACCT_READ);
3358     nvme_blk_read(blk, data_offset, nvme_rw_cb, req);
3359     return NVME_NO_COMPLETE;
3360 
3361 invalid:
3362     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_READ);
3363     return status | NVME_DNR;
3364 }
3365 
3366 static uint16_t nvme_do_write(NvmeCtrl *n, NvmeRequest *req, bool append,
3367                               bool wrz)
3368 {
3369     NvmeRwCmd *rw = (NvmeRwCmd *)&req->cmd;
3370     NvmeNamespace *ns = req->ns;
3371     uint64_t slba = le64_to_cpu(rw->slba);
3372     uint32_t nlb = (uint32_t)le16_to_cpu(rw->nlb) + 1;
3373     uint16_t ctrl = le16_to_cpu(rw->control);
3374     uint8_t prinfo = NVME_RW_PRINFO(ctrl);
3375     uint64_t data_size = nvme_l2b(ns, nlb);
3376     uint64_t mapped_size = data_size;
3377     uint64_t data_offset;
3378     NvmeZone *zone;
3379     NvmeZonedResult *res = (NvmeZonedResult *)&req->cqe;
3380     BlockBackend *blk = ns->blkconf.blk;
3381     uint16_t status;
3382 
3383     if (nvme_ns_ext(ns)) {
3384         mapped_size += nvme_m2b(ns, nlb);
3385 
3386         if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3387             bool pract = prinfo & NVME_PRINFO_PRACT;
3388 
3389             if (pract && ns->lbaf.ms == nvme_pi_tuple_size(ns)) {
3390                 mapped_size -= nvme_m2b(ns, nlb);
3391             }
3392         }
3393     }
3394 
3395     trace_pci_nvme_write(nvme_cid(req), nvme_io_opc_str(rw->opcode),
3396                          nvme_nsid(ns), nlb, mapped_size, slba);
3397 
3398     if (!wrz) {
3399         status = nvme_check_mdts(n, mapped_size);
3400         if (status) {
3401             goto invalid;
3402         }
3403     }
3404 
3405     status = nvme_check_bounds(ns, slba, nlb);
3406     if (status) {
3407         goto invalid;
3408     }
3409 
3410     if (ns->params.zoned) {
3411         zone = nvme_get_zone_by_slba(ns, slba);
3412         assert(zone);
3413 
3414         if (append) {
3415             bool piremap = !!(ctrl & NVME_RW_PIREMAP);
3416 
3417             if (unlikely(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3418                 return NVME_INVALID_ZONE_OP | NVME_DNR;
3419             }
3420 
3421             if (unlikely(slba != zone->d.zslba)) {
3422                 trace_pci_nvme_err_append_not_at_start(slba, zone->d.zslba);
3423                 status = NVME_INVALID_FIELD;
3424                 goto invalid;
3425             }
3426 
3427             if (n->params.zasl &&
3428                 data_size > (uint64_t)n->page_size << n->params.zasl) {
3429                 trace_pci_nvme_err_zasl(data_size);
3430                 return NVME_INVALID_FIELD | NVME_DNR;
3431             }
3432 
3433             slba = zone->w_ptr;
3434             rw->slba = cpu_to_le64(slba);
3435             res->slba = cpu_to_le64(slba);
3436 
3437             switch (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3438             case NVME_ID_NS_DPS_TYPE_1:
3439                 if (!piremap) {
3440                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3441                 }
3442 
3443                 /* fallthrough */
3444 
3445             case NVME_ID_NS_DPS_TYPE_2:
3446                 if (piremap) {
3447                     uint32_t reftag = le32_to_cpu(rw->reftag);
3448                     rw->reftag = cpu_to_le32(reftag + (slba - zone->d.zslba));
3449                 }
3450 
3451                 break;
3452 
3453             case NVME_ID_NS_DPS_TYPE_3:
3454                 if (piremap) {
3455                     return NVME_INVALID_PROT_INFO | NVME_DNR;
3456                 }
3457 
3458                 break;
3459             }
3460         }
3461 
3462         status = nvme_check_zone_write(ns, zone, slba, nlb);
3463         if (status) {
3464             goto invalid;
3465         }
3466 
3467         status = nvme_zrm_auto(n, ns, zone);
3468         if (status) {
3469             goto invalid;
3470         }
3471 
3472         if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3473             zone->w_ptr += nlb;
3474         }
3475     }
3476 
3477     data_offset = nvme_l2b(ns, slba);
3478 
3479     if (NVME_ID_NS_DPS_TYPE(ns->id_ns.dps)) {
3480         return nvme_dif_rw(n, req);
3481     }
3482 
3483     if (!wrz) {
3484         status = nvme_map_data(n, nlb, req);
3485         if (status) {
3486             goto invalid;
3487         }
3488 
3489         block_acct_start(blk_get_stats(blk), &req->acct, data_size,
3490                          BLOCK_ACCT_WRITE);
3491         nvme_blk_write(blk, data_offset, nvme_rw_cb, req);
3492     } else {
3493         req->aiocb = blk_aio_pwrite_zeroes(blk, data_offset, data_size,
3494                                            BDRV_REQ_MAY_UNMAP, nvme_rw_cb,
3495                                            req);
3496     }
3497 
3498     return NVME_NO_COMPLETE;
3499 
3500 invalid:
3501     block_acct_invalid(blk_get_stats(blk), BLOCK_ACCT_WRITE);
3502     return status | NVME_DNR;
3503 }
3504 
3505 static inline uint16_t nvme_write(NvmeCtrl *n, NvmeRequest *req)
3506 {
3507     return nvme_do_write(n, req, false, false);
3508 }
3509 
3510 static inline uint16_t nvme_write_zeroes(NvmeCtrl *n, NvmeRequest *req)
3511 {
3512     return nvme_do_write(n, req, false, true);
3513 }
3514 
3515 static inline uint16_t nvme_zone_append(NvmeCtrl *n, NvmeRequest *req)
3516 {
3517     return nvme_do_write(n, req, true, false);
3518 }
3519 
3520 static uint16_t nvme_get_mgmt_zone_slba_idx(NvmeNamespace *ns, NvmeCmd *c,
3521                                             uint64_t *slba, uint32_t *zone_idx)
3522 {
3523     uint32_t dw10 = le32_to_cpu(c->cdw10);
3524     uint32_t dw11 = le32_to_cpu(c->cdw11);
3525 
3526     if (!ns->params.zoned) {
3527         trace_pci_nvme_err_invalid_opc(c->opcode);
3528         return NVME_INVALID_OPCODE | NVME_DNR;
3529     }
3530 
3531     *slba = ((uint64_t)dw11) << 32 | dw10;
3532     if (unlikely(*slba >= ns->id_ns.nsze)) {
3533         trace_pci_nvme_err_invalid_lba_range(*slba, 0, ns->id_ns.nsze);
3534         *slba = 0;
3535         return NVME_LBA_RANGE | NVME_DNR;
3536     }
3537 
3538     *zone_idx = nvme_zone_idx(ns, *slba);
3539     assert(*zone_idx < ns->num_zones);
3540 
3541     return NVME_SUCCESS;
3542 }
3543 
3544 typedef uint16_t (*op_handler_t)(NvmeNamespace *, NvmeZone *, NvmeZoneState,
3545                                  NvmeRequest *);
3546 
3547 enum NvmeZoneProcessingMask {
3548     NVME_PROC_CURRENT_ZONE    = 0,
3549     NVME_PROC_OPENED_ZONES    = 1 << 0,
3550     NVME_PROC_CLOSED_ZONES    = 1 << 1,
3551     NVME_PROC_READ_ONLY_ZONES = 1 << 2,
3552     NVME_PROC_FULL_ZONES      = 1 << 3,
3553 };
3554 
3555 static uint16_t nvme_open_zone(NvmeNamespace *ns, NvmeZone *zone,
3556                                NvmeZoneState state, NvmeRequest *req)
3557 {
3558     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3559     int flags = 0;
3560 
3561     if (cmd->zsflags & NVME_ZSFLAG_ZRWA_ALLOC) {
3562         uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3563 
3564         if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3565             return NVME_INVALID_ZONE_OP | NVME_DNR;
3566         }
3567 
3568         if (zone->w_ptr % ns->zns.zrwafg) {
3569             return NVME_NOZRWA | NVME_DNR;
3570         }
3571 
3572         flags = NVME_ZRM_ZRWA;
3573     }
3574 
3575     return nvme_zrm_open_flags(nvme_ctrl(req), ns, zone, flags);
3576 }
3577 
3578 static uint16_t nvme_close_zone(NvmeNamespace *ns, NvmeZone *zone,
3579                                 NvmeZoneState state, NvmeRequest *req)
3580 {
3581     return nvme_zrm_close(ns, zone);
3582 }
3583 
3584 static uint16_t nvme_finish_zone(NvmeNamespace *ns, NvmeZone *zone,
3585                                  NvmeZoneState state, NvmeRequest *req)
3586 {
3587     return nvme_zrm_finish(ns, zone);
3588 }
3589 
3590 static uint16_t nvme_offline_zone(NvmeNamespace *ns, NvmeZone *zone,
3591                                   NvmeZoneState state, NvmeRequest *req)
3592 {
3593     switch (state) {
3594     case NVME_ZONE_STATE_READ_ONLY:
3595         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_OFFLINE);
3596         /* fall through */
3597     case NVME_ZONE_STATE_OFFLINE:
3598         return NVME_SUCCESS;
3599     default:
3600         return NVME_ZONE_INVAL_TRANSITION;
3601     }
3602 }
3603 
3604 static uint16_t nvme_set_zd_ext(NvmeNamespace *ns, NvmeZone *zone)
3605 {
3606     uint16_t status;
3607     uint8_t state = nvme_get_zone_state(zone);
3608 
3609     if (state == NVME_ZONE_STATE_EMPTY) {
3610         status = nvme_aor_check(ns, 1, 0);
3611         if (status) {
3612             return status;
3613         }
3614         nvme_aor_inc_active(ns);
3615         zone->d.za |= NVME_ZA_ZD_EXT_VALID;
3616         nvme_assign_zone_state(ns, zone, NVME_ZONE_STATE_CLOSED);
3617         return NVME_SUCCESS;
3618     }
3619 
3620     return NVME_ZONE_INVAL_TRANSITION;
3621 }
3622 
3623 static uint16_t nvme_bulk_proc_zone(NvmeNamespace *ns, NvmeZone *zone,
3624                                     enum NvmeZoneProcessingMask proc_mask,
3625                                     op_handler_t op_hndlr, NvmeRequest *req)
3626 {
3627     uint16_t status = NVME_SUCCESS;
3628     NvmeZoneState zs = nvme_get_zone_state(zone);
3629     bool proc_zone;
3630 
3631     switch (zs) {
3632     case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3633     case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3634         proc_zone = proc_mask & NVME_PROC_OPENED_ZONES;
3635         break;
3636     case NVME_ZONE_STATE_CLOSED:
3637         proc_zone = proc_mask & NVME_PROC_CLOSED_ZONES;
3638         break;
3639     case NVME_ZONE_STATE_READ_ONLY:
3640         proc_zone = proc_mask & NVME_PROC_READ_ONLY_ZONES;
3641         break;
3642     case NVME_ZONE_STATE_FULL:
3643         proc_zone = proc_mask & NVME_PROC_FULL_ZONES;
3644         break;
3645     default:
3646         proc_zone = false;
3647     }
3648 
3649     if (proc_zone) {
3650         status = op_hndlr(ns, zone, zs, req);
3651     }
3652 
3653     return status;
3654 }
3655 
3656 static uint16_t nvme_do_zone_op(NvmeNamespace *ns, NvmeZone *zone,
3657                                 enum NvmeZoneProcessingMask proc_mask,
3658                                 op_handler_t op_hndlr, NvmeRequest *req)
3659 {
3660     NvmeZone *next;
3661     uint16_t status = NVME_SUCCESS;
3662     int i;
3663 
3664     if (!proc_mask) {
3665         status = op_hndlr(ns, zone, nvme_get_zone_state(zone), req);
3666     } else {
3667         if (proc_mask & NVME_PROC_CLOSED_ZONES) {
3668             QTAILQ_FOREACH_SAFE(zone, &ns->closed_zones, entry, next) {
3669                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3670                                              req);
3671                 if (status && status != NVME_NO_COMPLETE) {
3672                     goto out;
3673                 }
3674             }
3675         }
3676         if (proc_mask & NVME_PROC_OPENED_ZONES) {
3677             QTAILQ_FOREACH_SAFE(zone, &ns->imp_open_zones, entry, next) {
3678                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3679                                              req);
3680                 if (status && status != NVME_NO_COMPLETE) {
3681                     goto out;
3682                 }
3683             }
3684 
3685             QTAILQ_FOREACH_SAFE(zone, &ns->exp_open_zones, entry, next) {
3686                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3687                                              req);
3688                 if (status && status != NVME_NO_COMPLETE) {
3689                     goto out;
3690                 }
3691             }
3692         }
3693         if (proc_mask & NVME_PROC_FULL_ZONES) {
3694             QTAILQ_FOREACH_SAFE(zone, &ns->full_zones, entry, next) {
3695                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3696                                              req);
3697                 if (status && status != NVME_NO_COMPLETE) {
3698                     goto out;
3699                 }
3700             }
3701         }
3702 
3703         if (proc_mask & NVME_PROC_READ_ONLY_ZONES) {
3704             for (i = 0; i < ns->num_zones; i++, zone++) {
3705                 status = nvme_bulk_proc_zone(ns, zone, proc_mask, op_hndlr,
3706                                              req);
3707                 if (status && status != NVME_NO_COMPLETE) {
3708                     goto out;
3709                 }
3710             }
3711         }
3712     }
3713 
3714 out:
3715     return status;
3716 }
3717 
3718 typedef struct NvmeZoneResetAIOCB {
3719     BlockAIOCB common;
3720     BlockAIOCB *aiocb;
3721     NvmeRequest *req;
3722     QEMUBH *bh;
3723     int ret;
3724 
3725     bool all;
3726     int idx;
3727     NvmeZone *zone;
3728 } NvmeZoneResetAIOCB;
3729 
3730 static void nvme_zone_reset_cancel(BlockAIOCB *aiocb)
3731 {
3732     NvmeZoneResetAIOCB *iocb = container_of(aiocb, NvmeZoneResetAIOCB, common);
3733     NvmeRequest *req = iocb->req;
3734     NvmeNamespace *ns = req->ns;
3735 
3736     iocb->idx = ns->num_zones;
3737 
3738     iocb->ret = -ECANCELED;
3739 
3740     if (iocb->aiocb) {
3741         blk_aio_cancel_async(iocb->aiocb);
3742         iocb->aiocb = NULL;
3743     }
3744 }
3745 
3746 static const AIOCBInfo nvme_zone_reset_aiocb_info = {
3747     .aiocb_size = sizeof(NvmeZoneResetAIOCB),
3748     .cancel_async = nvme_zone_reset_cancel,
3749 };
3750 
3751 static void nvme_zone_reset_bh(void *opaque)
3752 {
3753     NvmeZoneResetAIOCB *iocb = opaque;
3754 
3755     iocb->common.cb(iocb->common.opaque, iocb->ret);
3756 
3757     qemu_bh_delete(iocb->bh);
3758     iocb->bh = NULL;
3759     qemu_aio_unref(iocb);
3760 }
3761 
3762 static void nvme_zone_reset_cb(void *opaque, int ret);
3763 
3764 static void nvme_zone_reset_epilogue_cb(void *opaque, int ret)
3765 {
3766     NvmeZoneResetAIOCB *iocb = opaque;
3767     NvmeRequest *req = iocb->req;
3768     NvmeNamespace *ns = req->ns;
3769     int64_t moff;
3770     int count;
3771 
3772     if (ret < 0) {
3773         nvme_zone_reset_cb(iocb, ret);
3774         return;
3775     }
3776 
3777     if (!ns->lbaf.ms) {
3778         nvme_zone_reset_cb(iocb, 0);
3779         return;
3780     }
3781 
3782     moff = nvme_moff(ns, iocb->zone->d.zslba);
3783     count = nvme_m2b(ns, ns->zone_size);
3784 
3785     iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, moff, count,
3786                                         BDRV_REQ_MAY_UNMAP,
3787                                         nvme_zone_reset_cb, iocb);
3788     return;
3789 }
3790 
3791 static void nvme_zone_reset_cb(void *opaque, int ret)
3792 {
3793     NvmeZoneResetAIOCB *iocb = opaque;
3794     NvmeRequest *req = iocb->req;
3795     NvmeNamespace *ns = req->ns;
3796 
3797     if (ret < 0) {
3798         iocb->ret = ret;
3799         goto done;
3800     }
3801 
3802     if (iocb->zone) {
3803         nvme_zrm_reset(ns, iocb->zone);
3804 
3805         if (!iocb->all) {
3806             goto done;
3807         }
3808     }
3809 
3810     while (iocb->idx < ns->num_zones) {
3811         NvmeZone *zone = &ns->zone_array[iocb->idx++];
3812 
3813         switch (nvme_get_zone_state(zone)) {
3814         case NVME_ZONE_STATE_EMPTY:
3815             if (!iocb->all) {
3816                 goto done;
3817             }
3818 
3819             continue;
3820 
3821         case NVME_ZONE_STATE_EXPLICITLY_OPEN:
3822         case NVME_ZONE_STATE_IMPLICITLY_OPEN:
3823         case NVME_ZONE_STATE_CLOSED:
3824         case NVME_ZONE_STATE_FULL:
3825             iocb->zone = zone;
3826             break;
3827 
3828         default:
3829             continue;
3830         }
3831 
3832         trace_pci_nvme_zns_zone_reset(zone->d.zslba);
3833 
3834         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk,
3835                                             nvme_l2b(ns, zone->d.zslba),
3836                                             nvme_l2b(ns, ns->zone_size),
3837                                             BDRV_REQ_MAY_UNMAP,
3838                                             nvme_zone_reset_epilogue_cb,
3839                                             iocb);
3840         return;
3841     }
3842 
3843 done:
3844     iocb->aiocb = NULL;
3845     if (iocb->bh) {
3846         qemu_bh_schedule(iocb->bh);
3847     }
3848 }
3849 
3850 static uint16_t nvme_zone_mgmt_send_zrwa_flush(NvmeCtrl *n, NvmeZone *zone,
3851                                                uint64_t elba, NvmeRequest *req)
3852 {
3853     NvmeNamespace *ns = req->ns;
3854     uint16_t ozcs = le16_to_cpu(ns->id_ns_zoned->ozcs);
3855     uint64_t wp = zone->d.wp;
3856     uint32_t nlb = elba - wp + 1;
3857     uint16_t status;
3858 
3859 
3860     if (!(ozcs & NVME_ID_NS_ZONED_OZCS_ZRWASUP)) {
3861         return NVME_INVALID_ZONE_OP | NVME_DNR;
3862     }
3863 
3864     if (!(zone->d.za & NVME_ZA_ZRWA_VALID)) {
3865         return NVME_INVALID_FIELD | NVME_DNR;
3866     }
3867 
3868     if (elba < wp || elba > wp + ns->zns.zrwas) {
3869         return NVME_ZONE_BOUNDARY_ERROR | NVME_DNR;
3870     }
3871 
3872     if (nlb % ns->zns.zrwafg) {
3873         return NVME_INVALID_FIELD | NVME_DNR;
3874     }
3875 
3876     status = nvme_zrm_auto(n, ns, zone);
3877     if (status) {
3878         return status;
3879     }
3880 
3881     zone->w_ptr += nlb;
3882 
3883     nvme_advance_zone_wp(ns, zone, nlb);
3884 
3885     return NVME_SUCCESS;
3886 }
3887 
3888 static uint16_t nvme_zone_mgmt_send(NvmeCtrl *n, NvmeRequest *req)
3889 {
3890     NvmeZoneSendCmd *cmd = (NvmeZoneSendCmd *)&req->cmd;
3891     NvmeNamespace *ns = req->ns;
3892     NvmeZone *zone;
3893     NvmeZoneResetAIOCB *iocb;
3894     uint8_t *zd_ext;
3895     uint64_t slba = 0;
3896     uint32_t zone_idx = 0;
3897     uint16_t status;
3898     uint8_t action = cmd->zsa;
3899     bool all;
3900     enum NvmeZoneProcessingMask proc_mask = NVME_PROC_CURRENT_ZONE;
3901 
3902     all = cmd->zsflags & NVME_ZSFLAG_SELECT_ALL;
3903 
3904     req->status = NVME_SUCCESS;
3905 
3906     if (!all) {
3907         status = nvme_get_mgmt_zone_slba_idx(ns, &req->cmd, &slba, &zone_idx);
3908         if (status) {
3909             return status;
3910         }
3911     }
3912 
3913     zone = &ns->zone_array[zone_idx];
3914     if (slba != zone->d.zslba && action != NVME_ZONE_ACTION_ZRWA_FLUSH) {
3915         trace_pci_nvme_err_unaligned_zone_cmd(action, slba, zone->d.zslba);
3916         return NVME_INVALID_FIELD | NVME_DNR;
3917     }
3918 
3919     switch (action) {
3920 
3921     case NVME_ZONE_ACTION_OPEN:
3922         if (all) {
3923             proc_mask = NVME_PROC_CLOSED_ZONES;
3924         }
3925         trace_pci_nvme_open_zone(slba, zone_idx, all);
3926         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_open_zone, req);
3927         break;
3928 
3929     case NVME_ZONE_ACTION_CLOSE:
3930         if (all) {
3931             proc_mask = NVME_PROC_OPENED_ZONES;
3932         }
3933         trace_pci_nvme_close_zone(slba, zone_idx, all);
3934         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_close_zone, req);
3935         break;
3936 
3937     case NVME_ZONE_ACTION_FINISH:
3938         if (all) {
3939             proc_mask = NVME_PROC_OPENED_ZONES | NVME_PROC_CLOSED_ZONES;
3940         }
3941         trace_pci_nvme_finish_zone(slba, zone_idx, all);
3942         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_finish_zone, req);
3943         break;
3944 
3945     case NVME_ZONE_ACTION_RESET:
3946         trace_pci_nvme_reset_zone(slba, zone_idx, all);
3947 
3948         iocb = blk_aio_get(&nvme_zone_reset_aiocb_info, ns->blkconf.blk,
3949                            nvme_misc_cb, req);
3950 
3951         iocb->req = req;
3952         iocb->bh = qemu_bh_new(nvme_zone_reset_bh, iocb);
3953         iocb->ret = 0;
3954         iocb->all = all;
3955         iocb->idx = zone_idx;
3956         iocb->zone = NULL;
3957 
3958         req->aiocb = &iocb->common;
3959         nvme_zone_reset_cb(iocb, 0);
3960 
3961         return NVME_NO_COMPLETE;
3962 
3963     case NVME_ZONE_ACTION_OFFLINE:
3964         if (all) {
3965             proc_mask = NVME_PROC_READ_ONLY_ZONES;
3966         }
3967         trace_pci_nvme_offline_zone(slba, zone_idx, all);
3968         status = nvme_do_zone_op(ns, zone, proc_mask, nvme_offline_zone, req);
3969         break;
3970 
3971     case NVME_ZONE_ACTION_SET_ZD_EXT:
3972         trace_pci_nvme_set_descriptor_extension(slba, zone_idx);
3973         if (all || !ns->params.zd_extension_size) {
3974             return NVME_INVALID_FIELD | NVME_DNR;
3975         }
3976         zd_ext = nvme_get_zd_extension(ns, zone_idx);
3977         status = nvme_h2c(n, zd_ext, ns->params.zd_extension_size, req);
3978         if (status) {
3979             trace_pci_nvme_err_zd_extension_map_error(zone_idx);
3980             return status;
3981         }
3982 
3983         status = nvme_set_zd_ext(ns, zone);
3984         if (status == NVME_SUCCESS) {
3985             trace_pci_nvme_zd_extension_set(zone_idx);
3986             return status;
3987         }
3988         break;
3989 
3990     case NVME_ZONE_ACTION_ZRWA_FLUSH:
3991         if (all) {
3992             return NVME_INVALID_FIELD | NVME_DNR;
3993         }
3994 
3995         return nvme_zone_mgmt_send_zrwa_flush(n, zone, slba, req);
3996 
3997     default:
3998         trace_pci_nvme_err_invalid_mgmt_action(action);
3999         status = NVME_INVALID_FIELD;
4000     }
4001 
4002     if (status == NVME_ZONE_INVAL_TRANSITION) {
4003         trace_pci_nvme_err_invalid_zone_state_transition(action, slba,
4004                                                          zone->d.za);
4005     }
4006     if (status) {
4007         status |= NVME_DNR;
4008     }
4009 
4010     return status;
4011 }
4012 
4013 static bool nvme_zone_matches_filter(uint32_t zafs, NvmeZone *zl)
4014 {
4015     NvmeZoneState zs = nvme_get_zone_state(zl);
4016 
4017     switch (zafs) {
4018     case NVME_ZONE_REPORT_ALL:
4019         return true;
4020     case NVME_ZONE_REPORT_EMPTY:
4021         return zs == NVME_ZONE_STATE_EMPTY;
4022     case NVME_ZONE_REPORT_IMPLICITLY_OPEN:
4023         return zs == NVME_ZONE_STATE_IMPLICITLY_OPEN;
4024     case NVME_ZONE_REPORT_EXPLICITLY_OPEN:
4025         return zs == NVME_ZONE_STATE_EXPLICITLY_OPEN;
4026     case NVME_ZONE_REPORT_CLOSED:
4027         return zs == NVME_ZONE_STATE_CLOSED;
4028     case NVME_ZONE_REPORT_FULL:
4029         return zs == NVME_ZONE_STATE_FULL;
4030     case NVME_ZONE_REPORT_READ_ONLY:
4031         return zs == NVME_ZONE_STATE_READ_ONLY;
4032     case NVME_ZONE_REPORT_OFFLINE:
4033         return zs == NVME_ZONE_STATE_OFFLINE;
4034     default:
4035         return false;
4036     }
4037 }
4038 
4039 static uint16_t nvme_zone_mgmt_recv(NvmeCtrl *n, NvmeRequest *req)
4040 {
4041     NvmeCmd *cmd = (NvmeCmd *)&req->cmd;
4042     NvmeNamespace *ns = req->ns;
4043     /* cdw12 is zero-based number of dwords to return. Convert to bytes */
4044     uint32_t data_size = (le32_to_cpu(cmd->cdw12) + 1) << 2;
4045     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4046     uint32_t zone_idx, zra, zrasf, partial;
4047     uint64_t max_zones, nr_zones = 0;
4048     uint16_t status;
4049     uint64_t slba;
4050     NvmeZoneDescr *z;
4051     NvmeZone *zone;
4052     NvmeZoneReportHeader *header;
4053     void *buf, *buf_p;
4054     size_t zone_entry_sz;
4055     int i;
4056 
4057     req->status = NVME_SUCCESS;
4058 
4059     status = nvme_get_mgmt_zone_slba_idx(ns, cmd, &slba, &zone_idx);
4060     if (status) {
4061         return status;
4062     }
4063 
4064     zra = dw13 & 0xff;
4065     if (zra != NVME_ZONE_REPORT && zra != NVME_ZONE_REPORT_EXTENDED) {
4066         return NVME_INVALID_FIELD | NVME_DNR;
4067     }
4068     if (zra == NVME_ZONE_REPORT_EXTENDED && !ns->params.zd_extension_size) {
4069         return NVME_INVALID_FIELD | NVME_DNR;
4070     }
4071 
4072     zrasf = (dw13 >> 8) & 0xff;
4073     if (zrasf > NVME_ZONE_REPORT_OFFLINE) {
4074         return NVME_INVALID_FIELD | NVME_DNR;
4075     }
4076 
4077     if (data_size < sizeof(NvmeZoneReportHeader)) {
4078         return NVME_INVALID_FIELD | NVME_DNR;
4079     }
4080 
4081     status = nvme_check_mdts(n, data_size);
4082     if (status) {
4083         return status;
4084     }
4085 
4086     partial = (dw13 >> 16) & 0x01;
4087 
4088     zone_entry_sz = sizeof(NvmeZoneDescr);
4089     if (zra == NVME_ZONE_REPORT_EXTENDED) {
4090         zone_entry_sz += ns->params.zd_extension_size;
4091     }
4092 
4093     max_zones = (data_size - sizeof(NvmeZoneReportHeader)) / zone_entry_sz;
4094     buf = g_malloc0(data_size);
4095 
4096     zone = &ns->zone_array[zone_idx];
4097     for (i = zone_idx; i < ns->num_zones; i++) {
4098         if (partial && nr_zones >= max_zones) {
4099             break;
4100         }
4101         if (nvme_zone_matches_filter(zrasf, zone++)) {
4102             nr_zones++;
4103         }
4104     }
4105     header = (NvmeZoneReportHeader *)buf;
4106     header->nr_zones = cpu_to_le64(nr_zones);
4107 
4108     buf_p = buf + sizeof(NvmeZoneReportHeader);
4109     for (; zone_idx < ns->num_zones && max_zones > 0; zone_idx++) {
4110         zone = &ns->zone_array[zone_idx];
4111         if (nvme_zone_matches_filter(zrasf, zone)) {
4112             z = (NvmeZoneDescr *)buf_p;
4113             buf_p += sizeof(NvmeZoneDescr);
4114 
4115             z->zt = zone->d.zt;
4116             z->zs = zone->d.zs;
4117             z->zcap = cpu_to_le64(zone->d.zcap);
4118             z->zslba = cpu_to_le64(zone->d.zslba);
4119             z->za = zone->d.za;
4120 
4121             if (nvme_wp_is_valid(zone)) {
4122                 z->wp = cpu_to_le64(zone->d.wp);
4123             } else {
4124                 z->wp = cpu_to_le64(~0ULL);
4125             }
4126 
4127             if (zra == NVME_ZONE_REPORT_EXTENDED) {
4128                 if (zone->d.za & NVME_ZA_ZD_EXT_VALID) {
4129                     memcpy(buf_p, nvme_get_zd_extension(ns, zone_idx),
4130                            ns->params.zd_extension_size);
4131                 }
4132                 buf_p += ns->params.zd_extension_size;
4133             }
4134 
4135             max_zones--;
4136         }
4137     }
4138 
4139     status = nvme_c2h(n, (uint8_t *)buf, data_size, req);
4140 
4141     g_free(buf);
4142 
4143     return status;
4144 }
4145 
4146 static uint16_t nvme_io_cmd(NvmeCtrl *n, NvmeRequest *req)
4147 {
4148     NvmeNamespace *ns;
4149     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4150 
4151     trace_pci_nvme_io_cmd(nvme_cid(req), nsid, nvme_sqid(req),
4152                           req->cmd.opcode, nvme_io_opc_str(req->cmd.opcode));
4153 
4154     if (!nvme_nsid_valid(n, nsid)) {
4155         return NVME_INVALID_NSID | NVME_DNR;
4156     }
4157 
4158     /*
4159      * In the base NVM command set, Flush may apply to all namespaces
4160      * (indicated by NSID being set to FFFFFFFFh). But if that feature is used
4161      * along with TP 4056 (Namespace Types), it may be pretty screwed up.
4162      *
4163      * If NSID is indeed set to FFFFFFFFh, we simply cannot associate the
4164      * opcode with a specific command since we cannot determine a unique I/O
4165      * command set. Opcode 0h could have any other meaning than something
4166      * equivalent to flushing and say it DOES have completely different
4167      * semantics in some other command set - does an NSID of FFFFFFFFh then
4168      * mean "for all namespaces, apply whatever command set specific command
4169      * that uses the 0h opcode?" Or does it mean "for all namespaces, apply
4170      * whatever command that uses the 0h opcode if, and only if, it allows NSID
4171      * to be FFFFFFFFh"?
4172      *
4173      * Anyway (and luckily), for now, we do not care about this since the
4174      * device only supports namespace types that includes the NVM Flush command
4175      * (NVM and Zoned), so always do an NVM Flush.
4176      */
4177     if (req->cmd.opcode == NVME_CMD_FLUSH) {
4178         return nvme_flush(n, req);
4179     }
4180 
4181     ns = nvme_ns(n, nsid);
4182     if (unlikely(!ns)) {
4183         return NVME_INVALID_FIELD | NVME_DNR;
4184     }
4185 
4186     if (!(ns->iocs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
4187         trace_pci_nvme_err_invalid_opc(req->cmd.opcode);
4188         return NVME_INVALID_OPCODE | NVME_DNR;
4189     }
4190 
4191     if (ns->status) {
4192         return ns->status;
4193     }
4194 
4195     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
4196         return NVME_INVALID_FIELD;
4197     }
4198 
4199     req->ns = ns;
4200 
4201     switch (req->cmd.opcode) {
4202     case NVME_CMD_WRITE_ZEROES:
4203         return nvme_write_zeroes(n, req);
4204     case NVME_CMD_ZONE_APPEND:
4205         return nvme_zone_append(n, req);
4206     case NVME_CMD_WRITE:
4207         return nvme_write(n, req);
4208     case NVME_CMD_READ:
4209         return nvme_read(n, req);
4210     case NVME_CMD_COMPARE:
4211         return nvme_compare(n, req);
4212     case NVME_CMD_DSM:
4213         return nvme_dsm(n, req);
4214     case NVME_CMD_VERIFY:
4215         return nvme_verify(n, req);
4216     case NVME_CMD_COPY:
4217         return nvme_copy(n, req);
4218     case NVME_CMD_ZONE_MGMT_SEND:
4219         return nvme_zone_mgmt_send(n, req);
4220     case NVME_CMD_ZONE_MGMT_RECV:
4221         return nvme_zone_mgmt_recv(n, req);
4222     default:
4223         assert(false);
4224     }
4225 
4226     return NVME_INVALID_OPCODE | NVME_DNR;
4227 }
4228 
4229 static void nvme_free_sq(NvmeSQueue *sq, NvmeCtrl *n)
4230 {
4231     n->sq[sq->sqid] = NULL;
4232     timer_free(sq->timer);
4233     g_free(sq->io_req);
4234     if (sq->sqid) {
4235         g_free(sq);
4236     }
4237 }
4238 
4239 static uint16_t nvme_del_sq(NvmeCtrl *n, NvmeRequest *req)
4240 {
4241     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4242     NvmeRequest *r, *next;
4243     NvmeSQueue *sq;
4244     NvmeCQueue *cq;
4245     uint16_t qid = le16_to_cpu(c->qid);
4246 
4247     if (unlikely(!qid || nvme_check_sqid(n, qid))) {
4248         trace_pci_nvme_err_invalid_del_sq(qid);
4249         return NVME_INVALID_QID | NVME_DNR;
4250     }
4251 
4252     trace_pci_nvme_del_sq(qid);
4253 
4254     sq = n->sq[qid];
4255     while (!QTAILQ_EMPTY(&sq->out_req_list)) {
4256         r = QTAILQ_FIRST(&sq->out_req_list);
4257         assert(r->aiocb);
4258         blk_aio_cancel(r->aiocb);
4259     }
4260 
4261     assert(QTAILQ_EMPTY(&sq->out_req_list));
4262 
4263     if (!nvme_check_cqid(n, sq->cqid)) {
4264         cq = n->cq[sq->cqid];
4265         QTAILQ_REMOVE(&cq->sq_list, sq, entry);
4266 
4267         nvme_post_cqes(cq);
4268         QTAILQ_FOREACH_SAFE(r, &cq->req_list, entry, next) {
4269             if (r->sq == sq) {
4270                 QTAILQ_REMOVE(&cq->req_list, r, entry);
4271                 QTAILQ_INSERT_TAIL(&sq->req_list, r, entry);
4272             }
4273         }
4274     }
4275 
4276     nvme_free_sq(sq, n);
4277     return NVME_SUCCESS;
4278 }
4279 
4280 static void nvme_init_sq(NvmeSQueue *sq, NvmeCtrl *n, uint64_t dma_addr,
4281                          uint16_t sqid, uint16_t cqid, uint16_t size)
4282 {
4283     int i;
4284     NvmeCQueue *cq;
4285 
4286     sq->ctrl = n;
4287     sq->dma_addr = dma_addr;
4288     sq->sqid = sqid;
4289     sq->size = size;
4290     sq->cqid = cqid;
4291     sq->head = sq->tail = 0;
4292     sq->io_req = g_new0(NvmeRequest, sq->size);
4293 
4294     QTAILQ_INIT(&sq->req_list);
4295     QTAILQ_INIT(&sq->out_req_list);
4296     for (i = 0; i < sq->size; i++) {
4297         sq->io_req[i].sq = sq;
4298         QTAILQ_INSERT_TAIL(&(sq->req_list), &sq->io_req[i], entry);
4299     }
4300     sq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_process_sq, sq);
4301 
4302     if (n->dbbuf_enabled) {
4303         sq->db_addr = n->dbbuf_dbs + (sqid << 3);
4304         sq->ei_addr = n->dbbuf_eis + (sqid << 3);
4305     }
4306 
4307     assert(n->cq[cqid]);
4308     cq = n->cq[cqid];
4309     QTAILQ_INSERT_TAIL(&(cq->sq_list), sq, entry);
4310     n->sq[sqid] = sq;
4311 }
4312 
4313 static uint16_t nvme_create_sq(NvmeCtrl *n, NvmeRequest *req)
4314 {
4315     NvmeSQueue *sq;
4316     NvmeCreateSq *c = (NvmeCreateSq *)&req->cmd;
4317 
4318     uint16_t cqid = le16_to_cpu(c->cqid);
4319     uint16_t sqid = le16_to_cpu(c->sqid);
4320     uint16_t qsize = le16_to_cpu(c->qsize);
4321     uint16_t qflags = le16_to_cpu(c->sq_flags);
4322     uint64_t prp1 = le64_to_cpu(c->prp1);
4323 
4324     trace_pci_nvme_create_sq(prp1, sqid, cqid, qsize, qflags);
4325 
4326     if (unlikely(!cqid || nvme_check_cqid(n, cqid))) {
4327         trace_pci_nvme_err_invalid_create_sq_cqid(cqid);
4328         return NVME_INVALID_CQID | NVME_DNR;
4329     }
4330     if (unlikely(!sqid || sqid > n->conf_ioqpairs || n->sq[sqid] != NULL)) {
4331         trace_pci_nvme_err_invalid_create_sq_sqid(sqid);
4332         return NVME_INVALID_QID | NVME_DNR;
4333     }
4334     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4335         trace_pci_nvme_err_invalid_create_sq_size(qsize);
4336         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4337     }
4338     if (unlikely(prp1 & (n->page_size - 1))) {
4339         trace_pci_nvme_err_invalid_create_sq_addr(prp1);
4340         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4341     }
4342     if (unlikely(!(NVME_SQ_FLAGS_PC(qflags)))) {
4343         trace_pci_nvme_err_invalid_create_sq_qflags(NVME_SQ_FLAGS_PC(qflags));
4344         return NVME_INVALID_FIELD | NVME_DNR;
4345     }
4346     sq = g_malloc0(sizeof(*sq));
4347     nvme_init_sq(sq, n, prp1, sqid, cqid, qsize + 1);
4348     return NVME_SUCCESS;
4349 }
4350 
4351 struct nvme_stats {
4352     uint64_t units_read;
4353     uint64_t units_written;
4354     uint64_t read_commands;
4355     uint64_t write_commands;
4356 };
4357 
4358 static void nvme_set_blk_stats(NvmeNamespace *ns, struct nvme_stats *stats)
4359 {
4360     BlockAcctStats *s = blk_get_stats(ns->blkconf.blk);
4361 
4362     stats->units_read += s->nr_bytes[BLOCK_ACCT_READ] >> BDRV_SECTOR_BITS;
4363     stats->units_written += s->nr_bytes[BLOCK_ACCT_WRITE] >> BDRV_SECTOR_BITS;
4364     stats->read_commands += s->nr_ops[BLOCK_ACCT_READ];
4365     stats->write_commands += s->nr_ops[BLOCK_ACCT_WRITE];
4366 }
4367 
4368 static uint16_t nvme_smart_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4369                                 uint64_t off, NvmeRequest *req)
4370 {
4371     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
4372     struct nvme_stats stats = { 0 };
4373     NvmeSmartLog smart = { 0 };
4374     uint32_t trans_len;
4375     NvmeNamespace *ns;
4376     time_t current_ms;
4377 
4378     if (off >= sizeof(smart)) {
4379         return NVME_INVALID_FIELD | NVME_DNR;
4380     }
4381 
4382     if (nsid != 0xffffffff) {
4383         ns = nvme_ns(n, nsid);
4384         if (!ns) {
4385             return NVME_INVALID_NSID | NVME_DNR;
4386         }
4387         nvme_set_blk_stats(ns, &stats);
4388     } else {
4389         int i;
4390 
4391         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4392             ns = nvme_ns(n, i);
4393             if (!ns) {
4394                 continue;
4395             }
4396             nvme_set_blk_stats(ns, &stats);
4397         }
4398     }
4399 
4400     trans_len = MIN(sizeof(smart) - off, buf_len);
4401     smart.critical_warning = n->smart_critical_warning;
4402 
4403     smart.data_units_read[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_read,
4404                                                         1000));
4405     smart.data_units_written[0] = cpu_to_le64(DIV_ROUND_UP(stats.units_written,
4406                                                            1000));
4407     smart.host_read_commands[0] = cpu_to_le64(stats.read_commands);
4408     smart.host_write_commands[0] = cpu_to_le64(stats.write_commands);
4409 
4410     smart.temperature = cpu_to_le16(n->temperature);
4411 
4412     if ((n->temperature >= n->features.temp_thresh_hi) ||
4413         (n->temperature <= n->features.temp_thresh_low)) {
4414         smart.critical_warning |= NVME_SMART_TEMPERATURE;
4415     }
4416 
4417     current_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
4418     smart.power_on_hours[0] =
4419         cpu_to_le64((((current_ms - n->starttime_ms) / 1000) / 60) / 60);
4420 
4421     if (!rae) {
4422         nvme_clear_events(n, NVME_AER_TYPE_SMART);
4423     }
4424 
4425     return nvme_c2h(n, (uint8_t *) &smart + off, trans_len, req);
4426 }
4427 
4428 static uint16_t nvme_fw_log_info(NvmeCtrl *n, uint32_t buf_len, uint64_t off,
4429                                  NvmeRequest *req)
4430 {
4431     uint32_t trans_len;
4432     NvmeFwSlotInfoLog fw_log = {
4433         .afi = 0x1,
4434     };
4435 
4436     if (off >= sizeof(fw_log)) {
4437         return NVME_INVALID_FIELD | NVME_DNR;
4438     }
4439 
4440     strpadcpy((char *)&fw_log.frs1, sizeof(fw_log.frs1), "1.0", ' ');
4441     trans_len = MIN(sizeof(fw_log) - off, buf_len);
4442 
4443     return nvme_c2h(n, (uint8_t *) &fw_log + off, trans_len, req);
4444 }
4445 
4446 static uint16_t nvme_error_info(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4447                                 uint64_t off, NvmeRequest *req)
4448 {
4449     uint32_t trans_len;
4450     NvmeErrorLog errlog;
4451 
4452     if (off >= sizeof(errlog)) {
4453         return NVME_INVALID_FIELD | NVME_DNR;
4454     }
4455 
4456     if (!rae) {
4457         nvme_clear_events(n, NVME_AER_TYPE_ERROR);
4458     }
4459 
4460     memset(&errlog, 0x0, sizeof(errlog));
4461     trans_len = MIN(sizeof(errlog) - off, buf_len);
4462 
4463     return nvme_c2h(n, (uint8_t *)&errlog, trans_len, req);
4464 }
4465 
4466 static uint16_t nvme_changed_nslist(NvmeCtrl *n, uint8_t rae, uint32_t buf_len,
4467                                     uint64_t off, NvmeRequest *req)
4468 {
4469     uint32_t nslist[1024];
4470     uint32_t trans_len;
4471     int i = 0;
4472     uint32_t nsid;
4473 
4474     if (off >= sizeof(nslist)) {
4475         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(nslist));
4476         return NVME_INVALID_FIELD | NVME_DNR;
4477     }
4478 
4479     memset(nslist, 0x0, sizeof(nslist));
4480     trans_len = MIN(sizeof(nslist) - off, buf_len);
4481 
4482     while ((nsid = find_first_bit(n->changed_nsids, NVME_CHANGED_NSID_SIZE)) !=
4483             NVME_CHANGED_NSID_SIZE) {
4484         /*
4485          * If more than 1024 namespaces, the first entry in the log page should
4486          * be set to FFFFFFFFh and the others to 0 as spec.
4487          */
4488         if (i == ARRAY_SIZE(nslist)) {
4489             memset(nslist, 0x0, sizeof(nslist));
4490             nslist[0] = 0xffffffff;
4491             break;
4492         }
4493 
4494         nslist[i++] = nsid;
4495         clear_bit(nsid, n->changed_nsids);
4496     }
4497 
4498     /*
4499      * Remove all the remaining list entries in case returns directly due to
4500      * more than 1024 namespaces.
4501      */
4502     if (nslist[0] == 0xffffffff) {
4503         bitmap_zero(n->changed_nsids, NVME_CHANGED_NSID_SIZE);
4504     }
4505 
4506     if (!rae) {
4507         nvme_clear_events(n, NVME_AER_TYPE_NOTICE);
4508     }
4509 
4510     return nvme_c2h(n, ((uint8_t *)nslist) + off, trans_len, req);
4511 }
4512 
4513 static uint16_t nvme_cmd_effects(NvmeCtrl *n, uint8_t csi, uint32_t buf_len,
4514                                  uint64_t off, NvmeRequest *req)
4515 {
4516     NvmeEffectsLog log = {};
4517     const uint32_t *src_iocs = NULL;
4518     uint32_t trans_len;
4519 
4520     if (off >= sizeof(log)) {
4521         trace_pci_nvme_err_invalid_log_page_offset(off, sizeof(log));
4522         return NVME_INVALID_FIELD | NVME_DNR;
4523     }
4524 
4525     switch (NVME_CC_CSS(ldl_le_p(&n->bar.cc))) {
4526     case NVME_CC_CSS_NVM:
4527         src_iocs = nvme_cse_iocs_nvm;
4528         /* fall through */
4529     case NVME_CC_CSS_ADMIN_ONLY:
4530         break;
4531     case NVME_CC_CSS_CSI:
4532         switch (csi) {
4533         case NVME_CSI_NVM:
4534             src_iocs = nvme_cse_iocs_nvm;
4535             break;
4536         case NVME_CSI_ZONED:
4537             src_iocs = nvme_cse_iocs_zoned;
4538             break;
4539         }
4540     }
4541 
4542     memcpy(log.acs, nvme_cse_acs, sizeof(nvme_cse_acs));
4543 
4544     if (src_iocs) {
4545         memcpy(log.iocs, src_iocs, sizeof(log.iocs));
4546     }
4547 
4548     trans_len = MIN(sizeof(log) - off, buf_len);
4549 
4550     return nvme_c2h(n, ((uint8_t *)&log) + off, trans_len, req);
4551 }
4552 
4553 static uint16_t nvme_get_log(NvmeCtrl *n, NvmeRequest *req)
4554 {
4555     NvmeCmd *cmd = &req->cmd;
4556 
4557     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
4558     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
4559     uint32_t dw12 = le32_to_cpu(cmd->cdw12);
4560     uint32_t dw13 = le32_to_cpu(cmd->cdw13);
4561     uint8_t  lid = dw10 & 0xff;
4562     uint8_t  lsp = (dw10 >> 8) & 0xf;
4563     uint8_t  rae = (dw10 >> 15) & 0x1;
4564     uint8_t  csi = le32_to_cpu(cmd->cdw14) >> 24;
4565     uint32_t numdl, numdu;
4566     uint64_t off, lpol, lpou;
4567     size_t   len;
4568     uint16_t status;
4569 
4570     numdl = (dw10 >> 16);
4571     numdu = (dw11 & 0xffff);
4572     lpol = dw12;
4573     lpou = dw13;
4574 
4575     len = (((numdu << 16) | numdl) + 1) << 2;
4576     off = (lpou << 32ULL) | lpol;
4577 
4578     if (off & 0x3) {
4579         return NVME_INVALID_FIELD | NVME_DNR;
4580     }
4581 
4582     trace_pci_nvme_get_log(nvme_cid(req), lid, lsp, rae, len, off);
4583 
4584     status = nvme_check_mdts(n, len);
4585     if (status) {
4586         return status;
4587     }
4588 
4589     switch (lid) {
4590     case NVME_LOG_ERROR_INFO:
4591         return nvme_error_info(n, rae, len, off, req);
4592     case NVME_LOG_SMART_INFO:
4593         return nvme_smart_info(n, rae, len, off, req);
4594     case NVME_LOG_FW_SLOT_INFO:
4595         return nvme_fw_log_info(n, len, off, req);
4596     case NVME_LOG_CHANGED_NSLIST:
4597         return nvme_changed_nslist(n, rae, len, off, req);
4598     case NVME_LOG_CMD_EFFECTS:
4599         return nvme_cmd_effects(n, csi, len, off, req);
4600     default:
4601         trace_pci_nvme_err_invalid_log_page(nvme_cid(req), lid);
4602         return NVME_INVALID_FIELD | NVME_DNR;
4603     }
4604 }
4605 
4606 static void nvme_free_cq(NvmeCQueue *cq, NvmeCtrl *n)
4607 {
4608     n->cq[cq->cqid] = NULL;
4609     timer_free(cq->timer);
4610     if (msix_enabled(&n->parent_obj)) {
4611         msix_vector_unuse(&n->parent_obj, cq->vector);
4612     }
4613     if (cq->cqid) {
4614         g_free(cq);
4615     }
4616 }
4617 
4618 static uint16_t nvme_del_cq(NvmeCtrl *n, NvmeRequest *req)
4619 {
4620     NvmeDeleteQ *c = (NvmeDeleteQ *)&req->cmd;
4621     NvmeCQueue *cq;
4622     uint16_t qid = le16_to_cpu(c->qid);
4623 
4624     if (unlikely(!qid || nvme_check_cqid(n, qid))) {
4625         trace_pci_nvme_err_invalid_del_cq_cqid(qid);
4626         return NVME_INVALID_CQID | NVME_DNR;
4627     }
4628 
4629     cq = n->cq[qid];
4630     if (unlikely(!QTAILQ_EMPTY(&cq->sq_list))) {
4631         trace_pci_nvme_err_invalid_del_cq_notempty(qid);
4632         return NVME_INVALID_QUEUE_DEL;
4633     }
4634 
4635     if (cq->irq_enabled && cq->tail != cq->head) {
4636         n->cq_pending--;
4637     }
4638 
4639     nvme_irq_deassert(n, cq);
4640     trace_pci_nvme_del_cq(qid);
4641     nvme_free_cq(cq, n);
4642     return NVME_SUCCESS;
4643 }
4644 
4645 static void nvme_init_cq(NvmeCQueue *cq, NvmeCtrl *n, uint64_t dma_addr,
4646                          uint16_t cqid, uint16_t vector, uint16_t size,
4647                          uint16_t irq_enabled)
4648 {
4649     int ret;
4650 
4651     if (msix_enabled(&n->parent_obj)) {
4652         ret = msix_vector_use(&n->parent_obj, vector);
4653         assert(ret == 0);
4654     }
4655     cq->ctrl = n;
4656     cq->cqid = cqid;
4657     cq->size = size;
4658     cq->dma_addr = dma_addr;
4659     cq->phase = 1;
4660     cq->irq_enabled = irq_enabled;
4661     cq->vector = vector;
4662     cq->head = cq->tail = 0;
4663     QTAILQ_INIT(&cq->req_list);
4664     QTAILQ_INIT(&cq->sq_list);
4665     if (n->dbbuf_enabled) {
4666         cq->db_addr = n->dbbuf_dbs + (cqid << 3) + (1 << 2);
4667         cq->ei_addr = n->dbbuf_eis + (cqid << 3) + (1 << 2);
4668     }
4669     n->cq[cqid] = cq;
4670     cq->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, nvme_post_cqes, cq);
4671 }
4672 
4673 static uint16_t nvme_create_cq(NvmeCtrl *n, NvmeRequest *req)
4674 {
4675     NvmeCQueue *cq;
4676     NvmeCreateCq *c = (NvmeCreateCq *)&req->cmd;
4677     uint16_t cqid = le16_to_cpu(c->cqid);
4678     uint16_t vector = le16_to_cpu(c->irq_vector);
4679     uint16_t qsize = le16_to_cpu(c->qsize);
4680     uint16_t qflags = le16_to_cpu(c->cq_flags);
4681     uint64_t prp1 = le64_to_cpu(c->prp1);
4682 
4683     trace_pci_nvme_create_cq(prp1, cqid, vector, qsize, qflags,
4684                              NVME_CQ_FLAGS_IEN(qflags) != 0);
4685 
4686     if (unlikely(!cqid || cqid > n->conf_ioqpairs || n->cq[cqid] != NULL)) {
4687         trace_pci_nvme_err_invalid_create_cq_cqid(cqid);
4688         return NVME_INVALID_QID | NVME_DNR;
4689     }
4690     if (unlikely(!qsize || qsize > NVME_CAP_MQES(ldq_le_p(&n->bar.cap)))) {
4691         trace_pci_nvme_err_invalid_create_cq_size(qsize);
4692         return NVME_MAX_QSIZE_EXCEEDED | NVME_DNR;
4693     }
4694     if (unlikely(prp1 & (n->page_size - 1))) {
4695         trace_pci_nvme_err_invalid_create_cq_addr(prp1);
4696         return NVME_INVALID_PRP_OFFSET | NVME_DNR;
4697     }
4698     if (unlikely(!msix_enabled(&n->parent_obj) && vector)) {
4699         trace_pci_nvme_err_invalid_create_cq_vector(vector);
4700         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4701     }
4702     if (unlikely(vector >= n->conf_msix_qsize)) {
4703         trace_pci_nvme_err_invalid_create_cq_vector(vector);
4704         return NVME_INVALID_IRQ_VECTOR | NVME_DNR;
4705     }
4706     if (unlikely(!(NVME_CQ_FLAGS_PC(qflags)))) {
4707         trace_pci_nvme_err_invalid_create_cq_qflags(NVME_CQ_FLAGS_PC(qflags));
4708         return NVME_INVALID_FIELD | NVME_DNR;
4709     }
4710 
4711     cq = g_malloc0(sizeof(*cq));
4712     nvme_init_cq(cq, n, prp1, cqid, vector, qsize + 1,
4713                  NVME_CQ_FLAGS_IEN(qflags));
4714 
4715     /*
4716      * It is only required to set qs_created when creating a completion queue;
4717      * creating a submission queue without a matching completion queue will
4718      * fail.
4719      */
4720     n->qs_created = true;
4721     return NVME_SUCCESS;
4722 }
4723 
4724 static uint16_t nvme_rpt_empty_id_struct(NvmeCtrl *n, NvmeRequest *req)
4725 {
4726     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4727 
4728     return nvme_c2h(n, id, sizeof(id), req);
4729 }
4730 
4731 static uint16_t nvme_identify_ctrl(NvmeCtrl *n, NvmeRequest *req)
4732 {
4733     trace_pci_nvme_identify_ctrl();
4734 
4735     return nvme_c2h(n, (uint8_t *)&n->id_ctrl, sizeof(n->id_ctrl), req);
4736 }
4737 
4738 static uint16_t nvme_identify_ctrl_csi(NvmeCtrl *n, NvmeRequest *req)
4739 {
4740     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4741     uint8_t id[NVME_IDENTIFY_DATA_SIZE] = {};
4742     NvmeIdCtrlNvm *id_nvm = (NvmeIdCtrlNvm *)&id;
4743 
4744     trace_pci_nvme_identify_ctrl_csi(c->csi);
4745 
4746     switch (c->csi) {
4747     case NVME_CSI_NVM:
4748         id_nvm->vsl = n->params.vsl;
4749         id_nvm->dmrsl = cpu_to_le32(n->dmrsl);
4750         break;
4751 
4752     case NVME_CSI_ZONED:
4753         ((NvmeIdCtrlZoned *)&id)->zasl = n->params.zasl;
4754         break;
4755 
4756     default:
4757         return NVME_INVALID_FIELD | NVME_DNR;
4758     }
4759 
4760     return nvme_c2h(n, id, sizeof(id), req);
4761 }
4762 
4763 static uint16_t nvme_identify_ns(NvmeCtrl *n, NvmeRequest *req, bool active)
4764 {
4765     NvmeNamespace *ns;
4766     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4767     uint32_t nsid = le32_to_cpu(c->nsid);
4768 
4769     trace_pci_nvme_identify_ns(nsid);
4770 
4771     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4772         return NVME_INVALID_NSID | NVME_DNR;
4773     }
4774 
4775     ns = nvme_ns(n, nsid);
4776     if (unlikely(!ns)) {
4777         if (!active) {
4778             ns = nvme_subsys_ns(n->subsys, nsid);
4779             if (!ns) {
4780                 return nvme_rpt_empty_id_struct(n, req);
4781             }
4782         } else {
4783             return nvme_rpt_empty_id_struct(n, req);
4784         }
4785     }
4786 
4787     if (active || ns->csi == NVME_CSI_NVM) {
4788         return nvme_c2h(n, (uint8_t *)&ns->id_ns, sizeof(NvmeIdNs), req);
4789     }
4790 
4791     return NVME_INVALID_CMD_SET | NVME_DNR;
4792 }
4793 
4794 static uint16_t nvme_identify_ctrl_list(NvmeCtrl *n, NvmeRequest *req,
4795                                         bool attached)
4796 {
4797     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4798     uint32_t nsid = le32_to_cpu(c->nsid);
4799     uint16_t min_id = le16_to_cpu(c->ctrlid);
4800     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
4801     uint16_t *ids = &list[1];
4802     NvmeNamespace *ns;
4803     NvmeCtrl *ctrl;
4804     int cntlid, nr_ids = 0;
4805 
4806     trace_pci_nvme_identify_ctrl_list(c->cns, min_id);
4807 
4808     if (!n->subsys) {
4809         return NVME_INVALID_FIELD | NVME_DNR;
4810     }
4811 
4812     if (attached) {
4813         if (nsid == NVME_NSID_BROADCAST) {
4814             return NVME_INVALID_FIELD | NVME_DNR;
4815         }
4816 
4817         ns = nvme_subsys_ns(n->subsys, nsid);
4818         if (!ns) {
4819             return NVME_INVALID_FIELD | NVME_DNR;
4820         }
4821     }
4822 
4823     for (cntlid = min_id; cntlid < ARRAY_SIZE(n->subsys->ctrls); cntlid++) {
4824         ctrl = nvme_subsys_ctrl(n->subsys, cntlid);
4825         if (!ctrl) {
4826             continue;
4827         }
4828 
4829         if (attached && !nvme_ns(ctrl, nsid)) {
4830             continue;
4831         }
4832 
4833         ids[nr_ids++] = cntlid;
4834     }
4835 
4836     list[0] = nr_ids;
4837 
4838     return nvme_c2h(n, (uint8_t *)list, sizeof(list), req);
4839 }
4840 
4841 static uint16_t nvme_identify_pri_ctrl_cap(NvmeCtrl *n, NvmeRequest *req)
4842 {
4843     trace_pci_nvme_identify_pri_ctrl_cap(le16_to_cpu(n->pri_ctrl_cap.cntlid));
4844 
4845     return nvme_c2h(n, (uint8_t *)&n->pri_ctrl_cap,
4846                     sizeof(NvmePriCtrlCap), req);
4847 }
4848 
4849 static uint16_t nvme_identify_sec_ctrl_list(NvmeCtrl *n, NvmeRequest *req)
4850 {
4851     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4852     uint16_t pri_ctrl_id = le16_to_cpu(n->pri_ctrl_cap.cntlid);
4853     uint16_t min_id = le16_to_cpu(c->ctrlid);
4854     uint8_t num_sec_ctrl = n->sec_ctrl_list.numcntl;
4855     NvmeSecCtrlList list = {0};
4856     uint8_t i;
4857 
4858     for (i = 0; i < num_sec_ctrl; i++) {
4859         if (n->sec_ctrl_list.sec[i].scid >= min_id) {
4860             list.numcntl = num_sec_ctrl - i;
4861             memcpy(&list.sec, n->sec_ctrl_list.sec + i,
4862                    list.numcntl * sizeof(NvmeSecCtrlEntry));
4863             break;
4864         }
4865     }
4866 
4867     trace_pci_nvme_identify_sec_ctrl_list(pri_ctrl_id, list.numcntl);
4868 
4869     return nvme_c2h(n, (uint8_t *)&list, sizeof(list), req);
4870 }
4871 
4872 static uint16_t nvme_identify_ns_csi(NvmeCtrl *n, NvmeRequest *req,
4873                                      bool active)
4874 {
4875     NvmeNamespace *ns;
4876     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4877     uint32_t nsid = le32_to_cpu(c->nsid);
4878 
4879     trace_pci_nvme_identify_ns_csi(nsid, c->csi);
4880 
4881     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
4882         return NVME_INVALID_NSID | NVME_DNR;
4883     }
4884 
4885     ns = nvme_ns(n, nsid);
4886     if (unlikely(!ns)) {
4887         if (!active) {
4888             ns = nvme_subsys_ns(n->subsys, nsid);
4889             if (!ns) {
4890                 return nvme_rpt_empty_id_struct(n, req);
4891             }
4892         } else {
4893             return nvme_rpt_empty_id_struct(n, req);
4894         }
4895     }
4896 
4897     if (c->csi == NVME_CSI_NVM) {
4898         return nvme_c2h(n, (uint8_t *)&ns->id_ns_nvm, sizeof(NvmeIdNsNvm),
4899                         req);
4900     } else if (c->csi == NVME_CSI_ZONED && ns->csi == NVME_CSI_ZONED) {
4901         return nvme_c2h(n, (uint8_t *)ns->id_ns_zoned, sizeof(NvmeIdNsZoned),
4902                         req);
4903     }
4904 
4905     return NVME_INVALID_FIELD | NVME_DNR;
4906 }
4907 
4908 static uint16_t nvme_identify_nslist(NvmeCtrl *n, NvmeRequest *req,
4909                                      bool active)
4910 {
4911     NvmeNamespace *ns;
4912     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4913     uint32_t min_nsid = le32_to_cpu(c->nsid);
4914     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4915     static const int data_len = sizeof(list);
4916     uint32_t *list_ptr = (uint32_t *)list;
4917     int i, j = 0;
4918 
4919     trace_pci_nvme_identify_nslist(min_nsid);
4920 
4921     /*
4922      * Both FFFFFFFFh (NVME_NSID_BROADCAST) and FFFFFFFFEh are invalid values
4923      * since the Active Namespace ID List should return namespaces with ids
4924      * *higher* than the NSID specified in the command. This is also specified
4925      * in the spec (NVM Express v1.3d, Section 5.15.4).
4926      */
4927     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4928         return NVME_INVALID_NSID | NVME_DNR;
4929     }
4930 
4931     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4932         ns = nvme_ns(n, i);
4933         if (!ns) {
4934             if (!active) {
4935                 ns = nvme_subsys_ns(n->subsys, i);
4936                 if (!ns) {
4937                     continue;
4938                 }
4939             } else {
4940                 continue;
4941             }
4942         }
4943         if (ns->params.nsid <= min_nsid) {
4944             continue;
4945         }
4946         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4947         if (j == data_len / sizeof(uint32_t)) {
4948             break;
4949         }
4950     }
4951 
4952     return nvme_c2h(n, list, data_len, req);
4953 }
4954 
4955 static uint16_t nvme_identify_nslist_csi(NvmeCtrl *n, NvmeRequest *req,
4956                                          bool active)
4957 {
4958     NvmeNamespace *ns;
4959     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
4960     uint32_t min_nsid = le32_to_cpu(c->nsid);
4961     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
4962     static const int data_len = sizeof(list);
4963     uint32_t *list_ptr = (uint32_t *)list;
4964     int i, j = 0;
4965 
4966     trace_pci_nvme_identify_nslist_csi(min_nsid, c->csi);
4967 
4968     /*
4969      * Same as in nvme_identify_nslist(), FFFFFFFFh/FFFFFFFFEh are invalid.
4970      */
4971     if (min_nsid >= NVME_NSID_BROADCAST - 1) {
4972         return NVME_INVALID_NSID | NVME_DNR;
4973     }
4974 
4975     if (c->csi != NVME_CSI_NVM && c->csi != NVME_CSI_ZONED) {
4976         return NVME_INVALID_FIELD | NVME_DNR;
4977     }
4978 
4979     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
4980         ns = nvme_ns(n, i);
4981         if (!ns) {
4982             if (!active) {
4983                 ns = nvme_subsys_ns(n->subsys, i);
4984                 if (!ns) {
4985                     continue;
4986                 }
4987             } else {
4988                 continue;
4989             }
4990         }
4991         if (ns->params.nsid <= min_nsid || c->csi != ns->csi) {
4992             continue;
4993         }
4994         list_ptr[j++] = cpu_to_le32(ns->params.nsid);
4995         if (j == data_len / sizeof(uint32_t)) {
4996             break;
4997         }
4998     }
4999 
5000     return nvme_c2h(n, list, data_len, req);
5001 }
5002 
5003 static uint16_t nvme_identify_ns_descr_list(NvmeCtrl *n, NvmeRequest *req)
5004 {
5005     NvmeNamespace *ns;
5006     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5007     uint32_t nsid = le32_to_cpu(c->nsid);
5008     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5009     uint8_t *pos = list;
5010     struct {
5011         NvmeIdNsDescr hdr;
5012         uint8_t v[NVME_NIDL_UUID];
5013     } QEMU_PACKED uuid = {};
5014     struct {
5015         NvmeIdNsDescr hdr;
5016         uint64_t v;
5017     } QEMU_PACKED eui64 = {};
5018     struct {
5019         NvmeIdNsDescr hdr;
5020         uint8_t v;
5021     } QEMU_PACKED csi = {};
5022 
5023     trace_pci_nvme_identify_ns_descr_list(nsid);
5024 
5025     if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5026         return NVME_INVALID_NSID | NVME_DNR;
5027     }
5028 
5029     ns = nvme_ns(n, nsid);
5030     if (unlikely(!ns)) {
5031         return NVME_INVALID_FIELD | NVME_DNR;
5032     }
5033 
5034     if (!qemu_uuid_is_null(&ns->params.uuid)) {
5035         uuid.hdr.nidt = NVME_NIDT_UUID;
5036         uuid.hdr.nidl = NVME_NIDL_UUID;
5037         memcpy(uuid.v, ns->params.uuid.data, NVME_NIDL_UUID);
5038         memcpy(pos, &uuid, sizeof(uuid));
5039         pos += sizeof(uuid);
5040     }
5041 
5042     if (ns->params.eui64) {
5043         eui64.hdr.nidt = NVME_NIDT_EUI64;
5044         eui64.hdr.nidl = NVME_NIDL_EUI64;
5045         eui64.v = cpu_to_be64(ns->params.eui64);
5046         memcpy(pos, &eui64, sizeof(eui64));
5047         pos += sizeof(eui64);
5048     }
5049 
5050     csi.hdr.nidt = NVME_NIDT_CSI;
5051     csi.hdr.nidl = NVME_NIDL_CSI;
5052     csi.v = ns->csi;
5053     memcpy(pos, &csi, sizeof(csi));
5054     pos += sizeof(csi);
5055 
5056     return nvme_c2h(n, list, sizeof(list), req);
5057 }
5058 
5059 static uint16_t nvme_identify_cmd_set(NvmeCtrl *n, NvmeRequest *req)
5060 {
5061     uint8_t list[NVME_IDENTIFY_DATA_SIZE] = {};
5062     static const int data_len = sizeof(list);
5063 
5064     trace_pci_nvme_identify_cmd_set();
5065 
5066     NVME_SET_CSI(*list, NVME_CSI_NVM);
5067     NVME_SET_CSI(*list, NVME_CSI_ZONED);
5068 
5069     return nvme_c2h(n, list, data_len, req);
5070 }
5071 
5072 static uint16_t nvme_identify(NvmeCtrl *n, NvmeRequest *req)
5073 {
5074     NvmeIdentify *c = (NvmeIdentify *)&req->cmd;
5075 
5076     trace_pci_nvme_identify(nvme_cid(req), c->cns, le16_to_cpu(c->ctrlid),
5077                             c->csi);
5078 
5079     switch (c->cns) {
5080     case NVME_ID_CNS_NS:
5081         return nvme_identify_ns(n, req, true);
5082     case NVME_ID_CNS_NS_PRESENT:
5083         return nvme_identify_ns(n, req, false);
5084     case NVME_ID_CNS_NS_ATTACHED_CTRL_LIST:
5085         return nvme_identify_ctrl_list(n, req, true);
5086     case NVME_ID_CNS_CTRL_LIST:
5087         return nvme_identify_ctrl_list(n, req, false);
5088     case NVME_ID_CNS_PRIMARY_CTRL_CAP:
5089         return nvme_identify_pri_ctrl_cap(n, req);
5090     case NVME_ID_CNS_SECONDARY_CTRL_LIST:
5091         return nvme_identify_sec_ctrl_list(n, req);
5092     case NVME_ID_CNS_CS_NS:
5093         return nvme_identify_ns_csi(n, req, true);
5094     case NVME_ID_CNS_CS_NS_PRESENT:
5095         return nvme_identify_ns_csi(n, req, false);
5096     case NVME_ID_CNS_CTRL:
5097         return nvme_identify_ctrl(n, req);
5098     case NVME_ID_CNS_CS_CTRL:
5099         return nvme_identify_ctrl_csi(n, req);
5100     case NVME_ID_CNS_NS_ACTIVE_LIST:
5101         return nvme_identify_nslist(n, req, true);
5102     case NVME_ID_CNS_NS_PRESENT_LIST:
5103         return nvme_identify_nslist(n, req, false);
5104     case NVME_ID_CNS_CS_NS_ACTIVE_LIST:
5105         return nvme_identify_nslist_csi(n, req, true);
5106     case NVME_ID_CNS_CS_NS_PRESENT_LIST:
5107         return nvme_identify_nslist_csi(n, req, false);
5108     case NVME_ID_CNS_NS_DESCR_LIST:
5109         return nvme_identify_ns_descr_list(n, req);
5110     case NVME_ID_CNS_IO_COMMAND_SET:
5111         return nvme_identify_cmd_set(n, req);
5112     default:
5113         trace_pci_nvme_err_invalid_identify_cns(le32_to_cpu(c->cns));
5114         return NVME_INVALID_FIELD | NVME_DNR;
5115     }
5116 }
5117 
5118 static uint16_t nvme_abort(NvmeCtrl *n, NvmeRequest *req)
5119 {
5120     uint16_t sqid = le32_to_cpu(req->cmd.cdw10) & 0xffff;
5121 
5122     req->cqe.result = 1;
5123     if (nvme_check_sqid(n, sqid)) {
5124         return NVME_INVALID_FIELD | NVME_DNR;
5125     }
5126 
5127     return NVME_SUCCESS;
5128 }
5129 
5130 static inline void nvme_set_timestamp(NvmeCtrl *n, uint64_t ts)
5131 {
5132     trace_pci_nvme_setfeat_timestamp(ts);
5133 
5134     n->host_timestamp = le64_to_cpu(ts);
5135     n->timestamp_set_qemu_clock_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5136 }
5137 
5138 static inline uint64_t nvme_get_timestamp(const NvmeCtrl *n)
5139 {
5140     uint64_t current_time = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
5141     uint64_t elapsed_time = current_time - n->timestamp_set_qemu_clock_ms;
5142 
5143     union nvme_timestamp {
5144         struct {
5145             uint64_t timestamp:48;
5146             uint64_t sync:1;
5147             uint64_t origin:3;
5148             uint64_t rsvd1:12;
5149         };
5150         uint64_t all;
5151     };
5152 
5153     union nvme_timestamp ts;
5154     ts.all = 0;
5155     ts.timestamp = n->host_timestamp + elapsed_time;
5156 
5157     /* If the host timestamp is non-zero, set the timestamp origin */
5158     ts.origin = n->host_timestamp ? 0x01 : 0x00;
5159 
5160     trace_pci_nvme_getfeat_timestamp(ts.all);
5161 
5162     return cpu_to_le64(ts.all);
5163 }
5164 
5165 static uint16_t nvme_get_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5166 {
5167     uint64_t timestamp = nvme_get_timestamp(n);
5168 
5169     return nvme_c2h(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5170 }
5171 
5172 static uint16_t nvme_get_feature(NvmeCtrl *n, NvmeRequest *req)
5173 {
5174     NvmeCmd *cmd = &req->cmd;
5175     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5176     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5177     uint32_t nsid = le32_to_cpu(cmd->nsid);
5178     uint32_t result;
5179     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5180     NvmeGetFeatureSelect sel = NVME_GETFEAT_SELECT(dw10);
5181     uint16_t iv;
5182     NvmeNamespace *ns;
5183     int i;
5184 
5185     static const uint32_t nvme_feature_default[NVME_FID_MAX] = {
5186         [NVME_ARBITRATION] = NVME_ARB_AB_NOLIMIT,
5187     };
5188 
5189     trace_pci_nvme_getfeat(nvme_cid(req), nsid, fid, sel, dw11);
5190 
5191     if (!nvme_feature_support[fid]) {
5192         return NVME_INVALID_FIELD | NVME_DNR;
5193     }
5194 
5195     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5196         if (!nvme_nsid_valid(n, nsid) || nsid == NVME_NSID_BROADCAST) {
5197             /*
5198              * The Reservation Notification Mask and Reservation Persistence
5199              * features require a status code of Invalid Field in Command when
5200              * NSID is FFFFFFFFh. Since the device does not support those
5201              * features we can always return Invalid Namespace or Format as we
5202              * should do for all other features.
5203              */
5204             return NVME_INVALID_NSID | NVME_DNR;
5205         }
5206 
5207         if (!nvme_ns(n, nsid)) {
5208             return NVME_INVALID_FIELD | NVME_DNR;
5209         }
5210     }
5211 
5212     switch (sel) {
5213     case NVME_GETFEAT_SELECT_CURRENT:
5214         break;
5215     case NVME_GETFEAT_SELECT_SAVED:
5216         /* no features are saveable by the controller; fallthrough */
5217     case NVME_GETFEAT_SELECT_DEFAULT:
5218         goto defaults;
5219     case NVME_GETFEAT_SELECT_CAP:
5220         result = nvme_feature_cap[fid];
5221         goto out;
5222     }
5223 
5224     switch (fid) {
5225     case NVME_TEMPERATURE_THRESHOLD:
5226         result = 0;
5227 
5228         /*
5229          * The controller only implements the Composite Temperature sensor, so
5230          * return 0 for all other sensors.
5231          */
5232         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5233             goto out;
5234         }
5235 
5236         switch (NVME_TEMP_THSEL(dw11)) {
5237         case NVME_TEMP_THSEL_OVER:
5238             result = n->features.temp_thresh_hi;
5239             goto out;
5240         case NVME_TEMP_THSEL_UNDER:
5241             result = n->features.temp_thresh_low;
5242             goto out;
5243         }
5244 
5245         return NVME_INVALID_FIELD | NVME_DNR;
5246     case NVME_ERROR_RECOVERY:
5247         if (!nvme_nsid_valid(n, nsid)) {
5248             return NVME_INVALID_NSID | NVME_DNR;
5249         }
5250 
5251         ns = nvme_ns(n, nsid);
5252         if (unlikely(!ns)) {
5253             return NVME_INVALID_FIELD | NVME_DNR;
5254         }
5255 
5256         result = ns->features.err_rec;
5257         goto out;
5258     case NVME_VOLATILE_WRITE_CACHE:
5259         result = 0;
5260         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5261             ns = nvme_ns(n, i);
5262             if (!ns) {
5263                 continue;
5264             }
5265 
5266             result = blk_enable_write_cache(ns->blkconf.blk);
5267             if (result) {
5268                 break;
5269             }
5270         }
5271         trace_pci_nvme_getfeat_vwcache(result ? "enabled" : "disabled");
5272         goto out;
5273     case NVME_ASYNCHRONOUS_EVENT_CONF:
5274         result = n->features.async_config;
5275         goto out;
5276     case NVME_TIMESTAMP:
5277         return nvme_get_feature_timestamp(n, req);
5278     case NVME_HOST_BEHAVIOR_SUPPORT:
5279         return nvme_c2h(n, (uint8_t *)&n->features.hbs,
5280                         sizeof(n->features.hbs), req);
5281     default:
5282         break;
5283     }
5284 
5285 defaults:
5286     switch (fid) {
5287     case NVME_TEMPERATURE_THRESHOLD:
5288         result = 0;
5289 
5290         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5291             break;
5292         }
5293 
5294         if (NVME_TEMP_THSEL(dw11) == NVME_TEMP_THSEL_OVER) {
5295             result = NVME_TEMPERATURE_WARNING;
5296         }
5297 
5298         break;
5299     case NVME_NUMBER_OF_QUEUES:
5300         result = (n->conf_ioqpairs - 1) | ((n->conf_ioqpairs - 1) << 16);
5301         trace_pci_nvme_getfeat_numq(result);
5302         break;
5303     case NVME_INTERRUPT_VECTOR_CONF:
5304         iv = dw11 & 0xffff;
5305         if (iv >= n->conf_ioqpairs + 1) {
5306             return NVME_INVALID_FIELD | NVME_DNR;
5307         }
5308 
5309         result = iv;
5310         if (iv == n->admin_cq.vector) {
5311             result |= NVME_INTVC_NOCOALESCING;
5312         }
5313         break;
5314     default:
5315         result = nvme_feature_default[fid];
5316         break;
5317     }
5318 
5319 out:
5320     req->cqe.result = cpu_to_le32(result);
5321     return NVME_SUCCESS;
5322 }
5323 
5324 static uint16_t nvme_set_feature_timestamp(NvmeCtrl *n, NvmeRequest *req)
5325 {
5326     uint16_t ret;
5327     uint64_t timestamp;
5328 
5329     ret = nvme_h2c(n, (uint8_t *)&timestamp, sizeof(timestamp), req);
5330     if (ret) {
5331         return ret;
5332     }
5333 
5334     nvme_set_timestamp(n, timestamp);
5335 
5336     return NVME_SUCCESS;
5337 }
5338 
5339 static uint16_t nvme_set_feature(NvmeCtrl *n, NvmeRequest *req)
5340 {
5341     NvmeNamespace *ns = NULL;
5342 
5343     NvmeCmd *cmd = &req->cmd;
5344     uint32_t dw10 = le32_to_cpu(cmd->cdw10);
5345     uint32_t dw11 = le32_to_cpu(cmd->cdw11);
5346     uint32_t nsid = le32_to_cpu(cmd->nsid);
5347     uint8_t fid = NVME_GETSETFEAT_FID(dw10);
5348     uint8_t save = NVME_SETFEAT_SAVE(dw10);
5349     uint16_t status;
5350     int i;
5351 
5352     trace_pci_nvme_setfeat(nvme_cid(req), nsid, fid, save, dw11);
5353 
5354     if (save && !(nvme_feature_cap[fid] & NVME_FEAT_CAP_SAVE)) {
5355         return NVME_FID_NOT_SAVEABLE | NVME_DNR;
5356     }
5357 
5358     if (!nvme_feature_support[fid]) {
5359         return NVME_INVALID_FIELD | NVME_DNR;
5360     }
5361 
5362     if (nvme_feature_cap[fid] & NVME_FEAT_CAP_NS) {
5363         if (nsid != NVME_NSID_BROADCAST) {
5364             if (!nvme_nsid_valid(n, nsid)) {
5365                 return NVME_INVALID_NSID | NVME_DNR;
5366             }
5367 
5368             ns = nvme_ns(n, nsid);
5369             if (unlikely(!ns)) {
5370                 return NVME_INVALID_FIELD | NVME_DNR;
5371             }
5372         }
5373     } else if (nsid && nsid != NVME_NSID_BROADCAST) {
5374         if (!nvme_nsid_valid(n, nsid)) {
5375             return NVME_INVALID_NSID | NVME_DNR;
5376         }
5377 
5378         return NVME_FEAT_NOT_NS_SPEC | NVME_DNR;
5379     }
5380 
5381     if (!(nvme_feature_cap[fid] & NVME_FEAT_CAP_CHANGE)) {
5382         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5383     }
5384 
5385     switch (fid) {
5386     case NVME_TEMPERATURE_THRESHOLD:
5387         if (NVME_TEMP_TMPSEL(dw11) != NVME_TEMP_TMPSEL_COMPOSITE) {
5388             break;
5389         }
5390 
5391         switch (NVME_TEMP_THSEL(dw11)) {
5392         case NVME_TEMP_THSEL_OVER:
5393             n->features.temp_thresh_hi = NVME_TEMP_TMPTH(dw11);
5394             break;
5395         case NVME_TEMP_THSEL_UNDER:
5396             n->features.temp_thresh_low = NVME_TEMP_TMPTH(dw11);
5397             break;
5398         default:
5399             return NVME_INVALID_FIELD | NVME_DNR;
5400         }
5401 
5402         if ((n->temperature >= n->features.temp_thresh_hi) ||
5403             (n->temperature <= n->features.temp_thresh_low)) {
5404             nvme_smart_event(n, NVME_SMART_TEMPERATURE);
5405         }
5406 
5407         break;
5408     case NVME_ERROR_RECOVERY:
5409         if (nsid == NVME_NSID_BROADCAST) {
5410             for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5411                 ns = nvme_ns(n, i);
5412 
5413                 if (!ns) {
5414                     continue;
5415                 }
5416 
5417                 if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat)) {
5418                     ns->features.err_rec = dw11;
5419                 }
5420             }
5421 
5422             break;
5423         }
5424 
5425         assert(ns);
5426         if (NVME_ID_NS_NSFEAT_DULBE(ns->id_ns.nsfeat))  {
5427             ns->features.err_rec = dw11;
5428         }
5429         break;
5430     case NVME_VOLATILE_WRITE_CACHE:
5431         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5432             ns = nvme_ns(n, i);
5433             if (!ns) {
5434                 continue;
5435             }
5436 
5437             if (!(dw11 & 0x1) && blk_enable_write_cache(ns->blkconf.blk)) {
5438                 blk_flush(ns->blkconf.blk);
5439             }
5440 
5441             blk_set_enable_write_cache(ns->blkconf.blk, dw11 & 1);
5442         }
5443 
5444         break;
5445 
5446     case NVME_NUMBER_OF_QUEUES:
5447         if (n->qs_created) {
5448             return NVME_CMD_SEQ_ERROR | NVME_DNR;
5449         }
5450 
5451         /*
5452          * NVMe v1.3, Section 5.21.1.7: FFFFh is not an allowed value for NCQR
5453          * and NSQR.
5454          */
5455         if ((dw11 & 0xffff) == 0xffff || ((dw11 >> 16) & 0xffff) == 0xffff) {
5456             return NVME_INVALID_FIELD | NVME_DNR;
5457         }
5458 
5459         trace_pci_nvme_setfeat_numq((dw11 & 0xffff) + 1,
5460                                     ((dw11 >> 16) & 0xffff) + 1,
5461                                     n->conf_ioqpairs,
5462                                     n->conf_ioqpairs);
5463         req->cqe.result = cpu_to_le32((n->conf_ioqpairs - 1) |
5464                                       ((n->conf_ioqpairs - 1) << 16));
5465         break;
5466     case NVME_ASYNCHRONOUS_EVENT_CONF:
5467         n->features.async_config = dw11;
5468         break;
5469     case NVME_TIMESTAMP:
5470         return nvme_set_feature_timestamp(n, req);
5471     case NVME_HOST_BEHAVIOR_SUPPORT:
5472         status = nvme_h2c(n, (uint8_t *)&n->features.hbs,
5473                           sizeof(n->features.hbs), req);
5474         if (status) {
5475             return status;
5476         }
5477 
5478         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
5479             ns = nvme_ns(n, i);
5480 
5481             if (!ns) {
5482                 continue;
5483             }
5484 
5485             ns->id_ns.nlbaf = ns->nlbaf - 1;
5486             if (!n->features.hbs.lbafee) {
5487                 ns->id_ns.nlbaf = MIN(ns->id_ns.nlbaf, 15);
5488             }
5489         }
5490 
5491         return status;
5492     case NVME_COMMAND_SET_PROFILE:
5493         if (dw11 & 0x1ff) {
5494             trace_pci_nvme_err_invalid_iocsci(dw11 & 0x1ff);
5495             return NVME_CMD_SET_CMB_REJECTED | NVME_DNR;
5496         }
5497         break;
5498     default:
5499         return NVME_FEAT_NOT_CHANGEABLE | NVME_DNR;
5500     }
5501     return NVME_SUCCESS;
5502 }
5503 
5504 static uint16_t nvme_aer(NvmeCtrl *n, NvmeRequest *req)
5505 {
5506     trace_pci_nvme_aer(nvme_cid(req));
5507 
5508     if (n->outstanding_aers > n->params.aerl) {
5509         trace_pci_nvme_aer_aerl_exceeded();
5510         return NVME_AER_LIMIT_EXCEEDED;
5511     }
5512 
5513     n->aer_reqs[n->outstanding_aers] = req;
5514     n->outstanding_aers++;
5515 
5516     if (!QTAILQ_EMPTY(&n->aer_queue)) {
5517         nvme_process_aers(n);
5518     }
5519 
5520     return NVME_NO_COMPLETE;
5521 }
5522 
5523 static void nvme_update_dmrsl(NvmeCtrl *n)
5524 {
5525     int nsid;
5526 
5527     for (nsid = 1; nsid <= NVME_MAX_NAMESPACES; nsid++) {
5528         NvmeNamespace *ns = nvme_ns(n, nsid);
5529         if (!ns) {
5530             continue;
5531         }
5532 
5533         n->dmrsl = MIN_NON_ZERO(n->dmrsl,
5534                                 BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
5535     }
5536 }
5537 
5538 static void nvme_select_iocs_ns(NvmeCtrl *n, NvmeNamespace *ns)
5539 {
5540     uint32_t cc = ldl_le_p(&n->bar.cc);
5541 
5542     ns->iocs = nvme_cse_iocs_none;
5543     switch (ns->csi) {
5544     case NVME_CSI_NVM:
5545         if (NVME_CC_CSS(cc) != NVME_CC_CSS_ADMIN_ONLY) {
5546             ns->iocs = nvme_cse_iocs_nvm;
5547         }
5548         break;
5549     case NVME_CSI_ZONED:
5550         if (NVME_CC_CSS(cc) == NVME_CC_CSS_CSI) {
5551             ns->iocs = nvme_cse_iocs_zoned;
5552         } else if (NVME_CC_CSS(cc) == NVME_CC_CSS_NVM) {
5553             ns->iocs = nvme_cse_iocs_nvm;
5554         }
5555         break;
5556     }
5557 }
5558 
5559 static uint16_t nvme_ns_attachment(NvmeCtrl *n, NvmeRequest *req)
5560 {
5561     NvmeNamespace *ns;
5562     NvmeCtrl *ctrl;
5563     uint16_t list[NVME_CONTROLLER_LIST_SIZE] = {};
5564     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5565     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5566     uint8_t sel = dw10 & 0xf;
5567     uint16_t *nr_ids = &list[0];
5568     uint16_t *ids = &list[1];
5569     uint16_t ret;
5570     int i;
5571 
5572     trace_pci_nvme_ns_attachment(nvme_cid(req), dw10 & 0xf);
5573 
5574     if (!nvme_nsid_valid(n, nsid)) {
5575         return NVME_INVALID_NSID | NVME_DNR;
5576     }
5577 
5578     ns = nvme_subsys_ns(n->subsys, nsid);
5579     if (!ns) {
5580         return NVME_INVALID_FIELD | NVME_DNR;
5581     }
5582 
5583     ret = nvme_h2c(n, (uint8_t *)list, 4096, req);
5584     if (ret) {
5585         return ret;
5586     }
5587 
5588     if (!*nr_ids) {
5589         return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5590     }
5591 
5592     *nr_ids = MIN(*nr_ids, NVME_CONTROLLER_LIST_SIZE - 1);
5593     for (i = 0; i < *nr_ids; i++) {
5594         ctrl = nvme_subsys_ctrl(n->subsys, ids[i]);
5595         if (!ctrl) {
5596             return NVME_NS_CTRL_LIST_INVALID | NVME_DNR;
5597         }
5598 
5599         switch (sel) {
5600         case NVME_NS_ATTACHMENT_ATTACH:
5601             if (nvme_ns(ctrl, nsid)) {
5602                 return NVME_NS_ALREADY_ATTACHED | NVME_DNR;
5603             }
5604 
5605             if (ns->attached && !ns->params.shared) {
5606                 return NVME_NS_PRIVATE | NVME_DNR;
5607             }
5608 
5609             nvme_attach_ns(ctrl, ns);
5610             nvme_select_iocs_ns(ctrl, ns);
5611 
5612             break;
5613 
5614         case NVME_NS_ATTACHMENT_DETACH:
5615             if (!nvme_ns(ctrl, nsid)) {
5616                 return NVME_NS_NOT_ATTACHED | NVME_DNR;
5617             }
5618 
5619             ctrl->namespaces[nsid] = NULL;
5620             ns->attached--;
5621 
5622             nvme_update_dmrsl(ctrl);
5623 
5624             break;
5625 
5626         default:
5627             return NVME_INVALID_FIELD | NVME_DNR;
5628         }
5629 
5630         /*
5631          * Add namespace id to the changed namespace id list for event clearing
5632          * via Get Log Page command.
5633          */
5634         if (!test_and_set_bit(nsid, ctrl->changed_nsids)) {
5635             nvme_enqueue_event(ctrl, NVME_AER_TYPE_NOTICE,
5636                                NVME_AER_INFO_NOTICE_NS_ATTR_CHANGED,
5637                                NVME_LOG_CHANGED_NSLIST);
5638         }
5639     }
5640 
5641     return NVME_SUCCESS;
5642 }
5643 
5644 typedef struct NvmeFormatAIOCB {
5645     BlockAIOCB common;
5646     BlockAIOCB *aiocb;
5647     QEMUBH *bh;
5648     NvmeRequest *req;
5649     int ret;
5650 
5651     NvmeNamespace *ns;
5652     uint32_t nsid;
5653     bool broadcast;
5654     int64_t offset;
5655 
5656     uint8_t lbaf;
5657     uint8_t mset;
5658     uint8_t pi;
5659     uint8_t pil;
5660 } NvmeFormatAIOCB;
5661 
5662 static void nvme_format_bh(void *opaque);
5663 
5664 static void nvme_format_cancel(BlockAIOCB *aiocb)
5665 {
5666     NvmeFormatAIOCB *iocb = container_of(aiocb, NvmeFormatAIOCB, common);
5667 
5668     if (iocb->aiocb) {
5669         blk_aio_cancel_async(iocb->aiocb);
5670     }
5671 }
5672 
5673 static const AIOCBInfo nvme_format_aiocb_info = {
5674     .aiocb_size = sizeof(NvmeFormatAIOCB),
5675     .cancel_async = nvme_format_cancel,
5676     .get_aio_context = nvme_get_aio_context,
5677 };
5678 
5679 static void nvme_format_set(NvmeNamespace *ns, uint8_t lbaf, uint8_t mset,
5680                             uint8_t pi, uint8_t pil)
5681 {
5682     uint8_t lbafl = lbaf & 0xf;
5683     uint8_t lbafu = lbaf >> 4;
5684 
5685     trace_pci_nvme_format_set(ns->params.nsid, lbaf, mset, pi, pil);
5686 
5687     ns->id_ns.dps = (pil << 3) | pi;
5688     ns->id_ns.flbas = (lbafu << 5) | (mset << 4) | lbafl;
5689 
5690     nvme_ns_init_format(ns);
5691 }
5692 
5693 static void nvme_format_ns_cb(void *opaque, int ret)
5694 {
5695     NvmeFormatAIOCB *iocb = opaque;
5696     NvmeNamespace *ns = iocb->ns;
5697     int bytes;
5698 
5699     if (ret < 0) {
5700         iocb->ret = ret;
5701         goto done;
5702     }
5703 
5704     assert(ns);
5705 
5706     if (iocb->offset < ns->size) {
5707         bytes = MIN(BDRV_REQUEST_MAX_BYTES, ns->size - iocb->offset);
5708 
5709         iocb->aiocb = blk_aio_pwrite_zeroes(ns->blkconf.blk, iocb->offset,
5710                                             bytes, BDRV_REQ_MAY_UNMAP,
5711                                             nvme_format_ns_cb, iocb);
5712 
5713         iocb->offset += bytes;
5714         return;
5715     }
5716 
5717     nvme_format_set(ns, iocb->lbaf, iocb->mset, iocb->pi, iocb->pil);
5718     ns->status = 0x0;
5719     iocb->ns = NULL;
5720     iocb->offset = 0;
5721 
5722 done:
5723     iocb->aiocb = NULL;
5724     qemu_bh_schedule(iocb->bh);
5725 }
5726 
5727 static uint16_t nvme_format_check(NvmeNamespace *ns, uint8_t lbaf, uint8_t pi)
5728 {
5729     if (ns->params.zoned) {
5730         return NVME_INVALID_FORMAT | NVME_DNR;
5731     }
5732 
5733     if (lbaf > ns->id_ns.nlbaf) {
5734         return NVME_INVALID_FORMAT | NVME_DNR;
5735     }
5736 
5737     if (pi && (ns->id_ns.lbaf[lbaf].ms < nvme_pi_tuple_size(ns))) {
5738         return NVME_INVALID_FORMAT | NVME_DNR;
5739     }
5740 
5741     if (pi && pi > NVME_ID_NS_DPS_TYPE_3) {
5742         return NVME_INVALID_FIELD | NVME_DNR;
5743     }
5744 
5745     return NVME_SUCCESS;
5746 }
5747 
5748 static void nvme_format_bh(void *opaque)
5749 {
5750     NvmeFormatAIOCB *iocb = opaque;
5751     NvmeRequest *req = iocb->req;
5752     NvmeCtrl *n = nvme_ctrl(req);
5753     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5754     uint8_t lbaf = dw10 & 0xf;
5755     uint8_t pi = (dw10 >> 5) & 0x7;
5756     uint16_t status;
5757     int i;
5758 
5759     if (iocb->ret < 0) {
5760         goto done;
5761     }
5762 
5763     if (iocb->broadcast) {
5764         for (i = iocb->nsid + 1; i <= NVME_MAX_NAMESPACES; i++) {
5765             iocb->ns = nvme_ns(n, i);
5766             if (iocb->ns) {
5767                 iocb->nsid = i;
5768                 break;
5769             }
5770         }
5771     }
5772 
5773     if (!iocb->ns) {
5774         goto done;
5775     }
5776 
5777     status = nvme_format_check(iocb->ns, lbaf, pi);
5778     if (status) {
5779         req->status = status;
5780         goto done;
5781     }
5782 
5783     iocb->ns->status = NVME_FORMAT_IN_PROGRESS;
5784     nvme_format_ns_cb(iocb, 0);
5785     return;
5786 
5787 done:
5788     qemu_bh_delete(iocb->bh);
5789     iocb->bh = NULL;
5790 
5791     iocb->common.cb(iocb->common.opaque, iocb->ret);
5792 
5793     qemu_aio_unref(iocb);
5794 }
5795 
5796 static uint16_t nvme_format(NvmeCtrl *n, NvmeRequest *req)
5797 {
5798     NvmeFormatAIOCB *iocb;
5799     uint32_t nsid = le32_to_cpu(req->cmd.nsid);
5800     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5801     uint8_t lbaf = dw10 & 0xf;
5802     uint8_t mset = (dw10 >> 4) & 0x1;
5803     uint8_t pi = (dw10 >> 5) & 0x7;
5804     uint8_t pil = (dw10 >> 8) & 0x1;
5805     uint8_t lbafu = (dw10 >> 12) & 0x3;
5806     uint16_t status;
5807 
5808     iocb = qemu_aio_get(&nvme_format_aiocb_info, NULL, nvme_misc_cb, req);
5809 
5810     iocb->req = req;
5811     iocb->bh = qemu_bh_new(nvme_format_bh, iocb);
5812     iocb->ret = 0;
5813     iocb->ns = NULL;
5814     iocb->nsid = 0;
5815     iocb->lbaf = lbaf;
5816     iocb->mset = mset;
5817     iocb->pi = pi;
5818     iocb->pil = pil;
5819     iocb->broadcast = (nsid == NVME_NSID_BROADCAST);
5820     iocb->offset = 0;
5821 
5822     if (n->features.hbs.lbafee) {
5823         iocb->lbaf |= lbafu << 4;
5824     }
5825 
5826     if (!iocb->broadcast) {
5827         if (!nvme_nsid_valid(n, nsid)) {
5828             status = NVME_INVALID_NSID | NVME_DNR;
5829             goto out;
5830         }
5831 
5832         iocb->ns = nvme_ns(n, nsid);
5833         if (!iocb->ns) {
5834             status = NVME_INVALID_FIELD | NVME_DNR;
5835             goto out;
5836         }
5837     }
5838 
5839     req->aiocb = &iocb->common;
5840     qemu_bh_schedule(iocb->bh);
5841 
5842     return NVME_NO_COMPLETE;
5843 
5844 out:
5845     qemu_bh_delete(iocb->bh);
5846     iocb->bh = NULL;
5847     qemu_aio_unref(iocb);
5848     return status;
5849 }
5850 
5851 static void nvme_get_virt_res_num(NvmeCtrl *n, uint8_t rt, int *num_total,
5852                                   int *num_prim, int *num_sec)
5853 {
5854     *num_total = le32_to_cpu(rt ?
5855                              n->pri_ctrl_cap.vifrt : n->pri_ctrl_cap.vqfrt);
5856     *num_prim = le16_to_cpu(rt ?
5857                             n->pri_ctrl_cap.virfap : n->pri_ctrl_cap.vqrfap);
5858     *num_sec = le16_to_cpu(rt ? n->pri_ctrl_cap.virfa : n->pri_ctrl_cap.vqrfa);
5859 }
5860 
5861 static uint16_t nvme_assign_virt_res_to_prim(NvmeCtrl *n, NvmeRequest *req,
5862                                              uint16_t cntlid, uint8_t rt,
5863                                              int nr)
5864 {
5865     int num_total, num_prim, num_sec;
5866 
5867     if (cntlid != n->cntlid) {
5868         return NVME_INVALID_CTRL_ID | NVME_DNR;
5869     }
5870 
5871     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5872 
5873     if (nr > num_total) {
5874         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5875     }
5876 
5877     if (nr > num_total - num_sec) {
5878         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5879     }
5880 
5881     if (rt) {
5882         n->next_pri_ctrl_cap.virfap = cpu_to_le16(nr);
5883     } else {
5884         n->next_pri_ctrl_cap.vqrfap = cpu_to_le16(nr);
5885     }
5886 
5887     req->cqe.result = cpu_to_le32(nr);
5888     return req->status;
5889 }
5890 
5891 static void nvme_update_virt_res(NvmeCtrl *n, NvmeSecCtrlEntry *sctrl,
5892                                  uint8_t rt, int nr)
5893 {
5894     int prev_nr, prev_total;
5895 
5896     if (rt) {
5897         prev_nr = le16_to_cpu(sctrl->nvi);
5898         prev_total = le32_to_cpu(n->pri_ctrl_cap.virfa);
5899         sctrl->nvi = cpu_to_le16(nr);
5900         n->pri_ctrl_cap.virfa = cpu_to_le32(prev_total + nr - prev_nr);
5901     } else {
5902         prev_nr = le16_to_cpu(sctrl->nvq);
5903         prev_total = le32_to_cpu(n->pri_ctrl_cap.vqrfa);
5904         sctrl->nvq = cpu_to_le16(nr);
5905         n->pri_ctrl_cap.vqrfa = cpu_to_le32(prev_total + nr - prev_nr);
5906     }
5907 }
5908 
5909 static uint16_t nvme_assign_virt_res_to_sec(NvmeCtrl *n, NvmeRequest *req,
5910                                             uint16_t cntlid, uint8_t rt, int nr)
5911 {
5912     int num_total, num_prim, num_sec, num_free, diff, limit;
5913     NvmeSecCtrlEntry *sctrl;
5914 
5915     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
5916     if (!sctrl) {
5917         return NVME_INVALID_CTRL_ID | NVME_DNR;
5918     }
5919 
5920     if (sctrl->scs) {
5921         return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
5922     }
5923 
5924     limit = le16_to_cpu(rt ? n->pri_ctrl_cap.vifrsm : n->pri_ctrl_cap.vqfrsm);
5925     if (nr > limit) {
5926         return NVME_INVALID_NUM_RESOURCES | NVME_DNR;
5927     }
5928 
5929     nvme_get_virt_res_num(n, rt, &num_total, &num_prim, &num_sec);
5930     num_free = num_total - num_prim - num_sec;
5931     diff = nr - le16_to_cpu(rt ? sctrl->nvi : sctrl->nvq);
5932 
5933     if (diff > num_free) {
5934         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5935     }
5936 
5937     nvme_update_virt_res(n, sctrl, rt, nr);
5938     req->cqe.result = cpu_to_le32(nr);
5939 
5940     return req->status;
5941 }
5942 
5943 static uint16_t nvme_virt_set_state(NvmeCtrl *n, uint16_t cntlid, bool online)
5944 {
5945     NvmeCtrl *sn = NULL;
5946     NvmeSecCtrlEntry *sctrl;
5947     int vf_index;
5948 
5949     sctrl = nvme_sctrl_for_cntlid(n, cntlid);
5950     if (!sctrl) {
5951         return NVME_INVALID_CTRL_ID | NVME_DNR;
5952     }
5953 
5954     if (!pci_is_vf(&n->parent_obj)) {
5955         vf_index = le16_to_cpu(sctrl->vfn) - 1;
5956         sn = NVME(pcie_sriov_get_vf_at_index(&n->parent_obj, vf_index));
5957     }
5958 
5959     if (online) {
5960         if (!sctrl->nvi || (le16_to_cpu(sctrl->nvq) < 2) || !sn) {
5961             return NVME_INVALID_SEC_CTRL_STATE | NVME_DNR;
5962         }
5963 
5964         if (!sctrl->scs) {
5965             sctrl->scs = 0x1;
5966             nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
5967         }
5968     } else {
5969         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_INTERRUPT, 0);
5970         nvme_update_virt_res(n, sctrl, NVME_VIRT_RES_QUEUE, 0);
5971 
5972         if (sctrl->scs) {
5973             sctrl->scs = 0x0;
5974             if (sn) {
5975                 nvme_ctrl_reset(sn, NVME_RESET_FUNCTION);
5976             }
5977         }
5978     }
5979 
5980     return NVME_SUCCESS;
5981 }
5982 
5983 static uint16_t nvme_virt_mngmt(NvmeCtrl *n, NvmeRequest *req)
5984 {
5985     uint32_t dw10 = le32_to_cpu(req->cmd.cdw10);
5986     uint32_t dw11 = le32_to_cpu(req->cmd.cdw11);
5987     uint8_t act = dw10 & 0xf;
5988     uint8_t rt = (dw10 >> 8) & 0x7;
5989     uint16_t cntlid = (dw10 >> 16) & 0xffff;
5990     int nr = dw11 & 0xffff;
5991 
5992     trace_pci_nvme_virt_mngmt(nvme_cid(req), act, cntlid, rt ? "VI" : "VQ", nr);
5993 
5994     if (rt != NVME_VIRT_RES_QUEUE && rt != NVME_VIRT_RES_INTERRUPT) {
5995         return NVME_INVALID_RESOURCE_ID | NVME_DNR;
5996     }
5997 
5998     switch (act) {
5999     case NVME_VIRT_MNGMT_ACTION_SEC_ASSIGN:
6000         return nvme_assign_virt_res_to_sec(n, req, cntlid, rt, nr);
6001     case NVME_VIRT_MNGMT_ACTION_PRM_ALLOC:
6002         return nvme_assign_virt_res_to_prim(n, req, cntlid, rt, nr);
6003     case NVME_VIRT_MNGMT_ACTION_SEC_ONLINE:
6004         return nvme_virt_set_state(n, cntlid, true);
6005     case NVME_VIRT_MNGMT_ACTION_SEC_OFFLINE:
6006         return nvme_virt_set_state(n, cntlid, false);
6007     default:
6008         return NVME_INVALID_FIELD | NVME_DNR;
6009     }
6010 }
6011 
6012 static uint16_t nvme_dbbuf_config(NvmeCtrl *n, const NvmeRequest *req)
6013 {
6014     uint64_t dbs_addr = le64_to_cpu(req->cmd.dptr.prp1);
6015     uint64_t eis_addr = le64_to_cpu(req->cmd.dptr.prp2);
6016     int i;
6017 
6018     /* Address should be page aligned */
6019     if (dbs_addr & (n->page_size - 1) || eis_addr & (n->page_size - 1)) {
6020         return NVME_INVALID_FIELD | NVME_DNR;
6021     }
6022 
6023     /* Save shadow buffer base addr for use during queue creation */
6024     n->dbbuf_dbs = dbs_addr;
6025     n->dbbuf_eis = eis_addr;
6026     n->dbbuf_enabled = true;
6027 
6028     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6029         NvmeSQueue *sq = n->sq[i];
6030         NvmeCQueue *cq = n->cq[i];
6031 
6032         if (sq) {
6033             /*
6034              * CAP.DSTRD is 0, so offset of ith sq db_addr is (i<<3)
6035              * nvme_process_db() uses this hard-coded way to calculate
6036              * doorbell offsets. Be consistent with that here.
6037              */
6038             sq->db_addr = dbs_addr + (i << 3);
6039             sq->ei_addr = eis_addr + (i << 3);
6040             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6041                     sizeof(sq->tail));
6042         }
6043 
6044         if (cq) {
6045             /* CAP.DSTRD is 0, so offset of ith cq db_addr is (i<<3)+(1<<2) */
6046             cq->db_addr = dbs_addr + (i << 3) + (1 << 2);
6047             cq->ei_addr = eis_addr + (i << 3) + (1 << 2);
6048             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6049                     sizeof(cq->head));
6050         }
6051     }
6052 
6053     trace_pci_nvme_dbbuf_config(dbs_addr, eis_addr);
6054 
6055     return NVME_SUCCESS;
6056 }
6057 
6058 static uint16_t nvme_admin_cmd(NvmeCtrl *n, NvmeRequest *req)
6059 {
6060     trace_pci_nvme_admin_cmd(nvme_cid(req), nvme_sqid(req), req->cmd.opcode,
6061                              nvme_adm_opc_str(req->cmd.opcode));
6062 
6063     if (!(nvme_cse_acs[req->cmd.opcode] & NVME_CMD_EFF_CSUPP)) {
6064         trace_pci_nvme_err_invalid_admin_opc(req->cmd.opcode);
6065         return NVME_INVALID_OPCODE | NVME_DNR;
6066     }
6067 
6068     /* SGLs shall not be used for Admin commands in NVMe over PCIe */
6069     if (NVME_CMD_FLAGS_PSDT(req->cmd.flags) != NVME_PSDT_PRP) {
6070         return NVME_INVALID_FIELD | NVME_DNR;
6071     }
6072 
6073     if (NVME_CMD_FLAGS_FUSE(req->cmd.flags)) {
6074         return NVME_INVALID_FIELD;
6075     }
6076 
6077     switch (req->cmd.opcode) {
6078     case NVME_ADM_CMD_DELETE_SQ:
6079         return nvme_del_sq(n, req);
6080     case NVME_ADM_CMD_CREATE_SQ:
6081         return nvme_create_sq(n, req);
6082     case NVME_ADM_CMD_GET_LOG_PAGE:
6083         return nvme_get_log(n, req);
6084     case NVME_ADM_CMD_DELETE_CQ:
6085         return nvme_del_cq(n, req);
6086     case NVME_ADM_CMD_CREATE_CQ:
6087         return nvme_create_cq(n, req);
6088     case NVME_ADM_CMD_IDENTIFY:
6089         return nvme_identify(n, req);
6090     case NVME_ADM_CMD_ABORT:
6091         return nvme_abort(n, req);
6092     case NVME_ADM_CMD_SET_FEATURES:
6093         return nvme_set_feature(n, req);
6094     case NVME_ADM_CMD_GET_FEATURES:
6095         return nvme_get_feature(n, req);
6096     case NVME_ADM_CMD_ASYNC_EV_REQ:
6097         return nvme_aer(n, req);
6098     case NVME_ADM_CMD_NS_ATTACHMENT:
6099         return nvme_ns_attachment(n, req);
6100     case NVME_ADM_CMD_VIRT_MNGMT:
6101         return nvme_virt_mngmt(n, req);
6102     case NVME_ADM_CMD_DBBUF_CONFIG:
6103         return nvme_dbbuf_config(n, req);
6104     case NVME_ADM_CMD_FORMAT_NVM:
6105         return nvme_format(n, req);
6106     default:
6107         assert(false);
6108     }
6109 
6110     return NVME_INVALID_OPCODE | NVME_DNR;
6111 }
6112 
6113 static void nvme_update_sq_eventidx(const NvmeSQueue *sq)
6114 {
6115     pci_dma_write(&sq->ctrl->parent_obj, sq->ei_addr, &sq->tail,
6116                   sizeof(sq->tail));
6117     trace_pci_nvme_eventidx_sq(sq->sqid, sq->tail);
6118 }
6119 
6120 static void nvme_update_sq_tail(NvmeSQueue *sq)
6121 {
6122     pci_dma_read(&sq->ctrl->parent_obj, sq->db_addr, &sq->tail,
6123                  sizeof(sq->tail));
6124     trace_pci_nvme_shadow_doorbell_sq(sq->sqid, sq->tail);
6125 }
6126 
6127 static void nvme_process_sq(void *opaque)
6128 {
6129     NvmeSQueue *sq = opaque;
6130     NvmeCtrl *n = sq->ctrl;
6131     NvmeCQueue *cq = n->cq[sq->cqid];
6132 
6133     uint16_t status;
6134     hwaddr addr;
6135     NvmeCmd cmd;
6136     NvmeRequest *req;
6137 
6138     if (n->dbbuf_enabled) {
6139         nvme_update_sq_tail(sq);
6140     }
6141 
6142     while (!(nvme_sq_empty(sq) || QTAILQ_EMPTY(&sq->req_list))) {
6143         addr = sq->dma_addr + sq->head * n->sqe_size;
6144         if (nvme_addr_read(n, addr, (void *)&cmd, sizeof(cmd))) {
6145             trace_pci_nvme_err_addr_read(addr);
6146             trace_pci_nvme_err_cfs();
6147             stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
6148             break;
6149         }
6150         nvme_inc_sq_head(sq);
6151 
6152         req = QTAILQ_FIRST(&sq->req_list);
6153         QTAILQ_REMOVE(&sq->req_list, req, entry);
6154         QTAILQ_INSERT_TAIL(&sq->out_req_list, req, entry);
6155         nvme_req_clear(req);
6156         req->cqe.cid = cmd.cid;
6157         memcpy(&req->cmd, &cmd, sizeof(NvmeCmd));
6158 
6159         status = sq->sqid ? nvme_io_cmd(n, req) :
6160             nvme_admin_cmd(n, req);
6161         if (status != NVME_NO_COMPLETE) {
6162             req->status = status;
6163             nvme_enqueue_req_completion(cq, req);
6164         }
6165 
6166         if (n->dbbuf_enabled) {
6167             nvme_update_sq_eventidx(sq);
6168             nvme_update_sq_tail(sq);
6169         }
6170     }
6171 }
6172 
6173 static void nvme_update_msixcap_ts(PCIDevice *pci_dev, uint32_t table_size)
6174 {
6175     uint8_t *config;
6176 
6177     if (!msix_present(pci_dev)) {
6178         return;
6179     }
6180 
6181     assert(table_size > 0 && table_size <= pci_dev->msix_entries_nr);
6182 
6183     config = pci_dev->config + pci_dev->msix_cap;
6184     pci_set_word_by_mask(config + PCI_MSIX_FLAGS, PCI_MSIX_FLAGS_QSIZE,
6185                          table_size - 1);
6186 }
6187 
6188 static void nvme_activate_virt_res(NvmeCtrl *n)
6189 {
6190     PCIDevice *pci_dev = &n->parent_obj;
6191     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
6192     NvmeSecCtrlEntry *sctrl;
6193 
6194     /* -1 to account for the admin queue */
6195     if (pci_is_vf(pci_dev)) {
6196         sctrl = nvme_sctrl(n);
6197         cap->vqprt = sctrl->nvq;
6198         cap->viprt = sctrl->nvi;
6199         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
6200         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
6201     } else {
6202         cap->vqrfap = n->next_pri_ctrl_cap.vqrfap;
6203         cap->virfap = n->next_pri_ctrl_cap.virfap;
6204         n->conf_ioqpairs = le16_to_cpu(cap->vqprt) +
6205                            le16_to_cpu(cap->vqrfap) - 1;
6206         n->conf_msix_qsize = le16_to_cpu(cap->viprt) +
6207                              le16_to_cpu(cap->virfap);
6208     }
6209 }
6210 
6211 static void nvme_ctrl_reset(NvmeCtrl *n, NvmeResetType rst)
6212 {
6213     PCIDevice *pci_dev = &n->parent_obj;
6214     NvmeSecCtrlEntry *sctrl;
6215     NvmeNamespace *ns;
6216     int i;
6217 
6218     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6219         ns = nvme_ns(n, i);
6220         if (!ns) {
6221             continue;
6222         }
6223 
6224         nvme_ns_drain(ns);
6225     }
6226 
6227     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6228         if (n->sq[i] != NULL) {
6229             nvme_free_sq(n->sq[i], n);
6230         }
6231     }
6232     for (i = 0; i < n->params.max_ioqpairs + 1; i++) {
6233         if (n->cq[i] != NULL) {
6234             nvme_free_cq(n->cq[i], n);
6235         }
6236     }
6237 
6238     while (!QTAILQ_EMPTY(&n->aer_queue)) {
6239         NvmeAsyncEvent *event = QTAILQ_FIRST(&n->aer_queue);
6240         QTAILQ_REMOVE(&n->aer_queue, event, entry);
6241         g_free(event);
6242     }
6243 
6244     if (n->params.sriov_max_vfs) {
6245         if (!pci_is_vf(pci_dev)) {
6246             for (i = 0; i < n->sec_ctrl_list.numcntl; i++) {
6247                 sctrl = &n->sec_ctrl_list.sec[i];
6248                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
6249             }
6250 
6251             if (rst != NVME_RESET_CONTROLLER) {
6252                 pcie_sriov_pf_disable_vfs(pci_dev);
6253             }
6254         }
6255 
6256         if (rst != NVME_RESET_CONTROLLER) {
6257             nvme_activate_virt_res(n);
6258         }
6259     }
6260 
6261     n->aer_queued = 0;
6262     n->aer_mask = 0;
6263     n->outstanding_aers = 0;
6264     n->qs_created = false;
6265 
6266     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
6267 
6268     if (pci_is_vf(pci_dev)) {
6269         sctrl = nvme_sctrl(n);
6270 
6271         stl_le_p(&n->bar.csts, sctrl->scs ? 0 : NVME_CSTS_FAILED);
6272     } else {
6273         stl_le_p(&n->bar.csts, 0);
6274     }
6275 
6276     stl_le_p(&n->bar.intms, 0);
6277     stl_le_p(&n->bar.intmc, 0);
6278     stl_le_p(&n->bar.cc, 0);
6279 
6280     n->dbbuf_dbs = 0;
6281     n->dbbuf_eis = 0;
6282     n->dbbuf_enabled = false;
6283 }
6284 
6285 static void nvme_ctrl_shutdown(NvmeCtrl *n)
6286 {
6287     NvmeNamespace *ns;
6288     int i;
6289 
6290     if (n->pmr.dev) {
6291         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6292     }
6293 
6294     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6295         ns = nvme_ns(n, i);
6296         if (!ns) {
6297             continue;
6298         }
6299 
6300         nvme_ns_shutdown(ns);
6301     }
6302 }
6303 
6304 static void nvme_select_iocs(NvmeCtrl *n)
6305 {
6306     NvmeNamespace *ns;
6307     int i;
6308 
6309     for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
6310         ns = nvme_ns(n, i);
6311         if (!ns) {
6312             continue;
6313         }
6314 
6315         nvme_select_iocs_ns(n, ns);
6316     }
6317 }
6318 
6319 static int nvme_start_ctrl(NvmeCtrl *n)
6320 {
6321     uint64_t cap = ldq_le_p(&n->bar.cap);
6322     uint32_t cc = ldl_le_p(&n->bar.cc);
6323     uint32_t aqa = ldl_le_p(&n->bar.aqa);
6324     uint64_t asq = ldq_le_p(&n->bar.asq);
6325     uint64_t acq = ldq_le_p(&n->bar.acq);
6326     uint32_t page_bits = NVME_CC_MPS(cc) + 12;
6327     uint32_t page_size = 1 << page_bits;
6328     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
6329 
6330     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
6331         trace_pci_nvme_err_startfail_virt_state(le16_to_cpu(sctrl->nvi),
6332                                                 le16_to_cpu(sctrl->nvq),
6333                                                 sctrl->scs ? "ONLINE" :
6334                                                              "OFFLINE");
6335         return -1;
6336     }
6337     if (unlikely(n->cq[0])) {
6338         trace_pci_nvme_err_startfail_cq();
6339         return -1;
6340     }
6341     if (unlikely(n->sq[0])) {
6342         trace_pci_nvme_err_startfail_sq();
6343         return -1;
6344     }
6345     if (unlikely(asq & (page_size - 1))) {
6346         trace_pci_nvme_err_startfail_asq_misaligned(asq);
6347         return -1;
6348     }
6349     if (unlikely(acq & (page_size - 1))) {
6350         trace_pci_nvme_err_startfail_acq_misaligned(acq);
6351         return -1;
6352     }
6353     if (unlikely(!(NVME_CAP_CSS(cap) & (1 << NVME_CC_CSS(cc))))) {
6354         trace_pci_nvme_err_startfail_css(NVME_CC_CSS(cc));
6355         return -1;
6356     }
6357     if (unlikely(NVME_CC_MPS(cc) < NVME_CAP_MPSMIN(cap))) {
6358         trace_pci_nvme_err_startfail_page_too_small(
6359                     NVME_CC_MPS(cc),
6360                     NVME_CAP_MPSMIN(cap));
6361         return -1;
6362     }
6363     if (unlikely(NVME_CC_MPS(cc) >
6364                  NVME_CAP_MPSMAX(cap))) {
6365         trace_pci_nvme_err_startfail_page_too_large(
6366                     NVME_CC_MPS(cc),
6367                     NVME_CAP_MPSMAX(cap));
6368         return -1;
6369     }
6370     if (unlikely(NVME_CC_IOCQES(cc) <
6371                  NVME_CTRL_CQES_MIN(n->id_ctrl.cqes))) {
6372         trace_pci_nvme_err_startfail_cqent_too_small(
6373                     NVME_CC_IOCQES(cc),
6374                     NVME_CTRL_CQES_MIN(cap));
6375         return -1;
6376     }
6377     if (unlikely(NVME_CC_IOCQES(cc) >
6378                  NVME_CTRL_CQES_MAX(n->id_ctrl.cqes))) {
6379         trace_pci_nvme_err_startfail_cqent_too_large(
6380                     NVME_CC_IOCQES(cc),
6381                     NVME_CTRL_CQES_MAX(cap));
6382         return -1;
6383     }
6384     if (unlikely(NVME_CC_IOSQES(cc) <
6385                  NVME_CTRL_SQES_MIN(n->id_ctrl.sqes))) {
6386         trace_pci_nvme_err_startfail_sqent_too_small(
6387                     NVME_CC_IOSQES(cc),
6388                     NVME_CTRL_SQES_MIN(cap));
6389         return -1;
6390     }
6391     if (unlikely(NVME_CC_IOSQES(cc) >
6392                  NVME_CTRL_SQES_MAX(n->id_ctrl.sqes))) {
6393         trace_pci_nvme_err_startfail_sqent_too_large(
6394                     NVME_CC_IOSQES(cc),
6395                     NVME_CTRL_SQES_MAX(cap));
6396         return -1;
6397     }
6398     if (unlikely(!NVME_AQA_ASQS(aqa))) {
6399         trace_pci_nvme_err_startfail_asqent_sz_zero();
6400         return -1;
6401     }
6402     if (unlikely(!NVME_AQA_ACQS(aqa))) {
6403         trace_pci_nvme_err_startfail_acqent_sz_zero();
6404         return -1;
6405     }
6406 
6407     n->page_bits = page_bits;
6408     n->page_size = page_size;
6409     n->max_prp_ents = n->page_size / sizeof(uint64_t);
6410     n->cqe_size = 1 << NVME_CC_IOCQES(cc);
6411     n->sqe_size = 1 << NVME_CC_IOSQES(cc);
6412     nvme_init_cq(&n->admin_cq, n, acq, 0, 0, NVME_AQA_ACQS(aqa) + 1, 1);
6413     nvme_init_sq(&n->admin_sq, n, asq, 0, 0, NVME_AQA_ASQS(aqa) + 1);
6414 
6415     nvme_set_timestamp(n, 0ULL);
6416 
6417     nvme_select_iocs(n);
6418 
6419     return 0;
6420 }
6421 
6422 static void nvme_cmb_enable_regs(NvmeCtrl *n)
6423 {
6424     uint32_t cmbloc = ldl_le_p(&n->bar.cmbloc);
6425     uint32_t cmbsz = ldl_le_p(&n->bar.cmbsz);
6426 
6427     NVME_CMBLOC_SET_CDPCILS(cmbloc, 1);
6428     NVME_CMBLOC_SET_CDPMLS(cmbloc, 1);
6429     NVME_CMBLOC_SET_BIR(cmbloc, NVME_CMB_BIR);
6430     stl_le_p(&n->bar.cmbloc, cmbloc);
6431 
6432     NVME_CMBSZ_SET_SQS(cmbsz, 1);
6433     NVME_CMBSZ_SET_CQS(cmbsz, 0);
6434     NVME_CMBSZ_SET_LISTS(cmbsz, 1);
6435     NVME_CMBSZ_SET_RDS(cmbsz, 1);
6436     NVME_CMBSZ_SET_WDS(cmbsz, 1);
6437     NVME_CMBSZ_SET_SZU(cmbsz, 2); /* MBs */
6438     NVME_CMBSZ_SET_SZ(cmbsz, n->params.cmb_size_mb);
6439     stl_le_p(&n->bar.cmbsz, cmbsz);
6440 }
6441 
6442 static void nvme_write_bar(NvmeCtrl *n, hwaddr offset, uint64_t data,
6443                            unsigned size)
6444 {
6445     uint64_t cap = ldq_le_p(&n->bar.cap);
6446     uint32_t cc = ldl_le_p(&n->bar.cc);
6447     uint32_t intms = ldl_le_p(&n->bar.intms);
6448     uint32_t csts = ldl_le_p(&n->bar.csts);
6449     uint32_t pmrsts = ldl_le_p(&n->bar.pmrsts);
6450 
6451     if (unlikely(offset & (sizeof(uint32_t) - 1))) {
6452         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_misaligned32,
6453                        "MMIO write not 32-bit aligned,"
6454                        " offset=0x%"PRIx64"", offset);
6455         /* should be ignored, fall through for now */
6456     }
6457 
6458     if (unlikely(size < sizeof(uint32_t))) {
6459         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_toosmall,
6460                        "MMIO write smaller than 32-bits,"
6461                        " offset=0x%"PRIx64", size=%u",
6462                        offset, size);
6463         /* should be ignored, fall through for now */
6464     }
6465 
6466     switch (offset) {
6467     case NVME_REG_INTMS:
6468         if (unlikely(msix_enabled(&(n->parent_obj)))) {
6469             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6470                            "undefined access to interrupt mask set"
6471                            " when MSI-X is enabled");
6472             /* should be ignored, fall through for now */
6473         }
6474         intms |= data;
6475         stl_le_p(&n->bar.intms, intms);
6476         n->bar.intmc = n->bar.intms;
6477         trace_pci_nvme_mmio_intm_set(data & 0xffffffff, intms);
6478         nvme_irq_check(n);
6479         break;
6480     case NVME_REG_INTMC:
6481         if (unlikely(msix_enabled(&(n->parent_obj)))) {
6482             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_intmask_with_msix,
6483                            "undefined access to interrupt mask clr"
6484                            " when MSI-X is enabled");
6485             /* should be ignored, fall through for now */
6486         }
6487         intms &= ~data;
6488         stl_le_p(&n->bar.intms, intms);
6489         n->bar.intmc = n->bar.intms;
6490         trace_pci_nvme_mmio_intm_clr(data & 0xffffffff, intms);
6491         nvme_irq_check(n);
6492         break;
6493     case NVME_REG_CC:
6494         stl_le_p(&n->bar.cc, data);
6495 
6496         trace_pci_nvme_mmio_cfg(data & 0xffffffff);
6497 
6498         if (NVME_CC_SHN(data) && !(NVME_CC_SHN(cc))) {
6499             trace_pci_nvme_mmio_shutdown_set();
6500             nvme_ctrl_shutdown(n);
6501             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6502             csts |= NVME_CSTS_SHST_COMPLETE;
6503         } else if (!NVME_CC_SHN(data) && NVME_CC_SHN(cc)) {
6504             trace_pci_nvme_mmio_shutdown_cleared();
6505             csts &= ~(CSTS_SHST_MASK << CSTS_SHST_SHIFT);
6506         }
6507 
6508         if (NVME_CC_EN(data) && !NVME_CC_EN(cc)) {
6509             if (unlikely(nvme_start_ctrl(n))) {
6510                 trace_pci_nvme_err_startfail();
6511                 csts = NVME_CSTS_FAILED;
6512             } else {
6513                 trace_pci_nvme_mmio_start_success();
6514                 csts = NVME_CSTS_READY;
6515             }
6516         } else if (!NVME_CC_EN(data) && NVME_CC_EN(cc)) {
6517             trace_pci_nvme_mmio_stopped();
6518             nvme_ctrl_reset(n, NVME_RESET_CONTROLLER);
6519 
6520             break;
6521         }
6522 
6523         stl_le_p(&n->bar.csts, csts);
6524 
6525         break;
6526     case NVME_REG_CSTS:
6527         if (data & (1 << 4)) {
6528             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ssreset_w1c_unsupported,
6529                            "attempted to W1C CSTS.NSSRO"
6530                            " but CAP.NSSRS is zero (not supported)");
6531         } else if (data != 0) {
6532             NVME_GUEST_ERR(pci_nvme_ub_mmiowr_ro_csts,
6533                            "attempted to set a read only bit"
6534                            " of controller status");
6535         }
6536         break;
6537     case NVME_REG_NSSR:
6538         if (data == 0x4e564d65) {
6539             trace_pci_nvme_ub_mmiowr_ssreset_unsupported();
6540         } else {
6541             /* The spec says that writes of other values have no effect */
6542             return;
6543         }
6544         break;
6545     case NVME_REG_AQA:
6546         stl_le_p(&n->bar.aqa, data);
6547         trace_pci_nvme_mmio_aqattr(data & 0xffffffff);
6548         break;
6549     case NVME_REG_ASQ:
6550         stn_le_p(&n->bar.asq, size, data);
6551         trace_pci_nvme_mmio_asqaddr(data);
6552         break;
6553     case NVME_REG_ASQ + 4:
6554         stl_le_p((uint8_t *)&n->bar.asq + 4, data);
6555         trace_pci_nvme_mmio_asqaddr_hi(data, ldq_le_p(&n->bar.asq));
6556         break;
6557     case NVME_REG_ACQ:
6558         trace_pci_nvme_mmio_acqaddr(data);
6559         stn_le_p(&n->bar.acq, size, data);
6560         break;
6561     case NVME_REG_ACQ + 4:
6562         stl_le_p((uint8_t *)&n->bar.acq + 4, data);
6563         trace_pci_nvme_mmio_acqaddr_hi(data, ldq_le_p(&n->bar.acq));
6564         break;
6565     case NVME_REG_CMBLOC:
6566         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbloc_reserved,
6567                        "invalid write to reserved CMBLOC"
6568                        " when CMBSZ is zero, ignored");
6569         return;
6570     case NVME_REG_CMBSZ:
6571         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_cmbsz_readonly,
6572                        "invalid write to read only CMBSZ, ignored");
6573         return;
6574     case NVME_REG_CMBMSC:
6575         if (!NVME_CAP_CMBS(cap)) {
6576             return;
6577         }
6578 
6579         stn_le_p(&n->bar.cmbmsc, size, data);
6580         n->cmb.cmse = false;
6581 
6582         if (NVME_CMBMSC_CRE(data)) {
6583             nvme_cmb_enable_regs(n);
6584 
6585             if (NVME_CMBMSC_CMSE(data)) {
6586                 uint64_t cmbmsc = ldq_le_p(&n->bar.cmbmsc);
6587                 hwaddr cba = NVME_CMBMSC_CBA(cmbmsc) << CMBMSC_CBA_SHIFT;
6588                 if (cba + int128_get64(n->cmb.mem.size) < cba) {
6589                     uint32_t cmbsts = ldl_le_p(&n->bar.cmbsts);
6590                     NVME_CMBSTS_SET_CBAI(cmbsts, 1);
6591                     stl_le_p(&n->bar.cmbsts, cmbsts);
6592                     return;
6593                 }
6594 
6595                 n->cmb.cba = cba;
6596                 n->cmb.cmse = true;
6597             }
6598         } else {
6599             n->bar.cmbsz = 0;
6600             n->bar.cmbloc = 0;
6601         }
6602 
6603         return;
6604     case NVME_REG_CMBMSC + 4:
6605         stl_le_p((uint8_t *)&n->bar.cmbmsc + 4, data);
6606         return;
6607 
6608     case NVME_REG_PMRCAP:
6609         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrcap_readonly,
6610                        "invalid write to PMRCAP register, ignored");
6611         return;
6612     case NVME_REG_PMRCTL:
6613         if (!NVME_CAP_PMRS(cap)) {
6614             return;
6615         }
6616 
6617         stl_le_p(&n->bar.pmrctl, data);
6618         if (NVME_PMRCTL_EN(data)) {
6619             memory_region_set_enabled(&n->pmr.dev->mr, true);
6620             pmrsts = 0;
6621         } else {
6622             memory_region_set_enabled(&n->pmr.dev->mr, false);
6623             NVME_PMRSTS_SET_NRDY(pmrsts, 1);
6624             n->pmr.cmse = false;
6625         }
6626         stl_le_p(&n->bar.pmrsts, pmrsts);
6627         return;
6628     case NVME_REG_PMRSTS:
6629         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrsts_readonly,
6630                        "invalid write to PMRSTS register, ignored");
6631         return;
6632     case NVME_REG_PMREBS:
6633         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrebs_readonly,
6634                        "invalid write to PMREBS register, ignored");
6635         return;
6636     case NVME_REG_PMRSWTP:
6637         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_pmrswtp_readonly,
6638                        "invalid write to PMRSWTP register, ignored");
6639         return;
6640     case NVME_REG_PMRMSCL:
6641         if (!NVME_CAP_PMRS(cap)) {
6642             return;
6643         }
6644 
6645         stl_le_p(&n->bar.pmrmscl, data);
6646         n->pmr.cmse = false;
6647 
6648         if (NVME_PMRMSCL_CMSE(data)) {
6649             uint64_t pmrmscu = ldl_le_p(&n->bar.pmrmscu);
6650             hwaddr cba = pmrmscu << 32 |
6651                 (NVME_PMRMSCL_CBA(data) << PMRMSCL_CBA_SHIFT);
6652             if (cba + int128_get64(n->pmr.dev->mr.size) < cba) {
6653                 NVME_PMRSTS_SET_CBAI(pmrsts, 1);
6654                 stl_le_p(&n->bar.pmrsts, pmrsts);
6655                 return;
6656             }
6657 
6658             n->pmr.cmse = true;
6659             n->pmr.cba = cba;
6660         }
6661 
6662         return;
6663     case NVME_REG_PMRMSCU:
6664         if (!NVME_CAP_PMRS(cap)) {
6665             return;
6666         }
6667 
6668         stl_le_p(&n->bar.pmrmscu, data);
6669         return;
6670     default:
6671         NVME_GUEST_ERR(pci_nvme_ub_mmiowr_invalid,
6672                        "invalid MMIO write,"
6673                        " offset=0x%"PRIx64", data=%"PRIx64"",
6674                        offset, data);
6675         break;
6676     }
6677 }
6678 
6679 static uint64_t nvme_mmio_read(void *opaque, hwaddr addr, unsigned size)
6680 {
6681     NvmeCtrl *n = (NvmeCtrl *)opaque;
6682     uint8_t *ptr = (uint8_t *)&n->bar;
6683 
6684     trace_pci_nvme_mmio_read(addr, size);
6685 
6686     if (unlikely(addr & (sizeof(uint32_t) - 1))) {
6687         NVME_GUEST_ERR(pci_nvme_ub_mmiord_misaligned32,
6688                        "MMIO read not 32-bit aligned,"
6689                        " offset=0x%"PRIx64"", addr);
6690         /* should RAZ, fall through for now */
6691     } else if (unlikely(size < sizeof(uint32_t))) {
6692         NVME_GUEST_ERR(pci_nvme_ub_mmiord_toosmall,
6693                        "MMIO read smaller than 32-bits,"
6694                        " offset=0x%"PRIx64"", addr);
6695         /* should RAZ, fall through for now */
6696     }
6697 
6698     if (addr > sizeof(n->bar) - size) {
6699         NVME_GUEST_ERR(pci_nvme_ub_mmiord_invalid_ofs,
6700                        "MMIO read beyond last register,"
6701                        " offset=0x%"PRIx64", returning 0", addr);
6702 
6703         return 0;
6704     }
6705 
6706     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6707         addr != NVME_REG_CSTS) {
6708         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6709         return 0;
6710     }
6711 
6712     /*
6713      * When PMRWBM bit 1 is set then read from
6714      * from PMRSTS should ensure prior writes
6715      * made it to persistent media
6716      */
6717     if (addr == NVME_REG_PMRSTS &&
6718         (NVME_PMRCAP_PMRWBM(ldl_le_p(&n->bar.pmrcap)) & 0x02)) {
6719         memory_region_msync(&n->pmr.dev->mr, 0, n->pmr.dev->size);
6720     }
6721 
6722     return ldn_le_p(ptr + addr, size);
6723 }
6724 
6725 static void nvme_process_db(NvmeCtrl *n, hwaddr addr, int val)
6726 {
6727     uint32_t qid;
6728 
6729     if (unlikely(addr & ((1 << 2) - 1))) {
6730         NVME_GUEST_ERR(pci_nvme_ub_db_wr_misaligned,
6731                        "doorbell write not 32-bit aligned,"
6732                        " offset=0x%"PRIx64", ignoring", addr);
6733         return;
6734     }
6735 
6736     if (((addr - 0x1000) >> 2) & 1) {
6737         /* Completion queue doorbell write */
6738 
6739         uint16_t new_head = val & 0xffff;
6740         int start_sqs;
6741         NvmeCQueue *cq;
6742 
6743         qid = (addr - (0x1000 + (1 << 2))) >> 3;
6744         if (unlikely(nvme_check_cqid(n, qid))) {
6745             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cq,
6746                            "completion queue doorbell write"
6747                            " for nonexistent queue,"
6748                            " sqid=%"PRIu32", ignoring", qid);
6749 
6750             /*
6751              * NVM Express v1.3d, Section 4.1 state: "If host software writes
6752              * an invalid value to the Submission Queue Tail Doorbell or
6753              * Completion Queue Head Doorbell regiter and an Asynchronous Event
6754              * Request command is outstanding, then an asynchronous event is
6755              * posted to the Admin Completion Queue with a status code of
6756              * Invalid Doorbell Write Value."
6757              *
6758              * Also note that the spec includes the "Invalid Doorbell Register"
6759              * status code, but nowhere does it specify when to use it.
6760              * However, it seems reasonable to use it here in a similar
6761              * fashion.
6762              */
6763             if (n->outstanding_aers) {
6764                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6765                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6766                                    NVME_LOG_ERROR_INFO);
6767             }
6768 
6769             return;
6770         }
6771 
6772         cq = n->cq[qid];
6773         if (unlikely(new_head >= cq->size)) {
6774             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_cqhead,
6775                            "completion queue doorbell write value"
6776                            " beyond queue size, sqid=%"PRIu32","
6777                            " new_head=%"PRIu16", ignoring",
6778                            qid, new_head);
6779 
6780             if (n->outstanding_aers) {
6781                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6782                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6783                                    NVME_LOG_ERROR_INFO);
6784             }
6785 
6786             return;
6787         }
6788 
6789         trace_pci_nvme_mmio_doorbell_cq(cq->cqid, new_head);
6790 
6791         start_sqs = nvme_cq_full(cq) ? 1 : 0;
6792         cq->head = new_head;
6793         if (!qid && n->dbbuf_enabled) {
6794             pci_dma_write(&n->parent_obj, cq->db_addr, &cq->head,
6795                           sizeof(cq->head));
6796         }
6797         if (start_sqs) {
6798             NvmeSQueue *sq;
6799             QTAILQ_FOREACH(sq, &cq->sq_list, entry) {
6800                 timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6801             }
6802             timer_mod(cq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6803         }
6804 
6805         if (cq->tail == cq->head) {
6806             if (cq->irq_enabled) {
6807                 n->cq_pending--;
6808             }
6809 
6810             nvme_irq_deassert(n, cq);
6811         }
6812     } else {
6813         /* Submission queue doorbell write */
6814 
6815         uint16_t new_tail = val & 0xffff;
6816         NvmeSQueue *sq;
6817 
6818         qid = (addr - 0x1000) >> 3;
6819         if (unlikely(nvme_check_sqid(n, qid))) {
6820             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sq,
6821                            "submission queue doorbell write"
6822                            " for nonexistent queue,"
6823                            " sqid=%"PRIu32", ignoring", qid);
6824 
6825             if (n->outstanding_aers) {
6826                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6827                                    NVME_AER_INFO_ERR_INVALID_DB_REGISTER,
6828                                    NVME_LOG_ERROR_INFO);
6829             }
6830 
6831             return;
6832         }
6833 
6834         sq = n->sq[qid];
6835         if (unlikely(new_tail >= sq->size)) {
6836             NVME_GUEST_ERR(pci_nvme_ub_db_wr_invalid_sqtail,
6837                            "submission queue doorbell write value"
6838                            " beyond queue size, sqid=%"PRIu32","
6839                            " new_tail=%"PRIu16", ignoring",
6840                            qid, new_tail);
6841 
6842             if (n->outstanding_aers) {
6843                 nvme_enqueue_event(n, NVME_AER_TYPE_ERROR,
6844                                    NVME_AER_INFO_ERR_INVALID_DB_VALUE,
6845                                    NVME_LOG_ERROR_INFO);
6846             }
6847 
6848             return;
6849         }
6850 
6851         trace_pci_nvme_mmio_doorbell_sq(sq->sqid, new_tail);
6852 
6853         sq->tail = new_tail;
6854         if (!qid && n->dbbuf_enabled) {
6855             /*
6856              * The spec states "the host shall also update the controller's
6857              * corresponding doorbell property to match the value of that entry
6858              * in the Shadow Doorbell buffer."
6859              *
6860              * Since this context is currently a VM trap, we can safely enforce
6861              * the requirement from the device side in case the host is
6862              * misbehaving.
6863              *
6864              * Note, we shouldn't have to do this, but various drivers
6865              * including ones that run on Linux, are not updating Admin Queues,
6866              * so we can't trust reading it for an appropriate sq tail.
6867              */
6868             pci_dma_write(&n->parent_obj, sq->db_addr, &sq->tail,
6869                           sizeof(sq->tail));
6870         }
6871         timer_mod(sq->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 500);
6872     }
6873 }
6874 
6875 static void nvme_mmio_write(void *opaque, hwaddr addr, uint64_t data,
6876                             unsigned size)
6877 {
6878     NvmeCtrl *n = (NvmeCtrl *)opaque;
6879 
6880     trace_pci_nvme_mmio_write(addr, data, size);
6881 
6882     if (pci_is_vf(&n->parent_obj) && !nvme_sctrl(n)->scs &&
6883         addr != NVME_REG_CSTS) {
6884         trace_pci_nvme_err_ignored_mmio_vf_offline(addr, size);
6885         return;
6886     }
6887 
6888     if (addr < sizeof(n->bar)) {
6889         nvme_write_bar(n, addr, data, size);
6890     } else {
6891         nvme_process_db(n, addr, data);
6892     }
6893 }
6894 
6895 static const MemoryRegionOps nvme_mmio_ops = {
6896     .read = nvme_mmio_read,
6897     .write = nvme_mmio_write,
6898     .endianness = DEVICE_LITTLE_ENDIAN,
6899     .impl = {
6900         .min_access_size = 2,
6901         .max_access_size = 8,
6902     },
6903 };
6904 
6905 static void nvme_cmb_write(void *opaque, hwaddr addr, uint64_t data,
6906                            unsigned size)
6907 {
6908     NvmeCtrl *n = (NvmeCtrl *)opaque;
6909     stn_le_p(&n->cmb.buf[addr], size, data);
6910 }
6911 
6912 static uint64_t nvme_cmb_read(void *opaque, hwaddr addr, unsigned size)
6913 {
6914     NvmeCtrl *n = (NvmeCtrl *)opaque;
6915     return ldn_le_p(&n->cmb.buf[addr], size);
6916 }
6917 
6918 static const MemoryRegionOps nvme_cmb_ops = {
6919     .read = nvme_cmb_read,
6920     .write = nvme_cmb_write,
6921     .endianness = DEVICE_LITTLE_ENDIAN,
6922     .impl = {
6923         .min_access_size = 1,
6924         .max_access_size = 8,
6925     },
6926 };
6927 
6928 static void nvme_check_constraints(NvmeCtrl *n, Error **errp)
6929 {
6930     NvmeParams *params = &n->params;
6931 
6932     if (params->num_queues) {
6933         warn_report("num_queues is deprecated; please use max_ioqpairs "
6934                     "instead");
6935 
6936         params->max_ioqpairs = params->num_queues - 1;
6937     }
6938 
6939     if (n->namespace.blkconf.blk && n->subsys) {
6940         error_setg(errp, "subsystem support is unavailable with legacy "
6941                    "namespace ('drive' property)");
6942         return;
6943     }
6944 
6945     if (params->max_ioqpairs < 1 ||
6946         params->max_ioqpairs > NVME_MAX_IOQPAIRS) {
6947         error_setg(errp, "max_ioqpairs must be between 1 and %d",
6948                    NVME_MAX_IOQPAIRS);
6949         return;
6950     }
6951 
6952     if (params->msix_qsize < 1 ||
6953         params->msix_qsize > PCI_MSIX_FLAGS_QSIZE + 1) {
6954         error_setg(errp, "msix_qsize must be between 1 and %d",
6955                    PCI_MSIX_FLAGS_QSIZE + 1);
6956         return;
6957     }
6958 
6959     if (!params->serial) {
6960         error_setg(errp, "serial property not set");
6961         return;
6962     }
6963 
6964     if (n->pmr.dev) {
6965         if (host_memory_backend_is_mapped(n->pmr.dev)) {
6966             error_setg(errp, "can't use already busy memdev: %s",
6967                        object_get_canonical_path_component(OBJECT(n->pmr.dev)));
6968             return;
6969         }
6970 
6971         if (!is_power_of_2(n->pmr.dev->size)) {
6972             error_setg(errp, "pmr backend size needs to be power of 2 in size");
6973             return;
6974         }
6975 
6976         host_memory_backend_set_mapped(n->pmr.dev, true);
6977     }
6978 
6979     if (n->params.zasl > n->params.mdts) {
6980         error_setg(errp, "zoned.zasl (Zone Append Size Limit) must be less "
6981                    "than or equal to mdts (Maximum Data Transfer Size)");
6982         return;
6983     }
6984 
6985     if (!n->params.vsl) {
6986         error_setg(errp, "vsl must be non-zero");
6987         return;
6988     }
6989 
6990     if (params->sriov_max_vfs) {
6991         if (!n->subsys) {
6992             error_setg(errp, "subsystem is required for the use of SR-IOV");
6993             return;
6994         }
6995 
6996         if (params->sriov_max_vfs > NVME_MAX_VFS) {
6997             error_setg(errp, "sriov_max_vfs must be between 0 and %d",
6998                        NVME_MAX_VFS);
6999             return;
7000         }
7001 
7002         if (params->cmb_size_mb) {
7003             error_setg(errp, "CMB is not supported with SR-IOV");
7004             return;
7005         }
7006 
7007         if (n->pmr.dev) {
7008             error_setg(errp, "PMR is not supported with SR-IOV");
7009             return;
7010         }
7011 
7012         if (!params->sriov_vq_flexible || !params->sriov_vi_flexible) {
7013             error_setg(errp, "both sriov_vq_flexible and sriov_vi_flexible"
7014                        " must be set for the use of SR-IOV");
7015             return;
7016         }
7017 
7018         if (params->sriov_vq_flexible < params->sriov_max_vfs * 2) {
7019             error_setg(errp, "sriov_vq_flexible must be greater than or equal"
7020                        " to %d (sriov_max_vfs * 2)", params->sriov_max_vfs * 2);
7021             return;
7022         }
7023 
7024         if (params->max_ioqpairs < params->sriov_vq_flexible + 2) {
7025             error_setg(errp, "(max_ioqpairs - sriov_vq_flexible) must be"
7026                        " greater than or equal to 2");
7027             return;
7028         }
7029 
7030         if (params->sriov_vi_flexible < params->sriov_max_vfs) {
7031             error_setg(errp, "sriov_vi_flexible must be greater than or equal"
7032                        " to %d (sriov_max_vfs)", params->sriov_max_vfs);
7033             return;
7034         }
7035 
7036         if (params->msix_qsize < params->sriov_vi_flexible + 1) {
7037             error_setg(errp, "(msix_qsize - sriov_vi_flexible) must be"
7038                        " greater than or equal to 1");
7039             return;
7040         }
7041 
7042         if (params->sriov_max_vi_per_vf &&
7043             (params->sriov_max_vi_per_vf - 1) % NVME_VF_RES_GRANULARITY) {
7044             error_setg(errp, "sriov_max_vi_per_vf must meet:"
7045                        " (sriov_max_vi_per_vf - 1) %% %d == 0 and"
7046                        " sriov_max_vi_per_vf >= 1", NVME_VF_RES_GRANULARITY);
7047             return;
7048         }
7049 
7050         if (params->sriov_max_vq_per_vf &&
7051             (params->sriov_max_vq_per_vf < 2 ||
7052              (params->sriov_max_vq_per_vf - 1) % NVME_VF_RES_GRANULARITY)) {
7053             error_setg(errp, "sriov_max_vq_per_vf must meet:"
7054                        " (sriov_max_vq_per_vf - 1) %% %d == 0 and"
7055                        " sriov_max_vq_per_vf >= 2", NVME_VF_RES_GRANULARITY);
7056             return;
7057         }
7058     }
7059 }
7060 
7061 static void nvme_init_state(NvmeCtrl *n)
7062 {
7063     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7064     NvmeSecCtrlList *list = &n->sec_ctrl_list;
7065     NvmeSecCtrlEntry *sctrl;
7066     uint8_t max_vfs;
7067     int i;
7068 
7069     if (pci_is_vf(&n->parent_obj)) {
7070         sctrl = nvme_sctrl(n);
7071         max_vfs = 0;
7072         n->conf_ioqpairs = sctrl->nvq ? le16_to_cpu(sctrl->nvq) - 1 : 0;
7073         n->conf_msix_qsize = sctrl->nvi ? le16_to_cpu(sctrl->nvi) : 1;
7074     } else {
7075         max_vfs = n->params.sriov_max_vfs;
7076         n->conf_ioqpairs = n->params.max_ioqpairs;
7077         n->conf_msix_qsize = n->params.msix_qsize;
7078     }
7079 
7080     n->sq = g_new0(NvmeSQueue *, n->params.max_ioqpairs + 1);
7081     n->cq = g_new0(NvmeCQueue *, n->params.max_ioqpairs + 1);
7082     n->temperature = NVME_TEMPERATURE;
7083     n->features.temp_thresh_hi = NVME_TEMPERATURE_WARNING;
7084     n->starttime_ms = qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL);
7085     n->aer_reqs = g_new0(NvmeRequest *, n->params.aerl + 1);
7086     QTAILQ_INIT(&n->aer_queue);
7087 
7088     list->numcntl = cpu_to_le16(max_vfs);
7089     for (i = 0; i < max_vfs; i++) {
7090         sctrl = &list->sec[i];
7091         sctrl->pcid = cpu_to_le16(n->cntlid);
7092         sctrl->vfn = cpu_to_le16(i + 1);
7093     }
7094 
7095     cap->cntlid = cpu_to_le16(n->cntlid);
7096     cap->crt = NVME_CRT_VQ | NVME_CRT_VI;
7097 
7098     if (pci_is_vf(&n->parent_obj)) {
7099         cap->vqprt = cpu_to_le16(1 + n->conf_ioqpairs);
7100     } else {
7101         cap->vqprt = cpu_to_le16(1 + n->params.max_ioqpairs -
7102                                  n->params.sriov_vq_flexible);
7103         cap->vqfrt = cpu_to_le32(n->params.sriov_vq_flexible);
7104         cap->vqrfap = cap->vqfrt;
7105         cap->vqgran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7106         cap->vqfrsm = n->params.sriov_max_vq_per_vf ?
7107                         cpu_to_le16(n->params.sriov_max_vq_per_vf) :
7108                         cap->vqfrt / MAX(max_vfs, 1);
7109     }
7110 
7111     if (pci_is_vf(&n->parent_obj)) {
7112         cap->viprt = cpu_to_le16(n->conf_msix_qsize);
7113     } else {
7114         cap->viprt = cpu_to_le16(n->params.msix_qsize -
7115                                  n->params.sriov_vi_flexible);
7116         cap->vifrt = cpu_to_le32(n->params.sriov_vi_flexible);
7117         cap->virfap = cap->vifrt;
7118         cap->vigran = cpu_to_le16(NVME_VF_RES_GRANULARITY);
7119         cap->vifrsm = n->params.sriov_max_vi_per_vf ?
7120                         cpu_to_le16(n->params.sriov_max_vi_per_vf) :
7121                         cap->vifrt / MAX(max_vfs, 1);
7122     }
7123 }
7124 
7125 static void nvme_init_cmb(NvmeCtrl *n, PCIDevice *pci_dev)
7126 {
7127     uint64_t cmb_size = n->params.cmb_size_mb * MiB;
7128     uint64_t cap = ldq_le_p(&n->bar.cap);
7129 
7130     n->cmb.buf = g_malloc0(cmb_size);
7131     memory_region_init_io(&n->cmb.mem, OBJECT(n), &nvme_cmb_ops, n,
7132                           "nvme-cmb", cmb_size);
7133     pci_register_bar(pci_dev, NVME_CMB_BIR,
7134                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7135                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7136                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->cmb.mem);
7137 
7138     NVME_CAP_SET_CMBS(cap, 1);
7139     stq_le_p(&n->bar.cap, cap);
7140 
7141     if (n->params.legacy_cmb) {
7142         nvme_cmb_enable_regs(n);
7143         n->cmb.cmse = true;
7144     }
7145 }
7146 
7147 static void nvme_init_pmr(NvmeCtrl *n, PCIDevice *pci_dev)
7148 {
7149     uint32_t pmrcap = ldl_le_p(&n->bar.pmrcap);
7150 
7151     NVME_PMRCAP_SET_RDS(pmrcap, 1);
7152     NVME_PMRCAP_SET_WDS(pmrcap, 1);
7153     NVME_PMRCAP_SET_BIR(pmrcap, NVME_PMR_BIR);
7154     /* Turn on bit 1 support */
7155     NVME_PMRCAP_SET_PMRWBM(pmrcap, 0x02);
7156     NVME_PMRCAP_SET_CMSS(pmrcap, 1);
7157     stl_le_p(&n->bar.pmrcap, pmrcap);
7158 
7159     pci_register_bar(pci_dev, NVME_PMR_BIR,
7160                      PCI_BASE_ADDRESS_SPACE_MEMORY |
7161                      PCI_BASE_ADDRESS_MEM_TYPE_64 |
7162                      PCI_BASE_ADDRESS_MEM_PREFETCH, &n->pmr.dev->mr);
7163 
7164     memory_region_set_enabled(&n->pmr.dev->mr, false);
7165 }
7166 
7167 static uint64_t nvme_bar_size(unsigned total_queues, unsigned total_irqs,
7168                               unsigned *msix_table_offset,
7169                               unsigned *msix_pba_offset)
7170 {
7171     uint64_t bar_size, msix_table_size, msix_pba_size;
7172 
7173     bar_size = sizeof(NvmeBar) + 2 * total_queues * NVME_DB_SIZE;
7174     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7175 
7176     if (msix_table_offset) {
7177         *msix_table_offset = bar_size;
7178     }
7179 
7180     msix_table_size = PCI_MSIX_ENTRY_SIZE * total_irqs;
7181     bar_size += msix_table_size;
7182     bar_size = QEMU_ALIGN_UP(bar_size, 4 * KiB);
7183 
7184     if (msix_pba_offset) {
7185         *msix_pba_offset = bar_size;
7186     }
7187 
7188     msix_pba_size = QEMU_ALIGN_UP(total_irqs, 64) / 8;
7189     bar_size += msix_pba_size;
7190 
7191     bar_size = pow2ceil(bar_size);
7192     return bar_size;
7193 }
7194 
7195 static void nvme_init_sriov(NvmeCtrl *n, PCIDevice *pci_dev, uint16_t offset)
7196 {
7197     uint16_t vf_dev_id = n->params.use_intel_id ?
7198                          PCI_DEVICE_ID_INTEL_NVME : PCI_DEVICE_ID_REDHAT_NVME;
7199     NvmePriCtrlCap *cap = &n->pri_ctrl_cap;
7200     uint64_t bar_size = nvme_bar_size(le16_to_cpu(cap->vqfrsm),
7201                                       le16_to_cpu(cap->vifrsm),
7202                                       NULL, NULL);
7203 
7204     pcie_sriov_pf_init(pci_dev, offset, "nvme", vf_dev_id,
7205                        n->params.sriov_max_vfs, n->params.sriov_max_vfs,
7206                        NVME_VF_OFFSET, NVME_VF_STRIDE);
7207 
7208     pcie_sriov_pf_init_vf_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7209                               PCI_BASE_ADDRESS_MEM_TYPE_64, bar_size);
7210 }
7211 
7212 static int nvme_add_pm_capability(PCIDevice *pci_dev, uint8_t offset)
7213 {
7214     Error *err = NULL;
7215     int ret;
7216 
7217     ret = pci_add_capability(pci_dev, PCI_CAP_ID_PM, offset,
7218                              PCI_PM_SIZEOF, &err);
7219     if (err) {
7220         error_report_err(err);
7221         return ret;
7222     }
7223 
7224     pci_set_word(pci_dev->config + offset + PCI_PM_PMC,
7225                  PCI_PM_CAP_VER_1_2);
7226     pci_set_word(pci_dev->config + offset + PCI_PM_CTRL,
7227                  PCI_PM_CTRL_NO_SOFT_RESET);
7228     pci_set_word(pci_dev->wmask + offset + PCI_PM_CTRL,
7229                  PCI_PM_CTRL_STATE_MASK);
7230 
7231     return 0;
7232 }
7233 
7234 static int nvme_init_pci(NvmeCtrl *n, PCIDevice *pci_dev, Error **errp)
7235 {
7236     uint8_t *pci_conf = pci_dev->config;
7237     uint64_t bar_size;
7238     unsigned msix_table_offset, msix_pba_offset;
7239     int ret;
7240 
7241     Error *err = NULL;
7242 
7243     pci_conf[PCI_INTERRUPT_PIN] = 1;
7244     pci_config_set_prog_interface(pci_conf, 0x2);
7245 
7246     if (n->params.use_intel_id) {
7247         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_INTEL);
7248         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_INTEL_NVME);
7249     } else {
7250         pci_config_set_vendor_id(pci_conf, PCI_VENDOR_ID_REDHAT);
7251         pci_config_set_device_id(pci_conf, PCI_DEVICE_ID_REDHAT_NVME);
7252     }
7253 
7254     pci_config_set_class(pci_conf, PCI_CLASS_STORAGE_EXPRESS);
7255     nvme_add_pm_capability(pci_dev, 0x60);
7256     pcie_endpoint_cap_init(pci_dev, 0x80);
7257     pcie_cap_flr_init(pci_dev);
7258     if (n->params.sriov_max_vfs) {
7259         pcie_ari_init(pci_dev, 0x100, 1);
7260     }
7261 
7262     /* add one to max_ioqpairs to account for the admin queue pair */
7263     bar_size = nvme_bar_size(n->params.max_ioqpairs + 1, n->params.msix_qsize,
7264                              &msix_table_offset, &msix_pba_offset);
7265 
7266     memory_region_init(&n->bar0, OBJECT(n), "nvme-bar0", bar_size);
7267     memory_region_init_io(&n->iomem, OBJECT(n), &nvme_mmio_ops, n, "nvme",
7268                           msix_table_offset);
7269     memory_region_add_subregion(&n->bar0, 0, &n->iomem);
7270 
7271     if (pci_is_vf(pci_dev)) {
7272         pcie_sriov_vf_register_bar(pci_dev, 0, &n->bar0);
7273     } else {
7274         pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY |
7275                          PCI_BASE_ADDRESS_MEM_TYPE_64, &n->bar0);
7276     }
7277     ret = msix_init(pci_dev, n->params.msix_qsize,
7278                     &n->bar0, 0, msix_table_offset,
7279                     &n->bar0, 0, msix_pba_offset, 0, &err);
7280     if (ret < 0) {
7281         if (ret == -ENOTSUP) {
7282             warn_report_err(err);
7283         } else {
7284             error_propagate(errp, err);
7285             return ret;
7286         }
7287     }
7288 
7289     nvme_update_msixcap_ts(pci_dev, n->conf_msix_qsize);
7290 
7291     if (n->params.cmb_size_mb) {
7292         nvme_init_cmb(n, pci_dev);
7293     }
7294 
7295     if (n->pmr.dev) {
7296         nvme_init_pmr(n, pci_dev);
7297     }
7298 
7299     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7300         nvme_init_sriov(n, pci_dev, 0x120);
7301     }
7302 
7303     return 0;
7304 }
7305 
7306 static void nvme_init_subnqn(NvmeCtrl *n)
7307 {
7308     NvmeSubsystem *subsys = n->subsys;
7309     NvmeIdCtrl *id = &n->id_ctrl;
7310 
7311     if (!subsys) {
7312         snprintf((char *)id->subnqn, sizeof(id->subnqn),
7313                  "nqn.2019-08.org.qemu:%s", n->params.serial);
7314     } else {
7315         pstrcpy((char *)id->subnqn, sizeof(id->subnqn), (char*)subsys->subnqn);
7316     }
7317 }
7318 
7319 static void nvme_init_ctrl(NvmeCtrl *n, PCIDevice *pci_dev)
7320 {
7321     NvmeIdCtrl *id = &n->id_ctrl;
7322     uint8_t *pci_conf = pci_dev->config;
7323     uint64_t cap = ldq_le_p(&n->bar.cap);
7324     NvmeSecCtrlEntry *sctrl = nvme_sctrl(n);
7325 
7326     id->vid = cpu_to_le16(pci_get_word(pci_conf + PCI_VENDOR_ID));
7327     id->ssvid = cpu_to_le16(pci_get_word(pci_conf + PCI_SUBSYSTEM_VENDOR_ID));
7328     strpadcpy((char *)id->mn, sizeof(id->mn), "QEMU NVMe Ctrl", ' ');
7329     strpadcpy((char *)id->fr, sizeof(id->fr), QEMU_VERSION, ' ');
7330     strpadcpy((char *)id->sn, sizeof(id->sn), n->params.serial, ' ');
7331 
7332     id->cntlid = cpu_to_le16(n->cntlid);
7333 
7334     id->oaes = cpu_to_le32(NVME_OAES_NS_ATTR);
7335     id->ctratt |= cpu_to_le32(NVME_CTRATT_ELBAS);
7336 
7337     id->rab = 6;
7338 
7339     if (n->params.use_intel_id) {
7340         id->ieee[0] = 0xb3;
7341         id->ieee[1] = 0x02;
7342         id->ieee[2] = 0x00;
7343     } else {
7344         id->ieee[0] = 0x00;
7345         id->ieee[1] = 0x54;
7346         id->ieee[2] = 0x52;
7347     }
7348 
7349     id->mdts = n->params.mdts;
7350     id->ver = cpu_to_le32(NVME_SPEC_VER);
7351     id->oacs =
7352         cpu_to_le16(NVME_OACS_NS_MGMT | NVME_OACS_FORMAT | NVME_OACS_DBBUF);
7353     id->cntrltype = 0x1;
7354 
7355     /*
7356      * Because the controller always completes the Abort command immediately,
7357      * there can never be more than one concurrently executing Abort command,
7358      * so this value is never used for anything. Note that there can easily be
7359      * many Abort commands in the queues, but they are not considered
7360      * "executing" until processed by nvme_abort.
7361      *
7362      * The specification recommends a value of 3 for Abort Command Limit (four
7363      * concurrently outstanding Abort commands), so lets use that though it is
7364      * inconsequential.
7365      */
7366     id->acl = 3;
7367     id->aerl = n->params.aerl;
7368     id->frmw = (NVME_NUM_FW_SLOTS << 1) | NVME_FRMW_SLOT1_RO;
7369     id->lpa = NVME_LPA_NS_SMART | NVME_LPA_CSE | NVME_LPA_EXTENDED;
7370 
7371     /* recommended default value (~70 C) */
7372     id->wctemp = cpu_to_le16(NVME_TEMPERATURE_WARNING);
7373     id->cctemp = cpu_to_le16(NVME_TEMPERATURE_CRITICAL);
7374 
7375     id->sqes = (0x6 << 4) | 0x6;
7376     id->cqes = (0x4 << 4) | 0x4;
7377     id->nn = cpu_to_le32(NVME_MAX_NAMESPACES);
7378     id->oncs = cpu_to_le16(NVME_ONCS_WRITE_ZEROES | NVME_ONCS_TIMESTAMP |
7379                            NVME_ONCS_FEATURES | NVME_ONCS_DSM |
7380                            NVME_ONCS_COMPARE | NVME_ONCS_COPY);
7381 
7382     /*
7383      * NOTE: If this device ever supports a command set that does NOT use 0x0
7384      * as a Flush-equivalent operation, support for the broadcast NSID in Flush
7385      * should probably be removed.
7386      *
7387      * See comment in nvme_io_cmd.
7388      */
7389     id->vwc = NVME_VWC_NSID_BROADCAST_SUPPORT | NVME_VWC_PRESENT;
7390 
7391     id->ocfs = cpu_to_le16(NVME_OCFS_COPY_FORMAT_0 | NVME_OCFS_COPY_FORMAT_1);
7392     id->sgls = cpu_to_le32(NVME_CTRL_SGLS_SUPPORT_NO_ALIGN);
7393 
7394     nvme_init_subnqn(n);
7395 
7396     id->psd[0].mp = cpu_to_le16(0x9c4);
7397     id->psd[0].enlat = cpu_to_le32(0x10);
7398     id->psd[0].exlat = cpu_to_le32(0x4);
7399 
7400     if (n->subsys) {
7401         id->cmic |= NVME_CMIC_MULTI_CTRL;
7402     }
7403 
7404     NVME_CAP_SET_MQES(cap, 0x7ff);
7405     NVME_CAP_SET_CQR(cap, 1);
7406     NVME_CAP_SET_TO(cap, 0xf);
7407     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_NVM);
7408     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_CSI_SUPP);
7409     NVME_CAP_SET_CSS(cap, NVME_CAP_CSS_ADMIN_ONLY);
7410     NVME_CAP_SET_MPSMAX(cap, 4);
7411     NVME_CAP_SET_CMBS(cap, n->params.cmb_size_mb ? 1 : 0);
7412     NVME_CAP_SET_PMRS(cap, n->pmr.dev ? 1 : 0);
7413     stq_le_p(&n->bar.cap, cap);
7414 
7415     stl_le_p(&n->bar.vs, NVME_SPEC_VER);
7416     n->bar.intmc = n->bar.intms = 0;
7417 
7418     if (pci_is_vf(&n->parent_obj) && !sctrl->scs) {
7419         stl_le_p(&n->bar.csts, NVME_CSTS_FAILED);
7420     }
7421 }
7422 
7423 static int nvme_init_subsys(NvmeCtrl *n, Error **errp)
7424 {
7425     int cntlid;
7426 
7427     if (!n->subsys) {
7428         return 0;
7429     }
7430 
7431     cntlid = nvme_subsys_register_ctrl(n, errp);
7432     if (cntlid < 0) {
7433         return -1;
7434     }
7435 
7436     n->cntlid = cntlid;
7437 
7438     return 0;
7439 }
7440 
7441 void nvme_attach_ns(NvmeCtrl *n, NvmeNamespace *ns)
7442 {
7443     uint32_t nsid = ns->params.nsid;
7444     assert(nsid && nsid <= NVME_MAX_NAMESPACES);
7445 
7446     n->namespaces[nsid] = ns;
7447     ns->attached++;
7448 
7449     n->dmrsl = MIN_NON_ZERO(n->dmrsl,
7450                             BDRV_REQUEST_MAX_BYTES / nvme_l2b(ns, 1));
7451 }
7452 
7453 static void nvme_realize(PCIDevice *pci_dev, Error **errp)
7454 {
7455     NvmeCtrl *n = NVME(pci_dev);
7456     NvmeNamespace *ns;
7457     Error *local_err = NULL;
7458     NvmeCtrl *pn = NVME(pcie_sriov_get_pf(pci_dev));
7459 
7460     if (pci_is_vf(pci_dev)) {
7461         /*
7462          * VFs derive settings from the parent. PF's lifespan exceeds
7463          * that of VF's, so it's safe to share params.serial.
7464          */
7465         memcpy(&n->params, &pn->params, sizeof(NvmeParams));
7466         n->subsys = pn->subsys;
7467     }
7468 
7469     nvme_check_constraints(n, &local_err);
7470     if (local_err) {
7471         error_propagate(errp, local_err);
7472         return;
7473     }
7474 
7475     qbus_init(&n->bus, sizeof(NvmeBus), TYPE_NVME_BUS,
7476               &pci_dev->qdev, n->parent_obj.qdev.id);
7477 
7478     if (nvme_init_subsys(n, errp)) {
7479         error_propagate(errp, local_err);
7480         return;
7481     }
7482     nvme_init_state(n);
7483     if (nvme_init_pci(n, pci_dev, errp)) {
7484         return;
7485     }
7486     nvme_init_ctrl(n, pci_dev);
7487 
7488     /* setup a namespace if the controller drive property was given */
7489     if (n->namespace.blkconf.blk) {
7490         ns = &n->namespace;
7491         ns->params.nsid = 1;
7492 
7493         if (nvme_ns_setup(ns, errp)) {
7494             return;
7495         }
7496 
7497         nvme_attach_ns(n, ns);
7498     }
7499 }
7500 
7501 static void nvme_exit(PCIDevice *pci_dev)
7502 {
7503     NvmeCtrl *n = NVME(pci_dev);
7504     NvmeNamespace *ns;
7505     int i;
7506 
7507     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7508 
7509     if (n->subsys) {
7510         for (i = 1; i <= NVME_MAX_NAMESPACES; i++) {
7511             ns = nvme_ns(n, i);
7512             if (ns) {
7513                 ns->attached--;
7514             }
7515         }
7516 
7517         nvme_subsys_unregister_ctrl(n->subsys, n);
7518     }
7519 
7520     g_free(n->cq);
7521     g_free(n->sq);
7522     g_free(n->aer_reqs);
7523 
7524     if (n->params.cmb_size_mb) {
7525         g_free(n->cmb.buf);
7526     }
7527 
7528     if (n->pmr.dev) {
7529         host_memory_backend_set_mapped(n->pmr.dev, false);
7530     }
7531 
7532     if (!pci_is_vf(pci_dev) && n->params.sriov_max_vfs) {
7533         pcie_sriov_pf_exit(pci_dev);
7534     }
7535 
7536     msix_uninit(pci_dev, &n->bar0, &n->bar0);
7537     memory_region_del_subregion(&n->bar0, &n->iomem);
7538 }
7539 
7540 static Property nvme_props[] = {
7541     DEFINE_BLOCK_PROPERTIES(NvmeCtrl, namespace.blkconf),
7542     DEFINE_PROP_LINK("pmrdev", NvmeCtrl, pmr.dev, TYPE_MEMORY_BACKEND,
7543                      HostMemoryBackend *),
7544     DEFINE_PROP_LINK("subsys", NvmeCtrl, subsys, TYPE_NVME_SUBSYS,
7545                      NvmeSubsystem *),
7546     DEFINE_PROP_STRING("serial", NvmeCtrl, params.serial),
7547     DEFINE_PROP_UINT32("cmb_size_mb", NvmeCtrl, params.cmb_size_mb, 0),
7548     DEFINE_PROP_UINT32("num_queues", NvmeCtrl, params.num_queues, 0),
7549     DEFINE_PROP_UINT32("max_ioqpairs", NvmeCtrl, params.max_ioqpairs, 64),
7550     DEFINE_PROP_UINT16("msix_qsize", NvmeCtrl, params.msix_qsize, 65),
7551     DEFINE_PROP_UINT8("aerl", NvmeCtrl, params.aerl, 3),
7552     DEFINE_PROP_UINT32("aer_max_queued", NvmeCtrl, params.aer_max_queued, 64),
7553     DEFINE_PROP_UINT8("mdts", NvmeCtrl, params.mdts, 7),
7554     DEFINE_PROP_UINT8("vsl", NvmeCtrl, params.vsl, 7),
7555     DEFINE_PROP_BOOL("use-intel-id", NvmeCtrl, params.use_intel_id, false),
7556     DEFINE_PROP_BOOL("legacy-cmb", NvmeCtrl, params.legacy_cmb, false),
7557     DEFINE_PROP_UINT8("zoned.zasl", NvmeCtrl, params.zasl, 0),
7558     DEFINE_PROP_BOOL("zoned.auto_transition", NvmeCtrl,
7559                      params.auto_transition_zones, true),
7560     DEFINE_PROP_UINT8("sriov_max_vfs", NvmeCtrl, params.sriov_max_vfs, 0),
7561     DEFINE_PROP_UINT16("sriov_vq_flexible", NvmeCtrl,
7562                        params.sriov_vq_flexible, 0),
7563     DEFINE_PROP_UINT16("sriov_vi_flexible", NvmeCtrl,
7564                        params.sriov_vi_flexible, 0),
7565     DEFINE_PROP_UINT8("sriov_max_vi_per_vf", NvmeCtrl,
7566                       params.sriov_max_vi_per_vf, 0),
7567     DEFINE_PROP_UINT8("sriov_max_vq_per_vf", NvmeCtrl,
7568                       params.sriov_max_vq_per_vf, 0),
7569     DEFINE_PROP_END_OF_LIST(),
7570 };
7571 
7572 static void nvme_get_smart_warning(Object *obj, Visitor *v, const char *name,
7573                                    void *opaque, Error **errp)
7574 {
7575     NvmeCtrl *n = NVME(obj);
7576     uint8_t value = n->smart_critical_warning;
7577 
7578     visit_type_uint8(v, name, &value, errp);
7579 }
7580 
7581 static void nvme_set_smart_warning(Object *obj, Visitor *v, const char *name,
7582                                    void *opaque, Error **errp)
7583 {
7584     NvmeCtrl *n = NVME(obj);
7585     uint8_t value, old_value, cap = 0, index, event;
7586 
7587     if (!visit_type_uint8(v, name, &value, errp)) {
7588         return;
7589     }
7590 
7591     cap = NVME_SMART_SPARE | NVME_SMART_TEMPERATURE | NVME_SMART_RELIABILITY
7592           | NVME_SMART_MEDIA_READ_ONLY | NVME_SMART_FAILED_VOLATILE_MEDIA;
7593     if (NVME_CAP_PMRS(ldq_le_p(&n->bar.cap))) {
7594         cap |= NVME_SMART_PMR_UNRELIABLE;
7595     }
7596 
7597     if ((value & cap) != value) {
7598         error_setg(errp, "unsupported smart critical warning bits: 0x%x",
7599                    value & ~cap);
7600         return;
7601     }
7602 
7603     old_value = n->smart_critical_warning;
7604     n->smart_critical_warning = value;
7605 
7606     /* only inject new bits of smart critical warning */
7607     for (index = 0; index < NVME_SMART_WARN_MAX; index++) {
7608         event = 1 << index;
7609         if (value & ~old_value & event)
7610             nvme_smart_event(n, event);
7611     }
7612 }
7613 
7614 static void nvme_pci_reset(DeviceState *qdev)
7615 {
7616     PCIDevice *pci_dev = PCI_DEVICE(qdev);
7617     NvmeCtrl *n = NVME(pci_dev);
7618 
7619     trace_pci_nvme_pci_reset();
7620     nvme_ctrl_reset(n, NVME_RESET_FUNCTION);
7621 }
7622 
7623 static void nvme_sriov_pre_write_ctrl(PCIDevice *dev, uint32_t address,
7624                                       uint32_t val, int len)
7625 {
7626     NvmeCtrl *n = NVME(dev);
7627     NvmeSecCtrlEntry *sctrl;
7628     uint16_t sriov_cap = dev->exp.sriov_cap;
7629     uint32_t off = address - sriov_cap;
7630     int i, num_vfs;
7631 
7632     if (!sriov_cap) {
7633         return;
7634     }
7635 
7636     if (range_covers_byte(off, len, PCI_SRIOV_CTRL)) {
7637         if (!(val & PCI_SRIOV_CTRL_VFE)) {
7638             num_vfs = pci_get_word(dev->config + sriov_cap + PCI_SRIOV_NUM_VF);
7639             for (i = 0; i < num_vfs; i++) {
7640                 sctrl = &n->sec_ctrl_list.sec[i];
7641                 nvme_virt_set_state(n, le16_to_cpu(sctrl->scid), false);
7642             }
7643         }
7644     }
7645 }
7646 
7647 static void nvme_pci_write_config(PCIDevice *dev, uint32_t address,
7648                                   uint32_t val, int len)
7649 {
7650     nvme_sriov_pre_write_ctrl(dev, address, val, len);
7651     pci_default_write_config(dev, address, val, len);
7652     pcie_cap_flr_write_config(dev, address, val, len);
7653 }
7654 
7655 static const VMStateDescription nvme_vmstate = {
7656     .name = "nvme",
7657     .unmigratable = 1,
7658 };
7659 
7660 static void nvme_class_init(ObjectClass *oc, void *data)
7661 {
7662     DeviceClass *dc = DEVICE_CLASS(oc);
7663     PCIDeviceClass *pc = PCI_DEVICE_CLASS(oc);
7664 
7665     pc->realize = nvme_realize;
7666     pc->config_write = nvme_pci_write_config;
7667     pc->exit = nvme_exit;
7668     pc->class_id = PCI_CLASS_STORAGE_EXPRESS;
7669     pc->revision = 2;
7670 
7671     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
7672     dc->desc = "Non-Volatile Memory Express";
7673     device_class_set_props(dc, nvme_props);
7674     dc->vmsd = &nvme_vmstate;
7675     dc->reset = nvme_pci_reset;
7676 }
7677 
7678 static void nvme_instance_init(Object *obj)
7679 {
7680     NvmeCtrl *n = NVME(obj);
7681 
7682     device_add_bootindex_property(obj, &n->namespace.blkconf.bootindex,
7683                                   "bootindex", "/namespace@1,0",
7684                                   DEVICE(obj));
7685 
7686     object_property_add(obj, "smart_critical_warning", "uint8",
7687                         nvme_get_smart_warning,
7688                         nvme_set_smart_warning, NULL, NULL);
7689 }
7690 
7691 static const TypeInfo nvme_info = {
7692     .name          = TYPE_NVME,
7693     .parent        = TYPE_PCI_DEVICE,
7694     .instance_size = sizeof(NvmeCtrl),
7695     .instance_init = nvme_instance_init,
7696     .class_init    = nvme_class_init,
7697     .interfaces = (InterfaceInfo[]) {
7698         { INTERFACE_PCIE_DEVICE },
7699         { }
7700     },
7701 };
7702 
7703 static const TypeInfo nvme_bus_info = {
7704     .name = TYPE_NVME_BUS,
7705     .parent = TYPE_BUS,
7706     .instance_size = sizeof(NvmeBus),
7707 };
7708 
7709 static void nvme_register_types(void)
7710 {
7711     type_register_static(&nvme_info);
7712     type_register_static(&nvme_bus_info);
7713 }
7714 
7715 type_init(nvme_register_types)
7716