1 /** 2 * QEMU RTL8139 emulation 3 * 4 * Copyright (c) 2006 Igor Kovalenko 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 24 * Modifications: 25 * 2006-Jan-28 Mark Malakanov : TSAD and CSCR implementation (for Windows driver) 26 * 27 * 2006-Apr-28 Juergen Lock : EEPROM emulation changes for FreeBSD driver 28 * HW revision ID changes for FreeBSD driver 29 * 30 * 2006-Jul-01 Igor Kovalenko : Implemented loopback mode for FreeBSD driver 31 * Corrected packet transfer reassembly routine for 8139C+ mode 32 * Rearranged debugging print statements 33 * Implemented PCI timer interrupt (disabled by default) 34 * Implemented Tally Counters, increased VM load/save version 35 * Implemented IP/TCP/UDP checksum task offloading 36 * 37 * 2006-Jul-04 Igor Kovalenko : Implemented TCP segmentation offloading 38 * Fixed MTU=1500 for produced ethernet frames 39 * 40 * 2006-Jul-09 Igor Kovalenko : Fixed TCP header length calculation while processing 41 * segmentation offloading 42 * Removed slirp.h dependency 43 * Added rx/tx buffer reset when enabling rx/tx operation 44 * 45 * 2010-Feb-04 Frediano Ziglio: Rewrote timer support using QEMU timer only 46 * when strictly needed (required for for 47 * Darwin) 48 * 2011-Mar-22 Benjamin Poirier: Implemented VLAN offloading 49 */ 50 51 /* For crc32 */ 52 #include <zlib.h> 53 54 #include "hw/hw.h" 55 #include "hw/pci/pci.h" 56 #include "sysemu/dma.h" 57 #include "qemu/timer.h" 58 #include "net/net.h" 59 #include "hw/loader.h" 60 #include "sysemu/sysemu.h" 61 #include "qemu/iov.h" 62 63 /* debug RTL8139 card */ 64 //#define DEBUG_RTL8139 1 65 66 #define PCI_FREQUENCY 33000000L 67 68 #define SET_MASKED(input, mask, curr) \ 69 ( ( (input) & ~(mask) ) | ( (curr) & (mask) ) ) 70 71 /* arg % size for size which is a power of 2 */ 72 #define MOD2(input, size) \ 73 ( ( input ) & ( size - 1 ) ) 74 75 #define ETHER_ADDR_LEN 6 76 #define ETHER_TYPE_LEN 2 77 #define ETH_HLEN (ETHER_ADDR_LEN * 2 + ETHER_TYPE_LEN) 78 #define ETH_P_IP 0x0800 /* Internet Protocol packet */ 79 #define ETH_P_8021Q 0x8100 /* 802.1Q VLAN Extended Header */ 80 #define ETH_MTU 1500 81 82 #define VLAN_TCI_LEN 2 83 #define VLAN_HLEN (ETHER_TYPE_LEN + VLAN_TCI_LEN) 84 85 #if defined (DEBUG_RTL8139) 86 # define DPRINTF(fmt, ...) \ 87 do { fprintf(stderr, "RTL8139: " fmt, ## __VA_ARGS__); } while (0) 88 #else 89 static inline GCC_FMT_ATTR(1, 2) int DPRINTF(const char *fmt, ...) 90 { 91 return 0; 92 } 93 #endif 94 95 #define TYPE_RTL8139 "rtl8139" 96 97 #define RTL8139(obj) \ 98 OBJECT_CHECK(RTL8139State, (obj), TYPE_RTL8139) 99 100 /* Symbolic offsets to registers. */ 101 enum RTL8139_registers { 102 MAC0 = 0, /* Ethernet hardware address. */ 103 MAR0 = 8, /* Multicast filter. */ 104 TxStatus0 = 0x10,/* Transmit status (Four 32bit registers). C mode only */ 105 /* Dump Tally Conter control register(64bit). C+ mode only */ 106 TxAddr0 = 0x20, /* Tx descriptors (also four 32bit). */ 107 RxBuf = 0x30, 108 ChipCmd = 0x37, 109 RxBufPtr = 0x38, 110 RxBufAddr = 0x3A, 111 IntrMask = 0x3C, 112 IntrStatus = 0x3E, 113 TxConfig = 0x40, 114 RxConfig = 0x44, 115 Timer = 0x48, /* A general-purpose counter. */ 116 RxMissed = 0x4C, /* 24 bits valid, write clears. */ 117 Cfg9346 = 0x50, 118 Config0 = 0x51, 119 Config1 = 0x52, 120 FlashReg = 0x54, 121 MediaStatus = 0x58, 122 Config3 = 0x59, 123 Config4 = 0x5A, /* absent on RTL-8139A */ 124 HltClk = 0x5B, 125 MultiIntr = 0x5C, 126 PCIRevisionID = 0x5E, 127 TxSummary = 0x60, /* TSAD register. Transmit Status of All Descriptors*/ 128 BasicModeCtrl = 0x62, 129 BasicModeStatus = 0x64, 130 NWayAdvert = 0x66, 131 NWayLPAR = 0x68, 132 NWayExpansion = 0x6A, 133 /* Undocumented registers, but required for proper operation. */ 134 FIFOTMS = 0x70, /* FIFO Control and test. */ 135 CSCR = 0x74, /* Chip Status and Configuration Register. */ 136 PARA78 = 0x78, 137 PARA7c = 0x7c, /* Magic transceiver parameter register. */ 138 Config5 = 0xD8, /* absent on RTL-8139A */ 139 /* C+ mode */ 140 TxPoll = 0xD9, /* Tell chip to check Tx descriptors for work */ 141 RxMaxSize = 0xDA, /* Max size of an Rx packet (8169 only) */ 142 CpCmd = 0xE0, /* C+ Command register (C+ mode only) */ 143 IntrMitigate = 0xE2, /* rx/tx interrupt mitigation control */ 144 RxRingAddrLO = 0xE4, /* 64-bit start addr of Rx ring */ 145 RxRingAddrHI = 0xE8, /* 64-bit start addr of Rx ring */ 146 TxThresh = 0xEC, /* Early Tx threshold */ 147 }; 148 149 enum ClearBitMasks { 150 MultiIntrClear = 0xF000, 151 ChipCmdClear = 0xE2, 152 Config1Clear = (1<<7)|(1<<6)|(1<<3)|(1<<2)|(1<<1), 153 }; 154 155 enum ChipCmdBits { 156 CmdReset = 0x10, 157 CmdRxEnb = 0x08, 158 CmdTxEnb = 0x04, 159 RxBufEmpty = 0x01, 160 }; 161 162 /* C+ mode */ 163 enum CplusCmdBits { 164 CPlusRxVLAN = 0x0040, /* enable receive VLAN detagging */ 165 CPlusRxChkSum = 0x0020, /* enable receive checksum offloading */ 166 CPlusRxEnb = 0x0002, 167 CPlusTxEnb = 0x0001, 168 }; 169 170 /* Interrupt register bits, using my own meaningful names. */ 171 enum IntrStatusBits { 172 PCIErr = 0x8000, 173 PCSTimeout = 0x4000, 174 RxFIFOOver = 0x40, 175 RxUnderrun = 0x20, /* Packet Underrun / Link Change */ 176 RxOverflow = 0x10, 177 TxErr = 0x08, 178 TxOK = 0x04, 179 RxErr = 0x02, 180 RxOK = 0x01, 181 182 RxAckBits = RxFIFOOver | RxOverflow | RxOK, 183 }; 184 185 enum TxStatusBits { 186 TxHostOwns = 0x2000, 187 TxUnderrun = 0x4000, 188 TxStatOK = 0x8000, 189 TxOutOfWindow = 0x20000000, 190 TxAborted = 0x40000000, 191 TxCarrierLost = 0x80000000, 192 }; 193 enum RxStatusBits { 194 RxMulticast = 0x8000, 195 RxPhysical = 0x4000, 196 RxBroadcast = 0x2000, 197 RxBadSymbol = 0x0020, 198 RxRunt = 0x0010, 199 RxTooLong = 0x0008, 200 RxCRCErr = 0x0004, 201 RxBadAlign = 0x0002, 202 RxStatusOK = 0x0001, 203 }; 204 205 /* Bits in RxConfig. */ 206 enum rx_mode_bits { 207 AcceptErr = 0x20, 208 AcceptRunt = 0x10, 209 AcceptBroadcast = 0x08, 210 AcceptMulticast = 0x04, 211 AcceptMyPhys = 0x02, 212 AcceptAllPhys = 0x01, 213 }; 214 215 /* Bits in TxConfig. */ 216 enum tx_config_bits { 217 218 /* Interframe Gap Time. Only TxIFG96 doesn't violate IEEE 802.3 */ 219 TxIFGShift = 24, 220 TxIFG84 = (0 << TxIFGShift), /* 8.4us / 840ns (10 / 100Mbps) */ 221 TxIFG88 = (1 << TxIFGShift), /* 8.8us / 880ns (10 / 100Mbps) */ 222 TxIFG92 = (2 << TxIFGShift), /* 9.2us / 920ns (10 / 100Mbps) */ 223 TxIFG96 = (3 << TxIFGShift), /* 9.6us / 960ns (10 / 100Mbps) */ 224 225 TxLoopBack = (1 << 18) | (1 << 17), /* enable loopback test mode */ 226 TxCRC = (1 << 16), /* DISABLE appending CRC to end of Tx packets */ 227 TxClearAbt = (1 << 0), /* Clear abort (WO) */ 228 TxDMAShift = 8, /* DMA burst value (0-7) is shifted this many bits */ 229 TxRetryShift = 4, /* TXRR value (0-15) is shifted this many bits */ 230 231 TxVersionMask = 0x7C800000, /* mask out version bits 30-26, 23 */ 232 }; 233 234 235 /* Transmit Status of All Descriptors (TSAD) Register */ 236 enum TSAD_bits { 237 TSAD_TOK3 = 1<<15, // TOK bit of Descriptor 3 238 TSAD_TOK2 = 1<<14, // TOK bit of Descriptor 2 239 TSAD_TOK1 = 1<<13, // TOK bit of Descriptor 1 240 TSAD_TOK0 = 1<<12, // TOK bit of Descriptor 0 241 TSAD_TUN3 = 1<<11, // TUN bit of Descriptor 3 242 TSAD_TUN2 = 1<<10, // TUN bit of Descriptor 2 243 TSAD_TUN1 = 1<<9, // TUN bit of Descriptor 1 244 TSAD_TUN0 = 1<<8, // TUN bit of Descriptor 0 245 TSAD_TABT3 = 1<<07, // TABT bit of Descriptor 3 246 TSAD_TABT2 = 1<<06, // TABT bit of Descriptor 2 247 TSAD_TABT1 = 1<<05, // TABT bit of Descriptor 1 248 TSAD_TABT0 = 1<<04, // TABT bit of Descriptor 0 249 TSAD_OWN3 = 1<<03, // OWN bit of Descriptor 3 250 TSAD_OWN2 = 1<<02, // OWN bit of Descriptor 2 251 TSAD_OWN1 = 1<<01, // OWN bit of Descriptor 1 252 TSAD_OWN0 = 1<<00, // OWN bit of Descriptor 0 253 }; 254 255 256 /* Bits in Config1 */ 257 enum Config1Bits { 258 Cfg1_PM_Enable = 0x01, 259 Cfg1_VPD_Enable = 0x02, 260 Cfg1_PIO = 0x04, 261 Cfg1_MMIO = 0x08, 262 LWAKE = 0x10, /* not on 8139, 8139A */ 263 Cfg1_Driver_Load = 0x20, 264 Cfg1_LED0 = 0x40, 265 Cfg1_LED1 = 0x80, 266 SLEEP = (1 << 1), /* only on 8139, 8139A */ 267 PWRDN = (1 << 0), /* only on 8139, 8139A */ 268 }; 269 270 /* Bits in Config3 */ 271 enum Config3Bits { 272 Cfg3_FBtBEn = (1 << 0), /* 1 = Fast Back to Back */ 273 Cfg3_FuncRegEn = (1 << 1), /* 1 = enable CardBus Function registers */ 274 Cfg3_CLKRUN_En = (1 << 2), /* 1 = enable CLKRUN */ 275 Cfg3_CardB_En = (1 << 3), /* 1 = enable CardBus registers */ 276 Cfg3_LinkUp = (1 << 4), /* 1 = wake up on link up */ 277 Cfg3_Magic = (1 << 5), /* 1 = wake up on Magic Packet (tm) */ 278 Cfg3_PARM_En = (1 << 6), /* 0 = software can set twister parameters */ 279 Cfg3_GNTSel = (1 << 7), /* 1 = delay 1 clock from PCI GNT signal */ 280 }; 281 282 /* Bits in Config4 */ 283 enum Config4Bits { 284 LWPTN = (1 << 2), /* not on 8139, 8139A */ 285 }; 286 287 /* Bits in Config5 */ 288 enum Config5Bits { 289 Cfg5_PME_STS = (1 << 0), /* 1 = PCI reset resets PME_Status */ 290 Cfg5_LANWake = (1 << 1), /* 1 = enable LANWake signal */ 291 Cfg5_LDPS = (1 << 2), /* 0 = save power when link is down */ 292 Cfg5_FIFOAddrPtr = (1 << 3), /* Realtek internal SRAM testing */ 293 Cfg5_UWF = (1 << 4), /* 1 = accept unicast wakeup frame */ 294 Cfg5_MWF = (1 << 5), /* 1 = accept multicast wakeup frame */ 295 Cfg5_BWF = (1 << 6), /* 1 = accept broadcast wakeup frame */ 296 }; 297 298 enum RxConfigBits { 299 /* rx fifo threshold */ 300 RxCfgFIFOShift = 13, 301 RxCfgFIFONone = (7 << RxCfgFIFOShift), 302 303 /* Max DMA burst */ 304 RxCfgDMAShift = 8, 305 RxCfgDMAUnlimited = (7 << RxCfgDMAShift), 306 307 /* rx ring buffer length */ 308 RxCfgRcv8K = 0, 309 RxCfgRcv16K = (1 << 11), 310 RxCfgRcv32K = (1 << 12), 311 RxCfgRcv64K = (1 << 11) | (1 << 12), 312 313 /* Disable packet wrap at end of Rx buffer. (not possible with 64k) */ 314 RxNoWrap = (1 << 7), 315 }; 316 317 /* Twister tuning parameters from RealTek. 318 Completely undocumented, but required to tune bad links on some boards. */ 319 /* 320 enum CSCRBits { 321 CSCR_LinkOKBit = 0x0400, 322 CSCR_LinkChangeBit = 0x0800, 323 CSCR_LinkStatusBits = 0x0f000, 324 CSCR_LinkDownOffCmd = 0x003c0, 325 CSCR_LinkDownCmd = 0x0f3c0, 326 */ 327 enum CSCRBits { 328 CSCR_Testfun = 1<<15, /* 1 = Auto-neg speeds up internal timer, WO, def 0 */ 329 CSCR_LD = 1<<9, /* Active low TPI link disable signal. When low, TPI still transmits link pulses and TPI stays in good link state. def 1*/ 330 CSCR_HEART_BIT = 1<<8, /* 1 = HEART BEAT enable, 0 = HEART BEAT disable. HEART BEAT function is only valid in 10Mbps mode. def 1*/ 331 CSCR_JBEN = 1<<7, /* 1 = enable jabber function. 0 = disable jabber function, def 1*/ 332 CSCR_F_LINK_100 = 1<<6, /* Used to login force good link in 100Mbps for diagnostic purposes. 1 = DISABLE, 0 = ENABLE. def 1*/ 333 CSCR_F_Connect = 1<<5, /* Assertion of this bit forces the disconnect function to be bypassed. def 0*/ 334 CSCR_Con_status = 1<<3, /* This bit indicates the status of the connection. 1 = valid connected link detected; 0 = disconnected link detected. RO def 0*/ 335 CSCR_Con_status_En = 1<<2, /* Assertion of this bit configures LED1 pin to indicate connection status. def 0*/ 336 CSCR_PASS_SCR = 1<<0, /* Bypass Scramble, def 0*/ 337 }; 338 339 enum Cfg9346Bits { 340 Cfg9346_Normal = 0x00, 341 Cfg9346_Autoload = 0x40, 342 Cfg9346_Programming = 0x80, 343 Cfg9346_ConfigWrite = 0xC0, 344 }; 345 346 typedef enum { 347 CH_8139 = 0, 348 CH_8139_K, 349 CH_8139A, 350 CH_8139A_G, 351 CH_8139B, 352 CH_8130, 353 CH_8139C, 354 CH_8100, 355 CH_8100B_8139D, 356 CH_8101, 357 } chip_t; 358 359 enum chip_flags { 360 HasHltClk = (1 << 0), 361 HasLWake = (1 << 1), 362 }; 363 364 #define HW_REVID(b30, b29, b28, b27, b26, b23, b22) \ 365 (b30<<30 | b29<<29 | b28<<28 | b27<<27 | b26<<26 | b23<<23 | b22<<22) 366 #define HW_REVID_MASK HW_REVID(1, 1, 1, 1, 1, 1, 1) 367 368 #define RTL8139_PCI_REVID_8139 0x10 369 #define RTL8139_PCI_REVID_8139CPLUS 0x20 370 371 #define RTL8139_PCI_REVID RTL8139_PCI_REVID_8139CPLUS 372 373 /* Size is 64 * 16bit words */ 374 #define EEPROM_9346_ADDR_BITS 6 375 #define EEPROM_9346_SIZE (1 << EEPROM_9346_ADDR_BITS) 376 #define EEPROM_9346_ADDR_MASK (EEPROM_9346_SIZE - 1) 377 378 enum Chip9346Operation 379 { 380 Chip9346_op_mask = 0xc0, /* 10 zzzzzz */ 381 Chip9346_op_read = 0x80, /* 10 AAAAAA */ 382 Chip9346_op_write = 0x40, /* 01 AAAAAA D(15)..D(0) */ 383 Chip9346_op_ext_mask = 0xf0, /* 11 zzzzzz */ 384 Chip9346_op_write_enable = 0x30, /* 00 11zzzz */ 385 Chip9346_op_write_all = 0x10, /* 00 01zzzz */ 386 Chip9346_op_write_disable = 0x00, /* 00 00zzzz */ 387 }; 388 389 enum Chip9346Mode 390 { 391 Chip9346_none = 0, 392 Chip9346_enter_command_mode, 393 Chip9346_read_command, 394 Chip9346_data_read, /* from output register */ 395 Chip9346_data_write, /* to input register, then to contents at specified address */ 396 Chip9346_data_write_all, /* to input register, then filling contents */ 397 }; 398 399 typedef struct EEprom9346 400 { 401 uint16_t contents[EEPROM_9346_SIZE]; 402 int mode; 403 uint32_t tick; 404 uint8_t address; 405 uint16_t input; 406 uint16_t output; 407 408 uint8_t eecs; 409 uint8_t eesk; 410 uint8_t eedi; 411 uint8_t eedo; 412 } EEprom9346; 413 414 typedef struct RTL8139TallyCounters 415 { 416 /* Tally counters */ 417 uint64_t TxOk; 418 uint64_t RxOk; 419 uint64_t TxERR; 420 uint32_t RxERR; 421 uint16_t MissPkt; 422 uint16_t FAE; 423 uint32_t Tx1Col; 424 uint32_t TxMCol; 425 uint64_t RxOkPhy; 426 uint64_t RxOkBrd; 427 uint32_t RxOkMul; 428 uint16_t TxAbt; 429 uint16_t TxUndrn; 430 } RTL8139TallyCounters; 431 432 /* Clears all tally counters */ 433 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters); 434 435 typedef struct RTL8139State { 436 /*< private >*/ 437 PCIDevice parent_obj; 438 /*< public >*/ 439 440 uint8_t phys[8]; /* mac address */ 441 uint8_t mult[8]; /* multicast mask array */ 442 443 uint32_t TxStatus[4]; /* TxStatus0 in C mode*/ /* also DTCCR[0] and DTCCR[1] in C+ mode */ 444 uint32_t TxAddr[4]; /* TxAddr0 */ 445 uint32_t RxBuf; /* Receive buffer */ 446 uint32_t RxBufferSize;/* internal variable, receive ring buffer size in C mode */ 447 uint32_t RxBufPtr; 448 uint32_t RxBufAddr; 449 450 uint16_t IntrStatus; 451 uint16_t IntrMask; 452 453 uint32_t TxConfig; 454 uint32_t RxConfig; 455 uint32_t RxMissed; 456 457 uint16_t CSCR; 458 459 uint8_t Cfg9346; 460 uint8_t Config0; 461 uint8_t Config1; 462 uint8_t Config3; 463 uint8_t Config4; 464 uint8_t Config5; 465 466 uint8_t clock_enabled; 467 uint8_t bChipCmdState; 468 469 uint16_t MultiIntr; 470 471 uint16_t BasicModeCtrl; 472 uint16_t BasicModeStatus; 473 uint16_t NWayAdvert; 474 uint16_t NWayLPAR; 475 uint16_t NWayExpansion; 476 477 uint16_t CpCmd; 478 uint8_t TxThresh; 479 480 NICState *nic; 481 NICConf conf; 482 483 /* C ring mode */ 484 uint32_t currTxDesc; 485 486 /* C+ mode */ 487 uint32_t cplus_enabled; 488 489 uint32_t currCPlusRxDesc; 490 uint32_t currCPlusTxDesc; 491 492 uint32_t RxRingAddrLO; 493 uint32_t RxRingAddrHI; 494 495 EEprom9346 eeprom; 496 497 uint32_t TCTR; 498 uint32_t TimerInt; 499 int64_t TCTR_base; 500 501 /* Tally counters */ 502 RTL8139TallyCounters tally_counters; 503 504 /* Non-persistent data */ 505 uint8_t *cplus_txbuffer; 506 int cplus_txbuffer_len; 507 int cplus_txbuffer_offset; 508 509 /* PCI interrupt timer */ 510 QEMUTimer *timer; 511 int64_t TimerExpire; 512 513 MemoryRegion bar_io; 514 MemoryRegion bar_mem; 515 516 /* Support migration to/from old versions */ 517 int rtl8139_mmio_io_addr_dummy; 518 } RTL8139State; 519 520 /* Writes tally counters to memory via DMA */ 521 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr); 522 523 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time); 524 525 static void prom9346_decode_command(EEprom9346 *eeprom, uint8_t command) 526 { 527 DPRINTF("eeprom command 0x%02x\n", command); 528 529 switch (command & Chip9346_op_mask) 530 { 531 case Chip9346_op_read: 532 { 533 eeprom->address = command & EEPROM_9346_ADDR_MASK; 534 eeprom->output = eeprom->contents[eeprom->address]; 535 eeprom->eedo = 0; 536 eeprom->tick = 0; 537 eeprom->mode = Chip9346_data_read; 538 DPRINTF("eeprom read from address 0x%02x data=0x%04x\n", 539 eeprom->address, eeprom->output); 540 } 541 break; 542 543 case Chip9346_op_write: 544 { 545 eeprom->address = command & EEPROM_9346_ADDR_MASK; 546 eeprom->input = 0; 547 eeprom->tick = 0; 548 eeprom->mode = Chip9346_none; /* Chip9346_data_write */ 549 DPRINTF("eeprom begin write to address 0x%02x\n", 550 eeprom->address); 551 } 552 break; 553 default: 554 eeprom->mode = Chip9346_none; 555 switch (command & Chip9346_op_ext_mask) 556 { 557 case Chip9346_op_write_enable: 558 DPRINTF("eeprom write enabled\n"); 559 break; 560 case Chip9346_op_write_all: 561 DPRINTF("eeprom begin write all\n"); 562 break; 563 case Chip9346_op_write_disable: 564 DPRINTF("eeprom write disabled\n"); 565 break; 566 } 567 break; 568 } 569 } 570 571 static void prom9346_shift_clock(EEprom9346 *eeprom) 572 { 573 int bit = eeprom->eedi?1:0; 574 575 ++ eeprom->tick; 576 577 DPRINTF("eeprom: tick %d eedi=%d eedo=%d\n", eeprom->tick, eeprom->eedi, 578 eeprom->eedo); 579 580 switch (eeprom->mode) 581 { 582 case Chip9346_enter_command_mode: 583 if (bit) 584 { 585 eeprom->mode = Chip9346_read_command; 586 eeprom->tick = 0; 587 eeprom->input = 0; 588 DPRINTF("eeprom: +++ synchronized, begin command read\n"); 589 } 590 break; 591 592 case Chip9346_read_command: 593 eeprom->input = (eeprom->input << 1) | (bit & 1); 594 if (eeprom->tick == 8) 595 { 596 prom9346_decode_command(eeprom, eeprom->input & 0xff); 597 } 598 break; 599 600 case Chip9346_data_read: 601 eeprom->eedo = (eeprom->output & 0x8000)?1:0; 602 eeprom->output <<= 1; 603 if (eeprom->tick == 16) 604 { 605 #if 1 606 // the FreeBSD drivers (rl and re) don't explicitly toggle 607 // CS between reads (or does setting Cfg9346 to 0 count too?), 608 // so we need to enter wait-for-command state here 609 eeprom->mode = Chip9346_enter_command_mode; 610 eeprom->input = 0; 611 eeprom->tick = 0; 612 613 DPRINTF("eeprom: +++ end of read, awaiting next command\n"); 614 #else 615 // original behaviour 616 ++eeprom->address; 617 eeprom->address &= EEPROM_9346_ADDR_MASK; 618 eeprom->output = eeprom->contents[eeprom->address]; 619 eeprom->tick = 0; 620 621 DPRINTF("eeprom: +++ read next address 0x%02x data=0x%04x\n", 622 eeprom->address, eeprom->output); 623 #endif 624 } 625 break; 626 627 case Chip9346_data_write: 628 eeprom->input = (eeprom->input << 1) | (bit & 1); 629 if (eeprom->tick == 16) 630 { 631 DPRINTF("eeprom write to address 0x%02x data=0x%04x\n", 632 eeprom->address, eeprom->input); 633 634 eeprom->contents[eeprom->address] = eeprom->input; 635 eeprom->mode = Chip9346_none; /* waiting for next command after CS cycle */ 636 eeprom->tick = 0; 637 eeprom->input = 0; 638 } 639 break; 640 641 case Chip9346_data_write_all: 642 eeprom->input = (eeprom->input << 1) | (bit & 1); 643 if (eeprom->tick == 16) 644 { 645 int i; 646 for (i = 0; i < EEPROM_9346_SIZE; i++) 647 { 648 eeprom->contents[i] = eeprom->input; 649 } 650 DPRINTF("eeprom filled with data=0x%04x\n", eeprom->input); 651 652 eeprom->mode = Chip9346_enter_command_mode; 653 eeprom->tick = 0; 654 eeprom->input = 0; 655 } 656 break; 657 658 default: 659 break; 660 } 661 } 662 663 static int prom9346_get_wire(RTL8139State *s) 664 { 665 EEprom9346 *eeprom = &s->eeprom; 666 if (!eeprom->eecs) 667 return 0; 668 669 return eeprom->eedo; 670 } 671 672 /* FIXME: This should be merged into/replaced by eeprom93xx.c. */ 673 static void prom9346_set_wire(RTL8139State *s, int eecs, int eesk, int eedi) 674 { 675 EEprom9346 *eeprom = &s->eeprom; 676 uint8_t old_eecs = eeprom->eecs; 677 uint8_t old_eesk = eeprom->eesk; 678 679 eeprom->eecs = eecs; 680 eeprom->eesk = eesk; 681 eeprom->eedi = eedi; 682 683 DPRINTF("eeprom: +++ wires CS=%d SK=%d DI=%d DO=%d\n", eeprom->eecs, 684 eeprom->eesk, eeprom->eedi, eeprom->eedo); 685 686 if (!old_eecs && eecs) 687 { 688 /* Synchronize start */ 689 eeprom->tick = 0; 690 eeprom->input = 0; 691 eeprom->output = 0; 692 eeprom->mode = Chip9346_enter_command_mode; 693 694 DPRINTF("=== eeprom: begin access, enter command mode\n"); 695 } 696 697 if (!eecs) 698 { 699 DPRINTF("=== eeprom: end access\n"); 700 return; 701 } 702 703 if (!old_eesk && eesk) 704 { 705 /* SK front rules */ 706 prom9346_shift_clock(eeprom); 707 } 708 } 709 710 static void rtl8139_update_irq(RTL8139State *s) 711 { 712 PCIDevice *d = PCI_DEVICE(s); 713 int isr; 714 isr = (s->IntrStatus & s->IntrMask) & 0xffff; 715 716 DPRINTF("Set IRQ to %d (%04x %04x)\n", isr ? 1 : 0, s->IntrStatus, 717 s->IntrMask); 718 719 pci_set_irq(d, (isr != 0)); 720 } 721 722 static int rtl8139_RxWrap(RTL8139State *s) 723 { 724 /* wrapping enabled; assume 1.5k more buffer space if size < 65536 */ 725 return (s->RxConfig & (1 << 7)); 726 } 727 728 static int rtl8139_receiver_enabled(RTL8139State *s) 729 { 730 return s->bChipCmdState & CmdRxEnb; 731 } 732 733 static int rtl8139_transmitter_enabled(RTL8139State *s) 734 { 735 return s->bChipCmdState & CmdTxEnb; 736 } 737 738 static int rtl8139_cp_receiver_enabled(RTL8139State *s) 739 { 740 return s->CpCmd & CPlusRxEnb; 741 } 742 743 static int rtl8139_cp_transmitter_enabled(RTL8139State *s) 744 { 745 return s->CpCmd & CPlusTxEnb; 746 } 747 748 static void rtl8139_write_buffer(RTL8139State *s, const void *buf, int size) 749 { 750 PCIDevice *d = PCI_DEVICE(s); 751 752 if (s->RxBufAddr + size > s->RxBufferSize) 753 { 754 int wrapped = MOD2(s->RxBufAddr + size, s->RxBufferSize); 755 756 /* write packet data */ 757 if (wrapped && !(s->RxBufferSize < 65536 && rtl8139_RxWrap(s))) 758 { 759 DPRINTF(">>> rx packet wrapped in buffer at %d\n", size - wrapped); 760 761 if (size > wrapped) 762 { 763 pci_dma_write(d, s->RxBuf + s->RxBufAddr, 764 buf, size-wrapped); 765 } 766 767 /* reset buffer pointer */ 768 s->RxBufAddr = 0; 769 770 pci_dma_write(d, s->RxBuf + s->RxBufAddr, 771 buf + (size-wrapped), wrapped); 772 773 s->RxBufAddr = wrapped; 774 775 return; 776 } 777 } 778 779 /* non-wrapping path or overwrapping enabled */ 780 pci_dma_write(d, s->RxBuf + s->RxBufAddr, buf, size); 781 782 s->RxBufAddr += size; 783 } 784 785 #define MIN_BUF_SIZE 60 786 static inline dma_addr_t rtl8139_addr64(uint32_t low, uint32_t high) 787 { 788 return low | ((uint64_t)high << 32); 789 } 790 791 /* Workaround for buggy guest driver such as linux who allocates rx 792 * rings after the receiver were enabled. */ 793 static bool rtl8139_cp_rx_valid(RTL8139State *s) 794 { 795 return !(s->RxRingAddrLO == 0 && s->RxRingAddrHI == 0); 796 } 797 798 static int rtl8139_can_receive(NetClientState *nc) 799 { 800 RTL8139State *s = qemu_get_nic_opaque(nc); 801 int avail; 802 803 /* Receive (drop) packets if card is disabled. */ 804 if (!s->clock_enabled) 805 return 1; 806 if (!rtl8139_receiver_enabled(s)) 807 return 1; 808 809 if (rtl8139_cp_receiver_enabled(s) && rtl8139_cp_rx_valid(s)) { 810 /* ??? Flow control not implemented in c+ mode. 811 This is a hack to work around slirp deficiencies anyway. */ 812 return 1; 813 } else { 814 avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, 815 s->RxBufferSize); 816 return (avail == 0 || avail >= 1514 || (s->IntrMask & RxOverflow)); 817 } 818 } 819 820 static ssize_t rtl8139_do_receive(NetClientState *nc, const uint8_t *buf, size_t size_, int do_interrupt) 821 { 822 RTL8139State *s = qemu_get_nic_opaque(nc); 823 PCIDevice *d = PCI_DEVICE(s); 824 /* size is the length of the buffer passed to the driver */ 825 int size = size_; 826 const uint8_t *dot1q_buf = NULL; 827 828 uint32_t packet_header = 0; 829 830 uint8_t buf1[MIN_BUF_SIZE + VLAN_HLEN]; 831 static const uint8_t broadcast_macaddr[6] = 832 { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }; 833 834 DPRINTF(">>> received len=%d\n", size); 835 836 /* test if board clock is stopped */ 837 if (!s->clock_enabled) 838 { 839 DPRINTF("stopped ==========================\n"); 840 return -1; 841 } 842 843 /* first check if receiver is enabled */ 844 845 if (!rtl8139_receiver_enabled(s)) 846 { 847 DPRINTF("receiver disabled ================\n"); 848 return -1; 849 } 850 851 /* XXX: check this */ 852 if (s->RxConfig & AcceptAllPhys) { 853 /* promiscuous: receive all */ 854 DPRINTF(">>> packet received in promiscuous mode\n"); 855 856 } else { 857 if (!memcmp(buf, broadcast_macaddr, 6)) { 858 /* broadcast address */ 859 if (!(s->RxConfig & AcceptBroadcast)) 860 { 861 DPRINTF(">>> broadcast packet rejected\n"); 862 863 /* update tally counter */ 864 ++s->tally_counters.RxERR; 865 866 return size; 867 } 868 869 packet_header |= RxBroadcast; 870 871 DPRINTF(">>> broadcast packet received\n"); 872 873 /* update tally counter */ 874 ++s->tally_counters.RxOkBrd; 875 876 } else if (buf[0] & 0x01) { 877 /* multicast */ 878 if (!(s->RxConfig & AcceptMulticast)) 879 { 880 DPRINTF(">>> multicast packet rejected\n"); 881 882 /* update tally counter */ 883 ++s->tally_counters.RxERR; 884 885 return size; 886 } 887 888 int mcast_idx = compute_mcast_idx(buf); 889 890 if (!(s->mult[mcast_idx >> 3] & (1 << (mcast_idx & 7)))) 891 { 892 DPRINTF(">>> multicast address mismatch\n"); 893 894 /* update tally counter */ 895 ++s->tally_counters.RxERR; 896 897 return size; 898 } 899 900 packet_header |= RxMulticast; 901 902 DPRINTF(">>> multicast packet received\n"); 903 904 /* update tally counter */ 905 ++s->tally_counters.RxOkMul; 906 907 } else if (s->phys[0] == buf[0] && 908 s->phys[1] == buf[1] && 909 s->phys[2] == buf[2] && 910 s->phys[3] == buf[3] && 911 s->phys[4] == buf[4] && 912 s->phys[5] == buf[5]) { 913 /* match */ 914 if (!(s->RxConfig & AcceptMyPhys)) 915 { 916 DPRINTF(">>> rejecting physical address matching packet\n"); 917 918 /* update tally counter */ 919 ++s->tally_counters.RxERR; 920 921 return size; 922 } 923 924 packet_header |= RxPhysical; 925 926 DPRINTF(">>> physical address matching packet received\n"); 927 928 /* update tally counter */ 929 ++s->tally_counters.RxOkPhy; 930 931 } else { 932 933 DPRINTF(">>> unknown packet\n"); 934 935 /* update tally counter */ 936 ++s->tally_counters.RxERR; 937 938 return size; 939 } 940 } 941 942 /* if too small buffer, then expand it 943 * Include some tailroom in case a vlan tag is later removed. */ 944 if (size < MIN_BUF_SIZE + VLAN_HLEN) { 945 memcpy(buf1, buf, size); 946 memset(buf1 + size, 0, MIN_BUF_SIZE + VLAN_HLEN - size); 947 buf = buf1; 948 if (size < MIN_BUF_SIZE) { 949 size = MIN_BUF_SIZE; 950 } 951 } 952 953 if (rtl8139_cp_receiver_enabled(s)) 954 { 955 if (!rtl8139_cp_rx_valid(s)) { 956 return size; 957 } 958 959 DPRINTF("in C+ Rx mode ================\n"); 960 961 /* begin C+ receiver mode */ 962 963 /* w0 ownership flag */ 964 #define CP_RX_OWN (1<<31) 965 /* w0 end of ring flag */ 966 #define CP_RX_EOR (1<<30) 967 /* w0 bits 0...12 : buffer size */ 968 #define CP_RX_BUFFER_SIZE_MASK ((1<<13) - 1) 969 /* w1 tag available flag */ 970 #define CP_RX_TAVA (1<<16) 971 /* w1 bits 0...15 : VLAN tag */ 972 #define CP_RX_VLAN_TAG_MASK ((1<<16) - 1) 973 /* w2 low 32bit of Rx buffer ptr */ 974 /* w3 high 32bit of Rx buffer ptr */ 975 976 int descriptor = s->currCPlusRxDesc; 977 dma_addr_t cplus_rx_ring_desc; 978 979 cplus_rx_ring_desc = rtl8139_addr64(s->RxRingAddrLO, s->RxRingAddrHI); 980 cplus_rx_ring_desc += 16 * descriptor; 981 982 DPRINTF("+++ C+ mode reading RX descriptor %d from host memory at " 983 "%08x %08x = "DMA_ADDR_FMT"\n", descriptor, s->RxRingAddrHI, 984 s->RxRingAddrLO, cplus_rx_ring_desc); 985 986 uint32_t val, rxdw0,rxdw1,rxbufLO,rxbufHI; 987 988 pci_dma_read(d, cplus_rx_ring_desc, &val, 4); 989 rxdw0 = le32_to_cpu(val); 990 pci_dma_read(d, cplus_rx_ring_desc+4, &val, 4); 991 rxdw1 = le32_to_cpu(val); 992 pci_dma_read(d, cplus_rx_ring_desc+8, &val, 4); 993 rxbufLO = le32_to_cpu(val); 994 pci_dma_read(d, cplus_rx_ring_desc+12, &val, 4); 995 rxbufHI = le32_to_cpu(val); 996 997 DPRINTF("+++ C+ mode RX descriptor %d %08x %08x %08x %08x\n", 998 descriptor, rxdw0, rxdw1, rxbufLO, rxbufHI); 999 1000 if (!(rxdw0 & CP_RX_OWN)) 1001 { 1002 DPRINTF("C+ Rx mode : descriptor %d is owned by host\n", 1003 descriptor); 1004 1005 s->IntrStatus |= RxOverflow; 1006 ++s->RxMissed; 1007 1008 /* update tally counter */ 1009 ++s->tally_counters.RxERR; 1010 ++s->tally_counters.MissPkt; 1011 1012 rtl8139_update_irq(s); 1013 return size_; 1014 } 1015 1016 uint32_t rx_space = rxdw0 & CP_RX_BUFFER_SIZE_MASK; 1017 1018 /* write VLAN info to descriptor variables. */ 1019 if (s->CpCmd & CPlusRxVLAN && be16_to_cpup((uint16_t *) 1020 &buf[ETHER_ADDR_LEN * 2]) == ETH_P_8021Q) { 1021 dot1q_buf = &buf[ETHER_ADDR_LEN * 2]; 1022 size -= VLAN_HLEN; 1023 /* if too small buffer, use the tailroom added duing expansion */ 1024 if (size < MIN_BUF_SIZE) { 1025 size = MIN_BUF_SIZE; 1026 } 1027 1028 rxdw1 &= ~CP_RX_VLAN_TAG_MASK; 1029 /* BE + ~le_to_cpu()~ + cpu_to_le() = BE */ 1030 rxdw1 |= CP_RX_TAVA | le16_to_cpup((uint16_t *) 1031 &dot1q_buf[ETHER_TYPE_LEN]); 1032 1033 DPRINTF("C+ Rx mode : extracted vlan tag with tci: ""%u\n", 1034 be16_to_cpup((uint16_t *)&dot1q_buf[ETHER_TYPE_LEN])); 1035 } else { 1036 /* reset VLAN tag flag */ 1037 rxdw1 &= ~CP_RX_TAVA; 1038 } 1039 1040 /* TODO: scatter the packet over available receive ring descriptors space */ 1041 1042 if (size+4 > rx_space) 1043 { 1044 DPRINTF("C+ Rx mode : descriptor %d size %d received %d + 4\n", 1045 descriptor, rx_space, size); 1046 1047 s->IntrStatus |= RxOverflow; 1048 ++s->RxMissed; 1049 1050 /* update tally counter */ 1051 ++s->tally_counters.RxERR; 1052 ++s->tally_counters.MissPkt; 1053 1054 rtl8139_update_irq(s); 1055 return size_; 1056 } 1057 1058 dma_addr_t rx_addr = rtl8139_addr64(rxbufLO, rxbufHI); 1059 1060 /* receive/copy to target memory */ 1061 if (dot1q_buf) { 1062 pci_dma_write(d, rx_addr, buf, 2 * ETHER_ADDR_LEN); 1063 pci_dma_write(d, rx_addr + 2 * ETHER_ADDR_LEN, 1064 buf + 2 * ETHER_ADDR_LEN + VLAN_HLEN, 1065 size - 2 * ETHER_ADDR_LEN); 1066 } else { 1067 pci_dma_write(d, rx_addr, buf, size); 1068 } 1069 1070 if (s->CpCmd & CPlusRxChkSum) 1071 { 1072 /* do some packet checksumming */ 1073 } 1074 1075 /* write checksum */ 1076 val = cpu_to_le32(crc32(0, buf, size_)); 1077 pci_dma_write(d, rx_addr+size, (uint8_t *)&val, 4); 1078 1079 /* first segment of received packet flag */ 1080 #define CP_RX_STATUS_FS (1<<29) 1081 /* last segment of received packet flag */ 1082 #define CP_RX_STATUS_LS (1<<28) 1083 /* multicast packet flag */ 1084 #define CP_RX_STATUS_MAR (1<<26) 1085 /* physical-matching packet flag */ 1086 #define CP_RX_STATUS_PAM (1<<25) 1087 /* broadcast packet flag */ 1088 #define CP_RX_STATUS_BAR (1<<24) 1089 /* runt packet flag */ 1090 #define CP_RX_STATUS_RUNT (1<<19) 1091 /* crc error flag */ 1092 #define CP_RX_STATUS_CRC (1<<18) 1093 /* IP checksum error flag */ 1094 #define CP_RX_STATUS_IPF (1<<15) 1095 /* UDP checksum error flag */ 1096 #define CP_RX_STATUS_UDPF (1<<14) 1097 /* TCP checksum error flag */ 1098 #define CP_RX_STATUS_TCPF (1<<13) 1099 1100 /* transfer ownership to target */ 1101 rxdw0 &= ~CP_RX_OWN; 1102 1103 /* set first segment bit */ 1104 rxdw0 |= CP_RX_STATUS_FS; 1105 1106 /* set last segment bit */ 1107 rxdw0 |= CP_RX_STATUS_LS; 1108 1109 /* set received packet type flags */ 1110 if (packet_header & RxBroadcast) 1111 rxdw0 |= CP_RX_STATUS_BAR; 1112 if (packet_header & RxMulticast) 1113 rxdw0 |= CP_RX_STATUS_MAR; 1114 if (packet_header & RxPhysical) 1115 rxdw0 |= CP_RX_STATUS_PAM; 1116 1117 /* set received size */ 1118 rxdw0 &= ~CP_RX_BUFFER_SIZE_MASK; 1119 rxdw0 |= (size+4); 1120 1121 /* update ring data */ 1122 val = cpu_to_le32(rxdw0); 1123 pci_dma_write(d, cplus_rx_ring_desc, (uint8_t *)&val, 4); 1124 val = cpu_to_le32(rxdw1); 1125 pci_dma_write(d, cplus_rx_ring_desc+4, (uint8_t *)&val, 4); 1126 1127 /* update tally counter */ 1128 ++s->tally_counters.RxOk; 1129 1130 /* seek to next Rx descriptor */ 1131 if (rxdw0 & CP_RX_EOR) 1132 { 1133 s->currCPlusRxDesc = 0; 1134 } 1135 else 1136 { 1137 ++s->currCPlusRxDesc; 1138 } 1139 1140 DPRINTF("done C+ Rx mode ----------------\n"); 1141 1142 } 1143 else 1144 { 1145 DPRINTF("in ring Rx mode ================\n"); 1146 1147 /* begin ring receiver mode */ 1148 int avail = MOD2(s->RxBufferSize + s->RxBufPtr - s->RxBufAddr, s->RxBufferSize); 1149 1150 /* if receiver buffer is empty then avail == 0 */ 1151 1152 if (avail != 0 && size + 8 >= avail) 1153 { 1154 DPRINTF("rx overflow: rx buffer length %d head 0x%04x " 1155 "read 0x%04x === available 0x%04x need 0x%04x\n", 1156 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr, avail, size + 8); 1157 1158 s->IntrStatus |= RxOverflow; 1159 ++s->RxMissed; 1160 rtl8139_update_irq(s); 1161 return size_; 1162 } 1163 1164 packet_header |= RxStatusOK; 1165 1166 packet_header |= (((size+4) << 16) & 0xffff0000); 1167 1168 /* write header */ 1169 uint32_t val = cpu_to_le32(packet_header); 1170 1171 rtl8139_write_buffer(s, (uint8_t *)&val, 4); 1172 1173 rtl8139_write_buffer(s, buf, size); 1174 1175 /* write checksum */ 1176 val = cpu_to_le32(crc32(0, buf, size)); 1177 rtl8139_write_buffer(s, (uint8_t *)&val, 4); 1178 1179 /* correct buffer write pointer */ 1180 s->RxBufAddr = MOD2((s->RxBufAddr + 3) & ~0x3, s->RxBufferSize); 1181 1182 /* now we can signal we have received something */ 1183 1184 DPRINTF("received: rx buffer length %d head 0x%04x read 0x%04x\n", 1185 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr); 1186 } 1187 1188 s->IntrStatus |= RxOK; 1189 1190 if (do_interrupt) 1191 { 1192 rtl8139_update_irq(s); 1193 } 1194 1195 return size_; 1196 } 1197 1198 static ssize_t rtl8139_receive(NetClientState *nc, const uint8_t *buf, size_t size) 1199 { 1200 return rtl8139_do_receive(nc, buf, size, 1); 1201 } 1202 1203 static void rtl8139_reset_rxring(RTL8139State *s, uint32_t bufferSize) 1204 { 1205 s->RxBufferSize = bufferSize; 1206 s->RxBufPtr = 0; 1207 s->RxBufAddr = 0; 1208 } 1209 1210 static void rtl8139_reset(DeviceState *d) 1211 { 1212 RTL8139State *s = RTL8139(d); 1213 int i; 1214 1215 /* restore MAC address */ 1216 memcpy(s->phys, s->conf.macaddr.a, 6); 1217 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys); 1218 1219 /* reset interrupt mask */ 1220 s->IntrStatus = 0; 1221 s->IntrMask = 0; 1222 1223 rtl8139_update_irq(s); 1224 1225 /* mark all status registers as owned by host */ 1226 for (i = 0; i < 4; ++i) 1227 { 1228 s->TxStatus[i] = TxHostOwns; 1229 } 1230 1231 s->currTxDesc = 0; 1232 s->currCPlusRxDesc = 0; 1233 s->currCPlusTxDesc = 0; 1234 1235 s->RxRingAddrLO = 0; 1236 s->RxRingAddrHI = 0; 1237 1238 s->RxBuf = 0; 1239 1240 rtl8139_reset_rxring(s, 8192); 1241 1242 /* ACK the reset */ 1243 s->TxConfig = 0; 1244 1245 #if 0 1246 // s->TxConfig |= HW_REVID(1, 0, 0, 0, 0, 0, 0); // RTL-8139 HasHltClk 1247 s->clock_enabled = 0; 1248 #else 1249 s->TxConfig |= HW_REVID(1, 1, 1, 0, 1, 1, 0); // RTL-8139C+ HasLWake 1250 s->clock_enabled = 1; 1251 #endif 1252 1253 s->bChipCmdState = CmdReset; /* RxBufEmpty bit is calculated on read from ChipCmd */; 1254 1255 /* set initial state data */ 1256 s->Config0 = 0x0; /* No boot ROM */ 1257 s->Config1 = 0xC; /* IO mapped and MEM mapped registers available */ 1258 s->Config3 = 0x1; /* fast back-to-back compatible */ 1259 s->Config5 = 0x0; 1260 1261 s->CSCR = CSCR_F_LINK_100 | CSCR_HEART_BIT | CSCR_LD; 1262 1263 s->CpCmd = 0x0; /* reset C+ mode */ 1264 s->cplus_enabled = 0; 1265 1266 1267 // s->BasicModeCtrl = 0x3100; // 100Mbps, full duplex, autonegotiation 1268 // s->BasicModeCtrl = 0x2100; // 100Mbps, full duplex 1269 s->BasicModeCtrl = 0x1000; // autonegotiation 1270 1271 s->BasicModeStatus = 0x7809; 1272 //s->BasicModeStatus |= 0x0040; /* UTP medium */ 1273 s->BasicModeStatus |= 0x0020; /* autonegotiation completed */ 1274 /* preserve link state */ 1275 s->BasicModeStatus |= qemu_get_queue(s->nic)->link_down ? 0 : 0x04; 1276 1277 s->NWayAdvert = 0x05e1; /* all modes, full duplex */ 1278 s->NWayLPAR = 0x05e1; /* all modes, full duplex */ 1279 s->NWayExpansion = 0x0001; /* autonegotiation supported */ 1280 1281 /* also reset timer and disable timer interrupt */ 1282 s->TCTR = 0; 1283 s->TimerInt = 0; 1284 s->TCTR_base = 0; 1285 1286 /* reset tally counters */ 1287 RTL8139TallyCounters_clear(&s->tally_counters); 1288 } 1289 1290 static void RTL8139TallyCounters_clear(RTL8139TallyCounters* counters) 1291 { 1292 counters->TxOk = 0; 1293 counters->RxOk = 0; 1294 counters->TxERR = 0; 1295 counters->RxERR = 0; 1296 counters->MissPkt = 0; 1297 counters->FAE = 0; 1298 counters->Tx1Col = 0; 1299 counters->TxMCol = 0; 1300 counters->RxOkPhy = 0; 1301 counters->RxOkBrd = 0; 1302 counters->RxOkMul = 0; 1303 counters->TxAbt = 0; 1304 counters->TxUndrn = 0; 1305 } 1306 1307 static void RTL8139TallyCounters_dma_write(RTL8139State *s, dma_addr_t tc_addr) 1308 { 1309 PCIDevice *d = PCI_DEVICE(s); 1310 RTL8139TallyCounters *tally_counters = &s->tally_counters; 1311 uint16_t val16; 1312 uint32_t val32; 1313 uint64_t val64; 1314 1315 val64 = cpu_to_le64(tally_counters->TxOk); 1316 pci_dma_write(d, tc_addr + 0, (uint8_t *)&val64, 8); 1317 1318 val64 = cpu_to_le64(tally_counters->RxOk); 1319 pci_dma_write(d, tc_addr + 8, (uint8_t *)&val64, 8); 1320 1321 val64 = cpu_to_le64(tally_counters->TxERR); 1322 pci_dma_write(d, tc_addr + 16, (uint8_t *)&val64, 8); 1323 1324 val32 = cpu_to_le32(tally_counters->RxERR); 1325 pci_dma_write(d, tc_addr + 24, (uint8_t *)&val32, 4); 1326 1327 val16 = cpu_to_le16(tally_counters->MissPkt); 1328 pci_dma_write(d, tc_addr + 28, (uint8_t *)&val16, 2); 1329 1330 val16 = cpu_to_le16(tally_counters->FAE); 1331 pci_dma_write(d, tc_addr + 30, (uint8_t *)&val16, 2); 1332 1333 val32 = cpu_to_le32(tally_counters->Tx1Col); 1334 pci_dma_write(d, tc_addr + 32, (uint8_t *)&val32, 4); 1335 1336 val32 = cpu_to_le32(tally_counters->TxMCol); 1337 pci_dma_write(d, tc_addr + 36, (uint8_t *)&val32, 4); 1338 1339 val64 = cpu_to_le64(tally_counters->RxOkPhy); 1340 pci_dma_write(d, tc_addr + 40, (uint8_t *)&val64, 8); 1341 1342 val64 = cpu_to_le64(tally_counters->RxOkBrd); 1343 pci_dma_write(d, tc_addr + 48, (uint8_t *)&val64, 8); 1344 1345 val32 = cpu_to_le32(tally_counters->RxOkMul); 1346 pci_dma_write(d, tc_addr + 56, (uint8_t *)&val32, 4); 1347 1348 val16 = cpu_to_le16(tally_counters->TxAbt); 1349 pci_dma_write(d, tc_addr + 60, (uint8_t *)&val16, 2); 1350 1351 val16 = cpu_to_le16(tally_counters->TxUndrn); 1352 pci_dma_write(d, tc_addr + 62, (uint8_t *)&val16, 2); 1353 } 1354 1355 /* Loads values of tally counters from VM state file */ 1356 1357 static const VMStateDescription vmstate_tally_counters = { 1358 .name = "tally_counters", 1359 .version_id = 1, 1360 .minimum_version_id = 1, 1361 .fields = (VMStateField[]) { 1362 VMSTATE_UINT64(TxOk, RTL8139TallyCounters), 1363 VMSTATE_UINT64(RxOk, RTL8139TallyCounters), 1364 VMSTATE_UINT64(TxERR, RTL8139TallyCounters), 1365 VMSTATE_UINT32(RxERR, RTL8139TallyCounters), 1366 VMSTATE_UINT16(MissPkt, RTL8139TallyCounters), 1367 VMSTATE_UINT16(FAE, RTL8139TallyCounters), 1368 VMSTATE_UINT32(Tx1Col, RTL8139TallyCounters), 1369 VMSTATE_UINT32(TxMCol, RTL8139TallyCounters), 1370 VMSTATE_UINT64(RxOkPhy, RTL8139TallyCounters), 1371 VMSTATE_UINT64(RxOkBrd, RTL8139TallyCounters), 1372 VMSTATE_UINT16(TxAbt, RTL8139TallyCounters), 1373 VMSTATE_UINT16(TxUndrn, RTL8139TallyCounters), 1374 VMSTATE_END_OF_LIST() 1375 } 1376 }; 1377 1378 static void rtl8139_ChipCmd_write(RTL8139State *s, uint32_t val) 1379 { 1380 DeviceState *d = DEVICE(s); 1381 1382 val &= 0xff; 1383 1384 DPRINTF("ChipCmd write val=0x%08x\n", val); 1385 1386 if (val & CmdReset) 1387 { 1388 DPRINTF("ChipCmd reset\n"); 1389 rtl8139_reset(d); 1390 } 1391 if (val & CmdRxEnb) 1392 { 1393 DPRINTF("ChipCmd enable receiver\n"); 1394 1395 s->currCPlusRxDesc = 0; 1396 } 1397 if (val & CmdTxEnb) 1398 { 1399 DPRINTF("ChipCmd enable transmitter\n"); 1400 1401 s->currCPlusTxDesc = 0; 1402 } 1403 1404 /* mask unwritable bits */ 1405 val = SET_MASKED(val, 0xe3, s->bChipCmdState); 1406 1407 /* Deassert reset pin before next read */ 1408 val &= ~CmdReset; 1409 1410 s->bChipCmdState = val; 1411 } 1412 1413 static int rtl8139_RxBufferEmpty(RTL8139State *s) 1414 { 1415 int unread = MOD2(s->RxBufferSize + s->RxBufAddr - s->RxBufPtr, s->RxBufferSize); 1416 1417 if (unread != 0) 1418 { 1419 DPRINTF("receiver buffer data available 0x%04x\n", unread); 1420 return 0; 1421 } 1422 1423 DPRINTF("receiver buffer is empty\n"); 1424 1425 return 1; 1426 } 1427 1428 static uint32_t rtl8139_ChipCmd_read(RTL8139State *s) 1429 { 1430 uint32_t ret = s->bChipCmdState; 1431 1432 if (rtl8139_RxBufferEmpty(s)) 1433 ret |= RxBufEmpty; 1434 1435 DPRINTF("ChipCmd read val=0x%04x\n", ret); 1436 1437 return ret; 1438 } 1439 1440 static void rtl8139_CpCmd_write(RTL8139State *s, uint32_t val) 1441 { 1442 val &= 0xffff; 1443 1444 DPRINTF("C+ command register write(w) val=0x%04x\n", val); 1445 1446 s->cplus_enabled = 1; 1447 1448 /* mask unwritable bits */ 1449 val = SET_MASKED(val, 0xff84, s->CpCmd); 1450 1451 s->CpCmd = val; 1452 } 1453 1454 static uint32_t rtl8139_CpCmd_read(RTL8139State *s) 1455 { 1456 uint32_t ret = s->CpCmd; 1457 1458 DPRINTF("C+ command register read(w) val=0x%04x\n", ret); 1459 1460 return ret; 1461 } 1462 1463 static void rtl8139_IntrMitigate_write(RTL8139State *s, uint32_t val) 1464 { 1465 DPRINTF("C+ IntrMitigate register write(w) val=0x%04x\n", val); 1466 } 1467 1468 static uint32_t rtl8139_IntrMitigate_read(RTL8139State *s) 1469 { 1470 uint32_t ret = 0; 1471 1472 DPRINTF("C+ IntrMitigate register read(w) val=0x%04x\n", ret); 1473 1474 return ret; 1475 } 1476 1477 static int rtl8139_config_writable(RTL8139State *s) 1478 { 1479 if ((s->Cfg9346 & Chip9346_op_mask) == Cfg9346_ConfigWrite) 1480 { 1481 return 1; 1482 } 1483 1484 DPRINTF("Configuration registers are write-protected\n"); 1485 1486 return 0; 1487 } 1488 1489 static void rtl8139_BasicModeCtrl_write(RTL8139State *s, uint32_t val) 1490 { 1491 val &= 0xffff; 1492 1493 DPRINTF("BasicModeCtrl register write(w) val=0x%04x\n", val); 1494 1495 /* mask unwritable bits */ 1496 uint32_t mask = 0x4cff; 1497 1498 if (1 || !rtl8139_config_writable(s)) 1499 { 1500 /* Speed setting and autonegotiation enable bits are read-only */ 1501 mask |= 0x3000; 1502 /* Duplex mode setting is read-only */ 1503 mask |= 0x0100; 1504 } 1505 1506 val = SET_MASKED(val, mask, s->BasicModeCtrl); 1507 1508 s->BasicModeCtrl = val; 1509 } 1510 1511 static uint32_t rtl8139_BasicModeCtrl_read(RTL8139State *s) 1512 { 1513 uint32_t ret = s->BasicModeCtrl; 1514 1515 DPRINTF("BasicModeCtrl register read(w) val=0x%04x\n", ret); 1516 1517 return ret; 1518 } 1519 1520 static void rtl8139_BasicModeStatus_write(RTL8139State *s, uint32_t val) 1521 { 1522 val &= 0xffff; 1523 1524 DPRINTF("BasicModeStatus register write(w) val=0x%04x\n", val); 1525 1526 /* mask unwritable bits */ 1527 val = SET_MASKED(val, 0xff3f, s->BasicModeStatus); 1528 1529 s->BasicModeStatus = val; 1530 } 1531 1532 static uint32_t rtl8139_BasicModeStatus_read(RTL8139State *s) 1533 { 1534 uint32_t ret = s->BasicModeStatus; 1535 1536 DPRINTF("BasicModeStatus register read(w) val=0x%04x\n", ret); 1537 1538 return ret; 1539 } 1540 1541 static void rtl8139_Cfg9346_write(RTL8139State *s, uint32_t val) 1542 { 1543 DeviceState *d = DEVICE(s); 1544 1545 val &= 0xff; 1546 1547 DPRINTF("Cfg9346 write val=0x%02x\n", val); 1548 1549 /* mask unwritable bits */ 1550 val = SET_MASKED(val, 0x31, s->Cfg9346); 1551 1552 uint32_t opmode = val & 0xc0; 1553 uint32_t eeprom_val = val & 0xf; 1554 1555 if (opmode == 0x80) { 1556 /* eeprom access */ 1557 int eecs = (eeprom_val & 0x08)?1:0; 1558 int eesk = (eeprom_val & 0x04)?1:0; 1559 int eedi = (eeprom_val & 0x02)?1:0; 1560 prom9346_set_wire(s, eecs, eesk, eedi); 1561 } else if (opmode == 0x40) { 1562 /* Reset. */ 1563 val = 0; 1564 rtl8139_reset(d); 1565 } 1566 1567 s->Cfg9346 = val; 1568 } 1569 1570 static uint32_t rtl8139_Cfg9346_read(RTL8139State *s) 1571 { 1572 uint32_t ret = s->Cfg9346; 1573 1574 uint32_t opmode = ret & 0xc0; 1575 1576 if (opmode == 0x80) 1577 { 1578 /* eeprom access */ 1579 int eedo = prom9346_get_wire(s); 1580 if (eedo) 1581 { 1582 ret |= 0x01; 1583 } 1584 else 1585 { 1586 ret &= ~0x01; 1587 } 1588 } 1589 1590 DPRINTF("Cfg9346 read val=0x%02x\n", ret); 1591 1592 return ret; 1593 } 1594 1595 static void rtl8139_Config0_write(RTL8139State *s, uint32_t val) 1596 { 1597 val &= 0xff; 1598 1599 DPRINTF("Config0 write val=0x%02x\n", val); 1600 1601 if (!rtl8139_config_writable(s)) { 1602 return; 1603 } 1604 1605 /* mask unwritable bits */ 1606 val = SET_MASKED(val, 0xf8, s->Config0); 1607 1608 s->Config0 = val; 1609 } 1610 1611 static uint32_t rtl8139_Config0_read(RTL8139State *s) 1612 { 1613 uint32_t ret = s->Config0; 1614 1615 DPRINTF("Config0 read val=0x%02x\n", ret); 1616 1617 return ret; 1618 } 1619 1620 static void rtl8139_Config1_write(RTL8139State *s, uint32_t val) 1621 { 1622 val &= 0xff; 1623 1624 DPRINTF("Config1 write val=0x%02x\n", val); 1625 1626 if (!rtl8139_config_writable(s)) { 1627 return; 1628 } 1629 1630 /* mask unwritable bits */ 1631 val = SET_MASKED(val, 0xC, s->Config1); 1632 1633 s->Config1 = val; 1634 } 1635 1636 static uint32_t rtl8139_Config1_read(RTL8139State *s) 1637 { 1638 uint32_t ret = s->Config1; 1639 1640 DPRINTF("Config1 read val=0x%02x\n", ret); 1641 1642 return ret; 1643 } 1644 1645 static void rtl8139_Config3_write(RTL8139State *s, uint32_t val) 1646 { 1647 val &= 0xff; 1648 1649 DPRINTF("Config3 write val=0x%02x\n", val); 1650 1651 if (!rtl8139_config_writable(s)) { 1652 return; 1653 } 1654 1655 /* mask unwritable bits */ 1656 val = SET_MASKED(val, 0x8F, s->Config3); 1657 1658 s->Config3 = val; 1659 } 1660 1661 static uint32_t rtl8139_Config3_read(RTL8139State *s) 1662 { 1663 uint32_t ret = s->Config3; 1664 1665 DPRINTF("Config3 read val=0x%02x\n", ret); 1666 1667 return ret; 1668 } 1669 1670 static void rtl8139_Config4_write(RTL8139State *s, uint32_t val) 1671 { 1672 val &= 0xff; 1673 1674 DPRINTF("Config4 write val=0x%02x\n", val); 1675 1676 if (!rtl8139_config_writable(s)) { 1677 return; 1678 } 1679 1680 /* mask unwritable bits */ 1681 val = SET_MASKED(val, 0x0a, s->Config4); 1682 1683 s->Config4 = val; 1684 } 1685 1686 static uint32_t rtl8139_Config4_read(RTL8139State *s) 1687 { 1688 uint32_t ret = s->Config4; 1689 1690 DPRINTF("Config4 read val=0x%02x\n", ret); 1691 1692 return ret; 1693 } 1694 1695 static void rtl8139_Config5_write(RTL8139State *s, uint32_t val) 1696 { 1697 val &= 0xff; 1698 1699 DPRINTF("Config5 write val=0x%02x\n", val); 1700 1701 /* mask unwritable bits */ 1702 val = SET_MASKED(val, 0x80, s->Config5); 1703 1704 s->Config5 = val; 1705 } 1706 1707 static uint32_t rtl8139_Config5_read(RTL8139State *s) 1708 { 1709 uint32_t ret = s->Config5; 1710 1711 DPRINTF("Config5 read val=0x%02x\n", ret); 1712 1713 return ret; 1714 } 1715 1716 static void rtl8139_TxConfig_write(RTL8139State *s, uint32_t val) 1717 { 1718 if (!rtl8139_transmitter_enabled(s)) 1719 { 1720 DPRINTF("transmitter disabled; no TxConfig write val=0x%08x\n", val); 1721 return; 1722 } 1723 1724 DPRINTF("TxConfig write val=0x%08x\n", val); 1725 1726 val = SET_MASKED(val, TxVersionMask | 0x8070f80f, s->TxConfig); 1727 1728 s->TxConfig = val; 1729 } 1730 1731 static void rtl8139_TxConfig_writeb(RTL8139State *s, uint32_t val) 1732 { 1733 DPRINTF("RTL8139C TxConfig via write(b) val=0x%02x\n", val); 1734 1735 uint32_t tc = s->TxConfig; 1736 tc &= 0xFFFFFF00; 1737 tc |= (val & 0x000000FF); 1738 rtl8139_TxConfig_write(s, tc); 1739 } 1740 1741 static uint32_t rtl8139_TxConfig_read(RTL8139State *s) 1742 { 1743 uint32_t ret = s->TxConfig; 1744 1745 DPRINTF("TxConfig read val=0x%04x\n", ret); 1746 1747 return ret; 1748 } 1749 1750 static void rtl8139_RxConfig_write(RTL8139State *s, uint32_t val) 1751 { 1752 DPRINTF("RxConfig write val=0x%08x\n", val); 1753 1754 /* mask unwritable bits */ 1755 val = SET_MASKED(val, 0xf0fc0040, s->RxConfig); 1756 1757 s->RxConfig = val; 1758 1759 /* reset buffer size and read/write pointers */ 1760 rtl8139_reset_rxring(s, 8192 << ((s->RxConfig >> 11) & 0x3)); 1761 1762 DPRINTF("RxConfig write reset buffer size to %d\n", s->RxBufferSize); 1763 } 1764 1765 static uint32_t rtl8139_RxConfig_read(RTL8139State *s) 1766 { 1767 uint32_t ret = s->RxConfig; 1768 1769 DPRINTF("RxConfig read val=0x%08x\n", ret); 1770 1771 return ret; 1772 } 1773 1774 static void rtl8139_transfer_frame(RTL8139State *s, uint8_t *buf, int size, 1775 int do_interrupt, const uint8_t *dot1q_buf) 1776 { 1777 struct iovec *iov = NULL; 1778 struct iovec vlan_iov[3]; 1779 1780 if (!size) 1781 { 1782 DPRINTF("+++ empty ethernet frame\n"); 1783 return; 1784 } 1785 1786 if (dot1q_buf && size >= ETHER_ADDR_LEN * 2) { 1787 iov = (struct iovec[3]) { 1788 { .iov_base = buf, .iov_len = ETHER_ADDR_LEN * 2 }, 1789 { .iov_base = (void *) dot1q_buf, .iov_len = VLAN_HLEN }, 1790 { .iov_base = buf + ETHER_ADDR_LEN * 2, 1791 .iov_len = size - ETHER_ADDR_LEN * 2 }, 1792 }; 1793 1794 memcpy(vlan_iov, iov, sizeof(vlan_iov)); 1795 iov = vlan_iov; 1796 } 1797 1798 if (TxLoopBack == (s->TxConfig & TxLoopBack)) 1799 { 1800 size_t buf2_size; 1801 uint8_t *buf2; 1802 1803 if (iov) { 1804 buf2_size = iov_size(iov, 3); 1805 buf2 = g_malloc(buf2_size); 1806 iov_to_buf(iov, 3, 0, buf2, buf2_size); 1807 buf = buf2; 1808 } 1809 1810 DPRINTF("+++ transmit loopback mode\n"); 1811 rtl8139_do_receive(qemu_get_queue(s->nic), buf, size, do_interrupt); 1812 1813 if (iov) { 1814 g_free(buf2); 1815 } 1816 } 1817 else 1818 { 1819 if (iov) { 1820 qemu_sendv_packet(qemu_get_queue(s->nic), iov, 3); 1821 } else { 1822 qemu_send_packet(qemu_get_queue(s->nic), buf, size); 1823 } 1824 } 1825 } 1826 1827 static int rtl8139_transmit_one(RTL8139State *s, int descriptor) 1828 { 1829 if (!rtl8139_transmitter_enabled(s)) 1830 { 1831 DPRINTF("+++ cannot transmit from descriptor %d: transmitter " 1832 "disabled\n", descriptor); 1833 return 0; 1834 } 1835 1836 if (s->TxStatus[descriptor] & TxHostOwns) 1837 { 1838 DPRINTF("+++ cannot transmit from descriptor %d: owned by host " 1839 "(%08x)\n", descriptor, s->TxStatus[descriptor]); 1840 return 0; 1841 } 1842 1843 DPRINTF("+++ transmitting from descriptor %d\n", descriptor); 1844 1845 PCIDevice *d = PCI_DEVICE(s); 1846 int txsize = s->TxStatus[descriptor] & 0x1fff; 1847 uint8_t txbuffer[0x2000]; 1848 1849 DPRINTF("+++ transmit reading %d bytes from host memory at 0x%08x\n", 1850 txsize, s->TxAddr[descriptor]); 1851 1852 pci_dma_read(d, s->TxAddr[descriptor], txbuffer, txsize); 1853 1854 /* Mark descriptor as transferred */ 1855 s->TxStatus[descriptor] |= TxHostOwns; 1856 s->TxStatus[descriptor] |= TxStatOK; 1857 1858 rtl8139_transfer_frame(s, txbuffer, txsize, 0, NULL); 1859 1860 DPRINTF("+++ transmitted %d bytes from descriptor %d\n", txsize, 1861 descriptor); 1862 1863 /* update interrupt */ 1864 s->IntrStatus |= TxOK; 1865 rtl8139_update_irq(s); 1866 1867 return 1; 1868 } 1869 1870 /* structures and macros for task offloading */ 1871 typedef struct ip_header 1872 { 1873 uint8_t ip_ver_len; /* version and header length */ 1874 uint8_t ip_tos; /* type of service */ 1875 uint16_t ip_len; /* total length */ 1876 uint16_t ip_id; /* identification */ 1877 uint16_t ip_off; /* fragment offset field */ 1878 uint8_t ip_ttl; /* time to live */ 1879 uint8_t ip_p; /* protocol */ 1880 uint16_t ip_sum; /* checksum */ 1881 uint32_t ip_src,ip_dst; /* source and dest address */ 1882 } ip_header; 1883 1884 #define IP_HEADER_VERSION_4 4 1885 #define IP_HEADER_VERSION(ip) ((ip->ip_ver_len >> 4)&0xf) 1886 #define IP_HEADER_LENGTH(ip) (((ip->ip_ver_len)&0xf) << 2) 1887 1888 typedef struct tcp_header 1889 { 1890 uint16_t th_sport; /* source port */ 1891 uint16_t th_dport; /* destination port */ 1892 uint32_t th_seq; /* sequence number */ 1893 uint32_t th_ack; /* acknowledgement number */ 1894 uint16_t th_offset_flags; /* data offset, reserved 6 bits, TCP protocol flags */ 1895 uint16_t th_win; /* window */ 1896 uint16_t th_sum; /* checksum */ 1897 uint16_t th_urp; /* urgent pointer */ 1898 } tcp_header; 1899 1900 typedef struct udp_header 1901 { 1902 uint16_t uh_sport; /* source port */ 1903 uint16_t uh_dport; /* destination port */ 1904 uint16_t uh_ulen; /* udp length */ 1905 uint16_t uh_sum; /* udp checksum */ 1906 } udp_header; 1907 1908 typedef struct ip_pseudo_header 1909 { 1910 uint32_t ip_src; 1911 uint32_t ip_dst; 1912 uint8_t zeros; 1913 uint8_t ip_proto; 1914 uint16_t ip_payload; 1915 } ip_pseudo_header; 1916 1917 #define IP_PROTO_TCP 6 1918 #define IP_PROTO_UDP 17 1919 1920 #define TCP_HEADER_DATA_OFFSET(tcp) (((be16_to_cpu(tcp->th_offset_flags) >> 12)&0xf) << 2) 1921 #define TCP_FLAGS_ONLY(flags) ((flags)&0x3f) 1922 #define TCP_HEADER_FLAGS(tcp) TCP_FLAGS_ONLY(be16_to_cpu(tcp->th_offset_flags)) 1923 1924 #define TCP_HEADER_CLEAR_FLAGS(tcp, off) ((tcp)->th_offset_flags &= cpu_to_be16(~TCP_FLAGS_ONLY(off))) 1925 1926 #define TCP_FLAG_FIN 0x01 1927 #define TCP_FLAG_PUSH 0x08 1928 1929 /* produces ones' complement sum of data */ 1930 static uint16_t ones_complement_sum(uint8_t *data, size_t len) 1931 { 1932 uint32_t result = 0; 1933 1934 for (; len > 1; data+=2, len-=2) 1935 { 1936 result += *(uint16_t*)data; 1937 } 1938 1939 /* add the remainder byte */ 1940 if (len) 1941 { 1942 uint8_t odd[2] = {*data, 0}; 1943 result += *(uint16_t*)odd; 1944 } 1945 1946 while (result>>16) 1947 result = (result & 0xffff) + (result >> 16); 1948 1949 return result; 1950 } 1951 1952 static uint16_t ip_checksum(void *data, size_t len) 1953 { 1954 return ~ones_complement_sum((uint8_t*)data, len); 1955 } 1956 1957 static int rtl8139_cplus_transmit_one(RTL8139State *s) 1958 { 1959 if (!rtl8139_transmitter_enabled(s)) 1960 { 1961 DPRINTF("+++ C+ mode: transmitter disabled\n"); 1962 return 0; 1963 } 1964 1965 if (!rtl8139_cp_transmitter_enabled(s)) 1966 { 1967 DPRINTF("+++ C+ mode: C+ transmitter disabled\n"); 1968 return 0 ; 1969 } 1970 1971 PCIDevice *d = PCI_DEVICE(s); 1972 int descriptor = s->currCPlusTxDesc; 1973 1974 dma_addr_t cplus_tx_ring_desc = rtl8139_addr64(s->TxAddr[0], s->TxAddr[1]); 1975 1976 /* Normal priority ring */ 1977 cplus_tx_ring_desc += 16 * descriptor; 1978 1979 DPRINTF("+++ C+ mode reading TX descriptor %d from host memory at " 1980 "%08x %08x = 0x"DMA_ADDR_FMT"\n", descriptor, s->TxAddr[1], 1981 s->TxAddr[0], cplus_tx_ring_desc); 1982 1983 uint32_t val, txdw0,txdw1,txbufLO,txbufHI; 1984 1985 pci_dma_read(d, cplus_tx_ring_desc, (uint8_t *)&val, 4); 1986 txdw0 = le32_to_cpu(val); 1987 pci_dma_read(d, cplus_tx_ring_desc+4, (uint8_t *)&val, 4); 1988 txdw1 = le32_to_cpu(val); 1989 pci_dma_read(d, cplus_tx_ring_desc+8, (uint8_t *)&val, 4); 1990 txbufLO = le32_to_cpu(val); 1991 pci_dma_read(d, cplus_tx_ring_desc+12, (uint8_t *)&val, 4); 1992 txbufHI = le32_to_cpu(val); 1993 1994 DPRINTF("+++ C+ mode TX descriptor %d %08x %08x %08x %08x\n", descriptor, 1995 txdw0, txdw1, txbufLO, txbufHI); 1996 1997 /* w0 ownership flag */ 1998 #define CP_TX_OWN (1<<31) 1999 /* w0 end of ring flag */ 2000 #define CP_TX_EOR (1<<30) 2001 /* first segment of received packet flag */ 2002 #define CP_TX_FS (1<<29) 2003 /* last segment of received packet flag */ 2004 #define CP_TX_LS (1<<28) 2005 /* large send packet flag */ 2006 #define CP_TX_LGSEN (1<<27) 2007 /* large send MSS mask, bits 16...25 */ 2008 #define CP_TC_LGSEN_MSS_MASK ((1 << 12) - 1) 2009 2010 /* IP checksum offload flag */ 2011 #define CP_TX_IPCS (1<<18) 2012 /* UDP checksum offload flag */ 2013 #define CP_TX_UDPCS (1<<17) 2014 /* TCP checksum offload flag */ 2015 #define CP_TX_TCPCS (1<<16) 2016 2017 /* w0 bits 0...15 : buffer size */ 2018 #define CP_TX_BUFFER_SIZE (1<<16) 2019 #define CP_TX_BUFFER_SIZE_MASK (CP_TX_BUFFER_SIZE - 1) 2020 /* w1 add tag flag */ 2021 #define CP_TX_TAGC (1<<17) 2022 /* w1 bits 0...15 : VLAN tag (big endian) */ 2023 #define CP_TX_VLAN_TAG_MASK ((1<<16) - 1) 2024 /* w2 low 32bit of Rx buffer ptr */ 2025 /* w3 high 32bit of Rx buffer ptr */ 2026 2027 /* set after transmission */ 2028 /* FIFO underrun flag */ 2029 #define CP_TX_STATUS_UNF (1<<25) 2030 /* transmit error summary flag, valid if set any of three below */ 2031 #define CP_TX_STATUS_TES (1<<23) 2032 /* out-of-window collision flag */ 2033 #define CP_TX_STATUS_OWC (1<<22) 2034 /* link failure flag */ 2035 #define CP_TX_STATUS_LNKF (1<<21) 2036 /* excessive collisions flag */ 2037 #define CP_TX_STATUS_EXC (1<<20) 2038 2039 if (!(txdw0 & CP_TX_OWN)) 2040 { 2041 DPRINTF("C+ Tx mode : descriptor %d is owned by host\n", descriptor); 2042 return 0 ; 2043 } 2044 2045 DPRINTF("+++ C+ Tx mode : transmitting from descriptor %d\n", descriptor); 2046 2047 if (txdw0 & CP_TX_FS) 2048 { 2049 DPRINTF("+++ C+ Tx mode : descriptor %d is first segment " 2050 "descriptor\n", descriptor); 2051 2052 /* reset internal buffer offset */ 2053 s->cplus_txbuffer_offset = 0; 2054 } 2055 2056 int txsize = txdw0 & CP_TX_BUFFER_SIZE_MASK; 2057 dma_addr_t tx_addr = rtl8139_addr64(txbufLO, txbufHI); 2058 2059 /* make sure we have enough space to assemble the packet */ 2060 if (!s->cplus_txbuffer) 2061 { 2062 s->cplus_txbuffer_len = CP_TX_BUFFER_SIZE; 2063 s->cplus_txbuffer = g_malloc(s->cplus_txbuffer_len); 2064 s->cplus_txbuffer_offset = 0; 2065 2066 DPRINTF("+++ C+ mode transmission buffer allocated space %d\n", 2067 s->cplus_txbuffer_len); 2068 } 2069 2070 if (s->cplus_txbuffer_offset + txsize >= s->cplus_txbuffer_len) 2071 { 2072 /* The spec didn't tell the maximum size, stick to CP_TX_BUFFER_SIZE */ 2073 txsize = s->cplus_txbuffer_len - s->cplus_txbuffer_offset; 2074 DPRINTF("+++ C+ mode transmission buffer overrun, truncated descriptor" 2075 "length to %d\n", txsize); 2076 } 2077 2078 if (!s->cplus_txbuffer) 2079 { 2080 /* out of memory */ 2081 2082 DPRINTF("+++ C+ mode transmiter failed to reallocate %d bytes\n", 2083 s->cplus_txbuffer_len); 2084 2085 /* update tally counter */ 2086 ++s->tally_counters.TxERR; 2087 ++s->tally_counters.TxAbt; 2088 2089 return 0; 2090 } 2091 2092 /* append more data to the packet */ 2093 2094 DPRINTF("+++ C+ mode transmit reading %d bytes from host memory at " 2095 DMA_ADDR_FMT" to offset %d\n", txsize, tx_addr, 2096 s->cplus_txbuffer_offset); 2097 2098 pci_dma_read(d, tx_addr, 2099 s->cplus_txbuffer + s->cplus_txbuffer_offset, txsize); 2100 s->cplus_txbuffer_offset += txsize; 2101 2102 /* seek to next Rx descriptor */ 2103 if (txdw0 & CP_TX_EOR) 2104 { 2105 s->currCPlusTxDesc = 0; 2106 } 2107 else 2108 { 2109 ++s->currCPlusTxDesc; 2110 if (s->currCPlusTxDesc >= 64) 2111 s->currCPlusTxDesc = 0; 2112 } 2113 2114 /* transfer ownership to target */ 2115 txdw0 &= ~CP_RX_OWN; 2116 2117 /* reset error indicator bits */ 2118 txdw0 &= ~CP_TX_STATUS_UNF; 2119 txdw0 &= ~CP_TX_STATUS_TES; 2120 txdw0 &= ~CP_TX_STATUS_OWC; 2121 txdw0 &= ~CP_TX_STATUS_LNKF; 2122 txdw0 &= ~CP_TX_STATUS_EXC; 2123 2124 /* update ring data */ 2125 val = cpu_to_le32(txdw0); 2126 pci_dma_write(d, cplus_tx_ring_desc, (uint8_t *)&val, 4); 2127 2128 /* Now decide if descriptor being processed is holding the last segment of packet */ 2129 if (txdw0 & CP_TX_LS) 2130 { 2131 uint8_t dot1q_buffer_space[VLAN_HLEN]; 2132 uint16_t *dot1q_buffer; 2133 2134 DPRINTF("+++ C+ Tx mode : descriptor %d is last segment descriptor\n", 2135 descriptor); 2136 2137 /* can transfer fully assembled packet */ 2138 2139 uint8_t *saved_buffer = s->cplus_txbuffer; 2140 int saved_size = s->cplus_txbuffer_offset; 2141 int saved_buffer_len = s->cplus_txbuffer_len; 2142 2143 /* create vlan tag */ 2144 if (txdw1 & CP_TX_TAGC) { 2145 /* the vlan tag is in BE byte order in the descriptor 2146 * BE + le_to_cpu() + ~swap()~ = cpu */ 2147 DPRINTF("+++ C+ Tx mode : inserting vlan tag with ""tci: %u\n", 2148 bswap16(txdw1 & CP_TX_VLAN_TAG_MASK)); 2149 2150 dot1q_buffer = (uint16_t *) dot1q_buffer_space; 2151 dot1q_buffer[0] = cpu_to_be16(ETH_P_8021Q); 2152 /* BE + le_to_cpu() + ~cpu_to_le()~ = BE */ 2153 dot1q_buffer[1] = cpu_to_le16(txdw1 & CP_TX_VLAN_TAG_MASK); 2154 } else { 2155 dot1q_buffer = NULL; 2156 } 2157 2158 /* reset the card space to protect from recursive call */ 2159 s->cplus_txbuffer = NULL; 2160 s->cplus_txbuffer_offset = 0; 2161 s->cplus_txbuffer_len = 0; 2162 2163 if (txdw0 & (CP_TX_IPCS | CP_TX_UDPCS | CP_TX_TCPCS | CP_TX_LGSEN)) 2164 { 2165 DPRINTF("+++ C+ mode offloaded task checksum\n"); 2166 2167 /* ip packet header */ 2168 ip_header *ip = NULL; 2169 int hlen = 0; 2170 uint8_t ip_protocol = 0; 2171 uint16_t ip_data_len = 0; 2172 2173 uint8_t *eth_payload_data = NULL; 2174 size_t eth_payload_len = 0; 2175 2176 int proto = be16_to_cpu(*(uint16_t *)(saved_buffer + 12)); 2177 if (proto == ETH_P_IP) 2178 { 2179 DPRINTF("+++ C+ mode has IP packet\n"); 2180 2181 /* not aligned */ 2182 eth_payload_data = saved_buffer + ETH_HLEN; 2183 eth_payload_len = saved_size - ETH_HLEN; 2184 2185 ip = (ip_header*)eth_payload_data; 2186 2187 if (IP_HEADER_VERSION(ip) != IP_HEADER_VERSION_4) { 2188 DPRINTF("+++ C+ mode packet has bad IP version %d " 2189 "expected %d\n", IP_HEADER_VERSION(ip), 2190 IP_HEADER_VERSION_4); 2191 ip = NULL; 2192 } else { 2193 hlen = IP_HEADER_LENGTH(ip); 2194 ip_protocol = ip->ip_p; 2195 ip_data_len = be16_to_cpu(ip->ip_len) - hlen; 2196 } 2197 } 2198 2199 if (ip) 2200 { 2201 if (txdw0 & CP_TX_IPCS) 2202 { 2203 DPRINTF("+++ C+ mode need IP checksum\n"); 2204 2205 if (hlen<sizeof(ip_header) || hlen>eth_payload_len) {/* min header length */ 2206 /* bad packet header len */ 2207 /* or packet too short */ 2208 } 2209 else 2210 { 2211 ip->ip_sum = 0; 2212 ip->ip_sum = ip_checksum(ip, hlen); 2213 DPRINTF("+++ C+ mode IP header len=%d checksum=%04x\n", 2214 hlen, ip->ip_sum); 2215 } 2216 } 2217 2218 if ((txdw0 & CP_TX_LGSEN) && ip_protocol == IP_PROTO_TCP) 2219 { 2220 int large_send_mss = (txdw0 >> 16) & CP_TC_LGSEN_MSS_MASK; 2221 2222 DPRINTF("+++ C+ mode offloaded task TSO MTU=%d IP data %d " 2223 "frame data %d specified MSS=%d\n", ETH_MTU, 2224 ip_data_len, saved_size - ETH_HLEN, large_send_mss); 2225 2226 int tcp_send_offset = 0; 2227 int send_count = 0; 2228 2229 /* maximum IP header length is 60 bytes */ 2230 uint8_t saved_ip_header[60]; 2231 2232 /* save IP header template; data area is used in tcp checksum calculation */ 2233 memcpy(saved_ip_header, eth_payload_data, hlen); 2234 2235 /* a placeholder for checksum calculation routine in tcp case */ 2236 uint8_t *data_to_checksum = eth_payload_data + hlen - 12; 2237 // size_t data_to_checksum_len = eth_payload_len - hlen + 12; 2238 2239 /* pointer to TCP header */ 2240 tcp_header *p_tcp_hdr = (tcp_header*)(eth_payload_data + hlen); 2241 2242 int tcp_hlen = TCP_HEADER_DATA_OFFSET(p_tcp_hdr); 2243 2244 /* ETH_MTU = ip header len + tcp header len + payload */ 2245 int tcp_data_len = ip_data_len - tcp_hlen; 2246 int tcp_chunk_size = ETH_MTU - hlen - tcp_hlen; 2247 2248 DPRINTF("+++ C+ mode TSO IP data len %d TCP hlen %d TCP " 2249 "data len %d TCP chunk size %d\n", ip_data_len, 2250 tcp_hlen, tcp_data_len, tcp_chunk_size); 2251 2252 /* note the cycle below overwrites IP header data, 2253 but restores it from saved_ip_header before sending packet */ 2254 2255 int is_last_frame = 0; 2256 2257 for (tcp_send_offset = 0; tcp_send_offset < tcp_data_len; tcp_send_offset += tcp_chunk_size) 2258 { 2259 uint16_t chunk_size = tcp_chunk_size; 2260 2261 /* check if this is the last frame */ 2262 if (tcp_send_offset + tcp_chunk_size >= tcp_data_len) 2263 { 2264 is_last_frame = 1; 2265 chunk_size = tcp_data_len - tcp_send_offset; 2266 } 2267 2268 DPRINTF("+++ C+ mode TSO TCP seqno %08x\n", 2269 be32_to_cpu(p_tcp_hdr->th_seq)); 2270 2271 /* add 4 TCP pseudoheader fields */ 2272 /* copy IP source and destination fields */ 2273 memcpy(data_to_checksum, saved_ip_header + 12, 8); 2274 2275 DPRINTF("+++ C+ mode TSO calculating TCP checksum for " 2276 "packet with %d bytes data\n", tcp_hlen + 2277 chunk_size); 2278 2279 if (tcp_send_offset) 2280 { 2281 memcpy((uint8_t*)p_tcp_hdr + tcp_hlen, (uint8_t*)p_tcp_hdr + tcp_hlen + tcp_send_offset, chunk_size); 2282 } 2283 2284 /* keep PUSH and FIN flags only for the last frame */ 2285 if (!is_last_frame) 2286 { 2287 TCP_HEADER_CLEAR_FLAGS(p_tcp_hdr, TCP_FLAG_PUSH|TCP_FLAG_FIN); 2288 } 2289 2290 /* recalculate TCP checksum */ 2291 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum; 2292 p_tcpip_hdr->zeros = 0; 2293 p_tcpip_hdr->ip_proto = IP_PROTO_TCP; 2294 p_tcpip_hdr->ip_payload = cpu_to_be16(tcp_hlen + chunk_size); 2295 2296 p_tcp_hdr->th_sum = 0; 2297 2298 int tcp_checksum = ip_checksum(data_to_checksum, tcp_hlen + chunk_size + 12); 2299 DPRINTF("+++ C+ mode TSO TCP checksum %04x\n", 2300 tcp_checksum); 2301 2302 p_tcp_hdr->th_sum = tcp_checksum; 2303 2304 /* restore IP header */ 2305 memcpy(eth_payload_data, saved_ip_header, hlen); 2306 2307 /* set IP data length and recalculate IP checksum */ 2308 ip->ip_len = cpu_to_be16(hlen + tcp_hlen + chunk_size); 2309 2310 /* increment IP id for subsequent frames */ 2311 ip->ip_id = cpu_to_be16(tcp_send_offset/tcp_chunk_size + be16_to_cpu(ip->ip_id)); 2312 2313 ip->ip_sum = 0; 2314 ip->ip_sum = ip_checksum(eth_payload_data, hlen); 2315 DPRINTF("+++ C+ mode TSO IP header len=%d " 2316 "checksum=%04x\n", hlen, ip->ip_sum); 2317 2318 int tso_send_size = ETH_HLEN + hlen + tcp_hlen + chunk_size; 2319 DPRINTF("+++ C+ mode TSO transferring packet size " 2320 "%d\n", tso_send_size); 2321 rtl8139_transfer_frame(s, saved_buffer, tso_send_size, 2322 0, (uint8_t *) dot1q_buffer); 2323 2324 /* add transferred count to TCP sequence number */ 2325 p_tcp_hdr->th_seq = cpu_to_be32(chunk_size + be32_to_cpu(p_tcp_hdr->th_seq)); 2326 ++send_count; 2327 } 2328 2329 /* Stop sending this frame */ 2330 saved_size = 0; 2331 } 2332 else if (txdw0 & (CP_TX_TCPCS|CP_TX_UDPCS)) 2333 { 2334 DPRINTF("+++ C+ mode need TCP or UDP checksum\n"); 2335 2336 /* maximum IP header length is 60 bytes */ 2337 uint8_t saved_ip_header[60]; 2338 memcpy(saved_ip_header, eth_payload_data, hlen); 2339 2340 uint8_t *data_to_checksum = eth_payload_data + hlen - 12; 2341 // size_t data_to_checksum_len = eth_payload_len - hlen + 12; 2342 2343 /* add 4 TCP pseudoheader fields */ 2344 /* copy IP source and destination fields */ 2345 memcpy(data_to_checksum, saved_ip_header + 12, 8); 2346 2347 if ((txdw0 & CP_TX_TCPCS) && ip_protocol == IP_PROTO_TCP) 2348 { 2349 DPRINTF("+++ C+ mode calculating TCP checksum for " 2350 "packet with %d bytes data\n", ip_data_len); 2351 2352 ip_pseudo_header *p_tcpip_hdr = (ip_pseudo_header *)data_to_checksum; 2353 p_tcpip_hdr->zeros = 0; 2354 p_tcpip_hdr->ip_proto = IP_PROTO_TCP; 2355 p_tcpip_hdr->ip_payload = cpu_to_be16(ip_data_len); 2356 2357 tcp_header* p_tcp_hdr = (tcp_header *) (data_to_checksum+12); 2358 2359 p_tcp_hdr->th_sum = 0; 2360 2361 int tcp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12); 2362 DPRINTF("+++ C+ mode TCP checksum %04x\n", 2363 tcp_checksum); 2364 2365 p_tcp_hdr->th_sum = tcp_checksum; 2366 } 2367 else if ((txdw0 & CP_TX_UDPCS) && ip_protocol == IP_PROTO_UDP) 2368 { 2369 DPRINTF("+++ C+ mode calculating UDP checksum for " 2370 "packet with %d bytes data\n", ip_data_len); 2371 2372 ip_pseudo_header *p_udpip_hdr = (ip_pseudo_header *)data_to_checksum; 2373 p_udpip_hdr->zeros = 0; 2374 p_udpip_hdr->ip_proto = IP_PROTO_UDP; 2375 p_udpip_hdr->ip_payload = cpu_to_be16(ip_data_len); 2376 2377 udp_header *p_udp_hdr = (udp_header *) (data_to_checksum+12); 2378 2379 p_udp_hdr->uh_sum = 0; 2380 2381 int udp_checksum = ip_checksum(data_to_checksum, ip_data_len + 12); 2382 DPRINTF("+++ C+ mode UDP checksum %04x\n", 2383 udp_checksum); 2384 2385 p_udp_hdr->uh_sum = udp_checksum; 2386 } 2387 2388 /* restore IP header */ 2389 memcpy(eth_payload_data, saved_ip_header, hlen); 2390 } 2391 } 2392 } 2393 2394 /* update tally counter */ 2395 ++s->tally_counters.TxOk; 2396 2397 DPRINTF("+++ C+ mode transmitting %d bytes packet\n", saved_size); 2398 2399 rtl8139_transfer_frame(s, saved_buffer, saved_size, 1, 2400 (uint8_t *) dot1q_buffer); 2401 2402 /* restore card space if there was no recursion and reset offset */ 2403 if (!s->cplus_txbuffer) 2404 { 2405 s->cplus_txbuffer = saved_buffer; 2406 s->cplus_txbuffer_len = saved_buffer_len; 2407 s->cplus_txbuffer_offset = 0; 2408 } 2409 else 2410 { 2411 g_free(saved_buffer); 2412 } 2413 } 2414 else 2415 { 2416 DPRINTF("+++ C+ mode transmission continue to next descriptor\n"); 2417 } 2418 2419 return 1; 2420 } 2421 2422 static void rtl8139_cplus_transmit(RTL8139State *s) 2423 { 2424 int txcount = 0; 2425 2426 while (rtl8139_cplus_transmit_one(s)) 2427 { 2428 ++txcount; 2429 } 2430 2431 /* Mark transfer completed */ 2432 if (!txcount) 2433 { 2434 DPRINTF("C+ mode : transmitter queue stalled, current TxDesc = %d\n", 2435 s->currCPlusTxDesc); 2436 } 2437 else 2438 { 2439 /* update interrupt status */ 2440 s->IntrStatus |= TxOK; 2441 rtl8139_update_irq(s); 2442 } 2443 } 2444 2445 static void rtl8139_transmit(RTL8139State *s) 2446 { 2447 int descriptor = s->currTxDesc, txcount = 0; 2448 2449 /*while*/ 2450 if (rtl8139_transmit_one(s, descriptor)) 2451 { 2452 ++s->currTxDesc; 2453 s->currTxDesc %= 4; 2454 ++txcount; 2455 } 2456 2457 /* Mark transfer completed */ 2458 if (!txcount) 2459 { 2460 DPRINTF("transmitter queue stalled, current TxDesc = %d\n", 2461 s->currTxDesc); 2462 } 2463 } 2464 2465 static void rtl8139_TxStatus_write(RTL8139State *s, uint32_t txRegOffset, uint32_t val) 2466 { 2467 2468 int descriptor = txRegOffset/4; 2469 2470 /* handle C+ transmit mode register configuration */ 2471 2472 if (s->cplus_enabled) 2473 { 2474 DPRINTF("RTL8139C+ DTCCR write offset=0x%x val=0x%08x " 2475 "descriptor=%d\n", txRegOffset, val, descriptor); 2476 2477 /* handle Dump Tally Counters command */ 2478 s->TxStatus[descriptor] = val; 2479 2480 if (descriptor == 0 && (val & 0x8)) 2481 { 2482 hwaddr tc_addr = rtl8139_addr64(s->TxStatus[0] & ~0x3f, s->TxStatus[1]); 2483 2484 /* dump tally counters to specified memory location */ 2485 RTL8139TallyCounters_dma_write(s, tc_addr); 2486 2487 /* mark dump completed */ 2488 s->TxStatus[0] &= ~0x8; 2489 } 2490 2491 return; 2492 } 2493 2494 DPRINTF("TxStatus write offset=0x%x val=0x%08x descriptor=%d\n", 2495 txRegOffset, val, descriptor); 2496 2497 /* mask only reserved bits */ 2498 val &= ~0xff00c000; /* these bits are reset on write */ 2499 val = SET_MASKED(val, 0x00c00000, s->TxStatus[descriptor]); 2500 2501 s->TxStatus[descriptor] = val; 2502 2503 /* attempt to start transmission */ 2504 rtl8139_transmit(s); 2505 } 2506 2507 static uint32_t rtl8139_TxStatus_TxAddr_read(RTL8139State *s, uint32_t regs[], 2508 uint32_t base, uint8_t addr, 2509 int size) 2510 { 2511 uint32_t reg = (addr - base) / 4; 2512 uint32_t offset = addr & 0x3; 2513 uint32_t ret = 0; 2514 2515 if (addr & (size - 1)) { 2516 DPRINTF("not implemented read for TxStatus/TxAddr " 2517 "addr=0x%x size=0x%x\n", addr, size); 2518 return ret; 2519 } 2520 2521 switch (size) { 2522 case 1: /* fall through */ 2523 case 2: /* fall through */ 2524 case 4: 2525 ret = (regs[reg] >> offset * 8) & (((uint64_t)1 << (size * 8)) - 1); 2526 DPRINTF("TxStatus/TxAddr[%d] read addr=0x%x size=0x%x val=0x%08x\n", 2527 reg, addr, size, ret); 2528 break; 2529 default: 2530 DPRINTF("unsupported size 0x%x of TxStatus/TxAddr reading\n", size); 2531 break; 2532 } 2533 2534 return ret; 2535 } 2536 2537 static uint16_t rtl8139_TSAD_read(RTL8139State *s) 2538 { 2539 uint16_t ret = 0; 2540 2541 /* Simulate TSAD, it is read only anyway */ 2542 2543 ret = ((s->TxStatus[3] & TxStatOK )?TSAD_TOK3:0) 2544 |((s->TxStatus[2] & TxStatOK )?TSAD_TOK2:0) 2545 |((s->TxStatus[1] & TxStatOK )?TSAD_TOK1:0) 2546 |((s->TxStatus[0] & TxStatOK )?TSAD_TOK0:0) 2547 2548 |((s->TxStatus[3] & TxUnderrun)?TSAD_TUN3:0) 2549 |((s->TxStatus[2] & TxUnderrun)?TSAD_TUN2:0) 2550 |((s->TxStatus[1] & TxUnderrun)?TSAD_TUN1:0) 2551 |((s->TxStatus[0] & TxUnderrun)?TSAD_TUN0:0) 2552 2553 |((s->TxStatus[3] & TxAborted )?TSAD_TABT3:0) 2554 |((s->TxStatus[2] & TxAborted )?TSAD_TABT2:0) 2555 |((s->TxStatus[1] & TxAborted )?TSAD_TABT1:0) 2556 |((s->TxStatus[0] & TxAborted )?TSAD_TABT0:0) 2557 2558 |((s->TxStatus[3] & TxHostOwns )?TSAD_OWN3:0) 2559 |((s->TxStatus[2] & TxHostOwns )?TSAD_OWN2:0) 2560 |((s->TxStatus[1] & TxHostOwns )?TSAD_OWN1:0) 2561 |((s->TxStatus[0] & TxHostOwns )?TSAD_OWN0:0) ; 2562 2563 2564 DPRINTF("TSAD read val=0x%04x\n", ret); 2565 2566 return ret; 2567 } 2568 2569 static uint16_t rtl8139_CSCR_read(RTL8139State *s) 2570 { 2571 uint16_t ret = s->CSCR; 2572 2573 DPRINTF("CSCR read val=0x%04x\n", ret); 2574 2575 return ret; 2576 } 2577 2578 static void rtl8139_TxAddr_write(RTL8139State *s, uint32_t txAddrOffset, uint32_t val) 2579 { 2580 DPRINTF("TxAddr write offset=0x%x val=0x%08x\n", txAddrOffset, val); 2581 2582 s->TxAddr[txAddrOffset/4] = val; 2583 } 2584 2585 static uint32_t rtl8139_TxAddr_read(RTL8139State *s, uint32_t txAddrOffset) 2586 { 2587 uint32_t ret = s->TxAddr[txAddrOffset/4]; 2588 2589 DPRINTF("TxAddr read offset=0x%x val=0x%08x\n", txAddrOffset, ret); 2590 2591 return ret; 2592 } 2593 2594 static void rtl8139_RxBufPtr_write(RTL8139State *s, uint32_t val) 2595 { 2596 DPRINTF("RxBufPtr write val=0x%04x\n", val); 2597 2598 /* this value is off by 16 */ 2599 s->RxBufPtr = MOD2(val + 0x10, s->RxBufferSize); 2600 2601 /* more buffer space may be available so try to receive */ 2602 qemu_flush_queued_packets(qemu_get_queue(s->nic)); 2603 2604 DPRINTF(" CAPR write: rx buffer length %d head 0x%04x read 0x%04x\n", 2605 s->RxBufferSize, s->RxBufAddr, s->RxBufPtr); 2606 } 2607 2608 static uint32_t rtl8139_RxBufPtr_read(RTL8139State *s) 2609 { 2610 /* this value is off by 16 */ 2611 uint32_t ret = s->RxBufPtr - 0x10; 2612 2613 DPRINTF("RxBufPtr read val=0x%04x\n", ret); 2614 2615 return ret; 2616 } 2617 2618 static uint32_t rtl8139_RxBufAddr_read(RTL8139State *s) 2619 { 2620 /* this value is NOT off by 16 */ 2621 uint32_t ret = s->RxBufAddr; 2622 2623 DPRINTF("RxBufAddr read val=0x%04x\n", ret); 2624 2625 return ret; 2626 } 2627 2628 static void rtl8139_RxBuf_write(RTL8139State *s, uint32_t val) 2629 { 2630 DPRINTF("RxBuf write val=0x%08x\n", val); 2631 2632 s->RxBuf = val; 2633 2634 /* may need to reset rxring here */ 2635 } 2636 2637 static uint32_t rtl8139_RxBuf_read(RTL8139State *s) 2638 { 2639 uint32_t ret = s->RxBuf; 2640 2641 DPRINTF("RxBuf read val=0x%08x\n", ret); 2642 2643 return ret; 2644 } 2645 2646 static void rtl8139_IntrMask_write(RTL8139State *s, uint32_t val) 2647 { 2648 DPRINTF("IntrMask write(w) val=0x%04x\n", val); 2649 2650 /* mask unwritable bits */ 2651 val = SET_MASKED(val, 0x1e00, s->IntrMask); 2652 2653 s->IntrMask = val; 2654 2655 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 2656 rtl8139_update_irq(s); 2657 2658 } 2659 2660 static uint32_t rtl8139_IntrMask_read(RTL8139State *s) 2661 { 2662 uint32_t ret = s->IntrMask; 2663 2664 DPRINTF("IntrMask read(w) val=0x%04x\n", ret); 2665 2666 return ret; 2667 } 2668 2669 static void rtl8139_IntrStatus_write(RTL8139State *s, uint32_t val) 2670 { 2671 DPRINTF("IntrStatus write(w) val=0x%04x\n", val); 2672 2673 #if 0 2674 2675 /* writing to ISR has no effect */ 2676 2677 return; 2678 2679 #else 2680 uint16_t newStatus = s->IntrStatus & ~val; 2681 2682 /* mask unwritable bits */ 2683 newStatus = SET_MASKED(newStatus, 0x1e00, s->IntrStatus); 2684 2685 /* writing 1 to interrupt status register bit clears it */ 2686 s->IntrStatus = 0; 2687 rtl8139_update_irq(s); 2688 2689 s->IntrStatus = newStatus; 2690 /* 2691 * Computing if we miss an interrupt here is not that correct but 2692 * considered that we should have had already an interrupt 2693 * and probably emulated is slower is better to assume this resetting was 2694 * done before testing on previous rtl8139_update_irq lead to IRQ losing 2695 */ 2696 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 2697 rtl8139_update_irq(s); 2698 2699 #endif 2700 } 2701 2702 static uint32_t rtl8139_IntrStatus_read(RTL8139State *s) 2703 { 2704 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 2705 2706 uint32_t ret = s->IntrStatus; 2707 2708 DPRINTF("IntrStatus read(w) val=0x%04x\n", ret); 2709 2710 #if 0 2711 2712 /* reading ISR clears all interrupts */ 2713 s->IntrStatus = 0; 2714 2715 rtl8139_update_irq(s); 2716 2717 #endif 2718 2719 return ret; 2720 } 2721 2722 static void rtl8139_MultiIntr_write(RTL8139State *s, uint32_t val) 2723 { 2724 DPRINTF("MultiIntr write(w) val=0x%04x\n", val); 2725 2726 /* mask unwritable bits */ 2727 val = SET_MASKED(val, 0xf000, s->MultiIntr); 2728 2729 s->MultiIntr = val; 2730 } 2731 2732 static uint32_t rtl8139_MultiIntr_read(RTL8139State *s) 2733 { 2734 uint32_t ret = s->MultiIntr; 2735 2736 DPRINTF("MultiIntr read(w) val=0x%04x\n", ret); 2737 2738 return ret; 2739 } 2740 2741 static void rtl8139_io_writeb(void *opaque, uint8_t addr, uint32_t val) 2742 { 2743 RTL8139State *s = opaque; 2744 2745 switch (addr) 2746 { 2747 case MAC0 ... MAC0+4: 2748 s->phys[addr - MAC0] = val; 2749 break; 2750 case MAC0+5: 2751 s->phys[addr - MAC0] = val; 2752 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->phys); 2753 break; 2754 case MAC0+6 ... MAC0+7: 2755 /* reserved */ 2756 break; 2757 case MAR0 ... MAR0+7: 2758 s->mult[addr - MAR0] = val; 2759 break; 2760 case ChipCmd: 2761 rtl8139_ChipCmd_write(s, val); 2762 break; 2763 case Cfg9346: 2764 rtl8139_Cfg9346_write(s, val); 2765 break; 2766 case TxConfig: /* windows driver sometimes writes using byte-lenth call */ 2767 rtl8139_TxConfig_writeb(s, val); 2768 break; 2769 case Config0: 2770 rtl8139_Config0_write(s, val); 2771 break; 2772 case Config1: 2773 rtl8139_Config1_write(s, val); 2774 break; 2775 case Config3: 2776 rtl8139_Config3_write(s, val); 2777 break; 2778 case Config4: 2779 rtl8139_Config4_write(s, val); 2780 break; 2781 case Config5: 2782 rtl8139_Config5_write(s, val); 2783 break; 2784 case MediaStatus: 2785 /* ignore */ 2786 DPRINTF("not implemented write(b) to MediaStatus val=0x%02x\n", 2787 val); 2788 break; 2789 2790 case HltClk: 2791 DPRINTF("HltClk write val=0x%08x\n", val); 2792 if (val == 'R') 2793 { 2794 s->clock_enabled = 1; 2795 } 2796 else if (val == 'H') 2797 { 2798 s->clock_enabled = 0; 2799 } 2800 break; 2801 2802 case TxThresh: 2803 DPRINTF("C+ TxThresh write(b) val=0x%02x\n", val); 2804 s->TxThresh = val; 2805 break; 2806 2807 case TxPoll: 2808 DPRINTF("C+ TxPoll write(b) val=0x%02x\n", val); 2809 if (val & (1 << 7)) 2810 { 2811 DPRINTF("C+ TxPoll high priority transmission (not " 2812 "implemented)\n"); 2813 //rtl8139_cplus_transmit(s); 2814 } 2815 if (val & (1 << 6)) 2816 { 2817 DPRINTF("C+ TxPoll normal priority transmission\n"); 2818 rtl8139_cplus_transmit(s); 2819 } 2820 2821 break; 2822 2823 default: 2824 DPRINTF("not implemented write(b) addr=0x%x val=0x%02x\n", addr, 2825 val); 2826 break; 2827 } 2828 } 2829 2830 static void rtl8139_io_writew(void *opaque, uint8_t addr, uint32_t val) 2831 { 2832 RTL8139State *s = opaque; 2833 2834 switch (addr) 2835 { 2836 case IntrMask: 2837 rtl8139_IntrMask_write(s, val); 2838 break; 2839 2840 case IntrStatus: 2841 rtl8139_IntrStatus_write(s, val); 2842 break; 2843 2844 case MultiIntr: 2845 rtl8139_MultiIntr_write(s, val); 2846 break; 2847 2848 case RxBufPtr: 2849 rtl8139_RxBufPtr_write(s, val); 2850 break; 2851 2852 case BasicModeCtrl: 2853 rtl8139_BasicModeCtrl_write(s, val); 2854 break; 2855 case BasicModeStatus: 2856 rtl8139_BasicModeStatus_write(s, val); 2857 break; 2858 case NWayAdvert: 2859 DPRINTF("NWayAdvert write(w) val=0x%04x\n", val); 2860 s->NWayAdvert = val; 2861 break; 2862 case NWayLPAR: 2863 DPRINTF("forbidden NWayLPAR write(w) val=0x%04x\n", val); 2864 break; 2865 case NWayExpansion: 2866 DPRINTF("NWayExpansion write(w) val=0x%04x\n", val); 2867 s->NWayExpansion = val; 2868 break; 2869 2870 case CpCmd: 2871 rtl8139_CpCmd_write(s, val); 2872 break; 2873 2874 case IntrMitigate: 2875 rtl8139_IntrMitigate_write(s, val); 2876 break; 2877 2878 default: 2879 DPRINTF("ioport write(w) addr=0x%x val=0x%04x via write(b)\n", 2880 addr, val); 2881 2882 rtl8139_io_writeb(opaque, addr, val & 0xff); 2883 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff); 2884 break; 2885 } 2886 } 2887 2888 static void rtl8139_set_next_tctr_time(RTL8139State *s, int64_t current_time) 2889 { 2890 int64_t pci_time, next_time; 2891 uint32_t low_pci; 2892 2893 DPRINTF("entered rtl8139_set_next_tctr_time\n"); 2894 2895 if (s->TimerExpire && current_time >= s->TimerExpire) { 2896 s->IntrStatus |= PCSTimeout; 2897 rtl8139_update_irq(s); 2898 } 2899 2900 /* Set QEMU timer only if needed that is 2901 * - TimerInt <> 0 (we have a timer) 2902 * - mask = 1 (we want an interrupt timer) 2903 * - irq = 0 (irq is not already active) 2904 * If any of above change we need to compute timer again 2905 * Also we must check if timer is passed without QEMU timer 2906 */ 2907 s->TimerExpire = 0; 2908 if (!s->TimerInt) { 2909 return; 2910 } 2911 2912 pci_time = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY, 2913 get_ticks_per_sec()); 2914 low_pci = pci_time & 0xffffffff; 2915 pci_time = pci_time - low_pci + s->TimerInt; 2916 if (low_pci >= s->TimerInt) { 2917 pci_time += 0x100000000LL; 2918 } 2919 next_time = s->TCTR_base + muldiv64(pci_time, get_ticks_per_sec(), 2920 PCI_FREQUENCY); 2921 s->TimerExpire = next_time; 2922 2923 if ((s->IntrMask & PCSTimeout) != 0 && (s->IntrStatus & PCSTimeout) == 0) { 2924 timer_mod(s->timer, next_time); 2925 } 2926 } 2927 2928 static void rtl8139_io_writel(void *opaque, uint8_t addr, uint32_t val) 2929 { 2930 RTL8139State *s = opaque; 2931 2932 switch (addr) 2933 { 2934 case RxMissed: 2935 DPRINTF("RxMissed clearing on write\n"); 2936 s->RxMissed = 0; 2937 break; 2938 2939 case TxConfig: 2940 rtl8139_TxConfig_write(s, val); 2941 break; 2942 2943 case RxConfig: 2944 rtl8139_RxConfig_write(s, val); 2945 break; 2946 2947 case TxStatus0 ... TxStatus0+4*4-1: 2948 rtl8139_TxStatus_write(s, addr-TxStatus0, val); 2949 break; 2950 2951 case TxAddr0 ... TxAddr0+4*4-1: 2952 rtl8139_TxAddr_write(s, addr-TxAddr0, val); 2953 break; 2954 2955 case RxBuf: 2956 rtl8139_RxBuf_write(s, val); 2957 break; 2958 2959 case RxRingAddrLO: 2960 DPRINTF("C+ RxRing low bits write val=0x%08x\n", val); 2961 s->RxRingAddrLO = val; 2962 break; 2963 2964 case RxRingAddrHI: 2965 DPRINTF("C+ RxRing high bits write val=0x%08x\n", val); 2966 s->RxRingAddrHI = val; 2967 break; 2968 2969 case Timer: 2970 DPRINTF("TCTR Timer reset on write\n"); 2971 s->TCTR_base = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 2972 rtl8139_set_next_tctr_time(s, s->TCTR_base); 2973 break; 2974 2975 case FlashReg: 2976 DPRINTF("FlashReg TimerInt write val=0x%08x\n", val); 2977 if (s->TimerInt != val) { 2978 s->TimerInt = val; 2979 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 2980 } 2981 break; 2982 2983 default: 2984 DPRINTF("ioport write(l) addr=0x%x val=0x%08x via write(b)\n", 2985 addr, val); 2986 rtl8139_io_writeb(opaque, addr, val & 0xff); 2987 rtl8139_io_writeb(opaque, addr + 1, (val >> 8) & 0xff); 2988 rtl8139_io_writeb(opaque, addr + 2, (val >> 16) & 0xff); 2989 rtl8139_io_writeb(opaque, addr + 3, (val >> 24) & 0xff); 2990 break; 2991 } 2992 } 2993 2994 static uint32_t rtl8139_io_readb(void *opaque, uint8_t addr) 2995 { 2996 RTL8139State *s = opaque; 2997 int ret; 2998 2999 switch (addr) 3000 { 3001 case MAC0 ... MAC0+5: 3002 ret = s->phys[addr - MAC0]; 3003 break; 3004 case MAC0+6 ... MAC0+7: 3005 ret = 0; 3006 break; 3007 case MAR0 ... MAR0+7: 3008 ret = s->mult[addr - MAR0]; 3009 break; 3010 case TxStatus0 ... TxStatus0+4*4-1: 3011 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0, 3012 addr, 1); 3013 break; 3014 case ChipCmd: 3015 ret = rtl8139_ChipCmd_read(s); 3016 break; 3017 case Cfg9346: 3018 ret = rtl8139_Cfg9346_read(s); 3019 break; 3020 case Config0: 3021 ret = rtl8139_Config0_read(s); 3022 break; 3023 case Config1: 3024 ret = rtl8139_Config1_read(s); 3025 break; 3026 case Config3: 3027 ret = rtl8139_Config3_read(s); 3028 break; 3029 case Config4: 3030 ret = rtl8139_Config4_read(s); 3031 break; 3032 case Config5: 3033 ret = rtl8139_Config5_read(s); 3034 break; 3035 3036 case MediaStatus: 3037 /* The LinkDown bit of MediaStatus is inverse with link status */ 3038 ret = 0xd0 | (~s->BasicModeStatus & 0x04); 3039 DPRINTF("MediaStatus read 0x%x\n", ret); 3040 break; 3041 3042 case HltClk: 3043 ret = s->clock_enabled; 3044 DPRINTF("HltClk read 0x%x\n", ret); 3045 break; 3046 3047 case PCIRevisionID: 3048 ret = RTL8139_PCI_REVID; 3049 DPRINTF("PCI Revision ID read 0x%x\n", ret); 3050 break; 3051 3052 case TxThresh: 3053 ret = s->TxThresh; 3054 DPRINTF("C+ TxThresh read(b) val=0x%02x\n", ret); 3055 break; 3056 3057 case 0x43: /* Part of TxConfig register. Windows driver tries to read it */ 3058 ret = s->TxConfig >> 24; 3059 DPRINTF("RTL8139C TxConfig at 0x43 read(b) val=0x%02x\n", ret); 3060 break; 3061 3062 default: 3063 DPRINTF("not implemented read(b) addr=0x%x\n", addr); 3064 ret = 0; 3065 break; 3066 } 3067 3068 return ret; 3069 } 3070 3071 static uint32_t rtl8139_io_readw(void *opaque, uint8_t addr) 3072 { 3073 RTL8139State *s = opaque; 3074 uint32_t ret; 3075 3076 switch (addr) 3077 { 3078 case TxAddr0 ... TxAddr0+4*4-1: 3079 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxAddr, TxAddr0, addr, 2); 3080 break; 3081 case IntrMask: 3082 ret = rtl8139_IntrMask_read(s); 3083 break; 3084 3085 case IntrStatus: 3086 ret = rtl8139_IntrStatus_read(s); 3087 break; 3088 3089 case MultiIntr: 3090 ret = rtl8139_MultiIntr_read(s); 3091 break; 3092 3093 case RxBufPtr: 3094 ret = rtl8139_RxBufPtr_read(s); 3095 break; 3096 3097 case RxBufAddr: 3098 ret = rtl8139_RxBufAddr_read(s); 3099 break; 3100 3101 case BasicModeCtrl: 3102 ret = rtl8139_BasicModeCtrl_read(s); 3103 break; 3104 case BasicModeStatus: 3105 ret = rtl8139_BasicModeStatus_read(s); 3106 break; 3107 case NWayAdvert: 3108 ret = s->NWayAdvert; 3109 DPRINTF("NWayAdvert read(w) val=0x%04x\n", ret); 3110 break; 3111 case NWayLPAR: 3112 ret = s->NWayLPAR; 3113 DPRINTF("NWayLPAR read(w) val=0x%04x\n", ret); 3114 break; 3115 case NWayExpansion: 3116 ret = s->NWayExpansion; 3117 DPRINTF("NWayExpansion read(w) val=0x%04x\n", ret); 3118 break; 3119 3120 case CpCmd: 3121 ret = rtl8139_CpCmd_read(s); 3122 break; 3123 3124 case IntrMitigate: 3125 ret = rtl8139_IntrMitigate_read(s); 3126 break; 3127 3128 case TxSummary: 3129 ret = rtl8139_TSAD_read(s); 3130 break; 3131 3132 case CSCR: 3133 ret = rtl8139_CSCR_read(s); 3134 break; 3135 3136 default: 3137 DPRINTF("ioport read(w) addr=0x%x via read(b)\n", addr); 3138 3139 ret = rtl8139_io_readb(opaque, addr); 3140 ret |= rtl8139_io_readb(opaque, addr + 1) << 8; 3141 3142 DPRINTF("ioport read(w) addr=0x%x val=0x%04x\n", addr, ret); 3143 break; 3144 } 3145 3146 return ret; 3147 } 3148 3149 static uint32_t rtl8139_io_readl(void *opaque, uint8_t addr) 3150 { 3151 RTL8139State *s = opaque; 3152 uint32_t ret; 3153 3154 switch (addr) 3155 { 3156 case RxMissed: 3157 ret = s->RxMissed; 3158 3159 DPRINTF("RxMissed read val=0x%08x\n", ret); 3160 break; 3161 3162 case TxConfig: 3163 ret = rtl8139_TxConfig_read(s); 3164 break; 3165 3166 case RxConfig: 3167 ret = rtl8139_RxConfig_read(s); 3168 break; 3169 3170 case TxStatus0 ... TxStatus0+4*4-1: 3171 ret = rtl8139_TxStatus_TxAddr_read(s, s->TxStatus, TxStatus0, 3172 addr, 4); 3173 break; 3174 3175 case TxAddr0 ... TxAddr0+4*4-1: 3176 ret = rtl8139_TxAddr_read(s, addr-TxAddr0); 3177 break; 3178 3179 case RxBuf: 3180 ret = rtl8139_RxBuf_read(s); 3181 break; 3182 3183 case RxRingAddrLO: 3184 ret = s->RxRingAddrLO; 3185 DPRINTF("C+ RxRing low bits read val=0x%08x\n", ret); 3186 break; 3187 3188 case RxRingAddrHI: 3189 ret = s->RxRingAddrHI; 3190 DPRINTF("C+ RxRing high bits read val=0x%08x\n", ret); 3191 break; 3192 3193 case Timer: 3194 ret = muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - s->TCTR_base, 3195 PCI_FREQUENCY, get_ticks_per_sec()); 3196 DPRINTF("TCTR Timer read val=0x%08x\n", ret); 3197 break; 3198 3199 case FlashReg: 3200 ret = s->TimerInt; 3201 DPRINTF("FlashReg TimerInt read val=0x%08x\n", ret); 3202 break; 3203 3204 default: 3205 DPRINTF("ioport read(l) addr=0x%x via read(b)\n", addr); 3206 3207 ret = rtl8139_io_readb(opaque, addr); 3208 ret |= rtl8139_io_readb(opaque, addr + 1) << 8; 3209 ret |= rtl8139_io_readb(opaque, addr + 2) << 16; 3210 ret |= rtl8139_io_readb(opaque, addr + 3) << 24; 3211 3212 DPRINTF("read(l) addr=0x%x val=%08x\n", addr, ret); 3213 break; 3214 } 3215 3216 return ret; 3217 } 3218 3219 /* */ 3220 3221 static void rtl8139_mmio_writeb(void *opaque, hwaddr addr, uint32_t val) 3222 { 3223 rtl8139_io_writeb(opaque, addr & 0xFF, val); 3224 } 3225 3226 static void rtl8139_mmio_writew(void *opaque, hwaddr addr, uint32_t val) 3227 { 3228 rtl8139_io_writew(opaque, addr & 0xFF, val); 3229 } 3230 3231 static void rtl8139_mmio_writel(void *opaque, hwaddr addr, uint32_t val) 3232 { 3233 rtl8139_io_writel(opaque, addr & 0xFF, val); 3234 } 3235 3236 static uint32_t rtl8139_mmio_readb(void *opaque, hwaddr addr) 3237 { 3238 return rtl8139_io_readb(opaque, addr & 0xFF); 3239 } 3240 3241 static uint32_t rtl8139_mmio_readw(void *opaque, hwaddr addr) 3242 { 3243 uint32_t val = rtl8139_io_readw(opaque, addr & 0xFF); 3244 return val; 3245 } 3246 3247 static uint32_t rtl8139_mmio_readl(void *opaque, hwaddr addr) 3248 { 3249 uint32_t val = rtl8139_io_readl(opaque, addr & 0xFF); 3250 return val; 3251 } 3252 3253 static int rtl8139_post_load(void *opaque, int version_id) 3254 { 3255 RTL8139State* s = opaque; 3256 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 3257 if (version_id < 4) { 3258 s->cplus_enabled = s->CpCmd != 0; 3259 } 3260 3261 /* nc.link_down can't be migrated, so infer link_down according 3262 * to link status bit in BasicModeStatus */ 3263 qemu_get_queue(s->nic)->link_down = (s->BasicModeStatus & 0x04) == 0; 3264 3265 return 0; 3266 } 3267 3268 static bool rtl8139_hotplug_ready_needed(void *opaque) 3269 { 3270 return qdev_machine_modified(); 3271 } 3272 3273 static const VMStateDescription vmstate_rtl8139_hotplug_ready ={ 3274 .name = "rtl8139/hotplug_ready", 3275 .version_id = 1, 3276 .minimum_version_id = 1, 3277 .fields = (VMStateField[]) { 3278 VMSTATE_END_OF_LIST() 3279 } 3280 }; 3281 3282 static void rtl8139_pre_save(void *opaque) 3283 { 3284 RTL8139State* s = opaque; 3285 int64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); 3286 3287 /* set IntrStatus correctly */ 3288 rtl8139_set_next_tctr_time(s, current_time); 3289 s->TCTR = muldiv64(current_time - s->TCTR_base, PCI_FREQUENCY, 3290 get_ticks_per_sec()); 3291 s->rtl8139_mmio_io_addr_dummy = 0; 3292 } 3293 3294 static const VMStateDescription vmstate_rtl8139 = { 3295 .name = "rtl8139", 3296 .version_id = 4, 3297 .minimum_version_id = 3, 3298 .post_load = rtl8139_post_load, 3299 .pre_save = rtl8139_pre_save, 3300 .fields = (VMStateField[]) { 3301 VMSTATE_PCI_DEVICE(parent_obj, RTL8139State), 3302 VMSTATE_PARTIAL_BUFFER(phys, RTL8139State, 6), 3303 VMSTATE_BUFFER(mult, RTL8139State), 3304 VMSTATE_UINT32_ARRAY(TxStatus, RTL8139State, 4), 3305 VMSTATE_UINT32_ARRAY(TxAddr, RTL8139State, 4), 3306 3307 VMSTATE_UINT32(RxBuf, RTL8139State), 3308 VMSTATE_UINT32(RxBufferSize, RTL8139State), 3309 VMSTATE_UINT32(RxBufPtr, RTL8139State), 3310 VMSTATE_UINT32(RxBufAddr, RTL8139State), 3311 3312 VMSTATE_UINT16(IntrStatus, RTL8139State), 3313 VMSTATE_UINT16(IntrMask, RTL8139State), 3314 3315 VMSTATE_UINT32(TxConfig, RTL8139State), 3316 VMSTATE_UINT32(RxConfig, RTL8139State), 3317 VMSTATE_UINT32(RxMissed, RTL8139State), 3318 VMSTATE_UINT16(CSCR, RTL8139State), 3319 3320 VMSTATE_UINT8(Cfg9346, RTL8139State), 3321 VMSTATE_UINT8(Config0, RTL8139State), 3322 VMSTATE_UINT8(Config1, RTL8139State), 3323 VMSTATE_UINT8(Config3, RTL8139State), 3324 VMSTATE_UINT8(Config4, RTL8139State), 3325 VMSTATE_UINT8(Config5, RTL8139State), 3326 3327 VMSTATE_UINT8(clock_enabled, RTL8139State), 3328 VMSTATE_UINT8(bChipCmdState, RTL8139State), 3329 3330 VMSTATE_UINT16(MultiIntr, RTL8139State), 3331 3332 VMSTATE_UINT16(BasicModeCtrl, RTL8139State), 3333 VMSTATE_UINT16(BasicModeStatus, RTL8139State), 3334 VMSTATE_UINT16(NWayAdvert, RTL8139State), 3335 VMSTATE_UINT16(NWayLPAR, RTL8139State), 3336 VMSTATE_UINT16(NWayExpansion, RTL8139State), 3337 3338 VMSTATE_UINT16(CpCmd, RTL8139State), 3339 VMSTATE_UINT8(TxThresh, RTL8139State), 3340 3341 VMSTATE_UNUSED(4), 3342 VMSTATE_MACADDR(conf.macaddr, RTL8139State), 3343 VMSTATE_INT32(rtl8139_mmio_io_addr_dummy, RTL8139State), 3344 3345 VMSTATE_UINT32(currTxDesc, RTL8139State), 3346 VMSTATE_UINT32(currCPlusRxDesc, RTL8139State), 3347 VMSTATE_UINT32(currCPlusTxDesc, RTL8139State), 3348 VMSTATE_UINT32(RxRingAddrLO, RTL8139State), 3349 VMSTATE_UINT32(RxRingAddrHI, RTL8139State), 3350 3351 VMSTATE_UINT16_ARRAY(eeprom.contents, RTL8139State, EEPROM_9346_SIZE), 3352 VMSTATE_INT32(eeprom.mode, RTL8139State), 3353 VMSTATE_UINT32(eeprom.tick, RTL8139State), 3354 VMSTATE_UINT8(eeprom.address, RTL8139State), 3355 VMSTATE_UINT16(eeprom.input, RTL8139State), 3356 VMSTATE_UINT16(eeprom.output, RTL8139State), 3357 3358 VMSTATE_UINT8(eeprom.eecs, RTL8139State), 3359 VMSTATE_UINT8(eeprom.eesk, RTL8139State), 3360 VMSTATE_UINT8(eeprom.eedi, RTL8139State), 3361 VMSTATE_UINT8(eeprom.eedo, RTL8139State), 3362 3363 VMSTATE_UINT32(TCTR, RTL8139State), 3364 VMSTATE_UINT32(TimerInt, RTL8139State), 3365 VMSTATE_INT64(TCTR_base, RTL8139State), 3366 3367 VMSTATE_STRUCT(tally_counters, RTL8139State, 0, 3368 vmstate_tally_counters, RTL8139TallyCounters), 3369 3370 VMSTATE_UINT32_V(cplus_enabled, RTL8139State, 4), 3371 VMSTATE_END_OF_LIST() 3372 }, 3373 .subsections = (VMStateSubsection []) { 3374 { 3375 .vmsd = &vmstate_rtl8139_hotplug_ready, 3376 .needed = rtl8139_hotplug_ready_needed, 3377 }, { 3378 /* empty */ 3379 } 3380 } 3381 }; 3382 3383 /***********************************************************/ 3384 /* PCI RTL8139 definitions */ 3385 3386 static void rtl8139_ioport_write(void *opaque, hwaddr addr, 3387 uint64_t val, unsigned size) 3388 { 3389 switch (size) { 3390 case 1: 3391 rtl8139_io_writeb(opaque, addr, val); 3392 break; 3393 case 2: 3394 rtl8139_io_writew(opaque, addr, val); 3395 break; 3396 case 4: 3397 rtl8139_io_writel(opaque, addr, val); 3398 break; 3399 } 3400 } 3401 3402 static uint64_t rtl8139_ioport_read(void *opaque, hwaddr addr, 3403 unsigned size) 3404 { 3405 switch (size) { 3406 case 1: 3407 return rtl8139_io_readb(opaque, addr); 3408 case 2: 3409 return rtl8139_io_readw(opaque, addr); 3410 case 4: 3411 return rtl8139_io_readl(opaque, addr); 3412 } 3413 3414 return -1; 3415 } 3416 3417 static const MemoryRegionOps rtl8139_io_ops = { 3418 .read = rtl8139_ioport_read, 3419 .write = rtl8139_ioport_write, 3420 .impl = { 3421 .min_access_size = 1, 3422 .max_access_size = 4, 3423 }, 3424 .endianness = DEVICE_LITTLE_ENDIAN, 3425 }; 3426 3427 static const MemoryRegionOps rtl8139_mmio_ops = { 3428 .old_mmio = { 3429 .read = { 3430 rtl8139_mmio_readb, 3431 rtl8139_mmio_readw, 3432 rtl8139_mmio_readl, 3433 }, 3434 .write = { 3435 rtl8139_mmio_writeb, 3436 rtl8139_mmio_writew, 3437 rtl8139_mmio_writel, 3438 }, 3439 }, 3440 .endianness = DEVICE_LITTLE_ENDIAN, 3441 }; 3442 3443 static void rtl8139_timer(void *opaque) 3444 { 3445 RTL8139State *s = opaque; 3446 3447 if (!s->clock_enabled) 3448 { 3449 DPRINTF(">>> timer: clock is not running\n"); 3450 return; 3451 } 3452 3453 s->IntrStatus |= PCSTimeout; 3454 rtl8139_update_irq(s); 3455 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 3456 } 3457 3458 static void pci_rtl8139_uninit(PCIDevice *dev) 3459 { 3460 RTL8139State *s = RTL8139(dev); 3461 3462 if (s->cplus_txbuffer) { 3463 g_free(s->cplus_txbuffer); 3464 s->cplus_txbuffer = NULL; 3465 } 3466 timer_del(s->timer); 3467 timer_free(s->timer); 3468 qemu_del_nic(s->nic); 3469 } 3470 3471 static void rtl8139_set_link_status(NetClientState *nc) 3472 { 3473 RTL8139State *s = qemu_get_nic_opaque(nc); 3474 3475 if (nc->link_down) { 3476 s->BasicModeStatus &= ~0x04; 3477 } else { 3478 s->BasicModeStatus |= 0x04; 3479 } 3480 3481 s->IntrStatus |= RxUnderrun; 3482 rtl8139_update_irq(s); 3483 } 3484 3485 static NetClientInfo net_rtl8139_info = { 3486 .type = NET_CLIENT_OPTIONS_KIND_NIC, 3487 .size = sizeof(NICState), 3488 .can_receive = rtl8139_can_receive, 3489 .receive = rtl8139_receive, 3490 .link_status_changed = rtl8139_set_link_status, 3491 }; 3492 3493 static int pci_rtl8139_init(PCIDevice *dev) 3494 { 3495 RTL8139State *s = RTL8139(dev); 3496 DeviceState *d = DEVICE(dev); 3497 uint8_t *pci_conf; 3498 3499 pci_conf = dev->config; 3500 pci_conf[PCI_INTERRUPT_PIN] = 1; /* interrupt pin A */ 3501 /* TODO: start of capability list, but no capability 3502 * list bit in status register, and offset 0xdc seems unused. */ 3503 pci_conf[PCI_CAPABILITY_LIST] = 0xdc; 3504 3505 memory_region_init_io(&s->bar_io, OBJECT(s), &rtl8139_io_ops, s, 3506 "rtl8139", 0x100); 3507 memory_region_init_io(&s->bar_mem, OBJECT(s), &rtl8139_mmio_ops, s, 3508 "rtl8139", 0x100); 3509 pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_IO, &s->bar_io); 3510 pci_register_bar(dev, 1, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar_mem); 3511 3512 qemu_macaddr_default_if_unset(&s->conf.macaddr); 3513 3514 /* prepare eeprom */ 3515 s->eeprom.contents[0] = 0x8129; 3516 #if 1 3517 /* PCI vendor and device ID should be mirrored here */ 3518 s->eeprom.contents[1] = PCI_VENDOR_ID_REALTEK; 3519 s->eeprom.contents[2] = PCI_DEVICE_ID_REALTEK_8139; 3520 #endif 3521 s->eeprom.contents[7] = s->conf.macaddr.a[0] | s->conf.macaddr.a[1] << 8; 3522 s->eeprom.contents[8] = s->conf.macaddr.a[2] | s->conf.macaddr.a[3] << 8; 3523 s->eeprom.contents[9] = s->conf.macaddr.a[4] | s->conf.macaddr.a[5] << 8; 3524 3525 s->nic = qemu_new_nic(&net_rtl8139_info, &s->conf, 3526 object_get_typename(OBJECT(dev)), d->id, s); 3527 qemu_format_nic_info_str(qemu_get_queue(s->nic), s->conf.macaddr.a); 3528 3529 s->cplus_txbuffer = NULL; 3530 s->cplus_txbuffer_len = 0; 3531 s->cplus_txbuffer_offset = 0; 3532 3533 s->TimerExpire = 0; 3534 s->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, rtl8139_timer, s); 3535 rtl8139_set_next_tctr_time(s, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL)); 3536 3537 return 0; 3538 } 3539 3540 static void rtl8139_instance_init(Object *obj) 3541 { 3542 RTL8139State *s = RTL8139(obj); 3543 3544 device_add_bootindex_property(obj, &s->conf.bootindex, 3545 "bootindex", "/ethernet-phy@0", 3546 DEVICE(obj), NULL); 3547 } 3548 3549 static Property rtl8139_properties[] = { 3550 DEFINE_NIC_PROPERTIES(RTL8139State, conf), 3551 DEFINE_PROP_END_OF_LIST(), 3552 }; 3553 3554 static void rtl8139_class_init(ObjectClass *klass, void *data) 3555 { 3556 DeviceClass *dc = DEVICE_CLASS(klass); 3557 PCIDeviceClass *k = PCI_DEVICE_CLASS(klass); 3558 3559 k->init = pci_rtl8139_init; 3560 k->exit = pci_rtl8139_uninit; 3561 k->romfile = "efi-rtl8139.rom"; 3562 k->vendor_id = PCI_VENDOR_ID_REALTEK; 3563 k->device_id = PCI_DEVICE_ID_REALTEK_8139; 3564 k->revision = RTL8139_PCI_REVID; /* >=0x20 is for 8139C+ */ 3565 k->class_id = PCI_CLASS_NETWORK_ETHERNET; 3566 dc->reset = rtl8139_reset; 3567 dc->vmsd = &vmstate_rtl8139; 3568 dc->props = rtl8139_properties; 3569 set_bit(DEVICE_CATEGORY_NETWORK, dc->categories); 3570 } 3571 3572 static const TypeInfo rtl8139_info = { 3573 .name = TYPE_RTL8139, 3574 .parent = TYPE_PCI_DEVICE, 3575 .instance_size = sizeof(RTL8139State), 3576 .class_init = rtl8139_class_init, 3577 .instance_init = rtl8139_instance_init, 3578 }; 3579 3580 static void rtl8139_register_types(void) 3581 { 3582 type_register_static(&rtl8139_info); 3583 } 3584 3585 type_init(rtl8139_register_types) 3586