xref: /qemu/hw/misc/macio/cuda.c (revision eda14abbb804f8ed2cb903c99ad1852848fa2e42)
1 /*
2  * QEMU PowerMac CUDA device support
3  *
4  * Copyright (c) 2004-2007 Fabrice Bellard
5  * Copyright (c) 2007 Jocelyn Mayer
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 #include "hw/hw.h"
26 #include "hw/ppc/mac.h"
27 #include "hw/input/adb.h"
28 #include "qemu/timer.h"
29 #include "sysemu/sysemu.h"
30 
31 /* XXX: implement all timer modes */
32 
33 /* debug CUDA */
34 //#define DEBUG_CUDA
35 
36 /* debug CUDA packets */
37 //#define DEBUG_CUDA_PACKET
38 
39 #ifdef DEBUG_CUDA
40 #define CUDA_DPRINTF(fmt, ...)                                  \
41     do { printf("CUDA: " fmt , ## __VA_ARGS__); } while (0)
42 #else
43 #define CUDA_DPRINTF(fmt, ...)
44 #endif
45 
46 /* Bits in B data register: all active low */
47 #define TREQ		0x08		/* Transfer request (input) */
48 #define TACK		0x10		/* Transfer acknowledge (output) */
49 #define TIP		0x20		/* Transfer in progress (output) */
50 
51 /* Bits in ACR */
52 #define SR_CTRL		0x1c		/* Shift register control bits */
53 #define SR_EXT		0x0c		/* Shift on external clock */
54 #define SR_OUT		0x10		/* Shift out if 1 */
55 
56 /* Bits in IFR and IER */
57 #define IER_SET		0x80		/* set bits in IER */
58 #define IER_CLR		0		/* clear bits in IER */
59 #define SR_INT		0x04		/* Shift register full/empty */
60 #define SR_DATA_INT	0x08
61 #define SR_CLOCK_INT	0x10
62 #define T1_INT          0x40            /* Timer 1 interrupt */
63 #define T2_INT          0x20            /* Timer 2 interrupt */
64 
65 /* Bits in ACR */
66 #define T1MODE          0xc0            /* Timer 1 mode */
67 #define T1MODE_CONT     0x40            /*  continuous interrupts */
68 
69 /* commands (1st byte) */
70 #define ADB_PACKET	0
71 #define CUDA_PACKET	1
72 #define ERROR_PACKET	2
73 #define TIMER_PACKET	3
74 #define POWER_PACKET	4
75 #define MACIIC_PACKET	5
76 #define PMU_PACKET	6
77 
78 
79 /* CUDA commands (2nd byte) */
80 #define CUDA_WARM_START			0x0
81 #define CUDA_AUTOPOLL			0x1
82 #define CUDA_GET_6805_ADDR		0x2
83 #define CUDA_GET_TIME			0x3
84 #define CUDA_GET_PRAM			0x7
85 #define CUDA_SET_6805_ADDR		0x8
86 #define CUDA_SET_TIME			0x9
87 #define CUDA_POWERDOWN			0xa
88 #define CUDA_POWERUP_TIME		0xb
89 #define CUDA_SET_PRAM			0xc
90 #define CUDA_MS_RESET			0xd
91 #define CUDA_SEND_DFAC			0xe
92 #define CUDA_BATTERY_SWAP_SENSE		0x10
93 #define CUDA_RESET_SYSTEM		0x11
94 #define CUDA_SET_IPL			0x12
95 #define CUDA_FILE_SERVER_FLAG		0x13
96 #define CUDA_SET_AUTO_RATE		0x14
97 #define CUDA_GET_AUTO_RATE		0x16
98 #define CUDA_SET_DEVICE_LIST		0x19
99 #define CUDA_GET_DEVICE_LIST		0x1a
100 #define CUDA_SET_ONE_SECOND_MODE	0x1b
101 #define CUDA_SET_POWER_MESSAGES		0x21
102 #define CUDA_GET_SET_IIC		0x22
103 #define CUDA_WAKEUP			0x23
104 #define CUDA_TIMER_TICKLE		0x24
105 #define CUDA_COMBINED_FORMAT_IIC	0x25
106 
107 #define CUDA_TIMER_FREQ (4700000 / 6)
108 #define CUDA_ADB_POLL_FREQ 50
109 
110 /* CUDA returns time_t's offset from Jan 1, 1904, not 1970 */
111 #define RTC_OFFSET                      2082844800
112 
113 /* CUDA registers */
114 #define CUDA_REG_B       0x00
115 #define CUDA_REG_A       0x01
116 #define CUDA_REG_DIRB    0x02
117 #define CUDA_REG_DIRA    0x03
118 #define CUDA_REG_T1CL    0x04
119 #define CUDA_REG_T1CH    0x05
120 #define CUDA_REG_T1LL    0x06
121 #define CUDA_REG_T1LH    0x07
122 #define CUDA_REG_T2CL    0x08
123 #define CUDA_REG_T2CH    0x09
124 #define CUDA_REG_SR      0x0a
125 #define CUDA_REG_ACR     0x0b
126 #define CUDA_REG_PCR     0x0c
127 #define CUDA_REG_IFR     0x0d
128 #define CUDA_REG_IER     0x0e
129 #define CUDA_REG_ANH     0x0f
130 
131 static void cuda_update(CUDAState *s);
132 static void cuda_receive_packet_from_host(CUDAState *s,
133                                           const uint8_t *data, int len);
134 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
135                               int64_t current_time);
136 
137 static void cuda_update_irq(CUDAState *s)
138 {
139     if (s->ifr & s->ier & (SR_INT | T1_INT)) {
140         qemu_irq_raise(s->irq);
141     } else {
142         qemu_irq_lower(s->irq);
143     }
144 }
145 
146 static uint64_t get_tb(uint64_t time, uint64_t freq)
147 {
148     return muldiv64(time, freq, get_ticks_per_sec());
149 }
150 
151 static unsigned int get_counter(CUDATimer *s)
152 {
153     int64_t d;
154     unsigned int counter;
155     uint64_t tb_diff;
156     uint64_t current_time = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
157 
158     /* Reverse of the tb calculation algorithm that Mac OS X uses on bootup. */
159     tb_diff = get_tb(current_time, s->frequency) - s->load_time;
160     d = (tb_diff * 0xBF401675E5DULL) / (s->frequency << 24);
161 
162     if (s->index == 0) {
163         /* the timer goes down from latch to -1 (period of latch + 2) */
164         if (d <= (s->counter_value + 1)) {
165             counter = (s->counter_value - d) & 0xffff;
166         } else {
167             counter = (d - (s->counter_value + 1)) % (s->latch + 2);
168             counter = (s->latch - counter) & 0xffff;
169         }
170     } else {
171         counter = (s->counter_value - d) & 0xffff;
172     }
173     return counter;
174 }
175 
176 static void set_counter(CUDAState *s, CUDATimer *ti, unsigned int val)
177 {
178     CUDA_DPRINTF("T%d.counter=%d\n", 1 + (ti->timer == NULL), val);
179     ti->load_time = get_tb(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
180                            s->frequency);
181     ti->counter_value = val;
182     cuda_timer_update(s, ti, ti->load_time);
183 }
184 
185 static int64_t get_next_irq_time(CUDATimer *s, int64_t current_time)
186 {
187     int64_t d, next_time;
188     unsigned int counter;
189 
190     /* current counter value */
191     d = muldiv64(current_time - s->load_time,
192                  CUDA_TIMER_FREQ, get_ticks_per_sec());
193     /* the timer goes down from latch to -1 (period of latch + 2) */
194     if (d <= (s->counter_value + 1)) {
195         counter = (s->counter_value - d) & 0xffff;
196     } else {
197         counter = (d - (s->counter_value + 1)) % (s->latch + 2);
198         counter = (s->latch - counter) & 0xffff;
199     }
200 
201     /* Note: we consider the irq is raised on 0 */
202     if (counter == 0xffff) {
203         next_time = d + s->latch + 1;
204     } else if (counter == 0) {
205         next_time = d + s->latch + 2;
206     } else {
207         next_time = d + counter;
208     }
209     CUDA_DPRINTF("latch=%d counter=%" PRId64 " delta_next=%" PRId64 "\n",
210                  s->latch, d, next_time - d);
211     next_time = muldiv64(next_time, get_ticks_per_sec(), CUDA_TIMER_FREQ) +
212         s->load_time;
213     if (next_time <= current_time)
214         next_time = current_time + 1;
215     return next_time;
216 }
217 
218 static void cuda_timer_update(CUDAState *s, CUDATimer *ti,
219                               int64_t current_time)
220 {
221     if (!ti->timer)
222         return;
223     if ((s->acr & T1MODE) != T1MODE_CONT) {
224         timer_del(ti->timer);
225     } else {
226         ti->next_irq_time = get_next_irq_time(ti, current_time);
227         timer_mod(ti->timer, ti->next_irq_time);
228     }
229 }
230 
231 static void cuda_timer1(void *opaque)
232 {
233     CUDAState *s = opaque;
234     CUDATimer *ti = &s->timers[0];
235 
236     cuda_timer_update(s, ti, ti->next_irq_time);
237     s->ifr |= T1_INT;
238     cuda_update_irq(s);
239 }
240 
241 static uint32_t cuda_readb(void *opaque, hwaddr addr)
242 {
243     CUDAState *s = opaque;
244     uint32_t val;
245 
246     addr = (addr >> 9) & 0xf;
247     switch(addr) {
248     case CUDA_REG_B:
249         val = s->b;
250         break;
251     case CUDA_REG_A:
252         val = s->a;
253         break;
254     case CUDA_REG_DIRB:
255         val = s->dirb;
256         break;
257     case CUDA_REG_DIRA:
258         val = s->dira;
259         break;
260     case CUDA_REG_T1CL:
261         val = get_counter(&s->timers[0]) & 0xff;
262         s->ifr &= ~T1_INT;
263         cuda_update_irq(s);
264         break;
265     case CUDA_REG_T1CH:
266         val = get_counter(&s->timers[0]) >> 8;
267         cuda_update_irq(s);
268         break;
269     case CUDA_REG_T1LL:
270         val = s->timers[0].latch & 0xff;
271         break;
272     case CUDA_REG_T1LH:
273         /* XXX: check this */
274         val = (s->timers[0].latch >> 8) & 0xff;
275         break;
276     case CUDA_REG_T2CL:
277         val = get_counter(&s->timers[1]) & 0xff;
278         s->ifr &= ~T2_INT;
279         break;
280     case CUDA_REG_T2CH:
281         val = get_counter(&s->timers[1]) >> 8;
282         break;
283     case CUDA_REG_SR:
284         val = s->sr;
285         s->ifr &= ~(SR_INT | SR_CLOCK_INT | SR_DATA_INT);
286         cuda_update_irq(s);
287         break;
288     case CUDA_REG_ACR:
289         val = s->acr;
290         break;
291     case CUDA_REG_PCR:
292         val = s->pcr;
293         break;
294     case CUDA_REG_IFR:
295         val = s->ifr;
296         if (s->ifr & s->ier) {
297             val |= 0x80;
298         }
299         break;
300     case CUDA_REG_IER:
301         val = s->ier | 0x80;
302         break;
303     default:
304     case CUDA_REG_ANH:
305         val = s->anh;
306         break;
307     }
308     if (addr != CUDA_REG_IFR || val != 0) {
309         CUDA_DPRINTF("read: reg=0x%x val=%02x\n", (int)addr, val);
310     }
311 
312     return val;
313 }
314 
315 static void cuda_writeb(void *opaque, hwaddr addr, uint32_t val)
316 {
317     CUDAState *s = opaque;
318 
319     addr = (addr >> 9) & 0xf;
320     CUDA_DPRINTF("write: reg=0x%x val=%02x\n", (int)addr, val);
321 
322     switch(addr) {
323     case CUDA_REG_B:
324         s->b = val;
325         cuda_update(s);
326         break;
327     case CUDA_REG_A:
328         s->a = val;
329         break;
330     case CUDA_REG_DIRB:
331         s->dirb = val;
332         break;
333     case CUDA_REG_DIRA:
334         s->dira = val;
335         break;
336     case CUDA_REG_T1CL:
337         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
338         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
339         break;
340     case CUDA_REG_T1CH:
341         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
342         s->ifr &= ~T1_INT;
343         set_counter(s, &s->timers[0], s->timers[0].latch);
344         break;
345     case CUDA_REG_T1LL:
346         s->timers[0].latch = (s->timers[0].latch & 0xff00) | val;
347         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
348         break;
349     case CUDA_REG_T1LH:
350         s->timers[0].latch = (s->timers[0].latch & 0xff) | (val << 8);
351         s->ifr &= ~T1_INT;
352         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
353         break;
354     case CUDA_REG_T2CL:
355         s->timers[1].latch = val;
356         set_counter(s, &s->timers[1], val);
357         break;
358     case CUDA_REG_T2CH:
359         set_counter(s, &s->timers[1], (val << 8) | s->timers[1].latch);
360         break;
361     case CUDA_REG_SR:
362         s->sr = val;
363         break;
364     case CUDA_REG_ACR:
365         s->acr = val;
366         cuda_timer_update(s, &s->timers[0], qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL));
367         cuda_update(s);
368         break;
369     case CUDA_REG_PCR:
370         s->pcr = val;
371         break;
372     case CUDA_REG_IFR:
373         /* reset bits */
374         s->ifr &= ~val;
375         cuda_update_irq(s);
376         break;
377     case CUDA_REG_IER:
378         if (val & IER_SET) {
379             /* set bits */
380             s->ier |= val & 0x7f;
381         } else {
382             /* reset bits */
383             s->ier &= ~val;
384         }
385         cuda_update_irq(s);
386         break;
387     default:
388     case CUDA_REG_ANH:
389         s->anh = val;
390         break;
391     }
392 }
393 
394 /* NOTE: TIP and TREQ are negated */
395 static void cuda_update(CUDAState *s)
396 {
397     int packet_received, len;
398 
399     packet_received = 0;
400     if (!(s->b & TIP)) {
401         /* transfer requested from host */
402 
403         if (s->acr & SR_OUT) {
404             /* data output */
405             if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
406                 if (s->data_out_index < sizeof(s->data_out)) {
407                     CUDA_DPRINTF("send: %02x\n", s->sr);
408                     s->data_out[s->data_out_index++] = s->sr;
409                     s->ifr |= SR_INT;
410                     cuda_update_irq(s);
411                 }
412             }
413         } else {
414             if (s->data_in_index < s->data_in_size) {
415                 /* data input */
416                 if ((s->b & (TACK | TIP)) != (s->last_b & (TACK | TIP))) {
417                     s->sr = s->data_in[s->data_in_index++];
418                     CUDA_DPRINTF("recv: %02x\n", s->sr);
419                     /* indicate end of transfer */
420                     if (s->data_in_index >= s->data_in_size) {
421                         s->b = (s->b | TREQ);
422                     }
423                     s->ifr |= SR_INT;
424                     cuda_update_irq(s);
425                 }
426             }
427         }
428     } else {
429         /* no transfer requested: handle sync case */
430         if ((s->last_b & TIP) && (s->b & TACK) != (s->last_b & TACK)) {
431             /* update TREQ state each time TACK change state */
432             if (s->b & TACK)
433                 s->b = (s->b | TREQ);
434             else
435                 s->b = (s->b & ~TREQ);
436             s->ifr |= SR_INT;
437             cuda_update_irq(s);
438         } else {
439             if (!(s->last_b & TIP)) {
440                 /* handle end of host to cuda transfer */
441                 packet_received = (s->data_out_index > 0);
442                 /* always an IRQ at the end of transfer */
443                 s->ifr |= SR_INT;
444                 cuda_update_irq(s);
445             }
446             /* signal if there is data to read */
447             if (s->data_in_index < s->data_in_size) {
448                 s->b = (s->b & ~TREQ);
449             }
450         }
451     }
452 
453     s->last_acr = s->acr;
454     s->last_b = s->b;
455 
456     /* NOTE: cuda_receive_packet_from_host() can call cuda_update()
457        recursively */
458     if (packet_received) {
459         len = s->data_out_index;
460         s->data_out_index = 0;
461         cuda_receive_packet_from_host(s, s->data_out, len);
462     }
463 }
464 
465 static void cuda_send_packet_to_host(CUDAState *s,
466                                      const uint8_t *data, int len)
467 {
468 #ifdef DEBUG_CUDA_PACKET
469     {
470         int i;
471         printf("cuda_send_packet_to_host:\n");
472         for(i = 0; i < len; i++)
473             printf(" %02x", data[i]);
474         printf("\n");
475     }
476 #endif
477     memcpy(s->data_in, data, len);
478     s->data_in_size = len;
479     s->data_in_index = 0;
480     cuda_update(s);
481     s->ifr |= SR_INT;
482     cuda_update_irq(s);
483 }
484 
485 static void cuda_adb_poll(void *opaque)
486 {
487     CUDAState *s = opaque;
488     uint8_t obuf[ADB_MAX_OUT_LEN + 2];
489     int olen;
490 
491     olen = adb_poll(&s->adb_bus, obuf + 2);
492     if (olen > 0) {
493         obuf[0] = ADB_PACKET;
494         obuf[1] = 0x40; /* polled data */
495         cuda_send_packet_to_host(s, obuf, olen + 2);
496     }
497     timer_mod(s->adb_poll_timer,
498                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
499                    (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
500 }
501 
502 static void cuda_receive_packet(CUDAState *s,
503                                 const uint8_t *data, int len)
504 {
505     uint8_t obuf[16] = { CUDA_PACKET, 0, data[0] };
506     int autopoll;
507     uint32_t ti;
508 
509     switch(data[0]) {
510     case CUDA_AUTOPOLL:
511         autopoll = (data[1] != 0);
512         if (autopoll != s->autopoll) {
513             s->autopoll = autopoll;
514             if (autopoll) {
515                 timer_mod(s->adb_poll_timer,
516                                qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
517                                (get_ticks_per_sec() / CUDA_ADB_POLL_FREQ));
518             } else {
519                 timer_del(s->adb_poll_timer);
520             }
521         }
522         cuda_send_packet_to_host(s, obuf, 3);
523         break;
524     case CUDA_GET_6805_ADDR:
525         cuda_send_packet_to_host(s, obuf, 3);
526         break;
527     case CUDA_SET_TIME:
528         ti = (((uint32_t)data[1]) << 24) + (((uint32_t)data[2]) << 16) + (((uint32_t)data[3]) << 8) + data[4];
529         s->tick_offset = ti - (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
530         cuda_send_packet_to_host(s, obuf, 3);
531         break;
532     case CUDA_GET_TIME:
533         ti = s->tick_offset + (qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) / get_ticks_per_sec());
534         obuf[3] = ti >> 24;
535         obuf[4] = ti >> 16;
536         obuf[5] = ti >> 8;
537         obuf[6] = ti;
538         cuda_send_packet_to_host(s, obuf, 7);
539         break;
540     case CUDA_FILE_SERVER_FLAG:
541     case CUDA_SET_DEVICE_LIST:
542     case CUDA_SET_AUTO_RATE:
543     case CUDA_SET_POWER_MESSAGES:
544         cuda_send_packet_to_host(s, obuf, 3);
545         break;
546     case CUDA_POWERDOWN:
547         cuda_send_packet_to_host(s, obuf, 3);
548         qemu_system_shutdown_request();
549         break;
550     case CUDA_RESET_SYSTEM:
551         cuda_send_packet_to_host(s, obuf, 3);
552         qemu_system_reset_request();
553         break;
554     case CUDA_COMBINED_FORMAT_IIC:
555         obuf[0] = ERROR_PACKET;
556         obuf[1] = 0x5;
557         obuf[2] = CUDA_PACKET;
558         obuf[3] = data[0];
559         cuda_send_packet_to_host(s, obuf, 4);
560         break;
561     case CUDA_GET_SET_IIC:
562         if (len == 4) {
563             cuda_send_packet_to_host(s, obuf, 3);
564         } else {
565             obuf[0] = ERROR_PACKET;
566             obuf[1] = 0x2;
567             obuf[2] = CUDA_PACKET;
568             obuf[3] = data[0];
569             cuda_send_packet_to_host(s, obuf, 4);
570         }
571         break;
572     default:
573         break;
574     }
575 }
576 
577 static void cuda_receive_packet_from_host(CUDAState *s,
578                                           const uint8_t *data, int len)
579 {
580 #ifdef DEBUG_CUDA_PACKET
581     {
582         int i;
583         printf("cuda_receive_packet_from_host:\n");
584         for(i = 0; i < len; i++)
585             printf(" %02x", data[i]);
586         printf("\n");
587     }
588 #endif
589     switch(data[0]) {
590     case ADB_PACKET:
591         {
592             uint8_t obuf[ADB_MAX_OUT_LEN + 3];
593             int olen;
594             olen = adb_request(&s->adb_bus, obuf + 2, data + 1, len - 1);
595             if (olen > 0) {
596                 obuf[0] = ADB_PACKET;
597                 obuf[1] = 0x00;
598                 cuda_send_packet_to_host(s, obuf, olen + 2);
599             } else {
600                 /* error */
601                 obuf[0] = ADB_PACKET;
602                 obuf[1] = -olen;
603                 obuf[2] = data[1];
604                 olen = 0;
605                 cuda_send_packet_to_host(s, obuf, olen + 3);
606             }
607         }
608         break;
609     case CUDA_PACKET:
610         cuda_receive_packet(s, data + 1, len - 1);
611         break;
612     }
613 }
614 
615 static void cuda_writew (void *opaque, hwaddr addr, uint32_t value)
616 {
617 }
618 
619 static void cuda_writel (void *opaque, hwaddr addr, uint32_t value)
620 {
621 }
622 
623 static uint32_t cuda_readw (void *opaque, hwaddr addr)
624 {
625     return 0;
626 }
627 
628 static uint32_t cuda_readl (void *opaque, hwaddr addr)
629 {
630     return 0;
631 }
632 
633 static const MemoryRegionOps cuda_ops = {
634     .old_mmio = {
635         .write = {
636             cuda_writeb,
637             cuda_writew,
638             cuda_writel,
639         },
640         .read = {
641             cuda_readb,
642             cuda_readw,
643             cuda_readl,
644         },
645     },
646     .endianness = DEVICE_NATIVE_ENDIAN,
647 };
648 
649 static bool cuda_timer_exist(void *opaque, int version_id)
650 {
651     CUDATimer *s = opaque;
652 
653     return s->timer != NULL;
654 }
655 
656 static const VMStateDescription vmstate_cuda_timer = {
657     .name = "cuda_timer",
658     .version_id = 0,
659     .minimum_version_id = 0,
660     .fields = (VMStateField[]) {
661         VMSTATE_UINT16(latch, CUDATimer),
662         VMSTATE_UINT16(counter_value, CUDATimer),
663         VMSTATE_INT64(load_time, CUDATimer),
664         VMSTATE_INT64(next_irq_time, CUDATimer),
665         VMSTATE_TIMER_PTR_TEST(timer, CUDATimer, cuda_timer_exist),
666         VMSTATE_END_OF_LIST()
667     }
668 };
669 
670 static const VMStateDescription vmstate_cuda = {
671     .name = "cuda",
672     .version_id = 2,
673     .minimum_version_id = 2,
674     .fields = (VMStateField[]) {
675         VMSTATE_UINT8(a, CUDAState),
676         VMSTATE_UINT8(b, CUDAState),
677         VMSTATE_UINT8(dira, CUDAState),
678         VMSTATE_UINT8(dirb, CUDAState),
679         VMSTATE_UINT8(sr, CUDAState),
680         VMSTATE_UINT8(acr, CUDAState),
681         VMSTATE_UINT8(pcr, CUDAState),
682         VMSTATE_UINT8(ifr, CUDAState),
683         VMSTATE_UINT8(ier, CUDAState),
684         VMSTATE_UINT8(anh, CUDAState),
685         VMSTATE_INT32(data_in_size, CUDAState),
686         VMSTATE_INT32(data_in_index, CUDAState),
687         VMSTATE_INT32(data_out_index, CUDAState),
688         VMSTATE_UINT8(autopoll, CUDAState),
689         VMSTATE_BUFFER(data_in, CUDAState),
690         VMSTATE_BUFFER(data_out, CUDAState),
691         VMSTATE_UINT32(tick_offset, CUDAState),
692         VMSTATE_STRUCT_ARRAY(timers, CUDAState, 2, 1,
693                              vmstate_cuda_timer, CUDATimer),
694         VMSTATE_TIMER_PTR(adb_poll_timer, CUDAState),
695         VMSTATE_END_OF_LIST()
696     }
697 };
698 
699 static void cuda_reset(DeviceState *dev)
700 {
701     CUDAState *s = CUDA(dev);
702 
703     s->b = 0;
704     s->a = 0;
705     s->dirb = 0;
706     s->dira = 0;
707     s->sr = 0;
708     s->acr = 0;
709     s->pcr = 0;
710     s->ifr = 0;
711     s->ier = 0;
712     //    s->ier = T1_INT | SR_INT;
713     s->anh = 0;
714     s->data_in_size = 0;
715     s->data_in_index = 0;
716     s->data_out_index = 0;
717     s->autopoll = 0;
718 
719     s->timers[0].latch = 0xffff;
720     set_counter(s, &s->timers[0], 0xffff);
721 
722     s->timers[1].latch = 0;
723     set_counter(s, &s->timers[1], 0xffff);
724 }
725 
726 static void cuda_realizefn(DeviceState *dev, Error **errp)
727 {
728     CUDAState *s = CUDA(dev);
729     struct tm tm;
730 
731     s->timers[0].timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_timer1, s);
732     s->timers[0].frequency = s->frequency;
733     s->timers[1].frequency = s->frequency;
734 
735     qemu_get_timedate(&tm, 0);
736     s->tick_offset = (uint32_t)mktimegm(&tm) + RTC_OFFSET;
737 
738     s->adb_poll_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cuda_adb_poll, s);
739 }
740 
741 static void cuda_initfn(Object *obj)
742 {
743     SysBusDevice *d = SYS_BUS_DEVICE(obj);
744     CUDAState *s = CUDA(obj);
745     int i;
746 
747     memory_region_init_io(&s->mem, obj, &cuda_ops, s, "cuda", 0x2000);
748     sysbus_init_mmio(d, &s->mem);
749     sysbus_init_irq(d, &s->irq);
750 
751     for (i = 0; i < ARRAY_SIZE(s->timers); i++) {
752         s->timers[i].index = i;
753     }
754 
755     qbus_create_inplace(&s->adb_bus, sizeof(s->adb_bus), TYPE_ADB_BUS,
756                         DEVICE(obj), "adb.0");
757 }
758 
759 static Property cuda_properties[] = {
760     DEFINE_PROP_UINT64("frequency", CUDAState, frequency, 0),
761     DEFINE_PROP_END_OF_LIST()
762 };
763 
764 static void cuda_class_init(ObjectClass *oc, void *data)
765 {
766     DeviceClass *dc = DEVICE_CLASS(oc);
767 
768     dc->realize = cuda_realizefn;
769     dc->reset = cuda_reset;
770     dc->vmsd = &vmstate_cuda;
771     dc->props = cuda_properties;
772     set_bit(DEVICE_CATEGORY_BRIDGE, dc->categories);
773 }
774 
775 static const TypeInfo cuda_type_info = {
776     .name = TYPE_CUDA,
777     .parent = TYPE_SYS_BUS_DEVICE,
778     .instance_size = sizeof(CUDAState),
779     .instance_init = cuda_initfn,
780     .class_init = cuda_class_init,
781 };
782 
783 static void cuda_register_types(void)
784 {
785     type_register_static(&cuda_type_info);
786 }
787 
788 type_init(cuda_register_types)
789