xref: /qemu/hw/mips/malta.c (revision 70ce076fa6dff60585c229a4b641b13e64bf03cf)
1 /*
2  * QEMU Malta board support
3  *
4  * Copyright (c) 2006 Aurelien Jarno
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/bitops.h"
28 #include "qemu/datadir.h"
29 #include "qemu/cutils.h"
30 #include "qemu/guest-random.h"
31 #include "exec/tswap.h"
32 #include "hw/clock.h"
33 #include "hw/southbridge/piix.h"
34 #include "hw/isa/superio.h"
35 #include "hw/char/serial-mm.h"
36 #include "net/net.h"
37 #include "hw/boards.h"
38 #include "hw/i2c/smbus_eeprom.h"
39 #include "hw/block/flash.h"
40 #include "hw/mips/mips.h"
41 #include "hw/mips/bootloader.h"
42 #include "hw/pci/pci.h"
43 #include "hw/pci/pci_bus.h"
44 #include "qemu/log.h"
45 #include "hw/ide/pci.h"
46 #include "hw/irq.h"
47 #include "hw/loader.h"
48 #include "elf.h"
49 #include "qom/object.h"
50 #include "hw/sysbus.h"             /* SysBusDevice */
51 #include "qemu/host-utils.h"
52 #include "system/qtest.h"
53 #include "system/reset.h"
54 #include "system/runstate.h"
55 #include "qapi/error.h"
56 #include "qemu/error-report.h"
57 #include "system/kvm.h"
58 #include "semihosting/semihost.h"
59 #include "hw/mips/cps.h"
60 #include "hw/qdev-clock.h"
61 #include "target/mips/internal.h"
62 #include "trace.h"
63 #include "cpu.h"
64 
65 #define ENVP_PADDR          0x2000
66 #define ENVP_VADDR          cpu_mips_phys_to_kseg0(NULL, ENVP_PADDR)
67 #define ENVP_NB_ENTRIES     16
68 #define ENVP_ENTRY_SIZE     256
69 
70 /* Hardware addresses */
71 #define FLASH_ADDRESS       0x1e000000ULL
72 #define FPGA_ADDRESS        0x1f000000ULL
73 #define RESET_ADDRESS       0x1fc00000ULL
74 
75 #define FLASH_SIZE          0x400000
76 #define BIOS_SIZE           (4 * MiB)
77 
78 #define PIIX4_PCI_DEVFN     PCI_DEVFN(10, 0)
79 
80 typedef struct {
81     MemoryRegion iomem;
82     MemoryRegion iomem_lo; /* 0 - 0x900 */
83     MemoryRegion iomem_hi; /* 0xa00 - 0x100000 */
84     uint32_t leds;
85     uint32_t brk;
86     uint32_t gpout;
87     uint32_t i2cin;
88     uint32_t i2coe;
89     uint32_t i2cout;
90     uint32_t i2csel;
91     CharBackend display;
92     char display_text[9];
93     SerialMM *uart;
94     bool display_inited;
95 } MaltaFPGAState;
96 
97 #if TARGET_BIG_ENDIAN
98 #define BIOS_FILENAME "mips_bios.bin"
99 #else
100 #define BIOS_FILENAME "mipsel_bios.bin"
101 #endif
102 
103 #define TYPE_MIPS_MALTA "mips-malta"
104 OBJECT_DECLARE_SIMPLE_TYPE(MaltaState, MIPS_MALTA)
105 
106 struct MaltaState {
107     SysBusDevice parent_obj;
108 
109     Clock *cpuclk;
110     MIPSCPSState cps;
111 };
112 
113 static struct _loaderparams {
114     int ram_size, ram_low_size;
115     const char *kernel_filename;
116     const char *kernel_cmdline;
117     const char *initrd_filename;
118 } loaderparams;
119 
120 /* Malta FPGA */
121 static void malta_fpga_update_display_leds(MaltaFPGAState *s)
122 {
123     char leds_text[9];
124     int i;
125 
126     for (i = 7 ; i >= 0 ; i--) {
127         if (s->leds & (1 << i)) {
128             leds_text[i] = '#';
129         } else {
130             leds_text[i] = ' ';
131         }
132     }
133     leds_text[8] = '\0';
134 
135     trace_malta_fpga_leds(leds_text);
136     qemu_chr_fe_printf(&s->display, "\e[H\n\n|\e[32m%-8.8s\e[00m|\r\n",
137                        leds_text);
138 }
139 
140 static void malta_fpga_update_display_ascii(MaltaFPGAState *s)
141 {
142     trace_malta_fpga_display(s->display_text);
143     qemu_chr_fe_printf(&s->display, "\n\n\n\n|\e[31m%-8.8s\e[00m|",
144                        s->display_text);
145 }
146 
147 /*
148  * EEPROM 24C01 / 24C02 emulation.
149  *
150  * Emulation for serial EEPROMs:
151  * 24C01 - 1024 bit (128 x 8)
152  * 24C02 - 2048 bit (256 x 8)
153  *
154  * Typical device names include Microchip 24C02SC or SGS Thomson ST24C02.
155  */
156 
157 #if defined(DEBUG)
158 #  define logout(fmt, ...) \
159           fprintf(stderr, "MALTA\t%-24s" fmt, __func__, ## __VA_ARGS__)
160 #else
161 #  define logout(fmt, ...) ((void)0)
162 #endif
163 
164 struct _eeprom24c0x_t {
165   uint8_t tick;
166   uint8_t address;
167   uint8_t command;
168   uint8_t ack;
169   uint8_t scl;
170   uint8_t sda;
171   uint8_t data;
172   /* uint16_t size; */
173   uint8_t contents[256];
174 };
175 
176 typedef struct _eeprom24c0x_t eeprom24c0x_t;
177 
178 static eeprom24c0x_t spd_eeprom = {
179     .contents = {
180         /* 00000000: */
181         0x80, 0x08, 0xFF, 0x0D, 0x0A, 0xFF, 0x40, 0x00,
182         /* 00000008: */
183         0x01, 0x75, 0x54, 0x00, 0x82, 0x08, 0x00, 0x01,
184         /* 00000010: */
185         0x8F, 0x04, 0x02, 0x01, 0x01, 0x00, 0x00, 0x00,
186         /* 00000018: */
187         0x00, 0x00, 0x00, 0x14, 0x0F, 0x14, 0x2D, 0xFF,
188         /* 00000020: */
189         0x15, 0x08, 0x15, 0x08, 0x00, 0x00, 0x00, 0x00,
190         /* 00000028: */
191         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
192         /* 00000030: */
193         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
194         /* 00000038: */
195         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x12, 0xD0,
196         /* 00000040: */
197         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
198         /* 00000048: */
199         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
200         /* 00000050: */
201         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
202         /* 00000058: */
203         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
204         /* 00000060: */
205         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
206         /* 00000068: */
207         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
208         /* 00000070: */
209         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
210         /* 00000078: */
211         0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x64, 0xF4,
212     },
213 };
214 
215 static void generate_eeprom_spd(uint8_t *eeprom, ram_addr_t ram_size)
216 {
217     enum sdram_type type;
218     uint8_t *spd = spd_eeprom.contents;
219     uint8_t nbanks = 0;
220     uint16_t density = 0;
221     int i;
222 
223     /* work in terms of MB */
224     ram_size /= MiB;
225 
226     while ((ram_size >= 4) && (nbanks <= 2)) {
227         int sz_log2 = MIN(31 - clz32(ram_size), 14);
228         nbanks++;
229         density |= 1 << (sz_log2 - 2);
230         ram_size -= 1 << sz_log2;
231     }
232 
233     /* split to 2 banks if possible */
234     if ((nbanks == 1) && (density > 1)) {
235         nbanks++;
236         density >>= 1;
237     }
238 
239     if (density & 0xff00) {
240         density = (density & 0xe0) | ((density >> 8) & 0x1f);
241         type = DDR2;
242     } else if (!(density & 0x1f)) {
243         type = DDR2;
244     } else {
245         type = SDR;
246     }
247 
248     if (ram_size) {
249         warn_report("SPD cannot represent final " RAM_ADDR_FMT "MB"
250                     " of SDRAM", ram_size);
251     }
252 
253     /* fill in SPD memory information */
254     spd[2] = type;
255     spd[5] = nbanks;
256     spd[31] = density;
257 
258     /* checksum */
259     spd[63] = 0;
260     for (i = 0; i < 63; i++) {
261         spd[63] += spd[i];
262     }
263 
264     /* copy for SMBUS */
265     memcpy(eeprom, spd, sizeof(spd_eeprom.contents));
266 }
267 
268 static void generate_eeprom_serial(uint8_t *eeprom)
269 {
270     int i, pos = 0;
271     uint8_t mac[6] = { 0x00 };
272     uint8_t sn[5] = { 0x01, 0x23, 0x45, 0x67, 0x89 };
273 
274     /* version */
275     eeprom[pos++] = 0x01;
276 
277     /* count */
278     eeprom[pos++] = 0x02;
279 
280     /* MAC address */
281     eeprom[pos++] = 0x01; /* MAC */
282     eeprom[pos++] = 0x06; /* length */
283     memcpy(&eeprom[pos], mac, sizeof(mac));
284     pos += sizeof(mac);
285 
286     /* serial number */
287     eeprom[pos++] = 0x02; /* serial */
288     eeprom[pos++] = 0x05; /* length */
289     memcpy(&eeprom[pos], sn, sizeof(sn));
290     pos += sizeof(sn);
291 
292     /* checksum */
293     eeprom[pos] = 0;
294     for (i = 0; i < pos; i++) {
295         eeprom[pos] += eeprom[i];
296     }
297 }
298 
299 static uint8_t eeprom24c0x_read(eeprom24c0x_t *eeprom)
300 {
301     logout("%u: scl = %u, sda = %u, data = 0x%02x\n",
302         eeprom->tick, eeprom->scl, eeprom->sda, eeprom->data);
303     return eeprom->sda;
304 }
305 
306 static void eeprom24c0x_write(eeprom24c0x_t *eeprom, int scl, int sda)
307 {
308     if (eeprom->scl && scl && (eeprom->sda != sda)) {
309         logout("%u: scl = %u->%u, sda = %u->%u i2c %s\n",
310                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda,
311                 sda ? "stop" : "start");
312         if (!sda) {
313             eeprom->tick = 1;
314             eeprom->command = 0;
315         }
316     } else if (eeprom->tick == 0 && !eeprom->ack) {
317         /* Waiting for start. */
318         logout("%u: scl = %u->%u, sda = %u->%u wait for i2c start\n",
319                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
320     } else if (!eeprom->scl && scl) {
321         logout("%u: scl = %u->%u, sda = %u->%u trigger bit\n",
322                 eeprom->tick, eeprom->scl, scl, eeprom->sda, sda);
323         if (eeprom->ack) {
324             logout("\ti2c ack bit = 0\n");
325             sda = 0;
326             eeprom->ack = 0;
327         } else if (eeprom->sda == sda) {
328             uint8_t bit = (sda != 0);
329             logout("\ti2c bit = %d\n", bit);
330             if (eeprom->tick < 9) {
331                 eeprom->command <<= 1;
332                 eeprom->command += bit;
333                 eeprom->tick++;
334                 if (eeprom->tick == 9) {
335                     logout("\tcommand 0x%04x, %s\n", eeprom->command,
336                            bit ? "read" : "write");
337                     eeprom->ack = 1;
338                 }
339             } else if (eeprom->tick < 17) {
340                 if (eeprom->command & 1) {
341                     sda = ((eeprom->data & 0x80) != 0);
342                 }
343                 eeprom->address <<= 1;
344                 eeprom->address += bit;
345                 eeprom->tick++;
346                 eeprom->data <<= 1;
347                 if (eeprom->tick == 17) {
348                     eeprom->data = eeprom->contents[eeprom->address];
349                     logout("\taddress 0x%04x, data 0x%02x\n",
350                            eeprom->address, eeprom->data);
351                     eeprom->ack = 1;
352                     eeprom->tick = 0;
353                 }
354             } else if (eeprom->tick >= 17) {
355                 sda = 0;
356             }
357         } else {
358             logout("\tsda changed with raising scl\n");
359         }
360     } else {
361         logout("%u: scl = %u->%u, sda = %u->%u\n", eeprom->tick, eeprom->scl,
362                scl, eeprom->sda, sda);
363     }
364     eeprom->scl = scl;
365     eeprom->sda = sda;
366 }
367 
368 static uint64_t malta_fpga_read(void *opaque, hwaddr addr,
369                                 unsigned size)
370 {
371     MaltaFPGAState *s = opaque;
372     uint32_t val = 0;
373     uint32_t saddr;
374 
375     saddr = (addr & 0xfffff);
376 
377     switch (saddr) {
378 
379     /* SWITCH Register */
380     case 0x00200:
381         val = 0x00000000;
382         break;
383 
384     /* STATUS Register */
385     case 0x00208:
386 #if TARGET_BIG_ENDIAN
387         val = 0x00000012;
388 #else
389         val = 0x00000010;
390 #endif
391         break;
392 
393     /* JMPRS Register */
394     case 0x00210:
395         val = 0x00;
396         break;
397 
398     /* LEDBAR Register */
399     case 0x00408:
400         val = s->leds;
401         break;
402 
403     /* BRKRES Register */
404     case 0x00508:
405         val = s->brk;
406         break;
407 
408     /* UART Registers are handled directly by the serial device */
409 
410     /* GPOUT Register */
411     case 0x00a00:
412         val = s->gpout;
413         break;
414 
415     /* XXX: implement a real I2C controller */
416 
417     /* GPINP Register */
418     case 0x00a08:
419         /* IN = OUT until a real I2C control is implemented */
420         if (s->i2csel) {
421             val = s->i2cout;
422         } else {
423             val = 0x00;
424         }
425         break;
426 
427     /* I2CINP Register */
428     case 0x00b00:
429         val = ((s->i2cin & ~1) | eeprom24c0x_read(&spd_eeprom));
430         break;
431 
432     /* I2COE Register */
433     case 0x00b08:
434         val = s->i2coe;
435         break;
436 
437     /* I2COUT Register */
438     case 0x00b10:
439         val = s->i2cout;
440         break;
441 
442     /* I2CSEL Register */
443     case 0x00b18:
444         val = s->i2csel;
445         break;
446 
447     default:
448         qemu_log_mask(LOG_GUEST_ERROR,
449                       "malta_fpga_read: Bad register addr 0x%"HWADDR_PRIX"\n",
450                       addr);
451         break;
452     }
453     return val;
454 }
455 
456 static void malta_fpga_write(void *opaque, hwaddr addr,
457                              uint64_t val, unsigned size)
458 {
459     MaltaFPGAState *s = opaque;
460     uint32_t saddr;
461 
462     saddr = (addr & 0xfffff);
463 
464     switch (saddr) {
465 
466     /* SWITCH Register */
467     case 0x00200:
468         break;
469 
470     /* JMPRS Register */
471     case 0x00210:
472         break;
473 
474     /* LEDBAR Register */
475     case 0x00408:
476         s->leds = val & 0xff;
477         malta_fpga_update_display_leds(s);
478         break;
479 
480     /* ASCIIWORD Register */
481     case 0x00410:
482         snprintf(s->display_text, 9, "%08X", (uint32_t)val);
483         malta_fpga_update_display_ascii(s);
484         break;
485 
486     /* ASCIIPOS0 to ASCIIPOS7 Registers */
487     case 0x00418:
488     case 0x00420:
489     case 0x00428:
490     case 0x00430:
491     case 0x00438:
492     case 0x00440:
493     case 0x00448:
494     case 0x00450:
495         s->display_text[(saddr - 0x00418) >> 3] = (char) val;
496         malta_fpga_update_display_ascii(s);
497         break;
498 
499     /* SOFTRES Register */
500     case 0x00500:
501         if (val == 0x42) {
502             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
503         }
504         break;
505 
506     /* BRKRES Register */
507     case 0x00508:
508         s->brk = val & 0xff;
509         break;
510 
511     /* UART Registers are handled directly by the serial device */
512 
513     /* GPOUT Register */
514     case 0x00a00:
515         s->gpout = val & 0xff;
516         break;
517 
518     /* I2COE Register */
519     case 0x00b08:
520         s->i2coe = val & 0x03;
521         break;
522 
523     /* I2COUT Register */
524     case 0x00b10:
525         eeprom24c0x_write(&spd_eeprom, val & 0x02, val & 0x01);
526         s->i2cout = val;
527         break;
528 
529     /* I2CSEL Register */
530     case 0x00b18:
531         s->i2csel = val & 0x01;
532         break;
533 
534     default:
535         qemu_log_mask(LOG_GUEST_ERROR,
536                       "malta_fpga_write: Bad register addr 0x%"HWADDR_PRIX"\n",
537                       addr);
538         break;
539     }
540 }
541 
542 static const MemoryRegionOps malta_fpga_ops = {
543     .read = malta_fpga_read,
544     .write = malta_fpga_write,
545     .endianness = DEVICE_NATIVE_ENDIAN,
546 };
547 
548 static void malta_fpga_reset(void *opaque)
549 {
550     MaltaFPGAState *s = opaque;
551 
552     s->leds   = 0x00;
553     s->brk    = 0x0a;
554     s->gpout  = 0x00;
555     s->i2cin  = 0x3;
556     s->i2coe  = 0x0;
557     s->i2cout = 0x3;
558     s->i2csel = 0x1;
559 
560     s->display_text[8] = '\0';
561     snprintf(s->display_text, 9, "        ");
562 }
563 
564 static void malta_fgpa_display_event(void *opaque, QEMUChrEvent event)
565 {
566     MaltaFPGAState *s = opaque;
567 
568     if (event == CHR_EVENT_OPENED && !s->display_inited) {
569         qemu_chr_fe_printf(&s->display, "\e[HMalta LEDBAR\r\n");
570         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
571         qemu_chr_fe_printf(&s->display, "+        +\r\n");
572         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
573         qemu_chr_fe_printf(&s->display, "\n");
574         qemu_chr_fe_printf(&s->display, "Malta ASCII\r\n");
575         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
576         qemu_chr_fe_printf(&s->display, "+        +\r\n");
577         qemu_chr_fe_printf(&s->display, "+--------+\r\n");
578         s->display_inited = true;
579     }
580 }
581 
582 static MaltaFPGAState *malta_fpga_init(MemoryRegion *address_space,
583          hwaddr base, qemu_irq uart_irq, Chardev *uart_chr)
584 {
585     MaltaFPGAState *s;
586     Chardev *chr;
587 
588     s = g_new0(MaltaFPGAState, 1);
589 
590     memory_region_init_io(&s->iomem, NULL, &malta_fpga_ops, s,
591                           "malta-fpga", 0x100000);
592     memory_region_init_alias(&s->iomem_lo, NULL, "malta-fpga",
593                              &s->iomem, 0, 0x900);
594     memory_region_init_alias(&s->iomem_hi, NULL, "malta-fpga",
595                              &s->iomem, 0xa00, 0x100000 - 0xa00);
596 
597     memory_region_add_subregion(address_space, base, &s->iomem_lo);
598     memory_region_add_subregion(address_space, base + 0xa00, &s->iomem_hi);
599 
600     chr = qemu_chr_new("fpga", "vc:320x200", NULL);
601     qemu_chr_fe_init(&s->display, chr, NULL);
602     qemu_chr_fe_set_handlers(&s->display, NULL, NULL,
603                              malta_fgpa_display_event, NULL, s, NULL, true);
604 
605     s->uart = serial_mm_init(address_space, base + 0x900, 3, uart_irq,
606                              230400, uart_chr, DEVICE_NATIVE_ENDIAN);
607 
608     malta_fpga_reset(s);
609     qemu_register_reset(malta_fpga_reset, s);
610 
611     return s;
612 }
613 
614 /* Network support */
615 static void network_init(PCIBus *pci_bus)
616 {
617     /* The malta board has a PCNet card using PCI SLOT 11 */
618     pci_init_nic_in_slot(pci_bus, "pcnet", NULL, "0b");
619     pci_init_nic_devices(pci_bus, "pcnet");
620 }
621 
622 static void bl_setup_gt64120_jump_kernel(void **p, uint64_t run_addr,
623                                          uint64_t kernel_entry)
624 {
625     static const char pci_pins_cfg[PCI_NUM_PINS] = {
626         10, 10, 11, 11 /* PIIX IRQRC[A:D] */
627     };
628 
629     /* Bus endianness is always reversed */
630 #if TARGET_BIG_ENDIAN
631 #define cpu_to_gt32(x) (x)
632 #else
633 #define cpu_to_gt32(x) bswap32(x)
634 #endif
635 
636     /* setup MEM-to-PCI0 mapping as done by YAMON */
637 
638     /* move GT64120 registers from 0x14000000 to 0x1be00000 */
639     bl_gen_write_u32(p, /* GT_ISD */
640                      cpu_mips_phys_to_kseg1(NULL, 0x14000000 + 0x68),
641                      cpu_to_gt32(0x1be00000 << 3));
642 
643     /* setup PCI0 io window to 0x18000000-0x181fffff */
644     bl_gen_write_u32(p, /* GT_PCI0IOLD */
645                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x48),
646                      cpu_to_gt32(0x18000000 << 3));
647     bl_gen_write_u32(p, /* GT_PCI0IOHD */
648                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x50),
649                      cpu_to_gt32(0x08000000 << 3));
650 
651     /* setup PCI0 mem windows */
652     bl_gen_write_u32(p, /* GT_PCI0M0LD */
653                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x58),
654                      cpu_to_gt32(0x10000000 << 3));
655     bl_gen_write_u32(p, /* GT_PCI0M0HD */
656                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x60),
657                      cpu_to_gt32(0x07e00000 << 3));
658     bl_gen_write_u32(p, /* GT_PCI0M1LD */
659                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x80),
660                      cpu_to_gt32(0x18200000 << 3));
661     bl_gen_write_u32(p, /* GT_PCI0M1HD */
662                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0x88),
663                      cpu_to_gt32(0x0bc00000 << 3));
664 
665 #undef cpu_to_gt32
666 
667     /*
668      * The PIIX ISA bridge is on PCI bus 0 dev 10 func 0.
669      * Load the PIIX IRQC[A:D] routing config address, then
670      * write routing configuration to the config data register.
671      */
672     bl_gen_write_u32(p, /* GT_PCI0_CFGADDR */
673                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcf8),
674                      tswap32((1 << 31) /* ConfigEn */
675                              | PCI_BUILD_BDF(0, PIIX4_PCI_DEVFN) << 8
676                              | PIIX_PIRQCA));
677     bl_gen_write_u32(p, /* GT_PCI0_CFGDATA */
678                      cpu_mips_phys_to_kseg1(NULL, 0x1be00000 + 0xcfc),
679                      tswap32(ldl_be_p(pci_pins_cfg)));
680 
681     bl_gen_jump_kernel(p,
682                        true, ENVP_VADDR - 64,
683                        /*
684                         * If semihosting is used, arguments have already
685                         * been passed, so we preserve $a0.
686                         */
687                        !semihosting_get_argc(), 2,
688                        true, ENVP_VADDR,
689                        true, ENVP_VADDR + 8,
690                        true, loaderparams.ram_low_size,
691                        kernel_entry);
692 }
693 
694 static void write_bootloader_nanomips(uint8_t *base, uint64_t run_addr,
695                                       uint64_t kernel_entry)
696 {
697     uint16_t *p;
698 
699     /* Small bootloader */
700     p = (uint16_t *)base;
701 
702     stw_p(p++, 0x2800); stw_p(p++, 0x001c);
703                                 /* bc to_here */
704     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
705                                 /* nop */
706     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
707                                 /* nop */
708     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
709                                 /* nop */
710     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
711                                 /* nop */
712     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
713                                 /* nop */
714     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
715                                 /* nop */
716     stw_p(p++, 0x8000); stw_p(p++, 0xc000);
717                                 /* nop */
718 
719     /* to_here: */
720 
721     bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
722 }
723 
724 /*
725  * ROM and pseudo bootloader
726  *
727  * The following code implements a very very simple bootloader. It first
728  * loads the registers a0 to a3 to the values expected by the OS, and
729  * then jump at the kernel address.
730  *
731  * The bootloader should pass the locations of the kernel arguments and
732  * environment variables tables. Those tables contain the 32-bit address
733  * of NULL terminated strings. The environment variables table should be
734  * terminated by a NULL address.
735  *
736  * For a simpler implementation, the number of kernel arguments is fixed
737  * to two (the name of the kernel and the command line), and the two
738  * tables are actually the same one.
739  *
740  * The registers a0 to a3 should contain the following values:
741  *   a0 - number of kernel arguments
742  *   a1 - 32-bit address of the kernel arguments table
743  *   a2 - 32-bit address of the environment variables table
744  *   a3 - RAM size in bytes
745  */
746 static void write_bootloader(uint8_t *base, uint64_t run_addr,
747                              uint64_t kernel_entry)
748 {
749     uint32_t *p;
750 
751     /* Small bootloader */
752     p = (uint32_t *)base;
753 
754     stl_p(p++, 0x08000000 |                  /* j 0x1fc00580 */
755                  ((run_addr + 0x580) & 0x0fffffff) >> 2);
756     stl_p(p++, 0x00000000);                  /* nop */
757 
758     /* YAMON service vector */
759     stl_p(base + 0x500, run_addr + 0x0580);  /* start: */
760     stl_p(base + 0x504, run_addr + 0x083c);  /* print_count: */
761     stl_p(base + 0x520, run_addr + 0x0580);  /* start: */
762     stl_p(base + 0x52c, run_addr + 0x0800);  /* flush_cache: */
763     stl_p(base + 0x534, run_addr + 0x0808);  /* print: */
764     stl_p(base + 0x538, run_addr + 0x0800);  /* reg_cpu_isr: */
765     stl_p(base + 0x53c, run_addr + 0x0800);  /* unred_cpu_isr: */
766     stl_p(base + 0x540, run_addr + 0x0800);  /* reg_ic_isr: */
767     stl_p(base + 0x544, run_addr + 0x0800);  /* unred_ic_isr: */
768     stl_p(base + 0x548, run_addr + 0x0800);  /* reg_esr: */
769     stl_p(base + 0x54c, run_addr + 0x0800);  /* unreg_esr: */
770     stl_p(base + 0x550, run_addr + 0x0800);  /* getchar: */
771     stl_p(base + 0x554, run_addr + 0x0800);  /* syscon_read: */
772 
773 
774     /* Second part of the bootloader */
775     p = (uint32_t *) (base + 0x580);
776 
777     /*
778      * Load BAR registers as done by YAMON:
779      *
780      *  - set up PCI0 I/O BARs from 0x18000000 to 0x181fffff
781      *  - set up PCI0 MEM0 at 0x10000000, size 0x7e00000
782      *  - set up PCI0 MEM1 at 0x18200000, size 0xbc00000
783      *
784      */
785 
786     bl_setup_gt64120_jump_kernel((void **)&p, run_addr, kernel_entry);
787 
788     /* YAMON subroutines */
789     p = (uint32_t *) (base + 0x800);
790     stl_p(p++, 0x03e00009);                  /* jalr ra */
791     stl_p(p++, 0x24020000);                  /* li v0,0 */
792     /* 808 YAMON print */
793     stl_p(p++, 0x03e06821);                  /* move t5,ra */
794     stl_p(p++, 0x00805821);                  /* move t3,a0 */
795     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
796     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
797     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
798     stl_p(p++, 0x10800005);                  /* beqz a0,834 */
799     stl_p(p++, 0x00000000);                  /* nop */
800     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
801     stl_p(p++, 0x00000000);                  /* nop */
802     stl_p(p++, 0x1000fff9);                  /* b 814 */
803     stl_p(p++, 0x00000000);                  /* nop */
804     stl_p(p++, 0x01a00009);                  /* jalr t5 */
805     stl_p(p++, 0x01602021);                  /* move a0,t3 */
806     /* 0x83c YAMON print_count */
807     stl_p(p++, 0x03e06821);                  /* move t5,ra */
808     stl_p(p++, 0x00805821);                  /* move t3,a0 */
809     stl_p(p++, 0x00a05021);                  /* move t2,a1 */
810     stl_p(p++, 0x00c06021);                  /* move t4,a2 */
811     stl_p(p++, 0x91440000);                  /* lbu a0,0(t2) */
812     stl_p(p++, 0x0ff0021c);                  /* jal 870 */
813     stl_p(p++, 0x00000000);                  /* nop */
814     stl_p(p++, 0x254a0001);                  /* addiu t2,t2,1 */
815     stl_p(p++, 0x258cffff);                  /* addiu t4,t4,-1 */
816     stl_p(p++, 0x1580fffa);                  /* bnez t4,84c */
817     stl_p(p++, 0x00000000);                  /* nop */
818     stl_p(p++, 0x01a00009);                  /* jalr t5 */
819     stl_p(p++, 0x01602021);                  /* move a0,t3 */
820     /* 0x870 */
821     stl_p(p++, 0x3c08b800);                  /* lui t0,0xb400 */
822     stl_p(p++, 0x350803f8);                  /* ori t0,t0,0x3f8 */
823     stl_p(p++, 0x91090005);                  /* lbu t1,5(t0) */
824     stl_p(p++, 0x00000000);                  /* nop */
825     stl_p(p++, 0x31290040);                  /* andi t1,t1,0x40 */
826     stl_p(p++, 0x1120fffc);                  /* beqz t1,878 <outch+0x8> */
827     stl_p(p++, 0x00000000);                  /* nop */
828     stl_p(p++, 0x03e00009);                  /* jalr ra */
829     stl_p(p++, 0xa1040000);                  /* sb a0,0(t0) */
830 }
831 
832 static void G_GNUC_PRINTF(3, 4) prom_set(uint32_t *prom_buf, int index,
833                                         const char *string, ...)
834 {
835     va_list ap;
836     uint32_t table_addr;
837 
838     if (index >= ENVP_NB_ENTRIES) {
839         return;
840     }
841 
842     if (string == NULL) {
843         prom_buf[index] = 0;
844         return;
845     }
846 
847     table_addr = sizeof(uint32_t) * ENVP_NB_ENTRIES + index * ENVP_ENTRY_SIZE;
848     prom_buf[index] = tswap32(ENVP_VADDR + table_addr);
849 
850     va_start(ap, string);
851     vsnprintf((char *)prom_buf + table_addr, ENVP_ENTRY_SIZE, string, ap);
852     va_end(ap);
853 }
854 
855 static GString *rng_seed_hex_new(void)
856 {
857     uint8_t rng_seed[32];
858 
859     qemu_guest_getrandom_nofail(rng_seed, sizeof(rng_seed));
860     return qemu_hexdump_line(NULL, rng_seed, sizeof(rng_seed), 0, 0);
861 }
862 
863 static void reinitialize_rng_seed(void *opaque)
864 {
865     g_autoptr(GString) hex = rng_seed_hex_new();
866     memcpy(opaque, hex->str, hex->len);
867 }
868 
869 /* Kernel */
870 static uint64_t load_kernel(void)
871 {
872     uint64_t kernel_entry, kernel_high, initrd_size;
873     long kernel_size;
874     ram_addr_t initrd_offset;
875     uint32_t *prom_buf;
876     long prom_size;
877     int prom_index = 0;
878     size_t rng_seed_prom_offset;
879 
880     kernel_size = load_elf(loaderparams.kernel_filename, NULL,
881                            cpu_mips_kseg0_to_phys, NULL,
882                            &kernel_entry, NULL,
883                            &kernel_high, NULL,
884                            TARGET_BIG_ENDIAN ? ELFDATA2MSB : ELFDATA2LSB,
885                            EM_MIPS, 1, 0);
886     if (kernel_size < 0) {
887         error_report("could not load kernel '%s': %s",
888                      loaderparams.kernel_filename,
889                      load_elf_strerror(kernel_size));
890         exit(1);
891     }
892 
893     /* Check where the kernel has been linked */
894     if (kernel_entry <= USEG_LIMIT) {
895         error_report("Trap-and-Emul kernels (Linux CONFIG_KVM_GUEST)"
896                      " are not supported");
897         exit(1);
898     }
899 
900     /* load initrd */
901     initrd_size = 0;
902     initrd_offset = 0;
903     if (loaderparams.initrd_filename) {
904         initrd_size = get_image_size(loaderparams.initrd_filename);
905         if (initrd_size > 0) {
906             /*
907              * The kernel allocates the bootmap memory in the low memory after
908              * the initrd.  It takes at most 128kiB for 2GB RAM and 4kiB
909              * pages.
910              */
911             initrd_offset = ROUND_UP(loaderparams.ram_low_size
912                                      - (initrd_size + 128 * KiB),
913                                      INITRD_PAGE_SIZE);
914             if (kernel_high >= initrd_offset) {
915                 error_report("memory too small for initial ram disk '%s'",
916                              loaderparams.initrd_filename);
917                 exit(1);
918             }
919             initrd_size = load_image_targphys(loaderparams.initrd_filename,
920                                               initrd_offset,
921                                               loaderparams.ram_size - initrd_offset);
922         }
923         if (initrd_size == (target_ulong) -1) {
924             error_report("could not load initial ram disk '%s'",
925                          loaderparams.initrd_filename);
926             exit(1);
927         }
928     }
929 
930     /* Setup prom parameters. */
931     prom_size = ENVP_NB_ENTRIES * (sizeof(int32_t) + ENVP_ENTRY_SIZE);
932     prom_buf = g_malloc(prom_size);
933 
934     prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_filename);
935     if (initrd_size > 0) {
936         prom_set(prom_buf, prom_index++,
937                  "rd_start=0x%" PRIx64 " rd_size=%" PRId64 " %s",
938                  cpu_mips_phys_to_kseg0(NULL, initrd_offset),
939                  initrd_size, loaderparams.kernel_cmdline);
940     } else {
941         prom_set(prom_buf, prom_index++, "%s", loaderparams.kernel_cmdline);
942     }
943 
944     prom_set(prom_buf, prom_index++, "memsize");
945     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_low_size);
946 
947     prom_set(prom_buf, prom_index++, "ememsize");
948     prom_set(prom_buf, prom_index++, "%u", loaderparams.ram_size);
949 
950     prom_set(prom_buf, prom_index++, "modetty0");
951     prom_set(prom_buf, prom_index++, "38400n8r");
952 
953     prom_set(prom_buf, prom_index++, "rngseed");
954     rng_seed_prom_offset = prom_index * ENVP_ENTRY_SIZE +
955                            sizeof(uint32_t) * ENVP_NB_ENTRIES;
956     {
957         g_autoptr(GString) hex = rng_seed_hex_new();
958         prom_set(prom_buf, prom_index++, "%s", hex->str);
959     }
960 
961     prom_set(prom_buf, prom_index++, NULL);
962 
963     rom_add_blob_fixed("prom", prom_buf, prom_size, ENVP_PADDR);
964     qemu_register_reset_nosnapshotload(reinitialize_rng_seed,
965             rom_ptr(ENVP_PADDR, prom_size) + rng_seed_prom_offset);
966 
967     g_free(prom_buf);
968     return kernel_entry;
969 }
970 
971 static void malta_mips_config(MIPSCPU *cpu)
972 {
973     MachineState *ms = MACHINE(qdev_get_machine());
974     unsigned int smp_cpus = ms->smp.cpus;
975     CPUMIPSState *env = &cpu->env;
976     CPUState *cs = CPU(cpu);
977 
978     if (ase_mt_available(env)) {
979         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
980                                            CP0MVPC0_PTC, 8,
981                                            smp_cpus * cs->nr_threads - 1);
982         env->mvp->CP0_MVPConf0 = deposit32(env->mvp->CP0_MVPConf0,
983                                            CP0MVPC0_PVPE, 4, smp_cpus - 1);
984     }
985 }
986 
987 static int malta_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num)
988 {
989     int slot;
990 
991     slot = PCI_SLOT(pci_dev->devfn);
992 
993     switch (slot) {
994     /* PIIX4 USB */
995     case 10:
996         return 3;
997     /* AMD 79C973 Ethernet */
998     case 11:
999         return 1;
1000     /* Crystal 4281 Sound */
1001     case 12:
1002         return 2;
1003     /* PCI slot 1 to 4 */
1004     case 18 ... 21:
1005         return ((slot - 18) + irq_num) & 0x03;
1006     /* Unknown device, don't do any translation */
1007     default:
1008         return irq_num;
1009     }
1010 }
1011 
1012 static void main_cpu_reset(void *opaque)
1013 {
1014     MIPSCPU *cpu = opaque;
1015     CPUMIPSState *env = &cpu->env;
1016 
1017     cpu_reset(CPU(cpu));
1018 
1019     /*
1020      * The bootloader does not need to be rewritten as it is located in a
1021      * read only location. The kernel location and the arguments table
1022      * location does not change.
1023      */
1024     if (loaderparams.kernel_filename) {
1025         env->CP0_Status &= ~(1 << CP0St_ERL);
1026     }
1027 
1028     malta_mips_config(cpu);
1029 }
1030 
1031 static void create_cpu_without_cps(MachineState *ms, MaltaState *s,
1032                                    qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1033 {
1034     CPUMIPSState *env;
1035     MIPSCPU *cpu;
1036     int i;
1037 
1038     for (i = 0; i < ms->smp.cpus; i++) {
1039         cpu = mips_cpu_create_with_clock(ms->cpu_type, s->cpuclk,
1040                                          TARGET_BIG_ENDIAN);
1041 
1042         /* Init internal devices */
1043         cpu_mips_irq_init_cpu(cpu);
1044         cpu_mips_clock_init(cpu);
1045         qemu_register_reset(main_cpu_reset, cpu);
1046     }
1047 
1048     cpu = MIPS_CPU(first_cpu);
1049     env = &cpu->env;
1050     *i8259_irq = env->irq[2];
1051     *cbus_irq = env->irq[4];
1052 }
1053 
1054 static void create_cps(MachineState *ms, MaltaState *s,
1055                        qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1056 {
1057     object_initialize_child(OBJECT(s), "cps", &s->cps, TYPE_MIPS_CPS);
1058     object_property_set_str(OBJECT(&s->cps), "cpu-type", ms->cpu_type,
1059                             &error_fatal);
1060     object_property_set_bool(OBJECT(&s->cps), "cpu-big-endian",
1061                              TARGET_BIG_ENDIAN, &error_abort);
1062     object_property_set_uint(OBJECT(&s->cps), "num-vp", ms->smp.cpus,
1063                             &error_fatal);
1064     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in", s->cpuclk);
1065     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
1066 
1067     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
1068 
1069     *i8259_irq = get_cps_irq(&s->cps, 3);
1070     *cbus_irq = NULL;
1071 }
1072 
1073 static void mips_create_cpu(MachineState *ms, MaltaState *s,
1074                             qemu_irq *cbus_irq, qemu_irq *i8259_irq)
1075 {
1076     if ((ms->smp.cpus > 1) && cpu_type_supports_cps_smp(ms->cpu_type)) {
1077         create_cps(ms, s, cbus_irq, i8259_irq);
1078     } else {
1079         create_cpu_without_cps(ms, s, cbus_irq, i8259_irq);
1080     }
1081 }
1082 
1083 static
1084 void mips_malta_init(MachineState *machine)
1085 {
1086     ram_addr_t ram_size = machine->ram_size;
1087     ram_addr_t ram_low_size;
1088     const char *kernel_filename = machine->kernel_filename;
1089     const char *kernel_cmdline = machine->kernel_cmdline;
1090     const char *initrd_filename = machine->initrd_filename;
1091     char *filename;
1092     PFlashCFI01 *fl;
1093     MemoryRegion *system_memory = get_system_memory();
1094     MemoryRegion *ram_low_preio = g_new(MemoryRegion, 1);
1095     MemoryRegion *ram_low_postio;
1096     MemoryRegion *bios, *bios_copy = g_new(MemoryRegion, 1);
1097     const size_t smbus_eeprom_size = 8 * 256;
1098     uint8_t *smbus_eeprom_buf = g_malloc0(smbus_eeprom_size);
1099     uint64_t kernel_entry, bootloader_run_addr;
1100     PCIBus *pci_bus;
1101     ISABus *isa_bus;
1102     qemu_irq cbus_irq, i8259_irq;
1103     I2CBus *smbus;
1104     DriveInfo *dinfo;
1105     int fl_idx = 0;
1106     MaltaState *s;
1107     PCIDevice *piix4;
1108     DeviceState *dev;
1109 
1110     s = MIPS_MALTA(qdev_new(TYPE_MIPS_MALTA));
1111     sysbus_realize_and_unref(SYS_BUS_DEVICE(s), &error_fatal);
1112 
1113     /* create CPU */
1114     mips_create_cpu(machine, s, &cbus_irq, &i8259_irq);
1115 
1116     /* allocate RAM */
1117     if (ram_size > 2 * GiB) {
1118         error_report("Too much memory for this machine: %" PRId64 "MB,"
1119                      " maximum 2048MB", ram_size / MiB);
1120         exit(1);
1121     }
1122 
1123     /* register RAM at high address where it is undisturbed by IO */
1124     memory_region_add_subregion(system_memory, 0x80000000, machine->ram);
1125 
1126     /* alias for pre IO hole access */
1127     memory_region_init_alias(ram_low_preio, NULL, "mips_malta_low_preio.ram",
1128                              machine->ram, 0, MIN(ram_size, 256 * MiB));
1129     memory_region_add_subregion(system_memory, 0, ram_low_preio);
1130 
1131     /* alias for post IO hole access, if there is enough RAM */
1132     if (ram_size > 512 * MiB) {
1133         ram_low_postio = g_new(MemoryRegion, 1);
1134         memory_region_init_alias(ram_low_postio, NULL,
1135                                  "mips_malta_low_postio.ram",
1136                                  machine->ram, 512 * MiB,
1137                                  ram_size - 512 * MiB);
1138         memory_region_add_subregion(system_memory, 512 * MiB,
1139                                     ram_low_postio);
1140     }
1141 
1142     /* FPGA */
1143 
1144     /* The CBUS UART is attached to the MIPS CPU INT2 pin, ie interrupt 4 */
1145     malta_fpga_init(system_memory, FPGA_ADDRESS, cbus_irq, serial_hd(2));
1146 
1147     /* Load firmware in flash / BIOS. */
1148     dinfo = drive_get(IF_PFLASH, 0, fl_idx);
1149     fl = pflash_cfi01_register(FLASH_ADDRESS, "mips_malta.bios",
1150                                FLASH_SIZE,
1151                                dinfo ? blk_by_legacy_dinfo(dinfo) : NULL,
1152                                65536,
1153                                4, 0x0000, 0x0000, 0x0000, 0x0000,
1154                                TARGET_BIG_ENDIAN);
1155     bios = pflash_cfi01_get_memory(fl);
1156     fl_idx++;
1157     if (kernel_filename) {
1158         ram_low_size = MIN(ram_size, 256 * MiB);
1159         bootloader_run_addr = cpu_mips_phys_to_kseg0(NULL, RESET_ADDRESS);
1160 
1161         /* Write a small bootloader to the flash location. */
1162         loaderparams.ram_size = ram_size;
1163         loaderparams.ram_low_size = ram_low_size;
1164         loaderparams.kernel_filename = kernel_filename;
1165         loaderparams.kernel_cmdline = kernel_cmdline;
1166         loaderparams.initrd_filename = initrd_filename;
1167         kernel_entry = load_kernel();
1168 
1169         if (!cpu_type_supports_isa(machine->cpu_type, ISA_NANOMIPS32)) {
1170             write_bootloader(memory_region_get_ram_ptr(bios),
1171                              bootloader_run_addr, kernel_entry);
1172         } else {
1173             write_bootloader_nanomips(memory_region_get_ram_ptr(bios),
1174                                       bootloader_run_addr, kernel_entry);
1175         }
1176     } else {
1177         target_long bios_size = FLASH_SIZE;
1178         /* Load firmware from flash. */
1179         if (!dinfo) {
1180             /* Load a BIOS image. */
1181             filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
1182                                       machine->firmware ?: BIOS_FILENAME);
1183             if (filename) {
1184                 bios_size = load_image_targphys(filename, FLASH_ADDRESS,
1185                                                 BIOS_SIZE);
1186                 g_free(filename);
1187             } else {
1188                 bios_size = -1;
1189             }
1190             if ((bios_size < 0 || bios_size > BIOS_SIZE) &&
1191                 machine->firmware && !qtest_enabled()) {
1192                 error_report("Could not load MIPS bios '%s'", machine->firmware);
1193                 exit(1);
1194             }
1195         }
1196         /*
1197          * In little endian mode the 32bit words in the bios are swapped,
1198          * a neat trick which allows bi-endian firmware.
1199          */
1200 #if !TARGET_BIG_ENDIAN
1201         {
1202             uint32_t *end, *addr;
1203             const size_t swapsize = MIN(bios_size, 0x3e0000);
1204             addr = rom_ptr(FLASH_ADDRESS, swapsize);
1205             if (!addr) {
1206                 addr = memory_region_get_ram_ptr(bios);
1207             }
1208             end = (void *)addr + swapsize;
1209             while (addr < end) {
1210                 bswap32s(addr);
1211                 addr++;
1212             }
1213         }
1214 #endif
1215     }
1216 
1217     /*
1218      * Map the BIOS at a 2nd physical location, as on the real board.
1219      * Copy it so that we can patch in the MIPS revision, which cannot be
1220      * handled by an overlapping region as the resulting ROM code subpage
1221      * regions are not executable.
1222      */
1223     memory_region_init_ram(bios_copy, NULL, "bios.1fc", BIOS_SIZE,
1224                            &error_fatal);
1225     if (!rom_copy(memory_region_get_ram_ptr(bios_copy),
1226                   FLASH_ADDRESS, BIOS_SIZE)) {
1227         memcpy(memory_region_get_ram_ptr(bios_copy),
1228                memory_region_get_ram_ptr(bios), BIOS_SIZE);
1229     }
1230     memory_region_set_readonly(bios_copy, true);
1231     memory_region_add_subregion(system_memory, RESET_ADDRESS, bios_copy);
1232 
1233     /* Board ID = 0x420 (Malta Board with CoreLV) */
1234     stl_p(memory_region_get_ram_ptr(bios_copy) + 0x10, 0x00000420);
1235 
1236     /* Northbridge */
1237     dev = qdev_new("gt64120");
1238     qdev_prop_set_bit(dev, "cpu-little-endian", !TARGET_BIG_ENDIAN);
1239     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
1240     pci_bus = PCI_BUS(qdev_get_child_bus(dev, "pci"));
1241     pci_bus_map_irqs(pci_bus, malta_pci_slot_get_pirq);
1242 
1243     /* Southbridge */
1244     piix4 = pci_new_multifunction(PIIX4_PCI_DEVFN, TYPE_PIIX4_PCI_DEVICE);
1245     qdev_prop_set_uint32(DEVICE(piix4), "smb_io_base", 0x1100);
1246     pci_realize_and_unref(piix4, pci_bus, &error_fatal);
1247     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(piix4), "isa.0"));
1248 
1249     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "ide"));
1250     pci_ide_create_devs(PCI_DEVICE(dev));
1251 
1252     /* Interrupt controller */
1253     qdev_connect_gpio_out_named(DEVICE(piix4), "intr", 0, i8259_irq);
1254 
1255     /* generate SPD EEPROM data */
1256     dev = DEVICE(object_resolve_path_component(OBJECT(piix4), "pm"));
1257     smbus = I2C_BUS(qdev_get_child_bus(dev, "i2c"));
1258     generate_eeprom_spd(&smbus_eeprom_buf[0 * 256], ram_size);
1259     generate_eeprom_serial(&smbus_eeprom_buf[6 * 256]);
1260     smbus_eeprom_init(smbus, 8, smbus_eeprom_buf, smbus_eeprom_size);
1261     g_free(smbus_eeprom_buf);
1262 
1263     /* Super I/O: SMS FDC37M817 */
1264     isa_create_simple(isa_bus, TYPE_FDC37M81X_SUPERIO);
1265 
1266     /* Network card */
1267     network_init(pci_bus);
1268 
1269     /* Optional PCI video card */
1270     pci_vga_init(pci_bus);
1271 }
1272 
1273 static void mips_malta_instance_init(Object *obj)
1274 {
1275     MaltaState *s = MIPS_MALTA(obj);
1276 
1277     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
1278     clock_set_hz(s->cpuclk, 320000000); /* 320 MHz */
1279 }
1280 
1281 static const TypeInfo mips_malta_device = {
1282     .name          = TYPE_MIPS_MALTA,
1283     .parent        = TYPE_SYS_BUS_DEVICE,
1284     .instance_size = sizeof(MaltaState),
1285     .instance_init = mips_malta_instance_init,
1286 };
1287 
1288 GlobalProperty malta_compat[] = {
1289     { "PIIX4_PM", "memory-hotplug-support", "off" },
1290     { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
1291     { "PIIX4_PM", "acpi-root-pci-hotplug", "off" },
1292     { "PIIX4_PM", "x-not-migrate-acpi-index", "true" },
1293 };
1294 const size_t malta_compat_len = G_N_ELEMENTS(malta_compat);
1295 
1296 static void mips_malta_machine_init(MachineClass *mc)
1297 {
1298     mc->desc = "MIPS Malta Core LV";
1299     mc->init = mips_malta_init;
1300     mc->block_default_type = IF_IDE;
1301     mc->max_cpus = 16;
1302     mc->is_default = true;
1303 #ifdef TARGET_MIPS64
1304     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("20Kc");
1305 #else
1306     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("24Kf");
1307 #endif
1308     mc->default_ram_id = "mips_malta.ram";
1309     compat_props_add(mc->compat_props, malta_compat, malta_compat_len);
1310 }
1311 
1312 DEFINE_MACHINE("malta", mips_malta_machine_init)
1313 
1314 static void mips_malta_register_types(void)
1315 {
1316     type_register_static(&mips_malta_device);
1317 }
1318 
1319 type_init(mips_malta_register_types)
1320