xref: /qemu/hw/mips/boston.c (revision 10e3f30ff730624094a2fe6a81aaa72064853036)
1 /*
2  * MIPS Boston development board emulation.
3  *
4  * Copyright (c) 2016 Imagination Technologies
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/units.h"
22 
23 #include "elf.h"
24 #include "hw/boards.h"
25 #include "hw/char/serial.h"
26 #include "hw/ide/pci.h"
27 #include "hw/ide/ahci.h"
28 #include "hw/loader.h"
29 #include "hw/loader-fit.h"
30 #include "hw/mips/bootloader.h"
31 #include "hw/mips/cps.h"
32 #include "hw/pci-host/xilinx-pcie.h"
33 #include "hw/qdev-clock.h"
34 #include "hw/qdev-properties.h"
35 #include "qapi/error.h"
36 #include "qemu/error-report.h"
37 #include "qemu/log.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/qtest.h"
42 #include "sysemu/runstate.h"
43 
44 #include <libfdt.h>
45 #include "qom/object.h"
46 
47 #define TYPE_BOSTON "mips-boston"
48 typedef struct BostonState BostonState;
49 DECLARE_INSTANCE_CHECKER(BostonState, BOSTON,
50                          TYPE_BOSTON)
51 
52 struct BostonState {
53     SysBusDevice parent_obj;
54 
55     MachineState *mach;
56     MIPSCPSState cps;
57     SerialMM *uart;
58     Clock *cpuclk;
59 
60     CharBackend lcd_display;
61     char lcd_content[8];
62     bool lcd_inited;
63 
64     hwaddr kernel_entry;
65     hwaddr fdt_base;
66 };
67 
68 enum {
69     BOSTON_LOWDDR,
70     BOSTON_PCIE0,
71     BOSTON_PCIE1,
72     BOSTON_PCIE2,
73     BOSTON_PCIE2_MMIO,
74     BOSTON_CM,
75     BOSTON_GIC,
76     BOSTON_CDMM,
77     BOSTON_CPC,
78     BOSTON_PLATREG,
79     BOSTON_UART,
80     BOSTON_LCD,
81     BOSTON_FLASH,
82     BOSTON_PCIE1_MMIO,
83     BOSTON_PCIE0_MMIO,
84     BOSTON_HIGHDDR,
85 };
86 
87 static const MemMapEntry boston_memmap[] = {
88     [BOSTON_LOWDDR] =     {        0x0,    0x10000000 },
89     [BOSTON_PCIE0] =      { 0x10000000,     0x2000000 },
90     [BOSTON_PCIE1] =      { 0x12000000,     0x2000000 },
91     [BOSTON_PCIE2] =      { 0x14000000,     0x2000000 },
92     [BOSTON_PCIE2_MMIO] = { 0x16000000,      0x100000 },
93     [BOSTON_CM] =         { 0x16100000,       0x20000 },
94     [BOSTON_GIC] =        { 0x16120000,       0x20000 },
95     [BOSTON_CDMM] =       { 0x16140000,        0x8000 },
96     [BOSTON_CPC] =        { 0x16200000,        0x8000 },
97     [BOSTON_PLATREG] =    { 0x17ffd000,        0x1000 },
98     [BOSTON_UART] =       { 0x17ffe000,          0x20 },
99     [BOSTON_LCD] =        { 0x17fff000,           0x8 },
100     [BOSTON_FLASH] =      { 0x18000000,     0x8000000 },
101     [BOSTON_PCIE1_MMIO] = { 0x20000000,    0x20000000 },
102     [BOSTON_PCIE0_MMIO] = { 0x40000000,    0x40000000 },
103     [BOSTON_HIGHDDR] =    { 0x80000000,           0x0 },
104 };
105 
106 enum boston_plat_reg {
107     PLAT_FPGA_BUILD     = 0x00,
108     PLAT_CORE_CL        = 0x04,
109     PLAT_WRAPPER_CL     = 0x08,
110     PLAT_SYSCLK_STATUS  = 0x0c,
111     PLAT_SOFTRST_CTL    = 0x10,
112 #define PLAT_SOFTRST_CTL_SYSRESET       (1 << 4)
113     PLAT_DDR3_STATUS    = 0x14,
114 #define PLAT_DDR3_STATUS_LOCKED         (1 << 0)
115 #define PLAT_DDR3_STATUS_CALIBRATED     (1 << 2)
116     PLAT_PCIE_STATUS    = 0x18,
117 #define PLAT_PCIE_STATUS_PCIE0_LOCKED   (1 << 0)
118 #define PLAT_PCIE_STATUS_PCIE1_LOCKED   (1 << 8)
119 #define PLAT_PCIE_STATUS_PCIE2_LOCKED   (1 << 16)
120     PLAT_FLASH_CTL      = 0x1c,
121     PLAT_SPARE0         = 0x20,
122     PLAT_SPARE1         = 0x24,
123     PLAT_SPARE2         = 0x28,
124     PLAT_SPARE3         = 0x2c,
125     PLAT_MMCM_DIV       = 0x30,
126 #define PLAT_MMCM_DIV_CLK0DIV_SHIFT     0
127 #define PLAT_MMCM_DIV_INPUT_SHIFT       8
128 #define PLAT_MMCM_DIV_MUL_SHIFT         16
129 #define PLAT_MMCM_DIV_CLK1DIV_SHIFT     24
130     PLAT_BUILD_CFG      = 0x34,
131 #define PLAT_BUILD_CFG_IOCU_EN          (1 << 0)
132 #define PLAT_BUILD_CFG_PCIE0_EN         (1 << 1)
133 #define PLAT_BUILD_CFG_PCIE1_EN         (1 << 2)
134 #define PLAT_BUILD_CFG_PCIE2_EN         (1 << 3)
135     PLAT_DDR_CFG        = 0x38,
136 #define PLAT_DDR_CFG_SIZE               (0xf << 0)
137 #define PLAT_DDR_CFG_MHZ                (0xfff << 4)
138     PLAT_NOC_PCIE0_ADDR = 0x3c,
139     PLAT_NOC_PCIE1_ADDR = 0x40,
140     PLAT_NOC_PCIE2_ADDR = 0x44,
141     PLAT_SYS_CTL        = 0x48,
142 };
143 
144 static void boston_lcd_event(void *opaque, QEMUChrEvent event)
145 {
146     BostonState *s = opaque;
147     if (event == CHR_EVENT_OPENED && !s->lcd_inited) {
148         qemu_chr_fe_printf(&s->lcd_display, "        ");
149         s->lcd_inited = true;
150     }
151 }
152 
153 static uint64_t boston_lcd_read(void *opaque, hwaddr addr,
154                                 unsigned size)
155 {
156     BostonState *s = opaque;
157     uint64_t val = 0;
158 
159     switch (size) {
160     case 8:
161         val |= (uint64_t)s->lcd_content[(addr + 7) & 0x7] << 56;
162         val |= (uint64_t)s->lcd_content[(addr + 6) & 0x7] << 48;
163         val |= (uint64_t)s->lcd_content[(addr + 5) & 0x7] << 40;
164         val |= (uint64_t)s->lcd_content[(addr + 4) & 0x7] << 32;
165         /* fall through */
166     case 4:
167         val |= (uint64_t)s->lcd_content[(addr + 3) & 0x7] << 24;
168         val |= (uint64_t)s->lcd_content[(addr + 2) & 0x7] << 16;
169         /* fall through */
170     case 2:
171         val |= (uint64_t)s->lcd_content[(addr + 1) & 0x7] << 8;
172         /* fall through */
173     case 1:
174         val |= (uint64_t)s->lcd_content[(addr + 0) & 0x7];
175         break;
176     }
177 
178     return val;
179 }
180 
181 static void boston_lcd_write(void *opaque, hwaddr addr,
182                              uint64_t val, unsigned size)
183 {
184     BostonState *s = opaque;
185 
186     switch (size) {
187     case 8:
188         s->lcd_content[(addr + 7) & 0x7] = val >> 56;
189         s->lcd_content[(addr + 6) & 0x7] = val >> 48;
190         s->lcd_content[(addr + 5) & 0x7] = val >> 40;
191         s->lcd_content[(addr + 4) & 0x7] = val >> 32;
192         /* fall through */
193     case 4:
194         s->lcd_content[(addr + 3) & 0x7] = val >> 24;
195         s->lcd_content[(addr + 2) & 0x7] = val >> 16;
196         /* fall through */
197     case 2:
198         s->lcd_content[(addr + 1) & 0x7] = val >> 8;
199         /* fall through */
200     case 1:
201         s->lcd_content[(addr + 0) & 0x7] = val;
202         break;
203     }
204 
205     qemu_chr_fe_printf(&s->lcd_display,
206                        "\r%-8.8s", s->lcd_content);
207 }
208 
209 static const MemoryRegionOps boston_lcd_ops = {
210     .read = boston_lcd_read,
211     .write = boston_lcd_write,
212     .endianness = DEVICE_NATIVE_ENDIAN,
213 };
214 
215 static uint64_t boston_platreg_read(void *opaque, hwaddr addr,
216                                     unsigned size)
217 {
218     BostonState *s = opaque;
219     uint32_t gic_freq, val;
220 
221     if (size != 4) {
222         qemu_log_mask(LOG_UNIMP, "%uB platform register read\n", size);
223         return 0;
224     }
225 
226     switch (addr & 0xffff) {
227     case PLAT_FPGA_BUILD:
228     case PLAT_CORE_CL:
229     case PLAT_WRAPPER_CL:
230         return 0;
231     case PLAT_DDR3_STATUS:
232         return PLAT_DDR3_STATUS_LOCKED | PLAT_DDR3_STATUS_CALIBRATED;
233     case PLAT_MMCM_DIV:
234         gic_freq = mips_gictimer_get_freq(s->cps.gic.gic_timer) / 1000000;
235         val = gic_freq << PLAT_MMCM_DIV_INPUT_SHIFT;
236         val |= 1 << PLAT_MMCM_DIV_MUL_SHIFT;
237         val |= 1 << PLAT_MMCM_DIV_CLK0DIV_SHIFT;
238         val |= 1 << PLAT_MMCM_DIV_CLK1DIV_SHIFT;
239         return val;
240     case PLAT_BUILD_CFG:
241         val = PLAT_BUILD_CFG_PCIE0_EN;
242         val |= PLAT_BUILD_CFG_PCIE1_EN;
243         val |= PLAT_BUILD_CFG_PCIE2_EN;
244         return val;
245     case PLAT_DDR_CFG:
246         val = s->mach->ram_size / GiB;
247         assert(!(val & ~PLAT_DDR_CFG_SIZE));
248         val |= PLAT_DDR_CFG_MHZ;
249         return val;
250     default:
251         qemu_log_mask(LOG_UNIMP, "Read platform register 0x%" HWADDR_PRIx "\n",
252                       addr & 0xffff);
253         return 0;
254     }
255 }
256 
257 static void boston_platreg_write(void *opaque, hwaddr addr,
258                                  uint64_t val, unsigned size)
259 {
260     if (size != 4) {
261         qemu_log_mask(LOG_UNIMP, "%uB platform register write\n", size);
262         return;
263     }
264 
265     switch (addr & 0xffff) {
266     case PLAT_FPGA_BUILD:
267     case PLAT_CORE_CL:
268     case PLAT_WRAPPER_CL:
269     case PLAT_DDR3_STATUS:
270     case PLAT_PCIE_STATUS:
271     case PLAT_MMCM_DIV:
272     case PLAT_BUILD_CFG:
273     case PLAT_DDR_CFG:
274         /* read only */
275         break;
276     case PLAT_SOFTRST_CTL:
277         if (val & PLAT_SOFTRST_CTL_SYSRESET) {
278             qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
279         }
280         break;
281     default:
282         qemu_log_mask(LOG_UNIMP, "Write platform register 0x%" HWADDR_PRIx
283                       " = 0x%" PRIx64 "\n", addr & 0xffff, val);
284         break;
285     }
286 }
287 
288 static const MemoryRegionOps boston_platreg_ops = {
289     .read = boston_platreg_read,
290     .write = boston_platreg_write,
291     .endianness = DEVICE_NATIVE_ENDIAN,
292 };
293 
294 static void mips_boston_instance_init(Object *obj)
295 {
296     BostonState *s = BOSTON(obj);
297 
298     s->cpuclk = qdev_init_clock_out(DEVICE(obj), "cpu-refclk");
299     clock_set_hz(s->cpuclk, 1000000000); /* 1 GHz */
300 }
301 
302 static const TypeInfo boston_device = {
303     .name          = TYPE_BOSTON,
304     .parent        = TYPE_SYS_BUS_DEVICE,
305     .instance_size = sizeof(BostonState),
306     .instance_init = mips_boston_instance_init,
307 };
308 
309 static void boston_register_types(void)
310 {
311     type_register_static(&boston_device);
312 }
313 type_init(boston_register_types)
314 
315 static void gen_firmware(uint32_t *p, hwaddr kernel_entry, hwaddr fdt_addr)
316 {
317     uint64_t regaddr;
318 
319     /* Move CM GCRs */
320     regaddr = cpu_mips_phys_to_kseg1(NULL, GCR_BASE_ADDR + GCR_BASE_OFS),
321     bl_gen_write_ulong(&p, regaddr,
322                        boston_memmap[BOSTON_CM].base);
323 
324     /* Move & enable GIC GCRs */
325     regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
326                                            + GCR_GIC_BASE_OFS),
327     bl_gen_write_ulong(&p, regaddr,
328                        boston_memmap[BOSTON_GIC].base | GCR_GIC_BASE_GICEN_MSK);
329 
330     /* Move & enable CPC GCRs */
331     regaddr = cpu_mips_phys_to_kseg1(NULL, boston_memmap[BOSTON_CM].base
332                                            + GCR_CPC_BASE_OFS),
333     bl_gen_write_ulong(&p, regaddr,
334                        boston_memmap[BOSTON_CPC].base | GCR_CPC_BASE_CPCEN_MSK);
335 
336     /*
337      * Setup argument registers to follow the UHI boot protocol:
338      *
339      * a0/$4 = -2
340      * a1/$5 = virtual address of FDT
341      * a2/$6 = 0
342      * a3/$7 = 0
343      */
344     bl_gen_jump_kernel(&p, 0, (int32_t)-2, fdt_addr, 0, 0, kernel_entry);
345 }
346 
347 static const void *boston_fdt_filter(void *opaque, const void *fdt_orig,
348                                      const void *match_data, hwaddr *load_addr)
349 {
350     BostonState *s = BOSTON(opaque);
351     MachineState *machine = s->mach;
352     const char *cmdline;
353     int err;
354     size_t ram_low_sz, ram_high_sz;
355     size_t fdt_sz = fdt_totalsize(fdt_orig) * 2;
356     g_autofree void *fdt = g_malloc0(fdt_sz);
357 
358     err = fdt_open_into(fdt_orig, fdt, fdt_sz);
359     if (err) {
360         fprintf(stderr, "unable to open FDT\n");
361         return NULL;
362     }
363 
364     cmdline = (machine->kernel_cmdline && machine->kernel_cmdline[0])
365             ? machine->kernel_cmdline : " ";
366     err = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
367     if (err < 0) {
368         fprintf(stderr, "couldn't set /chosen/bootargs\n");
369         return NULL;
370     }
371 
372     ram_low_sz = MIN(256 * MiB, machine->ram_size);
373     ram_high_sz = machine->ram_size - ram_low_sz;
374     qemu_fdt_setprop_sized_cells(fdt, "/memory@0", "reg",
375                         1, boston_memmap[BOSTON_LOWDDR].base, 1, ram_low_sz,
376                         1, boston_memmap[BOSTON_HIGHDDR].base + ram_low_sz,
377                         1, ram_high_sz);
378 
379     fdt = g_realloc(fdt, fdt_totalsize(fdt));
380     qemu_fdt_dumpdtb(fdt, fdt_sz);
381 
382     s->fdt_base = *load_addr;
383 
384     return g_steal_pointer(&fdt);
385 }
386 
387 static const void *boston_kernel_filter(void *opaque, const void *kernel,
388                                         hwaddr *load_addr, hwaddr *entry_addr)
389 {
390     BostonState *s = BOSTON(opaque);
391 
392     s->kernel_entry = *entry_addr;
393 
394     return kernel;
395 }
396 
397 static const struct fit_loader_match boston_matches[] = {
398     { "img,boston" },
399     { NULL },
400 };
401 
402 static const struct fit_loader boston_fit_loader = {
403     .matches = boston_matches,
404     .addr_to_phys = cpu_mips_kseg0_to_phys,
405     .fdt_filter = boston_fdt_filter,
406     .kernel_filter = boston_kernel_filter,
407 };
408 
409 static inline XilinxPCIEHost *
410 xilinx_pcie_init(MemoryRegion *sys_mem, uint32_t bus_nr,
411                  hwaddr cfg_base, uint64_t cfg_size,
412                  hwaddr mmio_base, uint64_t mmio_size,
413                  qemu_irq irq, bool link_up)
414 {
415     DeviceState *dev;
416     MemoryRegion *cfg, *mmio;
417 
418     dev = qdev_new(TYPE_XILINX_PCIE_HOST);
419 
420     qdev_prop_set_uint32(dev, "bus_nr", bus_nr);
421     qdev_prop_set_uint64(dev, "cfg_base", cfg_base);
422     qdev_prop_set_uint64(dev, "cfg_size", cfg_size);
423     qdev_prop_set_uint64(dev, "mmio_base", mmio_base);
424     qdev_prop_set_uint64(dev, "mmio_size", mmio_size);
425     qdev_prop_set_bit(dev, "link_up", link_up);
426 
427     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
428 
429     cfg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
430     memory_region_add_subregion_overlap(sys_mem, cfg_base, cfg, 0);
431 
432     mmio = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
433     memory_region_add_subregion_overlap(sys_mem, 0, mmio, 0);
434 
435     qdev_connect_gpio_out_named(dev, "interrupt_out", 0, irq);
436 
437     return XILINX_PCIE_HOST(dev);
438 }
439 
440 static void boston_mach_init(MachineState *machine)
441 {
442     DeviceState *dev;
443     BostonState *s;
444     MemoryRegion *flash, *ddr_low_alias, *lcd, *platreg;
445     MemoryRegion *sys_mem = get_system_memory();
446     XilinxPCIEHost *pcie2;
447     PCIDevice *ahci;
448     DriveInfo *hd[6];
449     Chardev *chr;
450     int fw_size, fit_err;
451 
452     if ((machine->ram_size % GiB) ||
453         (machine->ram_size > (2 * GiB))) {
454         error_report("Memory size must be 1GB or 2GB");
455         exit(1);
456     }
457 
458     dev = qdev_new(TYPE_BOSTON);
459     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
460 
461     s = BOSTON(dev);
462     s->mach = machine;
463 
464     if (!cpu_type_supports_cps_smp(machine->cpu_type)) {
465         error_report("Boston requires CPUs which support CPS");
466         exit(1);
467     }
468 
469     object_initialize_child(OBJECT(machine), "cps", &s->cps, TYPE_MIPS_CPS);
470     object_property_set_str(OBJECT(&s->cps), "cpu-type", machine->cpu_type,
471                             &error_fatal);
472     object_property_set_int(OBJECT(&s->cps), "num-vp", machine->smp.cpus,
473                             &error_fatal);
474     qdev_connect_clock_in(DEVICE(&s->cps), "clk-in",
475                           qdev_get_clock_out(dev, "cpu-refclk"));
476     sysbus_realize(SYS_BUS_DEVICE(&s->cps), &error_fatal);
477 
478     sysbus_mmio_map_overlap(SYS_BUS_DEVICE(&s->cps), 0, 0, 1);
479 
480     flash =  g_new(MemoryRegion, 1);
481     memory_region_init_rom(flash, NULL, "boston.flash",
482                            boston_memmap[BOSTON_FLASH].size, &error_fatal);
483     memory_region_add_subregion_overlap(sys_mem,
484                                         boston_memmap[BOSTON_FLASH].base,
485                                         flash, 0);
486 
487     memory_region_add_subregion_overlap(sys_mem,
488                                         boston_memmap[BOSTON_HIGHDDR].base,
489                                         machine->ram, 0);
490 
491     ddr_low_alias = g_new(MemoryRegion, 1);
492     memory_region_init_alias(ddr_low_alias, NULL, "boston_low.ddr",
493                              machine->ram, 0,
494                              MIN(machine->ram_size, (256 * MiB)));
495     memory_region_add_subregion_overlap(sys_mem, 0, ddr_low_alias, 0);
496 
497     xilinx_pcie_init(sys_mem, 0,
498                      boston_memmap[BOSTON_PCIE0].base,
499                      boston_memmap[BOSTON_PCIE0].size,
500                      boston_memmap[BOSTON_PCIE0_MMIO].base,
501                      boston_memmap[BOSTON_PCIE0_MMIO].size,
502                      get_cps_irq(&s->cps, 2), false);
503 
504     xilinx_pcie_init(sys_mem, 1,
505                      boston_memmap[BOSTON_PCIE1].base,
506                      boston_memmap[BOSTON_PCIE1].size,
507                      boston_memmap[BOSTON_PCIE1_MMIO].base,
508                      boston_memmap[BOSTON_PCIE1_MMIO].size,
509                      get_cps_irq(&s->cps, 1), false);
510 
511     pcie2 = xilinx_pcie_init(sys_mem, 2,
512                              boston_memmap[BOSTON_PCIE2].base,
513                              boston_memmap[BOSTON_PCIE2].size,
514                              boston_memmap[BOSTON_PCIE2_MMIO].base,
515                              boston_memmap[BOSTON_PCIE2_MMIO].size,
516                              get_cps_irq(&s->cps, 0), true);
517 
518     platreg = g_new(MemoryRegion, 1);
519     memory_region_init_io(platreg, NULL, &boston_platreg_ops, s,
520                           "boston-platregs",
521                           boston_memmap[BOSTON_PLATREG].size);
522     memory_region_add_subregion_overlap(sys_mem,
523                           boston_memmap[BOSTON_PLATREG].base, platreg, 0);
524 
525     s->uart = serial_mm_init(sys_mem, boston_memmap[BOSTON_UART].base, 2,
526                              get_cps_irq(&s->cps, 3), 10000000,
527                              serial_hd(0), DEVICE_NATIVE_ENDIAN);
528 
529     lcd = g_new(MemoryRegion, 1);
530     memory_region_init_io(lcd, NULL, &boston_lcd_ops, s, "boston-lcd", 0x8);
531     memory_region_add_subregion_overlap(sys_mem,
532                                         boston_memmap[BOSTON_LCD].base, lcd, 0);
533 
534     chr = qemu_chr_new("lcd", "vc:320x240", NULL);
535     qemu_chr_fe_init(&s->lcd_display, chr, NULL);
536     qemu_chr_fe_set_handlers(&s->lcd_display, NULL, NULL,
537                              boston_lcd_event, NULL, s, NULL, true);
538 
539     ahci = pci_create_simple_multifunction(&PCI_BRIDGE(&pcie2->root)->sec_bus,
540                                            PCI_DEVFN(0, 0),
541                                            true, TYPE_ICH9_AHCI);
542     g_assert(ARRAY_SIZE(hd) == ahci_get_num_ports(ahci));
543     ide_drive_get(hd, ahci_get_num_ports(ahci));
544     ahci_ide_create_devs(ahci, hd);
545 
546     if (machine->firmware) {
547         fw_size = load_image_targphys(machine->firmware,
548                                       0x1fc00000, 4 * MiB);
549         if (fw_size == -1) {
550             error_report("unable to load firmware image '%s'",
551                           machine->firmware);
552             exit(1);
553         }
554     } else if (machine->kernel_filename) {
555         uint64_t kernel_entry, kernel_high, kernel_size;
556 
557         kernel_size = load_elf(machine->kernel_filename, NULL,
558                            cpu_mips_kseg0_to_phys, NULL,
559                            &kernel_entry, NULL, &kernel_high,
560                            NULL, 0, EM_MIPS, 1, 0);
561 
562         if (kernel_size) {
563             hwaddr dtb_paddr = QEMU_ALIGN_UP(kernel_high, 64 * KiB);
564             hwaddr dtb_vaddr = cpu_mips_phys_to_kseg0(NULL, dtb_paddr);
565 
566             s->kernel_entry = kernel_entry;
567             if (machine->dtb) {
568                 int dt_size;
569                 g_autofree const void *dtb_file_data, *dtb_load_data;
570 
571                 dtb_file_data = load_device_tree(machine->dtb, &dt_size);
572                 dtb_load_data = boston_fdt_filter(s, dtb_file_data,
573                                                   NULL, &dtb_vaddr);
574 
575                 /* Calculate real fdt size after filter */
576                 dt_size = fdt_totalsize(dtb_load_data);
577                 rom_add_blob_fixed("dtb", dtb_load_data, dt_size, dtb_paddr);
578             }
579         } else {
580             /* Try to load file as FIT */
581             fit_err = load_fit(&boston_fit_loader, machine->kernel_filename, s);
582             if (fit_err) {
583                 error_report("unable to load kernel image");
584                 exit(1);
585             }
586         }
587 
588         gen_firmware(memory_region_get_ram_ptr(flash) + 0x7c00000,
589                      s->kernel_entry, s->fdt_base);
590     } else if (!qtest_enabled()) {
591         error_report("Please provide either a -kernel or -bios argument");
592         exit(1);
593     }
594 }
595 
596 static void boston_mach_class_init(MachineClass *mc)
597 {
598     mc->desc = "MIPS Boston";
599     mc->init = boston_mach_init;
600     mc->block_default_type = IF_IDE;
601     mc->default_ram_size = 1 * GiB;
602     mc->default_ram_id = "boston.ddr";
603     mc->max_cpus = 16;
604     mc->default_cpu_type = MIPS_CPU_TYPE_NAME("I6400");
605 }
606 
607 DEFINE_MACHINE("boston", boston_mach_class_init)
608