1 /* 2 * QEMU PowerPC XIVE interrupt controller model 3 * 4 * Copyright (c) 2017-2018, IBM Corporation. 5 * 6 * SPDX-License-Identifier: GPL-2.0-or-later 7 */ 8 9 #include "qemu/osdep.h" 10 #include "qemu/log.h" 11 #include "qemu/module.h" 12 #include "qapi/error.h" 13 #include "target/ppc/cpu.h" 14 #include "system/cpus.h" 15 #include "system/dma.h" 16 #include "system/reset.h" 17 #include "hw/qdev-properties.h" 18 #include "migration/vmstate.h" 19 #include "hw/irq.h" 20 #include "hw/ppc/xive.h" 21 #include "hw/ppc/xive2.h" 22 #include "hw/ppc/xive_regs.h" 23 #include "trace.h" 24 25 /* 26 * XIVE Thread Interrupt Management context 27 */ 28 29 static qemu_irq xive_tctx_output(XiveTCTX *tctx, uint8_t ring) 30 { 31 switch (ring) { 32 case TM_QW0_USER: 33 return 0; /* Not supported */ 34 case TM_QW1_OS: 35 return tctx->os_output; 36 case TM_QW2_HV_POOL: 37 case TM_QW3_HV_PHYS: 38 return tctx->hv_output; 39 default: 40 return 0; 41 } 42 } 43 44 static uint64_t xive_tctx_accept(XiveTCTX *tctx, uint8_t ring) 45 { 46 uint8_t *regs = &tctx->regs[ring]; 47 uint8_t nsr = regs[TM_NSR]; 48 49 qemu_irq_lower(xive_tctx_output(tctx, ring)); 50 51 if (regs[TM_NSR] != 0) { 52 uint8_t cppr = regs[TM_PIPR]; 53 uint8_t alt_ring; 54 uint8_t *alt_regs; 55 56 /* POOL interrupt uses IPB in QW2, POOL ring */ 57 if ((ring == TM_QW3_HV_PHYS) && (nsr & (TM_QW3_NSR_HE_POOL << 6))) { 58 alt_ring = TM_QW2_HV_POOL; 59 } else { 60 alt_ring = ring; 61 } 62 alt_regs = &tctx->regs[alt_ring]; 63 64 regs[TM_CPPR] = cppr; 65 66 /* 67 * If the interrupt was for a specific VP, reset the pending 68 * buffer bit, otherwise clear the logical server indicator 69 */ 70 if (regs[TM_NSR] & TM_NSR_GRP_LVL) { 71 regs[TM_NSR] &= ~TM_NSR_GRP_LVL; 72 } else { 73 alt_regs[TM_IPB] &= ~xive_priority_to_ipb(cppr); 74 } 75 76 /* Drop the exception bit and any group/crowd */ 77 regs[TM_NSR] = 0; 78 79 trace_xive_tctx_accept(tctx->cs->cpu_index, alt_ring, 80 alt_regs[TM_IPB], regs[TM_PIPR], 81 regs[TM_CPPR], regs[TM_NSR]); 82 } 83 84 return ((uint64_t)nsr << 8) | regs[TM_CPPR]; 85 } 86 87 void xive_tctx_notify(XiveTCTX *tctx, uint8_t ring, uint8_t group_level) 88 { 89 /* HV_POOL ring uses HV_PHYS NSR, CPPR and PIPR registers */ 90 uint8_t alt_ring = (ring == TM_QW2_HV_POOL) ? TM_QW3_HV_PHYS : ring; 91 uint8_t *alt_regs = &tctx->regs[alt_ring]; 92 uint8_t *regs = &tctx->regs[ring]; 93 94 if (alt_regs[TM_PIPR] < alt_regs[TM_CPPR]) { 95 switch (ring) { 96 case TM_QW1_OS: 97 regs[TM_NSR] = TM_QW1_NSR_EO | (group_level & 0x3F); 98 break; 99 case TM_QW2_HV_POOL: 100 alt_regs[TM_NSR] = (TM_QW3_NSR_HE_POOL << 6) | (group_level & 0x3F); 101 break; 102 case TM_QW3_HV_PHYS: 103 regs[TM_NSR] = (TM_QW3_NSR_HE_PHYS << 6) | (group_level & 0x3F); 104 break; 105 default: 106 g_assert_not_reached(); 107 } 108 trace_xive_tctx_notify(tctx->cs->cpu_index, ring, 109 regs[TM_IPB], alt_regs[TM_PIPR], 110 alt_regs[TM_CPPR], alt_regs[TM_NSR]); 111 qemu_irq_raise(xive_tctx_output(tctx, ring)); 112 } 113 } 114 115 void xive_tctx_reset_signal(XiveTCTX *tctx, uint8_t ring) 116 { 117 /* 118 * Lower the External interrupt. Used when pulling a context. It is 119 * necessary to avoid catching it in the higher privilege context. It 120 * should be raised again when re-pushing the lower privilege context. 121 */ 122 qemu_irq_lower(xive_tctx_output(tctx, ring)); 123 } 124 125 static void xive_tctx_set_cppr(XiveTCTX *tctx, uint8_t ring, uint8_t cppr) 126 { 127 uint8_t *regs = &tctx->regs[ring]; 128 uint8_t pipr_min; 129 uint8_t ring_min; 130 131 trace_xive_tctx_set_cppr(tctx->cs->cpu_index, ring, 132 regs[TM_IPB], regs[TM_PIPR], 133 cppr, regs[TM_NSR]); 134 135 if (cppr > XIVE_PRIORITY_MAX) { 136 cppr = 0xff; 137 } 138 139 tctx->regs[ring + TM_CPPR] = cppr; 140 141 /* 142 * Recompute the PIPR based on local pending interrupts. The PHYS 143 * ring must take the minimum of both the PHYS and POOL PIPR values. 144 */ 145 pipr_min = xive_ipb_to_pipr(regs[TM_IPB]); 146 ring_min = ring; 147 148 /* PHYS updates also depend on POOL values */ 149 if (ring == TM_QW3_HV_PHYS) { 150 uint8_t *pool_regs = &tctx->regs[TM_QW2_HV_POOL]; 151 152 /* POOL values only matter if POOL ctx is valid */ 153 if (pool_regs[TM_WORD2] & 0x80) { 154 155 uint8_t pool_pipr = xive_ipb_to_pipr(pool_regs[TM_IPB]); 156 157 /* 158 * Determine highest priority interrupt and 159 * remember which ring has it. 160 */ 161 if (pool_pipr < pipr_min) { 162 pipr_min = pool_pipr; 163 ring_min = TM_QW2_HV_POOL; 164 } 165 } 166 } 167 168 regs[TM_PIPR] = pipr_min; 169 170 /* CPPR has changed, check if we need to raise a pending exception */ 171 xive_tctx_notify(tctx, ring_min, 0); 172 } 173 174 void xive_tctx_pipr_update(XiveTCTX *tctx, uint8_t ring, uint8_t priority, 175 uint8_t group_level) 176 { 177 /* HV_POOL ring uses HV_PHYS NSR, CPPR and PIPR registers */ 178 uint8_t alt_ring = (ring == TM_QW2_HV_POOL) ? TM_QW3_HV_PHYS : ring; 179 uint8_t *alt_regs = &tctx->regs[alt_ring]; 180 uint8_t *regs = &tctx->regs[ring]; 181 182 if (group_level == 0) { 183 /* VP-specific */ 184 regs[TM_IPB] |= xive_priority_to_ipb(priority); 185 alt_regs[TM_PIPR] = xive_ipb_to_pipr(regs[TM_IPB]); 186 } else { 187 /* VP-group */ 188 alt_regs[TM_PIPR] = xive_priority_to_pipr(priority); 189 } 190 xive_tctx_notify(tctx, ring, group_level); 191 } 192 193 /* 194 * XIVE Thread Interrupt Management Area (TIMA) 195 */ 196 197 static void xive_tm_set_hv_cppr(XivePresenter *xptr, XiveTCTX *tctx, 198 hwaddr offset, uint64_t value, unsigned size) 199 { 200 xive_tctx_set_cppr(tctx, TM_QW3_HV_PHYS, value & 0xff); 201 } 202 203 static uint64_t xive_tm_ack_hv_reg(XivePresenter *xptr, XiveTCTX *tctx, 204 hwaddr offset, unsigned size) 205 { 206 return xive_tctx_accept(tctx, TM_QW3_HV_PHYS); 207 } 208 209 static uint64_t xive_tm_pull_pool_ctx(XivePresenter *xptr, XiveTCTX *tctx, 210 hwaddr offset, unsigned size) 211 { 212 uint32_t qw2w2_prev = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 213 uint32_t qw2w2; 214 215 qw2w2 = xive_set_field32(TM_QW2W2_VP, qw2w2_prev, 0); 216 memcpy(&tctx->regs[TM_QW2_HV_POOL + TM_WORD2], &qw2w2, 4); 217 return qw2w2; 218 } 219 220 static uint64_t xive_tm_pull_phys_ctx(XivePresenter *xptr, XiveTCTX *tctx, 221 hwaddr offset, unsigned size) 222 { 223 uint8_t qw3b8_prev = tctx->regs[TM_QW3_HV_PHYS + TM_WORD2]; 224 uint8_t qw3b8; 225 226 qw3b8 = qw3b8_prev & ~TM_QW3B8_VT; 227 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = qw3b8; 228 return qw3b8; 229 } 230 231 static void xive_tm_vt_push(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 232 uint64_t value, unsigned size) 233 { 234 tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] = value & 0xff; 235 } 236 237 static uint64_t xive_tm_vt_poll(XivePresenter *xptr, XiveTCTX *tctx, 238 hwaddr offset, unsigned size) 239 { 240 return tctx->regs[TM_QW3_HV_PHYS + TM_WORD2] & 0xff; 241 } 242 243 /* 244 * Define an access map for each page of the TIMA that we will use in 245 * the memory region ops to filter values when doing loads and stores 246 * of raw registers values 247 * 248 * Registers accessibility bits : 249 * 250 * 0x0 - no access 251 * 0x1 - write only 252 * 0x2 - read only 253 * 0x3 - read/write 254 */ 255 256 static const uint8_t xive_tm_hw_view[] = { 257 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 258 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 259 0, 0, 3, 3, 0, 3, 3, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 260 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 3, 3, 3, 0, /* QW-3 PHYS */ 261 }; 262 263 static const uint8_t xive_tm_hv_view[] = { 264 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 265 3, 3, 3, 3, 3, 3, 0, 2, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-1 OS */ 266 0, 0, 3, 3, 0, 3, 3, 0, 0, 3, 3, 3, 0, 0, 0, 0, /* QW-2 POOL */ 267 3, 3, 3, 3, 0, 3, 0, 2, 3, 0, 0, 3, 0, 0, 0, 0, /* QW-3 PHYS */ 268 }; 269 270 static const uint8_t xive_tm_os_view[] = { 271 3, 0, 0, 0, 0, 0, 0, 0, 3, 3, 3, 3, 0, 0, 0, 0, /* QW-0 User */ 272 2, 3, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 273 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 274 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 275 }; 276 277 static const uint8_t xive_tm_user_view[] = { 278 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-0 User */ 279 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-1 OS */ 280 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-2 POOL */ 281 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* QW-3 PHYS */ 282 }; 283 284 /* 285 * Overall TIMA access map for the thread interrupt management context 286 * registers 287 */ 288 static const uint8_t *xive_tm_views[] = { 289 [XIVE_TM_HW_PAGE] = xive_tm_hw_view, 290 [XIVE_TM_HV_PAGE] = xive_tm_hv_view, 291 [XIVE_TM_OS_PAGE] = xive_tm_os_view, 292 [XIVE_TM_USER_PAGE] = xive_tm_user_view, 293 }; 294 295 /* 296 * Computes a register access mask for a given offset in the TIMA 297 */ 298 static uint64_t xive_tm_mask(hwaddr offset, unsigned size, bool write) 299 { 300 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 301 uint8_t reg_offset = offset & TM_REG_OFFSET; 302 uint8_t reg_mask = write ? 0x1 : 0x2; 303 uint64_t mask = 0x0; 304 int i; 305 306 for (i = 0; i < size; i++) { 307 if (xive_tm_views[page_offset][reg_offset + i] & reg_mask) { 308 mask |= (uint64_t) 0xff << (8 * (size - i - 1)); 309 } 310 } 311 312 return mask; 313 } 314 315 static void xive_tm_raw_write(XiveTCTX *tctx, hwaddr offset, uint64_t value, 316 unsigned size) 317 { 318 uint8_t ring_offset = offset & TM_RING_OFFSET; 319 uint8_t reg_offset = offset & TM_REG_OFFSET; 320 uint64_t mask = xive_tm_mask(offset, size, true); 321 int i; 322 323 /* 324 * Only 4 or 8 bytes stores are allowed and the User ring is 325 * excluded 326 */ 327 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 328 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA @%" 329 HWADDR_PRIx"\n", offset); 330 return; 331 } 332 333 /* 334 * Use the register offset for the raw values and filter out 335 * reserved values 336 */ 337 for (i = 0; i < size; i++) { 338 uint8_t byte_mask = (mask >> (8 * (size - i - 1))); 339 if (byte_mask) { 340 tctx->regs[reg_offset + i] = (value >> (8 * (size - i - 1))) & 341 byte_mask; 342 } 343 } 344 } 345 346 static uint64_t xive_tm_raw_read(XiveTCTX *tctx, hwaddr offset, unsigned size) 347 { 348 uint8_t ring_offset = offset & TM_RING_OFFSET; 349 uint8_t reg_offset = offset & TM_REG_OFFSET; 350 uint64_t mask = xive_tm_mask(offset, size, false); 351 uint64_t ret; 352 int i; 353 354 /* 355 * Only 4 or 8 bytes loads are allowed and the User ring is 356 * excluded 357 */ 358 if (size < 4 || !mask || ring_offset == TM_QW0_USER) { 359 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access at TIMA @%" 360 HWADDR_PRIx"\n", offset); 361 return -1; 362 } 363 364 /* Use the register offset for the raw values */ 365 ret = 0; 366 for (i = 0; i < size; i++) { 367 ret |= (uint64_t) tctx->regs[reg_offset + i] << (8 * (size - i - 1)); 368 } 369 370 /* filter out reserved values */ 371 return ret & mask; 372 } 373 374 /* 375 * The TM context is mapped twice within each page. Stores and loads 376 * to the first mapping below 2K write and read the specified values 377 * without modification. The second mapping above 2K performs specific 378 * state changes (side effects) in addition to setting/returning the 379 * interrupt management area context of the processor thread. 380 */ 381 static uint64_t xive_tm_ack_os_reg(XivePresenter *xptr, XiveTCTX *tctx, 382 hwaddr offset, unsigned size) 383 { 384 return xive_tctx_accept(tctx, TM_QW1_OS); 385 } 386 387 static void xive_tm_set_os_cppr(XivePresenter *xptr, XiveTCTX *tctx, 388 hwaddr offset, uint64_t value, unsigned size) 389 { 390 xive_tctx_set_cppr(tctx, TM_QW1_OS, value & 0xff); 391 } 392 393 static void xive_tctx_set_lgs(XiveTCTX *tctx, uint8_t ring, uint8_t lgs) 394 { 395 uint8_t *regs = &tctx->regs[ring]; 396 397 regs[TM_LGS] = lgs; 398 } 399 400 static void xive_tm_set_os_lgs(XivePresenter *xptr, XiveTCTX *tctx, 401 hwaddr offset, uint64_t value, unsigned size) 402 { 403 xive_tctx_set_lgs(tctx, TM_QW1_OS, value & 0xff); 404 } 405 406 /* 407 * Adjust the PIPR to allow a CPU to process event queues of other 408 * priorities during one physical interrupt cycle. 409 */ 410 static void xive_tm_set_os_pending(XivePresenter *xptr, XiveTCTX *tctx, 411 hwaddr offset, uint64_t value, unsigned size) 412 { 413 xive_tctx_pipr_update(tctx, TM_QW1_OS, value & 0xff, 0); 414 } 415 416 static void xive_os_cam_decode(uint32_t cam, uint8_t *nvt_blk, 417 uint32_t *nvt_idx, bool *vo) 418 { 419 if (nvt_blk) { 420 *nvt_blk = xive_nvt_blk(cam); 421 } 422 if (nvt_idx) { 423 *nvt_idx = xive_nvt_idx(cam); 424 } 425 if (vo) { 426 *vo = !!(cam & TM_QW1W2_VO); 427 } 428 } 429 430 static uint32_t xive_tctx_get_os_cam(XiveTCTX *tctx, uint8_t *nvt_blk, 431 uint32_t *nvt_idx, bool *vo) 432 { 433 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 434 uint32_t cam = be32_to_cpu(qw1w2); 435 436 xive_os_cam_decode(cam, nvt_blk, nvt_idx, vo); 437 return qw1w2; 438 } 439 440 static void xive_tctx_set_os_cam(XiveTCTX *tctx, uint32_t qw1w2) 441 { 442 memcpy(&tctx->regs[TM_QW1_OS + TM_WORD2], &qw1w2, 4); 443 } 444 445 static uint64_t xive_tm_pull_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 446 hwaddr offset, unsigned size) 447 { 448 uint32_t qw1w2; 449 uint32_t qw1w2_new; 450 uint8_t nvt_blk; 451 uint32_t nvt_idx; 452 bool vo; 453 454 qw1w2 = xive_tctx_get_os_cam(tctx, &nvt_blk, &nvt_idx, &vo); 455 456 if (!vo) { 457 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: pulling invalid NVT %x/%x !?\n", 458 nvt_blk, nvt_idx); 459 } 460 461 /* Invalidate CAM line */ 462 qw1w2_new = xive_set_field32(TM_QW1W2_VO, qw1w2, 0); 463 xive_tctx_set_os_cam(tctx, qw1w2_new); 464 465 xive_tctx_reset_signal(tctx, TM_QW1_OS); 466 return qw1w2; 467 } 468 469 static void xive_tctx_need_resend(XiveRouter *xrtr, XiveTCTX *tctx, 470 uint8_t nvt_blk, uint32_t nvt_idx) 471 { 472 XiveNVT nvt; 473 uint8_t ipb; 474 475 /* 476 * Grab the associated NVT to pull the pending bits, and merge 477 * them with the IPB of the thread interrupt context registers 478 */ 479 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 480 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid NVT %x/%x\n", 481 nvt_blk, nvt_idx); 482 return; 483 } 484 485 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4); 486 487 if (ipb) { 488 /* Reset the NVT value */ 489 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, 0); 490 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 491 492 uint8_t *regs = &tctx->regs[TM_QW1_OS]; 493 regs[TM_IPB] |= ipb; 494 } 495 496 /* 497 * Always call xive_tctx_pipr_update(). Even if there were no 498 * escalation triggered, there could be a pending interrupt which 499 * was saved when the context was pulled and that we need to take 500 * into account by recalculating the PIPR (which is not 501 * saved/restored). 502 * It will also raise the External interrupt signal if needed. 503 */ 504 xive_tctx_pipr_update(tctx, TM_QW1_OS, 0xFF, 0); /* fxb */ 505 } 506 507 /* 508 * Updating the OS CAM line can trigger a resend of interrupt 509 */ 510 static void xive_tm_push_os_ctx(XivePresenter *xptr, XiveTCTX *tctx, 511 hwaddr offset, uint64_t value, unsigned size) 512 { 513 uint32_t cam = value; 514 uint32_t qw1w2 = cpu_to_be32(cam); 515 uint8_t nvt_blk; 516 uint32_t nvt_idx; 517 bool vo; 518 519 xive_os_cam_decode(cam, &nvt_blk, &nvt_idx, &vo); 520 521 /* First update the registers */ 522 xive_tctx_set_os_cam(tctx, qw1w2); 523 524 /* Check the interrupt pending bits */ 525 if (vo) { 526 xive_tctx_need_resend(XIVE_ROUTER(xptr), tctx, nvt_blk, nvt_idx); 527 } 528 } 529 530 static uint32_t xive_presenter_get_config(XivePresenter *xptr) 531 { 532 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); 533 534 return xpc->get_config(xptr); 535 } 536 537 /* 538 * Define a mapping of "special" operations depending on the TIMA page 539 * offset and the size of the operation. 540 */ 541 typedef struct XiveTmOp { 542 uint8_t page_offset; 543 uint32_t op_offset; 544 unsigned size; 545 void (*write_handler)(XivePresenter *xptr, XiveTCTX *tctx, 546 hwaddr offset, 547 uint64_t value, unsigned size); 548 uint64_t (*read_handler)(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 549 unsigned size); 550 } XiveTmOp; 551 552 static const XiveTmOp xive_tm_operations[] = { 553 /* 554 * MMIOs below 2K : raw values and special operations without side 555 * effects 556 */ 557 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive_tm_set_os_cppr, 558 NULL }, 559 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive_tm_push_os_ctx, 560 NULL }, 561 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive_tm_set_hv_cppr, 562 NULL }, 563 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, 564 NULL }, 565 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, 566 xive_tm_vt_poll }, 567 568 /* MMIOs above 2K : special operations with side effects */ 569 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, 570 xive_tm_ack_os_reg }, 571 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, 572 NULL }, 573 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, 574 xive_tm_pull_os_ctx }, 575 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, 576 xive_tm_pull_os_ctx }, 577 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, 578 xive_tm_ack_hv_reg }, 579 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, 580 xive_tm_pull_pool_ctx }, 581 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, 582 xive_tm_pull_pool_ctx }, 583 { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX, 1, NULL, 584 xive_tm_pull_phys_ctx }, 585 }; 586 587 static const XiveTmOp xive2_tm_operations[] = { 588 /* 589 * MMIOs below 2K : raw values and special operations without side 590 * effects 591 */ 592 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_CPPR, 1, xive2_tm_set_os_cppr, 593 NULL }, 594 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 4, xive2_tm_push_os_ctx, 595 NULL }, 596 { XIVE_TM_HV_PAGE, TM_QW1_OS + TM_WORD2, 8, xive2_tm_push_os_ctx, 597 NULL }, 598 { XIVE_TM_OS_PAGE, TM_QW1_OS + TM_LGS, 1, xive_tm_set_os_lgs, 599 NULL }, 600 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_CPPR, 1, xive2_tm_set_hv_cppr, 601 NULL }, 602 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, xive_tm_vt_push, 603 NULL }, 604 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_WORD2, 1, NULL, 605 xive_tm_vt_poll }, 606 { XIVE_TM_HV_PAGE, TM_QW3_HV_PHYS + TM_T, 1, xive2_tm_set_hv_target, 607 NULL }, 608 609 /* MMIOs above 2K : special operations with side effects */ 610 { XIVE_TM_OS_PAGE, TM_SPC_ACK_OS_REG, 2, NULL, 611 xive_tm_ack_os_reg }, 612 { XIVE_TM_OS_PAGE, TM_SPC_SET_OS_PENDING, 1, xive_tm_set_os_pending, 613 NULL }, 614 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX_G2, 4, NULL, 615 xive2_tm_pull_os_ctx }, 616 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 4, NULL, 617 xive2_tm_pull_os_ctx }, 618 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX, 8, NULL, 619 xive2_tm_pull_os_ctx }, 620 { XIVE_TM_HV_PAGE, TM_SPC_ACK_HV_REG, 2, NULL, 621 xive_tm_ack_hv_reg }, 622 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX_G2, 4, NULL, 623 xive_tm_pull_pool_ctx }, 624 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 4, NULL, 625 xive_tm_pull_pool_ctx }, 626 { XIVE_TM_HV_PAGE, TM_SPC_PULL_POOL_CTX, 8, NULL, 627 xive_tm_pull_pool_ctx }, 628 { XIVE_TM_HV_PAGE, TM_SPC_PULL_OS_CTX_OL, 1, xive2_tm_pull_os_ctx_ol, 629 NULL }, 630 { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX_G2, 4, NULL, 631 xive_tm_pull_phys_ctx }, 632 { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX, 1, NULL, 633 xive_tm_pull_phys_ctx }, 634 { XIVE_TM_HV_PAGE, TM_SPC_PULL_PHYS_CTX_OL, 1, xive2_tm_pull_phys_ctx_ol, 635 NULL }, 636 }; 637 638 static const XiveTmOp *xive_tm_find_op(XivePresenter *xptr, hwaddr offset, 639 unsigned size, bool write) 640 { 641 uint8_t page_offset = (offset >> TM_SHIFT) & 0x3; 642 uint32_t op_offset = offset & TM_ADDRESS_MASK; 643 const XiveTmOp *tm_ops; 644 int i, tm_ops_count; 645 uint32_t cfg; 646 647 cfg = xive_presenter_get_config(xptr); 648 if (cfg & XIVE_PRESENTER_GEN1_TIMA_OS) { 649 tm_ops = xive_tm_operations; 650 tm_ops_count = ARRAY_SIZE(xive_tm_operations); 651 } else { 652 tm_ops = xive2_tm_operations; 653 tm_ops_count = ARRAY_SIZE(xive2_tm_operations); 654 } 655 656 for (i = 0; i < tm_ops_count; i++) { 657 const XiveTmOp *xto = &tm_ops[i]; 658 659 /* Accesses done from a more privileged TIMA page is allowed */ 660 if (xto->page_offset >= page_offset && 661 xto->op_offset == op_offset && 662 xto->size == size && 663 ((write && xto->write_handler) || (!write && xto->read_handler))) { 664 return xto; 665 } 666 } 667 return NULL; 668 } 669 670 /* 671 * TIMA MMIO handlers 672 */ 673 void xive_tctx_tm_write(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 674 uint64_t value, unsigned size) 675 { 676 const XiveTmOp *xto; 677 678 trace_xive_tctx_tm_write(tctx->cs->cpu_index, offset, size, value); 679 680 /* 681 * TODO: check V bit in Q[0-3]W2 682 */ 683 684 /* 685 * First, check for special operations in the 2K region 686 */ 687 if (offset & TM_SPECIAL_OP) { 688 xto = xive_tm_find_op(tctx->xptr, offset, size, true); 689 if (!xto) { 690 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid write access at TIMA " 691 "@%"HWADDR_PRIx"\n", offset); 692 } else { 693 xto->write_handler(xptr, tctx, offset, value, size); 694 } 695 return; 696 } 697 698 /* 699 * Then, for special operations in the region below 2K. 700 */ 701 xto = xive_tm_find_op(tctx->xptr, offset, size, true); 702 if (xto) { 703 xto->write_handler(xptr, tctx, offset, value, size); 704 return; 705 } 706 707 /* 708 * Finish with raw access to the register values 709 */ 710 xive_tm_raw_write(tctx, offset, value, size); 711 } 712 713 uint64_t xive_tctx_tm_read(XivePresenter *xptr, XiveTCTX *tctx, hwaddr offset, 714 unsigned size) 715 { 716 const XiveTmOp *xto; 717 uint64_t ret; 718 719 /* 720 * TODO: check V bit in Q[0-3]W2 721 */ 722 723 /* 724 * First, check for special operations in the 2K region 725 */ 726 if (offset & TM_SPECIAL_OP) { 727 xto = xive_tm_find_op(tctx->xptr, offset, size, false); 728 if (!xto) { 729 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid read access to TIMA" 730 "@%"HWADDR_PRIx"\n", offset); 731 return -1; 732 } 733 ret = xto->read_handler(xptr, tctx, offset, size); 734 goto out; 735 } 736 737 /* 738 * Then, for special operations in the region below 2K. 739 */ 740 xto = xive_tm_find_op(tctx->xptr, offset, size, false); 741 if (xto) { 742 ret = xto->read_handler(xptr, tctx, offset, size); 743 goto out; 744 } 745 746 /* 747 * Finish with raw access to the register values 748 */ 749 ret = xive_tm_raw_read(tctx, offset, size); 750 out: 751 trace_xive_tctx_tm_read(tctx->cs->cpu_index, offset, size, ret); 752 return ret; 753 } 754 755 static char *xive_tctx_ring_print(uint8_t *ring) 756 { 757 uint32_t w2 = xive_tctx_word2(ring); 758 759 return g_strdup_printf("%02x %02x %02x %02x %02x " 760 "%02x %02x %02x %08x", 761 ring[TM_NSR], ring[TM_CPPR], ring[TM_IPB], ring[TM_LSMFB], 762 ring[TM_ACK_CNT], ring[TM_INC], ring[TM_AGE], ring[TM_PIPR], 763 be32_to_cpu(w2)); 764 } 765 766 static const char * const xive_tctx_ring_names[] = { 767 "USER", "OS", "POOL", "PHYS", 768 }; 769 770 /* 771 * kvm_irqchip_in_kernel() will cause the compiler to turn this 772 * info a nop if CONFIG_KVM isn't defined. 773 */ 774 #define xive_in_kernel(xptr) \ 775 (kvm_irqchip_in_kernel() && \ 776 ({ \ 777 XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); \ 778 xpc->in_kernel ? xpc->in_kernel(xptr) : false; \ 779 })) 780 781 void xive_tctx_pic_print_info(XiveTCTX *tctx, GString *buf) 782 { 783 int cpu_index; 784 int i; 785 786 /* Skip partially initialized vCPUs. This can happen on sPAPR when vCPUs 787 * are hot plugged or unplugged. 788 */ 789 if (!tctx) { 790 return; 791 } 792 793 cpu_index = tctx->cs ? tctx->cs->cpu_index : -1; 794 795 if (xive_in_kernel(tctx->xptr)) { 796 Error *local_err = NULL; 797 798 kvmppc_xive_cpu_synchronize_state(tctx, &local_err); 799 if (local_err) { 800 error_report_err(local_err); 801 return; 802 } 803 } 804 805 if (xive_presenter_get_config(tctx->xptr) & XIVE_PRESENTER_GEN1_TIMA_OS) { 806 g_string_append_printf(buf, "CPU[%04x]: " 807 "QW NSR CPPR IPB LSMFB ACK# INC AGE PIPR" 808 " W2\n", cpu_index); 809 } else { 810 g_string_append_printf(buf, "CPU[%04x]: " 811 "QW NSR CPPR IPB LSMFB - LGS T PIPR" 812 " W2\n", cpu_index); 813 } 814 815 for (i = 0; i < XIVE_TM_RING_COUNT; i++) { 816 char *s = xive_tctx_ring_print(&tctx->regs[i * XIVE_TM_RING_SIZE]); 817 g_string_append_printf(buf, "CPU[%04x]: %4s %s\n", 818 cpu_index, xive_tctx_ring_names[i], s); 819 g_free(s); 820 } 821 } 822 823 void xive_tctx_reset(XiveTCTX *tctx) 824 { 825 memset(tctx->regs, 0, sizeof(tctx->regs)); 826 827 /* Set some defaults */ 828 tctx->regs[TM_QW1_OS + TM_LSMFB] = 0xFF; 829 tctx->regs[TM_QW1_OS + TM_ACK_CNT] = 0xFF; 830 tctx->regs[TM_QW1_OS + TM_AGE] = 0xFF; 831 if (!(xive_presenter_get_config(tctx->xptr) & 832 XIVE_PRESENTER_GEN1_TIMA_OS)) { 833 tctx->regs[TM_QW1_OS + TM_OGEN] = 2; 834 } 835 836 /* 837 * Initialize PIPR to 0xFF to avoid phantom interrupts when the 838 * CPPR is first set. 839 */ 840 tctx->regs[TM_QW1_OS + TM_PIPR] = 841 xive_ipb_to_pipr(tctx->regs[TM_QW1_OS + TM_IPB]); 842 tctx->regs[TM_QW3_HV_PHYS + TM_PIPR] = 843 xive_ipb_to_pipr(tctx->regs[TM_QW3_HV_PHYS + TM_IPB]); 844 } 845 846 static void xive_tctx_realize(DeviceState *dev, Error **errp) 847 { 848 XiveTCTX *tctx = XIVE_TCTX(dev); 849 PowerPCCPU *cpu; 850 CPUPPCState *env; 851 852 assert(tctx->cs); 853 assert(tctx->xptr); 854 855 cpu = POWERPC_CPU(tctx->cs); 856 env = &cpu->env; 857 switch (PPC_INPUT(env)) { 858 case PPC_FLAGS_INPUT_POWER9: 859 tctx->hv_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_HINT); 860 tctx->os_output = qdev_get_gpio_in(DEVICE(cpu), POWER9_INPUT_INT); 861 break; 862 863 default: 864 error_setg(errp, "XIVE interrupt controller does not support " 865 "this CPU bus model"); 866 return; 867 } 868 869 /* Connect the presenter to the VCPU (required for CPU hotplug) */ 870 if (xive_in_kernel(tctx->xptr)) { 871 if (kvmppc_xive_cpu_connect(tctx, errp) < 0) { 872 return; 873 } 874 } 875 } 876 877 static int vmstate_xive_tctx_pre_save(void *opaque) 878 { 879 XiveTCTX *tctx = XIVE_TCTX(opaque); 880 Error *local_err = NULL; 881 int ret; 882 883 if (xive_in_kernel(tctx->xptr)) { 884 ret = kvmppc_xive_cpu_get_state(tctx, &local_err); 885 if (ret < 0) { 886 error_report_err(local_err); 887 return ret; 888 } 889 } 890 891 return 0; 892 } 893 894 static int vmstate_xive_tctx_post_load(void *opaque, int version_id) 895 { 896 XiveTCTX *tctx = XIVE_TCTX(opaque); 897 Error *local_err = NULL; 898 int ret; 899 900 if (xive_in_kernel(tctx->xptr)) { 901 /* 902 * Required for hotplugged CPU, for which the state comes 903 * after all states of the machine. 904 */ 905 ret = kvmppc_xive_cpu_set_state(tctx, &local_err); 906 if (ret < 0) { 907 error_report_err(local_err); 908 return ret; 909 } 910 } 911 912 return 0; 913 } 914 915 static const VMStateDescription vmstate_xive_tctx = { 916 .name = TYPE_XIVE_TCTX, 917 .version_id = 1, 918 .minimum_version_id = 1, 919 .pre_save = vmstate_xive_tctx_pre_save, 920 .post_load = vmstate_xive_tctx_post_load, 921 .fields = (const VMStateField[]) { 922 VMSTATE_BUFFER(regs, XiveTCTX), 923 VMSTATE_END_OF_LIST() 924 }, 925 }; 926 927 static const Property xive_tctx_properties[] = { 928 DEFINE_PROP_LINK("cpu", XiveTCTX, cs, TYPE_CPU, CPUState *), 929 DEFINE_PROP_LINK("presenter", XiveTCTX, xptr, TYPE_XIVE_PRESENTER, 930 XivePresenter *), 931 }; 932 933 static void xive_tctx_class_init(ObjectClass *klass, const void *data) 934 { 935 DeviceClass *dc = DEVICE_CLASS(klass); 936 937 dc->desc = "XIVE Interrupt Thread Context"; 938 dc->realize = xive_tctx_realize; 939 dc->vmsd = &vmstate_xive_tctx; 940 device_class_set_props(dc, xive_tctx_properties); 941 /* 942 * Reason: part of XIVE interrupt controller, needs to be wired up 943 * by xive_tctx_create(). 944 */ 945 dc->user_creatable = false; 946 } 947 948 static const TypeInfo xive_tctx_info = { 949 .name = TYPE_XIVE_TCTX, 950 .parent = TYPE_DEVICE, 951 .instance_size = sizeof(XiveTCTX), 952 .class_init = xive_tctx_class_init, 953 }; 954 955 Object *xive_tctx_create(Object *cpu, XivePresenter *xptr, Error **errp) 956 { 957 Object *obj; 958 959 obj = object_new(TYPE_XIVE_TCTX); 960 object_property_add_child(cpu, TYPE_XIVE_TCTX, obj); 961 object_unref(obj); 962 object_property_set_link(obj, "cpu", cpu, &error_abort); 963 object_property_set_link(obj, "presenter", OBJECT(xptr), &error_abort); 964 if (!qdev_realize(DEVICE(obj), NULL, errp)) { 965 object_unparent(obj); 966 return NULL; 967 } 968 return obj; 969 } 970 971 void xive_tctx_destroy(XiveTCTX *tctx) 972 { 973 Object *obj = OBJECT(tctx); 974 975 object_unparent(obj); 976 } 977 978 /* 979 * XIVE ESB helpers 980 */ 981 982 uint8_t xive_esb_set(uint8_t *pq, uint8_t value) 983 { 984 uint8_t old_pq = *pq & 0x3; 985 986 *pq &= ~0x3; 987 *pq |= value & 0x3; 988 989 return old_pq; 990 } 991 992 bool xive_esb_trigger(uint8_t *pq) 993 { 994 uint8_t old_pq = *pq & 0x3; 995 996 switch (old_pq) { 997 case XIVE_ESB_RESET: 998 xive_esb_set(pq, XIVE_ESB_PENDING); 999 return true; 1000 case XIVE_ESB_PENDING: 1001 case XIVE_ESB_QUEUED: 1002 xive_esb_set(pq, XIVE_ESB_QUEUED); 1003 return false; 1004 case XIVE_ESB_OFF: 1005 xive_esb_set(pq, XIVE_ESB_OFF); 1006 return false; 1007 default: 1008 g_assert_not_reached(); 1009 } 1010 } 1011 1012 bool xive_esb_eoi(uint8_t *pq) 1013 { 1014 uint8_t old_pq = *pq & 0x3; 1015 1016 switch (old_pq) { 1017 case XIVE_ESB_RESET: 1018 case XIVE_ESB_PENDING: 1019 xive_esb_set(pq, XIVE_ESB_RESET); 1020 return false; 1021 case XIVE_ESB_QUEUED: 1022 xive_esb_set(pq, XIVE_ESB_PENDING); 1023 return true; 1024 case XIVE_ESB_OFF: 1025 xive_esb_set(pq, XIVE_ESB_OFF); 1026 return false; 1027 default: 1028 g_assert_not_reached(); 1029 } 1030 } 1031 1032 /* 1033 * XIVE Interrupt Source (or IVSE) 1034 */ 1035 1036 uint8_t xive_source_esb_get(XiveSource *xsrc, uint32_t srcno) 1037 { 1038 assert(srcno < xsrc->nr_irqs); 1039 1040 return xsrc->status[srcno] & 0x3; 1041 } 1042 1043 uint8_t xive_source_esb_set(XiveSource *xsrc, uint32_t srcno, uint8_t pq) 1044 { 1045 assert(srcno < xsrc->nr_irqs); 1046 1047 return xive_esb_set(&xsrc->status[srcno], pq); 1048 } 1049 1050 /* 1051 * Returns whether the event notification should be forwarded. 1052 */ 1053 static bool xive_source_lsi_trigger(XiveSource *xsrc, uint32_t srcno) 1054 { 1055 uint8_t old_pq = xive_source_esb_get(xsrc, srcno); 1056 1057 xive_source_set_asserted(xsrc, srcno, true); 1058 1059 switch (old_pq) { 1060 case XIVE_ESB_RESET: 1061 xive_source_esb_set(xsrc, srcno, XIVE_ESB_PENDING); 1062 return true; 1063 default: 1064 return false; 1065 } 1066 } 1067 1068 /* 1069 * Sources can be configured with PQ offloading in which case the check 1070 * on the PQ state bits of MSIs is disabled 1071 */ 1072 static bool xive_source_esb_disabled(XiveSource *xsrc, uint32_t srcno) 1073 { 1074 return (xsrc->esb_flags & XIVE_SRC_PQ_DISABLE) && 1075 !xive_source_irq_is_lsi(xsrc, srcno); 1076 } 1077 1078 /* 1079 * Returns whether the event notification should be forwarded. 1080 */ 1081 static bool xive_source_esb_trigger(XiveSource *xsrc, uint32_t srcno) 1082 { 1083 bool ret; 1084 1085 assert(srcno < xsrc->nr_irqs); 1086 1087 if (xive_source_esb_disabled(xsrc, srcno)) { 1088 return true; 1089 } 1090 1091 ret = xive_esb_trigger(&xsrc->status[srcno]); 1092 1093 if (xive_source_irq_is_lsi(xsrc, srcno) && 1094 xive_source_esb_get(xsrc, srcno) == XIVE_ESB_QUEUED) { 1095 qemu_log_mask(LOG_GUEST_ERROR, 1096 "XIVE: queued an event on LSI IRQ %d\n", srcno); 1097 } 1098 1099 return ret; 1100 } 1101 1102 /* 1103 * Returns whether the event notification should be forwarded. 1104 */ 1105 static bool xive_source_esb_eoi(XiveSource *xsrc, uint32_t srcno) 1106 { 1107 bool ret; 1108 1109 assert(srcno < xsrc->nr_irqs); 1110 1111 if (xive_source_esb_disabled(xsrc, srcno)) { 1112 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid EOI for IRQ %d\n", srcno); 1113 return false; 1114 } 1115 1116 ret = xive_esb_eoi(&xsrc->status[srcno]); 1117 1118 /* 1119 * LSI sources do not set the Q bit but they can still be 1120 * asserted, in which case we should forward a new event 1121 * notification 1122 */ 1123 if (xive_source_irq_is_lsi(xsrc, srcno) && 1124 xive_source_is_asserted(xsrc, srcno)) { 1125 ret = xive_source_lsi_trigger(xsrc, srcno); 1126 } 1127 1128 return ret; 1129 } 1130 1131 /* 1132 * Forward the source event notification to the Router 1133 */ 1134 static void xive_source_notify(XiveSource *xsrc, int srcno) 1135 { 1136 XiveNotifierClass *xnc = XIVE_NOTIFIER_GET_CLASS(xsrc->xive); 1137 bool pq_checked = !xive_source_esb_disabled(xsrc, srcno); 1138 1139 if (xnc->notify) { 1140 xnc->notify(xsrc->xive, srcno, pq_checked); 1141 } 1142 } 1143 1144 /* 1145 * In a two pages ESB MMIO setting, even page is the trigger page, odd 1146 * page is for management 1147 */ 1148 static inline bool addr_is_even(hwaddr addr, uint32_t shift) 1149 { 1150 return !((addr >> shift) & 1); 1151 } 1152 1153 static inline bool xive_source_is_trigger_page(XiveSource *xsrc, hwaddr addr) 1154 { 1155 return xive_source_esb_has_2page(xsrc) && 1156 addr_is_even(addr, xsrc->esb_shift - 1); 1157 } 1158 1159 /* 1160 * ESB MMIO loads 1161 * Trigger page Management/EOI page 1162 * 1163 * ESB MMIO setting 2 pages 1 or 2 pages 1164 * 1165 * 0x000 .. 0x3FF -1 EOI and return 0|1 1166 * 0x400 .. 0x7FF -1 EOI and return 0|1 1167 * 0x800 .. 0xBFF -1 return PQ 1168 * 0xC00 .. 0xCFF -1 return PQ and atomically PQ=00 1169 * 0xD00 .. 0xDFF -1 return PQ and atomically PQ=01 1170 * 0xE00 .. 0xDFF -1 return PQ and atomically PQ=10 1171 * 0xF00 .. 0xDFF -1 return PQ and atomically PQ=11 1172 */ 1173 static uint64_t xive_source_esb_read(void *opaque, hwaddr addr, unsigned size) 1174 { 1175 XiveSource *xsrc = XIVE_SOURCE(opaque); 1176 uint32_t offset = addr & 0xFFF; 1177 uint32_t srcno = addr >> xsrc->esb_shift; 1178 uint64_t ret = -1; 1179 1180 /* In a two pages ESB MMIO setting, trigger page should not be read */ 1181 if (xive_source_is_trigger_page(xsrc, addr)) { 1182 qemu_log_mask(LOG_GUEST_ERROR, 1183 "XIVE: invalid load on IRQ %d trigger page at " 1184 "0x%"HWADDR_PRIx"\n", srcno, addr); 1185 return -1; 1186 } 1187 1188 switch (offset) { 1189 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 1190 ret = xive_source_esb_eoi(xsrc, srcno); 1191 1192 /* Forward the source event notification for routing */ 1193 if (ret) { 1194 xive_source_notify(xsrc, srcno); 1195 } 1196 break; 1197 1198 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 1199 ret = xive_source_esb_get(xsrc, srcno); 1200 break; 1201 1202 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1203 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1204 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1205 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1206 ret = xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1207 break; 1208 default: 1209 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB load addr %x\n", 1210 offset); 1211 } 1212 1213 trace_xive_source_esb_read(addr, srcno, ret); 1214 1215 return ret; 1216 } 1217 1218 /* 1219 * ESB MMIO stores 1220 * Trigger page Management/EOI page 1221 * 1222 * ESB MMIO setting 2 pages 1 or 2 pages 1223 * 1224 * 0x000 .. 0x3FF Trigger Trigger 1225 * 0x400 .. 0x7FF Trigger EOI 1226 * 0x800 .. 0xBFF Trigger undefined 1227 * 0xC00 .. 0xCFF Trigger PQ=00 1228 * 0xD00 .. 0xDFF Trigger PQ=01 1229 * 0xE00 .. 0xDFF Trigger PQ=10 1230 * 0xF00 .. 0xDFF Trigger PQ=11 1231 */ 1232 static void xive_source_esb_write(void *opaque, hwaddr addr, 1233 uint64_t value, unsigned size) 1234 { 1235 XiveSource *xsrc = XIVE_SOURCE(opaque); 1236 uint32_t offset = addr & 0xFFF; 1237 uint32_t srcno = addr >> xsrc->esb_shift; 1238 bool notify = false; 1239 1240 trace_xive_source_esb_write(addr, srcno, value); 1241 1242 /* In a two pages ESB MMIO setting, trigger page only triggers */ 1243 if (xive_source_is_trigger_page(xsrc, addr)) { 1244 notify = xive_source_esb_trigger(xsrc, srcno); 1245 goto out; 1246 } 1247 1248 switch (offset) { 1249 case 0 ... 0x3FF: 1250 notify = xive_source_esb_trigger(xsrc, srcno); 1251 break; 1252 1253 case XIVE_ESB_STORE_EOI ... XIVE_ESB_STORE_EOI + 0x3FF: 1254 if (!(xsrc->esb_flags & XIVE_SRC_STORE_EOI)) { 1255 qemu_log_mask(LOG_GUEST_ERROR, 1256 "XIVE: invalid Store EOI for IRQ %d\n", srcno); 1257 return; 1258 } 1259 1260 notify = xive_source_esb_eoi(xsrc, srcno); 1261 break; 1262 1263 /* 1264 * This is an internal offset used to inject triggers when the PQ 1265 * state bits are not controlled locally. Such as for LSIs when 1266 * under ABT mode. 1267 */ 1268 case XIVE_ESB_INJECT ... XIVE_ESB_INJECT + 0x3FF: 1269 notify = true; 1270 break; 1271 1272 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 1273 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 1274 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 1275 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 1276 xive_source_esb_set(xsrc, srcno, (offset >> 8) & 0x3); 1277 break; 1278 1279 default: 1280 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr %x\n", 1281 offset); 1282 return; 1283 } 1284 1285 out: 1286 /* Forward the source event notification for routing */ 1287 if (notify) { 1288 xive_source_notify(xsrc, srcno); 1289 } 1290 } 1291 1292 static const MemoryRegionOps xive_source_esb_ops = { 1293 .read = xive_source_esb_read, 1294 .write = xive_source_esb_write, 1295 .endianness = DEVICE_BIG_ENDIAN, 1296 .valid = { 1297 .min_access_size = 1, 1298 .max_access_size = 8, 1299 }, 1300 .impl = { 1301 .min_access_size = 1, 1302 .max_access_size = 8, 1303 }, 1304 }; 1305 1306 void xive_source_set_irq(void *opaque, int srcno, int val) 1307 { 1308 XiveSource *xsrc = XIVE_SOURCE(opaque); 1309 bool notify = false; 1310 1311 if (xive_source_irq_is_lsi(xsrc, srcno)) { 1312 if (val) { 1313 notify = xive_source_lsi_trigger(xsrc, srcno); 1314 } else { 1315 xive_source_set_asserted(xsrc, srcno, false); 1316 } 1317 } else { 1318 if (val) { 1319 notify = xive_source_esb_trigger(xsrc, srcno); 1320 } 1321 } 1322 1323 /* Forward the source event notification for routing */ 1324 if (notify) { 1325 xive_source_notify(xsrc, srcno); 1326 } 1327 } 1328 1329 void xive_source_pic_print_info(XiveSource *xsrc, uint32_t offset, GString *buf) 1330 { 1331 for (unsigned i = 0; i < xsrc->nr_irqs; i++) { 1332 uint8_t pq = xive_source_esb_get(xsrc, i); 1333 1334 if (pq == XIVE_ESB_OFF) { 1335 continue; 1336 } 1337 1338 g_string_append_printf(buf, " %08x %s %c%c%c\n", i + offset, 1339 xive_source_irq_is_lsi(xsrc, i) ? "LSI" : "MSI", 1340 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1341 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1342 xive_source_is_asserted(xsrc, i) ? 'A' : ' '); 1343 } 1344 } 1345 1346 static void xive_source_reset(void *dev) 1347 { 1348 XiveSource *xsrc = XIVE_SOURCE(dev); 1349 1350 /* Do not clear the LSI bitmap */ 1351 1352 memset(xsrc->status, xsrc->reset_pq, xsrc->nr_irqs); 1353 } 1354 1355 static void xive_source_realize(DeviceState *dev, Error **errp) 1356 { 1357 XiveSource *xsrc = XIVE_SOURCE(dev); 1358 uint64_t esb_len = xive_source_esb_len(xsrc); 1359 1360 assert(xsrc->xive); 1361 1362 if (!xsrc->nr_irqs) { 1363 error_setg(errp, "Number of interrupt needs to be greater than 0"); 1364 return; 1365 } 1366 1367 if (xsrc->esb_shift != XIVE_ESB_4K && 1368 xsrc->esb_shift != XIVE_ESB_4K_2PAGE && 1369 xsrc->esb_shift != XIVE_ESB_64K && 1370 xsrc->esb_shift != XIVE_ESB_64K_2PAGE) { 1371 error_setg(errp, "Invalid ESB shift setting"); 1372 return; 1373 } 1374 1375 xsrc->status = g_malloc0(xsrc->nr_irqs); 1376 xsrc->lsi_map = bitmap_new(xsrc->nr_irqs); 1377 1378 memory_region_init(&xsrc->esb_mmio, OBJECT(xsrc), "xive.esb", esb_len); 1379 memory_region_init_io(&xsrc->esb_mmio_emulated, OBJECT(xsrc), 1380 &xive_source_esb_ops, xsrc, "xive.esb-emulated", 1381 esb_len); 1382 memory_region_add_subregion(&xsrc->esb_mmio, 0, &xsrc->esb_mmio_emulated); 1383 1384 qemu_register_reset(xive_source_reset, dev); 1385 } 1386 1387 static const VMStateDescription vmstate_xive_source = { 1388 .name = TYPE_XIVE_SOURCE, 1389 .version_id = 1, 1390 .minimum_version_id = 1, 1391 .fields = (const VMStateField[]) { 1392 VMSTATE_UINT32_EQUAL(nr_irqs, XiveSource, NULL), 1393 VMSTATE_VBUFFER_UINT32(status, XiveSource, 1, NULL, nr_irqs), 1394 VMSTATE_END_OF_LIST() 1395 }, 1396 }; 1397 1398 /* 1399 * The default XIVE interrupt source setting for the ESB MMIOs is two 1400 * 64k pages without Store EOI, to be in sync with KVM. 1401 */ 1402 static const Property xive_source_properties[] = { 1403 DEFINE_PROP_UINT64("flags", XiveSource, esb_flags, 0), 1404 DEFINE_PROP_UINT32("nr-irqs", XiveSource, nr_irqs, 0), 1405 DEFINE_PROP_UINT32("shift", XiveSource, esb_shift, XIVE_ESB_64K_2PAGE), 1406 /* 1407 * By default, PQs are initialized to 0b01 (Q=1) which corresponds 1408 * to "ints off" 1409 */ 1410 DEFINE_PROP_UINT8("reset-pq", XiveSource, reset_pq, XIVE_ESB_OFF), 1411 DEFINE_PROP_LINK("xive", XiveSource, xive, TYPE_XIVE_NOTIFIER, 1412 XiveNotifier *), 1413 }; 1414 1415 static void xive_source_class_init(ObjectClass *klass, const void *data) 1416 { 1417 DeviceClass *dc = DEVICE_CLASS(klass); 1418 1419 dc->desc = "XIVE Interrupt Source"; 1420 device_class_set_props(dc, xive_source_properties); 1421 dc->realize = xive_source_realize; 1422 dc->vmsd = &vmstate_xive_source; 1423 /* 1424 * Reason: part of XIVE interrupt controller, needs to be wired up, 1425 * e.g. by spapr_xive_instance_init(). 1426 */ 1427 dc->user_creatable = false; 1428 } 1429 1430 static const TypeInfo xive_source_info = { 1431 .name = TYPE_XIVE_SOURCE, 1432 .parent = TYPE_DEVICE, 1433 .instance_size = sizeof(XiveSource), 1434 .class_init = xive_source_class_init, 1435 }; 1436 1437 /* 1438 * XiveEND helpers 1439 */ 1440 1441 void xive_end_queue_pic_print_info(XiveEND *end, uint32_t width, GString *buf) 1442 { 1443 uint64_t qaddr_base = xive_end_qaddr(end); 1444 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1445 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1446 uint32_t qentries = 1 << (qsize + 10); 1447 int i; 1448 1449 /* 1450 * print out the [ (qindex - (width - 1)) .. (qindex + 1)] window 1451 */ 1452 g_string_append_printf(buf, " [ "); 1453 qindex = (qindex - (width - 1)) & (qentries - 1); 1454 for (i = 0; i < width; i++) { 1455 uint64_t qaddr = qaddr_base + (qindex << 2); 1456 uint32_t qdata = -1; 1457 1458 if (dma_memory_read(&address_space_memory, qaddr, 1459 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1460 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to read EQ @0x%" 1461 HWADDR_PRIx "\n", qaddr); 1462 return; 1463 } 1464 g_string_append_printf(buf, "%s%08x ", i == width - 1 ? "^" : "", 1465 be32_to_cpu(qdata)); 1466 qindex = (qindex + 1) & (qentries - 1); 1467 } 1468 g_string_append_c(buf, ']'); 1469 } 1470 1471 void xive_end_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf) 1472 { 1473 uint64_t qaddr_base = xive_end_qaddr(end); 1474 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1475 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1476 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1477 uint32_t qentries = 1 << (qsize + 10); 1478 1479 uint32_t nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end->w6); 1480 uint32_t nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end->w6); 1481 uint8_t priority = xive_get_field32(END_W7_F0_PRIORITY, end->w7); 1482 uint8_t pq; 1483 1484 if (!xive_end_is_valid(end)) { 1485 return; 1486 } 1487 1488 pq = xive_get_field32(END_W1_ESn, end->w1); 1489 1490 g_string_append_printf(buf, 1491 " %08x %c%c %c%c%c%c%c%c%c%c prio:%d nvt:%02x/%04x", 1492 end_idx, 1493 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1494 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1495 xive_end_is_valid(end) ? 'v' : '-', 1496 xive_end_is_enqueue(end) ? 'q' : '-', 1497 xive_end_is_notify(end) ? 'n' : '-', 1498 xive_end_is_backlog(end) ? 'b' : '-', 1499 xive_end_is_escalate(end) ? 'e' : '-', 1500 xive_end_is_uncond_escalation(end) ? 'u' : '-', 1501 xive_end_is_silent_escalation(end) ? 's' : '-', 1502 xive_end_is_firmware(end) ? 'f' : '-', 1503 priority, nvt_blk, nvt_idx); 1504 1505 if (qaddr_base) { 1506 g_string_append_printf(buf, " eq:@%08"PRIx64"% 6d/%5d ^%d", 1507 qaddr_base, qindex, qentries, qgen); 1508 xive_end_queue_pic_print_info(end, 6, buf); 1509 } 1510 g_string_append_c(buf, '\n'); 1511 } 1512 1513 static void xive_end_enqueue(XiveEND *end, uint32_t data) 1514 { 1515 uint64_t qaddr_base = xive_end_qaddr(end); 1516 uint32_t qsize = xive_get_field32(END_W0_QSIZE, end->w0); 1517 uint32_t qindex = xive_get_field32(END_W1_PAGE_OFF, end->w1); 1518 uint32_t qgen = xive_get_field32(END_W1_GENERATION, end->w1); 1519 1520 uint64_t qaddr = qaddr_base + (qindex << 2); 1521 uint32_t qdata = cpu_to_be32((qgen << 31) | (data & 0x7fffffff)); 1522 uint32_t qentries = 1 << (qsize + 10); 1523 1524 if (dma_memory_write(&address_space_memory, qaddr, 1525 &qdata, sizeof(qdata), MEMTXATTRS_UNSPECIFIED)) { 1526 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: failed to write END data @0x%" 1527 HWADDR_PRIx "\n", qaddr); 1528 return; 1529 } 1530 1531 qindex = (qindex + 1) & (qentries - 1); 1532 if (qindex == 0) { 1533 qgen ^= 1; 1534 end->w1 = xive_set_field32(END_W1_GENERATION, end->w1, qgen); 1535 } 1536 end->w1 = xive_set_field32(END_W1_PAGE_OFF, end->w1, qindex); 1537 } 1538 1539 void xive_end_eas_pic_print_info(XiveEND *end, uint32_t end_idx, GString *buf) 1540 { 1541 XiveEAS *eas = (XiveEAS *) &end->w4; 1542 uint8_t pq; 1543 1544 if (!xive_end_is_escalate(end)) { 1545 return; 1546 } 1547 1548 pq = xive_get_field32(END_W1_ESe, end->w1); 1549 1550 g_string_append_printf(buf, " %08x %c%c %c%c end:%02x/%04x data:%08x\n", 1551 end_idx, 1552 pq & XIVE_ESB_VAL_P ? 'P' : '-', 1553 pq & XIVE_ESB_VAL_Q ? 'Q' : '-', 1554 xive_eas_is_valid(eas) ? 'V' : ' ', 1555 xive_eas_is_masked(eas) ? 'M' : ' ', 1556 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 1557 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 1558 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 1559 } 1560 1561 /* 1562 * XIVE Router (aka. Virtualization Controller or IVRE) 1563 */ 1564 1565 int xive_router_get_eas(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1566 XiveEAS *eas) 1567 { 1568 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1569 1570 return xrc->get_eas(xrtr, eas_blk, eas_idx, eas); 1571 } 1572 1573 static 1574 int xive_router_get_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1575 uint8_t *pq) 1576 { 1577 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1578 1579 return xrc->get_pq(xrtr, eas_blk, eas_idx, pq); 1580 } 1581 1582 static 1583 int xive_router_set_pq(XiveRouter *xrtr, uint8_t eas_blk, uint32_t eas_idx, 1584 uint8_t *pq) 1585 { 1586 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1587 1588 return xrc->set_pq(xrtr, eas_blk, eas_idx, pq); 1589 } 1590 1591 int xive_router_get_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1592 XiveEND *end) 1593 { 1594 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1595 1596 return xrc->get_end(xrtr, end_blk, end_idx, end); 1597 } 1598 1599 int xive_router_write_end(XiveRouter *xrtr, uint8_t end_blk, uint32_t end_idx, 1600 XiveEND *end, uint8_t word_number) 1601 { 1602 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1603 1604 return xrc->write_end(xrtr, end_blk, end_idx, end, word_number); 1605 } 1606 1607 int xive_router_get_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1608 XiveNVT *nvt) 1609 { 1610 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1611 1612 return xrc->get_nvt(xrtr, nvt_blk, nvt_idx, nvt); 1613 } 1614 1615 int xive_router_write_nvt(XiveRouter *xrtr, uint8_t nvt_blk, uint32_t nvt_idx, 1616 XiveNVT *nvt, uint8_t word_number) 1617 { 1618 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1619 1620 return xrc->write_nvt(xrtr, nvt_blk, nvt_idx, nvt, word_number); 1621 } 1622 1623 static int xive_router_get_block_id(XiveRouter *xrtr) 1624 { 1625 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1626 1627 return xrc->get_block_id(xrtr); 1628 } 1629 1630 static void xive_router_realize(DeviceState *dev, Error **errp) 1631 { 1632 XiveRouter *xrtr = XIVE_ROUTER(dev); 1633 1634 assert(xrtr->xfb); 1635 } 1636 1637 static void xive_router_end_notify_handler(XiveRouter *xrtr, XiveEAS *eas) 1638 { 1639 XiveRouterClass *xrc = XIVE_ROUTER_GET_CLASS(xrtr); 1640 1641 return xrc->end_notify(xrtr, eas); 1642 } 1643 1644 /* 1645 * Encode the HW CAM line in the block group mode format : 1646 * 1647 * chip << 19 | 0000000 0 0001 thread (7Bit) 1648 */ 1649 static uint32_t xive_tctx_hw_cam_line(XivePresenter *xptr, XiveTCTX *tctx) 1650 { 1651 CPUPPCState *env = &POWERPC_CPU(tctx->cs)->env; 1652 uint32_t pir = env->spr_cb[SPR_PIR].default_value; 1653 uint8_t blk = xive_router_get_block_id(XIVE_ROUTER(xptr)); 1654 1655 return xive_nvt_cam_line(blk, 1 << 7 | (pir & 0x7f)); 1656 } 1657 1658 uint32_t xive_get_vpgroup_size(uint32_t nvp_index) 1659 { 1660 /* 1661 * Group size is a power of 2. The position of the first 0 1662 * (starting with the least significant bits) in the NVP index 1663 * gives the size of the group. 1664 */ 1665 int first_zero = cto32(nvp_index); 1666 if (first_zero >= 31) { 1667 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid group index 0x%08x", 1668 nvp_index); 1669 return 0; 1670 } 1671 1672 return 1U << (first_zero + 1); 1673 } 1674 1675 static uint8_t xive_get_group_level(bool crowd, bool ignore, 1676 uint32_t nvp_blk, uint32_t nvp_index) 1677 { 1678 int first_zero; 1679 uint8_t level; 1680 1681 if (!ignore) { 1682 g_assert(!crowd); 1683 return 0; 1684 } 1685 1686 first_zero = cto32(nvp_index); 1687 if (first_zero >= 31) { 1688 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid group index 0x%08x", 1689 nvp_index); 1690 return 0; 1691 } 1692 1693 level = (first_zero + 1) & 0b1111; 1694 if (crowd) { 1695 uint32_t blk; 1696 1697 /* crowd level is bit position of first 0 from the right in nvp_blk */ 1698 first_zero = cto32(nvp_blk); 1699 if (first_zero >= 31) { 1700 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Invalid crowd block 0x%08x", 1701 nvp_blk); 1702 return 0; 1703 } 1704 blk = first_zero + 1; 1705 1706 /* 1707 * Supported crowd sizes are 2^1, 2^2, and 2^4. 2^3 is not supported. 1708 * HW will encode level 4 as the value 3. See xive2_pgofnext(). 1709 */ 1710 switch (blk) { 1711 case 1: 1712 case 2: 1713 break; 1714 case 4: 1715 blk = 3; 1716 break; 1717 default: 1718 g_assert_not_reached(); 1719 } 1720 1721 /* Crowd level bits reside in upper 2 bits of the 6 bit group level */ 1722 level |= blk << 4; 1723 } 1724 return level; 1725 } 1726 1727 /* 1728 * The thread context register words are in big-endian format. 1729 */ 1730 int xive_presenter_tctx_match(XivePresenter *xptr, XiveTCTX *tctx, 1731 uint8_t format, 1732 uint8_t nvt_blk, uint32_t nvt_idx, 1733 bool cam_ignore, uint32_t logic_serv) 1734 { 1735 uint32_t cam = xive_nvt_cam_line(nvt_blk, nvt_idx); 1736 uint32_t qw3w2 = xive_tctx_word2(&tctx->regs[TM_QW3_HV_PHYS]); 1737 uint32_t qw2w2 = xive_tctx_word2(&tctx->regs[TM_QW2_HV_POOL]); 1738 uint32_t qw1w2 = xive_tctx_word2(&tctx->regs[TM_QW1_OS]); 1739 uint32_t qw0w2 = xive_tctx_word2(&tctx->regs[TM_QW0_USER]); 1740 1741 /* 1742 * TODO (PowerNV): ignore mode. The low order bits of the NVT 1743 * identifier are ignored in the "CAM" match. 1744 */ 1745 1746 if (format == 0) { 1747 if (cam_ignore == true) { 1748 /* 1749 * F=0 & i=1: Logical server notification (bits ignored at 1750 * the end of the NVT identifier) 1751 */ 1752 qemu_log_mask(LOG_UNIMP, "XIVE: no support for LS NVT %x/%x\n", 1753 nvt_blk, nvt_idx); 1754 return -1; 1755 } 1756 1757 /* F=0 & i=0: Specific NVT notification */ 1758 1759 /* PHYS ring */ 1760 if ((be32_to_cpu(qw3w2) & TM_QW3W2_VT) && 1761 cam == xive_tctx_hw_cam_line(xptr, tctx)) { 1762 return TM_QW3_HV_PHYS; 1763 } 1764 1765 /* HV POOL ring */ 1766 if ((be32_to_cpu(qw2w2) & TM_QW2W2_VP) && 1767 cam == xive_get_field32(TM_QW2W2_POOL_CAM, qw2w2)) { 1768 return TM_QW2_HV_POOL; 1769 } 1770 1771 /* OS ring */ 1772 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1773 cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) { 1774 return TM_QW1_OS; 1775 } 1776 } else { 1777 /* F=1 : User level Event-Based Branch (EBB) notification */ 1778 1779 /* USER ring */ 1780 if ((be32_to_cpu(qw1w2) & TM_QW1W2_VO) && 1781 (cam == xive_get_field32(TM_QW1W2_OS_CAM, qw1w2)) && 1782 (be32_to_cpu(qw0w2) & TM_QW0W2_VU) && 1783 (logic_serv == xive_get_field32(TM_QW0W2_LOGIC_SERV, qw0w2))) { 1784 return TM_QW0_USER; 1785 } 1786 } 1787 return -1; 1788 } 1789 1790 /* 1791 * This is our simple Xive Presenter Engine model. It is merged in the 1792 * Router as it does not require an extra object. 1793 */ 1794 bool xive_presenter_notify(XiveFabric *xfb, uint8_t format, 1795 uint8_t nvt_blk, uint32_t nvt_idx, 1796 bool crowd, bool cam_ignore, uint8_t priority, 1797 uint32_t logic_serv, bool *precluded) 1798 { 1799 XiveFabricClass *xfc = XIVE_FABRIC_GET_CLASS(xfb); 1800 XiveTCTXMatch match = { .tctx = NULL, .ring = 0, .precluded = false }; 1801 uint8_t group_level; 1802 int count; 1803 1804 /* 1805 * Ask the machine to scan the interrupt controllers for a match. 1806 * 1807 * For VP-specific notification, we expect at most one match and 1808 * one call to the presenters is all we need (abbreviated notify 1809 * sequence documented by the architecture). 1810 * 1811 * For VP-group notification, match_nvt() is the equivalent of the 1812 * "histogram" and "poll" commands sent to the power bus to the 1813 * presenters. 'count' could be more than one, but we always 1814 * select the first match for now. 'precluded' tells if (at least) 1815 * one thread matches but can't take the interrupt now because 1816 * it's running at a more favored priority. We return the 1817 * information to the router so that it can take appropriate 1818 * actions (backlog, escalation, broadcast, etc...) 1819 * 1820 * If we were to implement a better way of dispatching the 1821 * interrupt in case of multiple matches (instead of the first 1822 * match), we would need a heuristic to elect a thread (for 1823 * example, the hardware keeps track of an 'age' in the TIMA) and 1824 * a new command to the presenters (the equivalent of the "assign" 1825 * power bus command in the documented full notify sequence. 1826 */ 1827 count = xfc->match_nvt(xfb, format, nvt_blk, nvt_idx, crowd, cam_ignore, 1828 priority, logic_serv, &match); 1829 if (count < 0) { 1830 return false; 1831 } 1832 1833 /* handle CPU exception delivery */ 1834 if (count) { 1835 group_level = xive_get_group_level(crowd, cam_ignore, nvt_blk, nvt_idx); 1836 trace_xive_presenter_notify(nvt_blk, nvt_idx, match.ring, group_level); 1837 xive_tctx_pipr_update(match.tctx, match.ring, priority, group_level); 1838 } else { 1839 *precluded = match.precluded; 1840 } 1841 1842 return !!count; 1843 } 1844 1845 /* 1846 * Notification using the END ESe/ESn bit (Event State Buffer for 1847 * escalation and notification). Provide further coalescing in the 1848 * Router. 1849 */ 1850 static bool xive_router_end_es_notify(XiveRouter *xrtr, uint8_t end_blk, 1851 uint32_t end_idx, XiveEND *end, 1852 uint32_t end_esmask) 1853 { 1854 uint8_t pq = xive_get_field32(end_esmask, end->w1); 1855 bool notify = xive_esb_trigger(&pq); 1856 1857 if (pq != xive_get_field32(end_esmask, end->w1)) { 1858 end->w1 = xive_set_field32(end_esmask, end->w1, pq); 1859 xive_router_write_end(xrtr, end_blk, end_idx, end, 1); 1860 } 1861 1862 /* ESe/n[Q]=1 : end of notification */ 1863 return notify; 1864 } 1865 1866 /* 1867 * An END trigger can come from an event trigger (IPI or HW) or from 1868 * another chip. We don't model the PowerBus but the END trigger 1869 * message has the same parameters than in the function below. 1870 */ 1871 void xive_router_end_notify(XiveRouter *xrtr, XiveEAS *eas) 1872 { 1873 XiveEND end; 1874 uint8_t priority; 1875 uint8_t format; 1876 uint8_t nvt_blk; 1877 uint32_t nvt_idx; 1878 XiveNVT nvt; 1879 bool found, precluded; 1880 1881 uint8_t end_blk = xive_get_field64(EAS_END_BLOCK, eas->w); 1882 uint32_t end_idx = xive_get_field64(EAS_END_INDEX, eas->w); 1883 uint32_t end_data = xive_get_field64(EAS_END_DATA, eas->w); 1884 1885 /* END cache lookup */ 1886 if (xive_router_get_end(xrtr, end_blk, end_idx, &end)) { 1887 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 1888 end_idx); 1889 return; 1890 } 1891 1892 if (!xive_end_is_valid(&end)) { 1893 trace_xive_router_end_notify(end_blk, end_idx, end_data); 1894 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 1895 end_blk, end_idx); 1896 return; 1897 } 1898 1899 if (xive_end_is_enqueue(&end)) { 1900 xive_end_enqueue(&end, end_data); 1901 /* Enqueuing event data modifies the EQ toggle and index */ 1902 xive_router_write_end(xrtr, end_blk, end_idx, &end, 1); 1903 } 1904 1905 /* 1906 * When the END is silent, we skip the notification part. 1907 */ 1908 if (xive_end_is_silent_escalation(&end)) { 1909 goto do_escalation; 1910 } 1911 1912 /* 1913 * The W7 format depends on the F bit in W6. It defines the type 1914 * of the notification : 1915 * 1916 * F=0 : single or multiple NVT notification 1917 * F=1 : User level Event-Based Branch (EBB) notification, no 1918 * priority 1919 */ 1920 format = xive_get_field32(END_W6_FORMAT_BIT, end.w6); 1921 priority = xive_get_field32(END_W7_F0_PRIORITY, end.w7); 1922 1923 /* The END is masked */ 1924 if (format == 0 && priority == 0xff) { 1925 return; 1926 } 1927 1928 /* 1929 * Check the END ESn (Event State Buffer for notification) for 1930 * even further coalescing in the Router 1931 */ 1932 if (!xive_end_is_notify(&end)) { 1933 /* ESn[Q]=1 : end of notification */ 1934 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 1935 &end, END_W1_ESn)) { 1936 return; 1937 } 1938 } 1939 1940 /* 1941 * Follows IVPE notification 1942 */ 1943 nvt_blk = xive_get_field32(END_W6_NVT_BLOCK, end.w6); 1944 nvt_idx = xive_get_field32(END_W6_NVT_INDEX, end.w6); 1945 1946 /* NVT cache lookup */ 1947 if (xive_router_get_nvt(xrtr, nvt_blk, nvt_idx, &nvt)) { 1948 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: no NVT %x/%x\n", 1949 nvt_blk, nvt_idx); 1950 return; 1951 } 1952 1953 if (!xive_nvt_is_valid(&nvt)) { 1954 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is invalid\n", 1955 nvt_blk, nvt_idx); 1956 return; 1957 } 1958 1959 found = xive_presenter_notify(xrtr->xfb, format, nvt_blk, nvt_idx, 1960 false /* crowd */, 1961 xive_get_field32(END_W7_F0_IGNORE, end.w7), 1962 priority, 1963 xive_get_field32(END_W7_F1_LOG_SERVER_ID, end.w7), 1964 &precluded); 1965 /* we don't support VP-group notification on P9, so precluded is not used */ 1966 /* TODO: Auto EOI. */ 1967 1968 if (found) { 1969 return; 1970 } 1971 1972 /* 1973 * If no matching NVT is dispatched on a HW thread : 1974 * - specific VP: update the NVT structure if backlog is activated 1975 * - logical server : forward request to IVPE (not supported) 1976 */ 1977 if (xive_end_is_backlog(&end)) { 1978 uint8_t ipb; 1979 1980 if (format == 1) { 1981 qemu_log_mask(LOG_GUEST_ERROR, 1982 "XIVE: END %x/%x invalid config: F1 & backlog\n", 1983 end_blk, end_idx); 1984 return; 1985 } 1986 /* 1987 * Record the IPB in the associated NVT structure for later 1988 * use. The presenter will resend the interrupt when the vCPU 1989 * is dispatched again on a HW thread. 1990 */ 1991 ipb = xive_get_field32(NVT_W4_IPB, nvt.w4) | 1992 xive_priority_to_ipb(priority); 1993 nvt.w4 = xive_set_field32(NVT_W4_IPB, nvt.w4, ipb); 1994 xive_router_write_nvt(xrtr, nvt_blk, nvt_idx, &nvt, 4); 1995 1996 /* 1997 * On HW, follows a "Broadcast Backlog" to IVPEs 1998 */ 1999 } 2000 2001 do_escalation: 2002 /* 2003 * If activated, escalate notification using the ESe PQ bits and 2004 * the EAS in w4-5 2005 */ 2006 if (!xive_end_is_escalate(&end)) { 2007 return; 2008 } 2009 2010 /* 2011 * Check the END ESe (Event State Buffer for escalation) for even 2012 * further coalescing in the Router 2013 */ 2014 if (!xive_end_is_uncond_escalation(&end)) { 2015 /* ESe[Q]=1 : end of notification */ 2016 if (!xive_router_end_es_notify(xrtr, end_blk, end_idx, 2017 &end, END_W1_ESe)) { 2018 return; 2019 } 2020 } 2021 2022 trace_xive_router_end_escalate(end_blk, end_idx, 2023 (uint8_t) xive_get_field32(END_W4_ESC_END_BLOCK, end.w4), 2024 (uint32_t) xive_get_field32(END_W4_ESC_END_INDEX, end.w4), 2025 (uint32_t) xive_get_field32(END_W5_ESC_END_DATA, end.w5)); 2026 /* 2027 * The END trigger becomes an Escalation trigger 2028 */ 2029 xive_router_end_notify_handler(xrtr, (XiveEAS *) &end.w4); 2030 } 2031 2032 void xive_router_notify(XiveNotifier *xn, uint32_t lisn, bool pq_checked) 2033 { 2034 XiveRouter *xrtr = XIVE_ROUTER(xn); 2035 uint8_t eas_blk = XIVE_EAS_BLOCK(lisn); 2036 uint32_t eas_idx = XIVE_EAS_INDEX(lisn); 2037 XiveEAS eas; 2038 2039 /* EAS cache lookup */ 2040 if (xive_router_get_eas(xrtr, eas_blk, eas_idx, &eas)) { 2041 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: Unknown LISN %x\n", lisn); 2042 return; 2043 } 2044 2045 if (!pq_checked) { 2046 bool notify; 2047 uint8_t pq; 2048 2049 /* PQ cache lookup */ 2050 if (xive_router_get_pq(xrtr, eas_blk, eas_idx, &pq)) { 2051 /* Set FIR */ 2052 g_assert_not_reached(); 2053 } 2054 2055 notify = xive_esb_trigger(&pq); 2056 2057 if (xive_router_set_pq(xrtr, eas_blk, eas_idx, &pq)) { 2058 /* Set FIR */ 2059 g_assert_not_reached(); 2060 } 2061 2062 if (!notify) { 2063 return; 2064 } 2065 } 2066 2067 if (!xive_eas_is_valid(&eas)) { 2068 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid LISN %x\n", lisn); 2069 return; 2070 } 2071 2072 if (xive_eas_is_masked(&eas)) { 2073 /* Notification completed */ 2074 return; 2075 } 2076 2077 /* 2078 * The event trigger becomes an END trigger 2079 */ 2080 xive_router_end_notify_handler(xrtr, &eas); 2081 } 2082 2083 static const Property xive_router_properties[] = { 2084 DEFINE_PROP_LINK("xive-fabric", XiveRouter, xfb, 2085 TYPE_XIVE_FABRIC, XiveFabric *), 2086 }; 2087 2088 static void xive_router_class_init(ObjectClass *klass, const void *data) 2089 { 2090 DeviceClass *dc = DEVICE_CLASS(klass); 2091 XiveNotifierClass *xnc = XIVE_NOTIFIER_CLASS(klass); 2092 XiveRouterClass *xrc = XIVE_ROUTER_CLASS(klass); 2093 2094 dc->desc = "XIVE Router Engine"; 2095 device_class_set_props(dc, xive_router_properties); 2096 /* Parent is SysBusDeviceClass. No need to call its realize hook */ 2097 dc->realize = xive_router_realize; 2098 xnc->notify = xive_router_notify; 2099 2100 /* By default, the router handles END triggers locally */ 2101 xrc->end_notify = xive_router_end_notify; 2102 } 2103 2104 static const TypeInfo xive_router_info = { 2105 .name = TYPE_XIVE_ROUTER, 2106 .parent = TYPE_SYS_BUS_DEVICE, 2107 .abstract = true, 2108 .instance_size = sizeof(XiveRouter), 2109 .class_size = sizeof(XiveRouterClass), 2110 .class_init = xive_router_class_init, 2111 .interfaces = (const InterfaceInfo[]) { 2112 { TYPE_XIVE_NOTIFIER }, 2113 { TYPE_XIVE_PRESENTER }, 2114 { } 2115 } 2116 }; 2117 2118 void xive_eas_pic_print_info(XiveEAS *eas, uint32_t lisn, GString *buf) 2119 { 2120 if (!xive_eas_is_valid(eas)) { 2121 return; 2122 } 2123 2124 g_string_append_printf(buf, " %08x %s end:%02x/%04x data:%08x\n", 2125 lisn, xive_eas_is_masked(eas) ? "M" : " ", 2126 (uint8_t) xive_get_field64(EAS_END_BLOCK, eas->w), 2127 (uint32_t) xive_get_field64(EAS_END_INDEX, eas->w), 2128 (uint32_t) xive_get_field64(EAS_END_DATA, eas->w)); 2129 } 2130 2131 /* 2132 * END ESB MMIO loads 2133 */ 2134 static uint64_t xive_end_source_read(void *opaque, hwaddr addr, unsigned size) 2135 { 2136 XiveENDSource *xsrc = XIVE_END_SOURCE(opaque); 2137 uint32_t offset = addr & 0xFFF; 2138 uint8_t end_blk; 2139 uint32_t end_idx; 2140 XiveEND end; 2141 uint32_t end_esmask; 2142 uint8_t pq; 2143 uint64_t ret = -1; 2144 2145 /* 2146 * The block id should be deduced from the load address on the END 2147 * ESB MMIO but our model only supports a single block per XIVE chip. 2148 */ 2149 end_blk = xive_router_get_block_id(xsrc->xrtr); 2150 end_idx = addr >> (xsrc->esb_shift + 1); 2151 2152 trace_xive_end_source_read(end_blk, end_idx, addr); 2153 2154 if (xive_router_get_end(xsrc->xrtr, end_blk, end_idx, &end)) { 2155 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: No END %x/%x\n", end_blk, 2156 end_idx); 2157 return -1; 2158 } 2159 2160 if (!xive_end_is_valid(&end)) { 2161 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: END %x/%x is invalid\n", 2162 end_blk, end_idx); 2163 return -1; 2164 } 2165 2166 end_esmask = addr_is_even(addr, xsrc->esb_shift) ? END_W1_ESn : END_W1_ESe; 2167 pq = xive_get_field32(end_esmask, end.w1); 2168 2169 switch (offset) { 2170 case XIVE_ESB_LOAD_EOI ... XIVE_ESB_LOAD_EOI + 0x7FF: 2171 ret = xive_esb_eoi(&pq); 2172 2173 /* Forward the source event notification for routing ?? */ 2174 break; 2175 2176 case XIVE_ESB_GET ... XIVE_ESB_GET + 0x3FF: 2177 ret = pq; 2178 break; 2179 2180 case XIVE_ESB_SET_PQ_00 ... XIVE_ESB_SET_PQ_00 + 0x0FF: 2181 case XIVE_ESB_SET_PQ_01 ... XIVE_ESB_SET_PQ_01 + 0x0FF: 2182 case XIVE_ESB_SET_PQ_10 ... XIVE_ESB_SET_PQ_10 + 0x0FF: 2183 case XIVE_ESB_SET_PQ_11 ... XIVE_ESB_SET_PQ_11 + 0x0FF: 2184 ret = xive_esb_set(&pq, (offset >> 8) & 0x3); 2185 break; 2186 default: 2187 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid END ESB load addr %d\n", 2188 offset); 2189 return -1; 2190 } 2191 2192 if (pq != xive_get_field32(end_esmask, end.w1)) { 2193 end.w1 = xive_set_field32(end_esmask, end.w1, pq); 2194 xive_router_write_end(xsrc->xrtr, end_blk, end_idx, &end, 1); 2195 } 2196 2197 return ret; 2198 } 2199 2200 /* 2201 * END ESB MMIO stores are invalid 2202 */ 2203 static void xive_end_source_write(void *opaque, hwaddr addr, 2204 uint64_t value, unsigned size) 2205 { 2206 qemu_log_mask(LOG_GUEST_ERROR, "XIVE: invalid ESB write addr 0x%" 2207 HWADDR_PRIx"\n", addr); 2208 } 2209 2210 static const MemoryRegionOps xive_end_source_ops = { 2211 .read = xive_end_source_read, 2212 .write = xive_end_source_write, 2213 .endianness = DEVICE_BIG_ENDIAN, 2214 .valid = { 2215 .min_access_size = 1, 2216 .max_access_size = 8, 2217 }, 2218 .impl = { 2219 .min_access_size = 1, 2220 .max_access_size = 8, 2221 }, 2222 }; 2223 2224 static void xive_end_source_realize(DeviceState *dev, Error **errp) 2225 { 2226 XiveENDSource *xsrc = XIVE_END_SOURCE(dev); 2227 2228 assert(xsrc->xrtr); 2229 2230 if (!xsrc->nr_ends) { 2231 error_setg(errp, "Number of interrupt needs to be greater than 0"); 2232 return; 2233 } 2234 2235 if (xsrc->esb_shift != XIVE_ESB_4K && 2236 xsrc->esb_shift != XIVE_ESB_64K) { 2237 error_setg(errp, "Invalid ESB shift setting"); 2238 return; 2239 } 2240 2241 /* 2242 * Each END is assigned an even/odd pair of MMIO pages, the even page 2243 * manages the ESn field while the odd page manages the ESe field. 2244 */ 2245 memory_region_init_io(&xsrc->esb_mmio, OBJECT(xsrc), 2246 &xive_end_source_ops, xsrc, "xive.end", 2247 (1ull << (xsrc->esb_shift + 1)) * xsrc->nr_ends); 2248 } 2249 2250 static const Property xive_end_source_properties[] = { 2251 DEFINE_PROP_UINT32("nr-ends", XiveENDSource, nr_ends, 0), 2252 DEFINE_PROP_UINT32("shift", XiveENDSource, esb_shift, XIVE_ESB_64K), 2253 DEFINE_PROP_LINK("xive", XiveENDSource, xrtr, TYPE_XIVE_ROUTER, 2254 XiveRouter *), 2255 }; 2256 2257 static void xive_end_source_class_init(ObjectClass *klass, const void *data) 2258 { 2259 DeviceClass *dc = DEVICE_CLASS(klass); 2260 2261 dc->desc = "XIVE END Source"; 2262 device_class_set_props(dc, xive_end_source_properties); 2263 dc->realize = xive_end_source_realize; 2264 /* 2265 * Reason: part of XIVE interrupt controller, needs to be wired up, 2266 * e.g. by spapr_xive_instance_init(). 2267 */ 2268 dc->user_creatable = false; 2269 } 2270 2271 static const TypeInfo xive_end_source_info = { 2272 .name = TYPE_XIVE_END_SOURCE, 2273 .parent = TYPE_DEVICE, 2274 .instance_size = sizeof(XiveENDSource), 2275 .class_init = xive_end_source_class_init, 2276 }; 2277 2278 /* 2279 * XIVE Notifier 2280 */ 2281 static const TypeInfo xive_notifier_info = { 2282 .name = TYPE_XIVE_NOTIFIER, 2283 .parent = TYPE_INTERFACE, 2284 .class_size = sizeof(XiveNotifierClass), 2285 }; 2286 2287 /* 2288 * XIVE Presenter 2289 */ 2290 static const TypeInfo xive_presenter_info = { 2291 .name = TYPE_XIVE_PRESENTER, 2292 .parent = TYPE_INTERFACE, 2293 .class_size = sizeof(XivePresenterClass), 2294 }; 2295 2296 /* 2297 * XIVE Fabric 2298 */ 2299 static const TypeInfo xive_fabric_info = { 2300 .name = TYPE_XIVE_FABRIC, 2301 .parent = TYPE_INTERFACE, 2302 .class_size = sizeof(XiveFabricClass), 2303 }; 2304 2305 static void xive_register_types(void) 2306 { 2307 type_register_static(&xive_fabric_info); 2308 type_register_static(&xive_source_info); 2309 type_register_static(&xive_notifier_info); 2310 type_register_static(&xive_presenter_info); 2311 type_register_static(&xive_router_info); 2312 type_register_static(&xive_end_source_info); 2313 type_register_static(&xive_tctx_info); 2314 } 2315 2316 type_init(xive_register_types) 2317