1 /* 2 * RISC-V ACLINT (Advanced Core Local Interruptor) 3 * URL: https://github.com/riscv/riscv-aclint 4 * 5 * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu 6 * Copyright (c) 2017 SiFive, Inc. 7 * Copyright (c) 2021 Western Digital Corporation or its affiliates. 8 * 9 * This provides real-time clock, timer and interprocessor interrupts. 10 * 11 * This program is free software; you can redistribute it and/or modify it 12 * under the terms and conditions of the GNU General Public License, 13 * version 2 or later, as published by the Free Software Foundation. 14 * 15 * This program is distributed in the hope it will be useful, but WITHOUT 16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 18 * more details. 19 * 20 * You should have received a copy of the GNU General Public License along with 21 * this program. If not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qemu/error-report.h" 27 #include "qemu/log.h" 28 #include "qemu/module.h" 29 #include "hw/sysbus.h" 30 #include "target/riscv/cpu.h" 31 #include "hw/qdev-properties.h" 32 #include "hw/intc/riscv_aclint.h" 33 #include "qemu/timer.h" 34 #include "hw/irq.h" 35 #include "migration/vmstate.h" 36 37 typedef struct riscv_aclint_mtimer_callback { 38 RISCVAclintMTimerState *s; 39 int num; 40 } riscv_aclint_mtimer_callback; 41 42 static uint64_t cpu_riscv_read_rtc_raw(uint32_t timebase_freq) 43 { 44 return muldiv64(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), 45 timebase_freq, NANOSECONDS_PER_SECOND); 46 } 47 48 static uint64_t cpu_riscv_read_rtc(void *opaque) 49 { 50 RISCVAclintMTimerState *mtimer = opaque; 51 return cpu_riscv_read_rtc_raw(mtimer->timebase_freq) + mtimer->time_delta; 52 } 53 54 /* 55 * Called when timecmp is written to update the QEMU timer or immediately 56 * trigger timer interrupt if mtimecmp <= current timer value. 57 */ 58 static void riscv_aclint_mtimer_write_timecmp(RISCVAclintMTimerState *mtimer, 59 RISCVCPU *cpu, 60 int hartid, 61 uint64_t value) 62 { 63 uint32_t timebase_freq = mtimer->timebase_freq; 64 uint64_t next; 65 uint64_t diff; 66 67 uint64_t rtc = cpu_riscv_read_rtc(mtimer); 68 69 /* Compute the relative hartid w.r.t the socket */ 70 hartid = hartid - mtimer->hartid_base; 71 72 mtimer->timecmp[hartid] = value; 73 if (mtimer->timecmp[hartid] <= rtc) { 74 /* 75 * If we're setting an MTIMECMP value in the "past", 76 * immediately raise the timer interrupt 77 */ 78 qemu_irq_raise(mtimer->timer_irqs[hartid]); 79 return; 80 } 81 82 /* otherwise, set up the future timer interrupt */ 83 qemu_irq_lower(mtimer->timer_irqs[hartid]); 84 diff = mtimer->timecmp[hartid] - rtc; 85 /* back to ns (note args switched in muldiv64) */ 86 uint64_t ns_diff = muldiv64(diff, NANOSECONDS_PER_SECOND, timebase_freq); 87 88 /* 89 * check if ns_diff overflowed and check if the addition would potentially 90 * overflow 91 */ 92 if ((NANOSECONDS_PER_SECOND > timebase_freq && ns_diff < diff) || 93 ns_diff > INT64_MAX) { 94 next = INT64_MAX; 95 } else { 96 /* 97 * as it is very unlikely qemu_clock_get_ns will return a value 98 * greater than INT64_MAX, no additional check is needed for an 99 * unsigned integer overflow. 100 */ 101 next = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + ns_diff; 102 /* 103 * if ns_diff is INT64_MAX next may still be outside the range 104 * of a signed integer. 105 */ 106 next = MIN(next, INT64_MAX); 107 } 108 109 timer_mod(mtimer->timers[hartid], next); 110 } 111 112 /* 113 * Callback used when the timer set using timer_mod expires. 114 * Should raise the timer interrupt line 115 */ 116 static void riscv_aclint_mtimer_cb(void *opaque) 117 { 118 riscv_aclint_mtimer_callback *state = opaque; 119 120 qemu_irq_raise(state->s->timer_irqs[state->num]); 121 } 122 123 /* CPU read MTIMER register */ 124 static uint64_t riscv_aclint_mtimer_read(void *opaque, hwaddr addr, 125 unsigned size) 126 { 127 RISCVAclintMTimerState *mtimer = opaque; 128 129 if (addr >= mtimer->timecmp_base && 130 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) { 131 size_t hartid = mtimer->hartid_base + 132 ((addr - mtimer->timecmp_base) >> 3); 133 CPUState *cpu = cpu_by_arch_id(hartid); 134 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 135 if (!env) { 136 qemu_log_mask(LOG_GUEST_ERROR, 137 "aclint-mtimer: invalid hartid: %zu", hartid); 138 } else if ((addr & 0x7) == 0) { 139 /* timecmp_lo for RV32/RV64 or timecmp for RV64 */ 140 uint64_t timecmp = mtimer->timecmp[hartid]; 141 return (size == 4) ? (timecmp & 0xFFFFFFFF) : timecmp; 142 } else if ((addr & 0x7) == 4) { 143 /* timecmp_hi */ 144 uint64_t timecmp = mtimer->timecmp[hartid]; 145 return (timecmp >> 32) & 0xFFFFFFFF; 146 } else { 147 qemu_log_mask(LOG_UNIMP, 148 "aclint-mtimer: invalid read: %08x", (uint32_t)addr); 149 return 0; 150 } 151 } else if (addr == mtimer->time_base) { 152 /* time_lo for RV32/RV64 or timecmp for RV64 */ 153 uint64_t rtc = cpu_riscv_read_rtc(mtimer); 154 return (size == 4) ? (rtc & 0xFFFFFFFF) : rtc; 155 } else if (addr == mtimer->time_base + 4) { 156 /* time_hi */ 157 return (cpu_riscv_read_rtc(mtimer) >> 32) & 0xFFFFFFFF; 158 } 159 160 qemu_log_mask(LOG_UNIMP, 161 "aclint-mtimer: invalid read: %08x", (uint32_t)addr); 162 return 0; 163 } 164 165 /* CPU write MTIMER register */ 166 static void riscv_aclint_mtimer_write(void *opaque, hwaddr addr, 167 uint64_t value, unsigned size) 168 { 169 RISCVAclintMTimerState *mtimer = opaque; 170 int i; 171 172 if (addr >= mtimer->timecmp_base && 173 addr < (mtimer->timecmp_base + (mtimer->num_harts << 3))) { 174 size_t hartid = mtimer->hartid_base + 175 ((addr - mtimer->timecmp_base) >> 3); 176 CPUState *cpu = cpu_by_arch_id(hartid); 177 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 178 if (!env) { 179 qemu_log_mask(LOG_GUEST_ERROR, 180 "aclint-mtimer: invalid hartid: %zu", hartid); 181 } else if ((addr & 0x7) == 0) { 182 if (size == 4) { 183 /* timecmp_lo for RV32/RV64 */ 184 uint64_t timecmp_hi = mtimer->timecmp[hartid] >> 32; 185 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 186 timecmp_hi << 32 | (value & 0xFFFFFFFF)); 187 } else { 188 /* timecmp for RV64 */ 189 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 190 value); 191 } 192 } else if ((addr & 0x7) == 4) { 193 if (size == 4) { 194 /* timecmp_hi for RV32/RV64 */ 195 uint64_t timecmp_lo = mtimer->timecmp[hartid]; 196 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), hartid, 197 value << 32 | (timecmp_lo & 0xFFFFFFFF)); 198 } else { 199 qemu_log_mask(LOG_GUEST_ERROR, 200 "aclint-mtimer: invalid timecmp_hi write: %08x", 201 (uint32_t)addr); 202 } 203 } else { 204 qemu_log_mask(LOG_UNIMP, 205 "aclint-mtimer: invalid timecmp write: %08x", 206 (uint32_t)addr); 207 } 208 return; 209 } else if (addr == mtimer->time_base || addr == mtimer->time_base + 4) { 210 uint64_t rtc_r = cpu_riscv_read_rtc_raw(mtimer->timebase_freq); 211 uint64_t rtc = cpu_riscv_read_rtc(mtimer); 212 213 if (addr == mtimer->time_base) { 214 if (size == 4) { 215 /* time_lo for RV32/RV64 */ 216 mtimer->time_delta = ((rtc & ~0xFFFFFFFFULL) | value) - rtc_r; 217 } else { 218 /* time for RV64 */ 219 mtimer->time_delta = value - rtc_r; 220 } 221 } else { 222 if (size == 4) { 223 /* time_hi for RV32/RV64 */ 224 mtimer->time_delta = (value << 32 | (rtc & 0xFFFFFFFF)) - rtc_r; 225 } else { 226 qemu_log_mask(LOG_GUEST_ERROR, 227 "aclint-mtimer: invalid time_hi write: %08x", 228 (uint32_t)addr); 229 return; 230 } 231 } 232 233 /* Check if timer interrupt is triggered for each hart. */ 234 for (i = 0; i < mtimer->num_harts; i++) { 235 CPUState *cpu = cpu_by_arch_id(mtimer->hartid_base + i); 236 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 237 if (!env) { 238 continue; 239 } 240 riscv_aclint_mtimer_write_timecmp(mtimer, RISCV_CPU(cpu), 241 mtimer->hartid_base + i, 242 mtimer->timecmp[i]); 243 } 244 return; 245 } 246 247 qemu_log_mask(LOG_UNIMP, 248 "aclint-mtimer: invalid write: %08x", (uint32_t)addr); 249 } 250 251 static const MemoryRegionOps riscv_aclint_mtimer_ops = { 252 .read = riscv_aclint_mtimer_read, 253 .write = riscv_aclint_mtimer_write, 254 .endianness = DEVICE_LITTLE_ENDIAN, 255 .valid = { 256 .min_access_size = 4, 257 .max_access_size = 8 258 }, 259 .impl = { 260 .min_access_size = 4, 261 .max_access_size = 8, 262 } 263 }; 264 265 static const Property riscv_aclint_mtimer_properties[] = { 266 DEFINE_PROP_UINT32("hartid-base", RISCVAclintMTimerState, 267 hartid_base, 0), 268 DEFINE_PROP_UINT32("num-harts", RISCVAclintMTimerState, num_harts, 1), 269 DEFINE_PROP_UINT32("timecmp-base", RISCVAclintMTimerState, 270 timecmp_base, RISCV_ACLINT_DEFAULT_MTIMECMP), 271 DEFINE_PROP_UINT32("time-base", RISCVAclintMTimerState, 272 time_base, RISCV_ACLINT_DEFAULT_MTIME), 273 DEFINE_PROP_UINT32("aperture-size", RISCVAclintMTimerState, 274 aperture_size, RISCV_ACLINT_DEFAULT_MTIMER_SIZE), 275 DEFINE_PROP_UINT32("timebase-freq", RISCVAclintMTimerState, 276 timebase_freq, 0), 277 }; 278 279 static void riscv_aclint_mtimer_realize(DeviceState *dev, Error **errp) 280 { 281 RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev); 282 int i; 283 284 memory_region_init_io(&s->mmio, OBJECT(dev), &riscv_aclint_mtimer_ops, 285 s, TYPE_RISCV_ACLINT_MTIMER, s->aperture_size); 286 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &s->mmio); 287 288 s->timer_irqs = g_new(qemu_irq, s->num_harts); 289 qdev_init_gpio_out(dev, s->timer_irqs, s->num_harts); 290 291 s->timers = g_new0(QEMUTimer *, s->num_harts); 292 s->timecmp = g_new0(uint64_t, s->num_harts); 293 /* Claim timer interrupt bits */ 294 for (i = 0; i < s->num_harts; i++) { 295 RISCVCPU *cpu = RISCV_CPU(cpu_by_arch_id(s->hartid_base + i)); 296 if (riscv_cpu_claim_interrupts(cpu, MIP_MTIP) < 0) { 297 error_report("MTIP already claimed"); 298 exit(1); 299 } 300 } 301 } 302 303 static void riscv_aclint_mtimer_reset_enter(Object *obj, ResetType type) 304 { 305 /* 306 * According to RISC-V ACLINT spec: 307 * - On MTIMER device reset, the MTIME register is cleared to zero. 308 * - On MTIMER device reset, the MTIMECMP registers are in unknown state. 309 */ 310 RISCVAclintMTimerState *mtimer = RISCV_ACLINT_MTIMER(obj); 311 312 /* 313 * Clear mtime register by writing to 0 it. 314 * Pending mtime interrupts will also be cleared at the same time. 315 */ 316 riscv_aclint_mtimer_write(mtimer, mtimer->time_base, 0, 8); 317 } 318 319 static const VMStateDescription vmstate_riscv_mtimer = { 320 .name = "riscv_mtimer", 321 .version_id = 1, 322 .minimum_version_id = 1, 323 .fields = (const VMStateField[]) { 324 VMSTATE_VARRAY_UINT32(timecmp, RISCVAclintMTimerState, 325 num_harts, 0, 326 vmstate_info_uint64, uint64_t), 327 VMSTATE_END_OF_LIST() 328 } 329 }; 330 331 static void riscv_aclint_mtimer_class_init(ObjectClass *klass, void *data) 332 { 333 DeviceClass *dc = DEVICE_CLASS(klass); 334 dc->realize = riscv_aclint_mtimer_realize; 335 device_class_set_props(dc, riscv_aclint_mtimer_properties); 336 ResettableClass *rc = RESETTABLE_CLASS(klass); 337 rc->phases.enter = riscv_aclint_mtimer_reset_enter; 338 dc->vmsd = &vmstate_riscv_mtimer; 339 } 340 341 static const TypeInfo riscv_aclint_mtimer_info = { 342 .name = TYPE_RISCV_ACLINT_MTIMER, 343 .parent = TYPE_SYS_BUS_DEVICE, 344 .instance_size = sizeof(RISCVAclintMTimerState), 345 .class_init = riscv_aclint_mtimer_class_init, 346 }; 347 348 /* 349 * Create ACLINT MTIMER device. 350 */ 351 DeviceState *riscv_aclint_mtimer_create(hwaddr addr, hwaddr size, 352 uint32_t hartid_base, uint32_t num_harts, 353 uint32_t timecmp_base, uint32_t time_base, uint32_t timebase_freq, 354 bool provide_rdtime) 355 { 356 int i; 357 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_MTIMER); 358 RISCVAclintMTimerState *s = RISCV_ACLINT_MTIMER(dev); 359 360 assert(num_harts <= RISCV_ACLINT_MAX_HARTS); 361 assert(!(addr & 0x7)); 362 assert(!(timecmp_base & 0x7)); 363 assert(!(time_base & 0x7)); 364 365 qdev_prop_set_uint32(dev, "hartid-base", hartid_base); 366 qdev_prop_set_uint32(dev, "num-harts", num_harts); 367 qdev_prop_set_uint32(dev, "timecmp-base", timecmp_base); 368 qdev_prop_set_uint32(dev, "time-base", time_base); 369 qdev_prop_set_uint32(dev, "aperture-size", size); 370 qdev_prop_set_uint32(dev, "timebase-freq", timebase_freq); 371 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 372 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr); 373 374 for (i = 0; i < num_harts; i++) { 375 CPUState *cpu = cpu_by_arch_id(hartid_base + i); 376 RISCVCPU *rvcpu = RISCV_CPU(cpu); 377 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 378 riscv_aclint_mtimer_callback *cb = 379 g_new0(riscv_aclint_mtimer_callback, 1); 380 381 if (!env) { 382 g_free(cb); 383 continue; 384 } 385 if (provide_rdtime) { 386 riscv_cpu_set_rdtime_fn(env, cpu_riscv_read_rtc, dev); 387 } 388 389 cb->s = s; 390 cb->num = i; 391 s->timers[i] = timer_new_ns(QEMU_CLOCK_VIRTUAL, 392 &riscv_aclint_mtimer_cb, cb); 393 s->timecmp[i] = 0; 394 395 qdev_connect_gpio_out(dev, i, 396 qdev_get_gpio_in(DEVICE(rvcpu), IRQ_M_TIMER)); 397 } 398 399 return dev; 400 } 401 402 /* CPU read [M|S]SWI register */ 403 static uint64_t riscv_aclint_swi_read(void *opaque, hwaddr addr, 404 unsigned size) 405 { 406 RISCVAclintSwiState *swi = opaque; 407 408 if (addr < (swi->num_harts << 2)) { 409 size_t hartid = swi->hartid_base + (addr >> 2); 410 CPUState *cpu = cpu_by_arch_id(hartid); 411 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 412 if (!env) { 413 qemu_log_mask(LOG_GUEST_ERROR, 414 "aclint-swi: invalid hartid: %zu", hartid); 415 } else if ((addr & 0x3) == 0) { 416 return (swi->sswi) ? 0 : ((env->mip & MIP_MSIP) > 0); 417 } 418 } 419 420 qemu_log_mask(LOG_UNIMP, 421 "aclint-swi: invalid read: %08x", (uint32_t)addr); 422 return 0; 423 } 424 425 /* CPU write [M|S]SWI register */ 426 static void riscv_aclint_swi_write(void *opaque, hwaddr addr, uint64_t value, 427 unsigned size) 428 { 429 RISCVAclintSwiState *swi = opaque; 430 431 if (addr < (swi->num_harts << 2)) { 432 size_t hartid = swi->hartid_base + (addr >> 2); 433 CPUState *cpu = cpu_by_arch_id(hartid); 434 CPURISCVState *env = cpu ? cpu_env(cpu) : NULL; 435 if (!env) { 436 qemu_log_mask(LOG_GUEST_ERROR, 437 "aclint-swi: invalid hartid: %zu", hartid); 438 } else if ((addr & 0x3) == 0) { 439 if (value & 0x1) { 440 qemu_irq_raise(swi->soft_irqs[hartid - swi->hartid_base]); 441 } else { 442 if (!swi->sswi) { 443 qemu_irq_lower(swi->soft_irqs[hartid - swi->hartid_base]); 444 } 445 } 446 return; 447 } 448 } 449 450 qemu_log_mask(LOG_UNIMP, 451 "aclint-swi: invalid write: %08x", (uint32_t)addr); 452 } 453 454 static const MemoryRegionOps riscv_aclint_swi_ops = { 455 .read = riscv_aclint_swi_read, 456 .write = riscv_aclint_swi_write, 457 .endianness = DEVICE_LITTLE_ENDIAN, 458 .valid = { 459 .min_access_size = 4, 460 .max_access_size = 4 461 } 462 }; 463 464 static const Property riscv_aclint_swi_properties[] = { 465 DEFINE_PROP_UINT32("hartid-base", RISCVAclintSwiState, hartid_base, 0), 466 DEFINE_PROP_UINT32("num-harts", RISCVAclintSwiState, num_harts, 1), 467 DEFINE_PROP_UINT32("sswi", RISCVAclintSwiState, sswi, false), 468 }; 469 470 static void riscv_aclint_swi_realize(DeviceState *dev, Error **errp) 471 { 472 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(dev); 473 int i; 474 475 memory_region_init_io(&swi->mmio, OBJECT(dev), &riscv_aclint_swi_ops, swi, 476 TYPE_RISCV_ACLINT_SWI, RISCV_ACLINT_SWI_SIZE); 477 sysbus_init_mmio(SYS_BUS_DEVICE(dev), &swi->mmio); 478 479 swi->soft_irqs = g_new(qemu_irq, swi->num_harts); 480 qdev_init_gpio_out(dev, swi->soft_irqs, swi->num_harts); 481 482 /* Claim software interrupt bits */ 483 for (i = 0; i < swi->num_harts; i++) { 484 RISCVCPU *cpu = RISCV_CPU(qemu_get_cpu(swi->hartid_base + i)); 485 /* We don't claim mip.SSIP because it is writable by software */ 486 if (riscv_cpu_claim_interrupts(cpu, swi->sswi ? 0 : MIP_MSIP) < 0) { 487 error_report("MSIP already claimed"); 488 exit(1); 489 } 490 } 491 } 492 493 static void riscv_aclint_swi_reset_enter(Object *obj, ResetType type) 494 { 495 /* 496 * According to RISC-V ACLINT spec: 497 * - On MSWI device reset, each MSIP register is cleared to zero. 498 * 499 * p.s. SSWI device reset does nothing since SETSIP register always reads 0. 500 */ 501 RISCVAclintSwiState *swi = RISCV_ACLINT_SWI(obj); 502 int i; 503 504 if (!swi->sswi) { 505 for (i = 0; i < swi->num_harts; i++) { 506 /* Clear MSIP registers by lowering software interrupts. */ 507 qemu_irq_lower(swi->soft_irqs[i]); 508 } 509 } 510 } 511 512 static void riscv_aclint_swi_class_init(ObjectClass *klass, void *data) 513 { 514 DeviceClass *dc = DEVICE_CLASS(klass); 515 dc->realize = riscv_aclint_swi_realize; 516 device_class_set_props(dc, riscv_aclint_swi_properties); 517 ResettableClass *rc = RESETTABLE_CLASS(klass); 518 rc->phases.enter = riscv_aclint_swi_reset_enter; 519 } 520 521 static const TypeInfo riscv_aclint_swi_info = { 522 .name = TYPE_RISCV_ACLINT_SWI, 523 .parent = TYPE_SYS_BUS_DEVICE, 524 .instance_size = sizeof(RISCVAclintSwiState), 525 .class_init = riscv_aclint_swi_class_init, 526 }; 527 528 /* 529 * Create ACLINT [M|S]SWI device. 530 */ 531 DeviceState *riscv_aclint_swi_create(hwaddr addr, uint32_t hartid_base, 532 uint32_t num_harts, bool sswi) 533 { 534 int i; 535 DeviceState *dev = qdev_new(TYPE_RISCV_ACLINT_SWI); 536 537 assert(num_harts <= RISCV_ACLINT_MAX_HARTS); 538 assert(!(addr & 0x3)); 539 540 qdev_prop_set_uint32(dev, "hartid-base", hartid_base); 541 qdev_prop_set_uint32(dev, "num-harts", num_harts); 542 qdev_prop_set_uint32(dev, "sswi", sswi ? true : false); 543 sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); 544 sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, addr); 545 546 for (i = 0; i < num_harts; i++) { 547 CPUState *cpu = cpu_by_arch_id(hartid_base + i); 548 RISCVCPU *rvcpu = RISCV_CPU(cpu); 549 550 qdev_connect_gpio_out(dev, i, 551 qdev_get_gpio_in(DEVICE(rvcpu), 552 (sswi) ? IRQ_S_SOFT : IRQ_M_SOFT)); 553 } 554 555 return dev; 556 } 557 558 static void riscv_aclint_register_types(void) 559 { 560 type_register_static(&riscv_aclint_mtimer_info); 561 type_register_static(&riscv_aclint_swi_info); 562 } 563 564 type_init(riscv_aclint_register_types) 565