xref: /qemu/hw/intc/arm_gicv3_kvm.c (revision 2f15b79280cf71b7991dfd3f0312a1797630e376)
1 /*
2  * ARM Generic Interrupt Controller using KVM in-kernel support
3  *
4  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
5  * Written by Pavel Fedin
6  * Based on vGICv2 code by Peter Maydell
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation, either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License along
19  * with this program; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qapi/error.h"
24 #include "hw/intc/arm_gicv3_common.h"
25 #include "hw/sysbus.h"
26 #include "qemu/error-report.h"
27 #include "sysemu/kvm.h"
28 #include "sysemu/sysemu.h"
29 #include "kvm_arm.h"
30 #include "gicv3_internal.h"
31 #include "vgic_common.h"
32 #include "migration/blocker.h"
33 
34 #ifdef DEBUG_GICV3_KVM
35 #define DPRINTF(fmt, ...) \
36     do { fprintf(stderr, "kvm_gicv3: " fmt, ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF(fmt, ...) \
39     do { } while (0)
40 #endif
41 
42 #define TYPE_KVM_ARM_GICV3 "kvm-arm-gicv3"
43 #define KVM_ARM_GICV3(obj) \
44      OBJECT_CHECK(GICv3State, (obj), TYPE_KVM_ARM_GICV3)
45 #define KVM_ARM_GICV3_CLASS(klass) \
46      OBJECT_CLASS_CHECK(KVMARMGICv3Class, (klass), TYPE_KVM_ARM_GICV3)
47 #define KVM_ARM_GICV3_GET_CLASS(obj) \
48      OBJECT_GET_CLASS(KVMARMGICv3Class, (obj), TYPE_KVM_ARM_GICV3)
49 
50 #define   KVM_DEV_ARM_VGIC_SYSREG(op0, op1, crn, crm, op2)         \
51                              (ARM64_SYS_REG_SHIFT_MASK(op0, OP0) | \
52                               ARM64_SYS_REG_SHIFT_MASK(op1, OP1) | \
53                               ARM64_SYS_REG_SHIFT_MASK(crn, CRN) | \
54                               ARM64_SYS_REG_SHIFT_MASK(crm, CRM) | \
55                               ARM64_SYS_REG_SHIFT_MASK(op2, OP2))
56 
57 #define ICC_PMR_EL1     \
58     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 4, 6, 0)
59 #define ICC_BPR0_EL1    \
60     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 3)
61 #define ICC_AP0R_EL1(n) \
62     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 8, 4 | n)
63 #define ICC_AP1R_EL1(n) \
64     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 9, n)
65 #define ICC_BPR1_EL1    \
66     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 3)
67 #define ICC_CTLR_EL1    \
68     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 4)
69 #define ICC_SRE_EL1 \
70     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 5)
71 #define ICC_IGRPEN0_EL1 \
72     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 6)
73 #define ICC_IGRPEN1_EL1 \
74     KVM_DEV_ARM_VGIC_SYSREG(3, 0, 12, 12, 7)
75 
76 typedef struct KVMARMGICv3Class {
77     ARMGICv3CommonClass parent_class;
78     DeviceRealize parent_realize;
79     void (*parent_reset)(DeviceState *dev);
80 } KVMARMGICv3Class;
81 
82 static void kvm_arm_gicv3_set_irq(void *opaque, int irq, int level)
83 {
84     GICv3State *s = (GICv3State *)opaque;
85 
86     kvm_arm_gic_set_irq(s->num_irq, irq, level);
87 }
88 
89 #define KVM_VGIC_ATTR(reg, typer) \
90     ((typer & KVM_DEV_ARM_VGIC_V3_MPIDR_MASK) | (reg))
91 
92 static inline void kvm_gicd_access(GICv3State *s, int offset,
93                                    uint32_t *val, bool write)
94 {
95     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
96                       KVM_VGIC_ATTR(offset, 0),
97                       val, write, &error_abort);
98 }
99 
100 static inline void kvm_gicr_access(GICv3State *s, int offset, int cpu,
101                                    uint32_t *val, bool write)
102 {
103     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_REDIST_REGS,
104                       KVM_VGIC_ATTR(offset, s->cpu[cpu].gicr_typer),
105                       val, write, &error_abort);
106 }
107 
108 static inline void kvm_gicc_access(GICv3State *s, uint64_t reg, int cpu,
109                                    uint64_t *val, bool write)
110 {
111     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
112                       KVM_VGIC_ATTR(reg, s->cpu[cpu].gicr_typer),
113                       val, write, &error_abort);
114 }
115 
116 static inline void kvm_gic_line_level_access(GICv3State *s, int irq, int cpu,
117                                              uint32_t *val, bool write)
118 {
119     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_LEVEL_INFO,
120                       KVM_VGIC_ATTR(irq, s->cpu[cpu].gicr_typer) |
121                       (VGIC_LEVEL_INFO_LINE_LEVEL <<
122                        KVM_DEV_ARM_VGIC_LINE_LEVEL_INFO_SHIFT),
123                       val, write, &error_abort);
124 }
125 
126 /* Loop through each distributor IRQ related register; since bits
127  * corresponding to SPIs and PPIs are RAZ/WI when affinity routing
128  * is enabled, we skip those.
129  */
130 #define for_each_dist_irq_reg(_irq, _max, _field_width) \
131     for (_irq = GIC_INTERNAL; _irq < _max; _irq += (32 / _field_width))
132 
133 static void kvm_dist_get_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
134 {
135     uint32_t reg, *field;
136     int irq;
137 
138     field = (uint32_t *)bmp;
139     for_each_dist_irq_reg(irq, s->num_irq, 8) {
140         kvm_gicd_access(s, offset, &reg, false);
141         *field = reg;
142         offset += 4;
143         field++;
144     }
145 }
146 
147 static void kvm_dist_put_priority(GICv3State *s, uint32_t offset, uint8_t *bmp)
148 {
149     uint32_t reg, *field;
150     int irq;
151 
152     field = (uint32_t *)bmp;
153     for_each_dist_irq_reg(irq, s->num_irq, 8) {
154         reg = *field;
155         kvm_gicd_access(s, offset, &reg, true);
156         offset += 4;
157         field++;
158     }
159 }
160 
161 static void kvm_dist_get_edge_trigger(GICv3State *s, uint32_t offset,
162                                       uint32_t *bmp)
163 {
164     uint32_t reg;
165     int irq;
166 
167     for_each_dist_irq_reg(irq, s->num_irq, 2) {
168         kvm_gicd_access(s, offset, &reg, false);
169         reg = half_unshuffle32(reg >> 1);
170         if (irq % 32 != 0) {
171             reg = (reg << 16);
172         }
173         *gic_bmp_ptr32(bmp, irq) |=  reg;
174         offset += 4;
175     }
176 }
177 
178 static void kvm_dist_put_edge_trigger(GICv3State *s, uint32_t offset,
179                                       uint32_t *bmp)
180 {
181     uint32_t reg;
182     int irq;
183 
184     for_each_dist_irq_reg(irq, s->num_irq, 2) {
185         reg = *gic_bmp_ptr32(bmp, irq);
186         if (irq % 32 != 0) {
187             reg = (reg & 0xffff0000) >> 16;
188         } else {
189             reg = reg & 0xffff;
190         }
191         reg = half_shuffle32(reg) << 1;
192         kvm_gicd_access(s, offset, &reg, true);
193         offset += 4;
194     }
195 }
196 
197 static void kvm_gic_get_line_level_bmp(GICv3State *s, uint32_t *bmp)
198 {
199     uint32_t reg;
200     int irq;
201 
202     for_each_dist_irq_reg(irq, s->num_irq, 1) {
203         kvm_gic_line_level_access(s, irq, 0, &reg, false);
204         *gic_bmp_ptr32(bmp, irq) = reg;
205     }
206 }
207 
208 static void kvm_gic_put_line_level_bmp(GICv3State *s, uint32_t *bmp)
209 {
210     uint32_t reg;
211     int irq;
212 
213     for_each_dist_irq_reg(irq, s->num_irq, 1) {
214         reg = *gic_bmp_ptr32(bmp, irq);
215         kvm_gic_line_level_access(s, irq, 0, &reg, true);
216     }
217 }
218 
219 /* Read a bitmap register group from the kernel VGIC. */
220 static void kvm_dist_getbmp(GICv3State *s, uint32_t offset, uint32_t *bmp)
221 {
222     uint32_t reg;
223     int irq;
224 
225     for_each_dist_irq_reg(irq, s->num_irq, 1) {
226         kvm_gicd_access(s, offset, &reg, false);
227         *gic_bmp_ptr32(bmp, irq) = reg;
228         offset += 4;
229     }
230 }
231 
232 static void kvm_dist_putbmp(GICv3State *s, uint32_t offset,
233                             uint32_t clroffset, uint32_t *bmp)
234 {
235     uint32_t reg;
236     int irq;
237 
238     for_each_dist_irq_reg(irq, s->num_irq, 1) {
239         /* If this bitmap is a set/clear register pair, first write to the
240          * clear-reg to clear all bits before using the set-reg to write
241          * the 1 bits.
242          */
243         if (clroffset != 0) {
244             reg = 0;
245             kvm_gicd_access(s, clroffset, &reg, true);
246             clroffset += 4;
247         }
248         reg = *gic_bmp_ptr32(bmp, irq);
249         kvm_gicd_access(s, offset, &reg, true);
250         offset += 4;
251     }
252 }
253 
254 static void kvm_arm_gicv3_check(GICv3State *s)
255 {
256     uint32_t reg;
257     uint32_t num_irq;
258 
259     /* Sanity checking s->num_irq */
260     kvm_gicd_access(s, GICD_TYPER, &reg, false);
261     num_irq = ((reg & 0x1f) + 1) * 32;
262 
263     if (num_irq < s->num_irq) {
264         error_report("Model requests %u IRQs, but kernel supports max %u",
265                      s->num_irq, num_irq);
266         abort();
267     }
268 }
269 
270 static void kvm_arm_gicv3_put(GICv3State *s)
271 {
272     uint32_t regl, regh, reg;
273     uint64_t reg64, redist_typer;
274     int ncpu, i;
275 
276     kvm_arm_gicv3_check(s);
277 
278     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
279     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
280     redist_typer = ((uint64_t)regh << 32) | regl;
281 
282     reg = s->gicd_ctlr;
283     kvm_gicd_access(s, GICD_CTLR, &reg, true);
284 
285     if (redist_typer & GICR_TYPER_PLPIS) {
286         /* Set base addresses before LPIs are enabled by GICR_CTLR write */
287         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
288             GICv3CPUState *c = &s->cpu[ncpu];
289 
290             reg64 = c->gicr_propbaser;
291             regl = (uint32_t)reg64;
292             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, true);
293             regh = (uint32_t)(reg64 >> 32);
294             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, true);
295 
296             reg64 = c->gicr_pendbaser;
297             if (!(c->gicr_ctlr & GICR_CTLR_ENABLE_LPIS)) {
298                 /* Setting PTZ is advised if LPIs are disabled, to reduce
299                  * GIC initialization time.
300                  */
301                 reg64 |= GICR_PENDBASER_PTZ;
302             }
303             regl = (uint32_t)reg64;
304             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, true);
305             regh = (uint32_t)(reg64 >> 32);
306             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, true);
307         }
308     }
309 
310     /* Redistributor state (one per CPU) */
311 
312     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
313         GICv3CPUState *c = &s->cpu[ncpu];
314 
315         reg = c->gicr_ctlr;
316         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, true);
317 
318         reg = c->gicr_statusr[GICV3_NS];
319         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, true);
320 
321         reg = c->gicr_waker;
322         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, true);
323 
324         reg = c->gicr_igroupr0;
325         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, true);
326 
327         reg = ~0;
328         kvm_gicr_access(s, GICR_ICENABLER0, ncpu, &reg, true);
329         reg = c->gicr_ienabler0;
330         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, true);
331 
332         /* Restore config before pending so we treat level/edge correctly */
333         reg = half_shuffle32(c->edge_trigger >> 16) << 1;
334         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, true);
335 
336         reg = c->level;
337         kvm_gic_line_level_access(s, 0, ncpu, &reg, true);
338 
339         reg = ~0;
340         kvm_gicr_access(s, GICR_ICPENDR0, ncpu, &reg, true);
341         reg = c->gicr_ipendr0;
342         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, true);
343 
344         reg = ~0;
345         kvm_gicr_access(s, GICR_ICACTIVER0, ncpu, &reg, true);
346         reg = c->gicr_iactiver0;
347         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, true);
348 
349         for (i = 0; i < GIC_INTERNAL; i += 4) {
350             reg = c->gicr_ipriorityr[i] |
351                 (c->gicr_ipriorityr[i + 1] << 8) |
352                 (c->gicr_ipriorityr[i + 2] << 16) |
353                 (c->gicr_ipriorityr[i + 3] << 24);
354             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, true);
355         }
356     }
357 
358     /* Distributor state (shared between all CPUs */
359     reg = s->gicd_statusr[GICV3_NS];
360     kvm_gicd_access(s, GICD_STATUSR, &reg, true);
361 
362     /* s->enable bitmap -> GICD_ISENABLERn */
363     kvm_dist_putbmp(s, GICD_ISENABLER, GICD_ICENABLER, s->enabled);
364 
365     /* s->group bitmap -> GICD_IGROUPRn */
366     kvm_dist_putbmp(s, GICD_IGROUPR, 0, s->group);
367 
368     /* Restore targets before pending to ensure the pending state is set on
369      * the appropriate CPU interfaces in the kernel
370      */
371 
372     /* s->gicd_irouter[irq] -> GICD_IROUTERn
373      * We can't use kvm_dist_put() here because the registers are 64-bit
374      */
375     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
376         uint32_t offset;
377 
378         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
379         reg = (uint32_t)s->gicd_irouter[i];
380         kvm_gicd_access(s, offset, &reg, true);
381 
382         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
383         reg = (uint32_t)(s->gicd_irouter[i] >> 32);
384         kvm_gicd_access(s, offset, &reg, true);
385     }
386 
387     /* s->trigger bitmap -> GICD_ICFGRn
388      * (restore configuration registers before pending IRQs so we treat
389      * level/edge correctly)
390      */
391     kvm_dist_put_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
392 
393     /* s->level bitmap ->  line_level */
394     kvm_gic_put_line_level_bmp(s, s->level);
395 
396     /* s->pending bitmap -> GICD_ISPENDRn */
397     kvm_dist_putbmp(s, GICD_ISPENDR, GICD_ICPENDR, s->pending);
398 
399     /* s->active bitmap -> GICD_ISACTIVERn */
400     kvm_dist_putbmp(s, GICD_ISACTIVER, GICD_ICACTIVER, s->active);
401 
402     /* s->gicd_ipriority[] -> GICD_IPRIORITYRn */
403     kvm_dist_put_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
404 
405     /* CPU Interface state (one per CPU) */
406 
407     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
408         GICv3CPUState *c = &s->cpu[ncpu];
409         int num_pri_bits;
410 
411         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, true);
412         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
413                         &c->icc_ctlr_el1[GICV3_NS], true);
414         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
415                         &c->icc_igrpen[GICV3_G0], true);
416         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
417                         &c->icc_igrpen[GICV3_G1NS], true);
418         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, true);
419         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], true);
420         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], true);
421 
422         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
423                         ICC_CTLR_EL1_PRIBITS_MASK) >>
424                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
425 
426         switch (num_pri_bits) {
427         case 7:
428             reg64 = c->icc_apr[GICV3_G0][3];
429             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, true);
430             reg64 = c->icc_apr[GICV3_G0][2];
431             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, true);
432         case 6:
433             reg64 = c->icc_apr[GICV3_G0][1];
434             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, true);
435         default:
436             reg64 = c->icc_apr[GICV3_G0][0];
437             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, true);
438         }
439 
440         switch (num_pri_bits) {
441         case 7:
442             reg64 = c->icc_apr[GICV3_G1NS][3];
443             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, true);
444             reg64 = c->icc_apr[GICV3_G1NS][2];
445             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, true);
446         case 6:
447             reg64 = c->icc_apr[GICV3_G1NS][1];
448             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, true);
449         default:
450             reg64 = c->icc_apr[GICV3_G1NS][0];
451             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, true);
452         }
453     }
454 }
455 
456 static void kvm_arm_gicv3_get(GICv3State *s)
457 {
458     uint32_t regl, regh, reg;
459     uint64_t reg64, redist_typer;
460     int ncpu, i;
461 
462     kvm_arm_gicv3_check(s);
463 
464     kvm_gicr_access(s, GICR_TYPER, 0, &regl, false);
465     kvm_gicr_access(s, GICR_TYPER + 4, 0, &regh, false);
466     redist_typer = ((uint64_t)regh << 32) | regl;
467 
468     kvm_gicd_access(s, GICD_CTLR, &reg, false);
469     s->gicd_ctlr = reg;
470 
471     /* Redistributor state (one per CPU) */
472 
473     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
474         GICv3CPUState *c = &s->cpu[ncpu];
475 
476         kvm_gicr_access(s, GICR_CTLR, ncpu, &reg, false);
477         c->gicr_ctlr = reg;
478 
479         kvm_gicr_access(s, GICR_STATUSR, ncpu, &reg, false);
480         c->gicr_statusr[GICV3_NS] = reg;
481 
482         kvm_gicr_access(s, GICR_WAKER, ncpu, &reg, false);
483         c->gicr_waker = reg;
484 
485         kvm_gicr_access(s, GICR_IGROUPR0, ncpu, &reg, false);
486         c->gicr_igroupr0 = reg;
487         kvm_gicr_access(s, GICR_ISENABLER0, ncpu, &reg, false);
488         c->gicr_ienabler0 = reg;
489         kvm_gicr_access(s, GICR_ICFGR1, ncpu, &reg, false);
490         c->edge_trigger = half_unshuffle32(reg >> 1) << 16;
491         kvm_gic_line_level_access(s, 0, ncpu, &reg, false);
492         c->level = reg;
493         kvm_gicr_access(s, GICR_ISPENDR0, ncpu, &reg, false);
494         c->gicr_ipendr0 = reg;
495         kvm_gicr_access(s, GICR_ISACTIVER0, ncpu, &reg, false);
496         c->gicr_iactiver0 = reg;
497 
498         for (i = 0; i < GIC_INTERNAL; i += 4) {
499             kvm_gicr_access(s, GICR_IPRIORITYR + i, ncpu, &reg, false);
500             c->gicr_ipriorityr[i] = extract32(reg, 0, 8);
501             c->gicr_ipriorityr[i + 1] = extract32(reg, 8, 8);
502             c->gicr_ipriorityr[i + 2] = extract32(reg, 16, 8);
503             c->gicr_ipriorityr[i + 3] = extract32(reg, 24, 8);
504         }
505     }
506 
507     if (redist_typer & GICR_TYPER_PLPIS) {
508         for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
509             GICv3CPUState *c = &s->cpu[ncpu];
510 
511             kvm_gicr_access(s, GICR_PROPBASER, ncpu, &regl, false);
512             kvm_gicr_access(s, GICR_PROPBASER + 4, ncpu, &regh, false);
513             c->gicr_propbaser = ((uint64_t)regh << 32) | regl;
514 
515             kvm_gicr_access(s, GICR_PENDBASER, ncpu, &regl, false);
516             kvm_gicr_access(s, GICR_PENDBASER + 4, ncpu, &regh, false);
517             c->gicr_pendbaser = ((uint64_t)regh << 32) | regl;
518         }
519     }
520 
521     /* Distributor state (shared between all CPUs */
522 
523     kvm_gicd_access(s, GICD_STATUSR, &reg, false);
524     s->gicd_statusr[GICV3_NS] = reg;
525 
526     /* GICD_IGROUPRn -> s->group bitmap */
527     kvm_dist_getbmp(s, GICD_IGROUPR, s->group);
528 
529     /* GICD_ISENABLERn -> s->enabled bitmap */
530     kvm_dist_getbmp(s, GICD_ISENABLER, s->enabled);
531 
532     /* Line level of irq */
533     kvm_gic_get_line_level_bmp(s, s->level);
534     /* GICD_ISPENDRn -> s->pending bitmap */
535     kvm_dist_getbmp(s, GICD_ISPENDR, s->pending);
536 
537     /* GICD_ISACTIVERn -> s->active bitmap */
538     kvm_dist_getbmp(s, GICD_ISACTIVER, s->active);
539 
540     /* GICD_ICFGRn -> s->trigger bitmap */
541     kvm_dist_get_edge_trigger(s, GICD_ICFGR, s->edge_trigger);
542 
543     /* GICD_IPRIORITYRn -> s->gicd_ipriority[] */
544     kvm_dist_get_priority(s, GICD_IPRIORITYR, s->gicd_ipriority);
545 
546     /* GICD_IROUTERn -> s->gicd_irouter[irq] */
547     for (i = GIC_INTERNAL; i < s->num_irq; i++) {
548         uint32_t offset;
549 
550         offset = GICD_IROUTER + (sizeof(uint32_t) * i);
551         kvm_gicd_access(s, offset, &regl, false);
552         offset = GICD_IROUTER + (sizeof(uint32_t) * i) + 4;
553         kvm_gicd_access(s, offset, &regh, false);
554         s->gicd_irouter[i] = ((uint64_t)regh << 32) | regl;
555     }
556 
557     /*****************************************************************
558      * CPU Interface(s) State
559      */
560 
561     for (ncpu = 0; ncpu < s->num_cpu; ncpu++) {
562         GICv3CPUState *c = &s->cpu[ncpu];
563         int num_pri_bits;
564 
565         kvm_gicc_access(s, ICC_SRE_EL1, ncpu, &c->icc_sre_el1, false);
566         kvm_gicc_access(s, ICC_CTLR_EL1, ncpu,
567                         &c->icc_ctlr_el1[GICV3_NS], false);
568         kvm_gicc_access(s, ICC_IGRPEN0_EL1, ncpu,
569                         &c->icc_igrpen[GICV3_G0], false);
570         kvm_gicc_access(s, ICC_IGRPEN1_EL1, ncpu,
571                         &c->icc_igrpen[GICV3_G1NS], false);
572         kvm_gicc_access(s, ICC_PMR_EL1, ncpu, &c->icc_pmr_el1, false);
573         kvm_gicc_access(s, ICC_BPR0_EL1, ncpu, &c->icc_bpr[GICV3_G0], false);
574         kvm_gicc_access(s, ICC_BPR1_EL1, ncpu, &c->icc_bpr[GICV3_G1NS], false);
575         num_pri_bits = ((c->icc_ctlr_el1[GICV3_NS] &
576                         ICC_CTLR_EL1_PRIBITS_MASK) >>
577                         ICC_CTLR_EL1_PRIBITS_SHIFT) + 1;
578 
579         switch (num_pri_bits) {
580         case 7:
581             kvm_gicc_access(s, ICC_AP0R_EL1(3), ncpu, &reg64, false);
582             c->icc_apr[GICV3_G0][3] = reg64;
583             kvm_gicc_access(s, ICC_AP0R_EL1(2), ncpu, &reg64, false);
584             c->icc_apr[GICV3_G0][2] = reg64;
585         case 6:
586             kvm_gicc_access(s, ICC_AP0R_EL1(1), ncpu, &reg64, false);
587             c->icc_apr[GICV3_G0][1] = reg64;
588         default:
589             kvm_gicc_access(s, ICC_AP0R_EL1(0), ncpu, &reg64, false);
590             c->icc_apr[GICV3_G0][0] = reg64;
591         }
592 
593         switch (num_pri_bits) {
594         case 7:
595             kvm_gicc_access(s, ICC_AP1R_EL1(3), ncpu, &reg64, false);
596             c->icc_apr[GICV3_G1NS][3] = reg64;
597             kvm_gicc_access(s, ICC_AP1R_EL1(2), ncpu, &reg64, false);
598             c->icc_apr[GICV3_G1NS][2] = reg64;
599         case 6:
600             kvm_gicc_access(s, ICC_AP1R_EL1(1), ncpu, &reg64, false);
601             c->icc_apr[GICV3_G1NS][1] = reg64;
602         default:
603             kvm_gicc_access(s, ICC_AP1R_EL1(0), ncpu, &reg64, false);
604             c->icc_apr[GICV3_G1NS][0] = reg64;
605         }
606     }
607 }
608 
609 static void arm_gicv3_icc_reset(CPUARMState *env, const ARMCPRegInfo *ri)
610 {
611     ARMCPU *cpu;
612     GICv3State *s;
613     GICv3CPUState *c;
614 
615     c = (GICv3CPUState *)env->gicv3state;
616     s = c->gic;
617     cpu = ARM_CPU(c->cpu);
618 
619     c->icc_pmr_el1 = 0;
620     c->icc_bpr[GICV3_G0] = GIC_MIN_BPR;
621     c->icc_bpr[GICV3_G1] = GIC_MIN_BPR;
622     c->icc_bpr[GICV3_G1NS] = GIC_MIN_BPR;
623 
624     c->icc_sre_el1 = 0x7;
625     memset(c->icc_apr, 0, sizeof(c->icc_apr));
626     memset(c->icc_igrpen, 0, sizeof(c->icc_igrpen));
627 
628     if (s->migration_blocker) {
629         return;
630     }
631 
632     /* Initialize to actual HW supported configuration */
633     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CPU_SYSREGS,
634                       KVM_VGIC_ATTR(ICC_CTLR_EL1, cpu->mp_affinity),
635                       &c->icc_ctlr_el1[GICV3_NS], false, &error_abort);
636 
637     c->icc_ctlr_el1[GICV3_S] = c->icc_ctlr_el1[GICV3_NS];
638 }
639 
640 static void kvm_arm_gicv3_reset(DeviceState *dev)
641 {
642     GICv3State *s = ARM_GICV3_COMMON(dev);
643     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
644 
645     DPRINTF("Reset\n");
646 
647     kgc->parent_reset(dev);
648 
649     if (s->migration_blocker) {
650         DPRINTF("Cannot put kernel gic state, no kernel interface\n");
651         return;
652     }
653 
654     kvm_arm_gicv3_put(s);
655 }
656 
657 /*
658  * CPU interface registers of GIC needs to be reset on CPU reset.
659  * For the calling arm_gicv3_icc_reset() on CPU reset, we register
660  * below ARMCPRegInfo. As we reset the whole cpu interface under single
661  * register reset, we define only one register of CPU interface instead
662  * of defining all the registers.
663  */
664 static const ARMCPRegInfo gicv3_cpuif_reginfo[] = {
665     { .name = "ICC_CTLR_EL1", .state = ARM_CP_STATE_BOTH,
666       .opc0 = 3, .opc1 = 0, .crn = 12, .crm = 12, .opc2 = 4,
667       /*
668        * If ARM_CP_NOP is used, resetfn is not called,
669        * So ARM_CP_NO_RAW is appropriate type.
670        */
671       .type = ARM_CP_NO_RAW,
672       .access = PL1_RW,
673       .readfn = arm_cp_read_zero,
674       .writefn = arm_cp_write_ignore,
675       /*
676        * We hang the whole cpu interface reset routine off here
677        * rather than parcelling it out into one little function
678        * per register
679        */
680       .resetfn = arm_gicv3_icc_reset,
681     },
682     REGINFO_SENTINEL
683 };
684 
685 /**
686  * vm_change_state_handler - VM change state callback aiming at flushing
687  * RDIST pending tables into guest RAM
688  *
689  * The tables get flushed to guest RAM whenever the VM gets stopped.
690  */
691 static void vm_change_state_handler(void *opaque, int running,
692                                     RunState state)
693 {
694     GICv3State *s = (GICv3State *)opaque;
695     Error *err = NULL;
696     int ret;
697 
698     if (running) {
699         return;
700     }
701 
702     ret = kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
703                            KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES,
704                            NULL, true, &err);
705     if (err) {
706         error_report_err(err);
707     }
708     if (ret < 0 && ret != -EFAULT) {
709         abort();
710     }
711 }
712 
713 
714 static void kvm_arm_gicv3_realize(DeviceState *dev, Error **errp)
715 {
716     GICv3State *s = KVM_ARM_GICV3(dev);
717     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_GET_CLASS(s);
718     Error *local_err = NULL;
719     int i;
720 
721     DPRINTF("kvm_arm_gicv3_realize\n");
722 
723     kgc->parent_realize(dev, &local_err);
724     if (local_err) {
725         error_propagate(errp, local_err);
726         return;
727     }
728 
729     if (s->security_extn) {
730         error_setg(errp, "the in-kernel VGICv3 does not implement the "
731                    "security extensions");
732         return;
733     }
734 
735     gicv3_init_irqs_and_mmio(s, kvm_arm_gicv3_set_irq, NULL);
736 
737     for (i = 0; i < s->num_cpu; i++) {
738         ARMCPU *cpu = ARM_CPU(qemu_get_cpu(i));
739 
740         define_arm_cp_regs(cpu, gicv3_cpuif_reginfo);
741     }
742 
743     /* Try to create the device via the device control API */
744     s->dev_fd = kvm_create_device(kvm_state, KVM_DEV_TYPE_ARM_VGIC_V3, false);
745     if (s->dev_fd < 0) {
746         error_setg_errno(errp, -s->dev_fd, "error creating in-kernel VGIC");
747         return;
748     }
749 
750     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_NR_IRQS,
751                       0, &s->num_irq, true, &error_abort);
752 
753     /* Tell the kernel to complete VGIC initialization now */
754     kvm_device_access(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
755                       KVM_DEV_ARM_VGIC_CTRL_INIT, NULL, true, &error_abort);
756 
757     kvm_arm_register_device(&s->iomem_dist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
758                             KVM_VGIC_V3_ADDR_TYPE_DIST, s->dev_fd);
759     kvm_arm_register_device(&s->iomem_redist, -1, KVM_DEV_ARM_VGIC_GRP_ADDR,
760                             KVM_VGIC_V3_ADDR_TYPE_REDIST, s->dev_fd);
761 
762     if (kvm_has_gsi_routing()) {
763         /* set up irq routing */
764         for (i = 0; i < s->num_irq - GIC_INTERNAL; ++i) {
765             kvm_irqchip_add_irq_route(kvm_state, i, 0, i);
766         }
767 
768         kvm_gsi_routing_allowed = true;
769 
770         kvm_irqchip_commit_routes(kvm_state);
771     }
772 
773     if (!kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_DIST_REGS,
774                                GICD_CTLR)) {
775         error_setg(&s->migration_blocker, "This operating system kernel does "
776                                           "not support vGICv3 migration");
777         migrate_add_blocker(s->migration_blocker, &local_err);
778         if (local_err) {
779             error_propagate(errp, local_err);
780             error_free(s->migration_blocker);
781             return;
782         }
783     }
784     if (kvm_device_check_attr(s->dev_fd, KVM_DEV_ARM_VGIC_GRP_CTRL,
785                               KVM_DEV_ARM_VGIC_SAVE_PENDING_TABLES)) {
786         qemu_add_vm_change_state_handler(vm_change_state_handler, s);
787     }
788 }
789 
790 static void kvm_arm_gicv3_class_init(ObjectClass *klass, void *data)
791 {
792     DeviceClass *dc = DEVICE_CLASS(klass);
793     ARMGICv3CommonClass *agcc = ARM_GICV3_COMMON_CLASS(klass);
794     KVMARMGICv3Class *kgc = KVM_ARM_GICV3_CLASS(klass);
795 
796     agcc->pre_save = kvm_arm_gicv3_get;
797     agcc->post_load = kvm_arm_gicv3_put;
798     device_class_set_parent_realize(dc, kvm_arm_gicv3_realize,
799                                     &kgc->parent_realize);
800     device_class_set_parent_reset(dc, kvm_arm_gicv3_reset, &kgc->parent_reset);
801 }
802 
803 static const TypeInfo kvm_arm_gicv3_info = {
804     .name = TYPE_KVM_ARM_GICV3,
805     .parent = TYPE_ARM_GICV3_COMMON,
806     .instance_size = sizeof(GICv3State),
807     .class_init = kvm_arm_gicv3_class_init,
808     .class_size = sizeof(KVMARMGICv3Class),
809 };
810 
811 static void kvm_arm_gicv3_register_types(void)
812 {
813     type_register_static(&kvm_arm_gicv3_info);
814 }
815 
816 type_init(kvm_arm_gicv3_register_types)
817