xref: /qemu/hw/intc/arm_gicv3_common.c (revision b53db42bc0140a32e5196125b216a82d08992a7d)
1 /*
2  * ARM GICv3 support - common bits of emulated and KVM kernel model
3  *
4  * Copyright (c) 2012 Linaro Limited
5  * Copyright (c) 2015 Huawei.
6  * Copyright (c) 2015 Samsung Electronics Co., Ltd.
7  * Written by Peter Maydell
8  * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation, either version 2 of the License, or
13  * (at your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  * GNU General Public License for more details.
19  *
20  * You should have received a copy of the GNU General Public License along
21  * with this program; if not, see <http://www.gnu.org/licenses/>.
22  */
23 
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "qom/cpu.h"
27 #include "hw/intc/arm_gicv3_common.h"
28 #include "gicv3_internal.h"
29 #include "hw/arm/linux-boot-if.h"
30 
31 static void gicv3_pre_save(void *opaque)
32 {
33     GICv3State *s = (GICv3State *)opaque;
34     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
35 
36     if (c->pre_save) {
37         c->pre_save(s);
38     }
39 }
40 
41 static int gicv3_post_load(void *opaque, int version_id)
42 {
43     GICv3State *s = (GICv3State *)opaque;
44     ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s);
45 
46     if (c->post_load) {
47         c->post_load(s);
48     }
49     return 0;
50 }
51 
52 static const VMStateDescription vmstate_gicv3_cpu = {
53     .name = "arm_gicv3_cpu",
54     .version_id = 1,
55     .minimum_version_id = 1,
56     .fields = (VMStateField[]) {
57         VMSTATE_UINT32(level, GICv3CPUState),
58         VMSTATE_UINT32(gicr_ctlr, GICv3CPUState),
59         VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2),
60         VMSTATE_UINT32(gicr_waker, GICv3CPUState),
61         VMSTATE_UINT64(gicr_propbaser, GICv3CPUState),
62         VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState),
63         VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState),
64         VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState),
65         VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState),
66         VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState),
67         VMSTATE_UINT32(edge_trigger, GICv3CPUState),
68         VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState),
69         VMSTATE_UINT32(gicr_nsacr, GICv3CPUState),
70         VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL),
71         VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2),
72         VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState),
73         VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3),
74         VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4),
75         VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3),
76         VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState),
77         VMSTATE_END_OF_LIST()
78     }
79 };
80 
81 static const VMStateDescription vmstate_gicv3 = {
82     .name = "arm_gicv3",
83     .version_id = 1,
84     .minimum_version_id = 1,
85     .pre_save = gicv3_pre_save,
86     .post_load = gicv3_post_load,
87     .fields = (VMStateField[]) {
88         VMSTATE_UINT32(gicd_ctlr, GICv3State),
89         VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2),
90         VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE),
91         VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE),
92         VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE),
93         VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE),
94         VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE),
95         VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE),
96         VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE),
97         VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ),
98         VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ),
99         VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State,
100                              DIV_ROUND_UP(GICV3_MAXIRQ, 16)),
101         VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu,
102                                              vmstate_gicv3_cpu, GICv3CPUState),
103         VMSTATE_END_OF_LIST()
104     }
105 };
106 
107 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler,
108                               const MemoryRegionOps *ops)
109 {
110     SysBusDevice *sbd = SYS_BUS_DEVICE(s);
111     int i;
112 
113     /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU.
114      * GPIO array layout is thus:
115      *  [0..N-1] spi
116      *  [N..N+31] PPIs for CPU 0
117      *  [N+32..N+63] PPIs for CPU 1
118      *   ...
119      */
120     i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu;
121     qdev_init_gpio_in(DEVICE(s), handler, i);
122 
123     for (i = 0; i < s->num_cpu; i++) {
124         sysbus_init_irq(sbd, &s->cpu[i].parent_irq);
125     }
126     for (i = 0; i < s->num_cpu; i++) {
127         sysbus_init_irq(sbd, &s->cpu[i].parent_fiq);
128     }
129     for (i = 0; i < s->num_cpu; i++) {
130         sysbus_init_irq(sbd, &s->cpu[i].parent_virq);
131     }
132     for (i = 0; i < s->num_cpu; i++) {
133         sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq);
134     }
135 
136     memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s,
137                           "gicv3_dist", 0x10000);
138     memory_region_init_io(&s->iomem_redist, OBJECT(s), ops ? &ops[1] : NULL, s,
139                           "gicv3_redist", 0x20000 * s->num_cpu);
140 
141     sysbus_init_mmio(sbd, &s->iomem_dist);
142     sysbus_init_mmio(sbd, &s->iomem_redist);
143 }
144 
145 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp)
146 {
147     GICv3State *s = ARM_GICV3_COMMON(dev);
148     int i;
149 
150     /* revision property is actually reserved and currently used only in order
151      * to keep the interface compatible with GICv2 code, avoiding extra
152      * conditions. However, in future it could be used, for example, if we
153      * implement GICv4.
154      */
155     if (s->revision != 3) {
156         error_setg(errp, "unsupported GIC revision %d", s->revision);
157         return;
158     }
159 
160     if (s->num_irq > GICV3_MAXIRQ) {
161         error_setg(errp,
162                    "requested %u interrupt lines exceeds GIC maximum %d",
163                    s->num_irq, GICV3_MAXIRQ);
164         return;
165     }
166     if (s->num_irq < GIC_INTERNAL) {
167         error_setg(errp,
168                    "requested %u interrupt lines is below GIC minimum %d",
169                    s->num_irq, GIC_INTERNAL);
170         return;
171     }
172 
173     /* ITLinesNumber is represented as (N / 32) - 1, so this is an
174      * implementation imposed restriction, not an architectural one,
175      * so we don't have to deal with bitfields where only some of the
176      * bits in a 32-bit word should be valid.
177      */
178     if (s->num_irq % 32) {
179         error_setg(errp,
180                    "%d interrupt lines unsupported: not divisible by 32",
181                    s->num_irq);
182         return;
183     }
184 
185     s->cpu = g_new0(GICv3CPUState, s->num_cpu);
186 
187     for (i = 0; i < s->num_cpu; i++) {
188         CPUState *cpu = qemu_get_cpu(i);
189         uint64_t cpu_affid;
190         int last;
191 
192         s->cpu[i].cpu = cpu;
193         s->cpu[i].gic = s;
194 
195         /* Pre-construct the GICR_TYPER:
196          * For our implementation:
197          *  Top 32 bits are the affinity value of the associated CPU
198          *  CommonLPIAff == 01 (redistributors with same Aff3 share LPI table)
199          *  Processor_Number == CPU index starting from 0
200          *  DPGS == 0 (GICR_CTLR.DPG* not supported)
201          *  Last == 1 if this is the last redistributor in a series of
202          *            contiguous redistributor pages
203          *  DirectLPI == 0 (direct injection of LPIs not supported)
204          *  VLPIS == 0 (virtual LPIs not supported)
205          *  PLPIS == 0 (physical LPIs not supported)
206          */
207         cpu_affid = object_property_get_int(OBJECT(cpu), "mp-affinity", NULL);
208         last = (i == s->num_cpu - 1);
209 
210         /* The CPU mp-affinity property is in MPIDR register format; squash
211          * the affinity bytes into 32 bits as the GICR_TYPER has them.
212          */
213         cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) |
214                      (cpu_affid & 0xFFFFFF);
215         s->cpu[i].gicr_typer = (cpu_affid << 32) |
216             (1 << 24) |
217             (i << 8) |
218             (last << 4);
219     }
220 }
221 
222 static void arm_gicv3_common_reset(DeviceState *dev)
223 {
224     GICv3State *s = ARM_GICV3_COMMON(dev);
225     int i;
226 
227     for (i = 0; i < s->num_cpu; i++) {
228         GICv3CPUState *cs = &s->cpu[i];
229 
230         cs->level = 0;
231         cs->gicr_ctlr = 0;
232         cs->gicr_statusr[GICV3_S] = 0;
233         cs->gicr_statusr[GICV3_NS] = 0;
234         cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep;
235         cs->gicr_propbaser = 0;
236         cs->gicr_pendbaser = 0;
237         /* If we're resetting a TZ-aware GIC as if secure firmware
238          * had set it up ready to start a kernel in non-secure, we
239          * need to set interrupts to group 1 so the kernel can use them.
240          * Otherwise they reset to group 0 like the hardware.
241          */
242         if (s->irq_reset_nonsecure) {
243             cs->gicr_igroupr0 = 0xffffffff;
244         } else {
245             cs->gicr_igroupr0 = 0;
246         }
247 
248         cs->gicr_ienabler0 = 0;
249         cs->gicr_ipendr0 = 0;
250         cs->gicr_iactiver0 = 0;
251         cs->edge_trigger = 0xffff;
252         cs->gicr_igrpmodr0 = 0;
253         cs->gicr_nsacr = 0;
254         memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr));
255 
256         cs->hppi.prio = 0xff;
257 
258         /* State in the CPU interface must *not* be reset here, because it
259          * is part of the CPU's reset domain, not the GIC device's.
260          */
261     }
262 
263     /* For our implementation affinity routing is always enabled */
264     if (s->security_extn) {
265         s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS;
266     } else {
267         s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE;
268     }
269 
270     s->gicd_statusr[GICV3_S] = 0;
271     s->gicd_statusr[GICV3_NS] = 0;
272 
273     memset(s->group, 0, sizeof(s->group));
274     memset(s->grpmod, 0, sizeof(s->grpmod));
275     memset(s->enabled, 0, sizeof(s->enabled));
276     memset(s->pending, 0, sizeof(s->pending));
277     memset(s->active, 0, sizeof(s->active));
278     memset(s->level, 0, sizeof(s->level));
279     memset(s->edge_trigger, 0, sizeof(s->edge_trigger));
280     memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority));
281     memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter));
282     memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr));
283     /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must
284      * write these to get sane behaviour and we need not populate the
285      * pointer cache here; however having the cache be different for
286      * "happened to be 0 from reset" and "guest wrote 0" would be
287      * too confusing.
288      */
289     gicv3_cache_all_target_cpustates(s);
290 
291     if (s->irq_reset_nonsecure) {
292         /* If we're resetting a TZ-aware GIC as if secure firmware
293          * had set it up ready to start a kernel in non-secure, we
294          * need to set interrupts to group 1 so the kernel can use them.
295          * Otherwise they reset to group 0 like the hardware.
296          */
297         for (i = GIC_INTERNAL; i < s->num_irq; i++) {
298             gicv3_gicd_group_set(s, i);
299         }
300     }
301 }
302 
303 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj,
304                                       bool secure_boot)
305 {
306     GICv3State *s = ARM_GICV3_COMMON(obj);
307 
308     if (s->security_extn && !secure_boot) {
309         /* We're directly booting a kernel into NonSecure. If this GIC
310          * implements the security extensions then we must configure it
311          * to have all the interrupts be NonSecure (this is a job that
312          * is done by the Secure boot firmware in real hardware, and in
313          * this mode QEMU is acting as a minimalist firmware-and-bootloader
314          * equivalent).
315          */
316         s->irq_reset_nonsecure = true;
317     }
318 }
319 
320 static Property arm_gicv3_common_properties[] = {
321     DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1),
322     DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32),
323     DEFINE_PROP_UINT32("revision", GICv3State, revision, 3),
324     DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0),
325     DEFINE_PROP_END_OF_LIST(),
326 };
327 
328 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data)
329 {
330     DeviceClass *dc = DEVICE_CLASS(klass);
331     ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass);
332 
333     dc->reset = arm_gicv3_common_reset;
334     dc->realize = arm_gicv3_common_realize;
335     dc->props = arm_gicv3_common_properties;
336     dc->vmsd = &vmstate_gicv3;
337     albifc->arm_linux_init = arm_gic_common_linux_init;
338 }
339 
340 static const TypeInfo arm_gicv3_common_type = {
341     .name = TYPE_ARM_GICV3_COMMON,
342     .parent = TYPE_SYS_BUS_DEVICE,
343     .instance_size = sizeof(GICv3State),
344     .class_size = sizeof(ARMGICv3CommonClass),
345     .class_init = arm_gicv3_common_class_init,
346     .abstract = true,
347     .interfaces = (InterfaceInfo []) {
348         { TYPE_ARM_LINUX_BOOT_IF },
349         { },
350     },
351 };
352 
353 static void register_types(void)
354 {
355     type_register_static(&arm_gicv3_common_type);
356 }
357 
358 type_init(register_types)
359