1 /* 2 * ARM GICv3 support - common bits of emulated and KVM kernel model 3 * 4 * Copyright (c) 2012 Linaro Limited 5 * Copyright (c) 2015 Huawei. 6 * Copyright (c) 2015 Samsung Electronics Co., Ltd. 7 * Written by Peter Maydell 8 * Reworked for GICv3 by Shlomo Pongratz and Pavel Fedin 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation, either version 2 of the License, or 13 * (at your option) any later version. 14 * 15 * This program is distributed in the hope that it will be useful, 16 * but WITHOUT ANY WARRANTY; without even the implied warranty of 17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 18 * GNU General Public License for more details. 19 * 20 * You should have received a copy of the GNU General Public License along 21 * with this program; if not, see <http://www.gnu.org/licenses/>. 22 */ 23 24 #include "qemu/osdep.h" 25 #include "qapi/error.h" 26 #include "qom/cpu.h" 27 #include "hw/intc/arm_gicv3_common.h" 28 #include "gicv3_internal.h" 29 #include "hw/arm/linux-boot-if.h" 30 #include "sysemu/kvm.h" 31 32 static int gicv3_pre_save(void *opaque) 33 { 34 GICv3State *s = (GICv3State *)opaque; 35 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 36 37 if (c->pre_save) { 38 c->pre_save(s); 39 } 40 41 return 0; 42 } 43 44 static int gicv3_post_load(void *opaque, int version_id) 45 { 46 GICv3State *s = (GICv3State *)opaque; 47 ARMGICv3CommonClass *c = ARM_GICV3_COMMON_GET_CLASS(s); 48 49 if (c->post_load) { 50 c->post_load(s); 51 } 52 return 0; 53 } 54 55 static bool virt_state_needed(void *opaque) 56 { 57 GICv3CPUState *cs = opaque; 58 59 return cs->num_list_regs != 0; 60 } 61 62 static const VMStateDescription vmstate_gicv3_cpu_virt = { 63 .name = "arm_gicv3_cpu/virt", 64 .version_id = 1, 65 .minimum_version_id = 1, 66 .needed = virt_state_needed, 67 .fields = (VMStateField[]) { 68 VMSTATE_UINT64_2DARRAY(ich_apr, GICv3CPUState, 3, 4), 69 VMSTATE_UINT64(ich_hcr_el2, GICv3CPUState), 70 VMSTATE_UINT64_ARRAY(ich_lr_el2, GICv3CPUState, GICV3_LR_MAX), 71 VMSTATE_UINT64(ich_vmcr_el2, GICv3CPUState), 72 VMSTATE_END_OF_LIST() 73 } 74 }; 75 76 static int icc_sre_el1_reg_pre_load(void *opaque) 77 { 78 GICv3CPUState *cs = opaque; 79 80 /* 81 * If the sre_el1 subsection is not transferred this 82 * means SRE_EL1 is 0x7 (which might not be the same as 83 * our reset value). 84 */ 85 cs->icc_sre_el1 = 0x7; 86 return 0; 87 } 88 89 static bool icc_sre_el1_reg_needed(void *opaque) 90 { 91 GICv3CPUState *cs = opaque; 92 93 return cs->icc_sre_el1 != 7; 94 } 95 96 const VMStateDescription vmstate_gicv3_cpu_sre_el1 = { 97 .name = "arm_gicv3_cpu/sre_el1", 98 .version_id = 1, 99 .minimum_version_id = 1, 100 .pre_load = icc_sre_el1_reg_pre_load, 101 .needed = icc_sre_el1_reg_needed, 102 .fields = (VMStateField[]) { 103 VMSTATE_UINT64(icc_sre_el1, GICv3CPUState), 104 VMSTATE_END_OF_LIST() 105 } 106 }; 107 108 static const VMStateDescription vmstate_gicv3_cpu = { 109 .name = "arm_gicv3_cpu", 110 .version_id = 1, 111 .minimum_version_id = 1, 112 .fields = (VMStateField[]) { 113 VMSTATE_UINT32(level, GICv3CPUState), 114 VMSTATE_UINT32(gicr_ctlr, GICv3CPUState), 115 VMSTATE_UINT32_ARRAY(gicr_statusr, GICv3CPUState, 2), 116 VMSTATE_UINT32(gicr_waker, GICv3CPUState), 117 VMSTATE_UINT64(gicr_propbaser, GICv3CPUState), 118 VMSTATE_UINT64(gicr_pendbaser, GICv3CPUState), 119 VMSTATE_UINT32(gicr_igroupr0, GICv3CPUState), 120 VMSTATE_UINT32(gicr_ienabler0, GICv3CPUState), 121 VMSTATE_UINT32(gicr_ipendr0, GICv3CPUState), 122 VMSTATE_UINT32(gicr_iactiver0, GICv3CPUState), 123 VMSTATE_UINT32(edge_trigger, GICv3CPUState), 124 VMSTATE_UINT32(gicr_igrpmodr0, GICv3CPUState), 125 VMSTATE_UINT32(gicr_nsacr, GICv3CPUState), 126 VMSTATE_UINT8_ARRAY(gicr_ipriorityr, GICv3CPUState, GIC_INTERNAL), 127 VMSTATE_UINT64_ARRAY(icc_ctlr_el1, GICv3CPUState, 2), 128 VMSTATE_UINT64(icc_pmr_el1, GICv3CPUState), 129 VMSTATE_UINT64_ARRAY(icc_bpr, GICv3CPUState, 3), 130 VMSTATE_UINT64_2DARRAY(icc_apr, GICv3CPUState, 3, 4), 131 VMSTATE_UINT64_ARRAY(icc_igrpen, GICv3CPUState, 3), 132 VMSTATE_UINT64(icc_ctlr_el3, GICv3CPUState), 133 VMSTATE_END_OF_LIST() 134 }, 135 .subsections = (const VMStateDescription * []) { 136 &vmstate_gicv3_cpu_virt, 137 &vmstate_gicv3_cpu_sre_el1, 138 NULL 139 } 140 }; 141 142 static int gicv3_gicd_no_migration_shift_bug_pre_load(void *opaque) 143 { 144 GICv3State *cs = opaque; 145 146 /* 147 * The gicd_no_migration_shift_bug flag is used for migration compatibility 148 * for old version QEMU which may have the GICD bmp shift bug under KVM mode. 149 * Strictly, what we want to know is whether the migration source is using 150 * KVM. Since we don't have any way to determine that, we look at whether the 151 * destination is using KVM; this is close enough because for the older QEMU 152 * versions with this bug KVM -> TCG migration didn't work anyway. If the 153 * source is a newer QEMU without this bug it will transmit the migration 154 * subsection which sets the flag to true; otherwise it will remain set to 155 * the value we select here. 156 */ 157 if (kvm_enabled()) { 158 cs->gicd_no_migration_shift_bug = false; 159 } 160 161 return 0; 162 } 163 164 static int gicv3_gicd_no_migration_shift_bug_post_load(void *opaque, 165 int version_id) 166 { 167 GICv3State *cs = opaque; 168 169 if (cs->gicd_no_migration_shift_bug) { 170 return 0; 171 } 172 173 /* Older versions of QEMU had a bug in the handling of state save/restore 174 * to the KVM GICv3: they got the offset in the bitmap arrays wrong, 175 * so that instead of the data for external interrupts 32 and up 176 * starting at bit position 32 in the bitmap, it started at bit 177 * position 64. If we're receiving data from a QEMU with that bug, 178 * we must move the data down into the right place. 179 */ 180 memmove(cs->group, (uint8_t *)cs->group + GIC_INTERNAL / 8, 181 sizeof(cs->group) - GIC_INTERNAL / 8); 182 memmove(cs->grpmod, (uint8_t *)cs->grpmod + GIC_INTERNAL / 8, 183 sizeof(cs->grpmod) - GIC_INTERNAL / 8); 184 memmove(cs->enabled, (uint8_t *)cs->enabled + GIC_INTERNAL / 8, 185 sizeof(cs->enabled) - GIC_INTERNAL / 8); 186 memmove(cs->pending, (uint8_t *)cs->pending + GIC_INTERNAL / 8, 187 sizeof(cs->pending) - GIC_INTERNAL / 8); 188 memmove(cs->active, (uint8_t *)cs->active + GIC_INTERNAL / 8, 189 sizeof(cs->active) - GIC_INTERNAL / 8); 190 memmove(cs->edge_trigger, (uint8_t *)cs->edge_trigger + GIC_INTERNAL / 8, 191 sizeof(cs->edge_trigger) - GIC_INTERNAL / 8); 192 193 /* 194 * While this new version QEMU doesn't have this kind of bug as we fix it, 195 * so it needs to set the flag to true to indicate that and it's necessary 196 * for next migration to work from this new version QEMU. 197 */ 198 cs->gicd_no_migration_shift_bug = true; 199 200 return 0; 201 } 202 203 static bool needed_always(void *opaque) 204 { 205 return true; 206 } 207 208 const VMStateDescription vmstate_gicv3_gicd_no_migration_shift_bug = { 209 .name = "arm_gicv3/gicd_no_migration_shift_bug", 210 .version_id = 1, 211 .minimum_version_id = 1, 212 .needed = needed_always, 213 .pre_load = gicv3_gicd_no_migration_shift_bug_pre_load, 214 .post_load = gicv3_gicd_no_migration_shift_bug_post_load, 215 .fields = (VMStateField[]) { 216 VMSTATE_BOOL(gicd_no_migration_shift_bug, GICv3State), 217 VMSTATE_END_OF_LIST() 218 } 219 }; 220 221 static const VMStateDescription vmstate_gicv3 = { 222 .name = "arm_gicv3", 223 .version_id = 1, 224 .minimum_version_id = 1, 225 .pre_save = gicv3_pre_save, 226 .post_load = gicv3_post_load, 227 .priority = MIG_PRI_GICV3, 228 .fields = (VMStateField[]) { 229 VMSTATE_UINT32(gicd_ctlr, GICv3State), 230 VMSTATE_UINT32_ARRAY(gicd_statusr, GICv3State, 2), 231 VMSTATE_UINT32_ARRAY(group, GICv3State, GICV3_BMP_SIZE), 232 VMSTATE_UINT32_ARRAY(grpmod, GICv3State, GICV3_BMP_SIZE), 233 VMSTATE_UINT32_ARRAY(enabled, GICv3State, GICV3_BMP_SIZE), 234 VMSTATE_UINT32_ARRAY(pending, GICv3State, GICV3_BMP_SIZE), 235 VMSTATE_UINT32_ARRAY(active, GICv3State, GICV3_BMP_SIZE), 236 VMSTATE_UINT32_ARRAY(level, GICv3State, GICV3_BMP_SIZE), 237 VMSTATE_UINT32_ARRAY(edge_trigger, GICv3State, GICV3_BMP_SIZE), 238 VMSTATE_UINT8_ARRAY(gicd_ipriority, GICv3State, GICV3_MAXIRQ), 239 VMSTATE_UINT64_ARRAY(gicd_irouter, GICv3State, GICV3_MAXIRQ), 240 VMSTATE_UINT32_ARRAY(gicd_nsacr, GICv3State, 241 DIV_ROUND_UP(GICV3_MAXIRQ, 16)), 242 VMSTATE_STRUCT_VARRAY_POINTER_UINT32(cpu, GICv3State, num_cpu, 243 vmstate_gicv3_cpu, GICv3CPUState), 244 VMSTATE_END_OF_LIST() 245 }, 246 .subsections = (const VMStateDescription * []) { 247 &vmstate_gicv3_gicd_no_migration_shift_bug, 248 NULL 249 } 250 }; 251 252 void gicv3_init_irqs_and_mmio(GICv3State *s, qemu_irq_handler handler, 253 const MemoryRegionOps *ops, Error **errp) 254 { 255 SysBusDevice *sbd = SYS_BUS_DEVICE(s); 256 int rdist_capacity = 0; 257 int i; 258 259 for (i = 0; i < s->nb_redist_regions; i++) { 260 rdist_capacity += s->redist_region_count[i]; 261 } 262 if (rdist_capacity < s->num_cpu) { 263 error_setg(errp, "Capacity of the redist regions(%d) " 264 "is less than number of vcpus(%d)", 265 rdist_capacity, s->num_cpu); 266 return; 267 } 268 269 /* For the GIC, also expose incoming GPIO lines for PPIs for each CPU. 270 * GPIO array layout is thus: 271 * [0..N-1] spi 272 * [N..N+31] PPIs for CPU 0 273 * [N+32..N+63] PPIs for CPU 1 274 * ... 275 */ 276 i = s->num_irq - GIC_INTERNAL + GIC_INTERNAL * s->num_cpu; 277 qdev_init_gpio_in(DEVICE(s), handler, i); 278 279 for (i = 0; i < s->num_cpu; i++) { 280 sysbus_init_irq(sbd, &s->cpu[i].parent_irq); 281 } 282 for (i = 0; i < s->num_cpu; i++) { 283 sysbus_init_irq(sbd, &s->cpu[i].parent_fiq); 284 } 285 for (i = 0; i < s->num_cpu; i++) { 286 sysbus_init_irq(sbd, &s->cpu[i].parent_virq); 287 } 288 for (i = 0; i < s->num_cpu; i++) { 289 sysbus_init_irq(sbd, &s->cpu[i].parent_vfiq); 290 } 291 292 memory_region_init_io(&s->iomem_dist, OBJECT(s), ops, s, 293 "gicv3_dist", 0x10000); 294 sysbus_init_mmio(sbd, &s->iomem_dist); 295 296 s->iomem_redist = g_new0(MemoryRegion, s->nb_redist_regions); 297 for (i = 0; i < s->nb_redist_regions; i++) { 298 char *name = g_strdup_printf("gicv3_redist_region[%d]", i); 299 300 memory_region_init_io(&s->iomem_redist[i], OBJECT(s), 301 ops ? &ops[1] : NULL, s, name, 302 s->redist_region_count[i] * GICV3_REDIST_SIZE); 303 sysbus_init_mmio(sbd, &s->iomem_redist[i]); 304 g_free(name); 305 } 306 } 307 308 static void arm_gicv3_common_realize(DeviceState *dev, Error **errp) 309 { 310 GICv3State *s = ARM_GICV3_COMMON(dev); 311 int i; 312 313 /* revision property is actually reserved and currently used only in order 314 * to keep the interface compatible with GICv2 code, avoiding extra 315 * conditions. However, in future it could be used, for example, if we 316 * implement GICv4. 317 */ 318 if (s->revision != 3) { 319 error_setg(errp, "unsupported GIC revision %d", s->revision); 320 return; 321 } 322 323 if (s->num_irq > GICV3_MAXIRQ) { 324 error_setg(errp, 325 "requested %u interrupt lines exceeds GIC maximum %d", 326 s->num_irq, GICV3_MAXIRQ); 327 return; 328 } 329 if (s->num_irq < GIC_INTERNAL) { 330 error_setg(errp, 331 "requested %u interrupt lines is below GIC minimum %d", 332 s->num_irq, GIC_INTERNAL); 333 return; 334 } 335 336 /* ITLinesNumber is represented as (N / 32) - 1, so this is an 337 * implementation imposed restriction, not an architectural one, 338 * so we don't have to deal with bitfields where only some of the 339 * bits in a 32-bit word should be valid. 340 */ 341 if (s->num_irq % 32) { 342 error_setg(errp, 343 "%d interrupt lines unsupported: not divisible by 32", 344 s->num_irq); 345 return; 346 } 347 348 s->cpu = g_new0(GICv3CPUState, s->num_cpu); 349 350 for (i = 0; i < s->num_cpu; i++) { 351 CPUState *cpu = qemu_get_cpu(i); 352 uint64_t cpu_affid; 353 int last; 354 355 s->cpu[i].cpu = cpu; 356 s->cpu[i].gic = s; 357 /* Store GICv3CPUState in CPUARMState gicv3state pointer */ 358 gicv3_set_gicv3state(cpu, &s->cpu[i]); 359 360 /* Pre-construct the GICR_TYPER: 361 * For our implementation: 362 * Top 32 bits are the affinity value of the associated CPU 363 * CommonLPIAff == 01 (redistributors with same Aff3 share LPI table) 364 * Processor_Number == CPU index starting from 0 365 * DPGS == 0 (GICR_CTLR.DPG* not supported) 366 * Last == 1 if this is the last redistributor in a series of 367 * contiguous redistributor pages 368 * DirectLPI == 0 (direct injection of LPIs not supported) 369 * VLPIS == 0 (virtual LPIs not supported) 370 * PLPIS == 0 (physical LPIs not supported) 371 */ 372 cpu_affid = object_property_get_uint(OBJECT(cpu), "mp-affinity", NULL); 373 last = (i == s->num_cpu - 1); 374 375 /* The CPU mp-affinity property is in MPIDR register format; squash 376 * the affinity bytes into 32 bits as the GICR_TYPER has them. 377 */ 378 cpu_affid = ((cpu_affid & 0xFF00000000ULL) >> 8) | 379 (cpu_affid & 0xFFFFFF); 380 s->cpu[i].gicr_typer = (cpu_affid << 32) | 381 (1 << 24) | 382 (i << 8) | 383 (last << 4); 384 } 385 } 386 387 static void arm_gicv3_finalize(Object *obj) 388 { 389 GICv3State *s = ARM_GICV3_COMMON(obj); 390 391 g_free(s->redist_region_count); 392 } 393 394 static void arm_gicv3_common_reset(DeviceState *dev) 395 { 396 GICv3State *s = ARM_GICV3_COMMON(dev); 397 int i; 398 399 for (i = 0; i < s->num_cpu; i++) { 400 GICv3CPUState *cs = &s->cpu[i]; 401 402 cs->level = 0; 403 cs->gicr_ctlr = 0; 404 cs->gicr_statusr[GICV3_S] = 0; 405 cs->gicr_statusr[GICV3_NS] = 0; 406 cs->gicr_waker = GICR_WAKER_ProcessorSleep | GICR_WAKER_ChildrenAsleep; 407 cs->gicr_propbaser = 0; 408 cs->gicr_pendbaser = 0; 409 /* If we're resetting a TZ-aware GIC as if secure firmware 410 * had set it up ready to start a kernel in non-secure, we 411 * need to set interrupts to group 1 so the kernel can use them. 412 * Otherwise they reset to group 0 like the hardware. 413 */ 414 if (s->irq_reset_nonsecure) { 415 cs->gicr_igroupr0 = 0xffffffff; 416 } else { 417 cs->gicr_igroupr0 = 0; 418 } 419 420 cs->gicr_ienabler0 = 0; 421 cs->gicr_ipendr0 = 0; 422 cs->gicr_iactiver0 = 0; 423 cs->edge_trigger = 0xffff; 424 cs->gicr_igrpmodr0 = 0; 425 cs->gicr_nsacr = 0; 426 memset(cs->gicr_ipriorityr, 0, sizeof(cs->gicr_ipriorityr)); 427 428 cs->hppi.prio = 0xff; 429 430 /* State in the CPU interface must *not* be reset here, because it 431 * is part of the CPU's reset domain, not the GIC device's. 432 */ 433 } 434 435 /* For our implementation affinity routing is always enabled */ 436 if (s->security_extn) { 437 s->gicd_ctlr = GICD_CTLR_ARE_S | GICD_CTLR_ARE_NS; 438 } else { 439 s->gicd_ctlr = GICD_CTLR_DS | GICD_CTLR_ARE; 440 } 441 442 s->gicd_statusr[GICV3_S] = 0; 443 s->gicd_statusr[GICV3_NS] = 0; 444 445 memset(s->group, 0, sizeof(s->group)); 446 memset(s->grpmod, 0, sizeof(s->grpmod)); 447 memset(s->enabled, 0, sizeof(s->enabled)); 448 memset(s->pending, 0, sizeof(s->pending)); 449 memset(s->active, 0, sizeof(s->active)); 450 memset(s->level, 0, sizeof(s->level)); 451 memset(s->edge_trigger, 0, sizeof(s->edge_trigger)); 452 memset(s->gicd_ipriority, 0, sizeof(s->gicd_ipriority)); 453 memset(s->gicd_irouter, 0, sizeof(s->gicd_irouter)); 454 memset(s->gicd_nsacr, 0, sizeof(s->gicd_nsacr)); 455 /* GICD_IROUTER are UNKNOWN at reset so in theory the guest must 456 * write these to get sane behaviour and we need not populate the 457 * pointer cache here; however having the cache be different for 458 * "happened to be 0 from reset" and "guest wrote 0" would be 459 * too confusing. 460 */ 461 gicv3_cache_all_target_cpustates(s); 462 463 if (s->irq_reset_nonsecure) { 464 /* If we're resetting a TZ-aware GIC as if secure firmware 465 * had set it up ready to start a kernel in non-secure, we 466 * need to set interrupts to group 1 so the kernel can use them. 467 * Otherwise they reset to group 0 like the hardware. 468 */ 469 for (i = GIC_INTERNAL; i < s->num_irq; i++) { 470 gicv3_gicd_group_set(s, i); 471 } 472 } 473 s->gicd_no_migration_shift_bug = true; 474 } 475 476 static void arm_gic_common_linux_init(ARMLinuxBootIf *obj, 477 bool secure_boot) 478 { 479 GICv3State *s = ARM_GICV3_COMMON(obj); 480 481 if (s->security_extn && !secure_boot) { 482 /* We're directly booting a kernel into NonSecure. If this GIC 483 * implements the security extensions then we must configure it 484 * to have all the interrupts be NonSecure (this is a job that 485 * is done by the Secure boot firmware in real hardware, and in 486 * this mode QEMU is acting as a minimalist firmware-and-bootloader 487 * equivalent). 488 */ 489 s->irq_reset_nonsecure = true; 490 } 491 } 492 493 static Property arm_gicv3_common_properties[] = { 494 DEFINE_PROP_UINT32("num-cpu", GICv3State, num_cpu, 1), 495 DEFINE_PROP_UINT32("num-irq", GICv3State, num_irq, 32), 496 DEFINE_PROP_UINT32("revision", GICv3State, revision, 3), 497 DEFINE_PROP_BOOL("has-security-extensions", GICv3State, security_extn, 0), 498 DEFINE_PROP_ARRAY("redist-region-count", GICv3State, nb_redist_regions, 499 redist_region_count, qdev_prop_uint32, uint32_t), 500 DEFINE_PROP_END_OF_LIST(), 501 }; 502 503 static void arm_gicv3_common_class_init(ObjectClass *klass, void *data) 504 { 505 DeviceClass *dc = DEVICE_CLASS(klass); 506 ARMLinuxBootIfClass *albifc = ARM_LINUX_BOOT_IF_CLASS(klass); 507 508 dc->reset = arm_gicv3_common_reset; 509 dc->realize = arm_gicv3_common_realize; 510 dc->props = arm_gicv3_common_properties; 511 dc->vmsd = &vmstate_gicv3; 512 albifc->arm_linux_init = arm_gic_common_linux_init; 513 } 514 515 static const TypeInfo arm_gicv3_common_type = { 516 .name = TYPE_ARM_GICV3_COMMON, 517 .parent = TYPE_SYS_BUS_DEVICE, 518 .instance_size = sizeof(GICv3State), 519 .class_size = sizeof(ARMGICv3CommonClass), 520 .class_init = arm_gicv3_common_class_init, 521 .instance_finalize = arm_gicv3_finalize, 522 .abstract = true, 523 .interfaces = (InterfaceInfo []) { 524 { TYPE_ARM_LINUX_BOOT_IF }, 525 { }, 526 }, 527 }; 528 529 static void register_types(void) 530 { 531 type_register_static(&arm_gicv3_common_type); 532 } 533 534 type_init(register_types) 535