xref: /qemu/hw/intc/arm_gic.c (revision 1f97715c8390e582f154d8b579c70779bd8c9bdf)
1  /*
2   * ARM Generic/Distributed Interrupt Controller
3   *
4   * Copyright (c) 2006-2007 CodeSourcery.
5   * Written by Paul Brook
6   *
7   * This code is licensed under the GPL.
8   */
9  
10  /* This file contains implementation code for the RealView EB interrupt
11   * controller, MPCore distributed interrupt controller and ARMv7-M
12   * Nested Vectored Interrupt Controller.
13   * It is compiled in two ways:
14   *  (1) as a standalone file to produce a sysbus device which is a GIC
15   *  that can be used on the realview board and as one of the builtin
16   *  private peripherals for the ARM MP CPUs (11MPCore, A9, etc)
17   *  (2) by being directly #included into armv7m_nvic.c to produce the
18   *  armv7m_nvic device.
19   */
20  
21  #include "qemu/osdep.h"
22  #include "hw/irq.h"
23  #include "hw/sysbus.h"
24  #include "gic_internal.h"
25  #include "qapi/error.h"
26  #include "hw/core/cpu.h"
27  #include "qemu/log.h"
28  #include "qemu/module.h"
29  #include "trace.h"
30  #include "sysemu/kvm.h"
31  #include "sysemu/qtest.h"
32  
33  /* #define DEBUG_GIC */
34  
35  #ifdef DEBUG_GIC
36  #define DEBUG_GIC_GATE 1
37  #else
38  #define DEBUG_GIC_GATE 0
39  #endif
40  
41  #define DPRINTF(fmt, ...) do {                                          \
42          if (DEBUG_GIC_GATE) {                                           \
43              fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__);      \
44          }                                                               \
45      } while (0)
46  
47  static const uint8_t gic_id_11mpcore[] = {
48      0x00, 0x00, 0x00, 0x00, 0x90, 0x13, 0x04, 0x00, 0x0d, 0xf0, 0x05, 0xb1
49  };
50  
51  static const uint8_t gic_id_gicv1[] = {
52      0x04, 0x00, 0x00, 0x00, 0x90, 0xb3, 0x1b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
53  };
54  
55  static const uint8_t gic_id_gicv2[] = {
56      0x04, 0x00, 0x00, 0x00, 0x90, 0xb4, 0x2b, 0x00, 0x0d, 0xf0, 0x05, 0xb1
57  };
58  
59  static inline int gic_get_current_cpu(GICState *s)
60  {
61      if (!qtest_enabled() && s->num_cpu > 1) {
62          return current_cpu->cpu_index;
63      }
64      return 0;
65  }
66  
67  static inline int gic_get_current_vcpu(GICState *s)
68  {
69      return gic_get_current_cpu(s) + GIC_NCPU;
70  }
71  
72  /* Return true if this GIC config has interrupt groups, which is
73   * true if we're a GICv2, or a GICv1 with the security extensions.
74   */
75  static inline bool gic_has_groups(GICState *s)
76  {
77      return s->revision == 2 || s->security_extn;
78  }
79  
80  static inline bool gic_cpu_ns_access(GICState *s, int cpu, MemTxAttrs attrs)
81  {
82      return !gic_is_vcpu(cpu) && s->security_extn && !attrs.secure;
83  }
84  
85  static inline void gic_get_best_irq(GICState *s, int cpu,
86                                      int *best_irq, int *best_prio, int *group)
87  {
88      int irq;
89      int cm = 1 << cpu;
90  
91      *best_irq = 1023;
92      *best_prio = 0x100;
93  
94      for (irq = 0; irq < s->num_irq; irq++) {
95          if (GIC_DIST_TEST_ENABLED(irq, cm) && gic_test_pending(s, irq, cm) &&
96              (!GIC_DIST_TEST_ACTIVE(irq, cm)) &&
97              (irq < GIC_INTERNAL || GIC_DIST_TARGET(irq) & cm)) {
98              if (GIC_DIST_GET_PRIORITY(irq, cpu) < *best_prio) {
99                  *best_prio = GIC_DIST_GET_PRIORITY(irq, cpu);
100                  *best_irq = irq;
101              }
102          }
103      }
104  
105      if (*best_irq < 1023) {
106          *group = GIC_DIST_TEST_GROUP(*best_irq, cm);
107      }
108  }
109  
110  static inline void gic_get_best_virq(GICState *s, int cpu,
111                                       int *best_irq, int *best_prio, int *group)
112  {
113      int lr_idx = 0;
114  
115      *best_irq = 1023;
116      *best_prio = 0x100;
117  
118      for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
119          uint32_t lr_entry = s->h_lr[lr_idx][cpu];
120          int state = GICH_LR_STATE(lr_entry);
121  
122          if (state == GICH_LR_STATE_PENDING) {
123              int prio = GICH_LR_PRIORITY(lr_entry);
124  
125              if (prio < *best_prio) {
126                  *best_prio = prio;
127                  *best_irq = GICH_LR_VIRT_ID(lr_entry);
128                  *group = GICH_LR_GROUP(lr_entry);
129              }
130          }
131      }
132  }
133  
134  /* Return true if IRQ signaling is enabled for the given cpu and at least one
135   * of the given groups:
136   *   - in the non-virt case, the distributor must be enabled for one of the
137   *   given groups
138   *   - in the virt case, the virtual interface must be enabled.
139   *   - in all cases, the (v)CPU interface must be enabled for one of the given
140   *   groups.
141   */
142  static inline bool gic_irq_signaling_enabled(GICState *s, int cpu, bool virt,
143                                      int group_mask)
144  {
145      int cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
146  
147      if (!virt && !(s->ctlr & group_mask)) {
148          return false;
149      }
150  
151      if (virt && !(s->h_hcr[cpu] & R_GICH_HCR_EN_MASK)) {
152          return false;
153      }
154  
155      if (!(s->cpu_ctlr[cpu_iface] & group_mask)) {
156          return false;
157      }
158  
159      return true;
160  }
161  
162  /* TODO: Many places that call this routine could be optimized.  */
163  /* Update interrupt status after enabled or pending bits have been changed.  */
164  static inline void gic_update_internal(GICState *s, bool virt)
165  {
166      int best_irq;
167      int best_prio;
168      int irq_level, fiq_level;
169      int cpu, cpu_iface;
170      int group = 0;
171      qemu_irq *irq_lines = virt ? s->parent_virq : s->parent_irq;
172      qemu_irq *fiq_lines = virt ? s->parent_vfiq : s->parent_fiq;
173  
174      for (cpu = 0; cpu < s->num_cpu; cpu++) {
175          cpu_iface = virt ? (cpu + GIC_NCPU) : cpu;
176  
177          s->current_pending[cpu_iface] = 1023;
178          if (!gic_irq_signaling_enabled(s, cpu, virt,
179                                         GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1)) {
180              qemu_irq_lower(irq_lines[cpu]);
181              qemu_irq_lower(fiq_lines[cpu]);
182              continue;
183          }
184  
185          if (virt) {
186              gic_get_best_virq(s, cpu, &best_irq, &best_prio, &group);
187          } else {
188              gic_get_best_irq(s, cpu, &best_irq, &best_prio, &group);
189          }
190  
191          if (best_irq != 1023) {
192              trace_gic_update_bestirq(virt ? "vcpu" : "cpu", cpu,
193                                       best_irq, best_prio,
194                                       s->priority_mask[cpu_iface],
195                                       s->running_priority[cpu_iface]);
196          }
197  
198          irq_level = fiq_level = 0;
199  
200          if (best_prio < s->priority_mask[cpu_iface]) {
201              s->current_pending[cpu_iface] = best_irq;
202              if (best_prio < s->running_priority[cpu_iface]) {
203                  if (gic_irq_signaling_enabled(s, cpu, virt, 1 << group)) {
204                      if (group == 0 &&
205                          s->cpu_ctlr[cpu_iface] & GICC_CTLR_FIQ_EN) {
206                          DPRINTF("Raised pending FIQ %d (cpu %d)\n",
207                                  best_irq, cpu_iface);
208                          fiq_level = 1;
209                          trace_gic_update_set_irq(cpu, virt ? "vfiq" : "fiq",
210                                                   fiq_level);
211                      } else {
212                          DPRINTF("Raised pending IRQ %d (cpu %d)\n",
213                                  best_irq, cpu_iface);
214                          irq_level = 1;
215                          trace_gic_update_set_irq(cpu, virt ? "virq" : "irq",
216                                                   irq_level);
217                      }
218                  }
219              }
220          }
221  
222          qemu_set_irq(irq_lines[cpu], irq_level);
223          qemu_set_irq(fiq_lines[cpu], fiq_level);
224      }
225  }
226  
227  static void gic_update(GICState *s)
228  {
229      gic_update_internal(s, false);
230  }
231  
232  /* Return true if this LR is empty, i.e. the corresponding bit
233   * in ELRSR is set.
234   */
235  static inline bool gic_lr_entry_is_free(uint32_t entry)
236  {
237      return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
238          && (GICH_LR_HW(entry) || !GICH_LR_EOI(entry));
239  }
240  
241  /* Return true if this LR should trigger an EOI maintenance interrupt, i.e. the
242   * corresponding bit in EISR is set.
243   */
244  static inline bool gic_lr_entry_is_eoi(uint32_t entry)
245  {
246      return (GICH_LR_STATE(entry) == GICH_LR_STATE_INVALID)
247          && !GICH_LR_HW(entry) && GICH_LR_EOI(entry);
248  }
249  
250  static inline void gic_extract_lr_info(GICState *s, int cpu,
251                                  int *num_eoi, int *num_valid, int *num_pending)
252  {
253      int lr_idx;
254  
255      *num_eoi = 0;
256      *num_valid = 0;
257      *num_pending = 0;
258  
259      for (lr_idx = 0; lr_idx < s->num_lrs; lr_idx++) {
260          uint32_t *entry = &s->h_lr[lr_idx][cpu];
261  
262          if (gic_lr_entry_is_eoi(*entry)) {
263              (*num_eoi)++;
264          }
265  
266          if (GICH_LR_STATE(*entry) != GICH_LR_STATE_INVALID) {
267              (*num_valid)++;
268          }
269  
270          if (GICH_LR_STATE(*entry) == GICH_LR_STATE_PENDING) {
271              (*num_pending)++;
272          }
273      }
274  }
275  
276  static void gic_compute_misr(GICState *s, int cpu)
277  {
278      uint32_t value = 0;
279      int vcpu = cpu + GIC_NCPU;
280  
281      int num_eoi, num_valid, num_pending;
282  
283      gic_extract_lr_info(s, cpu, &num_eoi, &num_valid, &num_pending);
284  
285      /* EOI */
286      if (num_eoi) {
287          value |= R_GICH_MISR_EOI_MASK;
288      }
289  
290      /* U: true if only 0 or 1 LR entry is valid */
291      if ((s->h_hcr[cpu] & R_GICH_HCR_UIE_MASK) && (num_valid < 2)) {
292          value |= R_GICH_MISR_U_MASK;
293      }
294  
295      /* LRENP: EOICount is not 0 */
296      if ((s->h_hcr[cpu] & R_GICH_HCR_LRENPIE_MASK) &&
297          ((s->h_hcr[cpu] & R_GICH_HCR_EOICount_MASK) != 0)) {
298          value |= R_GICH_MISR_LRENP_MASK;
299      }
300  
301      /* NP: no pending interrupts */
302      if ((s->h_hcr[cpu] & R_GICH_HCR_NPIE_MASK) && (num_pending == 0)) {
303          value |= R_GICH_MISR_NP_MASK;
304      }
305  
306      /* VGrp0E: group0 virq signaling enabled */
307      if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0EIE_MASK) &&
308          (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
309          value |= R_GICH_MISR_VGrp0E_MASK;
310      }
311  
312      /* VGrp0D: group0 virq signaling disabled */
313      if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP0DIE_MASK) &&
314          !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP0)) {
315          value |= R_GICH_MISR_VGrp0D_MASK;
316      }
317  
318      /* VGrp1E: group1 virq signaling enabled */
319      if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1EIE_MASK) &&
320          (s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
321          value |= R_GICH_MISR_VGrp1E_MASK;
322      }
323  
324      /* VGrp1D: group1 virq signaling disabled */
325      if ((s->h_hcr[cpu] & R_GICH_HCR_VGRP1DIE_MASK) &&
326          !(s->cpu_ctlr[vcpu] & GICC_CTLR_EN_GRP1)) {
327          value |= R_GICH_MISR_VGrp1D_MASK;
328      }
329  
330      s->h_misr[cpu] = value;
331  }
332  
333  static void gic_update_maintenance(GICState *s)
334  {
335      int cpu = 0;
336      int maint_level;
337  
338      for (cpu = 0; cpu < s->num_cpu; cpu++) {
339          gic_compute_misr(s, cpu);
340          maint_level = (s->h_hcr[cpu] & R_GICH_HCR_EN_MASK) && s->h_misr[cpu];
341  
342          trace_gic_update_maintenance_irq(cpu, maint_level);
343          qemu_set_irq(s->maintenance_irq[cpu], maint_level);
344      }
345  }
346  
347  static void gic_update_virt(GICState *s)
348  {
349      gic_update_internal(s, true);
350      gic_update_maintenance(s);
351  }
352  
353  static void gic_set_irq_11mpcore(GICState *s, int irq, int level,
354                                   int cm, int target)
355  {
356      if (level) {
357          GIC_DIST_SET_LEVEL(irq, cm);
358          if (GIC_DIST_TEST_EDGE_TRIGGER(irq) || GIC_DIST_TEST_ENABLED(irq, cm)) {
359              DPRINTF("Set %d pending mask %x\n", irq, target);
360              GIC_DIST_SET_PENDING(irq, target);
361          }
362      } else {
363          GIC_DIST_CLEAR_LEVEL(irq, cm);
364      }
365  }
366  
367  static void gic_set_irq_generic(GICState *s, int irq, int level,
368                                  int cm, int target)
369  {
370      if (level) {
371          GIC_DIST_SET_LEVEL(irq, cm);
372          DPRINTF("Set %d pending mask %x\n", irq, target);
373          if (GIC_DIST_TEST_EDGE_TRIGGER(irq)) {
374              GIC_DIST_SET_PENDING(irq, target);
375          }
376      } else {
377          GIC_DIST_CLEAR_LEVEL(irq, cm);
378      }
379  }
380  
381  /* Process a change in an external IRQ input.  */
382  static void gic_set_irq(void *opaque, int irq, int level)
383  {
384      /* Meaning of the 'irq' parameter:
385       *  [0..N-1] : external interrupts
386       *  [N..N+31] : PPI (internal) interrupts for CPU 0
387       *  [N+32..N+63] : PPI (internal interrupts for CPU 1
388       *  ...
389       */
390      GICState *s = (GICState *)opaque;
391      int cm, target;
392      if (irq < (s->num_irq - GIC_INTERNAL)) {
393          /* The first external input line is internal interrupt 32.  */
394          cm = ALL_CPU_MASK;
395          irq += GIC_INTERNAL;
396          target = GIC_DIST_TARGET(irq);
397      } else {
398          int cpu;
399          irq -= (s->num_irq - GIC_INTERNAL);
400          cpu = irq / GIC_INTERNAL;
401          irq %= GIC_INTERNAL;
402          cm = 1 << cpu;
403          target = cm;
404      }
405  
406      assert(irq >= GIC_NR_SGIS);
407  
408      if (level == GIC_DIST_TEST_LEVEL(irq, cm)) {
409          return;
410      }
411  
412      if (s->revision == REV_11MPCORE) {
413          gic_set_irq_11mpcore(s, irq, level, cm, target);
414      } else {
415          gic_set_irq_generic(s, irq, level, cm, target);
416      }
417      trace_gic_set_irq(irq, level, cm, target);
418  
419      gic_update(s);
420  }
421  
422  static uint16_t gic_get_current_pending_irq(GICState *s, int cpu,
423                                              MemTxAttrs attrs)
424  {
425      uint16_t pending_irq = s->current_pending[cpu];
426  
427      if (pending_irq < GIC_MAXIRQ && gic_has_groups(s)) {
428          int group = gic_test_group(s, pending_irq, cpu);
429  
430          /* On a GIC without the security extensions, reading this register
431           * behaves in the same way as a secure access to a GIC with them.
432           */
433          bool secure = !gic_cpu_ns_access(s, cpu, attrs);
434  
435          if (group == 0 && !secure) {
436              /* Group0 interrupts hidden from Non-secure access */
437              return 1023;
438          }
439          if (group == 1 && secure && !(s->cpu_ctlr[cpu] & GICC_CTLR_ACK_CTL)) {
440              /* Group1 interrupts only seen by Secure access if
441               * AckCtl bit set.
442               */
443              return 1022;
444          }
445      }
446      return pending_irq;
447  }
448  
449  static int gic_get_group_priority(GICState *s, int cpu, int irq)
450  {
451      /* Return the group priority of the specified interrupt
452       * (which is the top bits of its priority, with the number
453       * of bits masked determined by the applicable binary point register).
454       */
455      int bpr;
456      uint32_t mask;
457  
458      if (gic_has_groups(s) &&
459          !(s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) &&
460          gic_test_group(s, irq, cpu)) {
461          bpr = s->abpr[cpu] - 1;
462          assert(bpr >= 0);
463      } else {
464          bpr = s->bpr[cpu];
465      }
466  
467      /* a BPR of 0 means the group priority bits are [7:1];
468       * a BPR of 1 means they are [7:2], and so on down to
469       * a BPR of 7 meaning no group priority bits at all.
470       */
471      mask = ~0U << ((bpr & 7) + 1);
472  
473      return gic_get_priority(s, irq, cpu) & mask;
474  }
475  
476  static void gic_activate_irq(GICState *s, int cpu, int irq)
477  {
478      /* Set the appropriate Active Priority Register bit for this IRQ,
479       * and update the running priority.
480       */
481      int prio = gic_get_group_priority(s, cpu, irq);
482      int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
483      int preemption_level = prio >> (min_bpr + 1);
484      int regno = preemption_level / 32;
485      int bitno = preemption_level % 32;
486      uint32_t *papr = NULL;
487  
488      if (gic_is_vcpu(cpu)) {
489          assert(regno == 0);
490          papr = &s->h_apr[gic_get_vcpu_real_id(cpu)];
491      } else if (gic_has_groups(s) && gic_test_group(s, irq, cpu)) {
492          papr = &s->nsapr[regno][cpu];
493      } else {
494          papr = &s->apr[regno][cpu];
495      }
496  
497      *papr |= (1 << bitno);
498  
499      s->running_priority[cpu] = prio;
500      gic_set_active(s, irq, cpu);
501  }
502  
503  static int gic_get_prio_from_apr_bits(GICState *s, int cpu)
504  {
505      /* Recalculate the current running priority for this CPU based
506       * on the set bits in the Active Priority Registers.
507       */
508      int i;
509  
510      if (gic_is_vcpu(cpu)) {
511          uint32_t apr = s->h_apr[gic_get_vcpu_real_id(cpu)];
512          if (apr) {
513              return ctz32(apr) << (GIC_VIRT_MIN_BPR + 1);
514          } else {
515              return 0x100;
516          }
517      }
518  
519      for (i = 0; i < GIC_NR_APRS; i++) {
520          uint32_t apr = s->apr[i][cpu] | s->nsapr[i][cpu];
521          if (!apr) {
522              continue;
523          }
524          return (i * 32 + ctz32(apr)) << (GIC_MIN_BPR + 1);
525      }
526      return 0x100;
527  }
528  
529  static void gic_drop_prio(GICState *s, int cpu, int group)
530  {
531      /* Drop the priority of the currently active interrupt in the
532       * specified group.
533       *
534       * Note that we can guarantee (because of the requirement to nest
535       * GICC_IAR reads [which activate an interrupt and raise priority]
536       * with GICC_EOIR writes [which drop the priority for the interrupt])
537       * that the interrupt we're being called for is the highest priority
538       * active interrupt, meaning that it has the lowest set bit in the
539       * APR registers.
540       *
541       * If the guest does not honour the ordering constraints then the
542       * behaviour of the GIC is UNPREDICTABLE, which for us means that
543       * the values of the APR registers might become incorrect and the
544       * running priority will be wrong, so interrupts that should preempt
545       * might not do so, and interrupts that should not preempt might do so.
546       */
547      if (gic_is_vcpu(cpu)) {
548          int rcpu = gic_get_vcpu_real_id(cpu);
549  
550          if (s->h_apr[rcpu]) {
551              /* Clear lowest set bit */
552              s->h_apr[rcpu] &= s->h_apr[rcpu] - 1;
553          }
554      } else {
555          int i;
556  
557          for (i = 0; i < GIC_NR_APRS; i++) {
558              uint32_t *papr = group ? &s->nsapr[i][cpu] : &s->apr[i][cpu];
559              if (!*papr) {
560                  continue;
561              }
562              /* Clear lowest set bit */
563              *papr &= *papr - 1;
564              break;
565          }
566      }
567  
568      s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
569  }
570  
571  static inline uint32_t gic_clear_pending_sgi(GICState *s, int irq, int cpu)
572  {
573      int src;
574      uint32_t ret;
575  
576      if (!gic_is_vcpu(cpu)) {
577          /* Lookup the source CPU for the SGI and clear this in the
578           * sgi_pending map.  Return the src and clear the overall pending
579           * state on this CPU if the SGI is not pending from any CPUs.
580           */
581          assert(s->sgi_pending[irq][cpu] != 0);
582          src = ctz32(s->sgi_pending[irq][cpu]);
583          s->sgi_pending[irq][cpu] &= ~(1 << src);
584          if (s->sgi_pending[irq][cpu] == 0) {
585              gic_clear_pending(s, irq, cpu);
586          }
587          ret = irq | ((src & 0x7) << 10);
588      } else {
589          uint32_t *lr_entry = gic_get_lr_entry(s, irq, cpu);
590          src = GICH_LR_CPUID(*lr_entry);
591  
592          gic_clear_pending(s, irq, cpu);
593          ret = irq | (src << 10);
594      }
595  
596      return ret;
597  }
598  
599  uint32_t gic_acknowledge_irq(GICState *s, int cpu, MemTxAttrs attrs)
600  {
601      int ret, irq;
602  
603      /* gic_get_current_pending_irq() will return 1022 or 1023 appropriately
604       * for the case where this GIC supports grouping and the pending interrupt
605       * is in the wrong group.
606       */
607      irq = gic_get_current_pending_irq(s, cpu, attrs);
608      trace_gic_acknowledge_irq(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
609                                gic_get_vcpu_real_id(cpu), irq);
610  
611      if (irq >= GIC_MAXIRQ) {
612          DPRINTF("ACK, no pending interrupt or it is hidden: %d\n", irq);
613          return irq;
614      }
615  
616      if (gic_get_priority(s, irq, cpu) >= s->running_priority[cpu]) {
617          DPRINTF("ACK, pending interrupt (%d) has insufficient priority\n", irq);
618          return 1023;
619      }
620  
621      gic_activate_irq(s, cpu, irq);
622  
623      if (s->revision == REV_11MPCORE) {
624          /* Clear pending flags for both level and edge triggered interrupts.
625           * Level triggered IRQs will be reasserted once they become inactive.
626           */
627          gic_clear_pending(s, irq, cpu);
628          ret = irq;
629      } else {
630          if (irq < GIC_NR_SGIS) {
631              ret = gic_clear_pending_sgi(s, irq, cpu);
632          } else {
633              gic_clear_pending(s, irq, cpu);
634              ret = irq;
635          }
636      }
637  
638      if (gic_is_vcpu(cpu)) {
639          gic_update_virt(s);
640      } else {
641          gic_update(s);
642      }
643      DPRINTF("ACK %d\n", irq);
644      return ret;
645  }
646  
647  static uint32_t gic_fullprio_mask(GICState *s, int cpu)
648  {
649      /*
650       * Return a mask word which clears the unimplemented priority
651       * bits from a priority value for an interrupt. (Not to be
652       * confused with the group priority, whose mask depends on BPR.)
653       */
654      int priBits;
655  
656      if (gic_is_vcpu(cpu)) {
657          priBits = GIC_VIRT_MAX_GROUP_PRIO_BITS;
658      } else {
659          priBits = s->n_prio_bits;
660      }
661      return ~0U << (8 - priBits);
662  }
663  
664  void gic_dist_set_priority(GICState *s, int cpu, int irq, uint8_t val,
665                        MemTxAttrs attrs)
666  {
667      if (s->security_extn && !attrs.secure) {
668          if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
669              return; /* Ignore Non-secure access of Group0 IRQ */
670          }
671          val = 0x80 | (val >> 1); /* Non-secure view */
672      }
673  
674      val &= gic_fullprio_mask(s, cpu);
675  
676      if (irq < GIC_INTERNAL) {
677          s->priority1[irq][cpu] = val;
678      } else {
679          s->priority2[(irq) - GIC_INTERNAL] = val;
680      }
681  }
682  
683  static uint32_t gic_dist_get_priority(GICState *s, int cpu, int irq,
684                                   MemTxAttrs attrs)
685  {
686      uint32_t prio = GIC_DIST_GET_PRIORITY(irq, cpu);
687  
688      if (s->security_extn && !attrs.secure) {
689          if (!GIC_DIST_TEST_GROUP(irq, (1 << cpu))) {
690              return 0; /* Non-secure access cannot read priority of Group0 IRQ */
691          }
692          prio = (prio << 1) & 0xff; /* Non-secure view */
693      }
694      return prio & gic_fullprio_mask(s, cpu);
695  }
696  
697  static void gic_set_priority_mask(GICState *s, int cpu, uint8_t pmask,
698                                    MemTxAttrs attrs)
699  {
700      if (gic_cpu_ns_access(s, cpu, attrs)) {
701          if (s->priority_mask[cpu] & 0x80) {
702              /* Priority Mask in upper half */
703              pmask = 0x80 | (pmask >> 1);
704          } else {
705              /* Non-secure write ignored if priority mask is in lower half */
706              return;
707          }
708      }
709      s->priority_mask[cpu] = pmask & gic_fullprio_mask(s, cpu);
710  }
711  
712  static uint32_t gic_get_priority_mask(GICState *s, int cpu, MemTxAttrs attrs)
713  {
714      uint32_t pmask = s->priority_mask[cpu];
715  
716      if (gic_cpu_ns_access(s, cpu, attrs)) {
717          if (pmask & 0x80) {
718              /* Priority Mask in upper half, return Non-secure view */
719              pmask = (pmask << 1) & 0xff;
720          } else {
721              /* Priority Mask in lower half, RAZ */
722              pmask = 0;
723          }
724      }
725      return pmask;
726  }
727  
728  static uint32_t gic_get_cpu_control(GICState *s, int cpu, MemTxAttrs attrs)
729  {
730      uint32_t ret = s->cpu_ctlr[cpu];
731  
732      if (gic_cpu_ns_access(s, cpu, attrs)) {
733          /* Construct the NS banked view of GICC_CTLR from the correct
734           * bits of the S banked view. We don't need to move the bypass
735           * control bits because we don't implement that (IMPDEF) part
736           * of the GIC architecture.
737           */
738          ret = (ret & (GICC_CTLR_EN_GRP1 | GICC_CTLR_EOIMODE_NS)) >> 1;
739      }
740      return ret;
741  }
742  
743  static void gic_set_cpu_control(GICState *s, int cpu, uint32_t value,
744                                  MemTxAttrs attrs)
745  {
746      uint32_t mask;
747  
748      if (gic_cpu_ns_access(s, cpu, attrs)) {
749          /* The NS view can only write certain bits in the register;
750           * the rest are unchanged
751           */
752          mask = GICC_CTLR_EN_GRP1;
753          if (s->revision == 2) {
754              mask |= GICC_CTLR_EOIMODE_NS;
755          }
756          s->cpu_ctlr[cpu] &= ~mask;
757          s->cpu_ctlr[cpu] |= (value << 1) & mask;
758      } else {
759          if (s->revision == 2) {
760              mask = s->security_extn ? GICC_CTLR_V2_S_MASK : GICC_CTLR_V2_MASK;
761          } else {
762              mask = s->security_extn ? GICC_CTLR_V1_S_MASK : GICC_CTLR_V1_MASK;
763          }
764          s->cpu_ctlr[cpu] = value & mask;
765      }
766      DPRINTF("CPU Interface %d: Group0 Interrupts %sabled, "
767              "Group1 Interrupts %sabled\n", cpu,
768              (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP0) ? "En" : "Dis",
769              (s->cpu_ctlr[cpu] & GICC_CTLR_EN_GRP1) ? "En" : "Dis");
770  }
771  
772  static uint8_t gic_get_running_priority(GICState *s, int cpu, MemTxAttrs attrs)
773  {
774      if ((s->revision != REV_11MPCORE) && (s->running_priority[cpu] > 0xff)) {
775          /* Idle priority */
776          return 0xff;
777      }
778  
779      if (gic_cpu_ns_access(s, cpu, attrs)) {
780          if (s->running_priority[cpu] & 0x80) {
781              /* Running priority in upper half of range: return the Non-secure
782               * view of the priority.
783               */
784              return s->running_priority[cpu] << 1;
785          } else {
786              /* Running priority in lower half of range: RAZ */
787              return 0;
788          }
789      } else {
790          return s->running_priority[cpu];
791      }
792  }
793  
794  /* Return true if we should split priority drop and interrupt deactivation,
795   * ie whether the relevant EOIMode bit is set.
796   */
797  static bool gic_eoi_split(GICState *s, int cpu, MemTxAttrs attrs)
798  {
799      if (s->revision != 2) {
800          /* Before GICv2 prio-drop and deactivate are not separable */
801          return false;
802      }
803      if (gic_cpu_ns_access(s, cpu, attrs)) {
804          return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE_NS;
805      }
806      return s->cpu_ctlr[cpu] & GICC_CTLR_EOIMODE;
807  }
808  
809  static void gic_deactivate_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
810  {
811      int group;
812  
813      if (irq >= GIC_MAXIRQ || (!gic_is_vcpu(cpu) && irq >= s->num_irq)) {
814          /*
815           * This handles two cases:
816           * 1. If software writes the ID of a spurious interrupt [ie 1023]
817           * to the GICC_DIR, the GIC ignores that write.
818           * 2. If software writes the number of a non-existent interrupt
819           * this must be a subcase of "value written is not an active interrupt"
820           * and so this is UNPREDICTABLE. We choose to ignore it. For vCPUs,
821           * all IRQs potentially exist, so this limit does not apply.
822           */
823          return;
824      }
825  
826      if (!gic_eoi_split(s, cpu, attrs)) {
827          /* This is UNPREDICTABLE; we choose to ignore it */
828          qemu_log_mask(LOG_GUEST_ERROR,
829                        "gic_deactivate_irq: GICC_DIR write when EOIMode clear");
830          return;
831      }
832  
833      if (gic_is_vcpu(cpu) && !gic_virq_is_valid(s, irq, cpu)) {
834          /* This vIRQ does not have an LR entry which is either active or
835           * pending and active. Increment EOICount and ignore the write.
836           */
837          int rcpu = gic_get_vcpu_real_id(cpu);
838          s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
839  
840          /* Update the virtual interface in case a maintenance interrupt should
841           * be raised.
842           */
843          gic_update_virt(s);
844          return;
845      }
846  
847      group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
848  
849      if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
850          DPRINTF("Non-secure DI for Group0 interrupt %d ignored\n", irq);
851          return;
852      }
853  
854      gic_clear_active(s, irq, cpu);
855  }
856  
857  static void gic_complete_irq(GICState *s, int cpu, int irq, MemTxAttrs attrs)
858  {
859      int cm = 1 << cpu;
860      int group;
861  
862      DPRINTF("EOI %d\n", irq);
863      if (gic_is_vcpu(cpu)) {
864          /* The call to gic_prio_drop() will clear a bit in GICH_APR iff the
865           * running prio is < 0x100.
866           */
867          bool prio_drop = s->running_priority[cpu] < 0x100;
868  
869          if (irq >= GIC_MAXIRQ) {
870              /* Ignore spurious interrupt */
871              return;
872          }
873  
874          gic_drop_prio(s, cpu, 0);
875  
876          if (!gic_eoi_split(s, cpu, attrs)) {
877              bool valid = gic_virq_is_valid(s, irq, cpu);
878              if (prio_drop && !valid) {
879                  /* We are in a situation where:
880                   *   - V_CTRL.EOIMode is false (no EOI split),
881                   *   - The call to gic_drop_prio() cleared a bit in GICH_APR,
882                   *   - This vIRQ does not have an LR entry which is either
883                   *     active or pending and active.
884                   * In that case, we must increment EOICount.
885                   */
886                  int rcpu = gic_get_vcpu_real_id(cpu);
887                  s->h_hcr[rcpu] += 1 << R_GICH_HCR_EOICount_SHIFT;
888              } else if (valid) {
889                  gic_clear_active(s, irq, cpu);
890              }
891          }
892  
893          gic_update_virt(s);
894          return;
895      }
896  
897      if (irq >= s->num_irq) {
898          /* This handles two cases:
899           * 1. If software writes the ID of a spurious interrupt [ie 1023]
900           * to the GICC_EOIR, the GIC ignores that write.
901           * 2. If software writes the number of a non-existent interrupt
902           * this must be a subcase of "value written does not match the last
903           * valid interrupt value read from the Interrupt Acknowledge
904           * register" and so this is UNPREDICTABLE. We choose to ignore it.
905           */
906          return;
907      }
908      if (s->running_priority[cpu] == 0x100) {
909          return; /* No active IRQ.  */
910      }
911  
912      if (s->revision == REV_11MPCORE) {
913          /* Mark level triggered interrupts as pending if they are still
914             raised.  */
915          if (!GIC_DIST_TEST_EDGE_TRIGGER(irq) && GIC_DIST_TEST_ENABLED(irq, cm)
916              && GIC_DIST_TEST_LEVEL(irq, cm)
917              && (GIC_DIST_TARGET(irq) & cm) != 0) {
918              DPRINTF("Set %d pending mask %x\n", irq, cm);
919              GIC_DIST_SET_PENDING(irq, cm);
920          }
921      }
922  
923      group = gic_has_groups(s) && gic_test_group(s, irq, cpu);
924  
925      if (gic_cpu_ns_access(s, cpu, attrs) && !group) {
926          DPRINTF("Non-secure EOI for Group0 interrupt %d ignored\n", irq);
927          return;
928      }
929  
930      /* Secure EOI with GICC_CTLR.AckCtl == 0 when the IRQ is a Group 1
931       * interrupt is UNPREDICTABLE. We choose to handle it as if AckCtl == 1,
932       * i.e. go ahead and complete the irq anyway.
933       */
934  
935      gic_drop_prio(s, cpu, group);
936  
937      /* In GICv2 the guest can choose to split priority-drop and deactivate */
938      if (!gic_eoi_split(s, cpu, attrs)) {
939          gic_clear_active(s, irq, cpu);
940      }
941      gic_update(s);
942  }
943  
944  static uint8_t gic_dist_readb(void *opaque, hwaddr offset, MemTxAttrs attrs)
945  {
946      GICState *s = (GICState *)opaque;
947      uint32_t res;
948      int irq;
949      int i;
950      int cpu;
951      int cm;
952      int mask;
953  
954      cpu = gic_get_current_cpu(s);
955      cm = 1 << cpu;
956      if (offset < 0x100) {
957          if (offset == 0) {      /* GICD_CTLR */
958              /* We rely here on the only non-zero bits being in byte 0 */
959              if (s->security_extn && !attrs.secure) {
960                  /* The NS bank of this register is just an alias of the
961                   * EnableGrp1 bit in the S bank version.
962                   */
963                  return extract32(s->ctlr, 1, 1);
964              } else {
965                  return s->ctlr;
966              }
967          }
968          if (offset == 4) {
969              /* GICD_TYPER byte 0 */
970              return ((s->num_irq / 32) - 1) | ((s->num_cpu - 1) << 5);
971          }
972          if (offset == 5) {
973              /* GICD_TYPER byte 1 */
974              return (s->security_extn << 2);
975          }
976          if (offset == 8) {
977              /* GICD_IIDR byte 0 */
978              return 0x3b; /* Arm JEP106 identity */
979          }
980          if (offset == 9) {
981              /* GICD_IIDR byte 1 */
982              return 0x04; /* Arm JEP106 identity */
983          }
984          if (offset < 0x0c) {
985              /* All other bytes in this range are RAZ */
986              return 0;
987          }
988          if (offset >= 0x80) {
989              /* Interrupt Group Registers: these RAZ/WI if this is an NS
990               * access to a GIC with the security extensions, or if the GIC
991               * doesn't have groups at all.
992               */
993              res = 0;
994              if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
995                  /* Every byte offset holds 8 group status bits */
996                  irq = (offset - 0x080) * 8;
997                  if (irq >= s->num_irq) {
998                      goto bad_reg;
999                  }
1000                  for (i = 0; i < 8; i++) {
1001                      if (GIC_DIST_TEST_GROUP(irq + i, cm)) {
1002                          res |= (1 << i);
1003                      }
1004                  }
1005              }
1006              return res;
1007          }
1008          goto bad_reg;
1009      } else if (offset < 0x200) {
1010          /* Interrupt Set/Clear Enable.  */
1011          if (offset < 0x180)
1012              irq = (offset - 0x100) * 8;
1013          else
1014              irq = (offset - 0x180) * 8;
1015          if (irq >= s->num_irq)
1016              goto bad_reg;
1017          res = 0;
1018          for (i = 0; i < 8; i++) {
1019              if (s->security_extn && !attrs.secure &&
1020                  !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1021                  continue; /* Ignore Non-secure access of Group0 IRQ */
1022              }
1023  
1024              if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1025                  res |= (1 << i);
1026              }
1027          }
1028      } else if (offset < 0x300) {
1029          /* Interrupt Set/Clear Pending.  */
1030          if (offset < 0x280)
1031              irq = (offset - 0x200) * 8;
1032          else
1033              irq = (offset - 0x280) * 8;
1034          if (irq >= s->num_irq)
1035              goto bad_reg;
1036          res = 0;
1037          mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1038          for (i = 0; i < 8; i++) {
1039              if (s->security_extn && !attrs.secure &&
1040                  !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1041                  continue; /* Ignore Non-secure access of Group0 IRQ */
1042              }
1043  
1044              if (gic_test_pending(s, irq + i, mask)) {
1045                  res |= (1 << i);
1046              }
1047          }
1048      } else if (offset < 0x400) {
1049          /* Interrupt Set/Clear Active.  */
1050          if (offset < 0x380) {
1051              irq = (offset - 0x300) * 8;
1052          } else if (s->revision == 2) {
1053              irq = (offset - 0x380) * 8;
1054          } else {
1055              goto bad_reg;
1056          }
1057  
1058          if (irq >= s->num_irq)
1059              goto bad_reg;
1060          res = 0;
1061          mask = (irq < GIC_INTERNAL) ?  cm : ALL_CPU_MASK;
1062          for (i = 0; i < 8; i++) {
1063              if (s->security_extn && !attrs.secure &&
1064                  !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1065                  continue; /* Ignore Non-secure access of Group0 IRQ */
1066              }
1067  
1068              if (GIC_DIST_TEST_ACTIVE(irq + i, mask)) {
1069                  res |= (1 << i);
1070              }
1071          }
1072      } else if (offset < 0x800) {
1073          /* Interrupt Priority.  */
1074          irq = (offset - 0x400);
1075          if (irq >= s->num_irq)
1076              goto bad_reg;
1077          res = gic_dist_get_priority(s, cpu, irq, attrs);
1078      } else if (offset < 0xc00) {
1079          /* Interrupt CPU Target.  */
1080          if (s->num_cpu == 1 && s->revision != REV_11MPCORE) {
1081              /* For uniprocessor GICs these RAZ/WI */
1082              res = 0;
1083          } else {
1084              irq = (offset - 0x800);
1085              if (irq >= s->num_irq) {
1086                  goto bad_reg;
1087              }
1088              if (irq < 29 && s->revision == REV_11MPCORE) {
1089                  res = 0;
1090              } else if (irq < GIC_INTERNAL) {
1091                  res = cm;
1092              } else {
1093                  res = GIC_DIST_TARGET(irq);
1094              }
1095          }
1096      } else if (offset < 0xf00) {
1097          /* Interrupt Configuration.  */
1098          irq = (offset - 0xc00) * 4;
1099          if (irq >= s->num_irq)
1100              goto bad_reg;
1101          res = 0;
1102          for (i = 0; i < 4; i++) {
1103              if (s->security_extn && !attrs.secure &&
1104                  !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1105                  continue; /* Ignore Non-secure access of Group0 IRQ */
1106              }
1107  
1108              if (GIC_DIST_TEST_MODEL(irq + i)) {
1109                  res |= (1 << (i * 2));
1110              }
1111              if (GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1112                  res |= (2 << (i * 2));
1113              }
1114          }
1115      } else if (offset < 0xf10) {
1116          goto bad_reg;
1117      } else if (offset < 0xf30) {
1118          if (s->revision == REV_11MPCORE) {
1119              goto bad_reg;
1120          }
1121  
1122          if (offset < 0xf20) {
1123              /* GICD_CPENDSGIRn */
1124              irq = (offset - 0xf10);
1125          } else {
1126              irq = (offset - 0xf20);
1127              /* GICD_SPENDSGIRn */
1128          }
1129  
1130          if (s->security_extn && !attrs.secure &&
1131              !GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1132              res = 0; /* Ignore Non-secure access of Group0 IRQ */
1133          } else {
1134              res = s->sgi_pending[irq][cpu];
1135          }
1136      } else if (offset < 0xfd0) {
1137          goto bad_reg;
1138      } else if (offset < 0x1000) {
1139          if (offset & 3) {
1140              res = 0;
1141          } else {
1142              switch (s->revision) {
1143              case REV_11MPCORE:
1144                  res = gic_id_11mpcore[(offset - 0xfd0) >> 2];
1145                  break;
1146              case 1:
1147                  res = gic_id_gicv1[(offset - 0xfd0) >> 2];
1148                  break;
1149              case 2:
1150                  res = gic_id_gicv2[(offset - 0xfd0) >> 2];
1151                  break;
1152              default:
1153                  res = 0;
1154              }
1155          }
1156      } else {
1157          g_assert_not_reached();
1158      }
1159      return res;
1160  bad_reg:
1161      qemu_log_mask(LOG_GUEST_ERROR,
1162                    "gic_dist_readb: Bad offset %x\n", (int)offset);
1163      return 0;
1164  }
1165  
1166  static MemTxResult gic_dist_read(void *opaque, hwaddr offset, uint64_t *data,
1167                                   unsigned size, MemTxAttrs attrs)
1168  {
1169      switch (size) {
1170      case 1:
1171          *data = gic_dist_readb(opaque, offset, attrs);
1172          break;
1173      case 2:
1174          *data = gic_dist_readb(opaque, offset, attrs);
1175          *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1176          break;
1177      case 4:
1178          *data = gic_dist_readb(opaque, offset, attrs);
1179          *data |= gic_dist_readb(opaque, offset + 1, attrs) << 8;
1180          *data |= gic_dist_readb(opaque, offset + 2, attrs) << 16;
1181          *data |= gic_dist_readb(opaque, offset + 3, attrs) << 24;
1182          break;
1183      default:
1184          return MEMTX_ERROR;
1185      }
1186  
1187      trace_gic_dist_read(offset, size, *data);
1188      return MEMTX_OK;
1189  }
1190  
1191  static void gic_dist_writeb(void *opaque, hwaddr offset,
1192                              uint32_t value, MemTxAttrs attrs)
1193  {
1194      GICState *s = (GICState *)opaque;
1195      int irq;
1196      int i;
1197      int cpu;
1198  
1199      cpu = gic_get_current_cpu(s);
1200      if (offset < 0x100) {
1201          if (offset == 0) {
1202              if (s->security_extn && !attrs.secure) {
1203                  /* NS version is just an alias of the S version's bit 1 */
1204                  s->ctlr = deposit32(s->ctlr, 1, 1, value);
1205              } else if (gic_has_groups(s)) {
1206                  s->ctlr = value & (GICD_CTLR_EN_GRP0 | GICD_CTLR_EN_GRP1);
1207              } else {
1208                  s->ctlr = value & GICD_CTLR_EN_GRP0;
1209              }
1210              DPRINTF("Distributor: Group0 %sabled; Group 1 %sabled\n",
1211                      s->ctlr & GICD_CTLR_EN_GRP0 ? "En" : "Dis",
1212                      s->ctlr & GICD_CTLR_EN_GRP1 ? "En" : "Dis");
1213          } else if (offset < 4) {
1214              /* ignored.  */
1215          } else if (offset >= 0x80) {
1216              /* Interrupt Group Registers: RAZ/WI for NS access to secure
1217               * GIC, or for GICs without groups.
1218               */
1219              if (!(s->security_extn && !attrs.secure) && gic_has_groups(s)) {
1220                  /* Every byte offset holds 8 group status bits */
1221                  irq = (offset - 0x80) * 8;
1222                  if (irq >= s->num_irq) {
1223                      goto bad_reg;
1224                  }
1225                  for (i = 0; i < 8; i++) {
1226                      /* Group bits are banked for private interrupts */
1227                      int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1228                      if (value & (1 << i)) {
1229                          /* Group1 (Non-secure) */
1230                          GIC_DIST_SET_GROUP(irq + i, cm);
1231                      } else {
1232                          /* Group0 (Secure) */
1233                          GIC_DIST_CLEAR_GROUP(irq + i, cm);
1234                      }
1235                  }
1236              }
1237          } else {
1238              goto bad_reg;
1239          }
1240      } else if (offset < 0x180) {
1241          /* Interrupt Set Enable.  */
1242          irq = (offset - 0x100) * 8;
1243          if (irq >= s->num_irq)
1244              goto bad_reg;
1245          if (irq < GIC_NR_SGIS) {
1246              value = 0xff;
1247          }
1248  
1249          for (i = 0; i < 8; i++) {
1250              if (value & (1 << i)) {
1251                  int mask =
1252                      (irq < GIC_INTERNAL) ? (1 << cpu)
1253                                           : GIC_DIST_TARGET(irq + i);
1254                  int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1255  
1256                  if (s->security_extn && !attrs.secure &&
1257                      !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1258                      continue; /* Ignore Non-secure access of Group0 IRQ */
1259                  }
1260  
1261                  if (!GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1262                      DPRINTF("Enabled IRQ %d\n", irq + i);
1263                      trace_gic_enable_irq(irq + i);
1264                  }
1265                  GIC_DIST_SET_ENABLED(irq + i, cm);
1266                  /* If a raised level triggered IRQ enabled then mark
1267                     is as pending.  */
1268                  if (GIC_DIST_TEST_LEVEL(irq + i, mask)
1269                          && !GIC_DIST_TEST_EDGE_TRIGGER(irq + i)) {
1270                      DPRINTF("Set %d pending mask %x\n", irq + i, mask);
1271                      GIC_DIST_SET_PENDING(irq + i, mask);
1272                  }
1273              }
1274          }
1275      } else if (offset < 0x200) {
1276          /* Interrupt Clear Enable.  */
1277          irq = (offset - 0x180) * 8;
1278          if (irq >= s->num_irq)
1279              goto bad_reg;
1280          if (irq < GIC_NR_SGIS) {
1281              value = 0;
1282          }
1283  
1284          for (i = 0; i < 8; i++) {
1285              if (value & (1 << i)) {
1286                  int cm = (irq < GIC_INTERNAL) ? (1 << cpu) : ALL_CPU_MASK;
1287  
1288                  if (s->security_extn && !attrs.secure &&
1289                      !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1290                      continue; /* Ignore Non-secure access of Group0 IRQ */
1291                  }
1292  
1293                  if (GIC_DIST_TEST_ENABLED(irq + i, cm)) {
1294                      DPRINTF("Disabled IRQ %d\n", irq + i);
1295                      trace_gic_disable_irq(irq + i);
1296                  }
1297                  GIC_DIST_CLEAR_ENABLED(irq + i, cm);
1298              }
1299          }
1300      } else if (offset < 0x280) {
1301          /* Interrupt Set Pending.  */
1302          irq = (offset - 0x200) * 8;
1303          if (irq >= s->num_irq)
1304              goto bad_reg;
1305          if (irq < GIC_NR_SGIS) {
1306              value = 0;
1307          }
1308  
1309          for (i = 0; i < 8; i++) {
1310              if (value & (1 << i)) {
1311                  int mask = (irq < GIC_INTERNAL) ? (1 << cpu)
1312                                                  : GIC_DIST_TARGET(irq + i);
1313  
1314                  if (s->security_extn && !attrs.secure &&
1315                      !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1316                      continue; /* Ignore Non-secure access of Group0 IRQ */
1317                  }
1318  
1319                  GIC_DIST_SET_PENDING(irq + i, mask);
1320              }
1321          }
1322      } else if (offset < 0x300) {
1323          /* Interrupt Clear Pending.  */
1324          irq = (offset - 0x280) * 8;
1325          if (irq >= s->num_irq)
1326              goto bad_reg;
1327          if (irq < GIC_NR_SGIS) {
1328              value = 0;
1329          }
1330  
1331          for (i = 0; i < 8; i++) {
1332              if (s->security_extn && !attrs.secure &&
1333                  !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1334                  continue; /* Ignore Non-secure access of Group0 IRQ */
1335              }
1336  
1337              /* ??? This currently clears the pending bit for all CPUs, even
1338                 for per-CPU interrupts.  It's unclear whether this is the
1339                 correct behavior.  */
1340              if (value & (1 << i)) {
1341                  GIC_DIST_CLEAR_PENDING(irq + i, ALL_CPU_MASK);
1342              }
1343          }
1344      } else if (offset < 0x380) {
1345          /* Interrupt Set Active.  */
1346          if (s->revision != 2) {
1347              goto bad_reg;
1348          }
1349  
1350          irq = (offset - 0x300) * 8;
1351          if (irq >= s->num_irq) {
1352              goto bad_reg;
1353          }
1354  
1355          /* This register is banked per-cpu for PPIs */
1356          int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1357  
1358          for (i = 0; i < 8; i++) {
1359              if (s->security_extn && !attrs.secure &&
1360                  !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1361                  continue; /* Ignore Non-secure access of Group0 IRQ */
1362              }
1363  
1364              if (value & (1 << i)) {
1365                  GIC_DIST_SET_ACTIVE(irq + i, cm);
1366              }
1367          }
1368      } else if (offset < 0x400) {
1369          /* Interrupt Clear Active.  */
1370          if (s->revision != 2) {
1371              goto bad_reg;
1372          }
1373  
1374          irq = (offset - 0x380) * 8;
1375          if (irq >= s->num_irq) {
1376              goto bad_reg;
1377          }
1378  
1379          /* This register is banked per-cpu for PPIs */
1380          int cm = irq < GIC_INTERNAL ? (1 << cpu) : ALL_CPU_MASK;
1381  
1382          for (i = 0; i < 8; i++) {
1383              if (s->security_extn && !attrs.secure &&
1384                  !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1385                  continue; /* Ignore Non-secure access of Group0 IRQ */
1386              }
1387  
1388              if (value & (1 << i)) {
1389                  GIC_DIST_CLEAR_ACTIVE(irq + i, cm);
1390              }
1391          }
1392      } else if (offset < 0x800) {
1393          /* Interrupt Priority.  */
1394          irq = (offset - 0x400);
1395          if (irq >= s->num_irq)
1396              goto bad_reg;
1397          gic_dist_set_priority(s, cpu, irq, value, attrs);
1398      } else if (offset < 0xc00) {
1399          /* Interrupt CPU Target. RAZ/WI on uniprocessor GICs, with the
1400           * annoying exception of the 11MPCore's GIC.
1401           */
1402          if (s->num_cpu != 1 || s->revision == REV_11MPCORE) {
1403              irq = (offset - 0x800);
1404              if (irq >= s->num_irq) {
1405                  goto bad_reg;
1406              }
1407              if (irq < 29 && s->revision == REV_11MPCORE) {
1408                  value = 0;
1409              } else if (irq < GIC_INTERNAL) {
1410                  value = ALL_CPU_MASK;
1411              }
1412              s->irq_target[irq] = value & ALL_CPU_MASK;
1413              if (irq >= GIC_INTERNAL && s->irq_state[irq].pending) {
1414                  /*
1415                   * Changing the target of an interrupt that is currently
1416                   * pending updates the set of CPUs it is pending on.
1417                   */
1418                  s->irq_state[irq].pending = value & ALL_CPU_MASK;
1419              }
1420          }
1421      } else if (offset < 0xf00) {
1422          /* Interrupt Configuration.  */
1423          irq = (offset - 0xc00) * 4;
1424          if (irq >= s->num_irq)
1425              goto bad_reg;
1426          if (irq < GIC_NR_SGIS)
1427              value |= 0xaa;
1428          for (i = 0; i < 4; i++) {
1429              if (s->security_extn && !attrs.secure &&
1430                  !GIC_DIST_TEST_GROUP(irq + i, 1 << cpu)) {
1431                  continue; /* Ignore Non-secure access of Group0 IRQ */
1432              }
1433  
1434              if (s->revision == REV_11MPCORE) {
1435                  if (value & (1 << (i * 2))) {
1436                      GIC_DIST_SET_MODEL(irq + i);
1437                  } else {
1438                      GIC_DIST_CLEAR_MODEL(irq + i);
1439                  }
1440              }
1441              if (value & (2 << (i * 2))) {
1442                  GIC_DIST_SET_EDGE_TRIGGER(irq + i);
1443              } else {
1444                  GIC_DIST_CLEAR_EDGE_TRIGGER(irq + i);
1445              }
1446          }
1447      } else if (offset < 0xf10) {
1448          /* 0xf00 is only handled for 32-bit writes.  */
1449          goto bad_reg;
1450      } else if (offset < 0xf20) {
1451          /* GICD_CPENDSGIRn */
1452          if (s->revision == REV_11MPCORE) {
1453              goto bad_reg;
1454          }
1455          irq = (offset - 0xf10);
1456  
1457          if (!s->security_extn || attrs.secure ||
1458              GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1459              s->sgi_pending[irq][cpu] &= ~value;
1460              if (s->sgi_pending[irq][cpu] == 0) {
1461                  GIC_DIST_CLEAR_PENDING(irq, 1 << cpu);
1462              }
1463          }
1464      } else if (offset < 0xf30) {
1465          /* GICD_SPENDSGIRn */
1466          if (s->revision == REV_11MPCORE) {
1467              goto bad_reg;
1468          }
1469          irq = (offset - 0xf20);
1470  
1471          if (!s->security_extn || attrs.secure ||
1472              GIC_DIST_TEST_GROUP(irq, 1 << cpu)) {
1473              GIC_DIST_SET_PENDING(irq, 1 << cpu);
1474              s->sgi_pending[irq][cpu] |= value;
1475          }
1476      } else {
1477          goto bad_reg;
1478      }
1479      gic_update(s);
1480      return;
1481  bad_reg:
1482      qemu_log_mask(LOG_GUEST_ERROR,
1483                    "gic_dist_writeb: Bad offset %x\n", (int)offset);
1484  }
1485  
1486  static void gic_dist_writew(void *opaque, hwaddr offset,
1487                              uint32_t value, MemTxAttrs attrs)
1488  {
1489      gic_dist_writeb(opaque, offset, value & 0xff, attrs);
1490      gic_dist_writeb(opaque, offset + 1, value >> 8, attrs);
1491  }
1492  
1493  static void gic_dist_writel(void *opaque, hwaddr offset,
1494                              uint32_t value, MemTxAttrs attrs)
1495  {
1496      GICState *s = (GICState *)opaque;
1497      if (offset == 0xf00) {
1498          int cpu;
1499          int irq;
1500          int mask;
1501          int target_cpu;
1502  
1503          cpu = gic_get_current_cpu(s);
1504          irq = value & 0xf;
1505          switch ((value >> 24) & 3) {
1506          case 0:
1507              mask = (value >> 16) & ALL_CPU_MASK;
1508              break;
1509          case 1:
1510              mask = ALL_CPU_MASK ^ (1 << cpu);
1511              break;
1512          case 2:
1513              mask = 1 << cpu;
1514              break;
1515          default:
1516              DPRINTF("Bad Soft Int target filter\n");
1517              mask = ALL_CPU_MASK;
1518              break;
1519          }
1520          GIC_DIST_SET_PENDING(irq, mask);
1521          target_cpu = ctz32(mask);
1522          while (target_cpu < GIC_NCPU) {
1523              s->sgi_pending[irq][target_cpu] |= (1 << cpu);
1524              mask &= ~(1 << target_cpu);
1525              target_cpu = ctz32(mask);
1526          }
1527          gic_update(s);
1528          return;
1529      }
1530      gic_dist_writew(opaque, offset, value & 0xffff, attrs);
1531      gic_dist_writew(opaque, offset + 2, value >> 16, attrs);
1532  }
1533  
1534  static MemTxResult gic_dist_write(void *opaque, hwaddr offset, uint64_t data,
1535                                    unsigned size, MemTxAttrs attrs)
1536  {
1537      trace_gic_dist_write(offset, size, data);
1538  
1539      switch (size) {
1540      case 1:
1541          gic_dist_writeb(opaque, offset, data, attrs);
1542          return MEMTX_OK;
1543      case 2:
1544          gic_dist_writew(opaque, offset, data, attrs);
1545          return MEMTX_OK;
1546      case 4:
1547          gic_dist_writel(opaque, offset, data, attrs);
1548          return MEMTX_OK;
1549      default:
1550          return MEMTX_ERROR;
1551      }
1552  }
1553  
1554  static inline uint32_t gic_apr_ns_view(GICState *s, int cpu, int regno)
1555  {
1556      /* Return the Nonsecure view of GICC_APR<regno>. This is the
1557       * second half of GICC_NSAPR.
1558       */
1559      switch (GIC_MIN_BPR) {
1560      case 0:
1561          if (regno < 2) {
1562              return s->nsapr[regno + 2][cpu];
1563          }
1564          break;
1565      case 1:
1566          if (regno == 0) {
1567              return s->nsapr[regno + 1][cpu];
1568          }
1569          break;
1570      case 2:
1571          if (regno == 0) {
1572              return extract32(s->nsapr[0][cpu], 16, 16);
1573          }
1574          break;
1575      case 3:
1576          if (regno == 0) {
1577              return extract32(s->nsapr[0][cpu], 8, 8);
1578          }
1579          break;
1580      default:
1581          g_assert_not_reached();
1582      }
1583      return 0;
1584  }
1585  
1586  static inline void gic_apr_write_ns_view(GICState *s, int cpu, int regno,
1587                                           uint32_t value)
1588  {
1589      /* Write the Nonsecure view of GICC_APR<regno>. */
1590      switch (GIC_MIN_BPR) {
1591      case 0:
1592          if (regno < 2) {
1593              s->nsapr[regno + 2][cpu] = value;
1594          }
1595          break;
1596      case 1:
1597          if (regno == 0) {
1598              s->nsapr[regno + 1][cpu] = value;
1599          }
1600          break;
1601      case 2:
1602          if (regno == 0) {
1603              s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 16, 16, value);
1604          }
1605          break;
1606      case 3:
1607          if (regno == 0) {
1608              s->nsapr[0][cpu] = deposit32(s->nsapr[0][cpu], 8, 8, value);
1609          }
1610          break;
1611      default:
1612          g_assert_not_reached();
1613      }
1614  }
1615  
1616  static MemTxResult gic_cpu_read(GICState *s, int cpu, int offset,
1617                                  uint64_t *data, MemTxAttrs attrs)
1618  {
1619      switch (offset) {
1620      case 0x00: /* Control */
1621          *data = gic_get_cpu_control(s, cpu, attrs);
1622          break;
1623      case 0x04: /* Priority mask */
1624          *data = gic_get_priority_mask(s, cpu, attrs);
1625          break;
1626      case 0x08: /* Binary Point */
1627          if (gic_cpu_ns_access(s, cpu, attrs)) {
1628              if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1629                  /* NS view of BPR when CBPR is 1 */
1630                  *data = MIN(s->bpr[cpu] + 1, 7);
1631              } else {
1632                  /* BPR is banked. Non-secure copy stored in ABPR. */
1633                  *data = s->abpr[cpu];
1634              }
1635          } else {
1636              *data = s->bpr[cpu];
1637          }
1638          break;
1639      case 0x0c: /* Acknowledge */
1640          *data = gic_acknowledge_irq(s, cpu, attrs);
1641          break;
1642      case 0x14: /* Running Priority */
1643          *data = gic_get_running_priority(s, cpu, attrs);
1644          break;
1645      case 0x18: /* Highest Pending Interrupt */
1646          *data = gic_get_current_pending_irq(s, cpu, attrs);
1647          break;
1648      case 0x1c: /* Aliased Binary Point */
1649          /* GIC v2, no security: ABPR
1650           * GIC v1, no security: not implemented (RAZ/WI)
1651           * With security extensions, secure access: ABPR (alias of NS BPR)
1652           * With security extensions, nonsecure access: RAZ/WI
1653           */
1654          if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1655              *data = 0;
1656          } else {
1657              *data = s->abpr[cpu];
1658          }
1659          break;
1660      case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1661      {
1662          int regno = (offset - 0xd0) / 4;
1663          int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1664  
1665          if (regno >= nr_aprs || s->revision != 2) {
1666              *data = 0;
1667          } else if (gic_is_vcpu(cpu)) {
1668              *data = s->h_apr[gic_get_vcpu_real_id(cpu)];
1669          } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1670              /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1671              *data = gic_apr_ns_view(s, cpu, regno);
1672          } else {
1673              *data = s->apr[regno][cpu];
1674          }
1675          break;
1676      }
1677      case 0xe0: case 0xe4: case 0xe8: case 0xec:
1678      {
1679          int regno = (offset - 0xe0) / 4;
1680  
1681          if (regno >= GIC_NR_APRS || s->revision != 2 || !gic_has_groups(s) ||
1682              gic_cpu_ns_access(s, cpu, attrs) || gic_is_vcpu(cpu)) {
1683              *data = 0;
1684          } else {
1685              *data = s->nsapr[regno][cpu];
1686          }
1687          break;
1688      }
1689      case 0xfc:
1690          if (s->revision == REV_11MPCORE) {
1691              /* Reserved on 11MPCore */
1692              *data = 0;
1693          } else {
1694              /* GICv1 or v2; Arm implementation */
1695              *data = (s->revision << 16) | 0x43b;
1696          }
1697          break;
1698      default:
1699          qemu_log_mask(LOG_GUEST_ERROR,
1700                        "gic_cpu_read: Bad offset %x\n", (int)offset);
1701          *data = 0;
1702          break;
1703      }
1704  
1705      trace_gic_cpu_read(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1706                         gic_get_vcpu_real_id(cpu), offset, *data);
1707      return MEMTX_OK;
1708  }
1709  
1710  static MemTxResult gic_cpu_write(GICState *s, int cpu, int offset,
1711                                   uint32_t value, MemTxAttrs attrs)
1712  {
1713      trace_gic_cpu_write(gic_is_vcpu(cpu) ? "vcpu" : "cpu",
1714                          gic_get_vcpu_real_id(cpu), offset, value);
1715  
1716      switch (offset) {
1717      case 0x00: /* Control */
1718          gic_set_cpu_control(s, cpu, value, attrs);
1719          break;
1720      case 0x04: /* Priority mask */
1721          gic_set_priority_mask(s, cpu, value, attrs);
1722          break;
1723      case 0x08: /* Binary Point */
1724          if (gic_cpu_ns_access(s, cpu, attrs)) {
1725              if (s->cpu_ctlr[cpu] & GICC_CTLR_CBPR) {
1726                  /* WI when CBPR is 1 */
1727                  return MEMTX_OK;
1728              } else {
1729                  s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1730              }
1731          } else {
1732              int min_bpr = gic_is_vcpu(cpu) ? GIC_VIRT_MIN_BPR : GIC_MIN_BPR;
1733              s->bpr[cpu] = MAX(value & 0x7, min_bpr);
1734          }
1735          break;
1736      case 0x10: /* End Of Interrupt */
1737          gic_complete_irq(s, cpu, value & 0x3ff, attrs);
1738          return MEMTX_OK;
1739      case 0x1c: /* Aliased Binary Point */
1740          if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1741              /* unimplemented, or NS access: RAZ/WI */
1742              return MEMTX_OK;
1743          } else {
1744              s->abpr[cpu] = MAX(value & 0x7, GIC_MIN_ABPR);
1745          }
1746          break;
1747      case 0xd0: case 0xd4: case 0xd8: case 0xdc:
1748      {
1749          int regno = (offset - 0xd0) / 4;
1750          int nr_aprs = gic_is_vcpu(cpu) ? GIC_VIRT_NR_APRS : GIC_NR_APRS;
1751  
1752          if (regno >= nr_aprs || s->revision != 2) {
1753              return MEMTX_OK;
1754          }
1755          if (gic_is_vcpu(cpu)) {
1756              s->h_apr[gic_get_vcpu_real_id(cpu)] = value;
1757          } else if (gic_cpu_ns_access(s, cpu, attrs)) {
1758              /* NS view of GICC_APR<n> is the top half of GIC_NSAPR<n> */
1759              gic_apr_write_ns_view(s, cpu, regno, value);
1760          } else {
1761              s->apr[regno][cpu] = value;
1762          }
1763          s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1764          break;
1765      }
1766      case 0xe0: case 0xe4: case 0xe8: case 0xec:
1767      {
1768          int regno = (offset - 0xe0) / 4;
1769  
1770          if (regno >= GIC_NR_APRS || s->revision != 2) {
1771              return MEMTX_OK;
1772          }
1773          if (gic_is_vcpu(cpu)) {
1774              return MEMTX_OK;
1775          }
1776          if (!gic_has_groups(s) || (gic_cpu_ns_access(s, cpu, attrs))) {
1777              return MEMTX_OK;
1778          }
1779          s->nsapr[regno][cpu] = value;
1780          s->running_priority[cpu] = gic_get_prio_from_apr_bits(s, cpu);
1781          break;
1782      }
1783      case 0x1000:
1784          /* GICC_DIR */
1785          gic_deactivate_irq(s, cpu, value & 0x3ff, attrs);
1786          break;
1787      default:
1788          qemu_log_mask(LOG_GUEST_ERROR,
1789                        "gic_cpu_write: Bad offset %x\n", (int)offset);
1790          return MEMTX_OK;
1791      }
1792  
1793      if (gic_is_vcpu(cpu)) {
1794          gic_update_virt(s);
1795      } else {
1796          gic_update(s);
1797      }
1798  
1799      return MEMTX_OK;
1800  }
1801  
1802  /* Wrappers to read/write the GIC CPU interface for the current CPU */
1803  static MemTxResult gic_thiscpu_read(void *opaque, hwaddr addr, uint64_t *data,
1804                                      unsigned size, MemTxAttrs attrs)
1805  {
1806      GICState *s = (GICState *)opaque;
1807      return gic_cpu_read(s, gic_get_current_cpu(s), addr, data, attrs);
1808  }
1809  
1810  static MemTxResult gic_thiscpu_write(void *opaque, hwaddr addr,
1811                                       uint64_t value, unsigned size,
1812                                       MemTxAttrs attrs)
1813  {
1814      GICState *s = (GICState *)opaque;
1815      return gic_cpu_write(s, gic_get_current_cpu(s), addr, value, attrs);
1816  }
1817  
1818  /* Wrappers to read/write the GIC CPU interface for a specific CPU.
1819   * These just decode the opaque pointer into GICState* + cpu id.
1820   */
1821  static MemTxResult gic_do_cpu_read(void *opaque, hwaddr addr, uint64_t *data,
1822                                     unsigned size, MemTxAttrs attrs)
1823  {
1824      GICState **backref = (GICState **)opaque;
1825      GICState *s = *backref;
1826      int id = (backref - s->backref);
1827      return gic_cpu_read(s, id, addr, data, attrs);
1828  }
1829  
1830  static MemTxResult gic_do_cpu_write(void *opaque, hwaddr addr,
1831                                      uint64_t value, unsigned size,
1832                                      MemTxAttrs attrs)
1833  {
1834      GICState **backref = (GICState **)opaque;
1835      GICState *s = *backref;
1836      int id = (backref - s->backref);
1837      return gic_cpu_write(s, id, addr, value, attrs);
1838  }
1839  
1840  static MemTxResult gic_thisvcpu_read(void *opaque, hwaddr addr, uint64_t *data,
1841                                      unsigned size, MemTxAttrs attrs)
1842  {
1843      GICState *s = (GICState *)opaque;
1844  
1845      return gic_cpu_read(s, gic_get_current_vcpu(s), addr, data, attrs);
1846  }
1847  
1848  static MemTxResult gic_thisvcpu_write(void *opaque, hwaddr addr,
1849                                       uint64_t value, unsigned size,
1850                                       MemTxAttrs attrs)
1851  {
1852      GICState *s = (GICState *)opaque;
1853  
1854      return gic_cpu_write(s, gic_get_current_vcpu(s), addr, value, attrs);
1855  }
1856  
1857  static uint32_t gic_compute_eisr(GICState *s, int cpu, int lr_start)
1858  {
1859      int lr_idx;
1860      uint32_t ret = 0;
1861  
1862      for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1863          uint32_t *entry = &s->h_lr[lr_idx][cpu];
1864          ret = deposit32(ret, lr_idx - lr_start, 1,
1865                          gic_lr_entry_is_eoi(*entry));
1866      }
1867  
1868      return ret;
1869  }
1870  
1871  static uint32_t gic_compute_elrsr(GICState *s, int cpu, int lr_start)
1872  {
1873      int lr_idx;
1874      uint32_t ret = 0;
1875  
1876      for (lr_idx = lr_start; lr_idx < s->num_lrs; lr_idx++) {
1877          uint32_t *entry = &s->h_lr[lr_idx][cpu];
1878          ret = deposit32(ret, lr_idx - lr_start, 1,
1879                          gic_lr_entry_is_free(*entry));
1880      }
1881  
1882      return ret;
1883  }
1884  
1885  static void gic_vmcr_write(GICState *s, uint32_t value, MemTxAttrs attrs)
1886  {
1887      int vcpu = gic_get_current_vcpu(s);
1888      uint32_t ctlr;
1889      uint32_t abpr;
1890      uint32_t bpr;
1891      uint32_t prio_mask;
1892  
1893      ctlr = FIELD_EX32(value, GICH_VMCR, VMCCtlr);
1894      abpr = FIELD_EX32(value, GICH_VMCR, VMABP);
1895      bpr = FIELD_EX32(value, GICH_VMCR, VMBP);
1896      prio_mask = FIELD_EX32(value, GICH_VMCR, VMPriMask) << 3;
1897  
1898      gic_set_cpu_control(s, vcpu, ctlr, attrs);
1899      s->abpr[vcpu] = MAX(abpr, GIC_VIRT_MIN_ABPR);
1900      s->bpr[vcpu] = MAX(bpr, GIC_VIRT_MIN_BPR);
1901      gic_set_priority_mask(s, vcpu, prio_mask, attrs);
1902  }
1903  
1904  static MemTxResult gic_hyp_read(void *opaque, int cpu, hwaddr addr,
1905                                  uint64_t *data, MemTxAttrs attrs)
1906  {
1907      GICState *s = ARM_GIC(opaque);
1908      int vcpu = cpu + GIC_NCPU;
1909  
1910      switch (addr) {
1911      case A_GICH_HCR: /* Hypervisor Control */
1912          *data = s->h_hcr[cpu];
1913          break;
1914  
1915      case A_GICH_VTR: /* VGIC Type */
1916          *data = FIELD_DP32(0, GICH_VTR, ListRegs, s->num_lrs - 1);
1917          *data = FIELD_DP32(*data, GICH_VTR, PREbits,
1918                             GIC_VIRT_MAX_GROUP_PRIO_BITS - 1);
1919          *data = FIELD_DP32(*data, GICH_VTR, PRIbits,
1920                             (7 - GIC_VIRT_MIN_BPR) - 1);
1921          break;
1922  
1923      case A_GICH_VMCR: /* Virtual Machine Control */
1924          *data = FIELD_DP32(0, GICH_VMCR, VMCCtlr,
1925                             extract32(s->cpu_ctlr[vcpu], 0, 10));
1926          *data = FIELD_DP32(*data, GICH_VMCR, VMABP, s->abpr[vcpu]);
1927          *data = FIELD_DP32(*data, GICH_VMCR, VMBP, s->bpr[vcpu]);
1928          *data = FIELD_DP32(*data, GICH_VMCR, VMPriMask,
1929                             extract32(s->priority_mask[vcpu], 3, 5));
1930          break;
1931  
1932      case A_GICH_MISR: /* Maintenance Interrupt Status */
1933          *data = s->h_misr[cpu];
1934          break;
1935  
1936      case A_GICH_EISR0: /* End of Interrupt Status 0 and 1 */
1937      case A_GICH_EISR1:
1938          *data = gic_compute_eisr(s, cpu, (addr - A_GICH_EISR0) * 8);
1939          break;
1940  
1941      case A_GICH_ELRSR0: /* Empty List Status 0 and 1 */
1942      case A_GICH_ELRSR1:
1943          *data = gic_compute_elrsr(s, cpu, (addr - A_GICH_ELRSR0) * 8);
1944          break;
1945  
1946      case A_GICH_APR: /* Active Priorities */
1947          *data = s->h_apr[cpu];
1948          break;
1949  
1950      case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1951      {
1952          int lr_idx = (addr - A_GICH_LR0) / 4;
1953  
1954          if (lr_idx > s->num_lrs) {
1955              *data = 0;
1956          } else {
1957              *data = s->h_lr[lr_idx][cpu];
1958          }
1959          break;
1960      }
1961  
1962      default:
1963          qemu_log_mask(LOG_GUEST_ERROR,
1964                        "gic_hyp_read: Bad offset %" HWADDR_PRIx "\n", addr);
1965          return MEMTX_OK;
1966      }
1967  
1968      trace_gic_hyp_read(addr, *data);
1969      return MEMTX_OK;
1970  }
1971  
1972  static MemTxResult gic_hyp_write(void *opaque, int cpu, hwaddr addr,
1973                                   uint64_t value, MemTxAttrs attrs)
1974  {
1975      GICState *s = ARM_GIC(opaque);
1976      int vcpu = cpu + GIC_NCPU;
1977  
1978      trace_gic_hyp_write(addr, value);
1979  
1980      switch (addr) {
1981      case A_GICH_HCR: /* Hypervisor Control */
1982          s->h_hcr[cpu] = value & GICH_HCR_MASK;
1983          break;
1984  
1985      case A_GICH_VMCR: /* Virtual Machine Control */
1986          gic_vmcr_write(s, value, attrs);
1987          break;
1988  
1989      case A_GICH_APR: /* Active Priorities */
1990          s->h_apr[cpu] = value;
1991          s->running_priority[vcpu] = gic_get_prio_from_apr_bits(s, vcpu);
1992          break;
1993  
1994      case A_GICH_LR0 ... A_GICH_LR63: /* List Registers */
1995      {
1996          int lr_idx = (addr - A_GICH_LR0) / 4;
1997  
1998          if (lr_idx > s->num_lrs) {
1999              return MEMTX_OK;
2000          }
2001  
2002          s->h_lr[lr_idx][cpu] = value & GICH_LR_MASK;
2003          trace_gic_lr_entry(cpu, lr_idx, s->h_lr[lr_idx][cpu]);
2004          break;
2005      }
2006  
2007      default:
2008          qemu_log_mask(LOG_GUEST_ERROR,
2009                        "gic_hyp_write: Bad offset %" HWADDR_PRIx "\n", addr);
2010          return MEMTX_OK;
2011      }
2012  
2013      gic_update_virt(s);
2014      return MEMTX_OK;
2015  }
2016  
2017  static MemTxResult gic_thiscpu_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2018                                      unsigned size, MemTxAttrs attrs)
2019  {
2020      GICState *s = (GICState *)opaque;
2021  
2022      return gic_hyp_read(s, gic_get_current_cpu(s), addr, data, attrs);
2023  }
2024  
2025  static MemTxResult gic_thiscpu_hyp_write(void *opaque, hwaddr addr,
2026                                       uint64_t value, unsigned size,
2027                                       MemTxAttrs attrs)
2028  {
2029      GICState *s = (GICState *)opaque;
2030  
2031      return gic_hyp_write(s, gic_get_current_cpu(s), addr, value, attrs);
2032  }
2033  
2034  static MemTxResult gic_do_hyp_read(void *opaque, hwaddr addr, uint64_t *data,
2035                                      unsigned size, MemTxAttrs attrs)
2036  {
2037      GICState **backref = (GICState **)opaque;
2038      GICState *s = *backref;
2039      int id = (backref - s->backref);
2040  
2041      return gic_hyp_read(s, id, addr, data, attrs);
2042  }
2043  
2044  static MemTxResult gic_do_hyp_write(void *opaque, hwaddr addr,
2045                                       uint64_t value, unsigned size,
2046                                       MemTxAttrs attrs)
2047  {
2048      GICState **backref = (GICState **)opaque;
2049      GICState *s = *backref;
2050      int id = (backref - s->backref);
2051  
2052      return gic_hyp_write(s, id + GIC_NCPU, addr, value, attrs);
2053  
2054  }
2055  
2056  static const MemoryRegionOps gic_ops[2] = {
2057      {
2058          .read_with_attrs = gic_dist_read,
2059          .write_with_attrs = gic_dist_write,
2060          .endianness = DEVICE_NATIVE_ENDIAN,
2061      },
2062      {
2063          .read_with_attrs = gic_thiscpu_read,
2064          .write_with_attrs = gic_thiscpu_write,
2065          .endianness = DEVICE_NATIVE_ENDIAN,
2066      }
2067  };
2068  
2069  static const MemoryRegionOps gic_cpu_ops = {
2070      .read_with_attrs = gic_do_cpu_read,
2071      .write_with_attrs = gic_do_cpu_write,
2072      .endianness = DEVICE_NATIVE_ENDIAN,
2073  };
2074  
2075  static const MemoryRegionOps gic_virt_ops[2] = {
2076      {
2077          .read_with_attrs = gic_thiscpu_hyp_read,
2078          .write_with_attrs = gic_thiscpu_hyp_write,
2079          .endianness = DEVICE_NATIVE_ENDIAN,
2080      },
2081      {
2082          .read_with_attrs = gic_thisvcpu_read,
2083          .write_with_attrs = gic_thisvcpu_write,
2084          .endianness = DEVICE_NATIVE_ENDIAN,
2085      }
2086  };
2087  
2088  static const MemoryRegionOps gic_viface_ops = {
2089      .read_with_attrs = gic_do_hyp_read,
2090      .write_with_attrs = gic_do_hyp_write,
2091      .endianness = DEVICE_NATIVE_ENDIAN,
2092  };
2093  
2094  static void arm_gic_realize(DeviceState *dev, Error **errp)
2095  {
2096      /* Device instance realize function for the GIC sysbus device */
2097      int i;
2098      GICState *s = ARM_GIC(dev);
2099      SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
2100      ARMGICClass *agc = ARM_GIC_GET_CLASS(s);
2101      Error *local_err = NULL;
2102  
2103      agc->parent_realize(dev, &local_err);
2104      if (local_err) {
2105          error_propagate(errp, local_err);
2106          return;
2107      }
2108  
2109      if (kvm_enabled() && !kvm_arm_supports_user_irq()) {
2110          error_setg(errp, "KVM with user space irqchip only works when the "
2111                           "host kernel supports KVM_CAP_ARM_USER_IRQ");
2112          return;
2113      }
2114  
2115      if (s->n_prio_bits > GIC_MAX_PRIORITY_BITS ||
2116         (s->virt_extn ? s->n_prio_bits < GIC_VIRT_MAX_GROUP_PRIO_BITS :
2117          s->n_prio_bits < GIC_MIN_PRIORITY_BITS)) {
2118          error_setg(errp, "num-priority-bits cannot be greater than %d"
2119                     " or less than %d", GIC_MAX_PRIORITY_BITS,
2120                     s->virt_extn ? GIC_VIRT_MAX_GROUP_PRIO_BITS :
2121                     GIC_MIN_PRIORITY_BITS);
2122          return;
2123      }
2124  
2125      /* This creates distributor, main CPU interface (s->cpuiomem[0]) and if
2126       * enabled, virtualization extensions related interfaces (main virtual
2127       * interface (s->vifaceiomem[0]) and virtual CPU interface).
2128       */
2129      gic_init_irqs_and_mmio(s, gic_set_irq, gic_ops, gic_virt_ops);
2130  
2131      /* Extra core-specific regions for the CPU interfaces. This is
2132       * necessary for "franken-GIC" implementations, for example on
2133       * Exynos 4.
2134       * NB that the memory region size of 0x100 applies for the 11MPCore
2135       * and also cores following the GIC v1 spec (ie A9).
2136       * GIC v2 defines a larger memory region (0x1000) so this will need
2137       * to be extended when we implement A15.
2138       */
2139      for (i = 0; i < s->num_cpu; i++) {
2140          s->backref[i] = s;
2141          memory_region_init_io(&s->cpuiomem[i+1], OBJECT(s), &gic_cpu_ops,
2142                                &s->backref[i], "gic_cpu", 0x100);
2143          sysbus_init_mmio(sbd, &s->cpuiomem[i+1]);
2144      }
2145  
2146      /* Extra core-specific regions for virtual interfaces. This is required by
2147       * the GICv2 specification.
2148       */
2149      if (s->virt_extn) {
2150          for (i = 0; i < s->num_cpu; i++) {
2151              memory_region_init_io(&s->vifaceiomem[i + 1], OBJECT(s),
2152                                    &gic_viface_ops, &s->backref[i],
2153                                    "gic_viface", 0x200);
2154              sysbus_init_mmio(sbd, &s->vifaceiomem[i + 1]);
2155          }
2156      }
2157  
2158  }
2159  
2160  static void arm_gic_class_init(ObjectClass *klass, void *data)
2161  {
2162      DeviceClass *dc = DEVICE_CLASS(klass);
2163      ARMGICClass *agc = ARM_GIC_CLASS(klass);
2164  
2165      device_class_set_parent_realize(dc, arm_gic_realize, &agc->parent_realize);
2166  }
2167  
2168  static const TypeInfo arm_gic_info = {
2169      .name = TYPE_ARM_GIC,
2170      .parent = TYPE_ARM_GIC_COMMON,
2171      .instance_size = sizeof(GICState),
2172      .class_init = arm_gic_class_init,
2173      .class_size = sizeof(ARMGICClass),
2174  };
2175  
2176  static void arm_gic_register_types(void)
2177  {
2178      type_register_static(&arm_gic_info);
2179  }
2180  
2181  type_init(arm_gic_register_types)
2182