1 /* 2 * Copyright (C) 2010 Citrix Ltd. 3 * 4 * This work is licensed under the terms of the GNU GPL, version 2. See 5 * the COPYING file in the top-level directory. 6 * 7 * Contributions after 2012-01-13 are licensed under the terms of the 8 * GNU GPL, version 2 or (at your option) any later version. 9 */ 10 11 #include "qemu/osdep.h" 12 13 #include "cpu.h" 14 #include "hw/pci/pci.h" 15 #include "hw/i386/pc.h" 16 #include "hw/i386/apic-msidef.h" 17 #include "hw/xen/xen_common.h" 18 #include "hw/xen/xen_backend.h" 19 #include "qapi/error.h" 20 #include "qapi/qapi-commands-misc.h" 21 #include "qemu/error-report.h" 22 #include "qemu/range.h" 23 #include "sysemu/xen-mapcache.h" 24 #include "trace.h" 25 #include "exec/address-spaces.h" 26 27 #include <xen/hvm/ioreq.h> 28 #include <xen/hvm/params.h> 29 #include <xen/hvm/e820.h> 30 31 //#define DEBUG_XEN_HVM 32 33 #ifdef DEBUG_XEN_HVM 34 #define DPRINTF(fmt, ...) \ 35 do { fprintf(stderr, "xen: " fmt, ## __VA_ARGS__); } while (0) 36 #else 37 #define DPRINTF(fmt, ...) \ 38 do { } while (0) 39 #endif 40 41 static MemoryRegion ram_memory, ram_640k, ram_lo, ram_hi; 42 static MemoryRegion *framebuffer; 43 static bool xen_in_migration; 44 45 /* Compatibility with older version */ 46 47 /* This allows QEMU to build on a system that has Xen 4.5 or earlier 48 * installed. This here (not in hw/xen/xen_common.h) because xen/hvm/ioreq.h 49 * needs to be included before this block and hw/xen/xen_common.h needs to 50 * be included before xen/hvm/ioreq.h 51 */ 52 #ifndef IOREQ_TYPE_VMWARE_PORT 53 #define IOREQ_TYPE_VMWARE_PORT 3 54 struct vmware_regs { 55 uint32_t esi; 56 uint32_t edi; 57 uint32_t ebx; 58 uint32_t ecx; 59 uint32_t edx; 60 }; 61 typedef struct vmware_regs vmware_regs_t; 62 63 struct shared_vmport_iopage { 64 struct vmware_regs vcpu_vmport_regs[1]; 65 }; 66 typedef struct shared_vmport_iopage shared_vmport_iopage_t; 67 #endif 68 69 static inline uint32_t xen_vcpu_eport(shared_iopage_t *shared_page, int i) 70 { 71 return shared_page->vcpu_ioreq[i].vp_eport; 72 } 73 static inline ioreq_t *xen_vcpu_ioreq(shared_iopage_t *shared_page, int vcpu) 74 { 75 return &shared_page->vcpu_ioreq[vcpu]; 76 } 77 78 #define BUFFER_IO_MAX_DELAY 100 79 80 typedef struct XenPhysmap { 81 hwaddr start_addr; 82 ram_addr_t size; 83 const char *name; 84 hwaddr phys_offset; 85 86 QLIST_ENTRY(XenPhysmap) list; 87 } XenPhysmap; 88 89 typedef struct XenIOState { 90 ioservid_t ioservid; 91 shared_iopage_t *shared_page; 92 shared_vmport_iopage_t *shared_vmport_page; 93 buffered_iopage_t *buffered_io_page; 94 QEMUTimer *buffered_io_timer; 95 CPUState **cpu_by_vcpu_id; 96 /* the evtchn port for polling the notification, */ 97 evtchn_port_t *ioreq_local_port; 98 /* evtchn remote and local ports for buffered io */ 99 evtchn_port_t bufioreq_remote_port; 100 evtchn_port_t bufioreq_local_port; 101 /* the evtchn fd for polling */ 102 xenevtchn_handle *xce_handle; 103 /* which vcpu we are serving */ 104 int send_vcpu; 105 106 struct xs_handle *xenstore; 107 MemoryListener memory_listener; 108 MemoryListener io_listener; 109 DeviceListener device_listener; 110 QLIST_HEAD(, XenPhysmap) physmap; 111 hwaddr free_phys_offset; 112 const XenPhysmap *log_for_dirtybit; 113 114 Notifier exit; 115 Notifier suspend; 116 Notifier wakeup; 117 } XenIOState; 118 119 /* Xen specific function for piix pci */ 120 121 int xen_pci_slot_get_pirq(PCIDevice *pci_dev, int irq_num) 122 { 123 return irq_num + ((pci_dev->devfn >> 3) << 2); 124 } 125 126 void xen_piix3_set_irq(void *opaque, int irq_num, int level) 127 { 128 xen_set_pci_intx_level(xen_domid, 0, 0, irq_num >> 2, 129 irq_num & 3, level); 130 } 131 132 void xen_piix_pci_write_config_client(uint32_t address, uint32_t val, int len) 133 { 134 int i; 135 136 /* Scan for updates to PCI link routes (0x60-0x63). */ 137 for (i = 0; i < len; i++) { 138 uint8_t v = (val >> (8 * i)) & 0xff; 139 if (v & 0x80) { 140 v = 0; 141 } 142 v &= 0xf; 143 if (((address + i) >= 0x60) && ((address + i) <= 0x63)) { 144 xen_set_pci_link_route(xen_domid, address + i - 0x60, v); 145 } 146 } 147 } 148 149 int xen_is_pirq_msi(uint32_t msi_data) 150 { 151 /* If vector is 0, the msi is remapped into a pirq, passed as 152 * dest_id. 153 */ 154 return ((msi_data & MSI_DATA_VECTOR_MASK) >> MSI_DATA_VECTOR_SHIFT) == 0; 155 } 156 157 void xen_hvm_inject_msi(uint64_t addr, uint32_t data) 158 { 159 xen_inject_msi(xen_domid, addr, data); 160 } 161 162 static void xen_suspend_notifier(Notifier *notifier, void *data) 163 { 164 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 3); 165 } 166 167 /* Xen Interrupt Controller */ 168 169 static void xen_set_irq(void *opaque, int irq, int level) 170 { 171 xen_set_isa_irq_level(xen_domid, irq, level); 172 } 173 174 qemu_irq *xen_interrupt_controller_init(void) 175 { 176 return qemu_allocate_irqs(xen_set_irq, NULL, 16); 177 } 178 179 /* Memory Ops */ 180 181 static void xen_ram_init(PCMachineState *pcms, 182 ram_addr_t ram_size, MemoryRegion **ram_memory_p) 183 { 184 MemoryRegion *sysmem = get_system_memory(); 185 ram_addr_t block_len; 186 uint64_t user_lowmem = object_property_get_uint(qdev_get_machine(), 187 PC_MACHINE_MAX_RAM_BELOW_4G, 188 &error_abort); 189 190 /* Handle the machine opt max-ram-below-4g. It is basically doing 191 * min(xen limit, user limit). 192 */ 193 if (!user_lowmem) { 194 user_lowmem = HVM_BELOW_4G_RAM_END; /* default */ 195 } 196 if (HVM_BELOW_4G_RAM_END <= user_lowmem) { 197 user_lowmem = HVM_BELOW_4G_RAM_END; 198 } 199 200 if (ram_size >= user_lowmem) { 201 pcms->above_4g_mem_size = ram_size - user_lowmem; 202 pcms->below_4g_mem_size = user_lowmem; 203 } else { 204 pcms->above_4g_mem_size = 0; 205 pcms->below_4g_mem_size = ram_size; 206 } 207 if (!pcms->above_4g_mem_size) { 208 block_len = ram_size; 209 } else { 210 /* 211 * Xen does not allocate the memory continuously, it keeps a 212 * hole of the size computed above or passed in. 213 */ 214 block_len = (1ULL << 32) + pcms->above_4g_mem_size; 215 } 216 memory_region_init_ram(&ram_memory, NULL, "xen.ram", block_len, 217 &error_fatal); 218 *ram_memory_p = &ram_memory; 219 220 memory_region_init_alias(&ram_640k, NULL, "xen.ram.640k", 221 &ram_memory, 0, 0xa0000); 222 memory_region_add_subregion(sysmem, 0, &ram_640k); 223 /* Skip of the VGA IO memory space, it will be registered later by the VGA 224 * emulated device. 225 * 226 * The area between 0xc0000 and 0x100000 will be used by SeaBIOS to load 227 * the Options ROM, so it is registered here as RAM. 228 */ 229 memory_region_init_alias(&ram_lo, NULL, "xen.ram.lo", 230 &ram_memory, 0xc0000, 231 pcms->below_4g_mem_size - 0xc0000); 232 memory_region_add_subregion(sysmem, 0xc0000, &ram_lo); 233 if (pcms->above_4g_mem_size > 0) { 234 memory_region_init_alias(&ram_hi, NULL, "xen.ram.hi", 235 &ram_memory, 0x100000000ULL, 236 pcms->above_4g_mem_size); 237 memory_region_add_subregion(sysmem, 0x100000000ULL, &ram_hi); 238 } 239 } 240 241 void xen_ram_alloc(ram_addr_t ram_addr, ram_addr_t size, MemoryRegion *mr, 242 Error **errp) 243 { 244 unsigned long nr_pfn; 245 xen_pfn_t *pfn_list; 246 int i; 247 248 if (runstate_check(RUN_STATE_INMIGRATE)) { 249 /* RAM already populated in Xen */ 250 fprintf(stderr, "%s: do not alloc "RAM_ADDR_FMT 251 " bytes of ram at "RAM_ADDR_FMT" when runstate is INMIGRATE\n", 252 __func__, size, ram_addr); 253 return; 254 } 255 256 if (mr == &ram_memory) { 257 return; 258 } 259 260 trace_xen_ram_alloc(ram_addr, size); 261 262 nr_pfn = size >> TARGET_PAGE_BITS; 263 pfn_list = g_malloc(sizeof (*pfn_list) * nr_pfn); 264 265 for (i = 0; i < nr_pfn; i++) { 266 pfn_list[i] = (ram_addr >> TARGET_PAGE_BITS) + i; 267 } 268 269 if (xc_domain_populate_physmap_exact(xen_xc, xen_domid, nr_pfn, 0, 0, pfn_list)) { 270 error_setg(errp, "xen: failed to populate ram at " RAM_ADDR_FMT, 271 ram_addr); 272 } 273 274 g_free(pfn_list); 275 } 276 277 static XenPhysmap *get_physmapping(XenIOState *state, 278 hwaddr start_addr, ram_addr_t size) 279 { 280 XenPhysmap *physmap = NULL; 281 282 start_addr &= TARGET_PAGE_MASK; 283 284 QLIST_FOREACH(physmap, &state->physmap, list) { 285 if (range_covers_byte(physmap->start_addr, physmap->size, start_addr)) { 286 return physmap; 287 } 288 } 289 return NULL; 290 } 291 292 #ifdef XEN_COMPAT_PHYSMAP 293 static hwaddr xen_phys_offset_to_gaddr(hwaddr start_addr, 294 ram_addr_t size, void *opaque) 295 { 296 hwaddr addr = start_addr & TARGET_PAGE_MASK; 297 XenIOState *xen_io_state = opaque; 298 XenPhysmap *physmap = NULL; 299 300 QLIST_FOREACH(physmap, &xen_io_state->physmap, list) { 301 if (range_covers_byte(physmap->phys_offset, physmap->size, addr)) { 302 return physmap->start_addr; 303 } 304 } 305 306 return start_addr; 307 } 308 309 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 310 { 311 char path[80], value[17]; 312 313 snprintf(path, sizeof(path), 314 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/start_addr", 315 xen_domid, (uint64_t)physmap->phys_offset); 316 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->start_addr); 317 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 318 return -1; 319 } 320 snprintf(path, sizeof(path), 321 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/size", 322 xen_domid, (uint64_t)physmap->phys_offset); 323 snprintf(value, sizeof(value), "%"PRIx64, (uint64_t)physmap->size); 324 if (!xs_write(state->xenstore, 0, path, value, strlen(value))) { 325 return -1; 326 } 327 if (physmap->name) { 328 snprintf(path, sizeof(path), 329 "/local/domain/0/device-model/%d/physmap/%"PRIx64"/name", 330 xen_domid, (uint64_t)physmap->phys_offset); 331 if (!xs_write(state->xenstore, 0, path, 332 physmap->name, strlen(physmap->name))) { 333 return -1; 334 } 335 } 336 return 0; 337 } 338 #else 339 static int xen_save_physmap(XenIOState *state, XenPhysmap *physmap) 340 { 341 return 0; 342 } 343 #endif 344 345 static int xen_add_to_physmap(XenIOState *state, 346 hwaddr start_addr, 347 ram_addr_t size, 348 MemoryRegion *mr, 349 hwaddr offset_within_region) 350 { 351 unsigned long nr_pages; 352 int rc = 0; 353 XenPhysmap *physmap = NULL; 354 hwaddr pfn, start_gpfn; 355 hwaddr phys_offset = memory_region_get_ram_addr(mr); 356 const char *mr_name; 357 358 if (get_physmapping(state, start_addr, size)) { 359 return 0; 360 } 361 if (size <= 0) { 362 return -1; 363 } 364 365 /* Xen can only handle a single dirty log region for now and we want 366 * the linear framebuffer to be that region. 367 * Avoid tracking any regions that is not videoram and avoid tracking 368 * the legacy vga region. */ 369 if (mr == framebuffer && start_addr > 0xbffff) { 370 goto go_physmap; 371 } 372 return -1; 373 374 go_physmap: 375 DPRINTF("mapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx"\n", 376 start_addr, start_addr + size); 377 378 mr_name = memory_region_name(mr); 379 380 physmap = g_malloc(sizeof(XenPhysmap)); 381 382 physmap->start_addr = start_addr; 383 physmap->size = size; 384 physmap->name = mr_name; 385 physmap->phys_offset = phys_offset; 386 387 QLIST_INSERT_HEAD(&state->physmap, physmap, list); 388 389 if (runstate_check(RUN_STATE_INMIGRATE)) { 390 /* Now when we have a physmap entry we can replace a dummy mapping with 391 * a real one of guest foreign memory. */ 392 uint8_t *p = xen_replace_cache_entry(phys_offset, start_addr, size); 393 assert(p && p == memory_region_get_ram_ptr(mr)); 394 395 return 0; 396 } 397 398 pfn = phys_offset >> TARGET_PAGE_BITS; 399 start_gpfn = start_addr >> TARGET_PAGE_BITS; 400 nr_pages = size >> TARGET_PAGE_BITS; 401 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, nr_pages, pfn, 402 start_gpfn); 403 if (rc) { 404 int saved_errno = errno; 405 406 error_report("relocate_memory %lu pages from GFN %"HWADDR_PRIx 407 " to GFN %"HWADDR_PRIx" failed: %s", 408 nr_pages, pfn, start_gpfn, strerror(saved_errno)); 409 errno = saved_errno; 410 return -1; 411 } 412 413 rc = xendevicemodel_pin_memory_cacheattr(xen_dmod, xen_domid, 414 start_addr >> TARGET_PAGE_BITS, 415 (start_addr + size - 1) >> TARGET_PAGE_BITS, 416 XEN_DOMCTL_MEM_CACHEATTR_WB); 417 if (rc) { 418 error_report("pin_memory_cacheattr failed: %s", strerror(errno)); 419 } 420 return xen_save_physmap(state, physmap); 421 } 422 423 static int xen_remove_from_physmap(XenIOState *state, 424 hwaddr start_addr, 425 ram_addr_t size) 426 { 427 int rc = 0; 428 XenPhysmap *physmap = NULL; 429 hwaddr phys_offset = 0; 430 431 physmap = get_physmapping(state, start_addr, size); 432 if (physmap == NULL) { 433 return -1; 434 } 435 436 phys_offset = physmap->phys_offset; 437 size = physmap->size; 438 439 DPRINTF("unmapping vram to %"HWADDR_PRIx" - %"HWADDR_PRIx", at " 440 "%"HWADDR_PRIx"\n", start_addr, start_addr + size, phys_offset); 441 442 size >>= TARGET_PAGE_BITS; 443 start_addr >>= TARGET_PAGE_BITS; 444 phys_offset >>= TARGET_PAGE_BITS; 445 rc = xendevicemodel_relocate_memory(xen_dmod, xen_domid, size, start_addr, 446 phys_offset); 447 if (rc) { 448 int saved_errno = errno; 449 450 error_report("relocate_memory "RAM_ADDR_FMT" pages" 451 " from GFN %"HWADDR_PRIx 452 " to GFN %"HWADDR_PRIx" failed: %s", 453 size, start_addr, phys_offset, strerror(saved_errno)); 454 errno = saved_errno; 455 return -1; 456 } 457 458 QLIST_REMOVE(physmap, list); 459 if (state->log_for_dirtybit == physmap) { 460 state->log_for_dirtybit = NULL; 461 } 462 g_free(physmap); 463 464 return 0; 465 } 466 467 static void xen_set_memory(struct MemoryListener *listener, 468 MemoryRegionSection *section, 469 bool add) 470 { 471 XenIOState *state = container_of(listener, XenIOState, memory_listener); 472 hwaddr start_addr = section->offset_within_address_space; 473 ram_addr_t size = int128_get64(section->size); 474 bool log_dirty = memory_region_is_logging(section->mr, DIRTY_MEMORY_VGA); 475 hvmmem_type_t mem_type; 476 477 if (section->mr == &ram_memory) { 478 return; 479 } else { 480 if (add) { 481 xen_map_memory_section(xen_domid, state->ioservid, 482 section); 483 } else { 484 xen_unmap_memory_section(xen_domid, state->ioservid, 485 section); 486 } 487 } 488 489 if (!memory_region_is_ram(section->mr)) { 490 return; 491 } 492 493 if (log_dirty != add) { 494 return; 495 } 496 497 trace_xen_client_set_memory(start_addr, size, log_dirty); 498 499 start_addr &= TARGET_PAGE_MASK; 500 size = TARGET_PAGE_ALIGN(size); 501 502 if (add) { 503 if (!memory_region_is_rom(section->mr)) { 504 xen_add_to_physmap(state, start_addr, size, 505 section->mr, section->offset_within_region); 506 } else { 507 mem_type = HVMMEM_ram_ro; 508 if (xen_set_mem_type(xen_domid, mem_type, 509 start_addr >> TARGET_PAGE_BITS, 510 size >> TARGET_PAGE_BITS)) { 511 DPRINTF("xen_set_mem_type error, addr: "TARGET_FMT_plx"\n", 512 start_addr); 513 } 514 } 515 } else { 516 if (xen_remove_from_physmap(state, start_addr, size) < 0) { 517 DPRINTF("physmapping does not exist at "TARGET_FMT_plx"\n", start_addr); 518 } 519 } 520 } 521 522 static void xen_region_add(MemoryListener *listener, 523 MemoryRegionSection *section) 524 { 525 memory_region_ref(section->mr); 526 xen_set_memory(listener, section, true); 527 } 528 529 static void xen_region_del(MemoryListener *listener, 530 MemoryRegionSection *section) 531 { 532 xen_set_memory(listener, section, false); 533 memory_region_unref(section->mr); 534 } 535 536 static void xen_io_add(MemoryListener *listener, 537 MemoryRegionSection *section) 538 { 539 XenIOState *state = container_of(listener, XenIOState, io_listener); 540 MemoryRegion *mr = section->mr; 541 542 if (mr->ops == &unassigned_io_ops) { 543 return; 544 } 545 546 memory_region_ref(mr); 547 548 xen_map_io_section(xen_domid, state->ioservid, section); 549 } 550 551 static void xen_io_del(MemoryListener *listener, 552 MemoryRegionSection *section) 553 { 554 XenIOState *state = container_of(listener, XenIOState, io_listener); 555 MemoryRegion *mr = section->mr; 556 557 if (mr->ops == &unassigned_io_ops) { 558 return; 559 } 560 561 xen_unmap_io_section(xen_domid, state->ioservid, section); 562 563 memory_region_unref(mr); 564 } 565 566 static void xen_device_realize(DeviceListener *listener, 567 DeviceState *dev) 568 { 569 XenIOState *state = container_of(listener, XenIOState, device_listener); 570 571 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 572 PCIDevice *pci_dev = PCI_DEVICE(dev); 573 574 xen_map_pcidev(xen_domid, state->ioservid, pci_dev); 575 } 576 } 577 578 static void xen_device_unrealize(DeviceListener *listener, 579 DeviceState *dev) 580 { 581 XenIOState *state = container_of(listener, XenIOState, device_listener); 582 583 if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { 584 PCIDevice *pci_dev = PCI_DEVICE(dev); 585 586 xen_unmap_pcidev(xen_domid, state->ioservid, pci_dev); 587 } 588 } 589 590 static void xen_sync_dirty_bitmap(XenIOState *state, 591 hwaddr start_addr, 592 ram_addr_t size) 593 { 594 hwaddr npages = size >> TARGET_PAGE_BITS; 595 const int width = sizeof(unsigned long) * 8; 596 unsigned long bitmap[DIV_ROUND_UP(npages, width)]; 597 int rc, i, j; 598 const XenPhysmap *physmap = NULL; 599 600 physmap = get_physmapping(state, start_addr, size); 601 if (physmap == NULL) { 602 /* not handled */ 603 return; 604 } 605 606 if (state->log_for_dirtybit == NULL) { 607 state->log_for_dirtybit = physmap; 608 } else if (state->log_for_dirtybit != physmap) { 609 /* Only one range for dirty bitmap can be tracked. */ 610 return; 611 } 612 613 rc = xen_track_dirty_vram(xen_domid, start_addr >> TARGET_PAGE_BITS, 614 npages, bitmap); 615 if (rc < 0) { 616 #ifndef ENODATA 617 #define ENODATA ENOENT 618 #endif 619 if (errno == ENODATA) { 620 memory_region_set_dirty(framebuffer, 0, size); 621 DPRINTF("xen: track_dirty_vram failed (0x" TARGET_FMT_plx 622 ", 0x" TARGET_FMT_plx "): %s\n", 623 start_addr, start_addr + size, strerror(errno)); 624 } 625 return; 626 } 627 628 for (i = 0; i < ARRAY_SIZE(bitmap); i++) { 629 unsigned long map = bitmap[i]; 630 while (map != 0) { 631 j = ctzl(map); 632 map &= ~(1ul << j); 633 memory_region_set_dirty(framebuffer, 634 (i * width + j) * TARGET_PAGE_SIZE, 635 TARGET_PAGE_SIZE); 636 }; 637 } 638 } 639 640 static void xen_log_start(MemoryListener *listener, 641 MemoryRegionSection *section, 642 int old, int new) 643 { 644 XenIOState *state = container_of(listener, XenIOState, memory_listener); 645 646 if (new & ~old & (1 << DIRTY_MEMORY_VGA)) { 647 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 648 int128_get64(section->size)); 649 } 650 } 651 652 static void xen_log_stop(MemoryListener *listener, MemoryRegionSection *section, 653 int old, int new) 654 { 655 XenIOState *state = container_of(listener, XenIOState, memory_listener); 656 657 if (old & ~new & (1 << DIRTY_MEMORY_VGA)) { 658 state->log_for_dirtybit = NULL; 659 /* Disable dirty bit tracking */ 660 xen_track_dirty_vram(xen_domid, 0, 0, NULL); 661 } 662 } 663 664 static void xen_log_sync(MemoryListener *listener, MemoryRegionSection *section) 665 { 666 XenIOState *state = container_of(listener, XenIOState, memory_listener); 667 668 xen_sync_dirty_bitmap(state, section->offset_within_address_space, 669 int128_get64(section->size)); 670 } 671 672 static void xen_log_global_start(MemoryListener *listener) 673 { 674 if (xen_enabled()) { 675 xen_in_migration = true; 676 } 677 } 678 679 static void xen_log_global_stop(MemoryListener *listener) 680 { 681 xen_in_migration = false; 682 } 683 684 static MemoryListener xen_memory_listener = { 685 .region_add = xen_region_add, 686 .region_del = xen_region_del, 687 .log_start = xen_log_start, 688 .log_stop = xen_log_stop, 689 .log_sync = xen_log_sync, 690 .log_global_start = xen_log_global_start, 691 .log_global_stop = xen_log_global_stop, 692 .priority = 10, 693 }; 694 695 static MemoryListener xen_io_listener = { 696 .region_add = xen_io_add, 697 .region_del = xen_io_del, 698 .priority = 10, 699 }; 700 701 static DeviceListener xen_device_listener = { 702 .realize = xen_device_realize, 703 .unrealize = xen_device_unrealize, 704 }; 705 706 /* get the ioreq packets from share mem */ 707 static ioreq_t *cpu_get_ioreq_from_shared_memory(XenIOState *state, int vcpu) 708 { 709 ioreq_t *req = xen_vcpu_ioreq(state->shared_page, vcpu); 710 711 if (req->state != STATE_IOREQ_READY) { 712 DPRINTF("I/O request not ready: " 713 "%x, ptr: %x, port: %"PRIx64", " 714 "data: %"PRIx64", count: %u, size: %u\n", 715 req->state, req->data_is_ptr, req->addr, 716 req->data, req->count, req->size); 717 return NULL; 718 } 719 720 xen_rmb(); /* see IOREQ_READY /then/ read contents of ioreq */ 721 722 req->state = STATE_IOREQ_INPROCESS; 723 return req; 724 } 725 726 /* use poll to get the port notification */ 727 /* ioreq_vec--out,the */ 728 /* retval--the number of ioreq packet */ 729 static ioreq_t *cpu_get_ioreq(XenIOState *state) 730 { 731 int i; 732 evtchn_port_t port; 733 734 port = xenevtchn_pending(state->xce_handle); 735 if (port == state->bufioreq_local_port) { 736 timer_mod(state->buffered_io_timer, 737 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 738 return NULL; 739 } 740 741 if (port != -1) { 742 for (i = 0; i < max_cpus; i++) { 743 if (state->ioreq_local_port[i] == port) { 744 break; 745 } 746 } 747 748 if (i == max_cpus) { 749 hw_error("Fatal error while trying to get io event!\n"); 750 } 751 752 /* unmask the wanted port again */ 753 xenevtchn_unmask(state->xce_handle, port); 754 755 /* get the io packet from shared memory */ 756 state->send_vcpu = i; 757 return cpu_get_ioreq_from_shared_memory(state, i); 758 } 759 760 /* read error or read nothing */ 761 return NULL; 762 } 763 764 static uint32_t do_inp(uint32_t addr, unsigned long size) 765 { 766 switch (size) { 767 case 1: 768 return cpu_inb(addr); 769 case 2: 770 return cpu_inw(addr); 771 case 4: 772 return cpu_inl(addr); 773 default: 774 hw_error("inp: bad size: %04x %lx", addr, size); 775 } 776 } 777 778 static void do_outp(uint32_t addr, 779 unsigned long size, uint32_t val) 780 { 781 switch (size) { 782 case 1: 783 return cpu_outb(addr, val); 784 case 2: 785 return cpu_outw(addr, val); 786 case 4: 787 return cpu_outl(addr, val); 788 default: 789 hw_error("outp: bad size: %04x %lx", addr, size); 790 } 791 } 792 793 /* 794 * Helper functions which read/write an object from/to physical guest 795 * memory, as part of the implementation of an ioreq. 796 * 797 * Equivalent to 798 * cpu_physical_memory_rw(addr + (req->df ? -1 : +1) * req->size * i, 799 * val, req->size, 0/1) 800 * except without the integer overflow problems. 801 */ 802 static void rw_phys_req_item(hwaddr addr, 803 ioreq_t *req, uint32_t i, void *val, int rw) 804 { 805 /* Do everything unsigned so overflow just results in a truncated result 806 * and accesses to undesired parts of guest memory, which is up 807 * to the guest */ 808 hwaddr offset = (hwaddr)req->size * i; 809 if (req->df) { 810 addr -= offset; 811 } else { 812 addr += offset; 813 } 814 cpu_physical_memory_rw(addr, val, req->size, rw); 815 } 816 817 static inline void read_phys_req_item(hwaddr addr, 818 ioreq_t *req, uint32_t i, void *val) 819 { 820 rw_phys_req_item(addr, req, i, val, 0); 821 } 822 static inline void write_phys_req_item(hwaddr addr, 823 ioreq_t *req, uint32_t i, void *val) 824 { 825 rw_phys_req_item(addr, req, i, val, 1); 826 } 827 828 829 static void cpu_ioreq_pio(ioreq_t *req) 830 { 831 uint32_t i; 832 833 trace_cpu_ioreq_pio(req, req->dir, req->df, req->data_is_ptr, req->addr, 834 req->data, req->count, req->size); 835 836 if (req->size > sizeof(uint32_t)) { 837 hw_error("PIO: bad size (%u)", req->size); 838 } 839 840 if (req->dir == IOREQ_READ) { 841 if (!req->data_is_ptr) { 842 req->data = do_inp(req->addr, req->size); 843 trace_cpu_ioreq_pio_read_reg(req, req->data, req->addr, 844 req->size); 845 } else { 846 uint32_t tmp; 847 848 for (i = 0; i < req->count; i++) { 849 tmp = do_inp(req->addr, req->size); 850 write_phys_req_item(req->data, req, i, &tmp); 851 } 852 } 853 } else if (req->dir == IOREQ_WRITE) { 854 if (!req->data_is_ptr) { 855 trace_cpu_ioreq_pio_write_reg(req, req->data, req->addr, 856 req->size); 857 do_outp(req->addr, req->size, req->data); 858 } else { 859 for (i = 0; i < req->count; i++) { 860 uint32_t tmp = 0; 861 862 read_phys_req_item(req->data, req, i, &tmp); 863 do_outp(req->addr, req->size, tmp); 864 } 865 } 866 } 867 } 868 869 static void cpu_ioreq_move(ioreq_t *req) 870 { 871 uint32_t i; 872 873 trace_cpu_ioreq_move(req, req->dir, req->df, req->data_is_ptr, req->addr, 874 req->data, req->count, req->size); 875 876 if (req->size > sizeof(req->data)) { 877 hw_error("MMIO: bad size (%u)", req->size); 878 } 879 880 if (!req->data_is_ptr) { 881 if (req->dir == IOREQ_READ) { 882 for (i = 0; i < req->count; i++) { 883 read_phys_req_item(req->addr, req, i, &req->data); 884 } 885 } else if (req->dir == IOREQ_WRITE) { 886 for (i = 0; i < req->count; i++) { 887 write_phys_req_item(req->addr, req, i, &req->data); 888 } 889 } 890 } else { 891 uint64_t tmp; 892 893 if (req->dir == IOREQ_READ) { 894 for (i = 0; i < req->count; i++) { 895 read_phys_req_item(req->addr, req, i, &tmp); 896 write_phys_req_item(req->data, req, i, &tmp); 897 } 898 } else if (req->dir == IOREQ_WRITE) { 899 for (i = 0; i < req->count; i++) { 900 read_phys_req_item(req->data, req, i, &tmp); 901 write_phys_req_item(req->addr, req, i, &tmp); 902 } 903 } 904 } 905 } 906 907 static void regs_to_cpu(vmware_regs_t *vmport_regs, ioreq_t *req) 908 { 909 X86CPU *cpu; 910 CPUX86State *env; 911 912 cpu = X86_CPU(current_cpu); 913 env = &cpu->env; 914 env->regs[R_EAX] = req->data; 915 env->regs[R_EBX] = vmport_regs->ebx; 916 env->regs[R_ECX] = vmport_regs->ecx; 917 env->regs[R_EDX] = vmport_regs->edx; 918 env->regs[R_ESI] = vmport_regs->esi; 919 env->regs[R_EDI] = vmport_regs->edi; 920 } 921 922 static void regs_from_cpu(vmware_regs_t *vmport_regs) 923 { 924 X86CPU *cpu = X86_CPU(current_cpu); 925 CPUX86State *env = &cpu->env; 926 927 vmport_regs->ebx = env->regs[R_EBX]; 928 vmport_regs->ecx = env->regs[R_ECX]; 929 vmport_regs->edx = env->regs[R_EDX]; 930 vmport_regs->esi = env->regs[R_ESI]; 931 vmport_regs->edi = env->regs[R_EDI]; 932 } 933 934 static void handle_vmport_ioreq(XenIOState *state, ioreq_t *req) 935 { 936 vmware_regs_t *vmport_regs; 937 938 assert(state->shared_vmport_page); 939 vmport_regs = 940 &state->shared_vmport_page->vcpu_vmport_regs[state->send_vcpu]; 941 QEMU_BUILD_BUG_ON(sizeof(*req) < sizeof(*vmport_regs)); 942 943 current_cpu = state->cpu_by_vcpu_id[state->send_vcpu]; 944 regs_to_cpu(vmport_regs, req); 945 cpu_ioreq_pio(req); 946 regs_from_cpu(vmport_regs); 947 current_cpu = NULL; 948 } 949 950 static void handle_ioreq(XenIOState *state, ioreq_t *req) 951 { 952 trace_handle_ioreq(req, req->type, req->dir, req->df, req->data_is_ptr, 953 req->addr, req->data, req->count, req->size); 954 955 if (!req->data_is_ptr && (req->dir == IOREQ_WRITE) && 956 (req->size < sizeof (target_ulong))) { 957 req->data &= ((target_ulong) 1 << (8 * req->size)) - 1; 958 } 959 960 if (req->dir == IOREQ_WRITE) 961 trace_handle_ioreq_write(req, req->type, req->df, req->data_is_ptr, 962 req->addr, req->data, req->count, req->size); 963 964 switch (req->type) { 965 case IOREQ_TYPE_PIO: 966 cpu_ioreq_pio(req); 967 break; 968 case IOREQ_TYPE_COPY: 969 cpu_ioreq_move(req); 970 break; 971 case IOREQ_TYPE_VMWARE_PORT: 972 handle_vmport_ioreq(state, req); 973 break; 974 case IOREQ_TYPE_TIMEOFFSET: 975 break; 976 case IOREQ_TYPE_INVALIDATE: 977 xen_invalidate_map_cache(); 978 break; 979 case IOREQ_TYPE_PCI_CONFIG: { 980 uint32_t sbdf = req->addr >> 32; 981 uint32_t val; 982 983 /* Fake a write to port 0xCF8 so that 984 * the config space access will target the 985 * correct device model. 986 */ 987 val = (1u << 31) | 988 ((req->addr & 0x0f00) << 16) | 989 ((sbdf & 0xffff) << 8) | 990 (req->addr & 0xfc); 991 do_outp(0xcf8, 4, val); 992 993 /* Now issue the config space access via 994 * port 0xCFC 995 */ 996 req->addr = 0xcfc | (req->addr & 0x03); 997 cpu_ioreq_pio(req); 998 break; 999 } 1000 default: 1001 hw_error("Invalid ioreq type 0x%x\n", req->type); 1002 } 1003 if (req->dir == IOREQ_READ) { 1004 trace_handle_ioreq_read(req, req->type, req->df, req->data_is_ptr, 1005 req->addr, req->data, req->count, req->size); 1006 } 1007 } 1008 1009 static int handle_buffered_iopage(XenIOState *state) 1010 { 1011 buffered_iopage_t *buf_page = state->buffered_io_page; 1012 buf_ioreq_t *buf_req = NULL; 1013 ioreq_t req; 1014 int qw; 1015 1016 if (!buf_page) { 1017 return 0; 1018 } 1019 1020 memset(&req, 0x00, sizeof(req)); 1021 req.state = STATE_IOREQ_READY; 1022 req.count = 1; 1023 req.dir = IOREQ_WRITE; 1024 1025 for (;;) { 1026 uint32_t rdptr = buf_page->read_pointer, wrptr; 1027 1028 xen_rmb(); 1029 wrptr = buf_page->write_pointer; 1030 xen_rmb(); 1031 if (rdptr != buf_page->read_pointer) { 1032 continue; 1033 } 1034 if (rdptr == wrptr) { 1035 break; 1036 } 1037 buf_req = &buf_page->buf_ioreq[rdptr % IOREQ_BUFFER_SLOT_NUM]; 1038 req.size = 1U << buf_req->size; 1039 req.addr = buf_req->addr; 1040 req.data = buf_req->data; 1041 req.type = buf_req->type; 1042 xen_rmb(); 1043 qw = (req.size == 8); 1044 if (qw) { 1045 if (rdptr + 1 == wrptr) { 1046 hw_error("Incomplete quad word buffered ioreq"); 1047 } 1048 buf_req = &buf_page->buf_ioreq[(rdptr + 1) % 1049 IOREQ_BUFFER_SLOT_NUM]; 1050 req.data |= ((uint64_t)buf_req->data) << 32; 1051 xen_rmb(); 1052 } 1053 1054 handle_ioreq(state, &req); 1055 1056 /* Only req.data may get updated by handle_ioreq(), albeit even that 1057 * should not happen as such data would never make it to the guest (we 1058 * can only usefully see writes here after all). 1059 */ 1060 assert(req.state == STATE_IOREQ_READY); 1061 assert(req.count == 1); 1062 assert(req.dir == IOREQ_WRITE); 1063 assert(!req.data_is_ptr); 1064 1065 atomic_add(&buf_page->read_pointer, qw + 1); 1066 } 1067 1068 return req.count; 1069 } 1070 1071 static void handle_buffered_io(void *opaque) 1072 { 1073 XenIOState *state = opaque; 1074 1075 if (handle_buffered_iopage(state)) { 1076 timer_mod(state->buffered_io_timer, 1077 BUFFER_IO_MAX_DELAY + qemu_clock_get_ms(QEMU_CLOCK_REALTIME)); 1078 } else { 1079 timer_del(state->buffered_io_timer); 1080 xenevtchn_unmask(state->xce_handle, state->bufioreq_local_port); 1081 } 1082 } 1083 1084 static void cpu_handle_ioreq(void *opaque) 1085 { 1086 XenIOState *state = opaque; 1087 ioreq_t *req = cpu_get_ioreq(state); 1088 1089 handle_buffered_iopage(state); 1090 if (req) { 1091 ioreq_t copy = *req; 1092 1093 xen_rmb(); 1094 handle_ioreq(state, ©); 1095 req->data = copy.data; 1096 1097 if (req->state != STATE_IOREQ_INPROCESS) { 1098 fprintf(stderr, "Badness in I/O request ... not in service?!: " 1099 "%x, ptr: %x, port: %"PRIx64", " 1100 "data: %"PRIx64", count: %u, size: %u, type: %u\n", 1101 req->state, req->data_is_ptr, req->addr, 1102 req->data, req->count, req->size, req->type); 1103 destroy_hvm_domain(false); 1104 return; 1105 } 1106 1107 xen_wmb(); /* Update ioreq contents /then/ update state. */ 1108 1109 /* 1110 * We do this before we send the response so that the tools 1111 * have the opportunity to pick up on the reset before the 1112 * guest resumes and does a hlt with interrupts disabled which 1113 * causes Xen to powerdown the domain. 1114 */ 1115 if (runstate_is_running()) { 1116 ShutdownCause request; 1117 1118 if (qemu_shutdown_requested_get()) { 1119 destroy_hvm_domain(false); 1120 } 1121 request = qemu_reset_requested_get(); 1122 if (request) { 1123 qemu_system_reset(request); 1124 destroy_hvm_domain(true); 1125 } 1126 } 1127 1128 req->state = STATE_IORESP_READY; 1129 xenevtchn_notify(state->xce_handle, 1130 state->ioreq_local_port[state->send_vcpu]); 1131 } 1132 } 1133 1134 static void xen_main_loop_prepare(XenIOState *state) 1135 { 1136 int evtchn_fd = -1; 1137 1138 if (state->xce_handle != NULL) { 1139 evtchn_fd = xenevtchn_fd(state->xce_handle); 1140 } 1141 1142 state->buffered_io_timer = timer_new_ms(QEMU_CLOCK_REALTIME, handle_buffered_io, 1143 state); 1144 1145 if (evtchn_fd != -1) { 1146 CPUState *cpu_state; 1147 1148 DPRINTF("%s: Init cpu_by_vcpu_id\n", __func__); 1149 CPU_FOREACH(cpu_state) { 1150 DPRINTF("%s: cpu_by_vcpu_id[%d]=%p\n", 1151 __func__, cpu_state->cpu_index, cpu_state); 1152 state->cpu_by_vcpu_id[cpu_state->cpu_index] = cpu_state; 1153 } 1154 qemu_set_fd_handler(evtchn_fd, cpu_handle_ioreq, NULL, state); 1155 } 1156 } 1157 1158 1159 static void xen_hvm_change_state_handler(void *opaque, int running, 1160 RunState rstate) 1161 { 1162 XenIOState *state = opaque; 1163 1164 if (running) { 1165 xen_main_loop_prepare(state); 1166 } 1167 1168 xen_set_ioreq_server_state(xen_domid, 1169 state->ioservid, 1170 (rstate == RUN_STATE_RUNNING)); 1171 } 1172 1173 static void xen_exit_notifier(Notifier *n, void *data) 1174 { 1175 XenIOState *state = container_of(n, XenIOState, exit); 1176 1177 xenevtchn_close(state->xce_handle); 1178 xs_daemon_close(state->xenstore); 1179 } 1180 1181 #ifdef XEN_COMPAT_PHYSMAP 1182 static void xen_read_physmap(XenIOState *state) 1183 { 1184 XenPhysmap *physmap = NULL; 1185 unsigned int len, num, i; 1186 char path[80], *value = NULL; 1187 char **entries = NULL; 1188 1189 snprintf(path, sizeof(path), 1190 "/local/domain/0/device-model/%d/physmap", xen_domid); 1191 entries = xs_directory(state->xenstore, 0, path, &num); 1192 if (entries == NULL) 1193 return; 1194 1195 for (i = 0; i < num; i++) { 1196 physmap = g_malloc(sizeof (XenPhysmap)); 1197 physmap->phys_offset = strtoull(entries[i], NULL, 16); 1198 snprintf(path, sizeof(path), 1199 "/local/domain/0/device-model/%d/physmap/%s/start_addr", 1200 xen_domid, entries[i]); 1201 value = xs_read(state->xenstore, 0, path, &len); 1202 if (value == NULL) { 1203 g_free(physmap); 1204 continue; 1205 } 1206 physmap->start_addr = strtoull(value, NULL, 16); 1207 free(value); 1208 1209 snprintf(path, sizeof(path), 1210 "/local/domain/0/device-model/%d/physmap/%s/size", 1211 xen_domid, entries[i]); 1212 value = xs_read(state->xenstore, 0, path, &len); 1213 if (value == NULL) { 1214 g_free(physmap); 1215 continue; 1216 } 1217 physmap->size = strtoull(value, NULL, 16); 1218 free(value); 1219 1220 snprintf(path, sizeof(path), 1221 "/local/domain/0/device-model/%d/physmap/%s/name", 1222 xen_domid, entries[i]); 1223 physmap->name = xs_read(state->xenstore, 0, path, &len); 1224 1225 QLIST_INSERT_HEAD(&state->physmap, physmap, list); 1226 } 1227 free(entries); 1228 } 1229 #else 1230 static void xen_read_physmap(XenIOState *state) 1231 { 1232 } 1233 #endif 1234 1235 static void xen_wakeup_notifier(Notifier *notifier, void *data) 1236 { 1237 xc_set_hvm_param(xen_xc, xen_domid, HVM_PARAM_ACPI_S_STATE, 0); 1238 } 1239 1240 static int xen_map_ioreq_server(XenIOState *state) 1241 { 1242 xen_pfn_t ioreq_pfn; 1243 xen_pfn_t bufioreq_pfn; 1244 evtchn_port_t bufioreq_evtchn; 1245 int rc; 1246 1247 rc = xen_get_ioreq_server_info(xen_domid, state->ioservid, 1248 &ioreq_pfn, &bufioreq_pfn, 1249 &bufioreq_evtchn); 1250 if (rc < 0) { 1251 error_report("failed to get ioreq server info: error %d handle=%p", 1252 errno, xen_xc); 1253 return rc; 1254 } 1255 1256 DPRINTF("shared page at pfn %lx\n", ioreq_pfn); 1257 DPRINTF("buffered io page at pfn %lx\n", bufioreq_pfn); 1258 DPRINTF("buffered io evtchn is %x\n", bufioreq_evtchn); 1259 1260 state->shared_page = xenforeignmemory_map(xen_fmem, xen_domid, 1261 PROT_READ | PROT_WRITE, 1262 1, &ioreq_pfn, NULL); 1263 if (state->shared_page == NULL) { 1264 error_report("map shared IO page returned error %d handle=%p", 1265 errno, xen_xc); 1266 return -1; 1267 } 1268 1269 state->buffered_io_page = xenforeignmemory_map(xen_fmem, xen_domid, 1270 PROT_READ | PROT_WRITE, 1271 1, &bufioreq_pfn, NULL); 1272 if (state->buffered_io_page == NULL) { 1273 error_report("map buffered IO page returned error %d", errno); 1274 return -1; 1275 } 1276 1277 state->bufioreq_remote_port = bufioreq_evtchn; 1278 1279 return 0; 1280 } 1281 1282 void xen_hvm_init(PCMachineState *pcms, MemoryRegion **ram_memory) 1283 { 1284 int i, rc; 1285 xen_pfn_t ioreq_pfn; 1286 XenIOState *state; 1287 1288 state = g_malloc0(sizeof (XenIOState)); 1289 1290 state->xce_handle = xenevtchn_open(NULL, 0); 1291 if (state->xce_handle == NULL) { 1292 perror("xen: event channel open"); 1293 goto err; 1294 } 1295 1296 state->xenstore = xs_daemon_open(); 1297 if (state->xenstore == NULL) { 1298 perror("xen: xenstore open"); 1299 goto err; 1300 } 1301 1302 xen_create_ioreq_server(xen_domid, &state->ioservid); 1303 1304 state->exit.notify = xen_exit_notifier; 1305 qemu_add_exit_notifier(&state->exit); 1306 1307 state->suspend.notify = xen_suspend_notifier; 1308 qemu_register_suspend_notifier(&state->suspend); 1309 1310 state->wakeup.notify = xen_wakeup_notifier; 1311 qemu_register_wakeup_notifier(&state->wakeup); 1312 1313 rc = xen_map_ioreq_server(state); 1314 if (rc < 0) { 1315 goto err; 1316 } 1317 1318 rc = xen_get_vmport_regs_pfn(xen_xc, xen_domid, &ioreq_pfn); 1319 if (!rc) { 1320 DPRINTF("shared vmport page at pfn %lx\n", ioreq_pfn); 1321 state->shared_vmport_page = 1322 xenforeignmemory_map(xen_fmem, xen_domid, PROT_READ|PROT_WRITE, 1323 1, &ioreq_pfn, NULL); 1324 if (state->shared_vmport_page == NULL) { 1325 error_report("map shared vmport IO page returned error %d handle=%p", 1326 errno, xen_xc); 1327 goto err; 1328 } 1329 } else if (rc != -ENOSYS) { 1330 error_report("get vmport regs pfn returned error %d, rc=%d", 1331 errno, rc); 1332 goto err; 1333 } 1334 1335 /* Note: cpus is empty at this point in init */ 1336 state->cpu_by_vcpu_id = g_malloc0(max_cpus * sizeof(CPUState *)); 1337 1338 rc = xen_set_ioreq_server_state(xen_domid, state->ioservid, true); 1339 if (rc < 0) { 1340 error_report("failed to enable ioreq server info: error %d handle=%p", 1341 errno, xen_xc); 1342 goto err; 1343 } 1344 1345 state->ioreq_local_port = g_malloc0(max_cpus * sizeof (evtchn_port_t)); 1346 1347 /* FIXME: how about if we overflow the page here? */ 1348 for (i = 0; i < max_cpus; i++) { 1349 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1350 xen_vcpu_eport(state->shared_page, i)); 1351 if (rc == -1) { 1352 error_report("shared evtchn %d bind error %d", i, errno); 1353 goto err; 1354 } 1355 state->ioreq_local_port[i] = rc; 1356 } 1357 1358 rc = xenevtchn_bind_interdomain(state->xce_handle, xen_domid, 1359 state->bufioreq_remote_port); 1360 if (rc == -1) { 1361 error_report("buffered evtchn bind error %d", errno); 1362 goto err; 1363 } 1364 state->bufioreq_local_port = rc; 1365 1366 /* Init RAM management */ 1367 #ifdef XEN_COMPAT_PHYSMAP 1368 xen_map_cache_init(xen_phys_offset_to_gaddr, state); 1369 #else 1370 xen_map_cache_init(NULL, state); 1371 #endif 1372 xen_ram_init(pcms, ram_size, ram_memory); 1373 1374 qemu_add_vm_change_state_handler(xen_hvm_change_state_handler, state); 1375 1376 state->memory_listener = xen_memory_listener; 1377 QLIST_INIT(&state->physmap); 1378 memory_listener_register(&state->memory_listener, &address_space_memory); 1379 state->log_for_dirtybit = NULL; 1380 1381 state->io_listener = xen_io_listener; 1382 memory_listener_register(&state->io_listener, &address_space_io); 1383 1384 state->device_listener = xen_device_listener; 1385 device_listener_register(&state->device_listener); 1386 1387 /* Initialize backend core & drivers */ 1388 if (xen_be_init() != 0) { 1389 error_report("xen backend core setup failed"); 1390 goto err; 1391 } 1392 xen_be_register_common(); 1393 xen_read_physmap(state); 1394 1395 /* Disable ACPI build because Xen handles it */ 1396 pcms->acpi_build_enabled = false; 1397 1398 return; 1399 1400 err: 1401 error_report("xen hardware virtual machine initialisation failed"); 1402 exit(1); 1403 } 1404 1405 void destroy_hvm_domain(bool reboot) 1406 { 1407 xc_interface *xc_handle; 1408 int sts; 1409 int rc; 1410 1411 unsigned int reason = reboot ? SHUTDOWN_reboot : SHUTDOWN_poweroff; 1412 1413 if (xen_dmod) { 1414 rc = xendevicemodel_shutdown(xen_dmod, xen_domid, reason); 1415 if (!rc) { 1416 return; 1417 } 1418 if (errno != ENOTTY /* old Xen */) { 1419 perror("xendevicemodel_shutdown failed"); 1420 } 1421 /* well, try the old thing then */ 1422 } 1423 1424 xc_handle = xc_interface_open(0, 0, 0); 1425 if (xc_handle == NULL) { 1426 fprintf(stderr, "Cannot acquire xenctrl handle\n"); 1427 } else { 1428 sts = xc_domain_shutdown(xc_handle, xen_domid, reason); 1429 if (sts != 0) { 1430 fprintf(stderr, "xc_domain_shutdown failed to issue %s, " 1431 "sts %d, %s\n", reboot ? "reboot" : "poweroff", 1432 sts, strerror(errno)); 1433 } else { 1434 fprintf(stderr, "Issued domain %d %s\n", xen_domid, 1435 reboot ? "reboot" : "poweroff"); 1436 } 1437 xc_interface_close(xc_handle); 1438 } 1439 } 1440 1441 void xen_register_framebuffer(MemoryRegion *mr) 1442 { 1443 framebuffer = mr; 1444 } 1445 1446 void xen_shutdown_fatal_error(const char *fmt, ...) 1447 { 1448 va_list ap; 1449 1450 va_start(ap, fmt); 1451 vfprintf(stderr, fmt, ap); 1452 va_end(ap); 1453 fprintf(stderr, "Will destroy the domain.\n"); 1454 /* destroy the domain */ 1455 qemu_system_shutdown_request(SHUTDOWN_CAUSE_HOST_ERROR); 1456 } 1457 1458 void xen_hvm_modified_memory(ram_addr_t start, ram_addr_t length) 1459 { 1460 if (unlikely(xen_in_migration)) { 1461 int rc; 1462 ram_addr_t start_pfn, nb_pages; 1463 1464 if (length == 0) { 1465 length = TARGET_PAGE_SIZE; 1466 } 1467 start_pfn = start >> TARGET_PAGE_BITS; 1468 nb_pages = ((start + length + TARGET_PAGE_SIZE - 1) >> TARGET_PAGE_BITS) 1469 - start_pfn; 1470 rc = xen_modified_memory(xen_domid, start_pfn, nb_pages); 1471 if (rc) { 1472 fprintf(stderr, 1473 "%s failed for "RAM_ADDR_FMT" ("RAM_ADDR_FMT"): %i, %s\n", 1474 __func__, start, nb_pages, errno, strerror(errno)); 1475 } 1476 } 1477 } 1478 1479 void qmp_xen_set_global_dirty_log(bool enable, Error **errp) 1480 { 1481 if (enable) { 1482 memory_global_dirty_log_start(); 1483 } else { 1484 memory_global_dirty_log_stop(); 1485 } 1486 } 1487