1 /* 2 * Copyright (c) 2003-2004 Fabrice Bellard 3 * Copyright (c) 2019, 2024 Red Hat, Inc. 4 * 5 * Permission is hereby granted, free of charge, to any person obtaining a copy 6 * of this software and associated documentation files (the "Software"), to deal 7 * in the Software without restriction, including without limitation the rights 8 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 * copies of the Software, and to permit persons to whom the Software is 10 * furnished to do so, subject to the following conditions: 11 * 12 * The above copyright notice and this permission notice shall be included in 13 * all copies or substantial portions of the Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 21 * THE SOFTWARE. 22 */ 23 #include "qemu/osdep.h" 24 #include "qemu/error-report.h" 25 #include "qemu/cutils.h" 26 #include "qemu/units.h" 27 #include "qemu/datadir.h" 28 #include "qapi/error.h" 29 #include "system/numa.h" 30 #include "system/system.h" 31 #include "system/xen.h" 32 #include "trace.h" 33 34 #include "hw/i386/x86.h" 35 #include "target/i386/cpu.h" 36 #include "hw/rtc/mc146818rtc.h" 37 #include "target/i386/sev.h" 38 39 #include "hw/acpi/cpu_hotplug.h" 40 #include "hw/irq.h" 41 #include "hw/loader.h" 42 #include "multiboot.h" 43 #include "elf.h" 44 #include "standard-headers/asm-x86/bootparam.h" 45 #include CONFIG_DEVICES 46 #include "kvm/kvm_i386.h" 47 48 #ifdef CONFIG_XEN_EMU 49 #include "hw/xen/xen.h" 50 #include "hw/i386/kvm/xen_evtchn.h" 51 #endif 52 53 /* Physical Address of PVH entry point read from kernel ELF NOTE */ 54 static size_t pvh_start_addr; 55 56 static void x86_cpu_new(X86MachineState *x86ms, int64_t apic_id, Error **errp) 57 { 58 Object *cpu = object_new(MACHINE(x86ms)->cpu_type); 59 60 if (!object_property_set_uint(cpu, "apic-id", apic_id, errp)) { 61 goto out; 62 } 63 qdev_realize(DEVICE(cpu), NULL, errp); 64 65 out: 66 object_unref(cpu); 67 } 68 69 void x86_cpus_init(X86MachineState *x86ms, int default_cpu_version) 70 { 71 int i; 72 const CPUArchIdList *possible_cpus; 73 MachineState *ms = MACHINE(x86ms); 74 MachineClass *mc = MACHINE_GET_CLASS(x86ms); 75 76 x86_cpu_set_default_version(default_cpu_version); 77 78 /* 79 * Calculates the limit to CPU APIC ID values 80 * 81 * Limit for the APIC ID value, so that all 82 * CPU APIC IDs are < x86ms->apic_id_limit. 83 * 84 * This is used for FW_CFG_MAX_CPUS. See comments on fw_cfg_arch_create(). 85 */ 86 x86ms->apic_id_limit = x86_cpu_apic_id_from_index(x86ms, 87 ms->smp.max_cpus - 1) + 1; 88 89 /* 90 * Can we support APIC ID 255 or higher? With KVM, that requires 91 * both in-kernel lapic and X2APIC userspace API. 92 * 93 * kvm_enabled() must go first to ensure that kvm_* references are 94 * not emitted for the linker to consume (kvm_enabled() is 95 * a literal `0` in configurations where kvm_* aren't defined) 96 */ 97 if (kvm_enabled() && x86ms->apic_id_limit > 255 && 98 kvm_irqchip_in_kernel() && !kvm_enable_x2apic()) { 99 error_report("current -smp configuration requires kernel " 100 "irqchip and X2APIC API support."); 101 exit(EXIT_FAILURE); 102 } 103 104 if (kvm_enabled()) { 105 kvm_set_max_apic_id(x86ms->apic_id_limit); 106 } 107 108 if (!kvm_irqchip_in_kernel()) { 109 apic_set_max_apic_id(x86ms->apic_id_limit); 110 } 111 112 possible_cpus = mc->possible_cpu_arch_ids(ms); 113 for (i = 0; i < ms->smp.cpus; i++) { 114 x86_cpu_new(x86ms, possible_cpus->cpus[i].arch_id, &error_fatal); 115 } 116 } 117 118 void x86_rtc_set_cpus_count(ISADevice *s, uint16_t cpus_count) 119 { 120 MC146818RtcState *rtc = MC146818_RTC(s); 121 122 if (cpus_count > 0xff) { 123 /* 124 * If the number of CPUs can't be represented in 8 bits, the 125 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just 126 * to make old BIOSes fail more predictably. 127 */ 128 mc146818rtc_set_cmos_data(rtc, 0x5f, 0); 129 } else { 130 mc146818rtc_set_cmos_data(rtc, 0x5f, cpus_count - 1); 131 } 132 } 133 134 static int x86_apic_cmp(const void *a, const void *b) 135 { 136 CPUArchId *apic_a = (CPUArchId *)a; 137 CPUArchId *apic_b = (CPUArchId *)b; 138 139 return apic_a->arch_id - apic_b->arch_id; 140 } 141 142 /* 143 * returns pointer to CPUArchId descriptor that matches CPU's apic_id 144 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no 145 * entry corresponding to CPU's apic_id returns NULL. 146 */ 147 static CPUArchId *x86_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) 148 { 149 CPUArchId apic_id, *found_cpu; 150 151 apic_id.arch_id = id; 152 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus, 153 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus), 154 x86_apic_cmp); 155 if (found_cpu && idx) { 156 *idx = found_cpu - ms->possible_cpus->cpus; 157 } 158 return found_cpu; 159 } 160 161 void x86_cpu_plug(HotplugHandler *hotplug_dev, 162 DeviceState *dev, Error **errp) 163 { 164 CPUArchId *found_cpu; 165 Error *local_err = NULL; 166 X86CPU *cpu = X86_CPU(dev); 167 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 168 169 if (x86ms->acpi_dev) { 170 hotplug_handler_plug(x86ms->acpi_dev, dev, &local_err); 171 if (local_err) { 172 goto out; 173 } 174 } 175 176 /* increment the number of CPUs */ 177 x86ms->boot_cpus++; 178 if (x86ms->rtc) { 179 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 180 } 181 if (x86ms->fw_cfg) { 182 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 183 } 184 185 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 186 found_cpu->cpu = CPU(dev); 187 out: 188 error_propagate(errp, local_err); 189 } 190 191 void x86_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 192 DeviceState *dev, Error **errp) 193 { 194 int idx = -1; 195 X86CPU *cpu = X86_CPU(dev); 196 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 197 198 if (!x86ms->acpi_dev) { 199 error_setg(errp, "CPU hot unplug not supported without ACPI"); 200 return; 201 } 202 203 x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 204 assert(idx != -1); 205 if (idx == 0) { 206 error_setg(errp, "Boot CPU is unpluggable"); 207 return; 208 } 209 210 hotplug_handler_unplug_request(x86ms->acpi_dev, dev, 211 errp); 212 } 213 214 void x86_cpu_unplug_cb(HotplugHandler *hotplug_dev, 215 DeviceState *dev, Error **errp) 216 { 217 CPUArchId *found_cpu; 218 Error *local_err = NULL; 219 X86CPU *cpu = X86_CPU(dev); 220 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 221 222 hotplug_handler_unplug(x86ms->acpi_dev, dev, &local_err); 223 if (local_err) { 224 goto out; 225 } 226 227 found_cpu = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, NULL); 228 found_cpu->cpu = NULL; 229 qdev_unrealize(dev); 230 231 /* decrement the number of CPUs */ 232 x86ms->boot_cpus--; 233 /* Update the number of CPUs in CMOS */ 234 x86_rtc_set_cpus_count(x86ms->rtc, x86ms->boot_cpus); 235 fw_cfg_modify_i16(x86ms->fw_cfg, FW_CFG_NB_CPUS, x86ms->boot_cpus); 236 out: 237 error_propagate(errp, local_err); 238 } 239 240 void x86_cpu_pre_plug(HotplugHandler *hotplug_dev, 241 DeviceState *dev, Error **errp) 242 { 243 int idx; 244 CPUState *cs; 245 CPUArchId *cpu_slot; 246 X86CPUTopoIDs topo_ids; 247 X86CPU *cpu = X86_CPU(dev); 248 CPUX86State *env = &cpu->env; 249 MachineState *ms = MACHINE(hotplug_dev); 250 X86MachineState *x86ms = X86_MACHINE(hotplug_dev); 251 X86CPUTopoInfo *topo_info = &env->topo_info; 252 253 if (!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) { 254 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'", 255 ms->cpu_type); 256 return; 257 } 258 259 if (x86ms->acpi_dev) { 260 Error *local_err = NULL; 261 262 hotplug_handler_pre_plug(HOTPLUG_HANDLER(x86ms->acpi_dev), dev, 263 &local_err); 264 if (local_err) { 265 error_propagate(errp, local_err); 266 return; 267 } 268 } 269 270 init_topo_info(topo_info, x86ms); 271 272 if (ms->smp.modules > 1) { 273 set_bit(CPU_TOPOLOGY_LEVEL_MODULE, env->avail_cpu_topo); 274 } 275 276 if (ms->smp.dies > 1) { 277 set_bit(CPU_TOPOLOGY_LEVEL_DIE, env->avail_cpu_topo); 278 } 279 280 /* 281 * If APIC ID is not set, 282 * set it based on socket/die/module/core/thread properties. 283 */ 284 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 285 /* 286 * die-id was optional in QEMU 4.0 and older, so keep it optional 287 * if there's only one die per socket. 288 */ 289 if (cpu->die_id < 0 && ms->smp.dies == 1) { 290 cpu->die_id = 0; 291 } 292 293 /* 294 * module-id was optional in QEMU 9.0 and older, so keep it optional 295 * if there's only one module per die. 296 */ 297 if (cpu->module_id < 0 && ms->smp.modules == 1) { 298 cpu->module_id = 0; 299 } 300 301 if (cpu->socket_id < 0) { 302 error_setg(errp, "CPU socket-id is not set"); 303 return; 304 } else if (cpu->socket_id > ms->smp.sockets - 1) { 305 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 306 cpu->socket_id, ms->smp.sockets - 1); 307 return; 308 } 309 if (cpu->die_id < 0) { 310 error_setg(errp, "CPU die-id is not set"); 311 return; 312 } else if (cpu->die_id > ms->smp.dies - 1) { 313 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u", 314 cpu->die_id, ms->smp.dies - 1); 315 return; 316 } 317 if (cpu->module_id < 0) { 318 error_setg(errp, "CPU module-id is not set"); 319 return; 320 } else if (cpu->module_id > ms->smp.modules - 1) { 321 error_setg(errp, "Invalid CPU module-id: %u must be in range 0:%u", 322 cpu->module_id, ms->smp.modules - 1); 323 return; 324 } 325 if (cpu->core_id < 0) { 326 error_setg(errp, "CPU core-id is not set"); 327 return; 328 } else if (cpu->core_id > (ms->smp.cores - 1)) { 329 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 330 cpu->core_id, ms->smp.cores - 1); 331 return; 332 } 333 if (cpu->thread_id < 0) { 334 error_setg(errp, "CPU thread-id is not set"); 335 return; 336 } else if (cpu->thread_id > (ms->smp.threads - 1)) { 337 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 338 cpu->thread_id, ms->smp.threads - 1); 339 return; 340 } 341 342 topo_ids.pkg_id = cpu->socket_id; 343 topo_ids.die_id = cpu->die_id; 344 topo_ids.module_id = cpu->module_id; 345 topo_ids.core_id = cpu->core_id; 346 topo_ids.smt_id = cpu->thread_id; 347 cpu->apic_id = x86_apicid_from_topo_ids(topo_info, &topo_ids); 348 } 349 350 cpu_slot = x86_find_cpu_slot(MACHINE(x86ms), cpu->apic_id, &idx); 351 if (!cpu_slot) { 352 x86_topo_ids_from_apicid(cpu->apic_id, topo_info, &topo_ids); 353 354 error_setg(errp, 355 "Invalid CPU [socket: %u, die: %u, module: %u, core: %u, thread: %u]" 356 " with APIC ID %" PRIu32 ", valid index range 0:%d", 357 topo_ids.pkg_id, topo_ids.die_id, topo_ids.module_id, 358 topo_ids.core_id, topo_ids.smt_id, cpu->apic_id, 359 ms->possible_cpus->len - 1); 360 return; 361 } 362 363 if (cpu_slot->cpu) { 364 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 365 idx, cpu->apic_id); 366 return; 367 } 368 369 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 370 * so that machine_query_hotpluggable_cpus would show correct values 371 */ 372 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 373 * once -smp refactoring is complete and there will be CPU private 374 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 375 x86_topo_ids_from_apicid(cpu->apic_id, topo_info, &topo_ids); 376 if (cpu->socket_id != -1 && cpu->socket_id != topo_ids.pkg_id) { 377 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 378 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, 379 topo_ids.pkg_id); 380 return; 381 } 382 cpu->socket_id = topo_ids.pkg_id; 383 384 if (cpu->die_id != -1 && cpu->die_id != topo_ids.die_id) { 385 error_setg(errp, "property die-id: %u doesn't match set apic-id:" 386 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo_ids.die_id); 387 return; 388 } 389 cpu->die_id = topo_ids.die_id; 390 391 if (cpu->module_id != -1 && cpu->module_id != topo_ids.module_id) { 392 error_setg(errp, "property module-id: %u doesn't match set apic-id:" 393 " 0x%x (module-id: %u)", cpu->module_id, cpu->apic_id, 394 topo_ids.module_id); 395 return; 396 } 397 cpu->module_id = topo_ids.module_id; 398 399 if (cpu->core_id != -1 && cpu->core_id != topo_ids.core_id) { 400 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 401 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, 402 topo_ids.core_id); 403 return; 404 } 405 cpu->core_id = topo_ids.core_id; 406 407 if (cpu->thread_id != -1 && cpu->thread_id != topo_ids.smt_id) { 408 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 409 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, 410 topo_ids.smt_id); 411 return; 412 } 413 cpu->thread_id = topo_ids.smt_id; 414 415 /* 416 * kvm_enabled() must go first to ensure that kvm_* references are 417 * not emitted for the linker to consume (kvm_enabled() is 418 * a literal `0` in configurations where kvm_* aren't defined) 419 */ 420 if (kvm_enabled() && hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) && 421 !kvm_hv_vpindex_settable()) { 422 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX"); 423 return; 424 } 425 426 cs = CPU(cpu); 427 cs->cpu_index = idx; 428 429 numa_cpu_pre_plug(cpu_slot, dev, errp); 430 } 431 432 static long get_file_size(FILE *f) 433 { 434 long where, size; 435 436 /* XXX: on Unix systems, using fstat() probably makes more sense */ 437 438 where = ftell(f); 439 fseek(f, 0, SEEK_END); 440 size = ftell(f); 441 fseek(f, where, SEEK_SET); 442 443 return size; 444 } 445 446 void gsi_handler(void *opaque, int n, int level) 447 { 448 GSIState *s = opaque; 449 bool bypass_ioapic = false; 450 451 trace_x86_gsi_interrupt(n, level); 452 453 #ifdef CONFIG_XEN_EMU 454 /* 455 * Xen delivers the GSI to the Legacy PIC (not that Legacy PIC 456 * routing actually works properly under Xen). And then to 457 * *either* the PIRQ handling or the I/OAPIC depending on whether 458 * the former wants it. 459 * 460 * Additionally, this hook allows the Xen event channel GSI to 461 * work around QEMU's lack of support for shared level interrupts, 462 * by keeping track of the externally driven state of the pin and 463 * implementing a logical OR with the state of the evtchn GSI. 464 */ 465 if (xen_mode == XEN_EMULATE) { 466 bypass_ioapic = xen_evtchn_set_gsi(n, &level); 467 } 468 #endif 469 470 switch (n) { 471 case 0 ... ISA_NUM_IRQS - 1: 472 if (s->i8259_irq[n]) { 473 /* Under KVM, Kernel will forward to both PIC and IOAPIC */ 474 qemu_set_irq(s->i8259_irq[n], level); 475 } 476 /* fall through */ 477 case ISA_NUM_IRQS ... IOAPIC_NUM_PINS - 1: 478 if (!bypass_ioapic) { 479 qemu_set_irq(s->ioapic_irq[n], level); 480 } 481 break; 482 case IO_APIC_SECONDARY_IRQBASE 483 ... IO_APIC_SECONDARY_IRQBASE + IOAPIC_NUM_PINS - 1: 484 qemu_set_irq(s->ioapic2_irq[n - IO_APIC_SECONDARY_IRQBASE], level); 485 break; 486 } 487 } 488 489 void ioapic_init_gsi(GSIState *gsi_state, Object *parent) 490 { 491 DeviceState *dev; 492 SysBusDevice *d; 493 unsigned int i; 494 495 assert(parent); 496 if (kvm_ioapic_in_kernel()) { 497 dev = qdev_new(TYPE_KVM_IOAPIC); 498 } else { 499 dev = qdev_new(TYPE_IOAPIC); 500 } 501 object_property_add_child(parent, "ioapic", OBJECT(dev)); 502 d = SYS_BUS_DEVICE(dev); 503 sysbus_realize_and_unref(d, &error_fatal); 504 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 505 506 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 507 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 508 } 509 } 510 511 DeviceState *ioapic_init_secondary(GSIState *gsi_state) 512 { 513 DeviceState *dev; 514 SysBusDevice *d; 515 unsigned int i; 516 517 dev = qdev_new(TYPE_IOAPIC); 518 d = SYS_BUS_DEVICE(dev); 519 sysbus_realize_and_unref(d, &error_fatal); 520 sysbus_mmio_map(d, 0, IO_APIC_SECONDARY_ADDRESS); 521 522 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 523 gsi_state->ioapic2_irq[i] = qdev_get_gpio_in(dev, i); 524 } 525 return dev; 526 } 527 528 /* 529 * The entry point into the kernel for PVH boot is different from 530 * the native entry point. The PVH entry is defined by the x86/HVM 531 * direct boot ABI and is available in an ELFNOTE in the kernel binary. 532 * 533 * This function is passed to load_elf() when it is called from 534 * load_elfboot() which then additionally checks for an ELF Note of 535 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to 536 * parse the PVH entry address from the ELF Note. 537 * 538 * Due to trickery in elf_opts.h, load_elf() is actually available as 539 * load_elf32() or load_elf64() and this routine needs to be able 540 * to deal with being called as 32 or 64 bit. 541 * 542 * The address of the PVH entry point is saved to the 'pvh_start_addr' 543 * global variable. (although the entry point is 32-bit, the kernel 544 * binary can be either 32-bit or 64-bit). 545 */ 546 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64) 547 { 548 size_t *elf_note_data_addr; 549 550 /* Check if ELF Note header passed in is valid */ 551 if (arg1 == NULL) { 552 return 0; 553 } 554 555 if (is64) { 556 struct elf64_note *nhdr64 = (struct elf64_note *)arg1; 557 uint64_t nhdr_size64 = sizeof(struct elf64_note); 558 uint64_t phdr_align = *(uint64_t *)arg2; 559 uint64_t nhdr_namesz = nhdr64->n_namesz; 560 561 elf_note_data_addr = 562 ((void *)nhdr64) + nhdr_size64 + 563 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 564 565 pvh_start_addr = *elf_note_data_addr; 566 } else { 567 struct elf32_note *nhdr32 = (struct elf32_note *)arg1; 568 uint32_t nhdr_size32 = sizeof(struct elf32_note); 569 uint32_t phdr_align = *(uint32_t *)arg2; 570 uint32_t nhdr_namesz = nhdr32->n_namesz; 571 572 elf_note_data_addr = 573 ((void *)nhdr32) + nhdr_size32 + 574 QEMU_ALIGN_UP(nhdr_namesz, phdr_align); 575 576 pvh_start_addr = *(uint32_t *)elf_note_data_addr; 577 } 578 579 return pvh_start_addr; 580 } 581 582 static bool load_elfboot(const char *kernel_filename, 583 int kernel_file_size, 584 uint8_t *header, 585 size_t pvh_xen_start_addr, 586 FWCfgState *fw_cfg) 587 { 588 uint32_t flags = 0; 589 uint32_t mh_load_addr = 0; 590 uint32_t elf_kernel_size = 0; 591 uint64_t elf_entry; 592 uint64_t elf_low, elf_high; 593 int kernel_size; 594 595 if (ldl_le_p(header) != 0x464c457f) { 596 return false; /* no elfboot */ 597 } 598 599 bool elf_is64 = header[EI_CLASS] == ELFCLASS64; 600 flags = elf_is64 ? 601 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags; 602 603 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */ 604 error_report("elfboot unsupported flags = %x", flags); 605 exit(1); 606 } 607 608 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY; 609 kernel_size = load_elf(kernel_filename, read_pvh_start_addr, 610 NULL, &elf_note_type, &elf_entry, 611 &elf_low, &elf_high, NULL, 612 ELFDATA2LSB, I386_ELF_MACHINE, 0, 0); 613 614 if (kernel_size < 0) { 615 error_report("Error while loading elf kernel"); 616 exit(1); 617 } 618 mh_load_addr = elf_low; 619 elf_kernel_size = elf_high - elf_low; 620 621 if (pvh_start_addr == 0) { 622 error_report("Error loading uncompressed kernel without PVH ELF Note"); 623 exit(1); 624 } 625 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr); 626 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr); 627 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size); 628 629 return true; 630 } 631 632 void x86_load_linux(X86MachineState *x86ms, 633 FWCfgState *fw_cfg, 634 int acpi_data_size, 635 bool pvh_enabled) 636 { 637 bool linuxboot_dma_enabled = X86_MACHINE_GET_CLASS(x86ms)->fwcfg_dma_enabled; 638 uint16_t protocol; 639 int setup_size, kernel_size, cmdline_size; 640 int dtb_size, setup_data_offset; 641 uint32_t initrd_max; 642 uint8_t header[8192], *setup, *kernel; 643 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 644 FILE *f; 645 char *vmode; 646 MachineState *machine = MACHINE(x86ms); 647 struct setup_data *setup_data; 648 const char *kernel_filename = machine->kernel_filename; 649 const char *initrd_filename = machine->initrd_filename; 650 const char *dtb_filename = machine->dtb; 651 const char *kernel_cmdline = machine->kernel_cmdline; 652 SevKernelLoaderContext sev_load_ctx = {}; 653 654 /* Align to 16 bytes as a paranoia measure */ 655 cmdline_size = (strlen(kernel_cmdline) + 16) & ~15; 656 657 /* load the kernel header */ 658 f = fopen(kernel_filename, "rb"); 659 if (!f) { 660 fprintf(stderr, "qemu: could not open kernel file '%s': %s\n", 661 kernel_filename, strerror(errno)); 662 exit(1); 663 } 664 665 kernel_size = get_file_size(f); 666 if (!kernel_size || 667 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 668 MIN(ARRAY_SIZE(header), kernel_size)) { 669 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 670 kernel_filename, strerror(errno)); 671 exit(1); 672 } 673 674 /* 675 * kernel protocol version. 676 * Please see https://www.kernel.org/doc/Documentation/x86/boot.txt 677 */ 678 if (ldl_le_p(header + 0x202) == 0x53726448) /* Magic signature "HdrS" */ { 679 protocol = lduw_le_p(header + 0x206); 680 } else { 681 /* 682 * This could be a multiboot kernel. If it is, let's stop treating it 683 * like a Linux kernel. 684 * Note: some multiboot images could be in the ELF format (the same of 685 * PVH), so we try multiboot first since we check the multiboot magic 686 * header before to load it. 687 */ 688 if (load_multiboot(x86ms, fw_cfg, f, kernel_filename, initrd_filename, 689 kernel_cmdline, kernel_size, header)) { 690 return; 691 } 692 /* 693 * Check if the file is an uncompressed kernel file (ELF) and load it, 694 * saving the PVH entry point used by the x86/HVM direct boot ABI. 695 * If load_elfboot() is successful, populate the fw_cfg info. 696 */ 697 if (pvh_enabled && 698 load_elfboot(kernel_filename, kernel_size, 699 header, pvh_start_addr, fw_cfg)) { 700 fclose(f); 701 702 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 703 strlen(kernel_cmdline) + 1); 704 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 705 706 setup = g_memdup2(header, sizeof(header)); 707 708 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header)); 709 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, 710 setup, sizeof(header)); 711 712 /* load initrd */ 713 if (initrd_filename) { 714 GMappedFile *mapped_file; 715 gsize initrd_size; 716 gchar *initrd_data; 717 GError *gerr = NULL; 718 719 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 720 if (!mapped_file) { 721 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 722 initrd_filename, gerr->message); 723 exit(1); 724 } 725 x86ms->initrd_mapped_file = mapped_file; 726 727 initrd_data = g_mapped_file_get_contents(mapped_file); 728 initrd_size = g_mapped_file_get_length(mapped_file); 729 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 730 if (initrd_size >= initrd_max) { 731 fprintf(stderr, "qemu: initrd is too large, cannot support." 732 "(max: %"PRIu32", need %"PRId64")\n", 733 initrd_max, (uint64_t)initrd_size); 734 exit(1); 735 } 736 737 initrd_addr = (initrd_max - initrd_size) & ~4095; 738 739 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 740 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 741 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, 742 initrd_size); 743 } 744 745 option_rom[nb_option_roms].bootindex = 0; 746 option_rom[nb_option_roms].name = "pvh.bin"; 747 nb_option_roms++; 748 749 return; 750 } 751 protocol = 0; 752 } 753 754 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 755 /* Low kernel */ 756 real_addr = 0x90000; 757 cmdline_addr = 0x9a000 - cmdline_size; 758 prot_addr = 0x10000; 759 } else if (protocol < 0x202) { 760 /* High but ancient kernel */ 761 real_addr = 0x90000; 762 cmdline_addr = 0x9a000 - cmdline_size; 763 prot_addr = 0x100000; 764 } else { 765 /* High and recent kernel */ 766 real_addr = 0x10000; 767 cmdline_addr = 0x20000; 768 prot_addr = 0x100000; 769 } 770 771 /* highest address for loading the initrd */ 772 if (protocol >= 0x20c && 773 lduw_le_p(header + 0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) { 774 /* 775 * Linux has supported initrd up to 4 GB for a very long time (2007, 776 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013), 777 * though it only sets initrd_max to 2 GB to "work around bootloader 778 * bugs". Luckily, QEMU firmware(which does something like bootloader) 779 * has supported this. 780 * 781 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can 782 * be loaded into any address. 783 * 784 * In addition, initrd_max is uint32_t simply because QEMU doesn't 785 * support the 64-bit boot protocol (specifically the ext_ramdisk_image 786 * field). 787 * 788 * Therefore here just limit initrd_max to UINT32_MAX simply as well. 789 */ 790 initrd_max = UINT32_MAX; 791 } else if (protocol >= 0x203) { 792 initrd_max = ldl_le_p(header + 0x22c); 793 } else { 794 initrd_max = 0x37ffffff; 795 } 796 797 if (initrd_max >= x86ms->below_4g_mem_size - acpi_data_size) { 798 initrd_max = x86ms->below_4g_mem_size - acpi_data_size - 1; 799 } 800 801 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 802 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline) + 1); 803 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 804 sev_load_ctx.cmdline_data = (char *)kernel_cmdline; 805 sev_load_ctx.cmdline_size = strlen(kernel_cmdline) + 1; 806 807 if (protocol >= 0x202) { 808 stl_le_p(header + 0x228, cmdline_addr); 809 } else { 810 stw_le_p(header + 0x20, 0xA33F); 811 stw_le_p(header + 0x22, cmdline_addr - real_addr); 812 } 813 814 /* handle vga= parameter */ 815 vmode = strstr(kernel_cmdline, "vga="); 816 if (vmode) { 817 unsigned int video_mode; 818 const char *end; 819 int ret; 820 /* skip "vga=" */ 821 vmode += 4; 822 if (!strncmp(vmode, "normal", 6)) { 823 video_mode = 0xffff; 824 } else if (!strncmp(vmode, "ext", 3)) { 825 video_mode = 0xfffe; 826 } else if (!strncmp(vmode, "ask", 3)) { 827 video_mode = 0xfffd; 828 } else { 829 ret = qemu_strtoui(vmode, &end, 0, &video_mode); 830 if (ret != 0 || (*end && *end != ' ')) { 831 fprintf(stderr, "qemu: invalid 'vga=' kernel parameter.\n"); 832 exit(1); 833 } 834 } 835 stw_le_p(header + 0x1fa, video_mode); 836 } 837 838 /* loader type */ 839 /* 840 * High nybble = B reserved for QEMU; low nybble is revision number. 841 * If this code is substantially changed, you may want to consider 842 * incrementing the revision. 843 */ 844 if (protocol >= 0x200) { 845 header[0x210] = 0xB0; 846 } 847 /* heap */ 848 if (protocol >= 0x201) { 849 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 850 stw_le_p(header + 0x224, cmdline_addr - real_addr - 0x200); 851 } 852 853 /* load initrd */ 854 if (initrd_filename) { 855 GMappedFile *mapped_file; 856 gsize initrd_size; 857 gchar *initrd_data; 858 GError *gerr = NULL; 859 860 if (protocol < 0x200) { 861 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 862 exit(1); 863 } 864 865 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr); 866 if (!mapped_file) { 867 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 868 initrd_filename, gerr->message); 869 exit(1); 870 } 871 x86ms->initrd_mapped_file = mapped_file; 872 873 initrd_data = g_mapped_file_get_contents(mapped_file); 874 initrd_size = g_mapped_file_get_length(mapped_file); 875 if (initrd_size >= initrd_max) { 876 fprintf(stderr, "qemu: initrd is too large, cannot support." 877 "(max: %"PRIu32", need %"PRId64")\n", 878 initrd_max, (uint64_t)initrd_size); 879 exit(1); 880 } 881 882 initrd_addr = (initrd_max - initrd_size) & ~4095; 883 884 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 885 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 886 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 887 sev_load_ctx.initrd_data = initrd_data; 888 sev_load_ctx.initrd_size = initrd_size; 889 890 stl_le_p(header + 0x218, initrd_addr); 891 stl_le_p(header + 0x21c, initrd_size); 892 } 893 894 /* load kernel and setup */ 895 setup_size = header[0x1f1]; 896 if (setup_size == 0) { 897 setup_size = 4; 898 } 899 setup_size = (setup_size + 1) * 512; 900 if (setup_size > kernel_size) { 901 fprintf(stderr, "qemu: invalid kernel header\n"); 902 exit(1); 903 } 904 905 setup = g_malloc(setup_size); 906 kernel = g_malloc(kernel_size); 907 fseek(f, 0, SEEK_SET); 908 if (fread(setup, 1, setup_size, f) != setup_size) { 909 fprintf(stderr, "fread() failed\n"); 910 exit(1); 911 } 912 fseek(f, 0, SEEK_SET); 913 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 914 fprintf(stderr, "fread() failed\n"); 915 exit(1); 916 } 917 fclose(f); 918 919 /* append dtb to kernel */ 920 if (dtb_filename) { 921 if (protocol < 0x209) { 922 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 923 exit(1); 924 } 925 926 dtb_size = get_image_size(dtb_filename); 927 if (dtb_size <= 0) { 928 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 929 dtb_filename, strerror(errno)); 930 exit(1); 931 } 932 933 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 934 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 935 kernel = g_realloc(kernel, kernel_size); 936 937 stq_le_p(header + 0x250, prot_addr + setup_data_offset); 938 939 setup_data = (struct setup_data *)(kernel + setup_data_offset); 940 setup_data->next = 0; 941 setup_data->type = cpu_to_le32(SETUP_DTB); 942 setup_data->len = cpu_to_le32(dtb_size); 943 944 load_image_size(dtb_filename, setup_data->data, dtb_size); 945 } 946 947 /* 948 * If we're starting an encrypted VM, it will be OVMF based, which uses the 949 * efi stub for booting and doesn't require any values to be placed in the 950 * kernel header. We therefore don't update the header so the hash of the 951 * kernel on the other side of the fw_cfg interface matches the hash of the 952 * file the user passed in. 953 */ 954 if (!sev_enabled() && protocol > 0) { 955 memcpy(setup, header, MIN(sizeof(header), setup_size)); 956 } 957 958 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 959 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size - setup_size); 960 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, 961 kernel + setup_size, kernel_size - setup_size); 962 sev_load_ctx.kernel_data = (char *)kernel + setup_size; 963 sev_load_ctx.kernel_size = kernel_size - setup_size; 964 965 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 966 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 967 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 968 sev_load_ctx.setup_data = (char *)setup; 969 sev_load_ctx.setup_size = setup_size; 970 971 /* kernel without setup header patches */ 972 fw_cfg_add_file(fw_cfg, "etc/boot/kernel", kernel, kernel_size); 973 974 if (machine->shim_filename) { 975 GMappedFile *mapped_file; 976 GError *gerr = NULL; 977 978 mapped_file = g_mapped_file_new(machine->shim_filename, false, &gerr); 979 if (!mapped_file) { 980 fprintf(stderr, "qemu: error reading shim %s: %s\n", 981 machine->shim_filename, gerr->message); 982 exit(1); 983 } 984 985 fw_cfg_add_file(fw_cfg, "etc/boot/shim", 986 g_mapped_file_get_contents(mapped_file), 987 g_mapped_file_get_length(mapped_file)); 988 } 989 990 if (sev_enabled()) { 991 sev_add_kernel_loader_hashes(&sev_load_ctx, &error_fatal); 992 } 993 994 option_rom[nb_option_roms].bootindex = 0; 995 option_rom[nb_option_roms].name = "linuxboot.bin"; 996 if (linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) { 997 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 998 } 999 nb_option_roms++; 1000 } 1001 1002 void x86_isa_bios_init(MemoryRegion *isa_bios, MemoryRegion *isa_memory, 1003 MemoryRegion *bios, bool read_only) 1004 { 1005 uint64_t bios_size = memory_region_size(bios); 1006 uint64_t isa_bios_size = MIN(bios_size, 128 * KiB); 1007 1008 memory_region_init_alias(isa_bios, NULL, "isa-bios", bios, 1009 bios_size - isa_bios_size, isa_bios_size); 1010 memory_region_add_subregion_overlap(isa_memory, 1 * MiB - isa_bios_size, 1011 isa_bios, 1); 1012 memory_region_set_readonly(isa_bios, read_only); 1013 } 1014 1015 void x86_bios_rom_init(X86MachineState *x86ms, const char *default_firmware, 1016 MemoryRegion *rom_memory, bool isapc_ram_fw) 1017 { 1018 const char *bios_name; 1019 char *filename; 1020 int bios_size; 1021 ssize_t ret; 1022 1023 /* BIOS load */ 1024 bios_name = MACHINE(x86ms)->firmware ?: default_firmware; 1025 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); 1026 if (filename) { 1027 bios_size = get_image_size(filename); 1028 } else { 1029 bios_size = -1; 1030 } 1031 if (bios_size <= 0 || 1032 (bios_size % 65536) != 0) { 1033 goto bios_error; 1034 } 1035 if (machine_require_guest_memfd(MACHINE(x86ms))) { 1036 memory_region_init_ram_guest_memfd(&x86ms->bios, NULL, "pc.bios", 1037 bios_size, &error_fatal); 1038 } else { 1039 memory_region_init_ram(&x86ms->bios, NULL, "pc.bios", 1040 bios_size, &error_fatal); 1041 } 1042 if (sev_enabled()) { 1043 /* 1044 * The concept of a "reset" simply doesn't exist for 1045 * confidential computing guests, we have to destroy and 1046 * re-launch them instead. So there is no need to register 1047 * the firmware as rom to properly re-initialize on reset. 1048 * Just go for a straight file load instead. 1049 */ 1050 void *ptr = memory_region_get_ram_ptr(&x86ms->bios); 1051 load_image_size(filename, ptr, bios_size); 1052 x86_firmware_configure(0x100000000ULL - bios_size, ptr, bios_size); 1053 } else { 1054 memory_region_set_readonly(&x86ms->bios, !isapc_ram_fw); 1055 ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); 1056 if (ret != 0) { 1057 goto bios_error; 1058 } 1059 } 1060 g_free(filename); 1061 1062 if (!machine_require_guest_memfd(MACHINE(x86ms))) { 1063 /* map the last 128KB of the BIOS in ISA space */ 1064 x86_isa_bios_init(&x86ms->isa_bios, rom_memory, &x86ms->bios, 1065 !isapc_ram_fw); 1066 } 1067 1068 /* map all the bios at the top of memory */ 1069 memory_region_add_subregion(rom_memory, 1070 (uint32_t)(-bios_size), 1071 &x86ms->bios); 1072 return; 1073 1074 bios_error: 1075 fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); 1076 exit(1); 1077 } 1078