1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "hw/hw.h" 25 #include "hw/i386/pc.h" 26 #include "hw/char/serial.h" 27 #include "hw/i386/apic.h" 28 #include "hw/block/fdc.h" 29 #include "hw/ide.h" 30 #include "hw/pci/pci.h" 31 #include "monitor/monitor.h" 32 #include "hw/nvram/fw_cfg.h" 33 #include "hw/timer/hpet.h" 34 #include "hw/i386/smbios.h" 35 #include "hw/loader.h" 36 #include "elf.h" 37 #include "multiboot.h" 38 #include "hw/timer/mc146818rtc.h" 39 #include "hw/timer/i8254.h" 40 #include "hw/audio/pcspk.h" 41 #include "hw/pci/msi.h" 42 #include "hw/sysbus.h" 43 #include "sysemu/sysemu.h" 44 #include "sysemu/kvm.h" 45 #include "kvm_i386.h" 46 #include "hw/xen/xen.h" 47 #include "sysemu/blockdev.h" 48 #include "hw/block/block.h" 49 #include "ui/qemu-spice.h" 50 #include "exec/memory.h" 51 #include "exec/address-spaces.h" 52 #include "sysemu/arch_init.h" 53 #include "qemu/bitmap.h" 54 #include "qemu/config-file.h" 55 #include "hw/acpi/acpi.h" 56 57 /* debug PC/ISA interrupts */ 58 //#define DEBUG_IRQ 59 60 #ifdef DEBUG_IRQ 61 #define DPRINTF(fmt, ...) \ 62 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 63 #else 64 #define DPRINTF(fmt, ...) 65 #endif 66 67 /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ 68 #define ACPI_DATA_SIZE 0x10000 69 #define BIOS_CFG_IOPORT 0x510 70 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 71 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 72 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 73 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 74 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 75 76 #define IO_APIC_DEFAULT_ADDRESS 0xfec00000 77 78 #define E820_NR_ENTRIES 16 79 80 struct e820_entry { 81 uint64_t address; 82 uint64_t length; 83 uint32_t type; 84 } QEMU_PACKED __attribute((__aligned__(4))); 85 86 struct e820_table { 87 uint32_t count; 88 struct e820_entry entry[E820_NR_ENTRIES]; 89 } QEMU_PACKED __attribute((__aligned__(4))); 90 91 static struct e820_table e820_table; 92 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 93 94 void gsi_handler(void *opaque, int n, int level) 95 { 96 GSIState *s = opaque; 97 98 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 99 if (n < ISA_NUM_IRQS) { 100 qemu_set_irq(s->i8259_irq[n], level); 101 } 102 qemu_set_irq(s->ioapic_irq[n], level); 103 } 104 105 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 106 unsigned size) 107 { 108 } 109 110 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 111 { 112 return 0xffffffffffffffffULL; 113 } 114 115 /* MSDOS compatibility mode FPU exception support */ 116 static qemu_irq ferr_irq; 117 118 void pc_register_ferr_irq(qemu_irq irq) 119 { 120 ferr_irq = irq; 121 } 122 123 /* XXX: add IGNNE support */ 124 void cpu_set_ferr(CPUX86State *s) 125 { 126 qemu_irq_raise(ferr_irq); 127 } 128 129 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 130 unsigned size) 131 { 132 qemu_irq_lower(ferr_irq); 133 } 134 135 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 136 { 137 return 0xffffffffffffffffULL; 138 } 139 140 /* TSC handling */ 141 uint64_t cpu_get_tsc(CPUX86State *env) 142 { 143 return cpu_get_ticks(); 144 } 145 146 /* SMM support */ 147 148 static cpu_set_smm_t smm_set; 149 static void *smm_arg; 150 151 void cpu_smm_register(cpu_set_smm_t callback, void *arg) 152 { 153 assert(smm_set == NULL); 154 assert(smm_arg == NULL); 155 smm_set = callback; 156 smm_arg = arg; 157 } 158 159 void cpu_smm_update(CPUX86State *env) 160 { 161 if (smm_set && smm_arg && env == first_cpu) 162 smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg); 163 } 164 165 166 /* IRQ handling */ 167 int cpu_get_pic_interrupt(CPUX86State *env) 168 { 169 int intno; 170 171 intno = apic_get_interrupt(env->apic_state); 172 if (intno >= 0) { 173 return intno; 174 } 175 /* read the irq from the PIC */ 176 if (!apic_accept_pic_intr(env->apic_state)) { 177 return -1; 178 } 179 180 intno = pic_read_irq(isa_pic); 181 return intno; 182 } 183 184 static void pic_irq_request(void *opaque, int irq, int level) 185 { 186 CPUX86State *env = first_cpu; 187 188 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 189 if (env->apic_state) { 190 while (env) { 191 if (apic_accept_pic_intr(env->apic_state)) { 192 apic_deliver_pic_intr(env->apic_state, level); 193 } 194 env = env->next_cpu; 195 } 196 } else { 197 CPUState *cs = CPU(x86_env_get_cpu(env)); 198 if (level) { 199 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 200 } else { 201 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 202 } 203 } 204 } 205 206 /* PC cmos mappings */ 207 208 #define REG_EQUIPMENT_BYTE 0x14 209 210 static int cmos_get_fd_drive_type(FDriveType fd0) 211 { 212 int val; 213 214 switch (fd0) { 215 case FDRIVE_DRV_144: 216 /* 1.44 Mb 3"5 drive */ 217 val = 4; 218 break; 219 case FDRIVE_DRV_288: 220 /* 2.88 Mb 3"5 drive */ 221 val = 5; 222 break; 223 case FDRIVE_DRV_120: 224 /* 1.2 Mb 5"5 drive */ 225 val = 2; 226 break; 227 case FDRIVE_DRV_NONE: 228 default: 229 val = 0; 230 break; 231 } 232 return val; 233 } 234 235 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 236 int16_t cylinders, int8_t heads, int8_t sectors) 237 { 238 rtc_set_memory(s, type_ofs, 47); 239 rtc_set_memory(s, info_ofs, cylinders); 240 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 241 rtc_set_memory(s, info_ofs + 2, heads); 242 rtc_set_memory(s, info_ofs + 3, 0xff); 243 rtc_set_memory(s, info_ofs + 4, 0xff); 244 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 245 rtc_set_memory(s, info_ofs + 6, cylinders); 246 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 247 rtc_set_memory(s, info_ofs + 8, sectors); 248 } 249 250 /* convert boot_device letter to something recognizable by the bios */ 251 static int boot_device2nibble(char boot_device) 252 { 253 switch(boot_device) { 254 case 'a': 255 case 'b': 256 return 0x01; /* floppy boot */ 257 case 'c': 258 return 0x02; /* hard drive boot */ 259 case 'd': 260 return 0x03; /* CD-ROM boot */ 261 case 'n': 262 return 0x04; /* Network boot */ 263 } 264 return 0; 265 } 266 267 static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk) 268 { 269 #define PC_MAX_BOOT_DEVICES 3 270 int nbds, bds[3] = { 0, }; 271 int i; 272 273 nbds = strlen(boot_device); 274 if (nbds > PC_MAX_BOOT_DEVICES) { 275 error_report("Too many boot devices for PC"); 276 return(1); 277 } 278 for (i = 0; i < nbds; i++) { 279 bds[i] = boot_device2nibble(boot_device[i]); 280 if (bds[i] == 0) { 281 error_report("Invalid boot device for PC: '%c'", 282 boot_device[i]); 283 return(1); 284 } 285 } 286 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 287 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 288 return(0); 289 } 290 291 static int pc_boot_set(void *opaque, const char *boot_device) 292 { 293 return set_boot_dev(opaque, boot_device, 0); 294 } 295 296 typedef struct pc_cmos_init_late_arg { 297 ISADevice *rtc_state; 298 BusState *idebus[2]; 299 } pc_cmos_init_late_arg; 300 301 static void pc_cmos_init_late(void *opaque) 302 { 303 pc_cmos_init_late_arg *arg = opaque; 304 ISADevice *s = arg->rtc_state; 305 int16_t cylinders; 306 int8_t heads, sectors; 307 int val; 308 int i, trans; 309 310 val = 0; 311 if (ide_get_geometry(arg->idebus[0], 0, 312 &cylinders, &heads, §ors) >= 0) { 313 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 314 val |= 0xf0; 315 } 316 if (ide_get_geometry(arg->idebus[0], 1, 317 &cylinders, &heads, §ors) >= 0) { 318 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 319 val |= 0x0f; 320 } 321 rtc_set_memory(s, 0x12, val); 322 323 val = 0; 324 for (i = 0; i < 4; i++) { 325 /* NOTE: ide_get_geometry() returns the physical 326 geometry. It is always such that: 1 <= sects <= 63, 1 327 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 328 geometry can be different if a translation is done. */ 329 if (ide_get_geometry(arg->idebus[i / 2], i % 2, 330 &cylinders, &heads, §ors) >= 0) { 331 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 332 assert((trans & ~3) == 0); 333 val |= trans << (i * 2); 334 } 335 } 336 rtc_set_memory(s, 0x39, val); 337 338 qemu_unregister_reset(pc_cmos_init_late, opaque); 339 } 340 341 typedef struct RTCCPUHotplugArg { 342 Notifier cpu_added_notifier; 343 ISADevice *rtc_state; 344 } RTCCPUHotplugArg; 345 346 static void rtc_notify_cpu_added(Notifier *notifier, void *data) 347 { 348 RTCCPUHotplugArg *arg = container_of(notifier, RTCCPUHotplugArg, 349 cpu_added_notifier); 350 ISADevice *s = arg->rtc_state; 351 352 /* increment the number of CPUs */ 353 rtc_set_memory(s, 0x5f, rtc_get_memory(s, 0x5f) + 1); 354 } 355 356 void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, 357 const char *boot_device, 358 ISADevice *floppy, BusState *idebus0, BusState *idebus1, 359 ISADevice *s) 360 { 361 int val, nb, i; 362 FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE }; 363 static pc_cmos_init_late_arg arg; 364 static RTCCPUHotplugArg cpu_hotplug_cb; 365 366 /* various important CMOS locations needed by PC/Bochs bios */ 367 368 /* memory size */ 369 /* base memory (first MiB) */ 370 val = MIN(ram_size / 1024, 640); 371 rtc_set_memory(s, 0x15, val); 372 rtc_set_memory(s, 0x16, val >> 8); 373 /* extended memory (next 64MiB) */ 374 if (ram_size > 1024 * 1024) { 375 val = (ram_size - 1024 * 1024) / 1024; 376 } else { 377 val = 0; 378 } 379 if (val > 65535) 380 val = 65535; 381 rtc_set_memory(s, 0x17, val); 382 rtc_set_memory(s, 0x18, val >> 8); 383 rtc_set_memory(s, 0x30, val); 384 rtc_set_memory(s, 0x31, val >> 8); 385 /* memory between 16MiB and 4GiB */ 386 if (ram_size > 16 * 1024 * 1024) { 387 val = (ram_size - 16 * 1024 * 1024) / 65536; 388 } else { 389 val = 0; 390 } 391 if (val > 65535) 392 val = 65535; 393 rtc_set_memory(s, 0x34, val); 394 rtc_set_memory(s, 0x35, val >> 8); 395 /* memory above 4GiB */ 396 val = above_4g_mem_size / 65536; 397 rtc_set_memory(s, 0x5b, val); 398 rtc_set_memory(s, 0x5c, val >> 8); 399 rtc_set_memory(s, 0x5d, val >> 16); 400 401 /* set the number of CPU */ 402 rtc_set_memory(s, 0x5f, smp_cpus - 1); 403 /* init CPU hotplug notifier */ 404 cpu_hotplug_cb.rtc_state = s; 405 cpu_hotplug_cb.cpu_added_notifier.notify = rtc_notify_cpu_added; 406 qemu_register_cpu_added_notifier(&cpu_hotplug_cb.cpu_added_notifier); 407 408 /* set boot devices, and disable floppy signature check if requested */ 409 if (set_boot_dev(s, boot_device, fd_bootchk)) { 410 exit(1); 411 } 412 413 /* floppy type */ 414 if (floppy) { 415 for (i = 0; i < 2; i++) { 416 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 417 } 418 } 419 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 420 cmos_get_fd_drive_type(fd_type[1]); 421 rtc_set_memory(s, 0x10, val); 422 423 val = 0; 424 nb = 0; 425 if (fd_type[0] < FDRIVE_DRV_NONE) { 426 nb++; 427 } 428 if (fd_type[1] < FDRIVE_DRV_NONE) { 429 nb++; 430 } 431 switch (nb) { 432 case 0: 433 break; 434 case 1: 435 val |= 0x01; /* 1 drive, ready for boot */ 436 break; 437 case 2: 438 val |= 0x41; /* 2 drives, ready for boot */ 439 break; 440 } 441 val |= 0x02; /* FPU is there */ 442 val |= 0x04; /* PS/2 mouse installed */ 443 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 444 445 /* hard drives */ 446 arg.rtc_state = s; 447 arg.idebus[0] = idebus0; 448 arg.idebus[1] = idebus1; 449 qemu_register_reset(pc_cmos_init_late, &arg); 450 } 451 452 #define TYPE_PORT92 "port92" 453 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 454 455 /* port 92 stuff: could be split off */ 456 typedef struct Port92State { 457 ISADevice parent_obj; 458 459 MemoryRegion io; 460 uint8_t outport; 461 qemu_irq *a20_out; 462 } Port92State; 463 464 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 465 unsigned size) 466 { 467 Port92State *s = opaque; 468 469 DPRINTF("port92: write 0x%02x\n", val); 470 s->outport = val; 471 qemu_set_irq(*s->a20_out, (val >> 1) & 1); 472 if (val & 1) { 473 qemu_system_reset_request(); 474 } 475 } 476 477 static uint64_t port92_read(void *opaque, hwaddr addr, 478 unsigned size) 479 { 480 Port92State *s = opaque; 481 uint32_t ret; 482 483 ret = s->outport; 484 DPRINTF("port92: read 0x%02x\n", ret); 485 return ret; 486 } 487 488 static void port92_init(ISADevice *dev, qemu_irq *a20_out) 489 { 490 Port92State *s = PORT92(dev); 491 492 s->a20_out = a20_out; 493 } 494 495 static const VMStateDescription vmstate_port92_isa = { 496 .name = "port92", 497 .version_id = 1, 498 .minimum_version_id = 1, 499 .minimum_version_id_old = 1, 500 .fields = (VMStateField []) { 501 VMSTATE_UINT8(outport, Port92State), 502 VMSTATE_END_OF_LIST() 503 } 504 }; 505 506 static void port92_reset(DeviceState *d) 507 { 508 Port92State *s = PORT92(d); 509 510 s->outport &= ~1; 511 } 512 513 static const MemoryRegionOps port92_ops = { 514 .read = port92_read, 515 .write = port92_write, 516 .impl = { 517 .min_access_size = 1, 518 .max_access_size = 1, 519 }, 520 .endianness = DEVICE_LITTLE_ENDIAN, 521 }; 522 523 static int port92_initfn(ISADevice *dev) 524 { 525 Port92State *s = PORT92(dev); 526 527 memory_region_init_io(&s->io, &port92_ops, s, "port92", 1); 528 isa_register_ioport(dev, &s->io, 0x92); 529 530 s->outport = 0; 531 return 0; 532 } 533 534 static void port92_class_initfn(ObjectClass *klass, void *data) 535 { 536 DeviceClass *dc = DEVICE_CLASS(klass); 537 ISADeviceClass *ic = ISA_DEVICE_CLASS(klass); 538 ic->init = port92_initfn; 539 dc->no_user = 1; 540 dc->reset = port92_reset; 541 dc->vmsd = &vmstate_port92_isa; 542 } 543 544 static const TypeInfo port92_info = { 545 .name = TYPE_PORT92, 546 .parent = TYPE_ISA_DEVICE, 547 .instance_size = sizeof(Port92State), 548 .class_init = port92_class_initfn, 549 }; 550 551 static void port92_register_types(void) 552 { 553 type_register_static(&port92_info); 554 } 555 556 type_init(port92_register_types) 557 558 static void handle_a20_line_change(void *opaque, int irq, int level) 559 { 560 X86CPU *cpu = opaque; 561 562 /* XXX: send to all CPUs ? */ 563 /* XXX: add logic to handle multiple A20 line sources */ 564 x86_cpu_set_a20(cpu, level); 565 } 566 567 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 568 { 569 int index = le32_to_cpu(e820_table.count); 570 struct e820_entry *entry; 571 572 if (index >= E820_NR_ENTRIES) 573 return -EBUSY; 574 entry = &e820_table.entry[index++]; 575 576 entry->address = cpu_to_le64(address); 577 entry->length = cpu_to_le64(length); 578 entry->type = cpu_to_le32(type); 579 580 e820_table.count = cpu_to_le32(index); 581 return index; 582 } 583 584 /* Calculates the limit to CPU APIC ID values 585 * 586 * This function returns the limit for the APIC ID value, so that all 587 * CPU APIC IDs are < pc_apic_id_limit(). 588 * 589 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 590 */ 591 static unsigned int pc_apic_id_limit(unsigned int max_cpus) 592 { 593 return x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 594 } 595 596 static void *bochs_bios_init(void) 597 { 598 void *fw_cfg; 599 uint8_t *smbios_table; 600 size_t smbios_len; 601 uint64_t *numa_fw_cfg; 602 int i, j; 603 unsigned int apic_id_limit = pc_apic_id_limit(max_cpus); 604 605 fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); 606 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 607 * 608 * SeaBIOS needs FW_CFG_MAX_CPUS for CPU hotplug, but the CPU hotplug 609 * QEMU<->SeaBIOS interface is not based on the "CPU index", but on the APIC 610 * ID of hotplugged CPUs[1]. This means that FW_CFG_MAX_CPUS is not the 611 * "maximum number of CPUs", but the "limit to the APIC ID values SeaBIOS 612 * may see". 613 * 614 * So, this means we must not use max_cpus, here, but the maximum possible 615 * APIC ID value, plus one. 616 * 617 * [1] The only kind of "CPU identifier" used between SeaBIOS and QEMU is 618 * the APIC ID, not the "CPU index" 619 */ 620 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)apic_id_limit); 621 fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); 622 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 623 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 624 acpi_tables, acpi_tables_len); 625 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 626 627 smbios_table = smbios_get_table(&smbios_len); 628 if (smbios_table) 629 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 630 smbios_table, smbios_len); 631 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 632 &e820_table, sizeof(e820_table)); 633 634 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 635 /* allocate memory for the NUMA channel: one (64bit) word for the number 636 * of nodes, one word for each VCPU->node and one word for each node to 637 * hold the amount of memory. 638 */ 639 numa_fw_cfg = g_new0(uint64_t, 1 + apic_id_limit + nb_numa_nodes); 640 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 641 for (i = 0; i < max_cpus; i++) { 642 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 643 assert(apic_id < apic_id_limit); 644 for (j = 0; j < nb_numa_nodes; j++) { 645 if (test_bit(i, node_cpumask[j])) { 646 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); 647 break; 648 } 649 } 650 } 651 for (i = 0; i < nb_numa_nodes; i++) { 652 numa_fw_cfg[apic_id_limit + 1 + i] = cpu_to_le64(node_mem[i]); 653 } 654 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 655 (1 + apic_id_limit + nb_numa_nodes) * 656 sizeof(*numa_fw_cfg)); 657 658 return fw_cfg; 659 } 660 661 static long get_file_size(FILE *f) 662 { 663 long where, size; 664 665 /* XXX: on Unix systems, using fstat() probably makes more sense */ 666 667 where = ftell(f); 668 fseek(f, 0, SEEK_END); 669 size = ftell(f); 670 fseek(f, where, SEEK_SET); 671 672 return size; 673 } 674 675 static void load_linux(void *fw_cfg, 676 const char *kernel_filename, 677 const char *initrd_filename, 678 const char *kernel_cmdline, 679 hwaddr max_ram_size) 680 { 681 uint16_t protocol; 682 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 683 uint32_t initrd_max; 684 uint8_t header[8192], *setup, *kernel, *initrd_data; 685 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 686 FILE *f; 687 char *vmode; 688 689 /* Align to 16 bytes as a paranoia measure */ 690 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 691 692 /* load the kernel header */ 693 f = fopen(kernel_filename, "rb"); 694 if (!f || !(kernel_size = get_file_size(f)) || 695 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 696 MIN(ARRAY_SIZE(header), kernel_size)) { 697 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 698 kernel_filename, strerror(errno)); 699 exit(1); 700 } 701 702 /* kernel protocol version */ 703 #if 0 704 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 705 #endif 706 if (ldl_p(header+0x202) == 0x53726448) { 707 protocol = lduw_p(header+0x206); 708 } else { 709 /* This looks like a multiboot kernel. If it is, let's stop 710 treating it like a Linux kernel. */ 711 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 712 kernel_cmdline, kernel_size, header)) { 713 return; 714 } 715 protocol = 0; 716 } 717 718 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 719 /* Low kernel */ 720 real_addr = 0x90000; 721 cmdline_addr = 0x9a000 - cmdline_size; 722 prot_addr = 0x10000; 723 } else if (protocol < 0x202) { 724 /* High but ancient kernel */ 725 real_addr = 0x90000; 726 cmdline_addr = 0x9a000 - cmdline_size; 727 prot_addr = 0x100000; 728 } else { 729 /* High and recent kernel */ 730 real_addr = 0x10000; 731 cmdline_addr = 0x20000; 732 prot_addr = 0x100000; 733 } 734 735 #if 0 736 fprintf(stderr, 737 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 738 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 739 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 740 real_addr, 741 cmdline_addr, 742 prot_addr); 743 #endif 744 745 /* highest address for loading the initrd */ 746 if (protocol >= 0x203) { 747 initrd_max = ldl_p(header+0x22c); 748 } else { 749 initrd_max = 0x37ffffff; 750 } 751 752 if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) 753 initrd_max = max_ram_size-ACPI_DATA_SIZE-1; 754 755 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 756 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 757 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 758 759 if (protocol >= 0x202) { 760 stl_p(header+0x228, cmdline_addr); 761 } else { 762 stw_p(header+0x20, 0xA33F); 763 stw_p(header+0x22, cmdline_addr-real_addr); 764 } 765 766 /* handle vga= parameter */ 767 vmode = strstr(kernel_cmdline, "vga="); 768 if (vmode) { 769 unsigned int video_mode; 770 /* skip "vga=" */ 771 vmode += 4; 772 if (!strncmp(vmode, "normal", 6)) { 773 video_mode = 0xffff; 774 } else if (!strncmp(vmode, "ext", 3)) { 775 video_mode = 0xfffe; 776 } else if (!strncmp(vmode, "ask", 3)) { 777 video_mode = 0xfffd; 778 } else { 779 video_mode = strtol(vmode, NULL, 0); 780 } 781 stw_p(header+0x1fa, video_mode); 782 } 783 784 /* loader type */ 785 /* High nybble = B reserved for QEMU; low nybble is revision number. 786 If this code is substantially changed, you may want to consider 787 incrementing the revision. */ 788 if (protocol >= 0x200) { 789 header[0x210] = 0xB0; 790 } 791 /* heap */ 792 if (protocol >= 0x201) { 793 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 794 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 795 } 796 797 /* load initrd */ 798 if (initrd_filename) { 799 if (protocol < 0x200) { 800 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 801 exit(1); 802 } 803 804 initrd_size = get_image_size(initrd_filename); 805 if (initrd_size < 0) { 806 fprintf(stderr, "qemu: error reading initrd %s\n", 807 initrd_filename); 808 exit(1); 809 } 810 811 initrd_addr = (initrd_max-initrd_size) & ~4095; 812 813 initrd_data = g_malloc(initrd_size); 814 load_image(initrd_filename, initrd_data); 815 816 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 817 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 818 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 819 820 stl_p(header+0x218, initrd_addr); 821 stl_p(header+0x21c, initrd_size); 822 } 823 824 /* load kernel and setup */ 825 setup_size = header[0x1f1]; 826 if (setup_size == 0) { 827 setup_size = 4; 828 } 829 setup_size = (setup_size+1)*512; 830 kernel_size -= setup_size; 831 832 setup = g_malloc(setup_size); 833 kernel = g_malloc(kernel_size); 834 fseek(f, 0, SEEK_SET); 835 if (fread(setup, 1, setup_size, f) != setup_size) { 836 fprintf(stderr, "fread() failed\n"); 837 exit(1); 838 } 839 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 840 fprintf(stderr, "fread() failed\n"); 841 exit(1); 842 } 843 fclose(f); 844 memcpy(setup, header, MIN(sizeof(header), setup_size)); 845 846 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 847 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 848 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 849 850 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 851 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 852 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 853 854 option_rom[nb_option_roms].name = "linuxboot.bin"; 855 option_rom[nb_option_roms].bootindex = 0; 856 nb_option_roms++; 857 } 858 859 #define NE2000_NB_MAX 6 860 861 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 862 0x280, 0x380 }; 863 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 864 865 static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc }; 866 static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 }; 867 868 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 869 { 870 static int nb_ne2k = 0; 871 872 if (nb_ne2k == NE2000_NB_MAX) 873 return; 874 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 875 ne2000_irq[nb_ne2k], nd); 876 nb_ne2k++; 877 } 878 879 DeviceState *cpu_get_current_apic(void) 880 { 881 if (cpu_single_env) { 882 return cpu_single_env->apic_state; 883 } else { 884 return NULL; 885 } 886 } 887 888 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 889 { 890 X86CPU *cpu = opaque; 891 892 if (level) { 893 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 894 } 895 } 896 897 static X86CPU *pc_new_cpu(const char *cpu_model, int64_t apic_id, Error **errp) 898 { 899 X86CPU *cpu; 900 Error *local_err = NULL; 901 902 cpu = cpu_x86_create(cpu_model, errp); 903 if (!cpu) { 904 return cpu; 905 } 906 907 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err); 908 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); 909 910 if (local_err) { 911 if (cpu != NULL) { 912 object_unref(OBJECT(cpu)); 913 cpu = NULL; 914 } 915 error_propagate(errp, local_err); 916 } 917 return cpu; 918 } 919 920 void pc_cpus_init(const char *cpu_model) 921 { 922 int i; 923 Error *error = NULL; 924 925 /* init CPUs */ 926 if (cpu_model == NULL) { 927 #ifdef TARGET_X86_64 928 cpu_model = "qemu64"; 929 #else 930 cpu_model = "qemu32"; 931 #endif 932 } 933 934 for (i = 0; i < smp_cpus; i++) { 935 pc_new_cpu(cpu_model, x86_cpu_apic_id_from_index(i), &error); 936 if (error) { 937 fprintf(stderr, "%s\n", error_get_pretty(error)); 938 error_free(error); 939 exit(1); 940 } 941 } 942 } 943 944 void pc_acpi_init(const char *default_dsdt) 945 { 946 char *filename; 947 948 if (acpi_tables != NULL) { 949 /* manually set via -acpitable, leave it alone */ 950 return; 951 } 952 953 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 954 if (filename == NULL) { 955 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); 956 } else { 957 char *arg; 958 QemuOpts *opts; 959 Error *err = NULL; 960 961 arg = g_strdup_printf("file=%s", filename); 962 963 /* creates a deep copy of "arg" */ 964 opts = qemu_opts_parse(qemu_find_opts("acpi"), arg, 0); 965 g_assert(opts != NULL); 966 967 acpi_table_add(opts, &err); 968 if (err) { 969 fprintf(stderr, "WARNING: failed to load %s: %s\n", filename, 970 error_get_pretty(err)); 971 error_free(err); 972 } 973 g_free(arg); 974 g_free(filename); 975 } 976 } 977 978 void *pc_memory_init(MemoryRegion *system_memory, 979 const char *kernel_filename, 980 const char *kernel_cmdline, 981 const char *initrd_filename, 982 ram_addr_t below_4g_mem_size, 983 ram_addr_t above_4g_mem_size, 984 MemoryRegion *rom_memory, 985 MemoryRegion **ram_memory) 986 { 987 int linux_boot, i; 988 MemoryRegion *ram, *option_rom_mr; 989 MemoryRegion *ram_below_4g, *ram_above_4g; 990 void *fw_cfg; 991 992 linux_boot = (kernel_filename != NULL); 993 994 /* Allocate RAM. We allocate it as a single memory region and use 995 * aliases to address portions of it, mostly for backwards compatibility 996 * with older qemus that used qemu_ram_alloc(). 997 */ 998 ram = g_malloc(sizeof(*ram)); 999 memory_region_init_ram(ram, "pc.ram", 1000 below_4g_mem_size + above_4g_mem_size); 1001 vmstate_register_ram_global(ram); 1002 *ram_memory = ram; 1003 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1004 memory_region_init_alias(ram_below_4g, "ram-below-4g", ram, 1005 0, below_4g_mem_size); 1006 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1007 if (above_4g_mem_size > 0) { 1008 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1009 memory_region_init_alias(ram_above_4g, "ram-above-4g", ram, 1010 below_4g_mem_size, above_4g_mem_size); 1011 memory_region_add_subregion(system_memory, 0x100000000ULL, 1012 ram_above_4g); 1013 } 1014 1015 1016 /* Initialize PC system firmware */ 1017 pc_system_firmware_init(rom_memory); 1018 1019 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1020 memory_region_init_ram(option_rom_mr, "pc.rom", PC_ROM_SIZE); 1021 vmstate_register_ram_global(option_rom_mr); 1022 memory_region_add_subregion_overlap(rom_memory, 1023 PC_ROM_MIN_VGA, 1024 option_rom_mr, 1025 1); 1026 1027 fw_cfg = bochs_bios_init(); 1028 rom_set_fw(fw_cfg); 1029 1030 if (linux_boot) { 1031 load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size); 1032 } 1033 1034 for (i = 0; i < nb_option_roms; i++) { 1035 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1036 } 1037 return fw_cfg; 1038 } 1039 1040 qemu_irq *pc_allocate_cpu_irq(void) 1041 { 1042 return qemu_allocate_irqs(pic_irq_request, NULL, 1); 1043 } 1044 1045 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1046 { 1047 DeviceState *dev = NULL; 1048 1049 if (pci_bus) { 1050 PCIDevice *pcidev = pci_vga_init(pci_bus); 1051 dev = pcidev ? &pcidev->qdev : NULL; 1052 } else if (isa_bus) { 1053 ISADevice *isadev = isa_vga_init(isa_bus); 1054 dev = isadev ? &isadev->qdev : NULL; 1055 } 1056 return dev; 1057 } 1058 1059 static void cpu_request_exit(void *opaque, int irq, int level) 1060 { 1061 CPUX86State *env = cpu_single_env; 1062 1063 if (env && level) { 1064 cpu_exit(env); 1065 } 1066 } 1067 1068 static const MemoryRegionOps ioport80_io_ops = { 1069 .write = ioport80_write, 1070 .read = ioport80_read, 1071 .endianness = DEVICE_NATIVE_ENDIAN, 1072 .impl = { 1073 .min_access_size = 1, 1074 .max_access_size = 1, 1075 }, 1076 }; 1077 1078 static const MemoryRegionOps ioportF0_io_ops = { 1079 .write = ioportF0_write, 1080 .read = ioportF0_read, 1081 .endianness = DEVICE_NATIVE_ENDIAN, 1082 .impl = { 1083 .min_access_size = 1, 1084 .max_access_size = 1, 1085 }, 1086 }; 1087 1088 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1089 ISADevice **rtc_state, 1090 ISADevice **floppy, 1091 bool no_vmport) 1092 { 1093 int i; 1094 DriveInfo *fd[MAX_FD]; 1095 DeviceState *hpet = NULL; 1096 int pit_isa_irq = 0; 1097 qemu_irq pit_alt_irq = NULL; 1098 qemu_irq rtc_irq = NULL; 1099 qemu_irq *a20_line; 1100 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1101 qemu_irq *cpu_exit_irq; 1102 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1103 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1104 1105 memory_region_init_io(ioport80_io, &ioport80_io_ops, NULL, "ioport80", 1); 1106 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1107 1108 memory_region_init_io(ioportF0_io, &ioportF0_io_ops, NULL, "ioportF0", 1); 1109 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1110 1111 /* 1112 * Check if an HPET shall be created. 1113 * 1114 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1115 * when the HPET wants to take over. Thus we have to disable the latter. 1116 */ 1117 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1118 hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL); 1119 1120 if (hpet) { 1121 for (i = 0; i < GSI_NUM_PINS; i++) { 1122 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1123 } 1124 pit_isa_irq = -1; 1125 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1126 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1127 } 1128 } 1129 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); 1130 1131 qemu_register_boot_set(pc_boot_set, *rtc_state); 1132 1133 if (!xen_enabled()) { 1134 if (kvm_irqchip_in_kernel()) { 1135 pit = kvm_pit_init(isa_bus, 0x40); 1136 } else { 1137 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1138 } 1139 if (hpet) { 1140 /* connect PIT to output control line of the HPET */ 1141 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(&pit->qdev, 0)); 1142 } 1143 pcspk_init(isa_bus, pit); 1144 } 1145 1146 for(i = 0; i < MAX_SERIAL_PORTS; i++) { 1147 if (serial_hds[i]) { 1148 serial_isa_init(isa_bus, i, serial_hds[i]); 1149 } 1150 } 1151 1152 for(i = 0; i < MAX_PARALLEL_PORTS; i++) { 1153 if (parallel_hds[i]) { 1154 parallel_init(isa_bus, i, parallel_hds[i]); 1155 } 1156 } 1157 1158 a20_line = qemu_allocate_irqs(handle_a20_line_change, 1159 x86_env_get_cpu(first_cpu), 2); 1160 i8042 = isa_create_simple(isa_bus, "i8042"); 1161 i8042_setup_a20_line(i8042, &a20_line[0]); 1162 if (!no_vmport) { 1163 vmport_init(isa_bus); 1164 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1165 } else { 1166 vmmouse = NULL; 1167 } 1168 if (vmmouse) { 1169 qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042); 1170 qdev_init_nofail(&vmmouse->qdev); 1171 } 1172 port92 = isa_create_simple(isa_bus, "port92"); 1173 port92_init(port92, &a20_line[1]); 1174 1175 cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); 1176 DMA_init(0, cpu_exit_irq); 1177 1178 for(i = 0; i < MAX_FD; i++) { 1179 fd[i] = drive_get(IF_FLOPPY, 0, i); 1180 } 1181 *floppy = fdctrl_init_isa(isa_bus, fd); 1182 } 1183 1184 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1185 { 1186 int i; 1187 1188 for (i = 0; i < nb_nics; i++) { 1189 NICInfo *nd = &nd_table[i]; 1190 1191 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1192 pc_init_ne2k_isa(isa_bus, nd); 1193 } else { 1194 pci_nic_init_nofail(nd, "e1000", NULL); 1195 } 1196 } 1197 } 1198 1199 void pc_pci_device_init(PCIBus *pci_bus) 1200 { 1201 int max_bus; 1202 int bus; 1203 1204 max_bus = drive_get_max_bus(IF_SCSI); 1205 for (bus = 0; bus <= max_bus; bus++) { 1206 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1207 } 1208 } 1209 1210 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1211 { 1212 DeviceState *dev; 1213 SysBusDevice *d; 1214 unsigned int i; 1215 1216 if (kvm_irqchip_in_kernel()) { 1217 dev = qdev_create(NULL, "kvm-ioapic"); 1218 } else { 1219 dev = qdev_create(NULL, "ioapic"); 1220 } 1221 if (parent_name) { 1222 object_property_add_child(object_resolve_path(parent_name, NULL), 1223 "ioapic", OBJECT(dev), NULL); 1224 } 1225 qdev_init_nofail(dev); 1226 d = SYS_BUS_DEVICE(dev); 1227 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1228 1229 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1230 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1231 } 1232 } 1233