1 /* 2 * QEMU PC System Emulator 3 * 4 * Copyright (c) 2003-2004 Fabrice Bellard 5 * 6 * Permission is hereby granted, free of charge, to any person obtaining a copy 7 * of this software and associated documentation files (the "Software"), to deal 8 * in the Software without restriction, including without limitation the rights 9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 10 * copies of the Software, and to permit persons to whom the Software is 11 * furnished to do so, subject to the following conditions: 12 * 13 * The above copyright notice and this permission notice shall be included in 14 * all copies or substantial portions of the Software. 15 * 16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN 22 * THE SOFTWARE. 23 */ 24 #include "qemu/osdep.h" 25 #include "hw/hw.h" 26 #include "hw/i386/pc.h" 27 #include "hw/char/serial.h" 28 #include "hw/i386/apic.h" 29 #include "hw/i386/topology.h" 30 #include "sysemu/cpus.h" 31 #include "hw/block/fdc.h" 32 #include "hw/ide.h" 33 #include "hw/pci/pci.h" 34 #include "hw/pci/pci_bus.h" 35 #include "hw/nvram/fw_cfg.h" 36 #include "hw/timer/hpet.h" 37 #include "hw/smbios/smbios.h" 38 #include "hw/loader.h" 39 #include "elf.h" 40 #include "multiboot.h" 41 #include "hw/timer/mc146818rtc.h" 42 #include "hw/timer/i8254.h" 43 #include "hw/audio/pcspk.h" 44 #include "hw/pci/msi.h" 45 #include "hw/sysbus.h" 46 #include "sysemu/sysemu.h" 47 #include "sysemu/numa.h" 48 #include "sysemu/kvm.h" 49 #include "sysemu/qtest.h" 50 #include "kvm_i386.h" 51 #include "hw/xen/xen.h" 52 #include "sysemu/block-backend.h" 53 #include "hw/block/block.h" 54 #include "ui/qemu-spice.h" 55 #include "exec/memory.h" 56 #include "exec/address-spaces.h" 57 #include "sysemu/arch_init.h" 58 #include "qemu/bitmap.h" 59 #include "qemu/config-file.h" 60 #include "qemu/error-report.h" 61 #include "hw/acpi/acpi.h" 62 #include "hw/acpi/cpu_hotplug.h" 63 #include "hw/boards.h" 64 #include "hw/pci/pci_host.h" 65 #include "acpi-build.h" 66 #include "hw/mem/pc-dimm.h" 67 #include "qapi/visitor.h" 68 #include "qapi-visit.h" 69 #include "qom/cpu.h" 70 #include "hw/nmi.h" 71 #include "hw/i386/intel_iommu.h" 72 73 /* debug PC/ISA interrupts */ 74 //#define DEBUG_IRQ 75 76 #ifdef DEBUG_IRQ 77 #define DPRINTF(fmt, ...) \ 78 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) 79 #else 80 #define DPRINTF(fmt, ...) 81 #endif 82 83 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) 84 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) 85 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) 86 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) 87 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) 88 89 #define E820_NR_ENTRIES 16 90 91 struct e820_entry { 92 uint64_t address; 93 uint64_t length; 94 uint32_t type; 95 } QEMU_PACKED __attribute((__aligned__(4))); 96 97 struct e820_table { 98 uint32_t count; 99 struct e820_entry entry[E820_NR_ENTRIES]; 100 } QEMU_PACKED __attribute((__aligned__(4))); 101 102 static struct e820_table e820_reserve; 103 static struct e820_entry *e820_table; 104 static unsigned e820_entries; 105 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; 106 107 void gsi_handler(void *opaque, int n, int level) 108 { 109 GSIState *s = opaque; 110 111 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); 112 if (n < ISA_NUM_IRQS) { 113 qemu_set_irq(s->i8259_irq[n], level); 114 } 115 qemu_set_irq(s->ioapic_irq[n], level); 116 } 117 118 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data, 119 unsigned size) 120 { 121 } 122 123 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size) 124 { 125 return 0xffffffffffffffffULL; 126 } 127 128 /* MSDOS compatibility mode FPU exception support */ 129 static qemu_irq ferr_irq; 130 131 void pc_register_ferr_irq(qemu_irq irq) 132 { 133 ferr_irq = irq; 134 } 135 136 /* XXX: add IGNNE support */ 137 void cpu_set_ferr(CPUX86State *s) 138 { 139 qemu_irq_raise(ferr_irq); 140 } 141 142 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data, 143 unsigned size) 144 { 145 qemu_irq_lower(ferr_irq); 146 } 147 148 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size) 149 { 150 return 0xffffffffffffffffULL; 151 } 152 153 /* TSC handling */ 154 uint64_t cpu_get_tsc(CPUX86State *env) 155 { 156 return cpu_get_ticks(); 157 } 158 159 /* IRQ handling */ 160 int cpu_get_pic_interrupt(CPUX86State *env) 161 { 162 X86CPU *cpu = x86_env_get_cpu(env); 163 int intno; 164 165 if (!kvm_irqchip_in_kernel()) { 166 intno = apic_get_interrupt(cpu->apic_state); 167 if (intno >= 0) { 168 return intno; 169 } 170 /* read the irq from the PIC */ 171 if (!apic_accept_pic_intr(cpu->apic_state)) { 172 return -1; 173 } 174 } 175 176 intno = pic_read_irq(isa_pic); 177 return intno; 178 } 179 180 static void pic_irq_request(void *opaque, int irq, int level) 181 { 182 CPUState *cs = first_cpu; 183 X86CPU *cpu = X86_CPU(cs); 184 185 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); 186 if (cpu->apic_state && !kvm_irqchip_in_kernel()) { 187 CPU_FOREACH(cs) { 188 cpu = X86_CPU(cs); 189 if (apic_accept_pic_intr(cpu->apic_state)) { 190 apic_deliver_pic_intr(cpu->apic_state, level); 191 } 192 } 193 } else { 194 if (level) { 195 cpu_interrupt(cs, CPU_INTERRUPT_HARD); 196 } else { 197 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD); 198 } 199 } 200 } 201 202 /* PC cmos mappings */ 203 204 #define REG_EQUIPMENT_BYTE 0x14 205 206 int cmos_get_fd_drive_type(FloppyDriveType fd0) 207 { 208 int val; 209 210 switch (fd0) { 211 case FLOPPY_DRIVE_TYPE_144: 212 /* 1.44 Mb 3"5 drive */ 213 val = 4; 214 break; 215 case FLOPPY_DRIVE_TYPE_288: 216 /* 2.88 Mb 3"5 drive */ 217 val = 5; 218 break; 219 case FLOPPY_DRIVE_TYPE_120: 220 /* 1.2 Mb 5"5 drive */ 221 val = 2; 222 break; 223 case FLOPPY_DRIVE_TYPE_NONE: 224 default: 225 val = 0; 226 break; 227 } 228 return val; 229 } 230 231 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs, 232 int16_t cylinders, int8_t heads, int8_t sectors) 233 { 234 rtc_set_memory(s, type_ofs, 47); 235 rtc_set_memory(s, info_ofs, cylinders); 236 rtc_set_memory(s, info_ofs + 1, cylinders >> 8); 237 rtc_set_memory(s, info_ofs + 2, heads); 238 rtc_set_memory(s, info_ofs + 3, 0xff); 239 rtc_set_memory(s, info_ofs + 4, 0xff); 240 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); 241 rtc_set_memory(s, info_ofs + 6, cylinders); 242 rtc_set_memory(s, info_ofs + 7, cylinders >> 8); 243 rtc_set_memory(s, info_ofs + 8, sectors); 244 } 245 246 /* convert boot_device letter to something recognizable by the bios */ 247 static int boot_device2nibble(char boot_device) 248 { 249 switch(boot_device) { 250 case 'a': 251 case 'b': 252 return 0x01; /* floppy boot */ 253 case 'c': 254 return 0x02; /* hard drive boot */ 255 case 'd': 256 return 0x03; /* CD-ROM boot */ 257 case 'n': 258 return 0x04; /* Network boot */ 259 } 260 return 0; 261 } 262 263 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp) 264 { 265 #define PC_MAX_BOOT_DEVICES 3 266 int nbds, bds[3] = { 0, }; 267 int i; 268 269 nbds = strlen(boot_device); 270 if (nbds > PC_MAX_BOOT_DEVICES) { 271 error_setg(errp, "Too many boot devices for PC"); 272 return; 273 } 274 for (i = 0; i < nbds; i++) { 275 bds[i] = boot_device2nibble(boot_device[i]); 276 if (bds[i] == 0) { 277 error_setg(errp, "Invalid boot device for PC: '%c'", 278 boot_device[i]); 279 return; 280 } 281 } 282 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); 283 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); 284 } 285 286 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp) 287 { 288 set_boot_dev(opaque, boot_device, errp); 289 } 290 291 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy) 292 { 293 int val, nb, i; 294 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE, 295 FLOPPY_DRIVE_TYPE_NONE }; 296 297 /* floppy type */ 298 if (floppy) { 299 for (i = 0; i < 2; i++) { 300 fd_type[i] = isa_fdc_get_drive_type(floppy, i); 301 } 302 } 303 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | 304 cmos_get_fd_drive_type(fd_type[1]); 305 rtc_set_memory(rtc_state, 0x10, val); 306 307 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE); 308 nb = 0; 309 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) { 310 nb++; 311 } 312 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) { 313 nb++; 314 } 315 switch (nb) { 316 case 0: 317 break; 318 case 1: 319 val |= 0x01; /* 1 drive, ready for boot */ 320 break; 321 case 2: 322 val |= 0x41; /* 2 drives, ready for boot */ 323 break; 324 } 325 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val); 326 } 327 328 typedef struct pc_cmos_init_late_arg { 329 ISADevice *rtc_state; 330 BusState *idebus[2]; 331 } pc_cmos_init_late_arg; 332 333 typedef struct check_fdc_state { 334 ISADevice *floppy; 335 bool multiple; 336 } CheckFdcState; 337 338 static int check_fdc(Object *obj, void *opaque) 339 { 340 CheckFdcState *state = opaque; 341 Object *fdc; 342 uint32_t iobase; 343 Error *local_err = NULL; 344 345 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC); 346 if (!fdc) { 347 return 0; 348 } 349 350 iobase = object_property_get_int(obj, "iobase", &local_err); 351 if (local_err || iobase != 0x3f0) { 352 error_free(local_err); 353 return 0; 354 } 355 356 if (state->floppy) { 357 state->multiple = true; 358 } else { 359 state->floppy = ISA_DEVICE(obj); 360 } 361 return 0; 362 } 363 364 static const char * const fdc_container_path[] = { 365 "/unattached", "/peripheral", "/peripheral-anon" 366 }; 367 368 /* 369 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers 370 * and ACPI objects. 371 */ 372 ISADevice *pc_find_fdc0(void) 373 { 374 int i; 375 Object *container; 376 CheckFdcState state = { 0 }; 377 378 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) { 379 container = container_get(qdev_get_machine(), fdc_container_path[i]); 380 object_child_foreach(container, check_fdc, &state); 381 } 382 383 if (state.multiple) { 384 error_report("warning: multiple floppy disk controllers with " 385 "iobase=0x3f0 have been found"); 386 error_printf("the one being picked for CMOS setup might not reflect " 387 "your intent\n"); 388 } 389 390 return state.floppy; 391 } 392 393 static void pc_cmos_init_late(void *opaque) 394 { 395 pc_cmos_init_late_arg *arg = opaque; 396 ISADevice *s = arg->rtc_state; 397 int16_t cylinders; 398 int8_t heads, sectors; 399 int val; 400 int i, trans; 401 402 val = 0; 403 if (ide_get_geometry(arg->idebus[0], 0, 404 &cylinders, &heads, §ors) >= 0) { 405 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors); 406 val |= 0xf0; 407 } 408 if (ide_get_geometry(arg->idebus[0], 1, 409 &cylinders, &heads, §ors) >= 0) { 410 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors); 411 val |= 0x0f; 412 } 413 rtc_set_memory(s, 0x12, val); 414 415 val = 0; 416 for (i = 0; i < 4; i++) { 417 /* NOTE: ide_get_geometry() returns the physical 418 geometry. It is always such that: 1 <= sects <= 63, 1 419 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS 420 geometry can be different if a translation is done. */ 421 if (ide_get_geometry(arg->idebus[i / 2], i % 2, 422 &cylinders, &heads, §ors) >= 0) { 423 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1; 424 assert((trans & ~3) == 0); 425 val |= trans << (i * 2); 426 } 427 } 428 rtc_set_memory(s, 0x39, val); 429 430 pc_cmos_init_floppy(s, pc_find_fdc0()); 431 432 qemu_unregister_reset(pc_cmos_init_late, opaque); 433 } 434 435 void pc_cmos_init(PCMachineState *pcms, 436 BusState *idebus0, BusState *idebus1, 437 ISADevice *s) 438 { 439 int val; 440 static pc_cmos_init_late_arg arg; 441 442 /* various important CMOS locations needed by PC/Bochs bios */ 443 444 /* memory size */ 445 /* base memory (first MiB) */ 446 val = MIN(pcms->below_4g_mem_size / 1024, 640); 447 rtc_set_memory(s, 0x15, val); 448 rtc_set_memory(s, 0x16, val >> 8); 449 /* extended memory (next 64MiB) */ 450 if (pcms->below_4g_mem_size > 1024 * 1024) { 451 val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024; 452 } else { 453 val = 0; 454 } 455 if (val > 65535) 456 val = 65535; 457 rtc_set_memory(s, 0x17, val); 458 rtc_set_memory(s, 0x18, val >> 8); 459 rtc_set_memory(s, 0x30, val); 460 rtc_set_memory(s, 0x31, val >> 8); 461 /* memory between 16MiB and 4GiB */ 462 if (pcms->below_4g_mem_size > 16 * 1024 * 1024) { 463 val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536; 464 } else { 465 val = 0; 466 } 467 if (val > 65535) 468 val = 65535; 469 rtc_set_memory(s, 0x34, val); 470 rtc_set_memory(s, 0x35, val >> 8); 471 /* memory above 4GiB */ 472 val = pcms->above_4g_mem_size / 65536; 473 rtc_set_memory(s, 0x5b, val); 474 rtc_set_memory(s, 0x5c, val >> 8); 475 rtc_set_memory(s, 0x5d, val >> 16); 476 477 object_property_add_link(OBJECT(pcms), "rtc_state", 478 TYPE_ISA_DEVICE, 479 (Object **)&pcms->rtc, 480 object_property_allow_set_link, 481 OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort); 482 object_property_set_link(OBJECT(pcms), OBJECT(s), 483 "rtc_state", &error_abort); 484 485 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal); 486 487 val = 0; 488 val |= 0x02; /* FPU is there */ 489 val |= 0x04; /* PS/2 mouse installed */ 490 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); 491 492 /* hard drives and FDC */ 493 arg.rtc_state = s; 494 arg.idebus[0] = idebus0; 495 arg.idebus[1] = idebus1; 496 qemu_register_reset(pc_cmos_init_late, &arg); 497 } 498 499 #define TYPE_PORT92 "port92" 500 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92) 501 502 /* port 92 stuff: could be split off */ 503 typedef struct Port92State { 504 ISADevice parent_obj; 505 506 MemoryRegion io; 507 uint8_t outport; 508 qemu_irq a20_out; 509 } Port92State; 510 511 static void port92_write(void *opaque, hwaddr addr, uint64_t val, 512 unsigned size) 513 { 514 Port92State *s = opaque; 515 int oldval = s->outport; 516 517 DPRINTF("port92: write 0x%02" PRIx64 "\n", val); 518 s->outport = val; 519 qemu_set_irq(s->a20_out, (val >> 1) & 1); 520 if ((val & 1) && !(oldval & 1)) { 521 qemu_system_reset_request(); 522 } 523 } 524 525 static uint64_t port92_read(void *opaque, hwaddr addr, 526 unsigned size) 527 { 528 Port92State *s = opaque; 529 uint32_t ret; 530 531 ret = s->outport; 532 DPRINTF("port92: read 0x%02x\n", ret); 533 return ret; 534 } 535 536 static void port92_init(ISADevice *dev, qemu_irq a20_out) 537 { 538 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out); 539 } 540 541 static const VMStateDescription vmstate_port92_isa = { 542 .name = "port92", 543 .version_id = 1, 544 .minimum_version_id = 1, 545 .fields = (VMStateField[]) { 546 VMSTATE_UINT8(outport, Port92State), 547 VMSTATE_END_OF_LIST() 548 } 549 }; 550 551 static void port92_reset(DeviceState *d) 552 { 553 Port92State *s = PORT92(d); 554 555 s->outport &= ~1; 556 } 557 558 static const MemoryRegionOps port92_ops = { 559 .read = port92_read, 560 .write = port92_write, 561 .impl = { 562 .min_access_size = 1, 563 .max_access_size = 1, 564 }, 565 .endianness = DEVICE_LITTLE_ENDIAN, 566 }; 567 568 static void port92_initfn(Object *obj) 569 { 570 Port92State *s = PORT92(obj); 571 572 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1); 573 574 s->outport = 0; 575 576 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1); 577 } 578 579 static void port92_realizefn(DeviceState *dev, Error **errp) 580 { 581 ISADevice *isadev = ISA_DEVICE(dev); 582 Port92State *s = PORT92(dev); 583 584 isa_register_ioport(isadev, &s->io, 0x92); 585 } 586 587 static void port92_class_initfn(ObjectClass *klass, void *data) 588 { 589 DeviceClass *dc = DEVICE_CLASS(klass); 590 591 dc->realize = port92_realizefn; 592 dc->reset = port92_reset; 593 dc->vmsd = &vmstate_port92_isa; 594 /* 595 * Reason: unlike ordinary ISA devices, this one needs additional 596 * wiring: its A20 output line needs to be wired up by 597 * port92_init(). 598 */ 599 dc->cannot_instantiate_with_device_add_yet = true; 600 } 601 602 static const TypeInfo port92_info = { 603 .name = TYPE_PORT92, 604 .parent = TYPE_ISA_DEVICE, 605 .instance_size = sizeof(Port92State), 606 .instance_init = port92_initfn, 607 .class_init = port92_class_initfn, 608 }; 609 610 static void port92_register_types(void) 611 { 612 type_register_static(&port92_info); 613 } 614 615 type_init(port92_register_types) 616 617 static void handle_a20_line_change(void *opaque, int irq, int level) 618 { 619 X86CPU *cpu = opaque; 620 621 /* XXX: send to all CPUs ? */ 622 /* XXX: add logic to handle multiple A20 line sources */ 623 x86_cpu_set_a20(cpu, level); 624 } 625 626 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) 627 { 628 int index = le32_to_cpu(e820_reserve.count); 629 struct e820_entry *entry; 630 631 if (type != E820_RAM) { 632 /* old FW_CFG_E820_TABLE entry -- reservations only */ 633 if (index >= E820_NR_ENTRIES) { 634 return -EBUSY; 635 } 636 entry = &e820_reserve.entry[index++]; 637 638 entry->address = cpu_to_le64(address); 639 entry->length = cpu_to_le64(length); 640 entry->type = cpu_to_le32(type); 641 642 e820_reserve.count = cpu_to_le32(index); 643 } 644 645 /* new "etc/e820" file -- include ram too */ 646 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1); 647 e820_table[e820_entries].address = cpu_to_le64(address); 648 e820_table[e820_entries].length = cpu_to_le64(length); 649 e820_table[e820_entries].type = cpu_to_le32(type); 650 e820_entries++; 651 652 return e820_entries; 653 } 654 655 int e820_get_num_entries(void) 656 { 657 return e820_entries; 658 } 659 660 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length) 661 { 662 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) { 663 *address = le64_to_cpu(e820_table[idx].address); 664 *length = le64_to_cpu(e820_table[idx].length); 665 return true; 666 } 667 return false; 668 } 669 670 /* Enables contiguous-apic-ID mode, for compatibility */ 671 static bool compat_apic_id_mode; 672 673 void enable_compat_apic_id_mode(void) 674 { 675 compat_apic_id_mode = true; 676 } 677 678 /* Calculates initial APIC ID for a specific CPU index 679 * 680 * Currently we need to be able to calculate the APIC ID from the CPU index 681 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have 682 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of 683 * all CPUs up to max_cpus. 684 */ 685 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index) 686 { 687 uint32_t correct_id; 688 static bool warned; 689 690 correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index); 691 if (compat_apic_id_mode) { 692 if (cpu_index != correct_id && !warned && !qtest_enabled()) { 693 error_report("APIC IDs set in compatibility mode, " 694 "CPU topology won't match the configuration"); 695 warned = true; 696 } 697 return cpu_index; 698 } else { 699 return correct_id; 700 } 701 } 702 703 static void pc_build_smbios(FWCfgState *fw_cfg) 704 { 705 uint8_t *smbios_tables, *smbios_anchor; 706 size_t smbios_tables_len, smbios_anchor_len; 707 struct smbios_phys_mem_area *mem_array; 708 unsigned i, array_count; 709 710 smbios_tables = smbios_get_table_legacy(&smbios_tables_len); 711 if (smbios_tables) { 712 fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, 713 smbios_tables, smbios_tables_len); 714 } 715 716 /* build the array of physical mem area from e820 table */ 717 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries()); 718 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) { 719 uint64_t addr, len; 720 721 if (e820_get_entry(i, E820_RAM, &addr, &len)) { 722 mem_array[array_count].address = addr; 723 mem_array[array_count].length = len; 724 array_count++; 725 } 726 } 727 smbios_get_tables(mem_array, array_count, 728 &smbios_tables, &smbios_tables_len, 729 &smbios_anchor, &smbios_anchor_len); 730 g_free(mem_array); 731 732 if (smbios_anchor) { 733 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables", 734 smbios_tables, smbios_tables_len); 735 fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor", 736 smbios_anchor, smbios_anchor_len); 737 } 738 } 739 740 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms) 741 { 742 FWCfgState *fw_cfg; 743 uint64_t *numa_fw_cfg; 744 int i, j; 745 746 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as); 747 748 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86: 749 * 750 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for 751 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table, 752 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface 753 * for CPU hotplug also uses APIC ID and not "CPU index". 754 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs", 755 * but the "limit to the APIC ID values SeaBIOS may see". 756 * 757 * So for compatibility reasons with old BIOSes we are stuck with 758 * "etc/max-cpus" actually being apic_id_limit 759 */ 760 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit); 761 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); 762 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, 763 acpi_tables, acpi_tables_len); 764 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override()); 765 766 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, 767 &e820_reserve, sizeof(e820_reserve)); 768 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table, 769 sizeof(struct e820_entry) * e820_entries); 770 771 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg)); 772 /* allocate memory for the NUMA channel: one (64bit) word for the number 773 * of nodes, one word for each VCPU->node and one word for each node to 774 * hold the amount of memory. 775 */ 776 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes); 777 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); 778 for (i = 0; i < max_cpus; i++) { 779 unsigned int apic_id = x86_cpu_apic_id_from_index(i); 780 assert(apic_id < pcms->apic_id_limit); 781 j = numa_get_node_for_cpu(i); 782 if (j < nb_numa_nodes) { 783 numa_fw_cfg[apic_id + 1] = cpu_to_le64(j); 784 } 785 } 786 for (i = 0; i < nb_numa_nodes; i++) { 787 numa_fw_cfg[pcms->apic_id_limit + 1 + i] = 788 cpu_to_le64(numa_info[i].node_mem); 789 } 790 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg, 791 (1 + pcms->apic_id_limit + nb_numa_nodes) * 792 sizeof(*numa_fw_cfg)); 793 794 return fw_cfg; 795 } 796 797 static long get_file_size(FILE *f) 798 { 799 long where, size; 800 801 /* XXX: on Unix systems, using fstat() probably makes more sense */ 802 803 where = ftell(f); 804 fseek(f, 0, SEEK_END); 805 size = ftell(f); 806 fseek(f, where, SEEK_SET); 807 808 return size; 809 } 810 811 /* setup_data types */ 812 #define SETUP_NONE 0 813 #define SETUP_E820_EXT 1 814 #define SETUP_DTB 2 815 #define SETUP_PCI 3 816 #define SETUP_EFI 4 817 818 struct setup_data { 819 uint64_t next; 820 uint32_t type; 821 uint32_t len; 822 uint8_t data[0]; 823 } __attribute__((packed)); 824 825 static void load_linux(PCMachineState *pcms, 826 FWCfgState *fw_cfg) 827 { 828 uint16_t protocol; 829 int setup_size, kernel_size, initrd_size = 0, cmdline_size; 830 int dtb_size, setup_data_offset; 831 uint32_t initrd_max; 832 uint8_t header[8192], *setup, *kernel, *initrd_data; 833 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0; 834 FILE *f; 835 char *vmode; 836 MachineState *machine = MACHINE(pcms); 837 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 838 struct setup_data *setup_data; 839 const char *kernel_filename = machine->kernel_filename; 840 const char *initrd_filename = machine->initrd_filename; 841 const char *dtb_filename = machine->dtb; 842 const char *kernel_cmdline = machine->kernel_cmdline; 843 844 /* Align to 16 bytes as a paranoia measure */ 845 cmdline_size = (strlen(kernel_cmdline)+16) & ~15; 846 847 /* load the kernel header */ 848 f = fopen(kernel_filename, "rb"); 849 if (!f || !(kernel_size = get_file_size(f)) || 850 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != 851 MIN(ARRAY_SIZE(header), kernel_size)) { 852 fprintf(stderr, "qemu: could not load kernel '%s': %s\n", 853 kernel_filename, strerror(errno)); 854 exit(1); 855 } 856 857 /* kernel protocol version */ 858 #if 0 859 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); 860 #endif 861 if (ldl_p(header+0x202) == 0x53726448) { 862 protocol = lduw_p(header+0x206); 863 } else { 864 /* This looks like a multiboot kernel. If it is, let's stop 865 treating it like a Linux kernel. */ 866 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, 867 kernel_cmdline, kernel_size, header)) { 868 return; 869 } 870 protocol = 0; 871 } 872 873 if (protocol < 0x200 || !(header[0x211] & 0x01)) { 874 /* Low kernel */ 875 real_addr = 0x90000; 876 cmdline_addr = 0x9a000 - cmdline_size; 877 prot_addr = 0x10000; 878 } else if (protocol < 0x202) { 879 /* High but ancient kernel */ 880 real_addr = 0x90000; 881 cmdline_addr = 0x9a000 - cmdline_size; 882 prot_addr = 0x100000; 883 } else { 884 /* High and recent kernel */ 885 real_addr = 0x10000; 886 cmdline_addr = 0x20000; 887 prot_addr = 0x100000; 888 } 889 890 #if 0 891 fprintf(stderr, 892 "qemu: real_addr = 0x" TARGET_FMT_plx "\n" 893 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" 894 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", 895 real_addr, 896 cmdline_addr, 897 prot_addr); 898 #endif 899 900 /* highest address for loading the initrd */ 901 if (protocol >= 0x203) { 902 initrd_max = ldl_p(header+0x22c); 903 } else { 904 initrd_max = 0x37ffffff; 905 } 906 907 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) { 908 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1; 909 } 910 911 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); 912 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); 913 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline); 914 915 if (protocol >= 0x202) { 916 stl_p(header+0x228, cmdline_addr); 917 } else { 918 stw_p(header+0x20, 0xA33F); 919 stw_p(header+0x22, cmdline_addr-real_addr); 920 } 921 922 /* handle vga= parameter */ 923 vmode = strstr(kernel_cmdline, "vga="); 924 if (vmode) { 925 unsigned int video_mode; 926 /* skip "vga=" */ 927 vmode += 4; 928 if (!strncmp(vmode, "normal", 6)) { 929 video_mode = 0xffff; 930 } else if (!strncmp(vmode, "ext", 3)) { 931 video_mode = 0xfffe; 932 } else if (!strncmp(vmode, "ask", 3)) { 933 video_mode = 0xfffd; 934 } else { 935 video_mode = strtol(vmode, NULL, 0); 936 } 937 stw_p(header+0x1fa, video_mode); 938 } 939 940 /* loader type */ 941 /* High nybble = B reserved for QEMU; low nybble is revision number. 942 If this code is substantially changed, you may want to consider 943 incrementing the revision. */ 944 if (protocol >= 0x200) { 945 header[0x210] = 0xB0; 946 } 947 /* heap */ 948 if (protocol >= 0x201) { 949 header[0x211] |= 0x80; /* CAN_USE_HEAP */ 950 stw_p(header+0x224, cmdline_addr-real_addr-0x200); 951 } 952 953 /* load initrd */ 954 if (initrd_filename) { 955 if (protocol < 0x200) { 956 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); 957 exit(1); 958 } 959 960 initrd_size = get_image_size(initrd_filename); 961 if (initrd_size < 0) { 962 fprintf(stderr, "qemu: error reading initrd %s: %s\n", 963 initrd_filename, strerror(errno)); 964 exit(1); 965 } 966 967 initrd_addr = (initrd_max-initrd_size) & ~4095; 968 969 initrd_data = g_malloc(initrd_size); 970 load_image(initrd_filename, initrd_data); 971 972 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); 973 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); 974 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); 975 976 stl_p(header+0x218, initrd_addr); 977 stl_p(header+0x21c, initrd_size); 978 } 979 980 /* load kernel and setup */ 981 setup_size = header[0x1f1]; 982 if (setup_size == 0) { 983 setup_size = 4; 984 } 985 setup_size = (setup_size+1)*512; 986 if (setup_size > kernel_size) { 987 fprintf(stderr, "qemu: invalid kernel header\n"); 988 exit(1); 989 } 990 kernel_size -= setup_size; 991 992 setup = g_malloc(setup_size); 993 kernel = g_malloc(kernel_size); 994 fseek(f, 0, SEEK_SET); 995 if (fread(setup, 1, setup_size, f) != setup_size) { 996 fprintf(stderr, "fread() failed\n"); 997 exit(1); 998 } 999 if (fread(kernel, 1, kernel_size, f) != kernel_size) { 1000 fprintf(stderr, "fread() failed\n"); 1001 exit(1); 1002 } 1003 fclose(f); 1004 1005 /* append dtb to kernel */ 1006 if (dtb_filename) { 1007 if (protocol < 0x209) { 1008 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n"); 1009 exit(1); 1010 } 1011 1012 dtb_size = get_image_size(dtb_filename); 1013 if (dtb_size <= 0) { 1014 fprintf(stderr, "qemu: error reading dtb %s: %s\n", 1015 dtb_filename, strerror(errno)); 1016 exit(1); 1017 } 1018 1019 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16); 1020 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size; 1021 kernel = g_realloc(kernel, kernel_size); 1022 1023 stq_p(header+0x250, prot_addr + setup_data_offset); 1024 1025 setup_data = (struct setup_data *)(kernel + setup_data_offset); 1026 setup_data->next = 0; 1027 setup_data->type = cpu_to_le32(SETUP_DTB); 1028 setup_data->len = cpu_to_le32(dtb_size); 1029 1030 load_image_size(dtb_filename, setup_data->data, dtb_size); 1031 } 1032 1033 memcpy(setup, header, MIN(sizeof(header), setup_size)); 1034 1035 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); 1036 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); 1037 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); 1038 1039 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); 1040 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); 1041 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); 1042 1043 if (fw_cfg_dma_enabled(fw_cfg)) { 1044 option_rom[nb_option_roms].name = "linuxboot_dma.bin"; 1045 option_rom[nb_option_roms].bootindex = 0; 1046 } else { 1047 option_rom[nb_option_roms].name = "linuxboot.bin"; 1048 option_rom[nb_option_roms].bootindex = 0; 1049 } 1050 nb_option_roms++; 1051 } 1052 1053 #define NE2000_NB_MAX 6 1054 1055 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, 1056 0x280, 0x380 }; 1057 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; 1058 1059 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd) 1060 { 1061 static int nb_ne2k = 0; 1062 1063 if (nb_ne2k == NE2000_NB_MAX) 1064 return; 1065 isa_ne2000_init(bus, ne2000_io[nb_ne2k], 1066 ne2000_irq[nb_ne2k], nd); 1067 nb_ne2k++; 1068 } 1069 1070 DeviceState *cpu_get_current_apic(void) 1071 { 1072 if (current_cpu) { 1073 X86CPU *cpu = X86_CPU(current_cpu); 1074 return cpu->apic_state; 1075 } else { 1076 return NULL; 1077 } 1078 } 1079 1080 void pc_acpi_smi_interrupt(void *opaque, int irq, int level) 1081 { 1082 X86CPU *cpu = opaque; 1083 1084 if (level) { 1085 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI); 1086 } 1087 } 1088 1089 static X86CPU *pc_new_cpu(const char *typename, int64_t apic_id, 1090 Error **errp) 1091 { 1092 X86CPU *cpu = NULL; 1093 Error *local_err = NULL; 1094 1095 cpu = X86_CPU(object_new(typename)); 1096 1097 object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err); 1098 object_property_set_bool(OBJECT(cpu), true, "realized", &local_err); 1099 1100 if (local_err) { 1101 error_propagate(errp, local_err); 1102 object_unref(OBJECT(cpu)); 1103 cpu = NULL; 1104 } 1105 return cpu; 1106 } 1107 1108 void pc_hot_add_cpu(const int64_t id, Error **errp) 1109 { 1110 X86CPU *cpu; 1111 ObjectClass *oc; 1112 PCMachineState *pcms = PC_MACHINE(qdev_get_machine()); 1113 int64_t apic_id = x86_cpu_apic_id_from_index(id); 1114 Error *local_err = NULL; 1115 1116 if (id < 0) { 1117 error_setg(errp, "Invalid CPU id: %" PRIi64, id); 1118 return; 1119 } 1120 1121 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) { 1122 error_setg(errp, "Unable to add CPU: %" PRIi64 1123 ", resulting APIC ID (%" PRIi64 ") is too large", 1124 id, apic_id); 1125 return; 1126 } 1127 1128 assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */ 1129 oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu)); 1130 cpu = pc_new_cpu(object_class_get_name(oc), apic_id, &local_err); 1131 if (local_err) { 1132 error_propagate(errp, local_err); 1133 return; 1134 } 1135 object_unref(OBJECT(cpu)); 1136 } 1137 1138 void pc_cpus_init(PCMachineState *pcms) 1139 { 1140 int i; 1141 CPUClass *cc; 1142 ObjectClass *oc; 1143 const char *typename; 1144 gchar **model_pieces; 1145 X86CPU *cpu = NULL; 1146 MachineState *machine = MACHINE(pcms); 1147 1148 /* init CPUs */ 1149 if (machine->cpu_model == NULL) { 1150 #ifdef TARGET_X86_64 1151 machine->cpu_model = "qemu64"; 1152 #else 1153 machine->cpu_model = "qemu32"; 1154 #endif 1155 } 1156 1157 model_pieces = g_strsplit(machine->cpu_model, ",", 2); 1158 if (!model_pieces[0]) { 1159 error_report("Invalid/empty CPU model name"); 1160 exit(1); 1161 } 1162 1163 oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]); 1164 if (oc == NULL) { 1165 error_report("Unable to find CPU definition: %s", model_pieces[0]); 1166 exit(1); 1167 } 1168 typename = object_class_get_name(oc); 1169 cc = CPU_CLASS(oc); 1170 cc->parse_features(typename, model_pieces[1], &error_fatal); 1171 g_strfreev(model_pieces); 1172 1173 /* Calculates the limit to CPU APIC ID values 1174 * 1175 * Limit for the APIC ID value, so that all 1176 * CPU APIC IDs are < pcms->apic_id_limit. 1177 * 1178 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init(). 1179 */ 1180 pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1; 1181 pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + 1182 sizeof(CPUArchId) * max_cpus); 1183 for (i = 0; i < max_cpus; i++) { 1184 pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i); 1185 pcms->possible_cpus->len++; 1186 if (i < smp_cpus) { 1187 cpu = pc_new_cpu(typename, x86_cpu_apic_id_from_index(i), 1188 &error_fatal); 1189 object_unref(OBJECT(cpu)); 1190 } 1191 } 1192 1193 /* tell smbios about cpuid version and features */ 1194 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]); 1195 } 1196 1197 static void pc_build_feature_control_file(PCMachineState *pcms) 1198 { 1199 X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu); 1200 CPUX86State *env = &cpu->env; 1201 uint32_t unused, ecx, edx; 1202 uint64_t feature_control_bits = 0; 1203 uint64_t *val; 1204 1205 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx); 1206 if (ecx & CPUID_EXT_VMX) { 1207 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX; 1208 } 1209 1210 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) == 1211 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) && 1212 (env->mcg_cap & MCG_LMCE_P)) { 1213 feature_control_bits |= FEATURE_CONTROL_LMCE; 1214 } 1215 1216 if (!feature_control_bits) { 1217 return; 1218 } 1219 1220 val = g_malloc(sizeof(*val)); 1221 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED); 1222 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val)); 1223 } 1224 1225 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count) 1226 { 1227 if (cpus_count > 0xff) { 1228 /* If the number of CPUs can't be represented in 8 bits, the 1229 * BIOS must use "etc/boot-cpus". Set RTC field to 0 just 1230 * to make old BIOSes fail more predictably. 1231 */ 1232 rtc_set_memory(rtc, 0x5f, 0); 1233 } else { 1234 rtc_set_memory(rtc, 0x5f, cpus_count - 1); 1235 } 1236 } 1237 1238 static 1239 void pc_machine_done(Notifier *notifier, void *data) 1240 { 1241 PCMachineState *pcms = container_of(notifier, 1242 PCMachineState, machine_done); 1243 PCIBus *bus = pcms->bus; 1244 1245 /* set the number of CPUs */ 1246 rtc_set_cpus_count(pcms->rtc, le16_to_cpu(pcms->boot_cpus_le)); 1247 1248 if (bus) { 1249 int extra_hosts = 0; 1250 1251 QLIST_FOREACH(bus, &bus->child, sibling) { 1252 /* look for expander root buses */ 1253 if (pci_bus_is_root(bus)) { 1254 extra_hosts++; 1255 } 1256 } 1257 if (extra_hosts && pcms->fw_cfg) { 1258 uint64_t *val = g_malloc(sizeof(*val)); 1259 *val = cpu_to_le64(extra_hosts); 1260 fw_cfg_add_file(pcms->fw_cfg, 1261 "etc/extra-pci-roots", val, sizeof(*val)); 1262 } 1263 } 1264 1265 acpi_setup(); 1266 if (pcms->fw_cfg) { 1267 MachineClass *mc = MACHINE_GET_CLASS(pcms); 1268 1269 pc_build_smbios(pcms->fw_cfg); 1270 pc_build_feature_control_file(pcms); 1271 1272 if (mc->max_cpus > 255) { 1273 fw_cfg_add_file(pcms->fw_cfg, "etc/boot-cpus", &pcms->boot_cpus_le, 1274 sizeof(pcms->boot_cpus_le)); 1275 } 1276 } 1277 1278 if (pcms->apic_id_limit > 255) { 1279 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default()); 1280 1281 if (!iommu || !iommu->x86_iommu.intr_supported || 1282 iommu->intr_eim != ON_OFF_AUTO_ON) { 1283 error_report("current -smp configuration requires " 1284 "Extended Interrupt Mode enabled. " 1285 "You can add an IOMMU using: " 1286 "-device intel-iommu,intremap=on,eim=on"); 1287 exit(EXIT_FAILURE); 1288 } 1289 } 1290 } 1291 1292 void pc_guest_info_init(PCMachineState *pcms) 1293 { 1294 int i; 1295 1296 pcms->apic_xrupt_override = kvm_allows_irq0_override(); 1297 pcms->numa_nodes = nb_numa_nodes; 1298 pcms->node_mem = g_malloc0(pcms->numa_nodes * 1299 sizeof *pcms->node_mem); 1300 for (i = 0; i < nb_numa_nodes; i++) { 1301 pcms->node_mem[i] = numa_info[i].node_mem; 1302 } 1303 1304 pcms->machine_done.notify = pc_machine_done; 1305 qemu_add_machine_init_done_notifier(&pcms->machine_done); 1306 } 1307 1308 /* setup pci memory address space mapping into system address space */ 1309 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory, 1310 MemoryRegion *pci_address_space) 1311 { 1312 /* Set to lower priority than RAM */ 1313 memory_region_add_subregion_overlap(system_memory, 0x0, 1314 pci_address_space, -1); 1315 } 1316 1317 void pc_acpi_init(const char *default_dsdt) 1318 { 1319 char *filename; 1320 1321 if (acpi_tables != NULL) { 1322 /* manually set via -acpitable, leave it alone */ 1323 return; 1324 } 1325 1326 filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt); 1327 if (filename == NULL) { 1328 fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt); 1329 } else { 1330 QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0, 1331 &error_abort); 1332 Error *err = NULL; 1333 1334 qemu_opt_set(opts, "file", filename, &error_abort); 1335 1336 acpi_table_add_builtin(opts, &err); 1337 if (err) { 1338 error_reportf_err(err, "WARNING: failed to load %s: ", 1339 filename); 1340 } 1341 g_free(filename); 1342 } 1343 } 1344 1345 void xen_load_linux(PCMachineState *pcms) 1346 { 1347 int i; 1348 FWCfgState *fw_cfg; 1349 1350 assert(MACHINE(pcms)->kernel_filename != NULL); 1351 1352 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE); 1353 rom_set_fw(fw_cfg); 1354 1355 load_linux(pcms, fw_cfg); 1356 for (i = 0; i < nb_option_roms; i++) { 1357 assert(!strcmp(option_rom[i].name, "linuxboot.bin") || 1358 !strcmp(option_rom[i].name, "linuxboot_dma.bin") || 1359 !strcmp(option_rom[i].name, "multiboot.bin")); 1360 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1361 } 1362 pcms->fw_cfg = fw_cfg; 1363 } 1364 1365 void pc_memory_init(PCMachineState *pcms, 1366 MemoryRegion *system_memory, 1367 MemoryRegion *rom_memory, 1368 MemoryRegion **ram_memory) 1369 { 1370 int linux_boot, i; 1371 MemoryRegion *ram, *option_rom_mr; 1372 MemoryRegion *ram_below_4g, *ram_above_4g; 1373 FWCfgState *fw_cfg; 1374 MachineState *machine = MACHINE(pcms); 1375 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1376 1377 assert(machine->ram_size == pcms->below_4g_mem_size + 1378 pcms->above_4g_mem_size); 1379 1380 linux_boot = (machine->kernel_filename != NULL); 1381 1382 /* Allocate RAM. We allocate it as a single memory region and use 1383 * aliases to address portions of it, mostly for backwards compatibility 1384 * with older qemus that used qemu_ram_alloc(). 1385 */ 1386 ram = g_malloc(sizeof(*ram)); 1387 memory_region_allocate_system_memory(ram, NULL, "pc.ram", 1388 machine->ram_size); 1389 *ram_memory = ram; 1390 ram_below_4g = g_malloc(sizeof(*ram_below_4g)); 1391 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram, 1392 0, pcms->below_4g_mem_size); 1393 memory_region_add_subregion(system_memory, 0, ram_below_4g); 1394 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM); 1395 if (pcms->above_4g_mem_size > 0) { 1396 ram_above_4g = g_malloc(sizeof(*ram_above_4g)); 1397 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram, 1398 pcms->below_4g_mem_size, 1399 pcms->above_4g_mem_size); 1400 memory_region_add_subregion(system_memory, 0x100000000ULL, 1401 ram_above_4g); 1402 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM); 1403 } 1404 1405 if (!pcmc->has_reserved_memory && 1406 (machine->ram_slots || 1407 (machine->maxram_size > machine->ram_size))) { 1408 MachineClass *mc = MACHINE_GET_CLASS(machine); 1409 1410 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s", 1411 mc->name); 1412 exit(EXIT_FAILURE); 1413 } 1414 1415 /* initialize hotplug memory address space */ 1416 if (pcmc->has_reserved_memory && 1417 (machine->ram_size < machine->maxram_size)) { 1418 ram_addr_t hotplug_mem_size = 1419 machine->maxram_size - machine->ram_size; 1420 1421 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) { 1422 error_report("unsupported amount of memory slots: %"PRIu64, 1423 machine->ram_slots); 1424 exit(EXIT_FAILURE); 1425 } 1426 1427 if (QEMU_ALIGN_UP(machine->maxram_size, 1428 TARGET_PAGE_SIZE) != machine->maxram_size) { 1429 error_report("maximum memory size must by aligned to multiple of " 1430 "%d bytes", TARGET_PAGE_SIZE); 1431 exit(EXIT_FAILURE); 1432 } 1433 1434 pcms->hotplug_memory.base = 1435 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30); 1436 1437 if (pcmc->enforce_aligned_dimm) { 1438 /* size hotplug region assuming 1G page max alignment per slot */ 1439 hotplug_mem_size += (1ULL << 30) * machine->ram_slots; 1440 } 1441 1442 if ((pcms->hotplug_memory.base + hotplug_mem_size) < 1443 hotplug_mem_size) { 1444 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT, 1445 machine->maxram_size); 1446 exit(EXIT_FAILURE); 1447 } 1448 1449 memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms), 1450 "hotplug-memory", hotplug_mem_size); 1451 memory_region_add_subregion(system_memory, pcms->hotplug_memory.base, 1452 &pcms->hotplug_memory.mr); 1453 } 1454 1455 /* Initialize PC system firmware */ 1456 pc_system_firmware_init(rom_memory, !pcmc->pci_enabled); 1457 1458 option_rom_mr = g_malloc(sizeof(*option_rom_mr)); 1459 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE, 1460 &error_fatal); 1461 vmstate_register_ram_global(option_rom_mr); 1462 memory_region_add_subregion_overlap(rom_memory, 1463 PC_ROM_MIN_VGA, 1464 option_rom_mr, 1465 1); 1466 1467 fw_cfg = bochs_bios_init(&address_space_memory, pcms); 1468 1469 rom_set_fw(fw_cfg); 1470 1471 if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) { 1472 uint64_t *val = g_malloc(sizeof(*val)); 1473 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1474 uint64_t res_mem_end = pcms->hotplug_memory.base; 1475 1476 if (!pcmc->broken_reserved_end) { 1477 res_mem_end += memory_region_size(&pcms->hotplug_memory.mr); 1478 } 1479 *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30)); 1480 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val)); 1481 } 1482 1483 if (linux_boot) { 1484 load_linux(pcms, fw_cfg); 1485 } 1486 1487 for (i = 0; i < nb_option_roms; i++) { 1488 rom_add_option(option_rom[i].name, option_rom[i].bootindex); 1489 } 1490 pcms->fw_cfg = fw_cfg; 1491 1492 /* Init default IOAPIC address space */ 1493 pcms->ioapic_as = &address_space_memory; 1494 } 1495 1496 qemu_irq pc_allocate_cpu_irq(void) 1497 { 1498 return qemu_allocate_irq(pic_irq_request, NULL, 0); 1499 } 1500 1501 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus) 1502 { 1503 DeviceState *dev = NULL; 1504 1505 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA); 1506 if (pci_bus) { 1507 PCIDevice *pcidev = pci_vga_init(pci_bus); 1508 dev = pcidev ? &pcidev->qdev : NULL; 1509 } else if (isa_bus) { 1510 ISADevice *isadev = isa_vga_init(isa_bus); 1511 dev = isadev ? DEVICE(isadev) : NULL; 1512 } 1513 rom_reset_order_override(); 1514 return dev; 1515 } 1516 1517 static const MemoryRegionOps ioport80_io_ops = { 1518 .write = ioport80_write, 1519 .read = ioport80_read, 1520 .endianness = DEVICE_NATIVE_ENDIAN, 1521 .impl = { 1522 .min_access_size = 1, 1523 .max_access_size = 1, 1524 }, 1525 }; 1526 1527 static const MemoryRegionOps ioportF0_io_ops = { 1528 .write = ioportF0_write, 1529 .read = ioportF0_read, 1530 .endianness = DEVICE_NATIVE_ENDIAN, 1531 .impl = { 1532 .min_access_size = 1, 1533 .max_access_size = 1, 1534 }, 1535 }; 1536 1537 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi, 1538 ISADevice **rtc_state, 1539 bool create_fdctrl, 1540 bool no_vmport, 1541 uint32_t hpet_irqs) 1542 { 1543 int i; 1544 DriveInfo *fd[MAX_FD]; 1545 DeviceState *hpet = NULL; 1546 int pit_isa_irq = 0; 1547 qemu_irq pit_alt_irq = NULL; 1548 qemu_irq rtc_irq = NULL; 1549 qemu_irq *a20_line; 1550 ISADevice *i8042, *port92, *vmmouse, *pit = NULL; 1551 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1); 1552 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1); 1553 1554 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1); 1555 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io); 1556 1557 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1); 1558 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io); 1559 1560 /* 1561 * Check if an HPET shall be created. 1562 * 1563 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT 1564 * when the HPET wants to take over. Thus we have to disable the latter. 1565 */ 1566 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) { 1567 /* In order to set property, here not using sysbus_try_create_simple */ 1568 hpet = qdev_try_create(NULL, TYPE_HPET); 1569 if (hpet) { 1570 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7 1571 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23, 1572 * IRQ8 and IRQ2. 1573 */ 1574 uint8_t compat = object_property_get_int(OBJECT(hpet), 1575 HPET_INTCAP, NULL); 1576 if (!compat) { 1577 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs); 1578 } 1579 qdev_init_nofail(hpet); 1580 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE); 1581 1582 for (i = 0; i < GSI_NUM_PINS; i++) { 1583 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]); 1584 } 1585 pit_isa_irq = -1; 1586 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT); 1587 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT); 1588 } 1589 } 1590 *rtc_state = rtc_init(isa_bus, 2000, rtc_irq); 1591 1592 qemu_register_boot_set(pc_boot_set, *rtc_state); 1593 1594 if (!xen_enabled()) { 1595 if (kvm_pit_in_kernel()) { 1596 pit = kvm_pit_init(isa_bus, 0x40); 1597 } else { 1598 pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq); 1599 } 1600 if (hpet) { 1601 /* connect PIT to output control line of the HPET */ 1602 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0)); 1603 } 1604 pcspk_init(isa_bus, pit); 1605 } 1606 1607 serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS); 1608 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS); 1609 1610 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); 1611 i8042 = isa_create_simple(isa_bus, "i8042"); 1612 i8042_setup_a20_line(i8042, a20_line[0]); 1613 if (!no_vmport) { 1614 vmport_init(isa_bus); 1615 vmmouse = isa_try_create(isa_bus, "vmmouse"); 1616 } else { 1617 vmmouse = NULL; 1618 } 1619 if (vmmouse) { 1620 DeviceState *dev = DEVICE(vmmouse); 1621 qdev_prop_set_ptr(dev, "ps2_mouse", i8042); 1622 qdev_init_nofail(dev); 1623 } 1624 port92 = isa_create_simple(isa_bus, "port92"); 1625 port92_init(port92, a20_line[1]); 1626 g_free(a20_line); 1627 1628 DMA_init(isa_bus, 0); 1629 1630 for(i = 0; i < MAX_FD; i++) { 1631 fd[i] = drive_get(IF_FLOPPY, 0, i); 1632 create_fdctrl |= !!fd[i]; 1633 } 1634 if (create_fdctrl) { 1635 fdctrl_init_isa(isa_bus, fd); 1636 } 1637 } 1638 1639 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus) 1640 { 1641 int i; 1642 1643 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC); 1644 for (i = 0; i < nb_nics; i++) { 1645 NICInfo *nd = &nd_table[i]; 1646 1647 if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) { 1648 pc_init_ne2k_isa(isa_bus, nd); 1649 } else { 1650 pci_nic_init_nofail(nd, pci_bus, "e1000", NULL); 1651 } 1652 } 1653 rom_reset_order_override(); 1654 } 1655 1656 void pc_pci_device_init(PCIBus *pci_bus) 1657 { 1658 int max_bus; 1659 int bus; 1660 1661 max_bus = drive_get_max_bus(IF_SCSI); 1662 for (bus = 0; bus <= max_bus; bus++) { 1663 pci_create_simple(pci_bus, -1, "lsi53c895a"); 1664 } 1665 } 1666 1667 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name) 1668 { 1669 DeviceState *dev; 1670 SysBusDevice *d; 1671 unsigned int i; 1672 1673 if (kvm_ioapic_in_kernel()) { 1674 dev = qdev_create(NULL, "kvm-ioapic"); 1675 } else { 1676 dev = qdev_create(NULL, "ioapic"); 1677 } 1678 if (parent_name) { 1679 object_property_add_child(object_resolve_path(parent_name, NULL), 1680 "ioapic", OBJECT(dev), NULL); 1681 } 1682 qdev_init_nofail(dev); 1683 d = SYS_BUS_DEVICE(dev); 1684 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS); 1685 1686 for (i = 0; i < IOAPIC_NUM_PINS; i++) { 1687 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i); 1688 } 1689 } 1690 1691 static void pc_dimm_plug(HotplugHandler *hotplug_dev, 1692 DeviceState *dev, Error **errp) 1693 { 1694 HotplugHandlerClass *hhc; 1695 Error *local_err = NULL; 1696 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1697 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms); 1698 PCDIMMDevice *dimm = PC_DIMM(dev); 1699 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1700 MemoryRegion *mr = ddc->get_memory_region(dimm); 1701 uint64_t align = TARGET_PAGE_SIZE; 1702 1703 if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) { 1704 align = memory_region_get_alignment(mr); 1705 } 1706 1707 if (!pcms->acpi_dev) { 1708 error_setg(&local_err, 1709 "memory hotplug is not enabled: missing acpi device"); 1710 goto out; 1711 } 1712 1713 pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err); 1714 if (local_err) { 1715 goto out; 1716 } 1717 1718 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1719 nvdimm_plug(&pcms->acpi_nvdimm_state); 1720 } 1721 1722 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1723 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort); 1724 out: 1725 error_propagate(errp, local_err); 1726 } 1727 1728 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev, 1729 DeviceState *dev, Error **errp) 1730 { 1731 HotplugHandlerClass *hhc; 1732 Error *local_err = NULL; 1733 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1734 1735 if (!pcms->acpi_dev) { 1736 error_setg(&local_err, 1737 "memory hotplug is not enabled: missing acpi device"); 1738 goto out; 1739 } 1740 1741 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { 1742 error_setg(&local_err, 1743 "nvdimm device hot unplug is not supported yet."); 1744 goto out; 1745 } 1746 1747 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1748 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1749 1750 out: 1751 error_propagate(errp, local_err); 1752 } 1753 1754 static void pc_dimm_unplug(HotplugHandler *hotplug_dev, 1755 DeviceState *dev, Error **errp) 1756 { 1757 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1758 PCDIMMDevice *dimm = PC_DIMM(dev); 1759 PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm); 1760 MemoryRegion *mr = ddc->get_memory_region(dimm); 1761 HotplugHandlerClass *hhc; 1762 Error *local_err = NULL; 1763 1764 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1765 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1766 1767 if (local_err) { 1768 goto out; 1769 } 1770 1771 pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr); 1772 object_unparent(OBJECT(dev)); 1773 1774 out: 1775 error_propagate(errp, local_err); 1776 } 1777 1778 static int pc_apic_cmp(const void *a, const void *b) 1779 { 1780 CPUArchId *apic_a = (CPUArchId *)a; 1781 CPUArchId *apic_b = (CPUArchId *)b; 1782 1783 return apic_a->arch_id - apic_b->arch_id; 1784 } 1785 1786 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id 1787 * in pcms->possible_cpus->cpus, if pcms->possible_cpus->cpus has no 1788 * entry correponding to CPU's apic_id returns NULL. 1789 */ 1790 static CPUArchId *pc_find_cpu_slot(PCMachineState *pcms, CPUState *cpu, 1791 int *idx) 1792 { 1793 CPUClass *cc = CPU_GET_CLASS(cpu); 1794 CPUArchId apic_id, *found_cpu; 1795 1796 apic_id.arch_id = cc->get_arch_id(CPU(cpu)); 1797 found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus, 1798 pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus), 1799 pc_apic_cmp); 1800 if (found_cpu && idx) { 1801 *idx = found_cpu - pcms->possible_cpus->cpus; 1802 } 1803 return found_cpu; 1804 } 1805 1806 static void pc_cpu_plug(HotplugHandler *hotplug_dev, 1807 DeviceState *dev, Error **errp) 1808 { 1809 CPUArchId *found_cpu; 1810 HotplugHandlerClass *hhc; 1811 Error *local_err = NULL; 1812 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1813 1814 if (pcms->acpi_dev) { 1815 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1816 hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1817 if (local_err) { 1818 goto out; 1819 } 1820 } 1821 1822 /* increment the number of CPUs */ 1823 pcms->boot_cpus_le = cpu_to_le16(le16_to_cpu(pcms->boot_cpus_le) + 1); 1824 if (dev->hotplugged) { 1825 /* Update the number of CPUs in CMOS */ 1826 rtc_set_cpus_count(pcms->rtc, le16_to_cpu(pcms->boot_cpus_le)); 1827 } 1828 1829 found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL); 1830 found_cpu->cpu = CPU(dev); 1831 out: 1832 error_propagate(errp, local_err); 1833 } 1834 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev, 1835 DeviceState *dev, Error **errp) 1836 { 1837 int idx = -1; 1838 HotplugHandlerClass *hhc; 1839 Error *local_err = NULL; 1840 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1841 1842 pc_find_cpu_slot(pcms, CPU(dev), &idx); 1843 assert(idx != -1); 1844 if (idx == 0) { 1845 error_setg(&local_err, "Boot CPU is unpluggable"); 1846 goto out; 1847 } 1848 1849 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1850 hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1851 1852 if (local_err) { 1853 goto out; 1854 } 1855 1856 out: 1857 error_propagate(errp, local_err); 1858 1859 } 1860 1861 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev, 1862 DeviceState *dev, Error **errp) 1863 { 1864 CPUArchId *found_cpu; 1865 HotplugHandlerClass *hhc; 1866 Error *local_err = NULL; 1867 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1868 1869 hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev); 1870 hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err); 1871 1872 if (local_err) { 1873 goto out; 1874 } 1875 1876 found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL); 1877 found_cpu->cpu = NULL; 1878 object_unparent(OBJECT(dev)); 1879 1880 /* decrement the number of CPUs */ 1881 pcms->boot_cpus_le = cpu_to_le16(le16_to_cpu(pcms->boot_cpus_le) - 1); 1882 /* Update the number of CPUs in CMOS */ 1883 rtc_set_cpus_count(pcms->rtc, le16_to_cpu(pcms->boot_cpus_le)); 1884 out: 1885 error_propagate(errp, local_err); 1886 } 1887 1888 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev, 1889 DeviceState *dev, Error **errp) 1890 { 1891 int idx; 1892 CPUState *cs; 1893 CPUArchId *cpu_slot; 1894 X86CPUTopoInfo topo; 1895 X86CPU *cpu = X86_CPU(dev); 1896 PCMachineState *pcms = PC_MACHINE(hotplug_dev); 1897 1898 /* if APIC ID is not set, set it based on socket/core/thread properties */ 1899 if (cpu->apic_id == UNASSIGNED_APIC_ID) { 1900 int max_socket = (max_cpus - 1) / smp_threads / smp_cores; 1901 1902 if (cpu->socket_id < 0) { 1903 error_setg(errp, "CPU socket-id is not set"); 1904 return; 1905 } else if (cpu->socket_id > max_socket) { 1906 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u", 1907 cpu->socket_id, max_socket); 1908 return; 1909 } 1910 if (cpu->core_id < 0) { 1911 error_setg(errp, "CPU core-id is not set"); 1912 return; 1913 } else if (cpu->core_id > (smp_cores - 1)) { 1914 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u", 1915 cpu->core_id, smp_cores - 1); 1916 return; 1917 } 1918 if (cpu->thread_id < 0) { 1919 error_setg(errp, "CPU thread-id is not set"); 1920 return; 1921 } else if (cpu->thread_id > (smp_threads - 1)) { 1922 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u", 1923 cpu->thread_id, smp_threads - 1); 1924 return; 1925 } 1926 1927 topo.pkg_id = cpu->socket_id; 1928 topo.core_id = cpu->core_id; 1929 topo.smt_id = cpu->thread_id; 1930 cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo); 1931 } 1932 1933 cpu_slot = pc_find_cpu_slot(pcms, CPU(dev), &idx); 1934 if (!cpu_slot) { 1935 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1936 error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with" 1937 " APIC ID %" PRIu32 ", valid index range 0:%d", 1938 topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id, 1939 pcms->possible_cpus->len - 1); 1940 return; 1941 } 1942 1943 if (cpu_slot->cpu) { 1944 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists", 1945 idx, cpu->apic_id); 1946 return; 1947 } 1948 1949 /* if 'address' properties socket-id/core-id/thread-id are not set, set them 1950 * so that query_hotpluggable_cpus would show correct values 1951 */ 1952 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn() 1953 * once -smp refactoring is complete and there will be CPU private 1954 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */ 1955 x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo); 1956 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) { 1957 error_setg(errp, "property socket-id: %u doesn't match set apic-id:" 1958 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id); 1959 return; 1960 } 1961 cpu->socket_id = topo.pkg_id; 1962 1963 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) { 1964 error_setg(errp, "property core-id: %u doesn't match set apic-id:" 1965 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id); 1966 return; 1967 } 1968 cpu->core_id = topo.core_id; 1969 1970 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) { 1971 error_setg(errp, "property thread-id: %u doesn't match set apic-id:" 1972 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id); 1973 return; 1974 } 1975 cpu->thread_id = topo.smt_id; 1976 1977 cs = CPU(cpu); 1978 cs->cpu_index = idx; 1979 } 1980 1981 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev, 1982 DeviceState *dev, Error **errp) 1983 { 1984 if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 1985 pc_cpu_pre_plug(hotplug_dev, dev, errp); 1986 } 1987 } 1988 1989 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev, 1990 DeviceState *dev, Error **errp) 1991 { 1992 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 1993 pc_dimm_plug(hotplug_dev, dev, errp); 1994 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 1995 pc_cpu_plug(hotplug_dev, dev, errp); 1996 } 1997 } 1998 1999 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev, 2000 DeviceState *dev, Error **errp) 2001 { 2002 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2003 pc_dimm_unplug_request(hotplug_dev, dev, errp); 2004 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2005 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp); 2006 } else { 2007 error_setg(errp, "acpi: device unplug request for not supported device" 2008 " type: %s", object_get_typename(OBJECT(dev))); 2009 } 2010 } 2011 2012 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev, 2013 DeviceState *dev, Error **errp) 2014 { 2015 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { 2016 pc_dimm_unplug(hotplug_dev, dev, errp); 2017 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2018 pc_cpu_unplug_cb(hotplug_dev, dev, errp); 2019 } else { 2020 error_setg(errp, "acpi: device unplug for not supported device" 2021 " type: %s", object_get_typename(OBJECT(dev))); 2022 } 2023 } 2024 2025 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine, 2026 DeviceState *dev) 2027 { 2028 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine); 2029 2030 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || 2031 object_dynamic_cast(OBJECT(dev), TYPE_CPU)) { 2032 return HOTPLUG_HANDLER(machine); 2033 } 2034 2035 return pcmc->get_hotplug_handler ? 2036 pcmc->get_hotplug_handler(machine, dev) : NULL; 2037 } 2038 2039 static void 2040 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v, 2041 const char *name, void *opaque, 2042 Error **errp) 2043 { 2044 PCMachineState *pcms = PC_MACHINE(obj); 2045 int64_t value = memory_region_size(&pcms->hotplug_memory.mr); 2046 2047 visit_type_int(v, name, &value, errp); 2048 } 2049 2050 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v, 2051 const char *name, void *opaque, 2052 Error **errp) 2053 { 2054 PCMachineState *pcms = PC_MACHINE(obj); 2055 uint64_t value = pcms->max_ram_below_4g; 2056 2057 visit_type_size(v, name, &value, errp); 2058 } 2059 2060 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v, 2061 const char *name, void *opaque, 2062 Error **errp) 2063 { 2064 PCMachineState *pcms = PC_MACHINE(obj); 2065 Error *error = NULL; 2066 uint64_t value; 2067 2068 visit_type_size(v, name, &value, &error); 2069 if (error) { 2070 error_propagate(errp, error); 2071 return; 2072 } 2073 if (value > (1ULL << 32)) { 2074 error_setg(&error, 2075 "Machine option 'max-ram-below-4g=%"PRIu64 2076 "' expects size less than or equal to 4G", value); 2077 error_propagate(errp, error); 2078 return; 2079 } 2080 2081 if (value < (1ULL << 20)) { 2082 error_report("Warning: small max_ram_below_4g(%"PRIu64 2083 ") less than 1M. BIOS may not work..", 2084 value); 2085 } 2086 2087 pcms->max_ram_below_4g = value; 2088 } 2089 2090 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name, 2091 void *opaque, Error **errp) 2092 { 2093 PCMachineState *pcms = PC_MACHINE(obj); 2094 OnOffAuto vmport = pcms->vmport; 2095 2096 visit_type_OnOffAuto(v, name, &vmport, errp); 2097 } 2098 2099 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name, 2100 void *opaque, Error **errp) 2101 { 2102 PCMachineState *pcms = PC_MACHINE(obj); 2103 2104 visit_type_OnOffAuto(v, name, &pcms->vmport, errp); 2105 } 2106 2107 bool pc_machine_is_smm_enabled(PCMachineState *pcms) 2108 { 2109 bool smm_available = false; 2110 2111 if (pcms->smm == ON_OFF_AUTO_OFF) { 2112 return false; 2113 } 2114 2115 if (tcg_enabled() || qtest_enabled()) { 2116 smm_available = true; 2117 } else if (kvm_enabled()) { 2118 smm_available = kvm_has_smm(); 2119 } 2120 2121 if (smm_available) { 2122 return true; 2123 } 2124 2125 if (pcms->smm == ON_OFF_AUTO_ON) { 2126 error_report("System Management Mode not supported by this hypervisor."); 2127 exit(1); 2128 } 2129 return false; 2130 } 2131 2132 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name, 2133 void *opaque, Error **errp) 2134 { 2135 PCMachineState *pcms = PC_MACHINE(obj); 2136 OnOffAuto smm = pcms->smm; 2137 2138 visit_type_OnOffAuto(v, name, &smm, errp); 2139 } 2140 2141 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name, 2142 void *opaque, Error **errp) 2143 { 2144 PCMachineState *pcms = PC_MACHINE(obj); 2145 2146 visit_type_OnOffAuto(v, name, &pcms->smm, errp); 2147 } 2148 2149 static bool pc_machine_get_nvdimm(Object *obj, Error **errp) 2150 { 2151 PCMachineState *pcms = PC_MACHINE(obj); 2152 2153 return pcms->acpi_nvdimm_state.is_enabled; 2154 } 2155 2156 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp) 2157 { 2158 PCMachineState *pcms = PC_MACHINE(obj); 2159 2160 pcms->acpi_nvdimm_state.is_enabled = value; 2161 } 2162 2163 static void pc_machine_initfn(Object *obj) 2164 { 2165 PCMachineState *pcms = PC_MACHINE(obj); 2166 2167 pcms->max_ram_below_4g = 0; /* use default */ 2168 pcms->smm = ON_OFF_AUTO_AUTO; 2169 pcms->vmport = ON_OFF_AUTO_AUTO; 2170 /* nvdimm is disabled on default. */ 2171 pcms->acpi_nvdimm_state.is_enabled = false; 2172 /* acpi build is enabled by default if machine supports it */ 2173 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build; 2174 } 2175 2176 static void pc_machine_reset(void) 2177 { 2178 CPUState *cs; 2179 X86CPU *cpu; 2180 2181 qemu_devices_reset(); 2182 2183 /* Reset APIC after devices have been reset to cancel 2184 * any changes that qemu_devices_reset() might have done. 2185 */ 2186 CPU_FOREACH(cs) { 2187 cpu = X86_CPU(cs); 2188 2189 if (cpu->apic_state) { 2190 device_reset(cpu->apic_state); 2191 } 2192 } 2193 } 2194 2195 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index) 2196 { 2197 X86CPUTopoInfo topo; 2198 x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index, 2199 &topo); 2200 return topo.pkg_id; 2201 } 2202 2203 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine) 2204 { 2205 PCMachineState *pcms = PC_MACHINE(machine); 2206 int len = sizeof(CPUArchIdList) + 2207 sizeof(CPUArchId) * (pcms->possible_cpus->len); 2208 CPUArchIdList *list = g_malloc(len); 2209 2210 memcpy(list, pcms->possible_cpus, len); 2211 return list; 2212 } 2213 2214 static HotpluggableCPUList *pc_query_hotpluggable_cpus(MachineState *machine) 2215 { 2216 int i; 2217 CPUState *cpu; 2218 HotpluggableCPUList *head = NULL; 2219 PCMachineState *pcms = PC_MACHINE(machine); 2220 const char *cpu_type; 2221 2222 cpu = pcms->possible_cpus->cpus[0].cpu; 2223 assert(cpu); /* BSP is always present */ 2224 cpu_type = object_class_get_name(OBJECT_CLASS(CPU_GET_CLASS(cpu))); 2225 2226 for (i = 0; i < pcms->possible_cpus->len; i++) { 2227 X86CPUTopoInfo topo; 2228 HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1); 2229 HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1); 2230 CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1); 2231 const uint32_t apic_id = pcms->possible_cpus->cpus[i].arch_id; 2232 2233 x86_topo_ids_from_apicid(apic_id, smp_cores, smp_threads, &topo); 2234 2235 cpu_item->type = g_strdup(cpu_type); 2236 cpu_item->vcpus_count = 1; 2237 cpu_props->has_socket_id = true; 2238 cpu_props->socket_id = topo.pkg_id; 2239 cpu_props->has_core_id = true; 2240 cpu_props->core_id = topo.core_id; 2241 cpu_props->has_thread_id = true; 2242 cpu_props->thread_id = topo.smt_id; 2243 cpu_item->props = cpu_props; 2244 2245 cpu = pcms->possible_cpus->cpus[i].cpu; 2246 if (cpu) { 2247 cpu_item->has_qom_path = true; 2248 cpu_item->qom_path = object_get_canonical_path(OBJECT(cpu)); 2249 } 2250 2251 list_item->value = cpu_item; 2252 list_item->next = head; 2253 head = list_item; 2254 } 2255 return head; 2256 } 2257 2258 static void x86_nmi(NMIState *n, int cpu_index, Error **errp) 2259 { 2260 /* cpu index isn't used */ 2261 CPUState *cs; 2262 2263 CPU_FOREACH(cs) { 2264 X86CPU *cpu = X86_CPU(cs); 2265 2266 if (!cpu->apic_state) { 2267 cpu_interrupt(cs, CPU_INTERRUPT_NMI); 2268 } else { 2269 apic_deliver_nmi(cpu->apic_state); 2270 } 2271 } 2272 } 2273 2274 static void pc_machine_class_init(ObjectClass *oc, void *data) 2275 { 2276 MachineClass *mc = MACHINE_CLASS(oc); 2277 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc); 2278 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); 2279 NMIClass *nc = NMI_CLASS(oc); 2280 2281 pcmc->get_hotplug_handler = mc->get_hotplug_handler; 2282 pcmc->pci_enabled = true; 2283 pcmc->has_acpi_build = true; 2284 pcmc->rsdp_in_ram = true; 2285 pcmc->smbios_defaults = true; 2286 pcmc->smbios_uuid_encoded = true; 2287 pcmc->gigabyte_align = true; 2288 pcmc->has_reserved_memory = true; 2289 pcmc->kvmclock_enabled = true; 2290 pcmc->enforce_aligned_dimm = true; 2291 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported 2292 * to be used at the moment, 32K should be enough for a while. */ 2293 pcmc->acpi_data_size = 0x20000 + 0x8000; 2294 pcmc->save_tsc_khz = true; 2295 mc->get_hotplug_handler = pc_get_hotpug_handler; 2296 mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id; 2297 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids; 2298 mc->query_hotpluggable_cpus = pc_query_hotpluggable_cpus; 2299 mc->default_boot_order = "cad"; 2300 mc->hot_add_cpu = pc_hot_add_cpu; 2301 mc->max_cpus = 255; 2302 mc->reset = pc_machine_reset; 2303 hc->pre_plug = pc_machine_device_pre_plug_cb; 2304 hc->plug = pc_machine_device_plug_cb; 2305 hc->unplug_request = pc_machine_device_unplug_request_cb; 2306 hc->unplug = pc_machine_device_unplug_cb; 2307 nc->nmi_monitor_handler = x86_nmi; 2308 2309 object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int", 2310 pc_machine_get_hotplug_memory_region_size, NULL, 2311 NULL, NULL, &error_abort); 2312 2313 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size", 2314 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g, 2315 NULL, NULL, &error_abort); 2316 2317 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G, 2318 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort); 2319 2320 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto", 2321 pc_machine_get_smm, pc_machine_set_smm, 2322 NULL, NULL, &error_abort); 2323 object_class_property_set_description(oc, PC_MACHINE_SMM, 2324 "Enable SMM (pc & q35)", &error_abort); 2325 2326 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto", 2327 pc_machine_get_vmport, pc_machine_set_vmport, 2328 NULL, NULL, &error_abort); 2329 object_class_property_set_description(oc, PC_MACHINE_VMPORT, 2330 "Enable vmport (pc & q35)", &error_abort); 2331 2332 object_class_property_add_bool(oc, PC_MACHINE_NVDIMM, 2333 pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort); 2334 } 2335 2336 static const TypeInfo pc_machine_info = { 2337 .name = TYPE_PC_MACHINE, 2338 .parent = TYPE_MACHINE, 2339 .abstract = true, 2340 .instance_size = sizeof(PCMachineState), 2341 .instance_init = pc_machine_initfn, 2342 .class_size = sizeof(PCMachineClass), 2343 .class_init = pc_machine_class_init, 2344 .interfaces = (InterfaceInfo[]) { 2345 { TYPE_HOTPLUG_HANDLER }, 2346 { TYPE_NMI }, 2347 { } 2348 }, 2349 }; 2350 2351 static void pc_machine_register_types(void) 2352 { 2353 type_register_static(&pc_machine_info); 2354 } 2355 2356 type_init(pc_machine_register_types) 2357