xref: /qemu/hw/i386/pc.c (revision dfbd2768b26d8aa1018004e736f2573e7f6abe67)
1 /*
2  * QEMU PC System Emulator
3  *
4  * Copyright (c) 2003-2004 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "hw/hw.h"
26 #include "hw/i386/pc.h"
27 #include "hw/char/serial.h"
28 #include "hw/i386/apic.h"
29 #include "hw/i386/topology.h"
30 #include "sysemu/cpus.h"
31 #include "hw/block/fdc.h"
32 #include "hw/ide.h"
33 #include "hw/pci/pci.h"
34 #include "hw/pci/pci_bus.h"
35 #include "hw/nvram/fw_cfg.h"
36 #include "hw/timer/hpet.h"
37 #include "hw/smbios/smbios.h"
38 #include "hw/loader.h"
39 #include "elf.h"
40 #include "multiboot.h"
41 #include "hw/timer/mc146818rtc.h"
42 #include "hw/timer/i8254.h"
43 #include "hw/audio/pcspk.h"
44 #include "hw/pci/msi.h"
45 #include "hw/sysbus.h"
46 #include "sysemu/sysemu.h"
47 #include "sysemu/numa.h"
48 #include "sysemu/kvm.h"
49 #include "sysemu/qtest.h"
50 #include "kvm_i386.h"
51 #include "hw/xen/xen.h"
52 #include "sysemu/block-backend.h"
53 #include "hw/block/block.h"
54 #include "ui/qemu-spice.h"
55 #include "exec/memory.h"
56 #include "exec/address-spaces.h"
57 #include "sysemu/arch_init.h"
58 #include "qemu/bitmap.h"
59 #include "qemu/config-file.h"
60 #include "qemu/error-report.h"
61 #include "hw/acpi/acpi.h"
62 #include "hw/acpi/cpu_hotplug.h"
63 #include "hw/boards.h"
64 #include "hw/pci/pci_host.h"
65 #include "acpi-build.h"
66 #include "hw/mem/pc-dimm.h"
67 #include "qapi/visitor.h"
68 #include "qapi-visit.h"
69 #include "qom/cpu.h"
70 #include "hw/nmi.h"
71 #include "hw/i386/intel_iommu.h"
72 
73 /* debug PC/ISA interrupts */
74 //#define DEBUG_IRQ
75 
76 #ifdef DEBUG_IRQ
77 #define DPRINTF(fmt, ...)                                       \
78     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
79 #else
80 #define DPRINTF(fmt, ...)
81 #endif
82 
83 #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0)
84 #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1)
85 #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2)
86 #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3)
87 #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4)
88 
89 #define E820_NR_ENTRIES		16
90 
91 struct e820_entry {
92     uint64_t address;
93     uint64_t length;
94     uint32_t type;
95 } QEMU_PACKED __attribute((__aligned__(4)));
96 
97 struct e820_table {
98     uint32_t count;
99     struct e820_entry entry[E820_NR_ENTRIES];
100 } QEMU_PACKED __attribute((__aligned__(4)));
101 
102 static struct e820_table e820_reserve;
103 static struct e820_entry *e820_table;
104 static unsigned e820_entries;
105 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
106 
107 void gsi_handler(void *opaque, int n, int level)
108 {
109     GSIState *s = opaque;
110 
111     DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
112     if (n < ISA_NUM_IRQS) {
113         qemu_set_irq(s->i8259_irq[n], level);
114     }
115     qemu_set_irq(s->ioapic_irq[n], level);
116 }
117 
118 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
119                            unsigned size)
120 {
121 }
122 
123 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
124 {
125     return 0xffffffffffffffffULL;
126 }
127 
128 /* MSDOS compatibility mode FPU exception support */
129 static qemu_irq ferr_irq;
130 
131 void pc_register_ferr_irq(qemu_irq irq)
132 {
133     ferr_irq = irq;
134 }
135 
136 /* XXX: add IGNNE support */
137 void cpu_set_ferr(CPUX86State *s)
138 {
139     qemu_irq_raise(ferr_irq);
140 }
141 
142 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
143                            unsigned size)
144 {
145     qemu_irq_lower(ferr_irq);
146 }
147 
148 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
149 {
150     return 0xffffffffffffffffULL;
151 }
152 
153 /* TSC handling */
154 uint64_t cpu_get_tsc(CPUX86State *env)
155 {
156     return cpu_get_ticks();
157 }
158 
159 /* IRQ handling */
160 int cpu_get_pic_interrupt(CPUX86State *env)
161 {
162     X86CPU *cpu = x86_env_get_cpu(env);
163     int intno;
164 
165     if (!kvm_irqchip_in_kernel()) {
166         intno = apic_get_interrupt(cpu->apic_state);
167         if (intno >= 0) {
168             return intno;
169         }
170         /* read the irq from the PIC */
171         if (!apic_accept_pic_intr(cpu->apic_state)) {
172             return -1;
173         }
174     }
175 
176     intno = pic_read_irq(isa_pic);
177     return intno;
178 }
179 
180 static void pic_irq_request(void *opaque, int irq, int level)
181 {
182     CPUState *cs = first_cpu;
183     X86CPU *cpu = X86_CPU(cs);
184 
185     DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
186     if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
187         CPU_FOREACH(cs) {
188             cpu = X86_CPU(cs);
189             if (apic_accept_pic_intr(cpu->apic_state)) {
190                 apic_deliver_pic_intr(cpu->apic_state, level);
191             }
192         }
193     } else {
194         if (level) {
195             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
196         } else {
197             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
198         }
199     }
200 }
201 
202 /* PC cmos mappings */
203 
204 #define REG_EQUIPMENT_BYTE          0x14
205 
206 int cmos_get_fd_drive_type(FloppyDriveType fd0)
207 {
208     int val;
209 
210     switch (fd0) {
211     case FLOPPY_DRIVE_TYPE_144:
212         /* 1.44 Mb 3"5 drive */
213         val = 4;
214         break;
215     case FLOPPY_DRIVE_TYPE_288:
216         /* 2.88 Mb 3"5 drive */
217         val = 5;
218         break;
219     case FLOPPY_DRIVE_TYPE_120:
220         /* 1.2 Mb 5"5 drive */
221         val = 2;
222         break;
223     case FLOPPY_DRIVE_TYPE_NONE:
224     default:
225         val = 0;
226         break;
227     }
228     return val;
229 }
230 
231 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
232                          int16_t cylinders, int8_t heads, int8_t sectors)
233 {
234     rtc_set_memory(s, type_ofs, 47);
235     rtc_set_memory(s, info_ofs, cylinders);
236     rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
237     rtc_set_memory(s, info_ofs + 2, heads);
238     rtc_set_memory(s, info_ofs + 3, 0xff);
239     rtc_set_memory(s, info_ofs + 4, 0xff);
240     rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
241     rtc_set_memory(s, info_ofs + 6, cylinders);
242     rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
243     rtc_set_memory(s, info_ofs + 8, sectors);
244 }
245 
246 /* convert boot_device letter to something recognizable by the bios */
247 static int boot_device2nibble(char boot_device)
248 {
249     switch(boot_device) {
250     case 'a':
251     case 'b':
252         return 0x01; /* floppy boot */
253     case 'c':
254         return 0x02; /* hard drive boot */
255     case 'd':
256         return 0x03; /* CD-ROM boot */
257     case 'n':
258         return 0x04; /* Network boot */
259     }
260     return 0;
261 }
262 
263 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
264 {
265 #define PC_MAX_BOOT_DEVICES 3
266     int nbds, bds[3] = { 0, };
267     int i;
268 
269     nbds = strlen(boot_device);
270     if (nbds > PC_MAX_BOOT_DEVICES) {
271         error_setg(errp, "Too many boot devices for PC");
272         return;
273     }
274     for (i = 0; i < nbds; i++) {
275         bds[i] = boot_device2nibble(boot_device[i]);
276         if (bds[i] == 0) {
277             error_setg(errp, "Invalid boot device for PC: '%c'",
278                        boot_device[i]);
279             return;
280         }
281     }
282     rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
283     rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
284 }
285 
286 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
287 {
288     set_boot_dev(opaque, boot_device, errp);
289 }
290 
291 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
292 {
293     int val, nb, i;
294     FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
295                                    FLOPPY_DRIVE_TYPE_NONE };
296 
297     /* floppy type */
298     if (floppy) {
299         for (i = 0; i < 2; i++) {
300             fd_type[i] = isa_fdc_get_drive_type(floppy, i);
301         }
302     }
303     val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
304         cmos_get_fd_drive_type(fd_type[1]);
305     rtc_set_memory(rtc_state, 0x10, val);
306 
307     val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
308     nb = 0;
309     if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
310         nb++;
311     }
312     if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
313         nb++;
314     }
315     switch (nb) {
316     case 0:
317         break;
318     case 1:
319         val |= 0x01; /* 1 drive, ready for boot */
320         break;
321     case 2:
322         val |= 0x41; /* 2 drives, ready for boot */
323         break;
324     }
325     rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
326 }
327 
328 typedef struct pc_cmos_init_late_arg {
329     ISADevice *rtc_state;
330     BusState *idebus[2];
331 } pc_cmos_init_late_arg;
332 
333 typedef struct check_fdc_state {
334     ISADevice *floppy;
335     bool multiple;
336 } CheckFdcState;
337 
338 static int check_fdc(Object *obj, void *opaque)
339 {
340     CheckFdcState *state = opaque;
341     Object *fdc;
342     uint32_t iobase;
343     Error *local_err = NULL;
344 
345     fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
346     if (!fdc) {
347         return 0;
348     }
349 
350     iobase = object_property_get_int(obj, "iobase", &local_err);
351     if (local_err || iobase != 0x3f0) {
352         error_free(local_err);
353         return 0;
354     }
355 
356     if (state->floppy) {
357         state->multiple = true;
358     } else {
359         state->floppy = ISA_DEVICE(obj);
360     }
361     return 0;
362 }
363 
364 static const char * const fdc_container_path[] = {
365     "/unattached", "/peripheral", "/peripheral-anon"
366 };
367 
368 /*
369  * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
370  * and ACPI objects.
371  */
372 ISADevice *pc_find_fdc0(void)
373 {
374     int i;
375     Object *container;
376     CheckFdcState state = { 0 };
377 
378     for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
379         container = container_get(qdev_get_machine(), fdc_container_path[i]);
380         object_child_foreach(container, check_fdc, &state);
381     }
382 
383     if (state.multiple) {
384         error_report("warning: multiple floppy disk controllers with "
385                      "iobase=0x3f0 have been found");
386         error_printf("the one being picked for CMOS setup might not reflect "
387                      "your intent\n");
388     }
389 
390     return state.floppy;
391 }
392 
393 static void pc_cmos_init_late(void *opaque)
394 {
395     pc_cmos_init_late_arg *arg = opaque;
396     ISADevice *s = arg->rtc_state;
397     int16_t cylinders;
398     int8_t heads, sectors;
399     int val;
400     int i, trans;
401 
402     val = 0;
403     if (ide_get_geometry(arg->idebus[0], 0,
404                          &cylinders, &heads, &sectors) >= 0) {
405         cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
406         val |= 0xf0;
407     }
408     if (ide_get_geometry(arg->idebus[0], 1,
409                          &cylinders, &heads, &sectors) >= 0) {
410         cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
411         val |= 0x0f;
412     }
413     rtc_set_memory(s, 0x12, val);
414 
415     val = 0;
416     for (i = 0; i < 4; i++) {
417         /* NOTE: ide_get_geometry() returns the physical
418            geometry.  It is always such that: 1 <= sects <= 63, 1
419            <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
420            geometry can be different if a translation is done. */
421         if (ide_get_geometry(arg->idebus[i / 2], i % 2,
422                              &cylinders, &heads, &sectors) >= 0) {
423             trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
424             assert((trans & ~3) == 0);
425             val |= trans << (i * 2);
426         }
427     }
428     rtc_set_memory(s, 0x39, val);
429 
430     pc_cmos_init_floppy(s, pc_find_fdc0());
431 
432     qemu_unregister_reset(pc_cmos_init_late, opaque);
433 }
434 
435 void pc_cmos_init(PCMachineState *pcms,
436                   BusState *idebus0, BusState *idebus1,
437                   ISADevice *s)
438 {
439     int val;
440     static pc_cmos_init_late_arg arg;
441 
442     /* various important CMOS locations needed by PC/Bochs bios */
443 
444     /* memory size */
445     /* base memory (first MiB) */
446     val = MIN(pcms->below_4g_mem_size / 1024, 640);
447     rtc_set_memory(s, 0x15, val);
448     rtc_set_memory(s, 0x16, val >> 8);
449     /* extended memory (next 64MiB) */
450     if (pcms->below_4g_mem_size > 1024 * 1024) {
451         val = (pcms->below_4g_mem_size - 1024 * 1024) / 1024;
452     } else {
453         val = 0;
454     }
455     if (val > 65535)
456         val = 65535;
457     rtc_set_memory(s, 0x17, val);
458     rtc_set_memory(s, 0x18, val >> 8);
459     rtc_set_memory(s, 0x30, val);
460     rtc_set_memory(s, 0x31, val >> 8);
461     /* memory between 16MiB and 4GiB */
462     if (pcms->below_4g_mem_size > 16 * 1024 * 1024) {
463         val = (pcms->below_4g_mem_size - 16 * 1024 * 1024) / 65536;
464     } else {
465         val = 0;
466     }
467     if (val > 65535)
468         val = 65535;
469     rtc_set_memory(s, 0x34, val);
470     rtc_set_memory(s, 0x35, val >> 8);
471     /* memory above 4GiB */
472     val = pcms->above_4g_mem_size / 65536;
473     rtc_set_memory(s, 0x5b, val);
474     rtc_set_memory(s, 0x5c, val >> 8);
475     rtc_set_memory(s, 0x5d, val >> 16);
476 
477     object_property_add_link(OBJECT(pcms), "rtc_state",
478                              TYPE_ISA_DEVICE,
479                              (Object **)&pcms->rtc,
480                              object_property_allow_set_link,
481                              OBJ_PROP_LINK_UNREF_ON_RELEASE, &error_abort);
482     object_property_set_link(OBJECT(pcms), OBJECT(s),
483                              "rtc_state", &error_abort);
484 
485     set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
486 
487     val = 0;
488     val |= 0x02; /* FPU is there */
489     val |= 0x04; /* PS/2 mouse installed */
490     rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
491 
492     /* hard drives and FDC */
493     arg.rtc_state = s;
494     arg.idebus[0] = idebus0;
495     arg.idebus[1] = idebus1;
496     qemu_register_reset(pc_cmos_init_late, &arg);
497 }
498 
499 #define TYPE_PORT92 "port92"
500 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
501 
502 /* port 92 stuff: could be split off */
503 typedef struct Port92State {
504     ISADevice parent_obj;
505 
506     MemoryRegion io;
507     uint8_t outport;
508     qemu_irq a20_out;
509 } Port92State;
510 
511 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
512                          unsigned size)
513 {
514     Port92State *s = opaque;
515     int oldval = s->outport;
516 
517     DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
518     s->outport = val;
519     qemu_set_irq(s->a20_out, (val >> 1) & 1);
520     if ((val & 1) && !(oldval & 1)) {
521         qemu_system_reset_request();
522     }
523 }
524 
525 static uint64_t port92_read(void *opaque, hwaddr addr,
526                             unsigned size)
527 {
528     Port92State *s = opaque;
529     uint32_t ret;
530 
531     ret = s->outport;
532     DPRINTF("port92: read 0x%02x\n", ret);
533     return ret;
534 }
535 
536 static void port92_init(ISADevice *dev, qemu_irq a20_out)
537 {
538     qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
539 }
540 
541 static const VMStateDescription vmstate_port92_isa = {
542     .name = "port92",
543     .version_id = 1,
544     .minimum_version_id = 1,
545     .fields = (VMStateField[]) {
546         VMSTATE_UINT8(outport, Port92State),
547         VMSTATE_END_OF_LIST()
548     }
549 };
550 
551 static void port92_reset(DeviceState *d)
552 {
553     Port92State *s = PORT92(d);
554 
555     s->outport &= ~1;
556 }
557 
558 static const MemoryRegionOps port92_ops = {
559     .read = port92_read,
560     .write = port92_write,
561     .impl = {
562         .min_access_size = 1,
563         .max_access_size = 1,
564     },
565     .endianness = DEVICE_LITTLE_ENDIAN,
566 };
567 
568 static void port92_initfn(Object *obj)
569 {
570     Port92State *s = PORT92(obj);
571 
572     memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
573 
574     s->outport = 0;
575 
576     qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
577 }
578 
579 static void port92_realizefn(DeviceState *dev, Error **errp)
580 {
581     ISADevice *isadev = ISA_DEVICE(dev);
582     Port92State *s = PORT92(dev);
583 
584     isa_register_ioport(isadev, &s->io, 0x92);
585 }
586 
587 static void port92_class_initfn(ObjectClass *klass, void *data)
588 {
589     DeviceClass *dc = DEVICE_CLASS(klass);
590 
591     dc->realize = port92_realizefn;
592     dc->reset = port92_reset;
593     dc->vmsd = &vmstate_port92_isa;
594     /*
595      * Reason: unlike ordinary ISA devices, this one needs additional
596      * wiring: its A20 output line needs to be wired up by
597      * port92_init().
598      */
599     dc->cannot_instantiate_with_device_add_yet = true;
600 }
601 
602 static const TypeInfo port92_info = {
603     .name          = TYPE_PORT92,
604     .parent        = TYPE_ISA_DEVICE,
605     .instance_size = sizeof(Port92State),
606     .instance_init = port92_initfn,
607     .class_init    = port92_class_initfn,
608 };
609 
610 static void port92_register_types(void)
611 {
612     type_register_static(&port92_info);
613 }
614 
615 type_init(port92_register_types)
616 
617 static void handle_a20_line_change(void *opaque, int irq, int level)
618 {
619     X86CPU *cpu = opaque;
620 
621     /* XXX: send to all CPUs ? */
622     /* XXX: add logic to handle multiple A20 line sources */
623     x86_cpu_set_a20(cpu, level);
624 }
625 
626 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
627 {
628     int index = le32_to_cpu(e820_reserve.count);
629     struct e820_entry *entry;
630 
631     if (type != E820_RAM) {
632         /* old FW_CFG_E820_TABLE entry -- reservations only */
633         if (index >= E820_NR_ENTRIES) {
634             return -EBUSY;
635         }
636         entry = &e820_reserve.entry[index++];
637 
638         entry->address = cpu_to_le64(address);
639         entry->length = cpu_to_le64(length);
640         entry->type = cpu_to_le32(type);
641 
642         e820_reserve.count = cpu_to_le32(index);
643     }
644 
645     /* new "etc/e820" file -- include ram too */
646     e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
647     e820_table[e820_entries].address = cpu_to_le64(address);
648     e820_table[e820_entries].length = cpu_to_le64(length);
649     e820_table[e820_entries].type = cpu_to_le32(type);
650     e820_entries++;
651 
652     return e820_entries;
653 }
654 
655 int e820_get_num_entries(void)
656 {
657     return e820_entries;
658 }
659 
660 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
661 {
662     if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
663         *address = le64_to_cpu(e820_table[idx].address);
664         *length = le64_to_cpu(e820_table[idx].length);
665         return true;
666     }
667     return false;
668 }
669 
670 /* Enables contiguous-apic-ID mode, for compatibility */
671 static bool compat_apic_id_mode;
672 
673 void enable_compat_apic_id_mode(void)
674 {
675     compat_apic_id_mode = true;
676 }
677 
678 /* Calculates initial APIC ID for a specific CPU index
679  *
680  * Currently we need to be able to calculate the APIC ID from the CPU index
681  * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
682  * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
683  * all CPUs up to max_cpus.
684  */
685 static uint32_t x86_cpu_apic_id_from_index(unsigned int cpu_index)
686 {
687     uint32_t correct_id;
688     static bool warned;
689 
690     correct_id = x86_apicid_from_cpu_idx(smp_cores, smp_threads, cpu_index);
691     if (compat_apic_id_mode) {
692         if (cpu_index != correct_id && !warned && !qtest_enabled()) {
693             error_report("APIC IDs set in compatibility mode, "
694                          "CPU topology won't match the configuration");
695             warned = true;
696         }
697         return cpu_index;
698     } else {
699         return correct_id;
700     }
701 }
702 
703 static void pc_build_smbios(FWCfgState *fw_cfg)
704 {
705     uint8_t *smbios_tables, *smbios_anchor;
706     size_t smbios_tables_len, smbios_anchor_len;
707     struct smbios_phys_mem_area *mem_array;
708     unsigned i, array_count;
709 
710     smbios_tables = smbios_get_table_legacy(&smbios_tables_len);
711     if (smbios_tables) {
712         fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES,
713                          smbios_tables, smbios_tables_len);
714     }
715 
716     /* build the array of physical mem area from e820 table */
717     mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
718     for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
719         uint64_t addr, len;
720 
721         if (e820_get_entry(i, E820_RAM, &addr, &len)) {
722             mem_array[array_count].address = addr;
723             mem_array[array_count].length = len;
724             array_count++;
725         }
726     }
727     smbios_get_tables(mem_array, array_count,
728                       &smbios_tables, &smbios_tables_len,
729                       &smbios_anchor, &smbios_anchor_len);
730     g_free(mem_array);
731 
732     if (smbios_anchor) {
733         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-tables",
734                         smbios_tables, smbios_tables_len);
735         fw_cfg_add_file(fw_cfg, "etc/smbios/smbios-anchor",
736                         smbios_anchor, smbios_anchor_len);
737     }
738 }
739 
740 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
741 {
742     FWCfgState *fw_cfg;
743     uint64_t *numa_fw_cfg;
744     int i, j;
745 
746     fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
747 
748     /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
749      *
750      * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
751      * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
752      * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
753      * for CPU hotplug also uses APIC ID and not "CPU index".
754      * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
755      * but the "limit to the APIC ID values SeaBIOS may see".
756      *
757      * So for compatibility reasons with old BIOSes we are stuck with
758      * "etc/max-cpus" actually being apic_id_limit
759      */
760     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
761     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
762     fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
763                      acpi_tables, acpi_tables_len);
764     fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
765 
766     fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
767                      &e820_reserve, sizeof(e820_reserve));
768     fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
769                     sizeof(struct e820_entry) * e820_entries);
770 
771     fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
772     /* allocate memory for the NUMA channel: one (64bit) word for the number
773      * of nodes, one word for each VCPU->node and one word for each node to
774      * hold the amount of memory.
775      */
776     numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
777     numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
778     for (i = 0; i < max_cpus; i++) {
779         unsigned int apic_id = x86_cpu_apic_id_from_index(i);
780         assert(apic_id < pcms->apic_id_limit);
781         j = numa_get_node_for_cpu(i);
782         if (j < nb_numa_nodes) {
783             numa_fw_cfg[apic_id + 1] = cpu_to_le64(j);
784         }
785     }
786     for (i = 0; i < nb_numa_nodes; i++) {
787         numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
788             cpu_to_le64(numa_info[i].node_mem);
789     }
790     fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
791                      (1 + pcms->apic_id_limit + nb_numa_nodes) *
792                      sizeof(*numa_fw_cfg));
793 
794     return fw_cfg;
795 }
796 
797 static long get_file_size(FILE *f)
798 {
799     long where, size;
800 
801     /* XXX: on Unix systems, using fstat() probably makes more sense */
802 
803     where = ftell(f);
804     fseek(f, 0, SEEK_END);
805     size = ftell(f);
806     fseek(f, where, SEEK_SET);
807 
808     return size;
809 }
810 
811 /* setup_data types */
812 #define SETUP_NONE     0
813 #define SETUP_E820_EXT 1
814 #define SETUP_DTB      2
815 #define SETUP_PCI      3
816 #define SETUP_EFI      4
817 
818 struct setup_data {
819     uint64_t next;
820     uint32_t type;
821     uint32_t len;
822     uint8_t data[0];
823 } __attribute__((packed));
824 
825 static void load_linux(PCMachineState *pcms,
826                        FWCfgState *fw_cfg)
827 {
828     uint16_t protocol;
829     int setup_size, kernel_size, initrd_size = 0, cmdline_size;
830     int dtb_size, setup_data_offset;
831     uint32_t initrd_max;
832     uint8_t header[8192], *setup, *kernel, *initrd_data;
833     hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
834     FILE *f;
835     char *vmode;
836     MachineState *machine = MACHINE(pcms);
837     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
838     struct setup_data *setup_data;
839     const char *kernel_filename = machine->kernel_filename;
840     const char *initrd_filename = machine->initrd_filename;
841     const char *dtb_filename = machine->dtb;
842     const char *kernel_cmdline = machine->kernel_cmdline;
843 
844     /* Align to 16 bytes as a paranoia measure */
845     cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
846 
847     /* load the kernel header */
848     f = fopen(kernel_filename, "rb");
849     if (!f || !(kernel_size = get_file_size(f)) ||
850         fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
851         MIN(ARRAY_SIZE(header), kernel_size)) {
852         fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
853                 kernel_filename, strerror(errno));
854         exit(1);
855     }
856 
857     /* kernel protocol version */
858 #if 0
859     fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
860 #endif
861     if (ldl_p(header+0x202) == 0x53726448) {
862         protocol = lduw_p(header+0x206);
863     } else {
864         /* This looks like a multiboot kernel. If it is, let's stop
865            treating it like a Linux kernel. */
866         if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
867                            kernel_cmdline, kernel_size, header)) {
868             return;
869         }
870         protocol = 0;
871     }
872 
873     if (protocol < 0x200 || !(header[0x211] & 0x01)) {
874         /* Low kernel */
875         real_addr    = 0x90000;
876         cmdline_addr = 0x9a000 - cmdline_size;
877         prot_addr    = 0x10000;
878     } else if (protocol < 0x202) {
879         /* High but ancient kernel */
880         real_addr    = 0x90000;
881         cmdline_addr = 0x9a000 - cmdline_size;
882         prot_addr    = 0x100000;
883     } else {
884         /* High and recent kernel */
885         real_addr    = 0x10000;
886         cmdline_addr = 0x20000;
887         prot_addr    = 0x100000;
888     }
889 
890 #if 0
891     fprintf(stderr,
892             "qemu: real_addr     = 0x" TARGET_FMT_plx "\n"
893             "qemu: cmdline_addr  = 0x" TARGET_FMT_plx "\n"
894             "qemu: prot_addr     = 0x" TARGET_FMT_plx "\n",
895             real_addr,
896             cmdline_addr,
897             prot_addr);
898 #endif
899 
900     /* highest address for loading the initrd */
901     if (protocol >= 0x203) {
902         initrd_max = ldl_p(header+0x22c);
903     } else {
904         initrd_max = 0x37ffffff;
905     }
906 
907     if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
908         initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
909     }
910 
911     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
912     fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
913     fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
914 
915     if (protocol >= 0x202) {
916         stl_p(header+0x228, cmdline_addr);
917     } else {
918         stw_p(header+0x20, 0xA33F);
919         stw_p(header+0x22, cmdline_addr-real_addr);
920     }
921 
922     /* handle vga= parameter */
923     vmode = strstr(kernel_cmdline, "vga=");
924     if (vmode) {
925         unsigned int video_mode;
926         /* skip "vga=" */
927         vmode += 4;
928         if (!strncmp(vmode, "normal", 6)) {
929             video_mode = 0xffff;
930         } else if (!strncmp(vmode, "ext", 3)) {
931             video_mode = 0xfffe;
932         } else if (!strncmp(vmode, "ask", 3)) {
933             video_mode = 0xfffd;
934         } else {
935             video_mode = strtol(vmode, NULL, 0);
936         }
937         stw_p(header+0x1fa, video_mode);
938     }
939 
940     /* loader type */
941     /* High nybble = B reserved for QEMU; low nybble is revision number.
942        If this code is substantially changed, you may want to consider
943        incrementing the revision. */
944     if (protocol >= 0x200) {
945         header[0x210] = 0xB0;
946     }
947     /* heap */
948     if (protocol >= 0x201) {
949         header[0x211] |= 0x80;	/* CAN_USE_HEAP */
950         stw_p(header+0x224, cmdline_addr-real_addr-0x200);
951     }
952 
953     /* load initrd */
954     if (initrd_filename) {
955         if (protocol < 0x200) {
956             fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
957             exit(1);
958         }
959 
960         initrd_size = get_image_size(initrd_filename);
961         if (initrd_size < 0) {
962             fprintf(stderr, "qemu: error reading initrd %s: %s\n",
963                     initrd_filename, strerror(errno));
964             exit(1);
965         }
966 
967         initrd_addr = (initrd_max-initrd_size) & ~4095;
968 
969         initrd_data = g_malloc(initrd_size);
970         load_image(initrd_filename, initrd_data);
971 
972         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
973         fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
974         fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
975 
976         stl_p(header+0x218, initrd_addr);
977         stl_p(header+0x21c, initrd_size);
978     }
979 
980     /* load kernel and setup */
981     setup_size = header[0x1f1];
982     if (setup_size == 0) {
983         setup_size = 4;
984     }
985     setup_size = (setup_size+1)*512;
986     if (setup_size > kernel_size) {
987         fprintf(stderr, "qemu: invalid kernel header\n");
988         exit(1);
989     }
990     kernel_size -= setup_size;
991 
992     setup  = g_malloc(setup_size);
993     kernel = g_malloc(kernel_size);
994     fseek(f, 0, SEEK_SET);
995     if (fread(setup, 1, setup_size, f) != setup_size) {
996         fprintf(stderr, "fread() failed\n");
997         exit(1);
998     }
999     if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1000         fprintf(stderr, "fread() failed\n");
1001         exit(1);
1002     }
1003     fclose(f);
1004 
1005     /* append dtb to kernel */
1006     if (dtb_filename) {
1007         if (protocol < 0x209) {
1008             fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1009             exit(1);
1010         }
1011 
1012         dtb_size = get_image_size(dtb_filename);
1013         if (dtb_size <= 0) {
1014             fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1015                     dtb_filename, strerror(errno));
1016             exit(1);
1017         }
1018 
1019         setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1020         kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1021         kernel = g_realloc(kernel, kernel_size);
1022 
1023         stq_p(header+0x250, prot_addr + setup_data_offset);
1024 
1025         setup_data = (struct setup_data *)(kernel + setup_data_offset);
1026         setup_data->next = 0;
1027         setup_data->type = cpu_to_le32(SETUP_DTB);
1028         setup_data->len = cpu_to_le32(dtb_size);
1029 
1030         load_image_size(dtb_filename, setup_data->data, dtb_size);
1031     }
1032 
1033     memcpy(setup, header, MIN(sizeof(header), setup_size));
1034 
1035     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1036     fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1037     fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1038 
1039     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1040     fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1041     fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1042 
1043     if (fw_cfg_dma_enabled(fw_cfg)) {
1044         option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1045         option_rom[nb_option_roms].bootindex = 0;
1046     } else {
1047         option_rom[nb_option_roms].name = "linuxboot.bin";
1048         option_rom[nb_option_roms].bootindex = 0;
1049     }
1050     nb_option_roms++;
1051 }
1052 
1053 #define NE2000_NB_MAX 6
1054 
1055 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1056                                               0x280, 0x380 };
1057 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1058 
1059 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1060 {
1061     static int nb_ne2k = 0;
1062 
1063     if (nb_ne2k == NE2000_NB_MAX)
1064         return;
1065     isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1066                     ne2000_irq[nb_ne2k], nd);
1067     nb_ne2k++;
1068 }
1069 
1070 DeviceState *cpu_get_current_apic(void)
1071 {
1072     if (current_cpu) {
1073         X86CPU *cpu = X86_CPU(current_cpu);
1074         return cpu->apic_state;
1075     } else {
1076         return NULL;
1077     }
1078 }
1079 
1080 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1081 {
1082     X86CPU *cpu = opaque;
1083 
1084     if (level) {
1085         cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1086     }
1087 }
1088 
1089 static X86CPU *pc_new_cpu(const char *typename, int64_t apic_id,
1090                           Error **errp)
1091 {
1092     X86CPU *cpu = NULL;
1093     Error *local_err = NULL;
1094 
1095     cpu = X86_CPU(object_new(typename));
1096 
1097     object_property_set_int(OBJECT(cpu), apic_id, "apic-id", &local_err);
1098     object_property_set_bool(OBJECT(cpu), true, "realized", &local_err);
1099 
1100     if (local_err) {
1101         error_propagate(errp, local_err);
1102         object_unref(OBJECT(cpu));
1103         cpu = NULL;
1104     }
1105     return cpu;
1106 }
1107 
1108 void pc_hot_add_cpu(const int64_t id, Error **errp)
1109 {
1110     X86CPU *cpu;
1111     ObjectClass *oc;
1112     PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1113     int64_t apic_id = x86_cpu_apic_id_from_index(id);
1114     Error *local_err = NULL;
1115 
1116     if (id < 0) {
1117         error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1118         return;
1119     }
1120 
1121     if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1122         error_setg(errp, "Unable to add CPU: %" PRIi64
1123                    ", resulting APIC ID (%" PRIi64 ") is too large",
1124                    id, apic_id);
1125         return;
1126     }
1127 
1128     assert(pcms->possible_cpus->cpus[0].cpu); /* BSP is always present */
1129     oc = OBJECT_CLASS(CPU_GET_CLASS(pcms->possible_cpus->cpus[0].cpu));
1130     cpu = pc_new_cpu(object_class_get_name(oc), apic_id, &local_err);
1131     if (local_err) {
1132         error_propagate(errp, local_err);
1133         return;
1134     }
1135     object_unref(OBJECT(cpu));
1136 }
1137 
1138 void pc_cpus_init(PCMachineState *pcms)
1139 {
1140     int i;
1141     CPUClass *cc;
1142     ObjectClass *oc;
1143     const char *typename;
1144     gchar **model_pieces;
1145     X86CPU *cpu = NULL;
1146     MachineState *machine = MACHINE(pcms);
1147 
1148     /* init CPUs */
1149     if (machine->cpu_model == NULL) {
1150 #ifdef TARGET_X86_64
1151         machine->cpu_model = "qemu64";
1152 #else
1153         machine->cpu_model = "qemu32";
1154 #endif
1155     }
1156 
1157     model_pieces = g_strsplit(machine->cpu_model, ",", 2);
1158     if (!model_pieces[0]) {
1159         error_report("Invalid/empty CPU model name");
1160         exit(1);
1161     }
1162 
1163     oc = cpu_class_by_name(TYPE_X86_CPU, model_pieces[0]);
1164     if (oc == NULL) {
1165         error_report("Unable to find CPU definition: %s", model_pieces[0]);
1166         exit(1);
1167     }
1168     typename = object_class_get_name(oc);
1169     cc = CPU_CLASS(oc);
1170     cc->parse_features(typename, model_pieces[1], &error_fatal);
1171     g_strfreev(model_pieces);
1172 
1173     /* Calculates the limit to CPU APIC ID values
1174      *
1175      * Limit for the APIC ID value, so that all
1176      * CPU APIC IDs are < pcms->apic_id_limit.
1177      *
1178      * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1179      */
1180     pcms->apic_id_limit = x86_cpu_apic_id_from_index(max_cpus - 1) + 1;
1181     pcms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
1182                                     sizeof(CPUArchId) * max_cpus);
1183     for (i = 0; i < max_cpus; i++) {
1184         pcms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(i);
1185         pcms->possible_cpus->len++;
1186         if (i < smp_cpus) {
1187             cpu = pc_new_cpu(typename, x86_cpu_apic_id_from_index(i),
1188                              &error_fatal);
1189             object_unref(OBJECT(cpu));
1190         }
1191     }
1192 
1193     /* tell smbios about cpuid version and features */
1194     smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
1195 }
1196 
1197 static void pc_build_feature_control_file(PCMachineState *pcms)
1198 {
1199     X86CPU *cpu = X86_CPU(pcms->possible_cpus->cpus[0].cpu);
1200     CPUX86State *env = &cpu->env;
1201     uint32_t unused, ecx, edx;
1202     uint64_t feature_control_bits = 0;
1203     uint64_t *val;
1204 
1205     cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1206     if (ecx & CPUID_EXT_VMX) {
1207         feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1208     }
1209 
1210     if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1211         (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1212         (env->mcg_cap & MCG_LMCE_P)) {
1213         feature_control_bits |= FEATURE_CONTROL_LMCE;
1214     }
1215 
1216     if (!feature_control_bits) {
1217         return;
1218     }
1219 
1220     val = g_malloc(sizeof(*val));
1221     *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1222     fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1223 }
1224 
1225 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1226 {
1227     if (cpus_count > 0xff) {
1228         /* If the number of CPUs can't be represented in 8 bits, the
1229          * BIOS must use "etc/boot-cpus". Set RTC field to 0 just
1230          * to make old BIOSes fail more predictably.
1231          */
1232         rtc_set_memory(rtc, 0x5f, 0);
1233     } else {
1234         rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1235     }
1236 }
1237 
1238 static
1239 void pc_machine_done(Notifier *notifier, void *data)
1240 {
1241     PCMachineState *pcms = container_of(notifier,
1242                                         PCMachineState, machine_done);
1243     PCIBus *bus = pcms->bus;
1244 
1245     /* set the number of CPUs */
1246     rtc_set_cpus_count(pcms->rtc, le16_to_cpu(pcms->boot_cpus_le));
1247 
1248     if (bus) {
1249         int extra_hosts = 0;
1250 
1251         QLIST_FOREACH(bus, &bus->child, sibling) {
1252             /* look for expander root buses */
1253             if (pci_bus_is_root(bus)) {
1254                 extra_hosts++;
1255             }
1256         }
1257         if (extra_hosts && pcms->fw_cfg) {
1258             uint64_t *val = g_malloc(sizeof(*val));
1259             *val = cpu_to_le64(extra_hosts);
1260             fw_cfg_add_file(pcms->fw_cfg,
1261                     "etc/extra-pci-roots", val, sizeof(*val));
1262         }
1263     }
1264 
1265     acpi_setup();
1266     if (pcms->fw_cfg) {
1267         MachineClass *mc = MACHINE_GET_CLASS(pcms);
1268 
1269         pc_build_smbios(pcms->fw_cfg);
1270         pc_build_feature_control_file(pcms);
1271 
1272         if (mc->max_cpus > 255) {
1273             fw_cfg_add_file(pcms->fw_cfg, "etc/boot-cpus", &pcms->boot_cpus_le,
1274                             sizeof(pcms->boot_cpus_le));
1275         }
1276     }
1277 
1278     if (pcms->apic_id_limit > 255) {
1279         IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1280 
1281         if (!iommu || !iommu->x86_iommu.intr_supported ||
1282             iommu->intr_eim != ON_OFF_AUTO_ON) {
1283             error_report("current -smp configuration requires "
1284                          "Extended Interrupt Mode enabled. "
1285                          "You can add an IOMMU using: "
1286                          "-device intel-iommu,intremap=on,eim=on");
1287             exit(EXIT_FAILURE);
1288         }
1289     }
1290 }
1291 
1292 void pc_guest_info_init(PCMachineState *pcms)
1293 {
1294     int i;
1295 
1296     pcms->apic_xrupt_override = kvm_allows_irq0_override();
1297     pcms->numa_nodes = nb_numa_nodes;
1298     pcms->node_mem = g_malloc0(pcms->numa_nodes *
1299                                     sizeof *pcms->node_mem);
1300     for (i = 0; i < nb_numa_nodes; i++) {
1301         pcms->node_mem[i] = numa_info[i].node_mem;
1302     }
1303 
1304     pcms->machine_done.notify = pc_machine_done;
1305     qemu_add_machine_init_done_notifier(&pcms->machine_done);
1306 }
1307 
1308 /* setup pci memory address space mapping into system address space */
1309 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1310                             MemoryRegion *pci_address_space)
1311 {
1312     /* Set to lower priority than RAM */
1313     memory_region_add_subregion_overlap(system_memory, 0x0,
1314                                         pci_address_space, -1);
1315 }
1316 
1317 void pc_acpi_init(const char *default_dsdt)
1318 {
1319     char *filename;
1320 
1321     if (acpi_tables != NULL) {
1322         /* manually set via -acpitable, leave it alone */
1323         return;
1324     }
1325 
1326     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, default_dsdt);
1327     if (filename == NULL) {
1328         fprintf(stderr, "WARNING: failed to find %s\n", default_dsdt);
1329     } else {
1330         QemuOpts *opts = qemu_opts_create(qemu_find_opts("acpi"), NULL, 0,
1331                                           &error_abort);
1332         Error *err = NULL;
1333 
1334         qemu_opt_set(opts, "file", filename, &error_abort);
1335 
1336         acpi_table_add_builtin(opts, &err);
1337         if (err) {
1338             error_reportf_err(err, "WARNING: failed to load %s: ",
1339                               filename);
1340         }
1341         g_free(filename);
1342     }
1343 }
1344 
1345 void xen_load_linux(PCMachineState *pcms)
1346 {
1347     int i;
1348     FWCfgState *fw_cfg;
1349 
1350     assert(MACHINE(pcms)->kernel_filename != NULL);
1351 
1352     fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1353     rom_set_fw(fw_cfg);
1354 
1355     load_linux(pcms, fw_cfg);
1356     for (i = 0; i < nb_option_roms; i++) {
1357         assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1358                !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1359                !strcmp(option_rom[i].name, "multiboot.bin"));
1360         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1361     }
1362     pcms->fw_cfg = fw_cfg;
1363 }
1364 
1365 void pc_memory_init(PCMachineState *pcms,
1366                     MemoryRegion *system_memory,
1367                     MemoryRegion *rom_memory,
1368                     MemoryRegion **ram_memory)
1369 {
1370     int linux_boot, i;
1371     MemoryRegion *ram, *option_rom_mr;
1372     MemoryRegion *ram_below_4g, *ram_above_4g;
1373     FWCfgState *fw_cfg;
1374     MachineState *machine = MACHINE(pcms);
1375     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1376 
1377     assert(machine->ram_size == pcms->below_4g_mem_size +
1378                                 pcms->above_4g_mem_size);
1379 
1380     linux_boot = (machine->kernel_filename != NULL);
1381 
1382     /* Allocate RAM.  We allocate it as a single memory region and use
1383      * aliases to address portions of it, mostly for backwards compatibility
1384      * with older qemus that used qemu_ram_alloc().
1385      */
1386     ram = g_malloc(sizeof(*ram));
1387     memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1388                                          machine->ram_size);
1389     *ram_memory = ram;
1390     ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1391     memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1392                              0, pcms->below_4g_mem_size);
1393     memory_region_add_subregion(system_memory, 0, ram_below_4g);
1394     e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1395     if (pcms->above_4g_mem_size > 0) {
1396         ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1397         memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1398                                  pcms->below_4g_mem_size,
1399                                  pcms->above_4g_mem_size);
1400         memory_region_add_subregion(system_memory, 0x100000000ULL,
1401                                     ram_above_4g);
1402         e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1403     }
1404 
1405     if (!pcmc->has_reserved_memory &&
1406         (machine->ram_slots ||
1407          (machine->maxram_size > machine->ram_size))) {
1408         MachineClass *mc = MACHINE_GET_CLASS(machine);
1409 
1410         error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1411                      mc->name);
1412         exit(EXIT_FAILURE);
1413     }
1414 
1415     /* initialize hotplug memory address space */
1416     if (pcmc->has_reserved_memory &&
1417         (machine->ram_size < machine->maxram_size)) {
1418         ram_addr_t hotplug_mem_size =
1419             machine->maxram_size - machine->ram_size;
1420 
1421         if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1422             error_report("unsupported amount of memory slots: %"PRIu64,
1423                          machine->ram_slots);
1424             exit(EXIT_FAILURE);
1425         }
1426 
1427         if (QEMU_ALIGN_UP(machine->maxram_size,
1428                           TARGET_PAGE_SIZE) != machine->maxram_size) {
1429             error_report("maximum memory size must by aligned to multiple of "
1430                          "%d bytes", TARGET_PAGE_SIZE);
1431             exit(EXIT_FAILURE);
1432         }
1433 
1434         pcms->hotplug_memory.base =
1435             ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1ULL << 30);
1436 
1437         if (pcmc->enforce_aligned_dimm) {
1438             /* size hotplug region assuming 1G page max alignment per slot */
1439             hotplug_mem_size += (1ULL << 30) * machine->ram_slots;
1440         }
1441 
1442         if ((pcms->hotplug_memory.base + hotplug_mem_size) <
1443             hotplug_mem_size) {
1444             error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1445                          machine->maxram_size);
1446             exit(EXIT_FAILURE);
1447         }
1448 
1449         memory_region_init(&pcms->hotplug_memory.mr, OBJECT(pcms),
1450                            "hotplug-memory", hotplug_mem_size);
1451         memory_region_add_subregion(system_memory, pcms->hotplug_memory.base,
1452                                     &pcms->hotplug_memory.mr);
1453     }
1454 
1455     /* Initialize PC system firmware */
1456     pc_system_firmware_init(rom_memory, !pcmc->pci_enabled);
1457 
1458     option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1459     memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1460                            &error_fatal);
1461     vmstate_register_ram_global(option_rom_mr);
1462     memory_region_add_subregion_overlap(rom_memory,
1463                                         PC_ROM_MIN_VGA,
1464                                         option_rom_mr,
1465                                         1);
1466 
1467     fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1468 
1469     rom_set_fw(fw_cfg);
1470 
1471     if (pcmc->has_reserved_memory && pcms->hotplug_memory.base) {
1472         uint64_t *val = g_malloc(sizeof(*val));
1473         PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1474         uint64_t res_mem_end = pcms->hotplug_memory.base;
1475 
1476         if (!pcmc->broken_reserved_end) {
1477             res_mem_end += memory_region_size(&pcms->hotplug_memory.mr);
1478         }
1479         *val = cpu_to_le64(ROUND_UP(res_mem_end, 0x1ULL << 30));
1480         fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1481     }
1482 
1483     if (linux_boot) {
1484         load_linux(pcms, fw_cfg);
1485     }
1486 
1487     for (i = 0; i < nb_option_roms; i++) {
1488         rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1489     }
1490     pcms->fw_cfg = fw_cfg;
1491 
1492     /* Init default IOAPIC address space */
1493     pcms->ioapic_as = &address_space_memory;
1494 }
1495 
1496 qemu_irq pc_allocate_cpu_irq(void)
1497 {
1498     return qemu_allocate_irq(pic_irq_request, NULL, 0);
1499 }
1500 
1501 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1502 {
1503     DeviceState *dev = NULL;
1504 
1505     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1506     if (pci_bus) {
1507         PCIDevice *pcidev = pci_vga_init(pci_bus);
1508         dev = pcidev ? &pcidev->qdev : NULL;
1509     } else if (isa_bus) {
1510         ISADevice *isadev = isa_vga_init(isa_bus);
1511         dev = isadev ? DEVICE(isadev) : NULL;
1512     }
1513     rom_reset_order_override();
1514     return dev;
1515 }
1516 
1517 static const MemoryRegionOps ioport80_io_ops = {
1518     .write = ioport80_write,
1519     .read = ioport80_read,
1520     .endianness = DEVICE_NATIVE_ENDIAN,
1521     .impl = {
1522         .min_access_size = 1,
1523         .max_access_size = 1,
1524     },
1525 };
1526 
1527 static const MemoryRegionOps ioportF0_io_ops = {
1528     .write = ioportF0_write,
1529     .read = ioportF0_read,
1530     .endianness = DEVICE_NATIVE_ENDIAN,
1531     .impl = {
1532         .min_access_size = 1,
1533         .max_access_size = 1,
1534     },
1535 };
1536 
1537 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
1538                           ISADevice **rtc_state,
1539                           bool create_fdctrl,
1540                           bool no_vmport,
1541                           uint32_t hpet_irqs)
1542 {
1543     int i;
1544     DriveInfo *fd[MAX_FD];
1545     DeviceState *hpet = NULL;
1546     int pit_isa_irq = 0;
1547     qemu_irq pit_alt_irq = NULL;
1548     qemu_irq rtc_irq = NULL;
1549     qemu_irq *a20_line;
1550     ISADevice *i8042, *port92, *vmmouse, *pit = NULL;
1551     MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
1552     MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
1553 
1554     memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
1555     memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
1556 
1557     memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
1558     memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
1559 
1560     /*
1561      * Check if an HPET shall be created.
1562      *
1563      * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
1564      * when the HPET wants to take over. Thus we have to disable the latter.
1565      */
1566     if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
1567         /* In order to set property, here not using sysbus_try_create_simple */
1568         hpet = qdev_try_create(NULL, TYPE_HPET);
1569         if (hpet) {
1570             /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
1571              * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
1572              * IRQ8 and IRQ2.
1573              */
1574             uint8_t compat = object_property_get_int(OBJECT(hpet),
1575                     HPET_INTCAP, NULL);
1576             if (!compat) {
1577                 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
1578             }
1579             qdev_init_nofail(hpet);
1580             sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
1581 
1582             for (i = 0; i < GSI_NUM_PINS; i++) {
1583                 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
1584             }
1585             pit_isa_irq = -1;
1586             pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
1587             rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
1588         }
1589     }
1590     *rtc_state = rtc_init(isa_bus, 2000, rtc_irq);
1591 
1592     qemu_register_boot_set(pc_boot_set, *rtc_state);
1593 
1594     if (!xen_enabled()) {
1595         if (kvm_pit_in_kernel()) {
1596             pit = kvm_pit_init(isa_bus, 0x40);
1597         } else {
1598             pit = pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
1599         }
1600         if (hpet) {
1601             /* connect PIT to output control line of the HPET */
1602             qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
1603         }
1604         pcspk_init(isa_bus, pit);
1605     }
1606 
1607     serial_hds_isa_init(isa_bus, 0, MAX_SERIAL_PORTS);
1608     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
1609 
1610     a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
1611     i8042 = isa_create_simple(isa_bus, "i8042");
1612     i8042_setup_a20_line(i8042, a20_line[0]);
1613     if (!no_vmport) {
1614         vmport_init(isa_bus);
1615         vmmouse = isa_try_create(isa_bus, "vmmouse");
1616     } else {
1617         vmmouse = NULL;
1618     }
1619     if (vmmouse) {
1620         DeviceState *dev = DEVICE(vmmouse);
1621         qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
1622         qdev_init_nofail(dev);
1623     }
1624     port92 = isa_create_simple(isa_bus, "port92");
1625     port92_init(port92, a20_line[1]);
1626     g_free(a20_line);
1627 
1628     DMA_init(isa_bus, 0);
1629 
1630     for(i = 0; i < MAX_FD; i++) {
1631         fd[i] = drive_get(IF_FLOPPY, 0, i);
1632         create_fdctrl |= !!fd[i];
1633     }
1634     if (create_fdctrl) {
1635         fdctrl_init_isa(isa_bus, fd);
1636     }
1637 }
1638 
1639 void pc_nic_init(ISABus *isa_bus, PCIBus *pci_bus)
1640 {
1641     int i;
1642 
1643     rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
1644     for (i = 0; i < nb_nics; i++) {
1645         NICInfo *nd = &nd_table[i];
1646 
1647         if (!pci_bus || (nd->model && strcmp(nd->model, "ne2k_isa") == 0)) {
1648             pc_init_ne2k_isa(isa_bus, nd);
1649         } else {
1650             pci_nic_init_nofail(nd, pci_bus, "e1000", NULL);
1651         }
1652     }
1653     rom_reset_order_override();
1654 }
1655 
1656 void pc_pci_device_init(PCIBus *pci_bus)
1657 {
1658     int max_bus;
1659     int bus;
1660 
1661     max_bus = drive_get_max_bus(IF_SCSI);
1662     for (bus = 0; bus <= max_bus; bus++) {
1663         pci_create_simple(pci_bus, -1, "lsi53c895a");
1664     }
1665 }
1666 
1667 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
1668 {
1669     DeviceState *dev;
1670     SysBusDevice *d;
1671     unsigned int i;
1672 
1673     if (kvm_ioapic_in_kernel()) {
1674         dev = qdev_create(NULL, "kvm-ioapic");
1675     } else {
1676         dev = qdev_create(NULL, "ioapic");
1677     }
1678     if (parent_name) {
1679         object_property_add_child(object_resolve_path(parent_name, NULL),
1680                                   "ioapic", OBJECT(dev), NULL);
1681     }
1682     qdev_init_nofail(dev);
1683     d = SYS_BUS_DEVICE(dev);
1684     sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
1685 
1686     for (i = 0; i < IOAPIC_NUM_PINS; i++) {
1687         gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
1688     }
1689 }
1690 
1691 static void pc_dimm_plug(HotplugHandler *hotplug_dev,
1692                          DeviceState *dev, Error **errp)
1693 {
1694     HotplugHandlerClass *hhc;
1695     Error *local_err = NULL;
1696     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1697     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1698     PCDIMMDevice *dimm = PC_DIMM(dev);
1699     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1700     MemoryRegion *mr = ddc->get_memory_region(dimm);
1701     uint64_t align = TARGET_PAGE_SIZE;
1702 
1703     if (memory_region_get_alignment(mr) && pcmc->enforce_aligned_dimm) {
1704         align = memory_region_get_alignment(mr);
1705     }
1706 
1707     if (!pcms->acpi_dev) {
1708         error_setg(&local_err,
1709                    "memory hotplug is not enabled: missing acpi device");
1710         goto out;
1711     }
1712 
1713     pc_dimm_memory_plug(dev, &pcms->hotplug_memory, mr, align, &local_err);
1714     if (local_err) {
1715         goto out;
1716     }
1717 
1718     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1719         nvdimm_plug(&pcms->acpi_nvdimm_state);
1720     }
1721 
1722     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1723     hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
1724 out:
1725     error_propagate(errp, local_err);
1726 }
1727 
1728 static void pc_dimm_unplug_request(HotplugHandler *hotplug_dev,
1729                                    DeviceState *dev, Error **errp)
1730 {
1731     HotplugHandlerClass *hhc;
1732     Error *local_err = NULL;
1733     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1734 
1735     if (!pcms->acpi_dev) {
1736         error_setg(&local_err,
1737                    "memory hotplug is not enabled: missing acpi device");
1738         goto out;
1739     }
1740 
1741     if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
1742         error_setg(&local_err,
1743                    "nvdimm device hot unplug is not supported yet.");
1744         goto out;
1745     }
1746 
1747     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1748     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1749 
1750 out:
1751     error_propagate(errp, local_err);
1752 }
1753 
1754 static void pc_dimm_unplug(HotplugHandler *hotplug_dev,
1755                            DeviceState *dev, Error **errp)
1756 {
1757     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1758     PCDIMMDevice *dimm = PC_DIMM(dev);
1759     PCDIMMDeviceClass *ddc = PC_DIMM_GET_CLASS(dimm);
1760     MemoryRegion *mr = ddc->get_memory_region(dimm);
1761     HotplugHandlerClass *hhc;
1762     Error *local_err = NULL;
1763 
1764     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1765     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1766 
1767     if (local_err) {
1768         goto out;
1769     }
1770 
1771     pc_dimm_memory_unplug(dev, &pcms->hotplug_memory, mr);
1772     object_unparent(OBJECT(dev));
1773 
1774  out:
1775     error_propagate(errp, local_err);
1776 }
1777 
1778 static int pc_apic_cmp(const void *a, const void *b)
1779 {
1780    CPUArchId *apic_a = (CPUArchId *)a;
1781    CPUArchId *apic_b = (CPUArchId *)b;
1782 
1783    return apic_a->arch_id - apic_b->arch_id;
1784 }
1785 
1786 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
1787  * in pcms->possible_cpus->cpus, if pcms->possible_cpus->cpus has no
1788  * entry correponding to CPU's apic_id returns NULL.
1789  */
1790 static CPUArchId *pc_find_cpu_slot(PCMachineState *pcms, CPUState *cpu,
1791                                    int *idx)
1792 {
1793     CPUClass *cc = CPU_GET_CLASS(cpu);
1794     CPUArchId apic_id, *found_cpu;
1795 
1796     apic_id.arch_id = cc->get_arch_id(CPU(cpu));
1797     found_cpu = bsearch(&apic_id, pcms->possible_cpus->cpus,
1798         pcms->possible_cpus->len, sizeof(*pcms->possible_cpus->cpus),
1799         pc_apic_cmp);
1800     if (found_cpu && idx) {
1801         *idx = found_cpu - pcms->possible_cpus->cpus;
1802     }
1803     return found_cpu;
1804 }
1805 
1806 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
1807                         DeviceState *dev, Error **errp)
1808 {
1809     CPUArchId *found_cpu;
1810     HotplugHandlerClass *hhc;
1811     Error *local_err = NULL;
1812     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1813 
1814     if (pcms->acpi_dev) {
1815         hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1816         hhc->plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1817         if (local_err) {
1818             goto out;
1819         }
1820     }
1821 
1822     /* increment the number of CPUs */
1823     pcms->boot_cpus_le = cpu_to_le16(le16_to_cpu(pcms->boot_cpus_le) + 1);
1824     if (dev->hotplugged) {
1825         /* Update the number of CPUs in CMOS */
1826         rtc_set_cpus_count(pcms->rtc, le16_to_cpu(pcms->boot_cpus_le));
1827     }
1828 
1829     found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1830     found_cpu->cpu = CPU(dev);
1831 out:
1832     error_propagate(errp, local_err);
1833 }
1834 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
1835                                      DeviceState *dev, Error **errp)
1836 {
1837     int idx = -1;
1838     HotplugHandlerClass *hhc;
1839     Error *local_err = NULL;
1840     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1841 
1842     pc_find_cpu_slot(pcms, CPU(dev), &idx);
1843     assert(idx != -1);
1844     if (idx == 0) {
1845         error_setg(&local_err, "Boot CPU is unpluggable");
1846         goto out;
1847     }
1848 
1849     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1850     hhc->unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1851 
1852     if (local_err) {
1853         goto out;
1854     }
1855 
1856  out:
1857     error_propagate(errp, local_err);
1858 
1859 }
1860 
1861 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
1862                              DeviceState *dev, Error **errp)
1863 {
1864     CPUArchId *found_cpu;
1865     HotplugHandlerClass *hhc;
1866     Error *local_err = NULL;
1867     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1868 
1869     hhc = HOTPLUG_HANDLER_GET_CLASS(pcms->acpi_dev);
1870     hhc->unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
1871 
1872     if (local_err) {
1873         goto out;
1874     }
1875 
1876     found_cpu = pc_find_cpu_slot(pcms, CPU(dev), NULL);
1877     found_cpu->cpu = NULL;
1878     object_unparent(OBJECT(dev));
1879 
1880     /* decrement the number of CPUs */
1881     pcms->boot_cpus_le = cpu_to_le16(le16_to_cpu(pcms->boot_cpus_le) - 1);
1882     /* Update the number of CPUs in CMOS */
1883     rtc_set_cpus_count(pcms->rtc, le16_to_cpu(pcms->boot_cpus_le));
1884  out:
1885     error_propagate(errp, local_err);
1886 }
1887 
1888 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
1889                             DeviceState *dev, Error **errp)
1890 {
1891     int idx;
1892     CPUState *cs;
1893     CPUArchId *cpu_slot;
1894     X86CPUTopoInfo topo;
1895     X86CPU *cpu = X86_CPU(dev);
1896     PCMachineState *pcms = PC_MACHINE(hotplug_dev);
1897 
1898     /* if APIC ID is not set, set it based on socket/core/thread properties */
1899     if (cpu->apic_id == UNASSIGNED_APIC_ID) {
1900         int max_socket = (max_cpus - 1) / smp_threads / smp_cores;
1901 
1902         if (cpu->socket_id < 0) {
1903             error_setg(errp, "CPU socket-id is not set");
1904             return;
1905         } else if (cpu->socket_id > max_socket) {
1906             error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
1907                        cpu->socket_id, max_socket);
1908             return;
1909         }
1910         if (cpu->core_id < 0) {
1911             error_setg(errp, "CPU core-id is not set");
1912             return;
1913         } else if (cpu->core_id > (smp_cores - 1)) {
1914             error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
1915                        cpu->core_id, smp_cores - 1);
1916             return;
1917         }
1918         if (cpu->thread_id < 0) {
1919             error_setg(errp, "CPU thread-id is not set");
1920             return;
1921         } else if (cpu->thread_id > (smp_threads - 1)) {
1922             error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
1923                        cpu->thread_id, smp_threads - 1);
1924             return;
1925         }
1926 
1927         topo.pkg_id = cpu->socket_id;
1928         topo.core_id = cpu->core_id;
1929         topo.smt_id = cpu->thread_id;
1930         cpu->apic_id = apicid_from_topo_ids(smp_cores, smp_threads, &topo);
1931     }
1932 
1933     cpu_slot = pc_find_cpu_slot(pcms, CPU(dev), &idx);
1934     if (!cpu_slot) {
1935         x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1936         error_setg(errp, "Invalid CPU [socket: %u, core: %u, thread: %u] with"
1937                   " APIC ID %" PRIu32 ", valid index range 0:%d",
1938                    topo.pkg_id, topo.core_id, topo.smt_id, cpu->apic_id,
1939                    pcms->possible_cpus->len - 1);
1940         return;
1941     }
1942 
1943     if (cpu_slot->cpu) {
1944         error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
1945                    idx, cpu->apic_id);
1946         return;
1947     }
1948 
1949     /* if 'address' properties socket-id/core-id/thread-id are not set, set them
1950      * so that query_hotpluggable_cpus would show correct values
1951      */
1952     /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
1953      * once -smp refactoring is complete and there will be CPU private
1954      * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
1955     x86_topo_ids_from_apicid(cpu->apic_id, smp_cores, smp_threads, &topo);
1956     if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
1957         error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
1958             " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
1959         return;
1960     }
1961     cpu->socket_id = topo.pkg_id;
1962 
1963     if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
1964         error_setg(errp, "property core-id: %u doesn't match set apic-id:"
1965             " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
1966         return;
1967     }
1968     cpu->core_id = topo.core_id;
1969 
1970     if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
1971         error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
1972             " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
1973         return;
1974     }
1975     cpu->thread_id = topo.smt_id;
1976 
1977     cs = CPU(cpu);
1978     cs->cpu_index = idx;
1979 }
1980 
1981 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
1982                                           DeviceState *dev, Error **errp)
1983 {
1984     if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1985         pc_cpu_pre_plug(hotplug_dev, dev, errp);
1986     }
1987 }
1988 
1989 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
1990                                       DeviceState *dev, Error **errp)
1991 {
1992     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
1993         pc_dimm_plug(hotplug_dev, dev, errp);
1994     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
1995         pc_cpu_plug(hotplug_dev, dev, errp);
1996     }
1997 }
1998 
1999 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2000                                                 DeviceState *dev, Error **errp)
2001 {
2002     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2003         pc_dimm_unplug_request(hotplug_dev, dev, errp);
2004     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2005         pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2006     } else {
2007         error_setg(errp, "acpi: device unplug request for not supported device"
2008                    " type: %s", object_get_typename(OBJECT(dev)));
2009     }
2010 }
2011 
2012 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2013                                         DeviceState *dev, Error **errp)
2014 {
2015     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2016         pc_dimm_unplug(hotplug_dev, dev, errp);
2017     } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2018         pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2019     } else {
2020         error_setg(errp, "acpi: device unplug for not supported device"
2021                    " type: %s", object_get_typename(OBJECT(dev)));
2022     }
2023 }
2024 
2025 static HotplugHandler *pc_get_hotpug_handler(MachineState *machine,
2026                                              DeviceState *dev)
2027 {
2028     PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(machine);
2029 
2030     if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2031         object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2032         return HOTPLUG_HANDLER(machine);
2033     }
2034 
2035     return pcmc->get_hotplug_handler ?
2036         pcmc->get_hotplug_handler(machine, dev) : NULL;
2037 }
2038 
2039 static void
2040 pc_machine_get_hotplug_memory_region_size(Object *obj, Visitor *v,
2041                                           const char *name, void *opaque,
2042                                           Error **errp)
2043 {
2044     PCMachineState *pcms = PC_MACHINE(obj);
2045     int64_t value = memory_region_size(&pcms->hotplug_memory.mr);
2046 
2047     visit_type_int(v, name, &value, errp);
2048 }
2049 
2050 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2051                                             const char *name, void *opaque,
2052                                             Error **errp)
2053 {
2054     PCMachineState *pcms = PC_MACHINE(obj);
2055     uint64_t value = pcms->max_ram_below_4g;
2056 
2057     visit_type_size(v, name, &value, errp);
2058 }
2059 
2060 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2061                                             const char *name, void *opaque,
2062                                             Error **errp)
2063 {
2064     PCMachineState *pcms = PC_MACHINE(obj);
2065     Error *error = NULL;
2066     uint64_t value;
2067 
2068     visit_type_size(v, name, &value, &error);
2069     if (error) {
2070         error_propagate(errp, error);
2071         return;
2072     }
2073     if (value > (1ULL << 32)) {
2074         error_setg(&error,
2075                    "Machine option 'max-ram-below-4g=%"PRIu64
2076                    "' expects size less than or equal to 4G", value);
2077         error_propagate(errp, error);
2078         return;
2079     }
2080 
2081     if (value < (1ULL << 20)) {
2082         error_report("Warning: small max_ram_below_4g(%"PRIu64
2083                      ") less than 1M.  BIOS may not work..",
2084                      value);
2085     }
2086 
2087     pcms->max_ram_below_4g = value;
2088 }
2089 
2090 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2091                                   void *opaque, Error **errp)
2092 {
2093     PCMachineState *pcms = PC_MACHINE(obj);
2094     OnOffAuto vmport = pcms->vmport;
2095 
2096     visit_type_OnOffAuto(v, name, &vmport, errp);
2097 }
2098 
2099 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2100                                   void *opaque, Error **errp)
2101 {
2102     PCMachineState *pcms = PC_MACHINE(obj);
2103 
2104     visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2105 }
2106 
2107 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2108 {
2109     bool smm_available = false;
2110 
2111     if (pcms->smm == ON_OFF_AUTO_OFF) {
2112         return false;
2113     }
2114 
2115     if (tcg_enabled() || qtest_enabled()) {
2116         smm_available = true;
2117     } else if (kvm_enabled()) {
2118         smm_available = kvm_has_smm();
2119     }
2120 
2121     if (smm_available) {
2122         return true;
2123     }
2124 
2125     if (pcms->smm == ON_OFF_AUTO_ON) {
2126         error_report("System Management Mode not supported by this hypervisor.");
2127         exit(1);
2128     }
2129     return false;
2130 }
2131 
2132 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2133                                void *opaque, Error **errp)
2134 {
2135     PCMachineState *pcms = PC_MACHINE(obj);
2136     OnOffAuto smm = pcms->smm;
2137 
2138     visit_type_OnOffAuto(v, name, &smm, errp);
2139 }
2140 
2141 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2142                                void *opaque, Error **errp)
2143 {
2144     PCMachineState *pcms = PC_MACHINE(obj);
2145 
2146     visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2147 }
2148 
2149 static bool pc_machine_get_nvdimm(Object *obj, Error **errp)
2150 {
2151     PCMachineState *pcms = PC_MACHINE(obj);
2152 
2153     return pcms->acpi_nvdimm_state.is_enabled;
2154 }
2155 
2156 static void pc_machine_set_nvdimm(Object *obj, bool value, Error **errp)
2157 {
2158     PCMachineState *pcms = PC_MACHINE(obj);
2159 
2160     pcms->acpi_nvdimm_state.is_enabled = value;
2161 }
2162 
2163 static void pc_machine_initfn(Object *obj)
2164 {
2165     PCMachineState *pcms = PC_MACHINE(obj);
2166 
2167     pcms->max_ram_below_4g = 0; /* use default */
2168     pcms->smm = ON_OFF_AUTO_AUTO;
2169     pcms->vmport = ON_OFF_AUTO_AUTO;
2170     /* nvdimm is disabled on default. */
2171     pcms->acpi_nvdimm_state.is_enabled = false;
2172     /* acpi build is enabled by default if machine supports it */
2173     pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2174 }
2175 
2176 static void pc_machine_reset(void)
2177 {
2178     CPUState *cs;
2179     X86CPU *cpu;
2180 
2181     qemu_devices_reset();
2182 
2183     /* Reset APIC after devices have been reset to cancel
2184      * any changes that qemu_devices_reset() might have done.
2185      */
2186     CPU_FOREACH(cs) {
2187         cpu = X86_CPU(cs);
2188 
2189         if (cpu->apic_state) {
2190             device_reset(cpu->apic_state);
2191         }
2192     }
2193 }
2194 
2195 static unsigned pc_cpu_index_to_socket_id(unsigned cpu_index)
2196 {
2197     X86CPUTopoInfo topo;
2198     x86_topo_ids_from_idx(smp_cores, smp_threads, cpu_index,
2199                           &topo);
2200     return topo.pkg_id;
2201 }
2202 
2203 static CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *machine)
2204 {
2205     PCMachineState *pcms = PC_MACHINE(machine);
2206     int len = sizeof(CPUArchIdList) +
2207               sizeof(CPUArchId) * (pcms->possible_cpus->len);
2208     CPUArchIdList *list = g_malloc(len);
2209 
2210     memcpy(list, pcms->possible_cpus, len);
2211     return list;
2212 }
2213 
2214 static HotpluggableCPUList *pc_query_hotpluggable_cpus(MachineState *machine)
2215 {
2216     int i;
2217     CPUState *cpu;
2218     HotpluggableCPUList *head = NULL;
2219     PCMachineState *pcms = PC_MACHINE(machine);
2220     const char *cpu_type;
2221 
2222     cpu = pcms->possible_cpus->cpus[0].cpu;
2223     assert(cpu); /* BSP is always present */
2224     cpu_type = object_class_get_name(OBJECT_CLASS(CPU_GET_CLASS(cpu)));
2225 
2226     for (i = 0; i < pcms->possible_cpus->len; i++) {
2227         X86CPUTopoInfo topo;
2228         HotpluggableCPUList *list_item = g_new0(typeof(*list_item), 1);
2229         HotpluggableCPU *cpu_item = g_new0(typeof(*cpu_item), 1);
2230         CpuInstanceProperties *cpu_props = g_new0(typeof(*cpu_props), 1);
2231         const uint32_t apic_id = pcms->possible_cpus->cpus[i].arch_id;
2232 
2233         x86_topo_ids_from_apicid(apic_id, smp_cores, smp_threads, &topo);
2234 
2235         cpu_item->type = g_strdup(cpu_type);
2236         cpu_item->vcpus_count = 1;
2237         cpu_props->has_socket_id = true;
2238         cpu_props->socket_id = topo.pkg_id;
2239         cpu_props->has_core_id = true;
2240         cpu_props->core_id = topo.core_id;
2241         cpu_props->has_thread_id = true;
2242         cpu_props->thread_id = topo.smt_id;
2243         cpu_item->props = cpu_props;
2244 
2245         cpu = pcms->possible_cpus->cpus[i].cpu;
2246         if (cpu) {
2247             cpu_item->has_qom_path = true;
2248             cpu_item->qom_path = object_get_canonical_path(OBJECT(cpu));
2249         }
2250 
2251         list_item->value = cpu_item;
2252         list_item->next = head;
2253         head = list_item;
2254     }
2255     return head;
2256 }
2257 
2258 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2259 {
2260     /* cpu index isn't used */
2261     CPUState *cs;
2262 
2263     CPU_FOREACH(cs) {
2264         X86CPU *cpu = X86_CPU(cs);
2265 
2266         if (!cpu->apic_state) {
2267             cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2268         } else {
2269             apic_deliver_nmi(cpu->apic_state);
2270         }
2271     }
2272 }
2273 
2274 static void pc_machine_class_init(ObjectClass *oc, void *data)
2275 {
2276     MachineClass *mc = MACHINE_CLASS(oc);
2277     PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2278     HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2279     NMIClass *nc = NMI_CLASS(oc);
2280 
2281     pcmc->get_hotplug_handler = mc->get_hotplug_handler;
2282     pcmc->pci_enabled = true;
2283     pcmc->has_acpi_build = true;
2284     pcmc->rsdp_in_ram = true;
2285     pcmc->smbios_defaults = true;
2286     pcmc->smbios_uuid_encoded = true;
2287     pcmc->gigabyte_align = true;
2288     pcmc->has_reserved_memory = true;
2289     pcmc->kvmclock_enabled = true;
2290     pcmc->enforce_aligned_dimm = true;
2291     /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2292      * to be used at the moment, 32K should be enough for a while.  */
2293     pcmc->acpi_data_size = 0x20000 + 0x8000;
2294     pcmc->save_tsc_khz = true;
2295     mc->get_hotplug_handler = pc_get_hotpug_handler;
2296     mc->cpu_index_to_socket_id = pc_cpu_index_to_socket_id;
2297     mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2298     mc->query_hotpluggable_cpus = pc_query_hotpluggable_cpus;
2299     mc->default_boot_order = "cad";
2300     mc->hot_add_cpu = pc_hot_add_cpu;
2301     mc->max_cpus = 255;
2302     mc->reset = pc_machine_reset;
2303     hc->pre_plug = pc_machine_device_pre_plug_cb;
2304     hc->plug = pc_machine_device_plug_cb;
2305     hc->unplug_request = pc_machine_device_unplug_request_cb;
2306     hc->unplug = pc_machine_device_unplug_cb;
2307     nc->nmi_monitor_handler = x86_nmi;
2308 
2309     object_class_property_add(oc, PC_MACHINE_MEMHP_REGION_SIZE, "int",
2310         pc_machine_get_hotplug_memory_region_size, NULL,
2311         NULL, NULL, &error_abort);
2312 
2313     object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2314         pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2315         NULL, NULL, &error_abort);
2316 
2317     object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2318         "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2319 
2320     object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2321         pc_machine_get_smm, pc_machine_set_smm,
2322         NULL, NULL, &error_abort);
2323     object_class_property_set_description(oc, PC_MACHINE_SMM,
2324         "Enable SMM (pc & q35)", &error_abort);
2325 
2326     object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2327         pc_machine_get_vmport, pc_machine_set_vmport,
2328         NULL, NULL, &error_abort);
2329     object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2330         "Enable vmport (pc & q35)", &error_abort);
2331 
2332     object_class_property_add_bool(oc, PC_MACHINE_NVDIMM,
2333         pc_machine_get_nvdimm, pc_machine_set_nvdimm, &error_abort);
2334 }
2335 
2336 static const TypeInfo pc_machine_info = {
2337     .name = TYPE_PC_MACHINE,
2338     .parent = TYPE_MACHINE,
2339     .abstract = true,
2340     .instance_size = sizeof(PCMachineState),
2341     .instance_init = pc_machine_initfn,
2342     .class_size = sizeof(PCMachineClass),
2343     .class_init = pc_machine_class_init,
2344     .interfaces = (InterfaceInfo[]) {
2345          { TYPE_HOTPLUG_HANDLER },
2346          { TYPE_NMI },
2347          { }
2348     },
2349 };
2350 
2351 static void pc_machine_register_types(void)
2352 {
2353     type_register_static(&pc_machine_info);
2354 }
2355 
2356 type_init(pc_machine_register_types)
2357